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Overview 

 Digital Systems, Computers, and Beyond 

 Information Representation 

 Number Systems [binary, octal and hexadecimal] 

 Base Conversion 

 Decimal Codes [BCD (binary coded decimal)] 

 Alphanumeric Codes 

 Parity Bit 

 Gray Codes 
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DIGITAL & COMPUTER SYSTEMS - Digital 

System 

 Takes a set of discrete information inputs and discrete internal 

information (system state) and generates a set of discrete information 

outputs. 

 Digits (Latin word for fingers) : Discrete numeric elements 

 Logic : Circuits that operate on a set of two elements with values 0 

(False), 1 (True) 

 Computers are digital logic circuits  
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Types of Digital Systems 

 No state present 

• Combinational Logic System 

• Output = Function(Input) 

 State present 

• Synchronous Sequential System: State updated at 
discrete times 

• Asynchronous Sequential System: State updated at any 
time 

• State = Function (State, Input) 

• Output = Function (State) or Function (State, Input) 

Moore Mealy 
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Signal Examples Over Time 

Analog 

Asynchronous 

Synchronous 

Time 

Continuous 

in value & 

time 

Discrete in        

value & 

continuous 

in time 

Discrete in 

value & time 

Digital 
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Digital System Example 

A Digital Counter (e. g., odometer): 

1 3 0 0 5 6 4 
Count Up 

Reset 

Inputs: Count Up, Reset   

Outputs: Visual Display   

State: "Value" of stored digits 

  

Synchronous or Asynchronous?   
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Digital Computer Example 

Synchronous or 

Asynchronous? 

Inputs: keyboard, 

mouse, wireless, 

microphone 

Outputs: LCD 

screen, wireless, 

speakers 

Memory 

Control 
unit 

Datapath 

Input/Output 

CPU 
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And Beyond – Embedded Systems  

 Computers as integral parts of other products 

 Examples of embedded computers 

• Microcomputers 

• Microcontrollers 

• Digital signal processors 

 Examples of embedded systems applications 

 Cell phones Dishwashers 

Automobiles  Flat Panel TVs 

Video games Global Positioning Systems 

Copiers 
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INFORMATION REPRESENTATION - Signals 

 Information variables represented by physical quantities.  

 For digital systems, the variables take on discrete values.    

 Two level, or binary values are the most prevalent values 
in digital systems. 
• Binary systems have higher immunity to noise.  

 Binary values are represented abstractly by: 

•  digits 0 and 1 

•  words (symbols) False (F) and True (T) 

•  words (symbols) Low (L) and High (H)  

•  and words On and Off. 

 Binary values are represented by values or ranges of values 
of physical quantities. 
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 What are other physical quantities represent 

0 and 1? 

• CPU   Voltage 

• Disk  Magnetic Field Direction 

• CD  Surface Pits/Light 

• Dynamic RAM  Electrical Charge 

stored in capacitors 

 

 

 

Binary Values: Other Physical Quantities 
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Signal Example – Physical Quantity: Voltage 

Threshold 

Region 
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NUMBER SYSTEMS – Representation 

 Positive radix, positional number systems 

 A number with radix r is represented by a string of digits: 

     An - 1An - 2 … A1A0 . A- 1 A- 2 … A- m + 1 A- m  

 

 in which 0  Ai < r and . is the radix point 

 i represents the position of the coefficient 

  r i represents the weight by which the coefficient is multiplied 

 An-1 is the most significant digit (MSD) and A-m is the least 

significant digit (LSD) 

 The string of digits represents the power series: 

(𝑁𝑢𝑚𝑏𝑒𝑟)𝑟=  𝐴𝑖𝑟
𝑖

𝑛−1

𝑖=0

+  𝐴𝑗𝑟
𝑗

−1

𝑗=−𝑚

 

Integer Portion Fraction Portion 
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Number Systems – Examples 

General Decimal Binary 

Radix (Base) r 10 2 

Digits 0 => r - 1 0 => 9 0 => 1 

0 

1 

2 

3 

Powers of     4           

Radix           5 

-1 

-2 

-3 

-4 

-5 

r0 

r1 

r2 

r3 

r4 

r5 

r -1 

r -2 

r -3 

r -4 

r -5 

1 

10 

100 

1000 

10,000 

100,000 

0.1 

0.01 

0.001 

0.0001 

0.00001 

1 

2 

4 

8 

16 

32 

0.5 

0.25 

0.125 

0.0625 

0.03125 



Example 

 (403)5  =  4 x 52 + 0 x 51 + 3 x 50 = (103)10 

 

 

 

 

 (103)10 = 1 x 102 + 0 x 101 + 3 x 100 = 103 
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 Useful for Base Conversion 

Exponent Value     Exponent Value   

0   1   11   2,048   

1   2   12   4,096   

2   4   13   8,192   

3   8   14   16,384   

4   16   15   32,768   

5   32 16   65,536   

6   64   17   131,072   

7   128   18   262,144   

19   524,288   

20   1,048,576   

21   2,097,152   

8   256   

9   512   

10   1024   

BASE CONVERSION - Positive Powers of 2  



Special Powers of 2 

  210  (1024) is Kilo, denoted "K" 

 

  220 (1,048,576) is Mega, denoted "M" 

 

  230 (1,073, 741,824)is Giga, denoted "G" 

 

  240 (1,099,511,627,776 ) is Tera, denoted 

"T" 
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Commonly Occurring Bases 
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 The six letters A, B, C, D, E, and F represent the digits for 

values 10, 11, 12, 13, 14, 15 (given in decimal), 

respectively, in hexadecimal. Alternatively, a, b, c, d, e, f 

can be used. 

 

Name Radix Digits 

Binary 2 0,1 

Octal 8 0,1,2,3,4,5,6,7 

Decimal 10 0,1,2,3,4,5,6,7,8,9 

Hexadecimal 16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 



Binary System 

 r = 2 

 Digits = {0, 1} 

 Every binary digit is called a bit 

 When a bit is equal to zero, it does not contribute to the 

value of the number 

 Example: 

• (10011.101)2= 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20
+ (1 × 2−1 + 0 × 2−2 + 1 × 2−3) 

 

• (10011.101)2= 16 + 2 + 1 +
1

2
+
1

8
= (19.625)10 
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Octal System 

 r = 8 

 Digits = {0, 1, 2, 3, 4, 5, 6, 7} 

 Every digit is represented by 3-bits  More compact than 

binary 

 Example: 

• (127.4)8= 1 × 82 + 2 × 81 + 7 × 80 + (4 × 8−1) 
 

• (127.4)8= 64 + 16 + 7 +
1

2
= (87.5)10 
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Hexadecimal System 

 r = 16 

 Digits = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 

 Every digit is represented by 4-bits  

 Example: 

• (𝐵65𝐹)16= 11 × 163 + 6 × 162 + 5 × 161 + 15 × 160  

 

• (𝐵65𝐹)16= (46687)10 
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Decimal  

(Base 10) 

Binary  

(Base 2) 

Octal  

(Base 8)   

Hexa decimal  

(Base 16)   

00   00000 00 00   

01   00001 01   01   

02   00010 02   02   

03   00011 03 03   

04   00100 04 04   

05   00101 05   05   

06   00110 06   06   

07   00111 07   07   

08   01000 10   08   

09   01001 11   09   

10   01010 12   0A   

11   0101 1 13   0B   

12   01100 14   0C   

13   01101 15   0D   

14   01110 16   0E   

15   01111 17   0F   

16   10000 20   10   

 Good idea to memorize! 

Numbers in Different Bases 
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(𝑁𝑢𝑚𝑏𝑒𝑟)𝑟=  𝐴𝑖𝑟
𝑖

𝑛−1

𝑖=0

+  𝐴𝑗𝑟
𝑗

−1

𝑗=−𝑚

 

 

 Example: Convert 110102 to N10:   

  

Converting from any Base (r) to Decimal 

Integer Portion Fraction Portion 



Conversion from Decimal to Base (r) 

 Convert the Integer Part 

 

 Convert the Fraction Part 

 

 Join the two results with a radix point 
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Conversion Details 

 To Convert the Integral Part: 

• Repeatedly divide the number by the new radix and save the remainders 

until the quotient is zero 

• The digits for the new radix are the remainders in reverse order of their 

computation 

• If the new radix is > 10, then convert all remainders > 10 to digits A, B, 

…  

 

 To Convert the Fractional Part: 

• Repeatedly multiply the fraction by the new radix and save the integer 

digits of the results until the fraction is zero or your reached the required 

number of fractional digits   

• The digits for the new radix are the integer digits in order of their 

computation  

• If the new radix is > 10, then convert all integers > 10 to digits A, B, …  
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Example: Convert 46.687510  To Base 2 

 Convert 46 to Base 2: 

  

 (46)10 = (101110)2 

 
 Convert 0.6875 to Base 2: 

 

 (0.6875)10 = (0.1011)2 

 
 Join the results together with the radix point: 

  (46.6875)10 = (101110.1011)2 

Remainder Quotient Division 

0 23 46/2 

1 11 23/2 

1 5 11/2 

1 2 5/2 

0 1 2/2 

1 0 1/2 MSD 

LSD 

Answer Multiplication 

1.375 0.6875*2 

0.75 0.375*2 

1.5 0.75*2 

1.0 0.5*2 

MSD 

LSD 
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Example: Convert 153.51310  To Base 8 

 Convert 153 to Base 8: 

  

 (153)10 = (231)8 
 

 Convert 0.513 to Base 8: (Up to 3 digits) 
 

• Truncate: 

 (0.513)10 = (0.406)8 

• Round: 

 (0.513)10 = (0.407)8 
 

 Join the results together with the radix point: 

  (153.513)10 = (231.407)8 

Remainder Quotient Division 

1 19 153/8 

3 2 19/8 

2 0 2/8 MSD 

LSD 

Answer Multiplication 

4.104 0.513*8 

0.832 0.104*8 

6.656 0.832*8 

5.248 0.656*8 

MSD 

LSD 
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Example: Convert 42310  To Base 16 

  

  

 

 

 

 

 

    

   (423)10 = (1A7)16 
 

 

Remainder Quotient Division 

7 26 423/16 

10 1 26/16 

1 0 1/16 MSD 

LSD 



Chapter 1            29 

 Subtract the largest power of 2 that gives a positive remainder 
and record the power 

 
 Repeat, subtracting from the prior remainder and recording 

the power, until the remainder is zero 
 

 Place 1’s  in the positions in the binary result corresponding 
to the powers recorded; in all other positions place 0’s 

              
 
 
 
     

Converting Decimal to Binary: 

Alternative Method 
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Example: Convert 46.687510  To Base 2 

Using Alternative Method 

 Convert 46 to Base 2: 

 

 (46)10 = (101110)2 
 

 Convert 0.6875 to Base 2: 
 

 (0.6875)10 = (0.1011)2 
 

 

 Join the results together with the radix point: 

  (46.6875)10 = (101110.1011)2 

 Easier way to do it: 

 

Power Remainder Subtract 

5 14 46-32 

3 6 14-8 

2 2 6-4 

1 0 2-2 

Power Remainder Subtract 

-1 0.1875 0.6875-0.5 

-3 0.0625 0.1875-0.125 

-4 0 0.0625-0.0625 

Power 6 5 4 3 2 1 0 . -1 -2 -3 -4 

0 1 0 1 1 1 0 . 1 0 1 1 



Chapter 1            31 

Additional Issue - Fractional Part 

 

 Note that in this conversion, the fractional part can become 
0 as a result of the repeated multiplications 

  

 In general, it may take many bits to get this to happen or it 
may never happen 

 

 Example Problem: Convert 0.6510 to N2 

• 0.65 = 0.1010011001001 … 

• The fractional part begins repeating every 4 steps yielding 
repeating 1001 forever! 

 

 Solution: Specify number of bits to right of radix point 
and round or truncate to this number 

 



Checking the Conversion 

 To convert back, sum the digits times their respective 

powers of r 

 

 From the prior conversion of  46.687510  

 

1011102  = 1·32 + 0·16 +1·8 +1·4 + 1·2 +0·1 

                =  32 + 8 + 4 + 2 

                =  46 

 

0.10112  = 1/2 + 1/8 + 1/16 

  = 0.5000 + 0.1250 + 0.0625 

                = 0.6875 
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Octal (Hexadecimal) to Binary and 

Back: Method1 

 Octal (Hexadecimal) to Binary: 

1. Convert octal (hexadecimal) to decimal (Slide 23) 

2. Covert decimal to binary (Slide 24 or Slide 29) 

 
 Binary to Octal (Hexadecimal): 

1. Convert binary to decimal (Slide 23) 

2. Covert decimal to octal (hexadecimal) (Slide 24) 
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Octal (Hexadecimal) to Binary and 

Back: Method2 (Easier) 

 Octal (Hexadecimal) to Binary: 

• Restate the octal (hexadecimal) as three (four) binary digits 
starting at the radix point and going both ways 
 

 Binary to Octal (Hexadecimal): 

• Group the binary digits into three (four) bit groups starting at the 
radix point and going both ways, padding with zeros as needed 

• Convert each group of three (four) bits to an octal (hexadecimal) 
digit 

 
Octal 0 1 2 3 4 5 6 7 

Binary 000 001 010 011 100 101 110 111 

Hexadecimal 0 1 2 3 4 5 6 7 

Binary 0000 0001 0010 0011 0100 0101 0110 0111 

Hexadecimal 8 9 A B C D E F 

Binary 1000 1001 1010 1011 1100 1101 1110 1111 



Examples 

 (673.12)8 = (110 111 011 . 001 010)2 

 

 (3A6.C)16 = (0011 1010 0110 . 1100)2 

 

 (10110001101011.1111000001)2 = ( ? )8 

 

(10/110/001/101/011.111/100/000/1)2 = (26153.7404 )8 

 

 (10110001101011.1111000001)2 = ( ? )16 

 

(10/1100/0110/1011.1111/0000/01)2 = (2C6B.F04 )16 
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Octal to Hexadecimal via Binary 

 Convert octal to binary 

 Use groups of four bits and convert to hexadecimal digits 

 Example: Octal to Binary to Hexadecimal 

                   (635.177)8 

 

   (110 011 101 . 001 111 111)2 

 

   (1/1001/1101 . 0011/1111/1)2 

 

    (19D.3F8)16  



One last Conversion Example 

 Given that (365)r = (194)10, compute the 

value of r? 
 

3 × 𝑟2 + 6 × 𝑟1 + 5 × 𝑟0 = 194 

 

3𝑟2 + 6𝑟 + 5 = 194 

 

3𝑟2 + 6𝑟 − 189 = 0 

 

𝑟2 + 2𝑟 − 63 = 0 

 

𝑟 − 7 𝑟 + 9 = 0 

 

𝑟 = 7 
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Binary Numbers and Binary Coding 

 Flexibility of representation 

• Within constraints below, can assign any binary combination 
(called a code word) to any data as long as data is uniquely 
encoded 

 

 Information Types 
 

• Numeric 

 Must represent range of data needed 

 Very desirable to represent data such that simple, straightforward 
computation for common arithmetic operations permitted 

 Tight relation to binary numbers 
 

• Non-numeric 

 Greater flexibility since arithmetic operations not applied 

 Not tied to binary numbers 
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 Given n binary digits (called bits), a binary code is a mapping 

from a set of represented elements to a subset of the 2n binary 

numbers. 

 Example: A binary code for the seven colors of the rainbow 

 Code 100 is not used 

 

Non-numeric Binary Codes 

Color Binary Number 

Red 000 

Orange 001 

Yellow 010 

Green 011 

Blue 101 

Indigo 110 

Violet 111 



Number of Bits Required 

 Given M elements to be represented by a binary code, the 

minimum number of bits, n, needed, satisfies the following 

relationships: 

2𝑛 ≥ 𝑀 > 2𝑛−1 

   𝑛 = 𝑙𝑜𝑔2𝑀 , where 𝑥  is called 

the ceiling function, is the integer greater than or equal to x. 

 

 Example: How many bits are required to represent decimal 

digits with a binary code? 
 

 𝑀 = 10 
 

𝑛 = 𝑙𝑜𝑔210 = 3.33 = 4 
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Number of Elements Represented 

 Given n digits in radix r, there are 𝒓𝒏distinct 
elements that can be represented. 

 But, you can represent m elements, 𝒎 ≤ 𝒓𝒏 
Examples: 

• You can represent 4 elements in radix r = 2 with n = 2 
digits: (00, 01, 10, 11).   

 

• You can represent 4 elements in radix r = 2 with n = 4 
digits: (0001, 0010, 0100, 1000). 

 

• This second code is called a "one hot" code. 



DECIMAL CODES - Binary Codes for 

Decimal Digits 

 There are over 8,000 ways that you can chose 10 elements 

from the 16 binary numbers of 4 bits.   A few are useful: 

Chapter 1            42 

Decimal 8, 4, 2, 1 Excess 3 8, 4, -2, -1 Gray 

0 0000 0011 0000 0000 

1 0001 0100 0111 0001 

2 0010 0101 0110 0011 

3 0011 0110 0101 0010 

4 0100 0111 0100 0110 

5 0101 1000 1011 1110 

6 0110 1001 1010 1010 

7 0111 1010 1001 1011 

8 1000 1011 1000 1001 

9 1001 1100 1111 1000 
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Binary Coded Decimal (BCD)  

 Numeric code 
 

 The BCD code is the 8, 4, 2, 1 code 
 

 8, 4, 2, and 1 are weights  BCD is a weighted code 
 

 This code is the simplest, most intuitive binary code for 
decimal digits and uses the same powers of 2 as a binary 
number, but only encodes the first ten values from 0 to 9 
 

 Example:  1001 (9) = 1000 (8) + 0001 (1) 
 

 How many “invalid” code words are there? 

• Answer: 6 
 

 What are the “invalid” code words? 

• Answer: 1010, 1011, 1100, 1101, 1110, 1111 
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Warning: Conversion or Coding? 

 Do NOT mix up conversion of a decimal number to a 

binary number with coding a decimal number with a 

BINARY CODE.  

 

 1310 = 11012 (This is conversion)  

 

 13   0001|0011 (This is coding) 



Excess 3 Code and 8, 4, –2, –1 Code 

 What interesting property is common to these two codes? 

• Answer: Both codes have the property that the codes for 0 and 9, 1 

and 8, etc. can be obtained from each other by replacing the 0’s 

with the 1’s  and vice-versa. Such a code is sometimes called a 

complement code.  
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Decimal Excess 3 8, 4, –2, –1 

0 0011 0000 

1 0100 0111 

2 0101 0110 

3 0110 0101 

4 0111 0100 

5 1000 1011 

6 1001 1010 

7 1010 1001 

8 1011 1000 

9 1100 1111 
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ALPHANUMERIC CODES - ASCII Character 

Codes 

 Non-numeric code 

 

 ASCII stands for American Standard Code for 
Information Interchange (Refer to Table 1-5 in the 
text)  

 

 This code is a popular code used to represent 
information sent as character-based data. It uses 7-
bits (i.e. 128 characters) to represent: 

• 95 Graphic printing characters 

• 33 Non-printing characters 

 



ASCII Code Table 
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Least Significant 

M
o

st
 S

ig
n

if
ic

a
n

t 



ASCII Character Codes 

 Graphic printing characters 

 26 upper case letters (A-Z)  

 26 lower case letters (a-z) 

 10 numerals (0-9) 

 33 special characters (e.g. %, @, $) 

 

 Non-printing characters 

 Format effectors: used for text format (e.g. BS = Backspace, CR = 

carriage return) 

 Information separators: used to separate the data into paragraphs 

and pages (e.g. RS = record separator, FS = file separator) 

 Communication control characters (e.g. STX and ETX start and 

end text areas). 
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ASCII Properties 

 ASCII has some interesting properties: 

• Digits 0 to 9 span Hexadecimal values 3016 to 3916 

 

• Upper case A-Z span 4116 to 5A16  

 

• Lower case a-z span 6116 to 7A16  

 

• Lower to upper case translation (and vice versa) occurs by flipping 

bit 6 
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UNICODE 

 UNICODE extends ASCII to 65,536 universal  characters 

codes: 

• Non-numeric 

• For encoding characters in world languages 

• Available in many modern applications 

• 2 byte (16-bit) code words 
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PARITY BIT Error-Detection Codes 

 Non-numeric 
 

 Redundancy (e.g. extra information), in the form of extra 
bits, can be incorporated into binary code words to detect 
and correct errors 

    

 A simple form of redundancy is parity, an extra bit 
appended onto the code word to make the number of 1’s 
odd or even. Parity can detect all single-bit errors and some 
multiple-bit errors 

 

 A code word has even parity if the number of 1’s in the 
code word is even 
 

 A code word has odd parity if the number of 1’s in the 
code word is odd 

 



4-Bit Parity Code Example 

 Fill in the even and odd parity bits: 

 

 

 

 

 

 

 

 

 The code word "1111" has even parity and the code word 

"1110" has odd parity.   Both can be used to represent the 

same 3-bit data 

 

 

 

Chapter 1            52 

Even Parity Message Odd Parity Message 

000_ 000_ 

001_ 001_ 

010_ 010_ 

011_ 011_ 

100_ 100_ 

101_ 101_ 

110_ 110_ 

111_ 111_ 

0 

1 

1 

0 

1 

0 

0 

1 

1 

0 

0 

1 

0 

1 

1 

0 
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Combinational Logic Circuits 

 Digital (logic) circuits are hardware components 

that manipulate binary information. 
 

 Integrated circuits: transistors and 

interconnections. 

• Basic circuits is referred to as logic gates 

• The outputs of gates are applied to the inputs of other 

gates to form a digital circuit 
 

 Combinational? Later… 

Chapter 2 - Part 1         3 



Chapter 2 - Part 1         4 

Overview 

 Part 1 – Gate Circuits and Boolean Equations 

• Binary Logic and Gates 

• Boolean Algebra 

• Standard Forms 
 

 Part 2 – Circuit Optimization 

• Two-Level Optimization 

• Map Manipulation 

• Practical Optimization (Espresso) 

• Multi-Level Circuit Optimization 
 

 Part 3 – Additional Gates and Circuits 

• Other Gate Types 

• Exclusive-OR Operator and Gates 

• High-Impedance Outputs 
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Binary Logic and Gates 

 Binary variables take on one of two values 
 

 Logical operators operate on binary values and binary 
variables 
 

 Basic logical operators are the logic functions AND, 
OR and NOT 
 

 Logic gates implement logic functions 
 

 Boolean Algebra: a useful mathematical system for 
specifying and transforming logic functions 
 

We study Boolean algebra as a foundation for 
designing and analyzing digital systems! 
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Binary Variables 

 Recall that the two binary values have different 
names: 

• True/False 

• On/Off 

• Yes/No 

• 1/0 
 

 We use 1 and 0 to denote the two values 
 

 Variable identifier examples: 

• A, B, y, z, or X1 for now 

• RESET, START_IT, or ADD1 later 
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Logical Operations 

 The three basic logical operations are: 

• AND  

• OR 

• NOT 
 

 AND is denoted by a dot (·) or (∧) 
 

 OR is denoted by a plus (+) or (∨) 
 

 NOT is denoted by an over-bar ( ¯ ), a single 

quote mark (') after, or (~) before the variable 

 



Notation Examples 

 Examples: 

• 𝑍 = 𝑋 ∙ Y = XY = 𝑋 ∧ 𝑌 : is read “Z is equal to X AND Y” 

 Z = 1 if and only if X = 1 and Y = 1; otherwise, Z = 0 
 

• 𝑍 = 𝑋 + 𝑌 = 𝑋 ∨ 𝑌 : is read “Z is equal to X OR Y” 

 Z = 1 if (only X = 1) or if (only Y = 1) or if (X =1 and Y = 1)   
 

• Z= 𝑋 = 𝑋′ = ~𝑋 : is read “Z is equal to NOT X” 

 Z = 1 if X = 0; otherwise, Z = 0 
 

 Notice the difference between arithmetic addition and 

logical OR: 

• The statement:  

 1 + 1 = 2 (read “one plus one equals two”) 

  is not the same as 

 1 + 1 = 1 (read “1 or 1 equals 1”) 
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Operator Definitions 

 Operations are defined on the values "0" and "1" for each 

operator: 
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AND 

0 . 0 = 0 

0 . 1 = 0 

1 . 0 = 0 

1 . 1 = 1 

OR 

0 + 0 = 0 

0 + 1 = 1 

1 + 0 = 1 

1 + 1 = 1 

NOT 

  𝟎 = 𝟏 

𝟏 = 𝟎 



Truth Tables 

 Truth table - a tabular listing of the values of a function 

for all possible combinations of values on its arguments 

 

 Example: Truth tables for the basic logic operations: 
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AND 

Inputs Output 

X Y Z = X . Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

OR 

Inputs Output 

X Y Z = X + Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

NOT 

Inputs Output 

X 𝒁 = 𝑿   

0 1 

1 0 
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 Using Switches 
 

• For inputs:  

 logic 1 is switch closed  

 logic 0 is switch open 
 

• For outputs: 

 logic 1 is light on  

 logic 0 is light off 
 

• NOT uses a switch such that: 

 logic 1 is switch open 

 logic 0 is switch closed 

Logic Function Implementation 

Switches in series => AND 

Switches in parallel => OR 

  

𝐶  

Normally-closed switch => NOT 
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 Example: Logic Using Switches  

 

 

 

 
 

 

 Light is  

 ON (L = 1) for 𝐿 𝐴, 𝐵, 𝐶, 𝐷 = 𝐴 . 𝐵𝐶 + 𝐷 = AB𝐶 + 𝐴𝐷 

 and OFF (L = 0), otherwise. 
 

 Useful model for relay circuits and for CMOS gate circuits, 
the foundation of current digital logic technology 

Logic Function Implementation (Continued) 

B 

A 

D 

𝐶  
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Logic Gates 

 In the earliest computers, switches were opened 

and closed by magnetic fields produced by 

energizing coils in relays. The switches in turn 

opened and closed the current paths 
 

 Later, vacuum tubes that open and close current 

paths electronically replaced relays 
 

 Today, transistors are used as electronic switches 

that open and close current paths 
 

 Optional: Chapter 6 – Part 1: The Design Space 
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Logic Gate Symbols and Behavior 

 Logic gates have special symbols: 

 

 

 

 And waveform behavior in time as follows: 

(b) Timing diagram 

X 0 0 1 1 

Y 0 1 0 1 

X ·  Y (AND) 0 0 0 1 

X +  Y (OR) 0 1 1 1 

(NOT) 𝑋  1 1 0 0 

(a) Graphic symbols 

OR gate 

X 

Y 

Z =  X +  Y 

X 

Y 

Z =  X ·  Y 

AND gate 

X  Z =  𝑋  

NOT gate or 

inverter 



Chapter 2 - Part 1         15 

Gate Delay 

 In actual physical gates, if one or more input changes 

causes the output to change, the output change does not 

occur instantaneously 
 

 The delay between an input change(s) and the resulting 

output change is the gate delay denoted by tG: 

tG 
tG 

Input 

Output 

Time (ns) 

0 

0 

1 

1 

0 0.5 1 1.5 

tG = 0.3 ns 



Logic Gates: Inputs and Outputs 

 NOT (inverter) 

• Always one input and one output 
 

 AND and OR gates 

• Always one output 

• Two or more inputs 

Chapter 2 - Part 1         16 

A

B

C

X = ABC

A

B

C X = A + B + C + D + E

D

E



Boolean Algebra 

 An algebra dealing with binary variables and logic 
operations 

• Variables are designated by letters of the alphabet 

• Basic logic operations: AND, OR, and NOT 
 

 A Boolean expression is an algebraic expression formed 
by using binary variables, constants 0 and 1, the logic 
operation symbols, and parentheses 

• E.g.: X . 1, A + B + C, (A + B)( C + D) 
 

 A Boolean function consists of a binary variable 
identifying the function followed by equals sign and a 
Boolean expression 

• E.g.: 𝐹 = 𝐴 + 𝐵 + 𝐶, 𝐿 𝐷, 𝑋, 𝐴 = 𝐷𝑋 + 𝐴   
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Logic Diagrams and Expressions 

1. Equation: 𝐹 = 𝑋 + 𝑌 𝑍 
 

2. Logic Diagram: 
 

3. Truth Table: 

 
 Boolean equations, truth tables and                                                          

logic diagrams describe the same                                           
function! 

 

 Truth tables are unique; expressions                                                                                   
and logic diagrams are not. This gives                                          
flexibility in implementing functions. 
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Y

Z
X

F

X Y Z F 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 1 



Example 

 Draw the logic diagram and the truth table of the following 

Boolean function: 𝐹 𝑊,𝑋, 𝑌 = 𝑋𝑌 + 𝑊𝑌  
 

 Logic Diagram: 
 

 Truth Table: 

 

 

 

 

 

 

 This example represents a Single Output Function 
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X

W

Y

F

W X Y F 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 1 



Example 

 Draw the logic diagram and the truth table of the following 

Boolean functions: 𝐹 𝑊,𝑋 = 𝑊 𝑋 + 𝑊,𝐺 𝑊,𝑋 = 𝑊 + 𝑋  
 

 Logic Diagram:  
 

 Truth Table: 

 

 

 

 

 This example represents a Multiple Output Function 
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W

X

G

F

W X F G 

0 0 1 1 

0 1 0 0 

1 0 1 1 

1 1 1 1 



Example: 

 Given the following logic diagram, write the 

corresponding Boolean equation: 

 

 

 

 

 

 

 
 

 Logic circuits of  this type are called combinational logic 

circuits since the variables are combined by logical 

operations 
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𝑾.𝑿  

𝑾 + 𝒀 

𝒀 . 𝒁 

𝑭 = 𝒀 . 𝒁  

𝑮 = 𝑾.𝑿 + ( 𝑾 + 𝒀 . 𝒁 ) 

𝑾 + 𝒀 . 𝒁  



Basic Identities of Boolean Algebra 
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1. 𝑋 + 0 = 𝑋 2. 𝑋 .  1 = 𝑋 
Existence of 0 and 1 

3. 𝑋 + 1 = 1 4. 𝑋 .  0 = 0 

5. 𝑋 + 𝑋 = 𝑋 6. 𝑋 .  𝑋 = 𝑋 Idempotence 

7. 𝑋 + 𝑋 = 1 8. 𝑋 . 𝑋 = 0 Existence of complement 

9. 𝑋 = 𝑋 Involution 

10. 𝑋 + 𝑌 = 𝑌 + 𝑋 11. 𝑋𝑌 = 𝑌𝑋 Commutative Laws  

12. 𝑋 + 𝑌 + 𝑍 = 𝑋 + (𝑌 + 𝑍) 13. 𝑋𝑌 𝑍 = 𝑋(𝑌𝑍) Associative Laws 

14. 𝑋 𝑌 + 𝑍 = 𝑋𝑌 + 𝑋𝑍 15. 𝑋 + 𝑌𝑍 = (𝑋 + 𝑌)(𝑋 + 𝑍) Distributive Laws  

16. 𝑋 + 𝑌 = 𝑋 . 𝑌  17. 𝑋. 𝑌 = 𝑋 + 𝑌  DeMorgan’s Laws 



Some Properties of Identities & the Algebra 

 If the meaning is unambiguous, we leave out the symbol  

“·” 
 

 The identities above are organized into pairs 
 

• The dual of an algebraic expression is obtained by interchanging 

(+) and (·) and interchanging 0’s and 1’s 
 

• The identities appear in dual pairs. When there is only one identity 

on a line the identity is self-dual, i. e., the dual expression = the 

original expression.  
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Some Properties of Identities & the Algebra (Continued) 

 Unless it happens to be self-dual, the dual of an 

expression does not equal the expression itself 

 Examples: 

• 𝐹 = 𝐴 + 𝐶  .  𝐵 + 0  
 𝐷𝑢𝑎𝑙 𝐹 = 𝐴 . 𝐶 + B . 1 = A . 𝐶 + 𝐵 

• 𝐺 = XY + 𝑊 + 𝑍  

 𝐷𝑢𝑎𝑙 𝐺 = 𝑋 + 𝑌 .𝑊𝑍 = 𝑋 + 𝑌  . (𝑊 + 𝑍 ) 

• 𝐻 = 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶 

 𝐷𝑢𝑎𝑙 𝐻 = 𝐴 + 𝐵 𝐴 + 𝐶 𝐵 + 𝐶 = 𝐴 + 𝐵𝐶 𝐵 + 𝐶
= 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶 

 Are any of these functions self-dual? 

• Yes, H is self-dual 
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Boolean Operator Precedence 

 The order of evaluation in a Boolean expression is: 

1. Parentheses 

2. NOT 

3. AND 

4. OR 

 

 Consequence: Parentheses appear around OR expressions 

 

 Examples: 

• 𝐹 = 𝐴(𝐵 + 𝐶)(𝐶 + 𝐷 ) 

• 𝐹 = ~𝐴𝐵 =  𝐴 𝐵 

• 𝐹 = 𝐴𝐵 + 𝐶 

• 𝐹 = 𝐴(𝐵 + 𝐶) 
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Useful Boolean Theorems 

Theorem Dual Name 

𝑥. 𝑦 + 𝑥 . 𝑦 = 𝑦 𝑥 + 𝑦 𝑥 + 𝑦 = 𝑦 Minimization 

𝑥 + 𝑥. 𝑦 = 𝑥 𝑥. (𝑥 + 𝑦) = 𝑥 Absorption 

𝑥 + 𝑥 . 𝑦 = 𝑥 + 𝑦 𝑥. 𝑥 + 𝑦 = 𝑥. 𝑦 Simplification 

𝑥. 𝑦 + 𝑥 . 𝑧 + 𝑦. 𝑧 = 𝑥. 𝑦 + 𝑥 . 𝑧 
Consensus 

𝑥 + 𝑦 𝑥 + 𝑧 𝑦 + 𝑧 = (𝑥 + 𝑦)(𝑥 + 𝑧) 

Chapter 2 - Part 1         26 



Example 1: Boolean Algebraic Proof 

 A + A·B = A  (Absorption Theorem) 

 

 

 

 

 

 

 

 Our primary reason for doing proofs is to learn: 

• Careful and efficient use of the identities and theorems of Boolean 
algebra 

• How to choose the appropriate identity or theorem to apply to 
make forward progress, irrespective of the application 
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Proof Steps Justification (identity or theorem) 

A + A·B 

= A · 1 + A · B X = X · 1  

= A · ( 1 + B)  Distributive Law 

= A · 1  1 + X = 1 

= A X · 1 = X 



Example 2: Boolean Algebraic Proofs 

 𝐴𝐵 + 𝐴 𝐶 + 𝐵𝐶 = 𝐴𝐵 + 𝐴 𝐶  (Consensus Theorem) 
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Proof Steps 
Justification  

(identity or theorem) 

𝑨𝑩 + 𝑨 𝑪 + 𝑩𝑪 

= 𝑨𝑩 + 𝑨 𝑪 + 𝟏.𝑩𝑪 𝟏. 𝑿 = 𝑿 

= 𝑨𝑩 + 𝑨 𝑪 + (𝑨 + 𝑨 ). 𝑩𝑪 𝑿 + 𝑿 = 𝟏 

= 𝑨𝑩 + 𝑨 𝑪 + 𝑨𝑩𝑪 + 𝑨 𝑩𝑪 Distributive Law 

= 𝑨𝑩 + 𝑨𝑩𝑪 + 𝑨 𝑪 + 𝑨 𝑩𝑪 Commutative Law 

= 𝑨𝑩. 𝟏 + 𝑨𝑩. 𝑪 + 𝑨 𝑪. 𝟏 + 𝑨 𝑪.𝑩 𝑿. 𝟏 = 𝑿and Commutative Law 

= 𝑨𝑩(𝟏 + 𝑪) + 𝑨 𝑪(𝟏 + 𝑩) Distributive Law 

= 𝑨𝑩. 𝟏 + 𝑨 𝑪. 𝟏 𝟏 + 𝑿 = 𝟏 

= 𝑨𝑩 + 𝑨 𝑪 𝑿. 𝟏 = 𝑿 



Proof of Simplification 

 A + 𝐴 . 𝐵 = 𝐴 + 𝐵 (Simplification Theorem) 

 

 

 

 
 

 

 A. (𝐴 + 𝐵) = 𝐴𝐵 (Simplification Theorem) 
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Proof Steps Justification (identity or theorem) 

𝐴 + 𝐴 . 𝐵 

= (𝐴 + 𝐴 )(𝐴 + 𝐵) Distributive Law 

= 1. (𝐴 + 𝐵) 𝑋 + 𝑋 = 1 

= 𝐴 + 𝐵 𝑋. 1 = 𝑋 

Proof Steps Justification (identity or theorem) 

𝐴. (𝐴 + 𝐵) 

= 𝐴. 𝐴 + (𝐴. 𝐵) Distributive Law 

= 0 + 𝐴𝐵 𝑋. 𝑋 = 0 

= 𝐴𝐵 𝑋 + 0 = 𝑋 



Proof of Minimization 

 𝐴. 𝐵 + 𝐴 . 𝐵 = 𝐵  (Minimization Theorem) 

 

 

 

 

 

 (𝐴 + 𝐵)(𝐴 + 𝐵)  = 𝐵 (Minimization Theorem) 
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Proof Steps Justification (identity or theorem) 

𝐴. 𝐵 + 𝐴 . 𝐵 

= 𝐵(𝐴 + 𝐴 ) Distributive Law 

= 𝐵. 1 𝑋 + 𝑋 = 1 

= 𝐵 𝑋. 1 = 𝑋 

Proof Steps Justification (identity or theorem) 

(𝐴 + 𝐵)(𝐴 + 𝐵) 

= 𝐵 + (𝐴. 𝐴 ) Distributive Law 

= 𝐵 + 0 𝑋. 𝑋 = 0 

= 𝐵 𝑋 + 0 = 𝑋 



Proof of DeMorgan’s Laws (1) 

 𝑋 + 𝑌 = 𝑋 . 𝑌  (DeMorgan’s Law) 

• We will show that, 𝑋 . 𝑌 , satisfies the definition of the complement of 

(𝑋 + 𝑌), defined as 𝑋 + 𝑌 by DeMorgan’s Law. 

• To show this, we need to show that 𝐴 + 𝐴′ = 1  and 𝐴. 𝐴′ = 0 with 

𝐴 = 𝑋 + 𝑌 and 𝐴′ = 𝑋′. 𝑌′. This proves that 𝑋′. 𝑌′ = 𝑋 + 𝑌. 
 

 Part 1: Show 𝑋 + 𝑌 + 𝑋′. 𝑌′ = 1  
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Proof Steps 
Justification (identity or 

theorem) 

(𝑋 + 𝑌) + 𝑋′. 𝑌′ 

= (𝑋 + 𝑌 + 𝑋′)(𝑋 + 𝑌 + 𝑌′) Distributive Law 

= (1 + 𝑌)(𝑋 + 1) 𝑋 + 𝑋 = 1 

= 1.1 𝑋 + 1 = 1 

= 1 𝑋. 1 = 𝑋 



Proof of DeMorgan’s Laws (2) 

 Part 2: Show 𝑋 + 𝑌 .𝑋′. 𝑌′ = 0 

 

 

 

 

 

 

 

 

 Based on the above two parts, 𝑋′. 𝑌′ = 𝑋 + 𝑌 

 The second DeMorgans’ law is proved by duality 

 Note that DeMorgan’s law, given as an identity is not an axiom in the 

sense that it can be proved using the other identities.   
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Proof Steps 
Justification (identity or 

theorem) 

𝑋 + 𝑌 . 𝑋′. 𝑌′ 

= 𝑋. 𝑋′. 𝑌′ + (𝑌. 𝑋′. 𝑌′) Distributive Law 

= 0. 𝑌′ + (𝑋′. 0) 𝑋. 𝑋 = 0 

= 0 + 0 𝑋. 0 = 0 

= 0 𝑋 + 0 = 𝑋 



Example 3: Boolean Algebraic Proofs 

 (𝑋 + 𝑌)𝑍 + 𝑋𝑌 = 𝑌 (𝑋 + 𝑍) 
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Proof Steps 
Justification (identity or 

theorem) 

(𝑋 + 𝑌)𝑍 + 𝑋𝑌  

= 𝑋′𝑌′𝑍 + 𝑋. 𝑌′ DeMorgan’s law 

= 𝑌′(𝑋′𝑍 + 𝑋) Distributive law 

= 𝑌′(𝑋 + 𝑋′𝑍) Commutative law 

= 𝑌′(𝑋 + 𝑍) Simplification Theorem 



Boolean Function Evaluation 

 𝐹1 = 𝑥𝑦𝑧  

 𝐹2 = 𝑥 + 𝑦 𝑧 

 𝐹3 = 𝑥 𝑦 𝑧 + 𝑥 𝑦𝑧 + 𝑥𝑦  

 𝐹4 = 𝑥𝑦 + 𝑥 𝑧 
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x y z F1 F2 F3 F4 

0 0 0 0 0 1 0 

0 0 1 0 1 0 1 

0 1 0 0 0 0 0 

0 1 1 0 0 1 1 

1 0 0 0 1 1 1 

1 0 1 0 1 1 1 

1 1 0 1 1 0 0 

1 1 1 0 1 0 0 



Expression Simplification 

 An application of Boolean algebra 

 Simplify to contain the smallest number of literals (complemented and 

uncomplemented variables) 

 Example: Simplify the following Boolean expression 

• 𝐴𝐵 + 𝐴′𝐶𝐷 + 𝐴′𝐵𝐷 + 𝐴′𝐶𝐷′ + 𝐴𝐵𝐶𝐷 

 

Chapter 2 - Part 1         35 

Simplification Steps Justification (identity or theorem) 

𝐴𝐵 + 𝐴′𝐶𝐷 + 𝐴′𝐵𝐷 + 𝐴′𝐶𝐷′ + 𝐴𝐵𝐶𝐷 

= 𝐴𝐵 + 𝐴𝐵𝐶𝐷 + 𝐴′𝐶𝐷 + 𝐴′𝐶𝐷′ + 𝐴′𝐵𝐷 Commutative law 

= 𝐴𝐵 1 + 𝐶𝐷 + 𝐴′𝐶 𝐷 + 𝐷′ + 𝐴′𝐵𝐷 Distributive law 

= 𝐴𝐵. 1 + 𝐴′𝐶. 1 + 𝐴′𝐵𝐷 1 + 𝑋 = 1 and  𝑋 + 𝑋′ = 1 

= 𝐴𝐵 + 𝐴′𝐶 + 𝐴′𝐵𝐷 𝑋. 1 = 𝑋 

= 𝐴𝐵 + 𝐴′𝐵𝐷 + 𝐴′𝐶 Commutative law 

= 𝐵(𝐴 + 𝐴′𝐷) + 𝐴′𝐶 Distributive law 

= 𝐵(𝐴 + 𝐷) + 𝐴′𝐶  5 Literals Simplification Theorem 



Complementing Functions 

 Use DeMorgan's Theorem to complement a function: 

1. Interchange AND and OR operators 

2. Complement each constant value and literal    

 

 Example: Complement 𝐹 = 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′ 
 

𝐹′ = 𝑥 + 𝑦′ + 𝑧 (𝑥′ + 𝑦 + 𝑧) 

 

 Example: Complement 𝐺 = 𝑎′ + 𝑏𝑐 𝑑′ + 𝑒 

 
𝐺′ = 𝑎(𝑏′ + 𝑐′) + 𝑑 . 𝑒′ 
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Example 

 Simplify the following: 

• 𝐹 = 𝑋′𝑌𝑍 + 𝑋′𝑌𝑍′ + 𝑋𝑍 
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Simplification Steps (identity or theorem) 

𝑋′𝑌𝑍 + 𝑋′𝑌𝑍′ + 𝑋𝑍 

= 𝑋′𝑌(𝑍 + 𝑍′) + 𝑋𝑍 Distributive law 

= 𝑋′𝑌. 1 + 𝑋𝑍 𝑋 + 𝑋′ = 1 

= 𝑋′𝑌 + 𝑋𝑍 𝑋. 1 = 𝑋 

x y z 𝑋′𝑌𝑍 + 𝑋′𝑌𝑍′ + 𝑋𝑍 𝑋′𝑌 + 𝑋𝑍 

0 0 0 0 0 

0 0 1 0 0 

0 1 0 1 1 

0 1 1 1 1 

1 0 0 0 0 

1 0 1 1 1 

1 1 0 0 0 

1 1 1 1 1 

3 terms and 8 literals 2 terms and 4 literals 

X

Y

Z F

X

Y

Z
F



Example 

 Show that 𝐹 = 𝑥′𝑦′ + 𝑥𝑦′ + 𝑥′𝑦 + 𝑥𝑦 = 1 

• Solution1: Truth Table 

 

 

 

 

• Solution2: Boolean Algebra 
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x y F 

0 0 1 

0 1 1 

1 0 1 

1 1 1 

Proof Steps (identity or theorem) 

𝑥′𝑦′ + 𝑥𝑦′ + 𝑥′𝑦 + 𝑥𝑦 

= 𝑦′ 𝑥′ + 𝑥 + 𝑦(𝑥′ + 𝑥) Distributive law 

= 𝑦′. 1 + 𝑦. 1 𝑋 + 𝑋′ = 1 

= 𝑦′ + 𝑦 𝑋. 1 = 𝑋 

= 1 𝑋 + 𝑋′ = 1 



Examples 

 Show that 𝐴𝐵𝐶 + 𝐴′𝐶′ + 𝐴𝐶′ = 𝐴𝐵 + 𝐶′ using Boolean algebra. 

 

 

 

 

 
 

 Find the dual and the complement of 𝑓 = 𝑤𝑥 + 𝑦′𝑧. 0 + 𝑤′𝑧  
 

• 𝐷𝑢𝑎𝑙 𝑓 = 𝑤 + 𝑥 𝑦′ + 𝑧 + 1 𝑤′ + 𝑧  
 

• 𝑓′ = (𝑤′+ 𝑥′)(𝑦 + 𝑧′ + 1)(𝑤 + 𝑧′) 
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Proof Steps (identity or theorem) 

𝐴𝐵𝐶 + 𝐴′𝐶′ + 𝐴𝐶′ 

= 𝐴𝐵𝐶 + 𝐶′(𝐴′ + 𝐴) Distributive law 

= 𝐴𝐵𝐶 + 𝐶′. 1 𝑋 + 𝑋′ = 1 

= 𝐴𝐵𝐶 + 𝐶′ 𝑋. 1 = 𝑋 

= (𝐴𝐵 + 𝐶′)(𝐶 + 𝐶′) Distributive law 

= 𝐴𝐵 + 𝐶′ . 1 𝑋 + 𝑋′ = 1 

= 𝐴𝐵 + 𝐶′ 𝑋. 1 = 𝑋 
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Overview – Canonical Forms 

 What are Canonical Forms? 

 Minterms and Maxterms 

 Index Representation of Minterms and Maxterms  

 Sum-of-Minterm (SOM) Representations 

 Product-of-Maxterm (POM) Representations 

 Representation of Complements of Functions 

 Conversions between Representations 

 



Boolean Representation Forms 
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Forms 

Non-Standard Forms  Standard Forms 

 Product terms (SOP)  Sum terms (POS) 

 Canonical  

(SOM) 

 Non-

Canonical  

 Canonical  

(POM) 

 Non-

Canonical  
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Canonical Forms 

 It is useful to specify Boolean functions in a 

form that: 

• Allows comparison for equality 

• Has a correspondence to the truth tables 

• Facilitates simplification  

  Canonical Forms in common usage: 

• Sum of Minterms (SOM) 

• Product of Maxterms (POM) 



Minterms 

 Minterms are AND terms with every variable present in 
either true or complemented form 

 

 Given that each binary variable may appear normal (e.g., 
𝑥) or complemented (e.g., 𝑥 ), there are 2n minterms for n 
variables 
 

 Example: Two variables (X and Y) produce 22 = 4 
combinations: 

𝑋𝑌          (both normal) 

𝑋𝑌           (X normal, Y complemented) 

𝑋 𝑌          (X complemented, Y normal) 

𝑋 𝑌           (both complemented) 
 

 Thus there are four minterms of two variables 
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Maxterms 

 Maxterms are OR terms with every variable in 
true or complemented form 
 

 Given that each binary variable may appear 
normal (e.g., 𝑥) or complemented (e.g., 𝑥 ), there 

are 2n maxterms for n variables  
 

 Example: Two variables (X and Y) produce 22 = 4 
combinations: 

𝑋 + 𝑌      (both normal) 

𝑋 + 𝑌       (X normal, Y complemented) 

𝑋 + 𝑌      (X complemented, Y normal) 

𝑋 + 𝑌       (both complemented) 
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 Examples: Three variable (X, Y, Z) minterms and maxterms 

 

 

 

 

 
 

 

 
 

 The index above is important for describing which variables in the 
terms are true and which are complemented 

Maxterms and Minterms 

Index Minterm (m) Maxterm (M) 

0 𝑋 𝑌 𝑍  𝑋 + 𝑌 + 𝑍 

1 𝑋 𝑌 𝑍 𝑋 + 𝑌 + 𝑍  

2 𝑋 𝑌𝑍  𝑋 + 𝑌 + 𝑍 

3 𝑋 𝑌𝑍 𝑋 + 𝑌 + 𝑍  

4 𝑋𝑌 𝑍  𝑋 + 𝑌 + 𝑍 

5 𝑋𝑌 𝑍 𝑋 + 𝑌 + 𝑍  

6 𝑋𝑌𝑍  𝑋 + 𝑌 + 𝑍 

7 𝑋𝑌𝑍 𝑋 + 𝑌 + 𝑍  
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Standard Order 

 Minterms and maxterms are designated with a subscript  

 The subscript is a number, corresponding to a binary pattern  

 The bits in the pattern represent the complemented or normal 
state of each variable listed in a standard order 

 All variables will be present in a minterm or maxterm and will 
be listed in the same order (usually alphabetically)  

 Example: For variables a, b, c: 

• Maxterms:  (𝒂 + 𝒃 + 𝒄 ), (𝒂 + 𝒃 + 𝒄) 

• Terms:   (𝒃 + 𝒂 + 𝒄), 𝒂𝒄 𝒃, and (𝒄 + 𝒃 + 𝒂) are NOT in 
standard order. 

• Minterms: 𝒂𝒃 𝒄, 𝒂𝒃𝒄, 𝒂 𝒃 𝒄 

• Terms: (𝒂 + 𝒄) , 𝒃 𝒄 , and (𝒂 + 𝒃)  do not contain all 
variables 
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Purpose of the Index 

 The index for the minterm or maxterm, expressed 

as a binary number, is used to determine whether 

the variable is shown in the true form or 

complemented form 
 

 For Minterms: 

• “0” means the variable is “Complemented” 

• “1” means  the variable is “Not Complemented” 
 

 For Maxterms: 

• “0” means  the variable is “Not Complemented”  

• “1” means the variable is “Complemented”  
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Index Example: Three Variables 

Index 

(Decimal) 

Index (Binary) 

n = 3 Variables 
Minterm (m) Maxterm (M) 

0 000 𝑚0 = 𝑋 𝑌 𝑍  𝑀0 = 𝑋 + 𝑌 + 𝑍 

1 001 𝑚1 = 𝑋 𝑌 𝑍 𝑀1 = 𝑋 + 𝑌 + 𝑍  

2 010 𝑚2 = 𝑋 𝑌𝑍  𝑀2 = 𝑋 + 𝑌 + 𝑍 

3 011 𝑚3 = 𝑋 𝑌𝑍 𝑀3 = 𝑋 + 𝑌 + 𝑍  

4 100 𝑚4 = 𝑋𝑌 𝑍  𝑀4 = 𝑋 + 𝑌 + 𝑍 

5 101 𝑚5 = 𝑋𝑌 𝑍 𝑀5 = 𝑋 + 𝑌 + 𝑍  

6 110 𝑚6 = 𝑋𝑌𝑍  𝑀6 = 𝑋 + 𝑌 + 𝑍 

7 111 𝑚7 = 𝑋𝑌𝑍 𝑀7 = 𝑋 + 𝑌 + 𝑍  



Index Example: Four Variables 
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i (Decimal) 
i (Binary) 

n = 4 Variables 
mi Mi 

0 0000 𝑎 𝑏 𝑐 𝑑  𝑎 + 𝑏 + 𝑐 + 𝑑 

1 0001 𝑎 𝑏 𝑐 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑  

3 0011 𝑎 𝑏 𝑐𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑  

5 0101 𝑎 𝑏𝑐 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑  

7 0111 𝑎 𝑏𝑐𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑  

10 1010 𝑎𝑏 𝑐𝑑  𝑎 + 𝑏 + 𝑐 + 𝑑 

13 1101 𝑎𝑏𝑐 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑  

15 1111 𝑎𝑏𝑐𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑  



Minterm and Maxterm Relationship 

 Review:  DeMorgan's Theorem 

• 𝑥. 𝑦 = 𝑥 + 𝑦  and 𝑥 + 𝑦 = 𝑥 . 𝑦  
 

 Two-variable example: 

• 𝑀2 = 𝑥 + 𝑦 and 𝑚2 = 𝑥. 𝑦   

• Using DeMorgan’s Theorem  𝑥 + 𝑦 =  𝑥 . 𝑦 = 𝑥. 𝑦  

• Using DeMorgan’s Theorem  𝑥. 𝑦 = 𝑥 + 𝑦 = 𝑥 . 𝑦 

• Thus, M2 is the complement of m2 and vice-versa 
 

 Since DeMorgan's Theorem holds for n variables, the 

above holds for terms of n variables: 
 

𝑀𝑖 = 𝑚𝑖 and 𝑚𝑖 = 𝑀𝑖 
 

 Thus, Mi is the complement of mi and vice-versa 
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Function Tables for Both 

 Minterms of 2 variables: 

 

 
 Maxterms of 2 variables: 

 

 

 

 

 Each column in the maxterm function table is the 

complement of the column in the minterm function table 

since Mi is the complement of mi. 
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xy m0 m1 m2 m3 

00 1 0 0 0 

01 0 1 0 0 

10 0 0 1 0 

11 0 0 0 1 

xy M0 M1 M2 M3 

00 0 1 1 1 

01 1 0 1 1 

10 1 1 0 1 

11 1 1 1 0 



Chapter 2 - Part 1         52 

Observations 

 In the function tables: 

• Each minterm has one and only one 1 present in the 2n  terms (a 
minimum of 1s).  All other entries are 0. 

• Each maxterm has one and only one 0 present in the 2n terms All 
other entries are 1 (a maximum of 1s).  
 

 We can implement any function by  

• "ORing" the minterms corresponding to "1" entries in the function 
table. These are called the minterms of the function. 

• "ANDing" the maxterms corresponding to "0" entries in the 
function table. These are called the maxterms of the function. 
 

 This gives us two canonical forms for stating any Boolean 
function: 

• Sum of Minterms (SOM) 

• Product of Maxterms (POM) 

      



Minterm Function Example 

 Example:  Find 𝑭𝟏 = 𝒎𝟏 + 𝒎𝟒 + 𝒎𝟕   

 𝑭𝟏 = 𝒙′𝒚′𝒛 + 𝒙𝒚′𝒛′ + 𝒙𝒚𝒛 
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xyz Index 𝐦𝟏 + 𝐦𝟒 + 𝐦𝟕 = 𝐅𝟏 

000 0 𝟎 + 𝟎 + 𝟎 = 𝟎 

001 1 𝟏 + 𝟎 + 𝟎 = 𝟏 

010 2 𝟎 + 𝟎 + 𝟎 = 𝟎 

011 3 𝟎 + 𝟎 + 𝟎 = 𝟎 

100 4 𝟎 + 𝟏 + 𝟎 = 𝟏 

101 5 𝟎 + 𝟎 + 𝟎 = 𝟎 

110 6 𝟎 + 𝟎 + 𝟎 = 𝟎 

111 7 𝟎 + 𝟎 + 𝟏 = 𝟏 
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Minterm Function Example 

 𝑭 𝑨,𝑩, 𝑪, 𝑫, 𝑬 =  𝒎𝟐 + 𝒎𝟗 + 𝒎𝟏𝟕 + 𝒎𝟐𝟑 

 

 𝐹 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝐴′𝐵′𝐶′𝐷𝐸′ + 𝐴′𝐵𝐶′𝐷′𝐸
+ 𝐴𝐵′𝐶′𝐷′𝐸 + 𝐴𝐵′𝐶𝐷𝐸 



Maxterm Function Example 

 Example:  Implement  F1 in maxterms: 
 

 𝐹1 = 𝑀0 .  𝑀2 .  𝑀3 .  𝑀5 .  𝑀6 
 

 𝐹1 = 𝑥 + 𝑦 + 𝑧  .  𝑥 + 𝑦′ + 𝑧  . 𝑥 + 𝑦′ + 𝑧′  . 𝑥′ + 𝑦 + 𝑧′  . (𝑥′ + 𝑦′ + 𝑧) 
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xyz Index 𝐌𝟎 .  𝐌𝟐 .  𝐌𝟑 .  𝐌𝟓 .  𝐌𝟔 = 𝐅𝟏 

000 0 𝟎 .  𝟏 .  𝟏 .  𝟏 .  𝟏 = 𝟎 

001 1 𝟏 .  𝟏 .  𝟏 .  𝟏 .  𝟏 = 𝟏 

010 2 𝟏 .  𝟎 .  𝟏 .  𝟏 .  𝟏 = 𝟎 

011 3 𝟏 .  𝟏 .  𝟎 .  𝟏 .  𝟏 = 𝟎 

100 4 𝟏 .  𝟏 .  𝟏 .  𝟏 .  𝟏 = 𝟏 

101 5 𝟏 .  𝟏 .  𝟏 .  𝟎 .  𝟏 = 𝟎 

110 6 𝟏 .  𝟏 .  𝟏 .  𝟏 .  𝟎 = 𝟎 

111 7 𝟏 .  𝟏 .  𝟏 .  𝟏 .  𝟏 = 𝟏 
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Maxterm Function Example 

 𝐹 𝐴, 𝐵, 𝐶, 𝐷 =  𝑀3 . 𝑀8 . 𝑀11 . 𝑀14 

 

 𝐹 𝐴, 𝐵, 𝐶, 𝐷
= 𝐴 + 𝐵 + 𝐶′ + 𝐷′  .  𝐴′ + 𝐵 + 𝐶 + 𝐷  .  

𝐴′ + 𝐵 + 𝐶′ + 𝐷′  .  (𝐴′ + 𝐵′ + 𝐶′ + 𝐷) 



Canonical Sum of Minterms 

 Any Boolean function can be expressed as a Sum 
of Minterms (SOM): 

• For the function table, the minterms used are the terms 
corresponding to the 1's 

• For expressions, expand all terms first to explicitly list 
all minterms.  Do this by “ANDing” any term missing a 
variable 𝑣 with a term (𝑣 + 𝑣 ) 
 

 Example:   Implement 𝑓 = 𝑥 + 𝑥 𝑦  as a SOM? 

1. Expand terms  𝑓 = 𝑥(𝑦 + 𝑦 ) + 𝑥 𝑦  

2. Distributive law  𝑓 = 𝑥𝑦 + 𝑥𝑦 + 𝑥 𝑦  

3. Express as SOM  𝑓 = 𝑚3 + 𝑚2 + 𝑚0 = 𝑚0 + 𝑚2 + 𝑚3 
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Another SOM Example 

 Example: 𝐹 = 𝐴 + 𝐵 𝐶 
 

 There are three variables: A, B, and C which we take to be 
the standard order 
 

 Expanding the terms with missing variables: 

• 𝐹 = 𝐴 𝐵 + 𝐵 𝐶 + 𝐶 + 𝐴 + 𝐴 𝐵 𝐶 
 

 Distributive law: 

• 𝐹 = 𝐴𝐵𝐶 + 𝐴𝐵 𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵 𝐶 + 𝐴𝐵 𝐶 + 𝐴 𝐵 𝐶 
 

 Collect terms (removing all but one of duplicate terms): 

• 𝐹 = 𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵 𝐶 + 𝐴𝐵 𝐶 + 𝐴 𝐵 𝐶  
 

 Express as SOM:  

• 𝐹 = 𝑚7 + 𝑚6 + 𝑚5 + 𝑚4 + 𝑚1 

• 𝐹 = 𝑚1 + 𝑚4 + 𝑚5 + 𝑚6 + 𝑚7 
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Shorthand SOM Form 

 From the previous example, we started with: 

• 𝐹 = 𝐴 + 𝐵 𝐶 
 

 We ended up with: 

• 𝐹 = 𝑚1 + 𝑚4 + 𝑚5 + 𝑚6 + 𝑚7 
 

 This can be denoted in the formal shorthand: 

• 𝐹(𝐴, 𝐵, 𝐶) =  (1,4,5,6,7)𝑚  
 

 Note that we explicitly show the standard 

variables in order and drop the “m” 

designators. 



Canonical Product of Maxterms 

 Any Boolean Function can be expressed as a 
Product of Maxterms (POM): 

• For the function table, the maxterms used are the terms 
corresponding to the 0's 

• For an expression, expand all terms first to explicitly 
list all maxterms. Do this by first applying the second 
distributive law , “ORing” terms missing variable 𝑣 
with (𝑣 . 𝑣 ) and then applying the distributive law again 

 Example: Convert 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑥 𝑦   to POM? 

• Distributive law  𝑓 = 𝑥 + 𝑥  . 𝑥 + 𝑦 = 𝑥 + 𝑦  

• ORing with missing variable (z)  𝑓 = 𝑥 + 𝑦 + 𝑧 . 𝑧  

• Distributive law  𝑓 = 𝑥 + 𝑦 + 𝑧  . 𝑥 + 𝑦 + 𝑧  

• Express as POS  𝑓 = 𝑀2 . 𝑀3 
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Another POM Example 

 Convert 𝑓 𝐴, 𝐵, 𝐶 = 𝐴𝐶′ + 𝐵𝐶 + 𝐴′𝐵′  to POM? 
 

 Use 𝑥 + 𝑦𝑧 = 𝑥 + 𝑦  . (𝑥 + 𝑧), assuming 

𝑥 = 𝐴𝐶′ + 𝐵𝐶 and 𝑦 = 𝐴′ and 𝑧 = 𝐵′ 

• 𝑓 𝐴, 𝐵, 𝐶 = 𝐴𝐶′ + 𝐵𝐶 + 𝐴′  .  (𝐴𝐶′ + 𝐵𝐶 + 𝐵′) 
 

 Use Simplification theorem to get:  

• 𝑓 𝐴, 𝐵, 𝐶 = 𝐵𝐶 + 𝐴′ + 𝐶′  .  𝐴𝐶′ + 𝐵′ + 𝐶  
 

 Use Simplification theorem again to get:  

• 𝑓 𝐴, 𝐵, 𝐶 = 𝐴′ + 𝐵 + 𝐶′  .  𝐴 + 𝐵′ + 𝐶 = 𝑀5 . 𝑀2 

• 𝑓 𝐴, 𝐵, 𝐶 = 𝑀2 . 𝑀5 =  (2,5)𝑀   Shorthand POM 

form 
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Function Complements 

 The complement of a function expressed as a sum of 

minterms is constructed by selecting the minterms missing 

in the sum-of-minterms canonical forms. 
 

 Alternatively, the complement of a function expressed by a 

sum of minterms form is simply the Product of Maxterms 

with the same indices. 
 

 Example: Given 𝐹 𝑥, 𝑦, 𝑧 =   (1,3,5,7)𝑚 , find 

complement F as SOM and POM? 

• 𝐹 𝑥, 𝑦, 𝑧 =   (0,2,4,6)𝑚  

• 𝐹 𝑥, 𝑦, 𝑧 =   (1,3,5,7)𝑀  
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Conversion Between Forms 

 To convert between sum-of-minterms and product-of-maxterms 

form (or vice-versa) we follow these steps: 

• Find the function complement by swapping terms in the list with terms 

not in the list. 

• Change from products to sums, or vice versa. 
 

 Example:Given F as before: 𝐹 𝑥, 𝑦, 𝑧 =   (1,3,5,7)𝑚  

• Form the Complement: 

 𝐹 𝑥, 𝑦, 𝑧 =   (0,2,4,6)𝑚   

• Then use the other form with the same indices – this forms the 

complement again, giving the other form of the original function: 

 𝐹(𝑥, 𝑦, 𝑧) =  (0,2,4,6)𝑀  

 

 

 

 



Important Properties of Minterms 

 Maxterms are seldom used directly to express Boolean 

functions 

 

 Minterms properties: 

• For 𝑛 Boolean variables, there are 2𝑛 minterms (0 to 2n -1) 

• Any Boolean function can be represented as a logical sum of 

minterms (SOM) 

• The complement of a function contains those minterms not 

included in the original function 

• A function that include all the 2n minterms is equal to 1 
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Standard Forms 

 Standard Sum-of-Products (SOP) form: equations 

are written as an OR of AND terms 
 

 Standard Product-of-Sums (POS) form: equations 

are written as an AND of OR terms 

 Examples: 

• SOP: 𝐴𝐵𝐶 + 𝐴 𝐵 𝐶 + 𝐵 

• POS: 𝐴 + 𝐵  . 𝐴 + 𝐵 + 𝐶  .  𝐶   

 These “mixed” forms are neither SOP nor POS 

• 𝐴𝐵 + 𝐶 𝐴 + 𝐶  

•  𝐴𝐵𝐶 + 𝐴𝐶(𝐴 + 𝐵)  
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Standard Sum-of-Products (SOP) 

 A sum of minterms form for n variables can 
be written down directly from a truth table 

 Implementation of this form is a two-level 
network of gates such that: 

• The first level consists of n-input AND gates, 
and 

• The second level is a single OR gate (with 
fewer than 2n inputs) 

 This form often can be simplified so that the 
corresponding circuit is simpler 
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 A Simplification Example: 𝐹 𝐴, 𝐵, 𝐶 =  (1,4,5,6,7)𝑚  

 Writing the minterm expression: 

• 𝐹 𝐴, 𝐵, 𝐶 = 𝐴′𝐵′𝐶 + 𝐴𝐵′𝐶′ + 𝐴𝐵′𝐶 + 𝐴𝐵𝐶′ + 𝐴𝐵𝐶 

 Simplifying using boolean Algebra: 

 

 

 

 

 

 

 Simplified F contains 3 literals compared to 15 in minterm F  

 

Standard Sum-of-Products (SOP) 

Simplification Steps (identity or theorem) 

𝐴′𝐵′𝐶 + 𝐴𝐵′𝐶′ + 𝐴𝐵′𝐶 + 𝐴𝐵𝐶′ + 𝐴𝐵𝐶 

= 𝐴′𝐵′𝐶 + 𝐴𝐵′ 𝐶′ + 𝐶 + 𝐴𝐵(𝐶′ + 𝐶) Distributive law 

= 𝐴′𝐵′𝐶 + 𝐴𝐵′ + 𝐴𝐵 𝑋 + 𝑋′ = 1 

= 𝐴′𝐵′𝐶 + 𝐴(𝐵′ + 𝐵) Distributive law 

= 𝐴′𝐵′𝐶 + 𝐴 Simplification Theorem 

= 𝐴 + 𝐵′𝐶 
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AND/OR Two-level Implementation 

of SOP Expression 

 The two implementations for F are shown 

below – it is quite apparent which is simpler! 

F

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C

 

 

F

B

C

A



Two-level Implementation 

 Draw the logic diagram of the following boolean function: 

• 𝑓 = 𝐴𝐵 + 𝐶(𝐷 + 𝐸) 

 

 

 

 

 

 Represent the function using two-level implementation: 

• 𝑓 = 𝐴𝐵 + 𝐶𝐷 + 𝐶𝐸   SOP 
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SOP and POS Observations 

 The previous examples show that: 

• Canonical Forms (Sum-of-minterms, Product-of-
Maxterms), or other standard forms (SOP, POS) 
differ in complexity 

• Boolean algebra can be used to manipulate 
equations into simpler forms. 

• Simpler equations lead to simpler two-level 
implementations  

 Questions: 

• How can we attain a “simplest” expression? 

• Is there only one minimum cost circuit?  

• The next part will deal with these issues. 
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Overview 

 Part 1 – Gate Circuits and Boolean Equations 

• Binary Logic and Gates 

• Boolean Algebra 

• Standard Forms 

 Part 2 – Circuit Optimization 

• Two-Level Optimization 

• Map Manipulation 

 Part 3 – Additional Gates and Circuits 

• Other Gate Types 

• Exclusive-OR Operator and Gates 

• High-Impedance Outputs 
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Circuit Optimization 

 Goal: To obtain the simplest 
implementation for a given function 

 Optimization is a more formal approach to 
simplification that is performed using a 
specific procedure or algorithm 

 Optimization requires a cost criterion to 
measure the simplicity of a circuit 

 Distinct cost criteria we will use: 
• Literal cost (L) 

• Gate input cost (G) 

• Gate input cost with NOTs (GN) 



Literal Cost 

 Literal: a variable or its complement 

 Literal cost (L): the number of literal   

appearances in a Boolean expression          

corresponding to the logic circuit      diagram 

 Examples: 

• 𝐹 = 𝐵𝐷 + 𝐴𝐵′𝐶 + 𝐴𝐶′𝐷′ 
 𝐿 = 8 (Minimum cost  Best solution) 

• 𝐹 = 𝐵𝐷 + 𝐴𝐵′𝐶 + 𝐴𝐵′𝐷′ + 𝐴𝐵𝐶′ 
 𝐿 = 11 

• 𝐹 = (𝐴 + 𝐵)(𝐴 + 𝐷)(𝐵 + 𝐶 + 𝐷′)(𝐵′ + 𝐶′ + 𝐷) 
 𝐿 = 10 
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Gate Input Cost 

 Gate input cost (G): the number of inputs to the gates in the 

implementation corresponding exactly to the given equation or 

equations. (G: inverters not counted, GN: inverters counted)  

 For SOP and POS equations, it can be found from the equation(s) by 

finding the sum of: 

• All literal appearances 

• The number of terms excluding single literal terms,(G) and 

• optionally, the number of distinct complemented single literals (GN). 

 Examples: 

• 𝐹 = 𝐵𝐷 + 𝐴𝐵′𝐶 + 𝐴𝐶′𝐷′ 

 𝐺 = 11 , 𝐺𝑁 = 14  (Minimum cost  Best solution) 

• 𝐹 = 𝐵𝐷 + 𝐴𝐵′𝐶 + 𝐴𝐵′𝐷′ + 𝐴𝐵𝐶′ 

 𝐺 = 15 , 𝐺𝑁 = 18 

• 𝐹 = (𝐴 + 𝐵)(𝐴 + 𝐷)(𝐵 + 𝐶 + 𝐷′)(𝐵′ + 𝐶′ + 𝐷) 

 𝐺 = 14 , 𝐺𝑁 = 17 
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 Example 1:  

 F = A + B C + 

 

 

 

 

 

 Cost Criteria (continued) 

A 

B 
C 

F 

B C 
L = 5 

  L (literal count) counts the AND inputs and the single 

    literal OR input. 

G = L + 2 =  7 

  G (gate input count) adds the remaining OR gate inputs  

GN = G + 2 = 9 

  GN(gate input count with NOTs) adds the inverter inputs 



Cost Criteria (continued) 

 Example 2: 

 𝑭 = 𝑨,𝑩, 𝑪, 𝑫 = 𝑨𝑩𝑪 + 𝑫′ . 𝑪′ 

• 𝑳 = 𝟓 

• 𝑮 = 𝟓 + 𝟐 = 𝟕 

• 𝑮𝑵 = 𝟕 + 𝟐 = 𝟗  
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D

A
B

C

F
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 Example 3:  

 F = A B C + 

 L =  6, G = 8, GN = 11 

 F = (A +    )(    + C)(    + B) 

 L = 6 , G = 9, GN = 12 

 Same function and same 

literal cost 

 But first circuit has better 

gate input count and better 

gate input count with NOTs 

 Select it! 

 

 Cost Criteria (continued) 

B C 

A 

A 
B 
C 

F 

C B 

F 

A 
B 
C 

A 
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Boolean Function Optimization 

 Minimizing the gate input (or literal) cost of a (a set 

of) Boolean equation(s) reduces circuit cost 

 We choose gate input cost 

 Boolean Algebra and graphical techniques are tools to 

minimize cost criteria values 

 Some important questions: 

• When do we stop trying to reduce the cost? 

• Do we know when we have a minimum cost? 

 Treat  optimum or near-optimum cost functions 

for two-level (SOP and POS) circuits 

 Introduce a graphical technique using Karnaugh maps 

(K-maps, for short) 
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Karnaugh Maps (K-map) 

 A K-map is a collection of squares 

• Graphical representation of the truth table 

• Each square represents a minterm, or a maxterm, or a row 
in the truth table 

• For n-variable, there are 2n squares 

• The collection of squares is a graphical representation of a 
Boolean function 

• Adjacent squares differ in the value of one variable 

• Alternative algebraic expressions for the same function are 
derived by recognizing patterns of squares 
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Some Uses of K-Maps 

 Finding optimum or near optimum 

• SOP and POS standard forms, and 

• two-level AND/OR and OR/AND circuit 
implementations 

for functions with small numbers of variables 
 

 Visualizing concepts related to 
manipulating Boolean expressions, and 
 

 Demonstrating concepts used by computer-
aided design programs to simplify large 
circuits 
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Two Variable Maps 

 A 2-variable Karnaugh Map: 

• Note that minterm m0 and 

 minterm m1 are “adjacent” 

 and differ in the value of the 

 variable y 

• Similarly, minterm m0 and 

   minterm m2 differ in the x variable 

• Also, m1 and m3 differ in the x variable as well   

• Finally, m2 and m3 differ in the value of the 
variable y 

  

𝐲 = 𝟏 𝐲 = 𝟎 

𝑚1 = 𝑥 𝑦 𝑚0 = 𝑥 𝑦  𝐱 = 𝟎 

𝑚3 = 𝑥𝑦 𝑚2 = 𝑥𝑦  𝐱 = 𝟏 



K-Map and Truth Tables 

 The K-Map is just a different form of the truth table 

 Example: Two variable function 

• We choose a,b,c and d from the set {0,1} to implement 

a particular function, 𝐹(𝑥, 𝑦)   
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Input Values 

(𝒙, 𝒚) 
𝐅(𝐱, 𝐲) 

0 0 a 

0 1 b 

1 0 c 

1 1 d 

𝐲 = 𝟏 𝐲 = 𝟎 

𝒃 𝒂 𝐱 = 𝟎 

𝒅 𝒄 𝐱 = 𝟏 

Truth Table K-Map 
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K-Map Function Representation 

 Example: 𝐹 𝑥, 𝑦 = 𝑥 

 

 

 
 

 For function 𝐹(𝑥, 𝑦), the two adjacent cells 

containing 1’s can be combined using the 

Minimization Theorem: 
 

𝐹 𝑥, 𝑦 = 𝑥𝑦 + 𝑥𝑦 = 𝑥 

 

 

 

 

  

𝐲 = 𝟏 𝐲 = 𝟎 𝑭 𝒙, 𝒚 = 𝒙 

𝟎 𝟎 𝐱 = 𝟎 

𝟏 𝟏 𝐱 = 𝟏 
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K-Map Function Representation 

 Example: 𝐺 𝑥, 𝑦 = 𝑥 + 𝑦 

 

 

 

 For 𝐺(𝑥, 𝑦) , two pairs of adjacent cells 

containing 1’s can be combined using the 

Minimization Theorem: 
 

𝐺 𝑥, 𝑦 = 𝑥𝑦 + 𝑥𝑦 + 𝑥 𝑦 + 𝑥𝑦  
 

𝐺 𝑥, 𝑦 = 𝑥 + 𝑦 

 

 

𝐲 = 𝟏 𝐲 = 𝟎 𝑮 𝒙, 𝒚 = 𝒙 + 𝒚 

𝟏 𝟎 𝐱 = 𝟎 

𝟏 𝟏 𝐱 = 𝟏 
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Three Variable Maps 

 A three-variable K-map: 

 

 
 

 Where each minterm corresponds to the product terms:  

 

 

 

 

 Note that if the binary value for an index differs in one 
bit position, the minterms are adjacent on the K-Map   

  

𝐲𝐳 = 𝟏𝟎 𝐲𝐳 = 𝟏𝟏 𝐲𝐳 = 𝟎𝟏 𝐲𝐳 = 𝟎𝟎 

𝑚2 𝑚3 𝑚1 𝑚0 𝐱 = 𝟎 

𝑚6 𝑚7 𝑚5 𝑚4 𝐱 = 𝟏 

𝐲𝐳 = 𝟏𝟎 𝐲𝐳 = 𝟏𝟏 𝐲𝐳 = 𝟎𝟏 𝐲𝐳 = 𝟎𝟎 

𝑥 𝑦𝑧  𝑥 𝑦𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧  𝐱 = 𝟎 

𝑥𝑦𝑧  𝑥𝑦𝑧 𝑥𝑦 𝑧 𝑥𝑦 𝑧  𝐱 = 𝟏 



Alternative Map Labeling 

 Map use largely involves: 

• Entering values into the map, and 

• Reading off product terms from the map 

 Alternate labelings are useful: 
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𝒀  𝒀 

𝑿  0 1 3 2 

𝑿 4 5 7 6 

𝒁  𝒁 𝒁  

     YZ 

X 
00 01 11 10 

0 
0 1 3 2 

1 
4 5 7 6 

Y 

Z 

X 



Example Functions 

 By convention, we represent the minterms of 𝐹 by a "1" in 

the map and leave the minterms of 𝐹  blank 

 Example: 

• 𝐹 𝑥, 𝑦, 𝑧 =  (2,3,4,5)𝑚  

 
 Example: 

• 𝐺 𝑎, 𝑏, 𝑐 =  (3,4,6,7)𝑚  

 
 

 Learn the locations of the 8 indices based on the 

variable order shown (X, most significant and Z, 

least significant) on the map boundaries 
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𝒀 

0 

 
1 

 
3 

1 
2 

1 

𝑿 4 

1 
5 

1 
7 

 
6 

 

𝒁 

𝒃 

0 

 
1 

 
3 

1 
2 

 

𝒂 4 

1 
5 

 
7 

1 
6 

1 

𝒄 



Steps for using K-Maps to Simplify Boolean 

Functions 

 Enter the function on the K-Map 

• Function can be given in truth table, shorthand notation, SOP,…etc 

• Example: 

 𝐹 𝑥, 𝑦 = 𝑥 + 𝑥𝑦 

 𝐹 𝑥, 𝑦 =   (0,1,3)𝑚  

 

 

 

 Combining squares for simplification 

• Rectangles that include power of 2 squares {1, 2, 4, 8, …} 

• Goal: Fewest rectangles that cover all 1’s  as large as possible 

 Determine if any rectangle is not needed 

 Read-off the SOP terms 
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𝐱 𝐲 𝐅(𝐱, 𝐲) 

0 0 1 

0 1 1 

1 0 0 

1 1 1 

𝒚 

0 

1 
1 

1 

𝒙 2 

 
3 

1 
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Combining Squares 

 By combining squares, we reduce number of literals in a 

product term, reducing the literal cost, thereby reducing the 

other two cost criteria 

 On a 2-variable K-Map: 

• One square represents a minterm with two variables 

• Two adjacent squares represent a product term with one variable 

• Four “adjacent” terms is the function of all ones (no variables) = 1. 

  On a 3-variable K-Map: 

• One square represents a minterm with three variables 

• Two adjacent squares represent a product term with two variables 

• Four “adjacent” terms represent a product term with one variable 

• Eight “adjacent” terms is the function of all ones (no variables) = 1. 



Example: Combining Squares 

 Example: 𝐹 𝐴, 𝐵 =   (0,1,2)𝑚  
 

𝐹 𝐴, 𝐵 =  𝐴 𝐵 + 𝐴 𝐵 + 𝐴𝐵  

 Using Distributive law 

• 𝐹 𝐴, 𝐵 = 𝐴 + 𝐴𝐵  

 Using simplification theorem 

• 𝐹 𝐴, 𝐵 = 𝐴 + 𝐵  
 

 Thus, every two adjacent terms that form a 2×1 

rectangle correspond to a product term with 

one variable  
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𝑩 

0 

1 
1 

1 

𝑨 2 

1 
3 

0 



Example: Combining Squares 

 Example: 𝐹 𝑥, 𝑦, 𝑧 =   (2,3,6,7)𝑚  
 

 𝐹 𝑥, 𝑦, 𝑧 = 𝑥 𝑦𝑧 + 𝑥 𝑦𝑧 + 𝑥𝑦𝑧 + 𝑥𝑦𝑧 
 

 Using Distributive law 

• 𝐹 𝑥, 𝑦, 𝑧 = 𝑥 𝑦 + 𝑥𝑦 
 

 Using Distributive law again 

• 𝐹 𝑥, 𝑦, 𝑧 = 𝑦 
 

 Thus, the four adjacent terms that form a 2×2 

square correspond to the term "y" 
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𝒚 

0 

 
1 

 
3 

1 
2 

1 

𝒙 4 

 
5 7 

1 
6 

1 

𝒛 



Chapter 2 - Part 2         24 

Three-Variable Maps 

 Reduced literal product terms for SOP standard 

forms correspond to rectangles on K-maps 

containing cell counts that are powers of 2  
 

 Rectangles of 2 cells represent 2 adjacent minterms 
 

 Rectangles of 4 cells represent 4 minterms that form 

a “pairwise adjacent” ring 
 

 Rectangles can contain non-adjacent cells as 

illustrated by the “pairwise adjacent” ring above 
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Three-Variable Maps 

 Example shapes of 2-cell rectangles: 

 

 

 
 

 

 Read-off the product terms for the rectangles 

shown: 

• 𝑅𝑒𝑐𝑡 0,1 =  𝑋 𝑌  

• 𝑅𝑒𝑐𝑡 0,2 =  𝑋 𝑍  

• 𝑅𝑒𝑐𝑡 3,7 = 𝑌𝑍 
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Three-Variable Maps 

 Example shapes of 4-cell Rectangles: 

 

 

 

 
 

 Read off the product terms for the rectangles 

shown: 

• 𝑅𝑒𝑐𝑡 1,3,5,7 = 𝑍 

• 𝑅𝑒𝑐𝑡 0,2,4,6 = 𝑍  

• 𝑅𝑒𝑐𝑡 4,5,6,7 = 𝑋 

 



Three Variable Maps 

 K-maps can be used to simplify Boolean functions 

by systematic methods. Terms are selected to 

cover the “1s”in the map. 

 Example: Simplify 𝐹 𝑥, 𝑦, 𝑧 =  (𝑚 1,2,3,5,7) 

 

 

 

 

 

𝐹 𝑥, 𝑦, 𝑧 = 𝑧 + 𝑥 𝑦 
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𝒚 
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Three-Variable Map Simplification 

 Use a K-map to find an optimum SOP equation 

for 𝐹 𝑋, 𝑌, 𝑍 =  (0,1,2,4,6,7)𝑚  

 

 

 

 

 

 
 

𝐹 𝑋, 𝑌, 𝑍 = 𝑍 + 𝑋 𝑌 + 𝑋𝑌 

 

𝒀 
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1 
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1 
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1 
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7 

1 
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1 

𝒁 



Four Variable Maps 

 Map and location of minterms 

𝐹(𝑊, 𝑋, 𝑌, 𝑍): 
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𝒀 
0 
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Four Variable Terms 

 Four variable maps can have rectangles  

corresponding to: 

• A single 1: 4 variables (i.e. Minterm) 

• Two 1’s: 3 variables 

• Four 1’s: 2 variables 

• Eight 1’s: 1 variable 

• Sixteen 1’s: zero variables (function of all ones)  
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Four-Variable Maps 

 Example shapes of 4-cell rectangles: 

𝒀 
0 

 
1 

 
3 

 
2 

 
4 

 
5 

 
7 

 
6 

 
𝑿 
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12 13 15 14 

8 9 11 10 

𝒁 
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Four-Variable Maps 

 Example shapes of 8-cell rectangles: 

𝒀 
0 

 
1 

 
3 

 
2 

 
4 

 
5 

 
7 

 
6 

 
𝑿 

𝑾 

12 13 15 14 

8 9 11 10 

𝒁 



Four-Variable Map Simplification 

 𝐹 𝑊,𝑋, 𝑌, 𝑍 =  (𝑚 0,2,4,5,6,7,8,10,13,15) 

 

 

 

 

 

 

 

 
 

𝐹 𝑊,𝑋, 𝑌, 𝑍 = 𝑋𝑍 + 𝑋 𝑍 +𝑊 𝑋 
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Four-Variable Map Simplification 

 𝐹 𝑊,𝑋, 𝑌, 𝑍 =  (𝑚 3,4,5,7,9,13,14,15) 

 

 

 

 

 

 

 

 
 

𝐹 𝑊,𝑋, 𝑌, 𝑍 = 𝑊 𝑌𝑍 +𝑊 𝑋𝑌 +𝑊𝑋𝑌 +𝑊𝑌 𝑍 
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Systematic Simplification 

 Prime Implicant: is a product term obtained by 

combining the maximum possible number of adjacent 

squares in the map into a rectangle with the number of 

squares a power of 2 
 

 A prime implicant is called an Essential Prime Implicant 

if it is the only prime implicant that covers (includes) one 

or more minterms 
 

 Prime Implicants and Essential Prime Implicants can be 

determined by inspection of a K-Map 
 

 A set of prime implicants "covers all minterms" if, for each 

minterm of the function, at least one prime implicant in the 

set of prime implicants includes the minterm 
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D B 

C B 

1 1 

1 1 

1 1 

B 

  

D 

A 

1 1 

1 1 

1 

Example of Prime Implicants 

 Find ALL Prime Implicants 

ESSENTIAL Prime Implicants  

  

C 

  

BD   

CD   

BD   

        Minterms covered by single prime implicant 

D B 

  
1 1 

1 1 

1 1 

B 

C 

D 

A 

1 1 

1 1 

1 

AD 

  

B A 



Prime Implicant Practice 

 Find all prime implicants for: 

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = (0,2,3,8,9,10,11,12,13,14,15)

𝑚

 

 

 Prime Implicants: 

• 𝐴 

• 𝐵 𝐶 

• 𝐵 𝐷  
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Another Example 

 Find all prime implicants for: 

𝐺 𝐴, 𝐵, 𝐶, 𝐷 = (0,2,3,4,7,12,13,14,15)

𝑚

 

 Hint: There are seven prime implicants! 
 

 Prime Implicants: 

• 𝐴𝐵 

• 𝐵𝐶𝐷 

• 𝐵𝐶 𝐷  

• 𝐴 𝐶𝐷 

• 𝐴 𝐶 𝐷  

• 𝐴 𝐵 𝐶 

• 𝐴 𝐵 𝐷  
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Optimization Algorithm 

1. Find all prime implicants 
 

2. Include all essential prime implicants in the 

solution 
 

3. Select a minimum cost set of non-essential 

prime implicants to cover all minterms not yet 

covered 

• Selection Rule: Minimize the overlap among prime 

implicants as much as possible. In particular, in the 

final solution, make sure that each prime implicant 

selected includes at least one minterm not included in 

any other prime implicant selected 



Selection Rule Example 

 Simplify F(A, B, C, D) given on the K-map  
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Prime Implicants 
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Product of Sums Example 

  Find the optimum POS solution for: 

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = (1,3,9,11,12,13,14,15)

𝑚

 

 Solution: 

• Find optimized SOP for 𝐹  by combining 0’s in K-Map of 𝐹 

• Complement 𝐹  to obtain optimized POS for 𝐹 
 

 𝐹 𝐴, 𝐵, 𝐶, 𝐷 = 𝐴 𝐵 + 𝐵 𝐷  
 

 Using Demorgan’s Law: 
 

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = (𝐴 + 𝐵 )(𝐵 + 𝐷) 
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Example 

 Find the optimum POS and  SOP solution for: 

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = (

𝑀

0, 2, 4, 5, 6, 7)  

 POS solution (Red): 

• Find optimized SOP for 𝐹  by combining 0’s in K-Map of 𝐹 

• Complement 𝐹  to obtain optimized POS for 𝐹 
 

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = 𝐴 𝐵 + 𝐴 𝐷  
𝐹 𝐴, 𝐵, 𝐶, 𝐷 = (𝐴 + 𝐵 )(𝐴 + 𝐷) 
 

 SOP solution (Blue): 

• Combining 1’s in K-Map of 𝐹 
 

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = 𝐴 + 𝐵 𝐷 
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 Incompletely specified functions: Sometimes a function table or 

map contains entries for which it is known: 

• the input values for the minterm will never occur, or 

• The output value for the minterm is not used 

 In these cases, the output value is defined as a “don't care” 

 By placing “don't cares” ( an “x” entry) in the function table or 

map, the cost of the logic circuit may be lowered 

 Example:  A logic function having the binary codes for the 

BCD digits as its inputs. Only the codes for 0 through 9 are 

used.  The six codes, 1010 through 1111 never occur, so the 

output values for these codes are “x” to represent “don’t cares” 

 “Don’t care” minterms cannot be replaced with 1’s or 0’s 

because that would require the function to be always 1 or 0 

for the associated input combination 

 

Don't Cares in K-Maps 



Example: BCD “5 or More” 

 The map below gives a function 𝐹(𝑤, 𝑥, 𝑦, 𝑧) which is defined as "5 or more" over 

BCD inputs.   With the don't cares used for the 6 non-BCD combinations: 
 

 If don’t cares are treated as 1’s (Red): 
 

 𝐹1 𝑤, 𝑥, 𝑦, 𝑧 = 𝑤 + 𝑥𝑦 + 𝑥𝑧 

• 𝐺 = 7 
 

 If don’t cares are treated as 0’s (Blue): 
 

 𝐹2 𝑤, 𝑥, 𝑦, 𝑧 = 𝑤 𝑥𝑧 + 𝑤 𝑥𝑦 + 𝑤𝑥 𝑦  
• 𝐺 = 12 

 

 

 For this particular function, cost G for the POS solution for 𝑭 𝒘, 𝒙, 𝒚, 𝒛  is 

not changed by using the don't cares 

• Choose the one less inverters (i.e. less GN) 
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Selection Rule Example with Don't Cares 

 Simplify F(A, B, C, D) given on the K-map.  

Selected 

            Minterms covered by essential prime implicants 

1 

1 

x 

x 

x x 
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1 
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1 1 
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x 
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Essential 
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Product of Sums with Don’t Care 

Example 

  Find the optimum POS solution for: 

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = (3,9,11,12,13,14,15)

𝑚

+ (1,4,6)

𝑑

 

 

 

 

 

 
𝐹 𝐴, 𝐵, 𝐶, 𝐷 = 𝐴 𝐵 + 𝐵 𝐷  

 

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = (𝐴 + 𝐵 )(𝐵 + 𝐷) 
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Five Variable or More K-Maps 

 For five variable problems, we use two adjacent K-maps.   

It becomes harder to visualize adjacent minterms for 

selecting PIs.  You can extend the problem to six variables 

by using four K-Maps. 
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V = 1 
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Overview 

 Part 1 – Gate Circuits and Boolean Equations 

• Binary Logic and Gates 

• Boolean Algebra 

• Standard Forms 

 Part 2 – Circuit Optimization 

• Two-Level Optimization 

• Map Manipulation 

 Part 3 – Additional Gates and Circuits 

• Other Gate Types 

• Exclusive-OR Operator and Gates 

• High-Impedance Outputs 
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Other Gate Types 

 Why? 

• Implementation feasibility and low cost 

• Power in implementing Boolean functions 

• Convenient conceptual representation 

 Gate classifications: 

• Primitive gate: a gate that can be described using a 

single primitive operation type (AND or OR) plus an 

optional inversion(s). 

• Complex gate: a gate that requires more than one 

primitive operation type for its description 
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Buffer 

 A buffer is a gate with the function 𝐹 = 𝑋: 

 

 

 

 In terms of Boolean function, a buffer is the same 

as a connection! 

 So why use it? 

• A buffer is an electronic amplifier used to improve 

circuit voltage levels and increase the speed of circuit 

operation 

• Protection and isolation between circuits 

X F 
X F 

0 0 

1 1 



NAND Gate 

 The NAND gate has the following symbol and truth table: 

 

 

 

 

 

 

 

 NAND represents NOT-AND, i.e., the AND function with 

a NOT applied.  The symbol shown is an AND-Invert.   

The small circle (“bubble”) represents the invert function  
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X 

Y 
𝐹 = 𝑋. 𝑌 

X Y F 

0 0 1 

0 1 1 

1 0 1 

1 1 0 X 

Y 

Z 

𝐹 = 𝑋. 𝑌. 𝑍 



NAND Gates (continued) 

 Applying  DeMorgan's Law gives Invert-OR (NAND) 

 

 

 

 

 

 This NAND symbol is called Invert-OR, since inputs are 
inverted and then ORed together  

 

 AND-Invert and Invert-OR both represent the NAND 
gate. Having both makes visualization of circuit function 
easier 
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X 

Y 

Z 

𝐹 = 𝑋 + 𝑌 + 𝑍  
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NAND Gates (continued) 

 Universal gate: a gate type that can implement any Boolean 
function. The NAND gate is a universal gate: 

X 𝐹 = 𝑋. 𝑋 = 𝑋  

Inverter using NAND 
X 

Y 

𝑋. 𝑌 
𝐹 = 𝑋. 𝑌 

AND using NAND 

X 

Y 

𝑋  

𝑌  

𝐹 = 𝑋 . 𝑌 = 𝑋 + 𝑌 

OR using NAND 



NOR Gate 

 The NOR gate has the following symbol and truth table: 

 

 

 

 

 

 

 

 NOR represents NOT-OR, i.e., the OR function with a 

NOT applied.  The symbol shown is an OR-Invert.   The 

small circle (“bubble”) represents the invert function 

 

 

 

Chapter 2 - Part 3         9 
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𝐹 = 𝑋 + 𝑌 

X Y F 

0 0 1 

0 1 0 

1 0 0 

1 1 0 X 
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Z 

𝐹 = 𝑋 + 𝑌 + 𝑍 



NOR Gates (continued) 

 Applying  DeMorgan's Law gives Invert-AND (NOR) 

 

 

 

 

 

 This NOR symbol is called Invert-AND, since inputs are 
inverted and then ANDed together  

 

 OR-Invert and Invert-AND both represent the NOR gate. 
Having both makes visualization of circuit function easier 
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Z 

𝐹 = 𝑋 . 𝑌 . 𝑍  



Chapter 2 - Part 3         11 

NOR Gates (continued) 

 The NOR gate is a universal gate: 

X 𝐹 = 𝑋 + 𝑋 = 𝑋  

Inverter using NOR 

X 

Y 

𝑋 + 𝑌 
𝐹 = 𝑋 + 𝑌 

OR using NOR 

X 

Y 

𝑋  

𝑌  

𝐹 = 𝑋 + 𝑌 = 𝑋. 𝑌 

AND using NOR 



Hi-Impedance Outputs 

 Logic gates introduced thus far 

• have 1 and 0 output values,  

• cannot have their outputs connected together, and 

• transmit signals on connections in only one direction 
  

 Three-state logic adds a third logic value, Hi-Impedance 

(Hi-Z), giving three states: 0, 1, and Hi-Z on the outputs. 
 

 Hi-Z can be also denoted as Z or z  
 

 The presence of a Hi-Z state makes a gate output as 

described above behave quite differently: 

• “1 and 0” become “1, 0, and Hi-Z” 

• “cannot” becomes “can,” and 

• “only one” becomes “two” 
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Hi-Impedance Outputs (continued) 

 What is a Hi-Z value? 

• The Hi-Z value behaves as an open circuit 

• This means that, looking back into the circuit, the output 

appears to be disconnected 

• It is as if a switch between the internal circuitry and the 

output has been opened 

 

 Hi-Z may appear on the output of any gate, but we 

restrict gates to 3-state buffer 



Chapter 2 - Part 3         14 

Tri-State Buffer (3-State Buffer)  

 For the symbol and truth table, IN 
is the data input, and EN is the 
control input 

 

 For EN = 0, regardless of the 
value on IN (denoted by X), the 
output value is Hi-Z 

 

 For EN = 1, the output value 
follows the input value 

IN 

EN 

OUT 

EN IN OUT 

0 X Hi-Z 

1 0 0 

1 1 1 

Symbol 

Truth Table 



Tri-State Buffer Variations 

 By adding “bubbles” to signals: 
• Data input, IN, can be inverted  

• Control input, EN, can be inverted 
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EN IN OUT 

0 X Hi-Z 

1 0 1 

1 1 0 

EN IN OUT 

0 0 0 

0 1 1 

1 X Hi-Z 

EN IN OUT 

0 0 1 

0 1 0 

1 X Hi-Z 



Resolving 3-State Values on a  Connection 

 Connection of two tri-state buffer outputs, B1 and B0, to a 

wire, OL (Output Line)  Multiplexed Output 
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EN1 EN0 IN1 IN0 B1 B0 OL 

0 0 X X Hi-Z Hi-Z Hi-Z 

0 1 X 0 Hi-Z 0 0 

0 1 X 1 Hi-Z 1 1 

1 0 0 X 0 Hi-Z 0 

1 0 1 X 1 Hi-Z 1 

1 1 0 0 0 0 0 

1 1 1 1 1 1 1 

1 1 0 1 0 1 Fire 

1 1 1 0 1 0 Fire 



Resolving 3-State Values on a  Connection 

 Resulting Rule: At least one buffer output value must 

be Hi-Z. Why? 

• Because any data combinations including (0,1) and (1,0) can 

occur. If one of these combinations occurs, and no buffers are Hi-

Z, then high currents can occur, destroying or damaging the circuit  
 

 How many valid buffer output combinations exist? 

• 5 valid output combination 
 

 What is the rule for “n” tri-state buffers connected to 

wire, OL? 

• At least “n-1” buffer outputs must be Hi-Z 

• How many valid buffer output combinations exist ? 

 Each of the n-buffers can have a 0 or 1 output with all others at Hi-Z. 

Also all buffers can be Hi-Z. So there are 2n + 1 valid combinations. 
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Tri-State Logic Circuit  

 Data Selection Function: If s = 0, OL = IN0, else OL = IN1 

 Performing data selection with tri-state buffers: 

 

 

 

 

 

 

 Since  𝑬𝑵𝟎 = 𝒔  and 𝑬𝑵𝟏 = 𝒔, one of the two buffer outputs 

is always Hi-Z. 

IN0 

IN1 

EN0 

EN1 

S OL 

EN1 EN0 IN1 IN0 OL 

0 1 X 0 0 

0 1 X 1 1 

1 0 0 X 0 

1 0 1 X 1 



Logic Functions using Tri-State Buffers 

 Implement AND gate using 3-State buffers and inverters 
 

𝐹 𝑋, 𝑌 = 𝑋. 𝑌 

 Use X as control input: 

• When 𝑋 = 0, 𝐹 = 0 regardless of the value of 𝑌 

• When 𝑋 = 1, 𝐹 = 𝑌  
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X Y F 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

0 

Y 

X F 



Logic Functions using Tri-State Buffers 

 Implement the following function using 3-State buffers 

and inverters: 𝐹(𝑤, 𝑥, 𝑦) = 𝑤 𝑥 + 𝑤𝑦 + 𝑥𝑦 

 Use w as control input: 

• When 𝑤 = 0, 𝐹 = 𝑥 regardless of the value of 𝑌 

• When 𝑤 = 1  

 If 𝑥 = 0, 𝐹 = 𝑦  

 If 𝑥 = 1, 𝐹 = 1 
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w x y F 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 1 

x 

w x 

1 

𝒚  

F 



Logic Functions using Tri-State Buffers 

 Write the Boolean expression of 𝐹(𝐴, 𝐵, 𝐶)  given the 

diagram below: 

 

 

 

 

 

 

 

 
𝐹 𝐴, 𝐵, 𝐶 = 𝐴𝐵 𝐶 + 𝐴 𝐵𝐶 
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Exclusive OR/ Exclusive NOR 

 The eXclusive OR (XOR) function is an important 

Boolean function used extensively in logic circuits 
 

 The XOR function may be: 

• implemented directly as an electronic circuit (truly a gate) or 

• implemented by  interconnecting other gate types (used as a 

convenient representation) 
 

 The eXclusive NOR (XNOR) function is the 

complement of the XOR function 
 

  By our definition, XOR and XNOR gates are complex 

gates  
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Exclusive OR/ Exclusive NOR 

    Uses for the XOR and XNORs gate include: 

• Adders/subtractors/multipliers 

• Counters/incrementers/decrementers 

• Parity generators/checkers 
 

 Definitions 

• The XOR function is: 𝑿⊕ 𝒀 = 𝑿 𝒀 + 𝑿𝒀    

• The XNOR function is: 𝑿⊙ 𝒀 = 𝑿⊕ 𝒀 = 𝑿𝒀 + 𝑿 𝒀  
 

 Strictly speaking, XOR and XNOR gates do no 

exist for more than two inputs. Instead, they are 

replaced by odd and even functions  



Proof: XNOR is the complement of XOR 

 𝑿⊕ 𝒀 = 𝑿 𝒀 + 𝑿𝒀  

 𝑿⊕ 𝒀 = 𝑿 𝒀. 𝑿𝒀  

 𝑿⊕ 𝒀 = (𝑿 + 𝒀 )(𝑿 + 𝒀) 

 𝑿⊕ 𝒀 = 𝑿𝑿 + 𝑿𝒀 + 𝑿 𝒀 + 𝒀𝒀  

 𝑿⊙ 𝒀 = 𝑿⊕𝒀 = 𝑿𝒀 + 𝑿 𝒀  
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Symbols For XOR and XNOR 

 XOR symbol: 

 

 XNOR symbol: 

 

 Shaped symbols exist only for two inputs 



Truth Tables for XOR/XNOR 

 

 

 

 
 The XOR function means: X OR Y, but NOT BOTH 

 

 Why is the XNOR function also known as the equivalence 
function, denoted by the operator ? 

• Because the function equals 1 if  and only if  𝑿 = 𝒀 
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𝑿 𝒀 𝑿⊕𝒀 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

𝑿 𝒀 𝑿⊙𝒀(𝑿 ≡ 𝒀) 

0 0 1 

0 1 0 

1 0 0 

1 1 1 
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XOR Implementations 

 The simple SOP implementation uses the 

following structure: 

 

 

 

 A NAND only implementation is: 

 

 

X 

Y 
  

X Y 

X 

Y 

X Y 



XOR 

 The XOR identities: 

 

 

 

 

 
 

 The XOR function can be extended to 3 or more variables. 

For more than 2 variables, it is called an odd function or 

modulo 2 sum (Mod 2 sum), not an XOR: 
 

𝑋⊕ 𝑌⊕ 𝑍 = 𝑋 𝑌 𝑍 + 𝑋 𝑌𝑍 + 𝑋𝑌 𝑍 + 𝑋𝑌𝑍 (Odd # of 1’s)  
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𝑿⊕ 𝟎 = 𝑿 𝑿⊕ 𝟏 = 𝑿  

𝑿⊕𝑿 = 𝟎 𝑿⊕𝑿 = 𝟏 

𝑿⊕𝒀 = 𝑿⊕𝒀 𝑿 ⊕ 𝒀 = 𝑿⊕𝒀 

𝑿⊕𝒀 = 𝒀⊕𝑿 

𝑿⊕𝒀 ⊕𝒁 = 𝑿⊕ 𝒀⊕𝒁 = 𝑿⊕𝒀⊕𝒁 



XNOR 

 The XNOR identities: 

 

 

 

 
 

 

 The XNOR function can be extended to 3 or more 

variables. For more than 2 variables, it is called an even 

function, not an XNOR: 
 

𝑋⊙ 𝑌⊙ 𝑍 = 𝑋 𝑌𝑍 + 𝑋𝑌 𝑍 + 𝑋𝑌𝑍 + 𝑋 𝑌 𝑍  (Even # of 1’s)  

 The even function is the complement of the odd function 
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𝑿⊙ 𝟎 = 𝑿  𝑿⊙ 𝟏 = 𝑿 

𝑿⊙𝑿 = 𝟏 𝑿⊙𝑿 = 𝟎 

𝑿⊙𝒀 = 𝒀⊙𝑿 

𝑿⊙ 𝒀⊙𝒁 = 𝑿⊕ 𝒀 ⨀𝒁 = 𝑿⨀(𝒀⨁𝒁) 
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Odd and Even Functions 

 The 1s of an odd function correspond                                                                                      

to minterms having an index with an                                                                                        

odd number of 1s. 

 

 

 

 

 The 1s of an even function correspond                                                                                         

to minterms having an index with an                                                                                       

even number of 1s. 
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Example: Odd Function Implementation 

 Design a 3-input odd function  F = X    Y    Z 

with 2-input XOR gates 

 Factoring,  F = (X    Y)    Z 

 The circuit:  

+ + 

+ + 

X 

Y 

Z 
F 
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Example: Even Function Implementation 

 Design 4-input even function  F = W    X    Y    Z 

with 2-input XOR  and XNOR gates 

 Factoring,  F = (W    X)    (Y    Z) 

 The circuit:  

+ + + 

+ + + 

W 

X 

Y 

F 

Z 
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Parity Generators and Checkers 

 In Chapter 1, a parity bit added to n-bit code to produce an n+1 bit code: 
 

 

 

 

 

 

 

 

 

  

 Example: n = 3. Generate even 
parity code words of length four 
with odd function (XOR): 
 

 Check even parity code words of  
length four with odd function                                                                  
(XOR): 
 

 Operation: (X,Y,Z) = (0,0,1) gives 
(X,Y,Z,P) = (0,0,1,1) and E = 0. 
If Y changes from 0 to 1 between 
generator and checker, then E = 1 indicates an error 

X 
Y 

Z 
P 

X 
Y 

Z 
E 

P 



Parity Generator and Checker 

 Example: n = 3. Generate odd 
parity code words of length four 
with even function (XNOR): 

 
 

 Check odd parity code words of  
length four with even function                                                                   
(XNOR): 

 

 

 
 

 Operation: (X,Y,Z) = (0,0,1) gives 
(X,Y,Z,P) = (0,0,1,0) and E = 0. 
If Y changes from 0 to 1 between 
generator and checker, then E = 1 indicates an error 
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X 
Y 

Z 
P 

X 
Y 

Z 
E 

P 
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Terms of Use 

 All (or portions) of this material © 2008 by Pearson 
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adaptations thereof into classroom presentations and 
handouts to instructors in courses adopting the latest 
edition of Logic and Computer Design Fundamentals 
as the course textbook.  

 These materials or adaptations thereof are not to be 
sold or otherwise offered for consideration. 

 This Terms of Use slide or page is to be included within 
the original materials or any adaptations thereof.  
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Overview 

 Part 1 – Design Procedure 

• Steps 

 Specification 

 Formulation 

 Optimization 

 Technology Mapping 

 Verification 

• Technology Mapping - AND, OR, and NOT to NAND 

or NOR 
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Combinational Circuits 

 A combinational logic circuit has: 

• A set of m Boolean inputs, 

• A set of n Boolean outputs, and 

• n switching functions, each mapping the 2m input 

combinations to an output such that the current output 

depends only on the current input values 

 A block diagram: 
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Design Procedure 

1. Specification 

• Write a specification for the circuit if one is not 
already available. What does the circuit do? 
Including names or symbols for inputs and 
outputs 

2. Formulation 

• Derive a truth table or initial Boolean equations 
that define the required relationships between the 
inputs and outputs, if not in the specification 

3. Optimization 

• Apply 2-level optimization using K-maps 

• Draw a logic diagram for the resulting circuit using 
ANDs, ORs, and inverters 
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Design Procedure 

4. Technology Mapping 

• Map the logic diagram to the implementation 

technology selected 

5. Verification 

• Verify the correctness of the final design 

manually or using simulation  

 

 

 



Design Example1 

 Specification: Design a combinational circuit that has 3 

inputs (X, Y, Z) and one output F, such that 𝐹 = 1 when 

the number of 1’s in the input is greater than the number of 

0’s (i.e. number of 1’s ≥ 2) 

• This is called majority function (i.e. majority of inputs must be 1 

for the function to be 1) 

 Formulation: 

Chapter 3 - Part 1        7 

X Y Z F 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 



Design Example1 Cont. 

 Optimization: 
 

𝐹 𝑋, 𝑌, 𝑍 = 𝑋𝑌 + 𝑋𝑍 + 𝑌𝑍 

 

 

 Technology Mapping: 

• Mapping with a library containing  inverters, 2-input AND, 2-input 

OR  
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𝒀 
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𝑿 4 
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1 
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Z

X
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Y

Z

F



Design Example2 

 Specification: Design a combinational                                                                 

circuit that compares 2-bit Binary number                                                                      

(A, B) and produce two outputs (O1, O0),                                                             

such that:  

 

 

 

 

 Formulation: 
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A(A1A0) B(B1B0) O(O1O0) 

00 00 00 

00 01 01 

00 10 01 

00 11 01 

01 00 10 

01 01 11 

01 10 01 

01 11 01 

10 00 10 

10 01 10 

10 10 00 

10 11 01 

11 00 10 

11 01 10 

11 10 10 

11 11 11 

𝑶𝟏𝑶𝟎 = 𝟎𝟎 When 𝑨 = 𝑩 𝒂𝒏𝒅 𝑩𝒐𝒕𝒉 𝒂𝒓𝒆 𝒆𝒗𝒆𝒏 

𝑶𝟏𝑶𝟎 = 𝟎𝟏 When 𝑨 < 𝑩 

𝑶𝟏𝑶𝟎 = 𝟏𝟎 When 𝑨 > 𝑩 

𝑶𝟏𝑶𝟎 = 𝟏𝟏 When 𝑨 = 𝑩 𝒂𝒏𝒅 𝑩𝒐𝒕𝒉 𝒂𝒓𝒆 𝒐𝒅𝒅 
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 Optimization and Technology Mapping: 
 

𝑂0 = 𝐵1𝐵0 + 𝐴1𝐵1 + 𝐴1𝐵0 

 

 

 

 

 

 

𝑂1 = 𝐴1𝐴0 + 𝐴0𝐵1 + 𝐴1𝐵1 
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Design Example3 

1. Specification  

• BCD to Excess-3 code converter 
 

• Transforms BCD code  for the decimal digits to Excess-3 
code for the decimal digits 
 

• BCD code words for digits 0 through 9: 4-bit patterns 0000 
to 1001, respectively 
 

• Excess-3 code words for digits 0 through 9: 4-bit patterns 
consisting of 3 (binary 0011) added to each BCD code 
word 
 

• BCD input is labeled A, B, C, D 
 

• Excess-3 output is labeled W, X, Y, Z 
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Design Example3 Cont. 

2.  Formulation 

 

ABCD WXYZ 

0000 0011 

0001 0100 

0010 0101 

0011 0110 

0100 0111 

0101 1000 

0110 1001 

0111 1010 

1000 1011 

1001 1100 

1010 XXXX 

1011 XXXX 

1100 XXXX 

1101 XXXX 

1110 XXXX 

1111 XXXX 
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3. Optimization 
 

𝑊 = 𝐴 + 𝐵𝐶 + 𝐵𝐷 

 

𝑋 = 𝐵 𝐷 + 𝐵 𝐶 + 𝐵𝐶 𝐷  

 
𝑌 = 𝐶 𝐷 + 𝐶𝐷 

 
𝑍 = 𝐷  
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Design Example3 Cont. 

4. Technology Mapping  
• Mapping with a library containing  inverters, 2-input AND, 

2-input OR  
B

C

D

C

W

B
A

B

D

C

D

B

X

Z

C

D

Y



Homework: BCD to 7-Segment 

 Specification: 

• Inputs: (A, B, C, D) BCD code from 0000-to-1001 

• Outputs: (g, f, e, d, c, b, a) 

 

 Formulation: 

 

 Optimization: 

• How many                                                                                           

K-maps? 
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A B C D g f e d c b a 

0 0 0 0 0 1 1 1 1 1 1 

0 0 0 1 0 0 0 0 1 1 0 

| 

| 

| 

| 

| 

1 0 0 1 1 1 0 0 1 1 1 

1 0 1 0 0 0 0 0 0 0 0 

| 

| 

| 

| 

| 

1 1 1 1 0 0 0 0 0 0 0 
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Technology Mapping 

 Mapping Procedures 

• To NAND gates 

• To NOR gates 
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Mapping to NAND gates 

 Assumptions: 

• Gate loading and delay are ignored 

• Cell library contains an inverter and n-input NAND 

gates, n = 2, 3, … 

• An AND, OR, inverter schematic for the circuit is 

available 

 The mapping is accomplished by: 

• Replacing AND and OR symbols, 

• Pushing inverters through circuit fan-out points, 

and 

• Canceling inverter pairs 
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NAND Mapping Algorithm 

1. Replace ANDs and ORs: 

 

 

 
 

2. Repeat the following pair of actions until there 

is at most one inverter between : 

a. A circuit input or driving NAND gate output, and 

b. The attached NAND gate inputs. 

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.
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NAND Mapping Example 
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Mapping to NOR gates 

 Assumptions: 

• Gate loading and delay are ignored 

• Cell library contains an inverter and n-input NOR 

gates, n = 2, 3, … 

• An AND, OR, inverter schematic for the circuit is 

available 

 The mapping is accomplished by: 

• Replacing AND and OR symbols, 

• Pushing inverters through circuit fan-out points, 

and 

• Canceling inverter pairs 
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NOR Mapping Algorithm 

1. Replace ANDs and ORs: 

 

 

 
 

2. Repeat the following pair of actions until there 

is at most one inverter between : 

a. A circuit input or driving NAND gate output, and 

b. The attached NAND gate inputs. 

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
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NOR Mapping Example 

A 

B 

C 

D 

E 

F 

(c) 

F 

A 

B 

X 

C 

D 

E 

(b) 

A 

B 

C 

D 

E 

F 

(a) 

2 

3 

1 
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Overview 

 Part 2 – Combinational Logic 

• Functions and functional blocks 

• Rudimentary logic functions 

• Decoding using Decoders 

 Implementing Combinational Functions with 
Decoders 

• Encoding using Encoders 

• Selecting using Multiplexers 

 Implementing Combinational Functions with 
Multiplexers 
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Functions and Functional Blocks 

 The functions considered are those found to be very 

useful  in design  

 Corresponding to each of the functions is a 

combinational circuit implementation called a 

functional block 

 In the past, functional blocks were packaged as 

small-scale-integrated (SSI), medium-scale 

integrated (MSI), and large-scale-integrated (LSI) 

circuits  

 Today, they are often simply implemented within a 

very-large-scale-integrated (VLSI) circuit 



Rudimentary Logic Functions 

 Functions of a single variable X 

 Can be used on the 

inputs to functional 

blocks to implement 

other than the block’s 

intended function 

 Value fixing : a, b 

 Transferring : c 

 Inverting : d 

 Enabling : next slide 
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0 

1 

F =  0 

F =  1 

(a) 

F =  0 

F =  1 

V CC 
 or V DD 

(b) 

X F =  X 

(c) 

X F 
=  X 

(d) 

Functions of  One Variable 

𝑿 𝑭 = 𝟎 𝑭 = 𝟏 𝑭 = 𝑿 𝑭 = 𝑿  

0 0 1 0 1 

1 0 1 1 0 
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Enabling Function 

 Enabling permits an input signal to pass through 

to an output 

 Disabling blocks an input signal from passing 

through to an output, replacing it with a fixed 

value 

 The value on the output when it is disable can be 

Hi-Z (as for three-state buffers and transmission 

gates), 0 , or 1 

 When disabled, 0 output 

 When disabled, 1 output 

X
F

EN

(a)

EN

X
F

(b)
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 Decoding: the conversion of an n-bit input code to an 

m-bit output code with n  m   2n such that each 

valid code word produces a unique output code 

 

 Circuits that perform decoding are called decoders 

 

 Functional blocks for decoding are 

• called n-to-m line decoders, where m   2n, and 

• generate 2n (or fewer) minterms for the n input variables 

Decoding  



1-to-2 Line Decoder  

 When the decimal value of A equals the subscript of 𝐷𝑖, 
that 𝐷𝑖 will be 1 and all others will be 0’s 

 

 Only one output is active at a time 

 

 

 

 

 

 

 Decoders are used to control multiple circuits by enabling 

only one of them at a time 
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A D 0 
D 1 

0 1 0 

1 0 1 

(a) (b) 

D 1 
=  A A 

D 0 
=  A 1-to-2 

Decoder 
A 

𝐷0 

𝐷1 

(c) 



2-to-4 Line Decoder 

 

 

 

 

 

 

 

 No more optimization is possible 

 Note that the 2-to-4 line decoder is made up of  two 1-

to-2- line decoders and 4 AND gates 
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A 1 
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D 0 
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0 
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D 1 

0 

1 

0 

0 

D 2 

0 

0 

1 

0 

D 3 

0 

0 

0 

1 

(a) 

D 0 
=  A 1 

 A 0 

D 1 
=  A 1 

 A 0 

D 2 
=  A 1 

 A 0 

D 3 
=  A 1 

 A 0 

(b) 

A 1 

A 0 

2-to-4 

Decoder 

𝐴0 
𝐷0 

𝐷1 

(c) 

𝐴1 
𝐷2 

𝐷3 
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Decoder Expansion 

 General procedure given in book for any decoder with n 

inputs and 2n outputs 

 This procedure builds a decoder backward from the outputs 

using 

1. Let k = n 

 

2. We need 2k 2-input AND gates driven as follows: 

 If k is even, drive the gates using two k/2-to-2k/2 decoders 

 If k is odd, drive the gates using one (k+1)/2-to-2(k+1)/2 

decoder and one (k-1)/2-to-2(k-1)/2 decoder 

 

3. For each decoder resulting from step2, repeat 

step2 until k = 1. For k = 1, use 1-to-2 decoder 
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Decoder Expansion - Example  1 

 3-to-8-line decoder  

• 𝑘 = 𝑛 = 3 

• We need 23(8) 2-input AND gates driven as follows: 

• 𝑘 is odd, so split to: 

 2-to-4-line decoder 

 1-to-2-line decoder 

• 2-to-4-line decoder  𝑘 = 𝑛 = 2 
 We need 22(4) 2-input AND gates driven as follows: 

 𝑘 is even, so split to: 

• Two 1-to-2-line decoder 

 

 See next slide for result 
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Decoder Expansion - Example 1 

 𝑮𝑵 = 𝟖 × 𝟐 + 𝟒 × 𝟐 + 𝟑 

 𝑮𝑵 = 𝟐𝟕 

 Straight forward design                                                                                                         

has the same GN cost                                                                                                                                                                                                                                                                       
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Decoder Expansion - Example  2 

 6-to-64-line decoder  

• 𝑘 = 𝑛 = 6 

• We need 26(64) 2-input AND gates driven as follows: 

• 𝑘 is even, so split to: 

 Two 3-to-8-line decoders 

• Each 3-to-8-line decoder is designed as shown in Example 1 



Decoder Expansion - Example  2 

 𝑮𝑵 = 𝟔𝟒 × 𝟐 + 𝟏𝟔 × 𝟐 + 𝟖 × 𝟐 + 𝟔 

 𝑮𝑵 = 𝟏𝟖𝟐 

 Straight forward design has                                                                                                                                                              

GN cost of  390 
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𝐴0 

𝐴1 

𝐴2 

𝐴3 

𝐴4 

𝐴5 

𝐷0 = 𝐴5 𝐴4 𝐴3 𝐴2 𝐴1 𝐴0 

𝐷1 = 𝐴5 𝐴4 𝐴3 𝐴2 𝐴1𝐴0 

𝐷63 = 𝐴5𝐴4𝐴3𝐴2𝐴1𝐴0 

𝐷62 = 𝐴5𝐴4𝐴3𝐴2𝐴1𝐴0 
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Decoder Expansion - Example 3 

 7-to-128-line decoder  

• 𝑘 = 𝑛 = 7 

• We need 27(128) 2-input AND gates driven as follows: 

• 𝑘 is odd, so split to: 

 4-to-16-line decoder 

 3-to-8-line decoder 

• 4-to-16-line decoder 

 𝑘 = 𝑛 = 4 

 We need 24(16) 2-input AND gates driven as follows: 

 𝑘 is even, so split to: 

• Two 2-to-4-line decoders 

• Complete using known 3-8 and 2-to-4 line decoders 

 𝐺𝑁 = 128 × 2 + 16 × 2 + 8 × 2 + 12 × 2 + 7 = 335 

 Compare to straight forward design with GN cost of 903 



Building Larger Decoders  

 Method_1: Decoder Expansion 

 Method_2: Using Small Decoders with Enable input 

 Example: 1-to-2 line decoder with enable  

• In general, attach m-enabling circuits to the outputs 

• See truth table below for function 

 Note use of X’s to denote both 0 and 1 

 Combination containing two X’s represent two binary combinations 

 Alternatively, can be viewed as distributing value of signal EN to 1 of 2 

outputs 

• In this case, it is called a Demultiplexer  
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A D 0 
D 1 

0 1 0 

1 0 1 

(a) (b) 

D 1 
A 

D 0 
1-to-2 

Decoder 
A 

𝐷0 

𝐷1 

(c) 

EN 

1 

1 

X 0 0 0 

EN 

EN 
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 Attach 4-enabling circuits to the outputs 

 See truth table below for function 

• Combination containing two X’s represent four binary combinations 

 Alternatively, can be viewed as distributing value of signal EN to 1 of 4 

outputs 

• In this case, it is called a Demultiplexer  
EN

A 1

A 0

D0

D1

D2

D3

(b)

EN A1 A0 D0 D1 D2 D3

0

1

1

1

1

X

0

0

1

1

X

0

1

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

(a)

2-to-4 Line Decoder with Enable 

2-to-4 

Decoder 

𝐴0 
𝐷0 
𝐷1 

𝐴1 
𝐷2 
𝐷3 

𝐸𝑁 

(c) 



2-to-4 Decoder using 1-to-2 Decoders and Inverters 

𝑨𝟏 𝑨𝟎 𝑫𝟎 𝑫𝟏 𝑫𝟐 𝑫𝟑 

0 0 1 0 0 0 

0 1 0 1 0 0 

1 0 0 0 1 0 

1 1 0 0 0 1 

1st 1-to-2 Decoder 2nd 1-to-2 Decoder 
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3-to-8 Decoder using 2-to-4 Decoders and Inverters 

𝑨𝟐 𝑨𝟏 𝑨𝟎 𝑫𝟎 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒 𝑫𝟓 𝑫𝟔 𝑫𝟕 

0 0 0 1 0 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 0 0 

0 1 1 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 1 0 0 0 

1 0 1 0 0 0 0 0 1 0 0 

1 1 0 0 0 0 0 0 0 1 0 

1 1 1 0 0 0 0 0 0 0 1 

1st 2-to4 Decoder 2nd 2-to4 Decoder 
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4-to-16 Decoder using Only 2-to-4 Decoders 
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Combinational Logic Implementation 

- Decoder and OR Gates 

 Implement m functions of n variables with: 

• Sum-of-minterms expressions 

• One n-to-2n-line decoder 

• m OR gates, one for each function 

• For each function, the OR gate has k inputs, where k is the number 

of minterms in the function 

 Approach 1: 

• Find the truth table for the functions 

• Make a connection to the corresponding OR from the 

corresponding decoder output wherever a 1 appears in the truth 

table 

 Approach 2 

• Find the minterms for each output function 

• OR the minterms together 



Example1 

 Implement function 𝑓 using decoder and OR gate: 
𝒇 𝒙, 𝒚, 𝒛 = 𝒙𝒛 + 𝒙 𝒚 

 

 𝑛 = 3 variables  3-to-8 decoder 

 One function  One OR gate 

 Solution: Convert 𝑓 to SOM format 
 

•𝑓 = 𝑥𝑧 𝑦 + 𝑦 + 𝑥 𝑦 𝑧 + 𝑧 = 𝑥𝑦𝑧 + 𝑥𝑦 𝑧 + 𝑥 𝑦𝑧 + 𝑥 𝑦𝑧  
 

•𝑓 𝑥, 𝑦, 𝑧 =  (2,3,4,6)𝑚  4-input OR gate 

 

Decoder is a Minterm                                                                                  

Generator 
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Example2 

 Implement function 𝑓 using decoder and OR gate: 

𝒇 𝒘, 𝒙, 𝒚, 𝒛 = (𝟎, 𝟒, 𝟖, 𝟏𝟏, 𝟏𝟐, 𝟏𝟒, 𝟏𝟓)

𝒎

 

 𝑛 = 4 variables  4-to-16 decoder 

 One function with 7 minterms  One 7-input OR gate 

 

 If number of minterms is greater                                                   

than 
𝟐𝒏

𝟐
 , then design for                                                        

complement F (𝑭 ) and use NOR                                                            

gate instead of OR to generate F 
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Example3 

 Implement functions 𝐶 𝑎𝑛𝑑 𝑆 using decoder and OR gates: 
 

 𝑛 = 3 variables  3-to-8 decoder 

 Two function  Two OR gates 

 Solution:  
 

• 𝐶 =  (3,5,𝑚 6,7) 4-input OR gate 
 

• 𝑆 =  (1,2,4,7)𝑚  4-input OR gate 
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𝑿 𝒀 𝒁 𝑪 𝑺 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 
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Example4 

 Implement the following set of odd parity functions of 

(A7, A6, A5, A4) 

P1 = A7    A5    A4 

P2 = A7    A6    A4 

P3 = A7    A6    A5 

 Finding sum of 

minterms expressions 

   P1 = Sm(1,2,5,6,8,11,12,15) 

P2 = Sm(1,3,4,6,8,10,13,15) 

P3 = Sm(2,3,4,5,8,9,14,15) 

 Find circuit 

 Is this a good idea? 

 

+ 

+ 

+ 

+ 

+ 

+ 

 0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

A4 

A5 

A6 

A7 

P1 

P3 

P2 



Example5 

 Implement function 𝐹 using 3-to-8 decoder, AND gate and 

inverters: 𝐹 𝐴, 𝐵, 𝐶 =  (1,3,5,7)𝑚  
 

 Solution with 5 inverters: 

 

 

 

 Solution with 4 inverters:  

• 𝐹 𝐴, 𝐵, 𝐶 =  (0,2,4,6)𝑀  
 

 

Chapter 3    26 



Chapter 3    27 

Encoding 

 Encoding: the opposite of decoding - the conversion of 

an m-bit input code to a n-bit output code with n  m   

2n  such that each valid code word produces a unique 

output code 

 Circuits that perform encoding are called encoders 

 An encoder has 2n (or fewer) input lines and n output 

lines which generate the binary code corresponding to 

the input values 

 Typically, an encoder converts a code containing exactly 

one bit that is 1 to a binary code corresponding to the 

position in which the 1 appears 



2-to-1 Encoder & 4-to-2 Encoder  
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2-to-1 

Encoder 
A 

𝐷0 

𝐷1 

(c) (a) (b) 

𝑨 𝑫𝟎 𝑫𝟏 

Invalid Input 0 0 

0 1 0 

1 0 1 

Invalid Input 1 1 

4-to-2 

Encoder 

𝐷0 

𝐷1 

(c) (a) 

(b) 

𝑨𝟎 𝑨𝟏 𝑫𝟎 𝑫𝟏 𝑫2 𝑫3 

0 0 1 0 0 0 

1 0 0 1 0 0 

0 1 0 0 1 0 

1 1 0 0 0 1 

𝐷2 

𝐷3 

𝐴0 

𝐴1 

𝐴 = 𝐷1. 𝐷0 

𝐴0 = 𝐷1 + 𝐷3 

𝐴1 = 𝐷2 + 𝐷3 

D1

D0

A

`



8-to-3 Encoder (Octal-to-Binary Encoder)  
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8-to-3 

Encoder 

𝐷0 

𝐷1 

(c) 

(a) 

(b) 

𝑨𝟎 𝑨𝟏 𝑨𝟐 𝑫𝟎 𝑫𝟏 𝑫2 𝑫3 𝑫4 𝑫5 𝑫6 𝑫7 

0 0 0 1 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 0 0 

1 1 0 0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 1 0 0 0 

1 0 1 0 0 0 0 0 1 0 0 

0 1 1 0 0 0 0 0 0 1 0 

1 1 1 0 0 0 0 0 0 0 1 

𝐷2 

𝐷3 

𝐴0 

𝐴1 

𝐴0 = 𝐷1 + 𝐷3 + 𝐷5 + 𝐷7 

𝐴1 = 𝐷2 + 𝐷3 + 𝐷6 + 𝐷7 

𝐷4 

𝐷5 

𝐷6 

𝐷7 

𝐴2 

𝐴2 = 𝐷4 + 𝐷5 + 𝐷6 + 𝐷7 
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Decimal-to-BCD Encoder 

 Inputs: 10 bits corresponding to decimal digits 0 

through 9, (D0, …, D9) 

 

 Outputs: 4 bits with BCD codes (A3, A2, A1, A0) 

 

 Function: If input bit Di is a 1, then the output is 

the BCD code for i 

 

 The truth table could be formed, but alternatively, 

the equations for each of the four outputs can be 

obtained directly 
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Decimal-to-BCD Encoder Cont. 

 Input Di is a term in equation Aj if bit Aj is 1 in the binary value 

for i 

 

 Equations: 

A3 = D8 + D9 

A2 = D4 + D5 + D6 + D7 

A1 = D2 + D3 + D6 + D7 

A0 = D1 + D3 + D5 + D7 + D9 

 

 What happens if two inputs are high simultaneously? 

• For example if D3 and D6 are high, then the output is 0111 which 

indicates that only D7 is high ??? 

• Solution: Establish input priority 
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Priority Encoder 

 If more than one input value is 1, then the encoder just designed does 

not work 
 

 One encoder that can accept all possible combinations of input values 

and produce a meaningful result is a priority encoder 
 

 Among the 1s that appear, it selects the most significant input position 

(or the least significant input position) containing a 1 and responds with  

the corresponding binary code for that position 

• High priority encoder: gives priority for the input whose value is 1 and 

has the highest subscript  

• low priority encoder: gives priority for the input whose value is 1 and has 

the lowest subscript  
 

 If all inputs are 0’s, what happens? 

• Define an output (V) to encode whether the input is valid or not 

• When all inputs are 0’s, V is set to 0 indicating that the input is invalid, 

otherwise V is set to 1 



4-to-2 Low Priority Encoder  
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4-to-2 

Low 

Priority 

Encoder 

𝐷0 

𝐷1 

(c) 

(a) 

(b) 

V 𝑨𝟎 𝑨𝟏 𝑫𝟎 𝑫𝟏 𝑫2 𝑫3 #_of_Minterms/ 

Rows 

0 X X 0 0 0 0 1 

1 0 0 1 X X X 8 

1 1 0 0 1 X X 4 

1 0 1 0 0 1 X 2 

1 1 1 0 0 0 1 1 

𝐷2 

𝐷3 

𝐴0 

𝐴1 

𝐴0 = 𝐷1𝐷0 + 𝐷3𝐷2  𝐷1 𝐷0 
𝐴0 = 𝐷0 𝐷1 + 𝐷3𝐷2  𝐷1  
𝐴0 = 𝐷0 𝐷1 + 𝐷3𝐷2  
𝐴0 = 𝐷1𝐷0 + 𝐷3𝐷2  𝐷0 

𝐴1 = 𝐷2 𝐷1 𝐷0 + 𝐷3𝐷2  𝐷1 𝐷0 
𝐴1 = 𝐷1 𝐷0(𝐷2 + 𝐷3𝐷2 ) 
𝐴1 = 𝐷1 𝐷0(𝐷2 + 𝐷3) 
𝐴1 = 𝐷2 𝐷1 𝐷0 + 𝐷3 𝐷1 𝐷0 

𝑉 = 𝐷3 + 𝐷2 + 𝐷1 + 𝐷0 

𝑉 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑛𝑡𝑒𝑟𝑚𝑠 𝑝𝑒𝑟 𝑅𝑜𝑤 = 2# 𝑜𝑓 𝑑𝑜𝑛
′𝑡 𝑐𝑎𝑟𝑒𝑠  



4-to-2 High Priority Encoder  
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4-to-2 

High 

Priority 

Encoder 

𝐷0 

𝐷1 

(c) 

(a) 

(b) 

V 𝑨𝟎 𝑨𝟏 𝑫𝟎 𝑫𝟏 𝑫2 𝑫3 #_of_Minterms/ 

Rows 

0 X X 0 0 0 0 1 

1 0 0 1 0 0 0 1 

1 1 0 X 1 0 0 2 

1 0 1 X X 1 0 4 

1 1 1 X X X 1 8 

𝐷2 

𝐷3 

𝐴0 

𝐴1 

𝐴0 = 𝐷3 + 𝐷3  𝐷2𝐷1 
𝐴0 = 𝐷3 + 𝐷2𝐷1 

𝐴1 = 𝐷3  + 𝐷3𝐷2 
𝐴1 = 𝐷3  + 𝐷2 

𝑉 = 𝐷3 + 𝐷2 + 𝐷1 + 𝐷0 

𝑉 
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5-input Priority Encoder 

 Priority encoder with 5 inputs (D4, D3, D2, D1, D0) - highest priority to most 

significant 1 present - Code outputs A2, A1, A0 and V where V indicates at 

least one 1 present 

 

 

 

 

 

 

 
 X’s in input part of table represent 0 or 1; thus table entries correspond to 

product terms instead of minterms. The column on the left shows that all 32 

minterms are present in the product terms in the table 

No. of Min-

terms/Row 

Inputs Outputs 

D4  D3 D2 D1 D0 A2 A1 A0 V 

1 0 0 0 0 0 X X X 0 

1 0 0 0 0 1 0 0 0 1 

2 0 0 0 1 X 0 0 1 1 

4 0 0 1 X X 0 1 0 1 

8 0 1 X X X 0 1 1 1 

16 1 X X X X 1 0 0 1 
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5-input Priority Encoder Cont. 

 Could use a K-map to get equations, but can be read 

directly from table and manually optimized if careful: 

A2 = D4 

 

A1 =      D3 +           D2 =       (D3 + D2) 

A1 =      D3 +       D2 

 

A0 =      D3 +                D1 =       (D3 +      D1) 

A0 =      D3 +            D1 

 

V  = D4 + D3 + D2 + D1 + D0 

    

 

D4 D3 D4 D4 

D4 D3 D4 D2 D4 D2 

D4 D4 

D4 D2 D4 
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 Selecting of data or information is a critical 

function in digital systems and computers 

 Circuits that perform selecting have: 

• A set of information inputs from which the selection is 

made 

• A single output 

• A set of control lines for making the selection 

 Logic circuits that perform selecting are called 

multiplexers 

 Selecting can also be done by three-state logic 

Selecting 
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Multiplexers (MUX) (Data Selectors)  

 A multiplexer selects information from an input line and 

directs the information to an output line 
 

 A typical multiplexer has n control inputs (𝑆𝑛−1, … 𝑆0) 
called selection inputs, 2n information inputs (𝐼2𝑛−1, … 

𝐼0), and one output Y 
 

 A multiplexer can be designed to have m information 

inputs with m < 2n as well as n selection inputs  
 

 Multiplexers allow sharing of resources and reduce the cost 

by reducing the number of wires 

 MUX 
2𝑛 

𝐼 

𝑛 

𝑆 

𝑌 
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2-to-1-Line MUX 

 Since 2 = 21, n = 1 

 The single selection                                                                            

variable S has two                                                                                                   

values: 

• S = 0 selects input I0 

• S = 1 selects input I1 

 The equation: 

       𝒀 = 𝑺 𝑰𝟎 + 𝑺𝑰𝟏 

 The circuit: 

 

S

I0

I1

Decoder
Enabling
Circuits

Y

𝑺 𝑰𝟏 𝑰𝟎 𝒀 

0 0 0 0 

𝒀 = 𝑰𝟎 
0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

𝒀 = 𝑰𝟏 
 

1 0 1 0 

1 1 0 1 

1 1 1 1 

𝑺 𝒀 

0 I0 

1 I1 

𝑰𝟏 

0 

 
1 

1 
3 

1 
2 

 

𝑺 4 

 
5 7 

1 
6 

1 

𝑰𝟎 

2-to-1 

MUX 

𝐼0 

𝑆 

𝑌 
𝐼1 
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2-to-1-Line MUX Cont. 

 Note the regions of the multiplexer circuit 

shown: 

• 1-to-2-line Decoder 

• 2 Enabling circuits 

• 2-input OR gate 

 

 In general, for an 2n-to-1-line multiplexer: 

• n-to-2n-line decoder 

• 2n 2-input AND gate 

• One 2n-input OR gate 



4-to-1-Line MUX 

 Since 4 = 22, n = 2 

 There are two selection                                                                            

variables (𝑺𝟏𝑺𝟎) and                                                                                                        

they have four values: 

• 𝑺𝟏𝑺𝟎 = 𝟎𝟎 selects input I0 

• 𝑺𝟏𝑺𝟎 = 𝟎𝟏 selects input I1 

• 𝑺𝟏𝑺𝟎 = 𝟏𝟎 selects input I2 

• 𝑺𝟏𝑺𝟎 = 𝟏𝟏 selects input I3 

 The equation: 

       𝒀 = 𝑺𝟏 𝑺𝟎𝑰𝟎 + 𝑺𝟏 𝑺𝟎𝑰𝟏 + 𝑺𝟏𝑺𝟎 𝑰𝟐 + 𝑺𝟏𝑺𝟎𝑰𝟑 
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𝑺𝟏 𝑺𝟎 𝒀 

0 0 𝐈𝟎 

0 1 𝐈𝟏 

1 0 𝐈𝟐 

1 1 𝐈𝟑 

4-to-1 

MUX 

𝑆1 

𝑌 

𝑆0 

𝐼0 

𝐼1 

𝐼2 

𝐼3 
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4-to-1-line MUX Cont. 

 2-to-4-line decoder 

 4  2-input AND gates 

 4-input OR gate 

S 1 

Decoder 

S 0 

Y 

S 1 

Decoder 

S 0 

Y 

S   1 

2-to-4 Decoder 

 4 2-input AND gates 

 4-input OR gate  

S  0 

Y 

I 2 

I 3 

I 1 

I 0 

Y Y 

Y 

I 2 

I 3 

I 1 

I 0 

2-to-4 

Decoder 

𝑆0 
𝐷0 

𝐷1 

𝑆1 

𝐷2 

𝐷3 



Homework 

 Implement 8-to-1-Line MUX and 64-to-1 

MUX: 

• How many select lines are needed? 

• Decoder size? 

• How many 2-input AND gates are needed? 

• What is the size of the OR gate? 

 

 

Chapter 3    43 



Chapter 3    44 

Multiplexer Width Expansion 

 Select “vectors of bits” instead of “bits” 

 Example: 4-to-1-line quad multiplexer 

 

4-to-1 

Quad 

MUX 

𝑆1 

𝑌 

𝑆0 

𝐼0 

𝐼1 

𝐼2 

𝐼3 

4 

4 

4 

4 

4 

2-to-4 

Decoder 

𝑆0 
𝐷0 

𝐷1 

𝑆1 

𝐷2 

𝐷3 

Y Y 

𝐼0[0] 

𝐼1[0] 

𝐼2[0] 

𝐼3[0] 

𝑌[0] 

Y Y 

𝐼0[1] 

𝐼1[1] 

𝐼2[1] 

𝐼3[1] 

𝑌[1] 

Y Y 

𝐼0[3] 

𝐼1[3] 

𝐼2[3] 

𝐼3[3] 

𝑌[3] 

𝐷0 

𝐷0 

𝐷0 



Multiplexer Width Expansion Cont. 

 Can be thought                                                                                           

of as four 4-to-1                                                                                                                        

MUXes: 
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4-to-1 

MUX 
𝑌[0] 

𝐼0[0] 
𝐼1[0] 

𝐼2[0] 

𝐼3[0] 

4-to-1 

MUX 
𝑌[1] 

𝐼0[1] 
𝐼1[1] 

𝐼2[1] 

𝐼3[1] 

4-to-1 

MUX 
𝑌[3] 

𝐼0[3] 
𝐼1[3] 

𝐼2[3] 

𝐼3[3] 

𝑠1 

𝑠0 
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Other Selection Implementations 

 Three-state logic 

 

 

 

 

 

 

I0

I1

I2

I3

S1

S0

(b)

Y



Building Large MUXes from Smaller Ones 

 4-to-1 MUX using                                                                                                        

three 2-to-1 MUXes 

 

 

 

 
 

 6-to-1 MUX using                                                                                                                

two 4-to-1 MUXes                                                                                                          

and one 2-to-1 MUX 
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𝑺𝟏 𝑺𝟎 𝒀 

0 0 𝐈𝟎 

0 1 𝐈𝟏 

1 0 𝐈𝟐 

1 1 𝐈𝟑 

𝑺2 𝑺𝟏 𝑺𝟎 𝒀 

0 0 0 𝐈𝟎 

0 0 1 𝐈𝟏 

0 1 0 𝐈𝟐 

0 1 1 𝐈𝟑 

1 0 0 𝐈4 

1 0 1 𝐈5 

1 1 0 𝑋 

1 1 1 𝑋 



Homework 

 Build an 8-to-1 MUX using: 

• Two 4-to-1 MUX and one 2-to-1 MUX 

 

• One 4-to-1 MUX and multiple 2-to-1 MUXes 

 

• Only 2-to-1 MUXes (How many MUXes are 

need?) 
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Combinational Logic Implementation 

- Multiplexer Approach 1 

 Implement m functions of n variables with: 

• Sum-of-minterms expressions 

• An m-wide 2n-to-1-line multiplexer 

 Design:  

• Find the truth table for the functions 

• In the order they appear in the truth table: 

 Apply the function input variables to the multiplexer select 

inputs Sn - 1, … , S0  

 Label the outputs of the multiplexer with the output 

variables 

• Value-fix the information inputs to the multiplexer 

using the values from the truth table (for don’t 

cares, apply either 0 or 1) 



Example1 

 Implement the following function using a single MUX 

based on Approach1 : 𝑭 𝒙, 𝒚, 𝒛 =   (𝟎, 𝟓, 𝟕)𝒎  

 Solution: 

• Single function  m = 1 

• 3 variables  n = 3  8-to-1 MUX 

• Fill the truth table of  𝐹 
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𝑥 𝑦 𝑧 𝐹 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 
8-to-1 

MUX 

𝑦 

𝐹 

𝑧 

1 

0 
0 
0 
0 

1 
0 
1 

𝑥 



Example2:  Gray to Binary Code  

 Design a circuit to  

convert a 3-bit Gray  

code to a binary code 

 The formulation gives 

the truth table on the 

right 
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Gray Code 

ABC 

Binary Code 

XYZ 

000 000 

001 001 

011 010 

010 011 

110 100 

111 101 

101 110 

100 111 
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Gray to Binary Code Cont. 

 Rearrange the table so that the input 

combinations are in counting order 

 It is obvious from this table that X = A. 

However, Y and Z are more complex 

 Two functions (Y and Z)  m = 2 

 3 variables (A, B, and C)  n = 3 

 Functions Y and Z can be implemented 

using a dual 8-to-1-line multiplexer by: 

• connecting A, B, and C to the 

multiplexer select inputs 

• placing Y and Z on the two multiplexer 

outputs 

• connecting their respective truth table 

values to the inputs 

Gray Code 

ABC 

Binary Code 

XYZ 

000 000 

001 001 

010 011 

011 010 

100 111 

101 110 

110 100 

111 101 
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Gray to Binary Code Cont. 

Dual  

8-to-1 

MUX 

S2 S1 S0 

A B C 

0,0 
0,1 
1,1 
1,0 
1,1 
1,0 

0,1 
0,0 

Y,Z 

X 
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Combinational Logic Implementation 

- Multiplexer Approach 2 

 Implement any m functions of n variables by using: 

• An m-wide 2(n-1)-to-1-line multiplexer 

• A single inverter if needed 

 Design: 

• Find the truth table for the functions 

• Based on the values of the most significant (n-1) variables, 

separate the truth table rows into pairs 

• For each pair and output, define a rudimentary function of the 

least significant variable (𝟎, 𝟏, 𝑿, 𝑿 )  

• Connect the most significant (n-1) variables to the select lines of 

the MUX, value-fix the information inputs to the multiplexer 

with the corresponding rudimentary functions 

• Use the inverter to generate the rudimentary function 𝑿   



Example1 

 Implement the following function using                                                                                        

a single MUX and an inverter (if needed)                                                                                  

based on Approach2 :  

𝑭 𝑨,𝑩, 𝑪,𝑫 =   (𝟏, 𝟑, 𝟒, 𝟏𝟎, 𝟏𝟑, 𝟏𝟒, 𝟏𝟓)
𝒎

 

 Solution: 

• Single function  m = 1 

• 4 variables  n = 4  8-to-1 MUX 

• Fill the truth table of  𝐹 
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𝐴 𝐵 𝐶 𝐷 𝐹 

0 0 0 0 0 
𝐹 = 𝐷 

0 0 0 1 1 

0 0 1 0 0 
𝐹 = 𝐷 

0 0 1 1 1 

0 1 0 0 1 
𝐹 = 𝐷  

0 1 0 1 0 

0 1 1 0 0 
𝐹 = 0 

0 1 1 1 0 

1 0 0 0 0 
𝐹 = 0 

1 0 0 1 0 

1 0 1 0 1 
𝐹 = 𝐷  

1 0 1 1 0 

1 1 0 0 0 
𝐹 = 𝐷 

1 1 0 1 1 

1 1 1 0 1 
𝐹 = 1 

1 1 1 1 1 

8-to-1 

MUX 

𝐵 

𝐹 

𝐶 

𝐷 

0 
0 

1 

𝐴 



Example2: Gray to Binary Code 
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Gray Code 

ABC 

Binary Code 

XYZ 

Rudimentary 

Functions of C 

for Y 

Rudimentary 

Functions of C 

for Z 

000 000 
𝒀 = 𝟎 𝒁 = 𝑪 

001 001 

010 011 
𝒀 = 𝟏 𝒁 = 𝑪  

011 010 

100 111 
𝒀 = 𝟏 𝒁 = 𝑪  

101 110 

110 100 
𝒀 = 𝟎 𝒁 = 𝑪 

111 101 
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 Assign the variables and functions to the multiplexer 

inputs: 

 

 

 

 

 

 

 
 

 Note that Approach2 reduces the cost by almost half 

compared to Approach1 

Gray to Binary Code Cont. 

C 

Dual  

4-to-1 

MUX 

S1 S0 

A B 

0, 𝐶 

Y,Z 

1, 𝐶  

1, 𝐶  

0, 𝐶 

𝐂  



Demultiplexer (DMUX) 

 Opposite of multiplexer 

 Receives one input and directs it to one from 2n outputs 

based on n-select lines 

 Example: 1-to-2 DMUX 

 

 

 

 

 
 

 DMUX ≡ Decoder with Enable 
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1-to-2 

DMUX 
𝐼 

𝑆 

𝑄0 

𝑄1 

𝑺 𝑰 𝑸𝟏 𝑸𝟎 

0 0 0 0 

0 1 0 1 

1 0 0 0 

1 1 1 0 

Q 1 
S 

Q 0 

I 

𝑄0 = 𝑆 𝐼 
𝑄1 = 𝑆𝐼 



1-to-4 DMUX 

 𝑄0 = 𝑆1  𝑆0𝐼 
 

 𝑄1 = 𝑆1 𝑆0𝐼 
 

 𝑄2 = 𝑆1𝑆0𝐼 
 

 𝑄3 = 𝑆1𝑆0𝐼 
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𝑺𝟏 𝑺𝟎 𝑸𝟑 𝑸𝟐 𝑸𝟏 𝑸𝟎 

0 0 0 0 0 I 

0 1 0 0 I 0 

1 0 0 I 0 0 

1 1 I 0 0 0 

I 

S 1 

S 0 

Q 0 

Q 1 

Q 2 

Q 3 

2-to-4 

Decoder 

𝑆0 
𝑄0 
𝑄1 

𝑆1 
𝑄2 
𝑄3 

𝐼 

1-to-4 

DMUX 𝐼 

𝑄0 
𝑄1 
𝑄2 
𝑄3 

𝑆1 𝑆0 
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Overview 

 Iterative combinational circuits 
 

 Binary adders 

• Half and full adders 

• Ripple carry adders 
 

 Binary subtraction 
 

 Binary adder-subtractors 

• Signed binary numbers 

• Signed binary addition and subtraction 

• Overflow 
 

 Binary multiplication 
 

 Other arithmetic functions 

• Design by contraction 
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Iterative Combinational Circuits 

 Arithmetic functions 

• Operate on binary vectors 

• Use the same sub-function in each bit position 
 

 Can design functional block for the sub-function 

and repeat to obtain functional block for overall 

function 

 

 Cell: sub-function block 

 

 Iterative array: array of interconnected cells 



Chapter 4    5 

Block Diagram of an Iterative Array 

 

 

 
 

 

 Example: n = 32 

• Number of inputs = 32*2 + 1 + 1 = 66 

• Truth table rows =  266  

• Equations with  up to 66  input variables  

• Equations with huge number of terms 

• Design impractical! 
 

 Iterative array takes advantage of the regularity to make design feasible 
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Functional Blocks: Addition 

 Binary addition used frequently 

 

 Addition Development: 

• Half-Adder (HA): a 2-input bit-wise addition 
functional block 

• Full-Adder (FA): a 3-input bit-wise addition 
functional block 

• Ripple Carry Adder: an iterative array to 
perform vector binary addition 



Chapter 4    7 

Functional Block: Half-Adder 

 A 2-input, 1-bit width binary adder that performs the following 

computations: 

 

 
 

 A half adder adds two bits to produce a two-bit sum 
 

 The sum is expressed as a                                                    

sum bit (S) and a carry bit (C) 
 

 The half adder can be specified                                                                         

as a truth table for S and C   

 

X     0     0     1     1   

+ Y     + 0     + 1     + 0     + 1   

C S     0 0     0 1     0 1     1 0   
  

X   Y   C   S   

0   0   0   0   

0   1   0   1   

1   0   0   1   

1   1   1   0   
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Logic Simplification and Implementation: 

Half-Adder 

 The K-Map for S, C is: 

 

 

 

 

 The most common half adder implementation is: 

 

Y 

X 

0 1 

3 2 
1 

1 

S Y 

X 

0 1 

3 2 
1 

C 

Y X Y X Y X S  =  +  = 

Y X C  = 

X 
Y 

C 

S  

HA 
X 

Y 

S 

C 
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Functional Block: Full-Adder 

 A full adder is similar to a half adder, but includes a carry-in bit from 

lower stages. Like the half-adder, it computes a sum bit (S) and a 

carry bit (C) 

 

• For a carry-in (Z) of                                                            

0, it is the same as                                                              

the half-adder:  

 

• For a carry- in 

(Z) of 1:             

 

Z 0 0 0 0 

X 0 0 1 1 

+ Y + 0 + 1 + 0 + 1 

C S 0  0 0 1 0 1 1 0 

Z 1 1 1 1 

X 0 0 1 1 

+ Y + 0 + 1 + 0 + 1 

C S 0 1 1 0 1 0 1  1 
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Logic Optimization: Full-Adder 

 Full-Adder Truth Table:  
  

 Full-Adder K-Map: 

 

 

 

 

 

𝑺 = 𝑿 𝒀 𝒁 + 𝑿 𝒀𝒁 + 𝑿𝒀 𝒁 + 𝑿𝒀𝒁 𝑪 = 𝑿𝒁 + 𝑿𝒀 + 𝒀𝒁 
 

 The S function is the three-bit XOR function (Odd Function): 

• 𝑺 = 𝑿⊕𝒀⨁𝒁 
 

 The Carry bit C is 1 if both X and Y are 1 (the sum is 2), or if the sum 

is 1 and a carry-in (Z) occurs.   Thus C can be re-written as: 

• 𝑪 = 𝑿𝒀 + 𝑿⨁𝒀 𝒁 

 

X Y Z C S 

0 0 0 0 0 
0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

X 

Y 

Z 

0 1 3 2 

4 5 7 6 
1 

1 

1 

1 

S 

X 

Y 

Z 

0 1 3 2 

4 5 7 6 
1 1 1 

1 

C 
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Implementation: Full Adder 

 

FA 
X 

Y 

S 

C 

Z 
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Binary Adders 

 To  add multiple operands, we “bundle” logical signals 

together into vectors and use functional blocks that operate 

on the vectors 

 Example: 4-bit ripple carry 

adder adds input vectors                                                

A(3:0) and B(3:0) to get 

a sum  vector S(3:0)  

 Note: carry-out of cell i 

becomes carry-in of cell i + 1 

Description   Subscript   

   3 2 1 0   

Name   

Carry In      0 1 1 0   Ci   

Augend      1 0 1 1   Ai   

Addend       0 0 1 1   Bi   

Sum      1 1 1 0   Si   

  Carry out 
  

   0 0 1 1    Ci+1   
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4-bit Ripple-Carry Binary Adder 

 A four-bit Ripple Carry Adder made from four 1-bit Full 

Adders:     

 

 

 

 

 

B3 A 3

FA

B2 A 2

FA

B1

S3C4

C0

C3 C2 C1

S2 S1 S0

A 1

FA

B0 A 0

FA



Homework 

 Design a 4-bit ripple-carry adder using 

HA’s only? 
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Unsigned Subtraction 

 When we subtract one bit from another, two bits are produced: 

difference bit (D) and borrow bit (B) 

 

 

 

 

 

 Algorithm: 

• Subtract the subtrahend (N) from the minuend (M) 

• If no end borrow occurs, then M  N and the result is a non-negative 

number and correct 

• If an end borrow occurs, then N > M and the difference (M - N + 2n) is 

subtracted from 2n, and a minus sign is appended to the result 

 

X     0     0     1     1   

− Y     − 0     − 1     − 0     − 1   

B D     0 0     1 1     0 1     0 0   
  

1 0 0 0 



Unsigned Subtraction 

 Examples: 
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 0                    1          

   1001              0100 

- 0111            -  0111 

   0010               1101 
                         

             10000  

                       - 1101 

                    (-)   0011 

             1          

                  10011 

            -  11110 

                  10101 
                         

             100000  

                       - 10101 

                    (-)   01011 

             0          

                  10010110 

            -  01100100 

                  00110010 
                         

               

                        

                     

             1          

                  01100100 

            -  10010110 

                  11001110 
                         

             100000000  

                       - 11001110 

                    (-)   00110010 
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Unsigned Subtraction (continued) 

 The subtraction, 2n - D, is taking the 2’s complement of D 

 To do both unsigned addition and unsigned subtraction 

requires: 

• Addition and Subtraction are                                                                            

performed in parallel and                                                            

Subtract/𝐴𝑑𝑑chooses                                                                                 

between them        

 Quite complex! 

 Goal: Shared simpler 

logic for both addition 

and subtraction 

 Introduce complements 

as an approach  

 

A B

Binary adder Binary subtractor

Selective
2's complementer

Quadruple 2-to-1
multiplexer

Result

Borrow

Complement

S

0 1
Subtract/Add



Chapter 4    18 

Complements 

 For a number system with radix (r), there are two complements: 

• Diminished Radix Complement 

 Famously known as (r - 1)’s complement  

 Examples: 

• 1’s complement for radix 2 

• 9’s complement for radix 10 

 For a number (N) with n-digits, the diminished radix complement is defined as:   

• (r n - 1) - N 

• Radix Complement 

 Famously known as r’s complement for radix r 

 Examples: 

• 2’s complement in binary 

• 10’s complement in decimal 

 For a number (N) with n-digits, r’s complement is defined as:   

• r n – N, when N ≠ 0 

• 0, when N = 0  



Diminished Radix Complement 

 If N is a number of n-digits with radix (r), then 

• 𝑵 + 𝒓 − 𝟏 ′𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕 𝒐𝒇 𝑵 = 𝒓 − 𝟏 𝒓 − 𝟏 𝒓 − 𝟏 … (𝒓 − 𝟏) 

 

• The (r – 1)’s complement can be computed by subtracting each digit from (r – 1) 

 Example: Find 1’s complement of (1011)2 

• r = 2, n = 4 

• Answer is (24 – 1) – (1011)2 = (0100)2 

• Notice that (1011)2 + (0100)2  = (1111)2 which is (2 – 1) (2 – 1) (2 – 1) (2 – 1) 
 

 Example: Find 9’s complement of (45)10 

• r = 10, n = 2 

• Answer is (102 – 1) – (45)10  = (54)10  

• Notice that (45)10 + (54)10  = (99)10 which is (10 – 1) (10 – 1) 
 

 Example: Find 7’s complement of (671)8 

• r = 8, n = 3 

• Answer is (83 – 1) – (671)8 = (106)8  

• Notice that (671)8 + (106)8  = (777)8 which is (8 – 1) (8 – 1) (8 – 1) 
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n-digits 

4-digits 

3-digits 

2-digits 
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Binary 1's Complement 

 For r = 2, N = 011100112, n = 8  (8 digits): 

        (rn – 1) = 256 -1 = 25510  or 111111112 

 The 1's complement of 011100112 is then: 

   11111111 

        –  01110011 

   10001100 

 Since the 2n – 1 factor consists of all 1's and since 

1 – 0 = 1 and 1 – 1 = 0, the one's complement is 
obtained by complementing each individual bit 
(bitwise NOT) 



Radix Complement 

 For number N with n-digit and radix (r): 

• If N ≠ 0,  r’s complement of N = rn – N 

 r’s complement = (r-1)’s complement + 1 

• If N = 0,  r’s complement of N = 0 
 

 Example: Find 10’s complement of (92)10 

• r = 10, n = 2 

• Answer is 102 – (92)10  = (8)10  

• Notice that 9’s complement of (92)10 is (7)10  

10’s complement = 9’s complement + 1 
 

 Example: Find 16’s complement of (3AE7)16 

• r = 16, n = 4 

• Answer is 164 – (3AE7)16 = (10000)16 – (3AE7)16 = (C519)16 

• 15’s complement = (C518)16  16’s complement = (C518)16 + 1 = (C519)16  
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Binary 2's Complement 

 For r = 2, N = 011100112, n = 8  (8 digits), we have: 

• (rn ) = 25610  or 1000000002 
 

 The 2's complement of 01110011 is then: 

    100000000 

                      – 01110011  

     10001101 

 

 Note the result is the 1's complement plus 1, a fact that can be used 
in designing hardware 
 

 Remember the 2’s complement of (000..00)2 is (000..00)2 

 

 Complement  of a complement  restores the number to its original 
value: 

• The Complement of complement N = 2n – (2n – N) = N 
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Alternate 2’s Complement Method 

 Given: an n-bit binary number, beginning at the least 
significant bit and proceeding upward: 

• Copy all least significant 0’s 

• Copy the first 1 

• Complement all bits thereafter 

 

 2’s Complement Example: 

   10010100 

• Copy underlined bits: 

             100 

• and complement bits to the left: 

   01101100   
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Subtraction with 2’s Complement 

 For n-digit, unsigned numbers M and N, find M - N in 
base 2: 

• Add the 2's complement of the subtrahend N  to the 
minuend M: 

 M – N                M + (2n - N) = M - N + 2n 

 

 If M  N, the sum produces end carry 2n which is discarded; 
and from above, M - N remains 
 

 If M < N, the sum does not produce end carry, and from 
above, is equal to 2n - (N - M) which is the 2's complement 
of (N - M)   
 

 To obtain the result - (N – M) , take the 2's complement of 
the sum and place a “-” to its left 
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Unsigned 2’s Complement Subtraction Example: 

(M > N) 

 Find 010101002 – 010000112 

 

     01010100   01010100 

     –   01000011         + 10111101 

          00010001 

 The carry of 1 indicates that no correction of 

the result is required 

1 

2’s comp 
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Unsigned 2’s Complement Subtraction Example: 

(M < N) 

 Find 010000112 – 010101002 

 

     01000011   01000011 

     –  01010100       + 10101100 

       11101111 

       00010001 

 The carry of 0 indicates that a correction of 
the result is required 

 

 Result = – (00010001) 

 

0 

2’s comp 

2’s comp 
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2’s Complement Adder/Subtractor for 

Unsigned Numbers 

 Subtraction can be done by addition of the 2's Complement 

1. Complement each bit (1's Complement) 

2. Add 1 to the result 

 The circuit shown computes A + B and A – B: 

 Subtract (S = 1): A – B = A + (2n – B) = A + 𝐵  + 1 

• The 2’s complement of B is formed by using XORs to form the 1’s complement and 

adding the 1 applied to C0 

• If C4 = 1 (A ≥ B): correct result 

• If C4 = 0 (A < B): result = 2n – (B – A) 

 Use 2’s complement logic OR 

 Use Adder/Subtractor again with: 

• A = 0 

• B = 2n – (B – A) 
 

 Add (S = 0): A + B  

• B is passed through unchanged 

FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A 3 B2 A 2 B1 A 1 B0 A 0
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Signed Integers 

 Positive numbers and zero can be represented by 

unsigned n-digit, radix r numbers. We need a 

representation for negative numbers   

 To represent a sign (+ or –) we need exactly one more bit 

of information (1 binary digit gives 21 = 2 elements which 

is exactly what is needed). 

 Since computers use binary numbers, by convention, the 

most significant bit is interpreted as a sign bit: 

      s an–2  a2a1a0 

where: 

  s = 0 for Positive numbers 

  s = 1 for Negative numbers 

and ai = 0 or 1 represent the magnitude in some form 
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Signed Integer Representations 

 Signed-Magnitude: here the (n – 1) digits are interpreted as a positive 

magnitude 

• Max = + (2n-1 – 1) 

• Min =  – (2n-1 – 1) 

• Two representation for zero (i.e. ± 0) 

 Signed-Complement: here the digits are interpreted as the rest of the 

complement of the number.   There are two possibilities here: 

• Signed 1's Complement: Uses 1's Complement Arithmetic 

 Max = + (2n-1 – 1) 

 Min =  – (2n-1 – 1) 

 Two representation for zero (i.e. ± 0) 

• Signed 2's Complement: Uses 2's Complement Arithmetic 

 Max = + (2n-1 – 1) 

 Min =  – 2n-1  

 Single representation for zero 

 



Signed Integer Representation Example 

 r = 2, n = 3 

 

 

 

 

 

 

 
 

 Represent the number -9 using 8-bits 

• Sign-Magnitude = 10001001 

• 1’s complement = 11110110 

• 2’s complement = 11110111  
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Number Signed-Magnitude 1’s Complement 2’s Complement 

+3 011 011 011 

+2 010 010 010 

+1 001 001 001 

+0 000 000 000 

-0 100 111 ---- 

-1 101 110 111 

-2 110 101 110 

-3 111 100 101 

-4 ---- ---- 100 



2’s Complement Signed Numbers 

 Signed 2’s complement is the most common representation 

for signed numbers  

• Focus of the course 

 

 For any n-bit 2’s complement signed number (bn-1bn-2bn-3 

… b2b1b0), the decimal value is given by 

𝑉𝑎𝑙𝑢𝑒 = −2𝑛−1 × 𝑏𝑛−1 + 2
𝑖 × 𝑏𝑖

𝑛−2

𝑖=0

 

 Example: What is value of the 2’s complement number 

(100111)2? 

𝑉𝑎𝑙𝑢𝑒 = −25 × 1 + 7 = −25 
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Signed-2’s Complement Arithmetic 

 Addition: 
• Add the numbers including the sign bits   

• Discard the carry out of the sign bits 

 

 Subtraction:    
• Form the complement of the number you are subtracting 

• Follow the same rules for addition 

• 𝑨 − 𝑩 = 𝑨 + −𝑩 = 𝑨 + (𝑩 + 𝟏) 

 



Signed 2’s Complement Addition 
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 (+6) 00000110  

+       + 

 (+13) 00001101 

   00010011 (+19)  

 (-6)  11111010  

+        + 

 (+13)  00001101 

           100000111 (+7)  

Carry-out is ignored 

 (+6) 00000110  

+       + 

 (-13) 11110011 

   11111001 (-7)  

 (-6)  11111010  

+        + 

 (-13)  11110011 

           111101101 (-19)  

Carry-out is ignored 



Signed 2’s Complement Subtraction 
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 (+6) 00000110  

-         + 

 (+13) 11110011 

   11111001 (-7)  

 (-6)  11111010  

-         + 

 (+13)  11110011 

           111101101 (-19)  

Carry-out is ignored 

 (+6) 00000110  

-        + 

 (-13) 00001101 

   00010011 (+19)  

 (-6)  11111010  

-         + 

 (-13)  00001101 

           100000111 (+7)  

Carry-out is ignored 
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2’s Complement Adder/Subtractor for 

Signed Numbers 

 Subtraction can be done by addition of the 2's Complement 

1. Complement each bit (1's Complement) 

2. Add 1 to the result 

 The circuit shown computes A + B and A – B: 

 

 Subtract (S = 1): A – B = A + (2n – B) = A + 𝐵  + 1 

• The 2’s complement of B is formed by using XORs to form the 1’s complement and 

adding the 1 applied to C0 
 

 Add (S = 0): A + B  

• B is passed through unchanged 

 

 Same Hardware for Signed                                                                                                          

and Unsigned numbers 

FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A 3 B2 A 2 B1 A 1 B0 A 0
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Overflow Detection 

 In computers, the number of bits is fixed 
 

 Overflow occurs if n + 1 bits are required to contain the result from an 

n-bit addition or subtraction 
 

 Unsigned number overflow is detected from the end carry-out when 

adding two unsigned numbers 

• Overflow is impossible for unsigned subtraction 

 

 

 

 

 Signed number overflow can occur for: 

• Addition of two operands with the same sign 

• Subtraction of operands with different signs 

 (8)        1000  

+       + 

 (12)      1100 

            10100 (4)  

Carry-out = 1  Overflow 
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Signed-number Overflow Detection  

 Signed number cases with carries Cn and Cn-1 shown for correct 

result signs: 

      0   0        0   0        1   1       1   1 

             0             0             1             1 

    +  0          - 1          - 0         + 1 

        0             0              1            1 

 Signed number cases with carries shown for erroneous result signs 

(indicating overflow): 

      0   1       0   1        1   0        1   0 

             0            0             1              1 

    +  0        -  1           -0          + 1 

        1             1             0             0 

 Simplest way to implement signed overflow is: V = Cn ⊕ Cn - 1 



Signed-number Overflow Examples 

 8-bit signed number range between: -128 to +127 
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 (+70) 01000110  

+         + 

 (+80) 01010000 

   10010110 (-106) 
 

𝑉 = 𝐶7⨁𝐶8 = 1⨁0 = 1  

 (-70) 10111010  

+         + 

 (-80) 10110000 

          101101010 (+106) 
 

𝑉 = 𝐶7⨁𝐶8 = 0⨁1 = 1  

 (+70) 01000110  

-         + 

 (-80) 01010000 

   10010110 (-106) 
 

𝑉 = 𝐶7⨁𝐶8 = 1⨁0 = 1  

 (-70) 10111010  

-         + 

 (+80) 10110000 

          101101010 (+106) 
 

𝑉 = 𝐶7⨁𝐶8 = 0⨁1 = 1  



Chapter 4    39 

Other Arithmetic Functions 

 Incrementing 

 Decrementing 

 Multiplication by Constant 

 Division by Constant 

 Zero Fill and Extension 

 



Incrementer and Decrementer 

 Start with Adder/Subtractor 

 Set 𝐵3𝐵2𝐵1𝐵0 = 0001 

 For Incrementer  Set 𝑆 = 0 

 For Decrementer  Set 𝑆 = 1 

 For Incrementer/Decrementer  S remains variable 

• In this case, the full adder complexity stays the same in the typical 

bit positions (i.e. Cell1 and Cell2) 
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FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A 3 B2 A 2 B1 A 1 B0 A 0



Binary Multiplication 

The binary multiplication table is simple: 

0  0 = 0  |  1  0 = 0  |  0  1 = 0  |  1  1 = 1 

Extending multiplication to multiple digits: 

Multiplicand 1011 

Multiplier x  101 

Partial Products 1011 

 0000 - 

 1011 - - 

Product 110111 
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Binary Division 

Chapter 4    42 
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Multiplication/Division by 2n 

 Multiplication by 2𝑛: Shift left by n 

• Add n-zeros on the left 

 Division by 2𝑛: Shift right by n 

• Add n-zeros on the right 

 

 Multiplication by (100)2 

• Shift left by 2 

 

 Division by (100)2 

• Shift right by 2 

• Quotient = 𝑪𝟑𝑪𝟐𝑪𝟏𝑪𝟎 

• Remainder = 𝑪−𝟏𝑪−𝟐 

B 0 
B 1 

B 2 
B 3 

C 0 
C 1 

0 0 

C 2 
C 3 

C 4 
C 5 

(a) 

B 0 
B 1 

B 2 
B 3 

C 0 
C -1 

C -2 
C 1 

C 2 

0 0 

C 3 

(b) 
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Multiplication by a Constant 

 Multiplication of B(3:0) by 101 

 See text Figure 4-10 in page 171 for contraction 

B 1 
B 2 

B 3 
0 0 B 0 

B 1 
B 2 

B 3 

Carry 

output 

4-bit Adder 

Sum 

B 0 

C 0 
C 1 

C 2 
C 3 

C 4 
C 5 

C 6 
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Zero Fill 

 Zero fill: filling an m-bit operand with 0s to 

become an n-bit operand with n > m 
 

 Filling usually is applied to the MSB end of 

the operand, but can also be done on the 

LSB end 
 

 Example: 11110101 filled to 16 bits 

• MSB end: 0000000011110101 (Zero Extension) 

• LSB end:  1111010100000000 
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Extension 

 Extension: increase in the number of bits at the 

MSB end of an operand by using a complement 

representation  

• Copies the MSB of the operand into the new 

positions 

• Positive operand example - 01110101 extended to 16 

bits: 

              0000000001110101 

• Negative operand example - 11110101 extended to 16 

bits: 

              1111111111110101 

 

 



Hexadecimal, Octal, BCD Addition 

 Hexadecimal and Octal Addition: 

• Add each digit then take modulus (r) 

 

 

 

 

 

 BCD Addition: 

• Add each 4-bit together 

 If the binary sum is                                                                                                

greater than 1001 

• Add 0110 to the result 
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 (59F)16  

+  

(E46)16 

  (13E5)16   

 (762)8  

+  

(345)8 

   (1327)8   

(448)10  (0100 0100 1000)BCD 

+           +  

(489)10  (0100 1000 1001)BCD 

(937)10     1001 110110001 

           +           0110 0110 

    10011001110111 
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Overview

 Part 1 - Storage Elements and Analysis

• Introduction to sequential circuits

• Types of sequential circuits

• Storage elements

 Latches

 Flip-flops

• Sequential circuit analysis

 State tables

 State diagrams

 Equivalent states

 Moore and Mealy Models

 Part 2 - Sequential Circuit Design
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Introduction to Sequential Circuits

 A Sequential circuit contains:

• Storage elements:
 Latches or Flip-Flops 

• Combinational Logic:
 Implements a multiple-output switching                                                        

function

 Inputs are signals from the outside

 Outputs are signals to the outside

 Other inputs, State or Present State, are signals from storage 
elements 

 The remaining outputs, Next State are inputs to storage elements 

Combina-

tional

LogicStorage 

Elements

Inputs
Outputs

State

Next

State
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 Combinatorial Logic

• Next state function

Next State = f(Inputs, State)

OR Next State = f(State)

• Output function (Mealy)

Outputs = g(Inputs, State)

• Output function (Moore)

Outputs = g(State)

 Output function type depends on specification and affects

the design significantly

Combina-

tional

Logic
Storage 

Elements

Inputs Outputs

State

Next

State

Introduction to Sequential Circuits
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Types of Sequential Circuits

 Depends on the times at which:

• storage elements observe their inputs, and 

• storage elements change their state 

 Synchronous

• Behavior defined from knowledge of its signals at discrete
instances of time

• Storage elements observe inputs and can change state only in
relation to a timing signal (clock pulses from a clock)

• Simple to design but slow

 Asynchronous

• Behavior defined from knowledge of inputs at any instant of time
and the order in continuous time in which inputs change

• Complex to design but fast
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Storage Elements

 Any storage element can maintain a binary state

indefinitely (as long as the power is on) until directed by

the input signals to switch

 Storage elements: Latches and Flip-flops (FFs)

 Latches and FFs differ in:

• Number of inputs

• Manner in which the inputs affect the binary state

 Latch:

• Asynchronous

• Although difficult to design, we discuss latches first because they

are the building blocks for flip-flops
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Basic (NOR)  SR Latch

 Cross-coupling two NOR gates

 Time sequence                                                                                        

behavior:

 S = 1, R = 1 is 

forbidden as 

input pattern

S (set)

R (reset)
Q

Q

R S Q Q Comment

0 0 ? ? Stored state unknown

0 1 1 0 “Set” Q to 1

0 0 1 0 Now Q “remembers” 1

1 0 0 1 “Reset” Q to 0

0 0 0 1 Now Q “remembers” 0

1 1 0 0 Both go low

0 0 ? ? Unstable!

Time

R S Q Comment

0 0 Q Hold, no change

0 1 1 0 Set

1 0 0 1 Reset

1 1 0 0 Not allowed

Chapter 5 - Part 1    8

S

R

SR



Timing Waveform of NOR SR Latch
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Q Q Comment

1 1 ? ? Stored state unknown

1 0 1 0 “Set” Q to 1

1 1 1 0 Now Q “remembers” 1

0 1 0 1 “Reset” Q to 0

1 1 0 1 Now Q “remembers” 0

0 0 1 1 Both go high

1 1 ? ? Unstable!

Time

Q

Q

Q Comment

0 0 1 1 Not allowed

0 1 0 1 Reset

1 0 1 0 Set

1 1 Q Hold, no change

Chapter 5 - Part 1    10
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C

Clocked SR Latch (Pulse-triggered Latch)



S

R

Q

C

Q

C R S Q Comment

0 x x Q Hold, no change

1 0 0 Q Hold, no change

1 0 1 1 0 Set

1 1 0 0 1 Reset

1 1 1 Not allowed
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Clocked SR Latch (continued)

 The Clocked SR Latch can be described by a table:

 The table describes

what happens after the

clock [at time (t+1)]

based on:

• current inputs (S,R) and

• current state Q(t)

Q(t) S R Q(t+1) Comment

0 0 0 0 No change

0 0 1 0 Clear Q

0 1 0 1 Set Q

0 1 1 ??? Indeterminate

1 0 0 1 No change

1 0 1 0 Clear Q

1 1 0 1 Set Q

1 1 1 ??? Indeterminate

S

R

Q

Q

C
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S

R

Clocked SR

C



D Latch

 Adding an inverter

to the S-R Latch,

gives the D Latch:

 Note that there are

no “indeterminate”

states! The graphic symbol for a

D Latch is:

C

D Q

Q

D
Q

C

Q

C D Q Comment

0 x Q Hold, no change

1 0 0 1 Reset

1 1 1 0 Set
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Variations of Clocked SR and D Latches
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C

D Q

Q C

D Q

Q

+ve pulse-triggered D 

latch

-ve pulse-triggered D 

latch

C

S Q

Q

C

S Q

Q

+ve pulse-triggered SR latch -ve pulse-triggered SR 

latch

R R

C = 0  Hold

C = 1  Change

C = 0  Change

C = 1  Hold



Flip-Flops

Master-slave flip-flop

 Edge-triggered flip-flop

 Standard symbols for storage elements

 Direct inputs to flip-flops
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 Consists of two clocked

SR latches in series

with the clock on the 

second latch inverted

 The input is observed by the first latch with C = 1

 The output is changed by the second latch with C = 0 

 The path from input to output is broken by the

difference in clocking values (C = 1 and C = 0)

C

S

R

Q

Q

C

R

Q

Q

C

S

R

QS

Q

SR Master-Slave Flip-Flop

M
a

st
er

S
la

v
e

Y

Chapter 5 - Part 1    16



Timing diagram for SR Master-Slave Flip-Flop

C

S

R

Y

Q
Slave out

Master out

Master

active

Slave

active

0

0

C

S

R

Q

Q

Q

Q

C

R

Q

Q

C

S

R

S
Y

Y’
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Master-Slave Flip-Flop Problem

 S and/or R are permitted to change while C = 1

• Chances of 0s or 1s catching

C

S

R

Y

Q

Slave out

Master out

Master

active

Slave

active
1s catching

wrong output

should have been 0
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0s Catching

C

S

R

Y

Q

Slave out

Master out

Master

active

Slave

active
0s catching

wrong output

should have been 1
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Flip-Flop Solution 

 Use edge-triggering instead of master-slave

 An edge-triggered flip-flop ignores the pulse

while it is at a constant level and triggers only

during a transition of the clock signal

 Edge-triggered flip-flops can be built directly at

the electronic circuit level, or

 A master-slave D flip-flop which also exhibits

edge-triggered behavior can be used
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Edge-Triggered D Flip-Flop

 The edge-triggered D flip-flop is the same as the 

master-slave D flip-flop

 It can be formed by:

• Replacing the first clocked SR latch with a clocked D latch or

• Adding a D input and inverter to a master-slave SR flip-flop

 The 1s and 0s catching behaviors are not present with D

replacing S and R inputs

 The change of the D flip-flop output is associated with the

negative edge at the end of the pulse

 It is called a negative-edge triggered flip-flop

C

S

R

Q

Q
C

Q

QC

D
QD

Q
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No 1s catching in the edge-triggered D Flip-

Flops 

C

S

R

Q

Q
C

Q

QC

D
QD

Q

C

D

Y

Q

Slave out

Master out

Master

active

Slave

active no 1s catching

correct output

Y
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Positive-Edge Triggered D Flip-Flop

 Formed by

adding inverter

to clock input

 Q changes to the value on D applied at the

positive clock edge

 Our choice as the standard flip-flop for most

sequential circuits

C

S

R

Q

Q
C

Q

QC

D QD

Q
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 Latches:

 Master-Slave:

Postponed output

indicators

 Edge-Triggered:

Dynamic

indicator 

D with 0 Control

Triggered D

(a) Latches

S

R

SR SR

S

R

D

C

D with 1 Control

D

C

(b) Master-Slave Flip-Flops

D

C

Triggered DTriggered SR

S

R

C

D

C

Triggered SR

S

R

C

(c) Edge-Triggered Flip-Flops

Triggered D

D

C

Triggered D

D

C

Standard Symbols for Storage 

Elements

Master active when C = 1

Slave active when C = 0

Master active when C = 0

Slave active when C = 1
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Direct Inputs

 At power up or at reset, all or part

of a sequential circuit usually is

initialized to a known state before

it begins operation

 This initialization is often done

outside of the clocked behavior

of the circuit, i.e., asynchronously

 Direct R and/or S inputs that control the state of the 

latches within the flip-flops are used for this 

initialization 

 For the example flip-flop shown 

• 0 applied to R resets the flip-flop to the 0 state

• 0 applied to S sets the flip-flop to the 1 state

D

C

S

R

Q

Q
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Direct inputs

 D flip-flop with active-low direct inputs :

 Active high direct inputs:

D

C

S

R

Q

Q

D

C

S

R

Q

Q

S   R    C     D    Q    Q’

0   1     x      x     1     0

1 0     x      x     0     1

1   1             0     0     1

1   1             1     1     0

S   R    C     D    Q    Q’

0   1     x      x     0     1

1 0     x      x     1     0

0   0             0     0     1

0   0             1     1     0

Direct 

inputs
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Timing diagram of A SR Master-Slave Flip-Flop

C

Slave out

Master

active

Y

Master out

Q

S

C

R

Q

Q

S

R

Slave

active
Master

active

Y’

C

S

R

Q

Q

Q

Q

C

R

Q

Q

S
Y

Y’

S

R

C=

undefined

undefined

undefined
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Sections 5.4, 5.5, and 5.6 courtesy Dr. Fahed Jubair
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5-4 Sequential Circuit Analysis

 Consider the following circuit:

C

D Q

Q’

C

D Q

Q'

y

x
A

A

B

CLK

What does it do? 

How do the outputs 

change when an 

input arrives?

input

s
ta

te
s

output
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Sequential Circuit Model

 General Model
• Current or Present State at time (t) is stored in an 

array of flip-flops. 

• Next State is a Boolean function of State and 
Inputs.

• Outputs at time (t) are a Boolean function of State 
(t) and (if Mealy model) Inputs (t).

Combina-

tional

Logic Storage (D  

Flip-flops)

Inputs

State

(or current state)

Next

State

OutputsComb. 

logic

CLOCK

Mealy
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Previous Example (from Fig. 5-15)

 Input: X

 Output: Y

 State: (A(t), B(t))

Example: (AB)= (01), (10)

 Next State:

(DA(t), DB(t)) 

= (A(t+1), B(t+1))

C

D Q

Q’

C

D Q

Q'

y

x
A

A

B

CLK

Output logic

Next State

DA

DB

Is this a Moore or Mealy machine?

Comb. Input logic

P
re

s
e
n

t s
ta

te
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Steps for Analyzing a Sequential Circuit

1. Find the input equations (DA, DB) to 

the flip-flops (next state equations) 

and the output equation.

2. Derive the State Table (describes the 

behavior of a sequential circuit).

3. Draw the State Diagram (graphical 

description of the behavior of the 

sequential circuit).

4. Simulation
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Step 1: Input and output equations

 Boolean equations for the 

inputs to the flip flops:

• DA = AX + BX

• DB = A X

 Output Y

• Y   = X (A + B)

 Also can be written as

• A(t+1) = DA = A(t) X + B(t) X

• B(t+1) = DB = A(t) X

• Y   = X (A(t) + B(t))

C

D Q

Q’

C

D Q

Q'

y

x
A

A

B

CLK

Next State

Output

DA

DB

P
re

s
e
n

t s
ta

te
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Step 2: State Table

 The state table: shows what the next state
and the output will be as a function of the 

present state and the input:

 The State Table can be considered a truth 

table defining the combinational circuits:

• the inputs are Present State and Input,

• and the outputs are Next State and Output

Present State Input Next State Output

Inputs of the combinational circuit Outputs of the table
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State Table For The Example

 For the example:  A(t+1) = A(t) x + B(t) x 

B(t+1) = A’(t) x

Y(t) = X’ (B(t) + A(t))

Present State Input Next State Output

A(t)  B(t) X A(t+1)  B(t+1) Y

0     0 0

0     0 1

0     1 0

0     1 1

1     0 0

1     0 1

1     1 0

1    1 1

2
3
ro

w
s
 

(2
m

+
n
) 

ro
w

s

m: no. of flip-flops

n: no. of inputs

Inputs of the table Outputs of the table

0         0 0

0         1 0

0         0 1

1         1 0

0         0 1

1         0 0

0         0 1

1         0 0
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Alternate State Table

 The previous (1-dimensional table) can become quite lengthy 

with 2m+n rows (m=no. of flip-flops; n=no. of inputs)

 Alternatively, a 2-dimensional table has the present state in the 

left column and inputs across the top row

• A(t+1) = A(t) X + B(t) X

• B(t+1) =A’(t) X

• Y = X’ (B(t) + A(t))

0  0                   0        1

0  0                   1        1

0  0                   1 0

0  0                   1        0

0        0

1        0

1        0

1        0

Present 

State

Next State

X = 0                   X = 1

Output

X=0     X=1

A(t) B(t) A(t+1)  B(t+1)         A(t+1)  B(t+1) Y        Y

0  0

0  1

1  0

1  1

2m
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Step 3: State Diagrams

 The sequential circuit function can be 
represented in graphical form as a state 
diagram with the following components:
• A circle with the state name in it for each state

• A directed arc from the Present State to the Next 
State for each state transition

• A label on each directed arc with the Input values 
which causes the state transition, and

• A label: 

 In each circle with the output value produced, 
or

 On each directed arc with the output value 
produced.

State

State

In/out

State

out

in

in
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State Diagram Convention

Moore Machine:

State

out

in

Moore type output depends 

only on state

to next 

state

01

1

1

Mealy Machine:

Mealy type output depends 

on state and input

State

In/out

01

x=1/y=0

AB

y

x

Example:

01

x/y’
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State Diagram For The Example

 Graphical representation of the state table:

A B

0 0

0 1 1 1

1 0

x=0/y=1 x=1/y=0

x=1/y=0

x=0/y=1

x=0/y=1

x=1/y=0

Present State Input Next State Output

A(t)  B(t) x(t) A(t+1)  B(t+1) y(t)

0     0 0 0         0 0

0     0 1 0         1 0

0     1 0 0         0 1

0     1 1 1         1 0

1     0 0 0         0 1

1     0 1 1         0 0

1     1 0 0         0 1

1    1 1 1         0 0

x=0/y=0

x=1/y=0
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Step 4: Simulation

 Two types:

• Functional simulation: objective is to verify the 

functionality of the circuit 

• Timing simulation: objective is to perform a 

more realistic testing (with gate delays counted)

 More about this step in the lab 

(CPE0907234)
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Example2


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Example2 Cont.

 State Table:

 State Diagram:

Preset 

State

A(t)

Next State

ZXY = 00 XY = 01 XY = 10 XY = 11

A(t+1) A(t+1) A(t+1) A(t+1)

0 0 1 1 0 0

1 1 0 0 1 1

0/0 1/1

01,10

01,10

00,11 00,11
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Example3



C

D Q

Q’

C

D Q

Q'

y

x
A

A

B

CLK B
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Example3 Cont.

 State Table:

 State Diagram:

Preset 

State

A(t) B(t)

Next State Output

X = 0 X = 1 X = 0 X = 1

A(t+1) B(t+1) A(t+1) B(t+1) Y Y

0    0 0    0 1    0 0 1

0    1 1    1 0    1 1 1

1    0 1 1 1 1 1 1

1    1 0    0 0    0 1 1

000/0

01

10

11

1/1

1/1
0/1

0/1, 1/1

0/1, 1/1
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Example4


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Example4 Cont.

 State Table

 State Diagram: 

Present State 

QA QB

Input

X
SA RA SB RB

Next State 

QA(t+1) QB(t+1)

Output

Y

0  0 0 0  1 0  1 0  0 0

0  0 1 1  0 0  1 1  0 1

0  1 0 0  1 0  1 0  0 0

0  1 1 1  0 0  1 1  0 1

1  0 0 0  1 1  0 0  1 1

1  0 1 0  1 1  0 0  1 1

1  1 0 0  1 0  1 0  0 0

1  1 1 0  1 0  1 0  0 1

000/0

01

10

11

1/1

0/0

0/0, 1/1

0/0, 1/1

1/1

0/1, 1/1
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Equivalent State Definitions

 Two states are equivalent if their 

response for each possible input 

sequence is an identical output 

sequence.

 Alternatively, two states are equivalent if 

their outputs produced for each input

symbol is identical and their next states 

for each input symbol are the same or 

equivalent.
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Equivalent State Example

 Consider the following state diagram:

 Which states are equivalent? 

S2 S3

1/0
0/1

1/0

0/0

S0 S1

1/0

0/1

1/0

0/1
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Equivalent State Example

 Equivalent states in the state diagram:

 For states S2 and S3,
• the output for input

0 is 1 and the for input 1, 

the output is 0

• the next state for input
0 is S0 and for input
1 is  S2. 

• By the alternative definition, states S2 and S3 are 
equivalent. 

S2 S3

1/0
0/1

1/0

0/0

S0 S1

1/0

0/1

1/0

0/1
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Equivalent State Example

 Replacing S2 and S3 by a single state gives 

state diagram:

S2

1/0

0/0

S0 S1

1/0

0/1

1/0

0/1

S2 S3

1/0
0/1

1/0

0

S0/0 S1

1/0

0/1

1

0/1
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Equivalent State Example

 Are there other equivalent states?

 Examining the new diagram,
states S1 and S2 are equivalent since

• their outputs for input
0 is 1 and input 1 is 0,
and 

• their next state for input
0 is both S0 and for input
1 is both  S2,

 Replacing S1 and S2 by a
single state gives state
diagram:

S2

1/0

0/0

S0 S1

1/0

0/1

1/0

0/1

0/0

S0 S1

1/0

0/1

1/0
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Exercise: Derive the state diagram of the 

following Circuit

 Logic Diagram:

Clock

Reset

D

QC

Q

R

D

QC

Q

R

D

QC

Q

R

A

B

C

Z

Moore or Mealy?

What is the reset state?

•

•

5V
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Step1: Flip-Flop Input Equations

 Variables

• Inputs: None

• Outputs: Z

• State Variables: A, B, C

 Initialization: Reset to (0,0,0)

 Equations

• A(t+1) =  BC   Z = A

• B(t+1) =  B’C + BC’= B  C

• C(t+1) = A’C’
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Step 2: State Table

A B C A+ B+ C+ Z

0  0  0 0   0   1 0

0  0  1 0   1   0 0

0  1  0 0   1   1 0

0  1  1 1   0   0 0

1  0  0 0   0   0 1

1  0  1 0   1   0 1

1  1  0 0   1   0 1

1  1  1 1   0   0 1

A(t+1) =  BC   Z = A

B(t+1) =  B’C + BC’ = 

BC

C(t+1) =  A’C’
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Step 3: State Diagram

 Are all states used? Which ones?

A B C A+B+ C+ Z

0  0  0 0   0   1 0

0  0  1 0   1   0 0

0  1  0 0   1   1 0

0  1  1 1   0   0 0

1  0  0 0   0   0 1

1  0  1 0   1   0 1

1  1  0 0   1   0 1

1  1  1 1   0   0 1

Start from the reset state

000

0 

Reset

000

011 010

001100

101

110

111

Reset
ABC

0

0

00

11

1

1
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5-5 Sequential Circuit Design

Idea,

New product

Specification

DA

DB

Comb.

Crct.

O

U

T

IN?

•Word description

State Diagram

•State Table

•Select type of Flip-flop

•Input equations to FF, output eq.

•Verification

State encoding

Design 

procedure
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Specification

 Component Forms of Specification

• Written description

• Mathematical description

• Hardware description language

• Tabular description

• Equation description

• Diagram describing operation (not just structure)
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Formulation: Finding a State 

Diagram
 In specifying a circuit, we use states to remember 

meaningful properties of past input sequences that 
are essential to predicting future output values.   

 As an example, a sequence recognizer is a 
sequential circuit that produces a distinct output value 
whenever a prescribed pattern of input symbols occur 
in sequence, i.e, recognizes an input sequence 
occurrence.

 Next, the state diagram, will be converted to a state 
table from which the circuit will be designed.
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Sequence Detector Example: 1101

X

CLK

Z

Input X: 

Output Z: 00000000001000010010000000100

?

Mealy machine

Overlapping sequences are allowed

00111001101011011010011110111
1 1 1 1
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Step2: Finding A State Diagram

 Define states for the sequence to be recognized:

• assuming it starts with first symbol X=1, 

• continues through the right sequence to be recognized, and 

• uses output 1 to mean the full sequence has occurred,

• with output 0 otherwise.

 Starting in the initial state (named “S0"):

• Add a state that                                                               recognizes 
the first "1.“

• State “S0" is the initial state, and state “S1" is the state which 
represents the fact that the "first" one in the input subsequence has 
occurred. The first “1” occurred while being in state S0 during the 
clock edge.

S0 S1

1/0

outputinputReset
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Finding a State Diagram(cont.)

 Assume that the 2nd 1 arrives of the sequence 
1101: needs to be remembered: add a state 
S2

 Next, a “0” arrives: part of the sequence 1101 
that needs to be remembered; add state S3

 The next input is “1” which is part of the right 
sequence 1101; now output Z=1

S0 S1

1/0

…1

S2

1/0

…11

0/0
S3

…110

1/1 ?
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Completing The State Diagram

 Where does the final arrow go to:

• The final 1 of the sequence 1101 can be 

the beginning of another sequence; thus 

the arrow should go to state S1

?S0 S1

1/0

…1

S2

1/0

…11

0/0
S3

…110

1/1
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Completing The State Diagram

 Start is state S0: assume an input X=0 
arrives; what is the next state?

 Next, consider state S1: input X=0; next 
state?

 Next state S2 and S3: completes the diagram

 Each state should have two arrows leaving 

S0 S1

1/0

…1

S2

1/0

…11

0/0
S3

…110

1/1

0/0
…0

0/0

0/0

1/0
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Deriving State Table

Present 

State

Next State

x=0     x=1

Output

x=0   x=1

0        0

0        0

0        0

0        1

S0 S0 S1

S1 S0 S2

S2 S3 S2

S3 S0 S1

S0 S1

1/0

…1

S2

1/0

…11

0/0
S3

…110

1/1

0/0
…0

0/0

0/0

1/0
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Step 3: State Assignment 

 Right now States have names such as S0, S1, S2 and 

S3

 In actuality these state need to be represented by the 

outputs of the flip-flops.

 We need to assign each state to a certain output 

combination AB of the flip-flops: 

• e.g. State S0=00, S1=01, S2=10, S3=11

• Other combinations are possible: S0=00, S1=10, S2=11, 

S3=01

Combina-

tional

Circuit Storage 

(D  Flip-

flops)

External 

Inputs

State

Next

State

Comb. 

crct

CLOCK

Present 

state
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 1. Counting order assignment:
• 00, 01, 10, 11

 2. Gray code assignment:

• 00, 01, 11, 10

 3. One-hot state assignment

• 0001, 0010, 0100, 1000

 Does state assignment make a 

difference in cost? 

Popular State Assignments
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“Counting Order” Assignment:

State Assignment: Counting order

Present 

State

A B

Next State

x = 0    x = 1
A+ B+          A+ B+

Output

x = 0    x = 1

Z       Z

0 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0

1 0 1 1 1 0 0 0

1 1 0 0 0 1 0 1

Present 

State

Next State

x=0     x=1

Output

x=0   x=1

0        0

0        0

0        0

0        1

S0 S0 S1

S1 S0 S2

S2 S3 S2

S3 S0 S1Resulting coded state table:

S0 = 0 0

S1 = 0 1 

S2 = 1 0 

S3 = 1 1

State Table:
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Step 4: Find Flip-Flop Input and Output Equations

Idea,

New product

Specification

DA

DB

Comb.

Crct.

O

U

T

IN

•State Diagram

•State Table

•Select type of Flip-flop

•Input equations to FF, output eq.

•Verification

State encoding

A

B

Next state A+ and B+
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Find Flip-Flop Input and Output Equations: 

Example – Counting Order Assignment

1

0

00

00

1

1

 Using D flip-flops: thus DA=A+, 

DB=B+(the state table is the truth table 

for DA and DB).

 Interchange the bottom two rows of 

the state table, to obtain K-maps for 

DA, DB, and Z:

Present 

State

Next State

x = 0 x = 1

Output

x = 0 x = 1

AB A+ B+ A+ B+ Z Z

0 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0

1 0 1 1 1 0 0 0

1 1 0 0 0 1 0 1

DA = AB + XAB
DB = XAB + XAB + XAB

Z   = XAB

Gate Input Cost = 22
B

A

XDA

0

0

10

10

0

1

B

A

XDB
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Step 5: Verification

 We will learn software tools for verifying 

the functionality of sequential circuits in the 

lab (CPE0907234)
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Moore model for Sequence Recognizer “1101”

 State Assignment:

• Counting order (3 Flip-flops):

 A = 000, B = 001, C = 010,                                                                                                                 

D = 011, E = 100

• Gray code (3 Flip-flops): 

 A = 000, B = 001, C = 011,                                                                                                                 

D = 010, E = 110

• One hot (5 Flip-flops): 

 A = 00001, B = 00010, C = 00100,                                                                                                                 

D = 01000, E = 10000

A/0 B/0
1

…1

C/0
1

…11

0
D/0

…110

1
0

…0
0

0

1

E/1

…11011

0

Present 

State

Next State
Output

X = 0 X = 1

A A B 0

B A C 0

C D C 0

D A E 0

E A C 1
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Exercise

 Use D Flip-Flops design a counter that counts

00,01,10,11,00,01,10,11, ..etc.

 The counter also has an input x such that the counter pauses if x=0 and

proceeds to the next state if x=1.

00 01
1

10
1 1

110

0

1

0 0
Present 

State

Q1Q0

Next State

X = 0

Q1
+Q0

+

X = 1

Q1
+Q0

+

00 00 01

01 01 10

10 10 11

11 11 00

X

Q1

10 2

4

3

5 67
1

11

Q
0

1

X

Q1

10 2

4

3

5 67
1

11

Q
0

1

Q0
+

Q1
+



73

Unused States in Sequential Circuits Design

 Unused states are states which the system cannot enter

under normal operation.

 The system can enter an unused state due to:

• Outside interference OR

• Malfunction

 Three ways to accommodate unused states:

• Assume the next state for the unused state to be don’t care

• Force the next state for the unused state to be one of the used states

• Include a special output to indicate that the present state is unused.

This output can change the state asynchronously through direct

inputs of the state flip-flops
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Exercise

 Use D-FFs to design the sequential circuit that 

implements the following state table. Note that 

there are three unused states (000, 110 and 111).
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Solution

 Asynchronously change the state to “011”

0 1 3 2

4 5

1

7

1

6

12 13 15 14

8

1

9

1

11

1

10

0 1 3

1

2

4

1

5 7 6

12 13 15 14

8 9 11 10

0 1 3 2

1

4

1

5 7 6

1

12 13 15 14

8

1

9 11 10

1

A B
D D

C
R

C
R

C
D

C
R

SSS
A
B
C

A
B
C

A
B
C

F

F F

F
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5-6 Other Flip-Flop Types

 J-K and T flip-flops

• Behavior

• Implementation

 Basic descriptors for understanding and 

using different flip-flop types

• Characteristic tables

 Defines the next state as a function of the

present state and input

• Characteristic equations

• Excitation tables
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J-K Flip-flop

 Behavior of JK flip-flop:

• Same as S-R flip-flop with J 

analogous to S and K 

analogous to R

• Except that J = K = 1 is 

allowed, and

• For J = K = 1, the flip-flop 

changes to the opposite 
state (toggle)

 Behavior described by 

the characteristic table 
(function table):

J

C

K

Q

J   K   Q(t+1)

0   0    Q(t)  no change

0   1    0 reset

1 0    1   set

1   1    Q(t)  toggle
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Design of an edge-triggered 

J-K Flip-Flop
State table of a JK FF:

Q J  K Q(t+1)

Present Inputs Next

state state

0

0

1

1

1

0

1

0

0 0  0

0  0  1

0 1  0

0 1  1

1 0  0

1  0  1

1 1  0

1 1  1

Q

J

K

Q(t+1)=DA

0   0    1   1

1   0    0   1

Q(t+1)= DA=JQ’ + K’Q
Called the characteristic equation

D

C
K

J
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J-K Flip-Flop Excitation Table
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T Flip-Flop

 Behavior described 

by its characteristic 

table:

• Has a single input T

 For T = 0, no change 

to state

 For T = 1, changes to 

opposite state

 Same as a J-K flip-

flop with J = K = T

Characteristic equation:

Q(t+1)=T’Q(t) + TQ’(t)

= TQ(t)

T

C

T Q(t+1)

0 Q(t)  no change

1 Q(t) complement
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T Flip-Flop Realization

 Using a D Flip-flop:    D=TQ(t)

 Cannot be initialized to a known state 

using the T input

• Reset (asynchronous or synchronous) 

essential

C

D
T
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T Flip-Flop Excitation Table
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Flip-Flops Characteristics 

• Characteristic table - defines the next state 
of the flip-flop in terms of flip-flop inputs 
and current state 

• Characteristic equation - defines the next 
state of the flip-flop as a Boolean function 
of the flip-flop inputs and the current state.

• Excitation table - defines the flip-flop input 
variable values as function of the current 
state and next state. In other words, the table 
tells us what input is needed to cause a transition 
from the current state to a specific next state. 

F
o
r 

a
n

a
ly

s
is

F
o
r 

d
e

s
ig

n
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D Flip-Flop Descriptors

 Characteristic Table

 Characteristic Equation

Q(t+1) = D

 Excitation Table

D

0
1

Operation

Reset
Set

0
1

Q(t 1)+

Q(t +1)

0
1

0
1

D Operation

Reset
Set
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S-R Flip-Flop Descriptors

 Characteristic Table

 Characteristic Equation

Q(t+1) = S + R Q, S.R = 0

 Excitation Table

0

0

1

1

OperationS

0

1

0

1

R

No change

Reset

Set

Undefined

0

1

?

Q(t+1)

Q(t)

Operation

No change

Set

Reset

No change

S

X

0

1

0

Q(t+1)

0

1

1

0

Q(t)

0

0

1

1

R

X

0

1

0
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Flip-flop Behavior Example

 Use the characteristic tables to find the output waveforms for 

the flip-flops shown:

T

C

Clock

D,T

QD

QT

D

C



87

Flip-Flop Behavior Example 

(continued)
 Use the characteristic tables to find the output waveforms for 

the flip-flops shown:

J
C

K

S
C
R

Clock

S,J

QSR

QJK

R,K

?
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Exercise: Find State Diagram 

T

C

Q

T

C

Q

T

C

Q

Reset

C

A

B

y

A

B

C

Clock



89

Present state Next State Y

A B C TA TB TC A+ B+ C+ y

0 0 0 1 0 1 1 0 1 0

0 0 1 0 0 1 0 0 0 1

0 1 0 1 0 0 1 1 0 1

0 1 1 0 0 0 0 1 1 0

1 0 0 1 1 1 0 1 1 1

1 0 1 0 1 1 1 1 0 0

1 1 0 1 1 0 0 0 0 0

1 1 1 0 1 0 1 0 1 1
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000

0

001

1

010

1

011

0

100

1

101

0

110

0

111

1
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Exercise: Find State Diagram 

clock

A

B y

J

K

Q

k

Q
A

J
B

X

X
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Present state Next State Y

A B X JA KA JB KB A+ B+ y

0 0 0 0 0 0 1 0 0 1

0 0 1 0 0 0 1 0 0 1

0 1 0 0 0 0 1 0 0 0

0 1 1 0 1 0 1 0 0 0

1 0 0 0 0 1 0 1 1 1

1 0 1 1 0 1 0 1 1 1

1 1 0 0 0 1 0 1 1 0

1 1 1 1 1 1 0 0 1 0
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10

1

00

1

01

0

11

0



95

 Given the following state diagram design 

the sequential circuit that implements it. 

Compare the design when TFF & DFF is 

used.

0 1

1/1

0/1

1/1
0/0
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PS input NS out

A X A+ y

0 0 0 0

0 1 1 0

1 0 0 0

1 1 1 1

Fluffy
Rectangle

Fluffy
Pencil

Fluffy
Rectangle

Fluffy
Rectangle

Fluffy
Pencil

Fluffy
Pencil
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Exercise

 Design the sequential circuit that implements the 

following state table using

• JK Flip-Flops

• T Flip-Flops

• SR Flip-Flops

• D Flip-Flops

Present State Input Next State Output

A(t)  B(t) X A(t+1)  B(t+1) Y

0     0 0

0     0 1

0     1 0

0     1 1

1     0 0

1     0 1

1     1 0

1    1 1

0         0 0

0         1 1

0 1 0

1         0 1

1 0 1

1 1 1

1 1 1

0 0 1
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Using JK FF

Present state Next State Y

A B X JA KA JB KB A+ B+ y

0 0 0 0 X 0 X 0 0 0

0 0 1 0 X 1 X 0 1 1

0 1 0 0 X X 0 0 1 0

0 1 1 1 X X 1 1 0 1

1 0 0 X 0 0 X 1 0 1

1 0 1 X 0 1 X 1 1 1

1 1 0 X 0 X 0 1 1 1

1 1 1 X 1 X 1 0 0 1
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Using TFF

Present state Next State Y

A B X TA TB A+ B+ y

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 1

0 1 0 0 0 0 1 0

0 1 1 1 1 1 0 1

1 0 0 0 0 1 0 1

1 0 1 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 1 1 0 0 1
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Using SR FF

Present state Next State Y

A B X SA RA SB RB A+ B+ y

0 0 0 0 X 0 X 0 0 0

0 0 1 0 X 1 0 0 1 1

0 1 0 0 X X 0 0 1 0

0 1 1 1 0 0 1 1 0 1

1 0 0 X 0 0 X 1 0 1

1 0 1 X 0 1 0 1 1 1

1 1 0 X 0 X 0 1 1 1

1 1 1 0 1 0 1 0 0 1
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Exercise

 Design the sequential circuit that implements the 

following state table using

• JK Flip-Flops

• T Flip-Flops

• SR Flip-Flops

• D Flip-Flops

Present State Input Next State Output

A(t)  B(t) X A(t+1)  B(t+1) Y

0     0 0

0     0 1

0     1 0

0     1 1

1     0 0

1     0 1

1     1 0

1    1 1

0         1 1

0         0 1

1 0 0

1         1 0

0         1 1

0 0 1

1 1 0

1         0 0
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Topics Covered

 Storage Elements and Analysis

• Introduction to sequential circuits

• Types of sequential circuits

• Storage elements

 Latches

 Flip-flops

 Sequential circuit analysis

• State tables

• State diagrams

• Equivalent states

• Moore and Mealy Models

 Sequential Circuit Design

 Other Flip-Flops Types
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 Input equations: 

◦ 𝑆𝐴 = 𝑄𝐴. 𝑋 

◦ 𝑅𝐴 = 𝑄𝐴 + 𝑋  

◦ 𝑆𝐵 = 𝑄𝐴. 𝑄𝐵 

◦ 𝑅𝐵 = 𝑄𝐴 + 𝑄𝐵 

 

 Output equation: 

◦ 𝑌 = 𝑄𝐴. 𝑄𝐵 + 𝑋   Mealy  
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 Input equations: 

◦ 𝑇𝐴 = 𝐶  

◦ 𝑇𝐵 = 𝐴 

◦ 𝑇𝐶 = 𝐵  

 

 Output equation: 

◦ 𝑌 = 𝐴⨁𝐵⨁𝐶   Moore  
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 Input equations: 

◦ 𝐽𝐴 = 𝐴. 𝑋 

◦ 𝐾𝐴 = 𝐵. 𝑋 

◦ 𝐽𝐵 = 𝐴 

◦ 𝐾𝐵 = 𝐴  

 

 Output equation: 

◦ 𝑌 = 𝐵    Moore  
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 Implementation using D-FF: 
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 Implementation using T-FF: 
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