
Charles Kime & Thomas Kaminski

© 2008 Pearson Education, Inc.

 (Hyperlinks are active in View Show mode)

Chapter 1 – Digital Systems

and Information

Logic and Computer Design Fundamentals

Updated thoroughly by Dr. Waleed Dweik

Chapter 1 2

Chapter 1 3

Overview

 Digital Systems, Computers, and Beyond

 Information Representation

 Number Systems [binary, octal and hexadecimal]

 Base Conversion

 Decimal Codes [BCD (binary coded decimal)]

 Alphanumeric Codes

 Parity Bit

 Gray Codes

Chapter 1 4

DIGITAL & COMPUTER SYSTEMS - Digital

System

 Takes a set of discrete information inputs and discrete internal

information (system state) and generates a set of discrete information

outputs.

 Digits (Latin word for fingers) : Discrete numeric elements

 Logic : Circuits that operate on a set of two elements with values 0

(False), 1 (True)

 Computers are digital logic circuits

Chapter 1 5

Types of Digital Systems

 No state present

• Combinational Logic System

• Output = Function(Input)

 State present

• Synchronous Sequential System: State updated at
discrete times

• Asynchronous Sequential System: State updated at any
time

• State = Function (State, Input)

• Output = Function (State) or Function (State, Input)

Moore Mealy

Chapter 1 6

Signal Examples Over Time

Analog

Asynchronous

Synchronous

Time

Continuous

in value &

time

Discrete in

value &

continuous

in time

Discrete in

value & time

Digital

Chapter 1 7

Digital System Example

A Digital Counter (e. g., odometer):

1 3 0 0 5 6 4
Count Up

Reset

Inputs: Count Up, Reset

Outputs: Visual Display

State: "Value" of stored digits

Synchronous or Asynchronous?

Chapter 1 8

Digital Computer Example

Synchronous or

Asynchronous?

Inputs: keyboard,

mouse, wireless,

microphone

Outputs: LCD

screen, wireless,

speakers

Memory

Control
unit

Datapath

Input/Output

CPU

Chapter 1 9

And Beyond – Embedded Systems

 Computers as integral parts of other products

 Examples of embedded computers

• Microcomputers

• Microcontrollers

• Digital signal processors

 Examples of embedded systems applications

 Cell phones Dishwashers

Automobiles Flat Panel TVs

Video games Global Positioning Systems

Copiers

Chapter 1 10

INFORMATION REPRESENTATION - Signals

 Information variables represented by physical quantities.

 For digital systems, the variables take on discrete values.

 Two level, or binary values are the most prevalent values
in digital systems.
• Binary systems have higher immunity to noise.

 Binary values are represented abstractly by:

• digits 0 and 1

• words (symbols) False (F) and True (T)

• words (symbols) Low (L) and High (H)

• and words On and Off.

 Binary values are represented by values or ranges of values
of physical quantities.

Chapter 1 11

 What are other physical quantities represent

0 and 1?

• CPU  Voltage

• Disk  Magnetic Field Direction

• CD  Surface Pits/Light

• Dynamic RAM  Electrical Charge

stored in capacitors

Binary Values: Other Physical Quantities

Chapter 1 12

Signal Example – Physical Quantity: Voltage

Threshold

Region

Chapter 1 13

NUMBER SYSTEMS – Representation

 Positive radix, positional number systems

 A number with radix r is represented by a string of digits:

 An - 1An - 2 … A1A0 . A- 1 A- 2 … A- m + 1 A- m

 in which 0  Ai < r and . is the radix point

 i represents the position of the coefficient

 r i represents the weight by which the coefficient is multiplied

 An-1 is the most significant digit (MSD) and A-m is the least

significant digit (LSD)

 The string of digits represents the power series:

(𝑁𝑢𝑚𝑏𝑒𝑟)𝑟= 𝐴𝑖𝑟
𝑖

𝑛−1

𝑖=0

+ 𝐴𝑗𝑟
𝑗

−1

𝑗=−𝑚

Integer Portion Fraction Portion

Chapter 1 14

Number Systems – Examples

General Decimal Binary

Radix (Base) r 10 2

Digits 0 => r - 1 0 => 9 0 => 1

0

1

2

3

Powers of 4

Radix 5

-1

-2

-3

-4

-5

r0

r1

r2

r3

r4

r5

r -1

r -2

r -3

r -4

r -5

1

10

100

1000

10,000

100,000

0.1

0.01

0.001

0.0001

0.00001

1

2

4

8

16

32

0.5

0.25

0.125

0.0625

0.03125

Example

 (403)5 = 4 x 52 + 0 x 51 + 3 x 50 = (103)10

 (103)10 = 1 x 102 + 0 x 101 + 3 x 100 = 103

Chapter 1 15

Chapter 1 16

 Useful for Base Conversion

Exponent Value Exponent Value

0 1 11 2,048

1 2 12 4,096

2 4 13 8,192

3 8 14 16,384

4 16 15 32,768

5 32 16 65,536

6 64 17 131,072

7 128 18 262,144

19 524,288

20 1,048,576

21 2,097,152

8 256

9 512

10 1024

BASE CONVERSION - Positive Powers of 2

Special Powers of 2

 210 (1024) is Kilo, denoted "K"

 220 (1,048,576) is Mega, denoted "M"

 230 (1,073, 741,824)is Giga, denoted "G"

 240 (1,099,511,627,776) is Tera, denoted

"T"

Chapter 1 17

Commonly Occurring Bases

Chapter 1 18

 The six letters A, B, C, D, E, and F represent the digits for

values 10, 11, 12, 13, 14, 15 (given in decimal),

respectively, in hexadecimal. Alternatively, a, b, c, d, e, f

can be used.

Name Radix Digits

Binary 2 0,1

Octal 8 0,1,2,3,4,5,6,7

Decimal 10 0,1,2,3,4,5,6,7,8,9

Hexadecimal 16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Binary System

 r = 2

 Digits = {0, 1}

 Every binary digit is called a bit

 When a bit is equal to zero, it does not contribute to the

value of the number

 Example:

• (10011.101)2= 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20
+ (1 × 2−1 + 0 × 2−2 + 1 × 2−3)

• (10011.101)2= 16 + 2 + 1 +
1

2
+
1

8
= (19.625)10

Chapter 1 19

Octal System

 r = 8

 Digits = {0, 1, 2, 3, 4, 5, 6, 7}

 Every digit is represented by 3-bits  More compact than

binary

 Example:

• (127.4)8= 1 × 82 + 2 × 81 + 7 × 80 + (4 × 8−1)

• (127.4)8= 64 + 16 + 7 +
1

2
= (87.5)10

Chapter 1 20

Hexadecimal System

 r = 16

 Digits = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

 Every digit is represented by 4-bits

 Example:

• (𝐵65𝐹)16= 11 × 163 + 6 × 162 + 5 × 161 + 15 × 160

• (𝐵65𝐹)16= (46687)10

Chapter 1 21

Chapter 1 22

Decimal

(Base 10)

Binary

(Base 2)

Octal

(Base 8)

Hexa decimal

(Base 16)

00 00000 00 00

01 00001 01 01

02 00010 02 02

03 00011 03 03

04 00100 04 04

05 00101 05 05

06 00110 06 06

07 00111 07 07

08 01000 10 08

09 01001 11 09

10 01010 12 0A

11 0101 1 13 0B

12 01100 14 0C

13 01101 15 0D

14 01110 16 0E

15 01111 17 0F

16 10000 20 10

 Good idea to memorize!

Numbers in Different Bases

Chapter 1 23

(𝑁𝑢𝑚𝑏𝑒𝑟)𝑟= 𝐴𝑖𝑟
𝑖

𝑛−1

𝑖=0

+ 𝐴𝑗𝑟
𝑗

−1

𝑗=−𝑚

 Example: Convert 110102 to N10:

Converting from any Base (r) to Decimal

Integer Portion Fraction Portion

Conversion from Decimal to Base (r)

 Convert the Integer Part

 Convert the Fraction Part

 Join the two results with a radix point

Chapter 1 24

Chapter 1 25

Conversion Details

 To Convert the Integral Part:

• Repeatedly divide the number by the new radix and save the remainders

until the quotient is zero

• The digits for the new radix are the remainders in reverse order of their

computation

• If the new radix is > 10, then convert all remainders > 10 to digits A, B,

…

 To Convert the Fractional Part:

• Repeatedly multiply the fraction by the new radix and save the integer

digits of the results until the fraction is zero or your reached the required

number of fractional digits

• The digits for the new radix are the integer digits in order of their

computation

• If the new radix is > 10, then convert all integers > 10 to digits A, B, …

Chapter 1 26

Example: Convert 46.687510 To Base 2

 Convert 46 to Base 2:

 (46)10 = (101110)2

 Convert 0.6875 to Base 2:

 (0.6875)10 = (0.1011)2

 Join the results together with the radix point:

 (46.6875)10 = (101110.1011)2

Remainder Quotient Division

0 23 46/2

1 11 23/2

1 5 11/2

1 2 5/2

0 1 2/2

1 0 1/2 MSD

LSD

Answer Multiplication

1.375 0.6875*2

0.75 0.375*2

1.5 0.75*2

1.0 0.5*2

MSD

LSD

Chapter 1 27

Example: Convert 153.51310 To Base 8

 Convert 153 to Base 8:

 (153)10 = (231)8

 Convert 0.513 to Base 8: (Up to 3 digits)

• Truncate:

 (0.513)10 = (0.406)8

• Round:

 (0.513)10 = (0.407)8

 Join the results together with the radix point:

 (153.513)10 = (231.407)8

Remainder Quotient Division

1 19 153/8

3 2 19/8

2 0 2/8 MSD

LSD

Answer Multiplication

4.104 0.513*8

0.832 0.104*8

6.656 0.832*8

5.248 0.656*8

MSD

LSD

Chapter 1 28

Example: Convert 42310 To Base 16

 (423)10 = (1A7)16

Remainder Quotient Division

7 26 423/16

10 1 26/16

1 0 1/16 MSD

LSD

Chapter 1 29

 Subtract the largest power of 2 that gives a positive remainder
and record the power

 Repeat, subtracting from the prior remainder and recording

the power, until the remainder is zero

 Place 1’s in the positions in the binary result corresponding
to the powers recorded; in all other positions place 0’s

Converting Decimal to Binary:

Alternative Method

Chapter 1 30

Example: Convert 46.687510 To Base 2

Using Alternative Method

 Convert 46 to Base 2:

 (46)10 = (101110)2

 Convert 0.6875 to Base 2:

 (0.6875)10 = (0.1011)2

 Join the results together with the radix point:

 (46.6875)10 = (101110.1011)2

 Easier way to do it:

Power Remainder Subtract

5 14 46-32

3 6 14-8

2 2 6-4

1 0 2-2

Power Remainder Subtract

-1 0.1875 0.6875-0.5

-3 0.0625 0.1875-0.125

-4 0 0.0625-0.0625

Power 6 5 4 3 2 1 0 . -1 -2 -3 -4

0 1 0 1 1 1 0 . 1 0 1 1

Chapter 1 31

Additional Issue - Fractional Part

 Note that in this conversion, the fractional part can become
0 as a result of the repeated multiplications

 In general, it may take many bits to get this to happen or it
may never happen

 Example Problem: Convert 0.6510 to N2

• 0.65 = 0.1010011001001 …

• The fractional part begins repeating every 4 steps yielding
repeating 1001 forever!

 Solution: Specify number of bits to right of radix point
and round or truncate to this number

Checking the Conversion

 To convert back, sum the digits times their respective

powers of r

 From the prior conversion of 46.687510

1011102 = 1·32 + 0·16 +1·8 +1·4 + 1·2 +0·1

 = 32 + 8 + 4 + 2

 = 46

0.10112 = 1/2 + 1/8 + 1/16

 = 0.5000 + 0.1250 + 0.0625

 = 0.6875

Chapter 1 32

Octal (Hexadecimal) to Binary and

Back: Method1

 Octal (Hexadecimal) to Binary:

1. Convert octal (hexadecimal) to decimal (Slide 23)

2. Covert decimal to binary (Slide 24 or Slide 29)

 Binary to Octal (Hexadecimal):

1. Convert binary to decimal (Slide 23)

2. Covert decimal to octal (hexadecimal) (Slide 24)

Chapter 1 33

Chapter 1 34

Octal (Hexadecimal) to Binary and

Back: Method2 (Easier)

 Octal (Hexadecimal) to Binary:

• Restate the octal (hexadecimal) as three (four) binary digits
starting at the radix point and going both ways

 Binary to Octal (Hexadecimal):

• Group the binary digits into three (four) bit groups starting at the
radix point and going both ways, padding with zeros as needed

• Convert each group of three (four) bits to an octal (hexadecimal)
digit

Octal 0 1 2 3 4 5 6 7

Binary 000 001 010 011 100 101 110 111

Hexadecimal 0 1 2 3 4 5 6 7

Binary 0000 0001 0010 0011 0100 0101 0110 0111

Hexadecimal 8 9 A B C D E F

Binary 1000 1001 1010 1011 1100 1101 1110 1111

Examples

 (673.12)8 = (110 111 011 . 001 010)2

 (3A6.C)16 = (0011 1010 0110 . 1100)2

 (10110001101011.1111000001)2 = (?)8

(10/110/001/101/011.111/100/000/1)2 = (26153.7404)8

 (10110001101011.1111000001)2 = (?)16

(10/1100/0110/1011.1111/0000/01)2 = (2C6B.F04)16

 Chapter 1 35

Chapter 1 36

Octal to Hexadecimal via Binary

 Convert octal to binary

 Use groups of four bits and convert to hexadecimal digits

 Example: Octal to Binary to Hexadecimal

 (635.177)8

 (110 011 101 . 001 111 111)2

 (1/1001/1101 . 0011/1111/1)2

 (19D.3F8)16

One last Conversion Example

 Given that (365)r = (194)10, compute the

value of r?

3 × 𝑟2 + 6 × 𝑟1 + 5 × 𝑟0 = 194

3𝑟2 + 6𝑟 + 5 = 194

3𝑟2 + 6𝑟 − 189 = 0

𝑟2 + 2𝑟 − 63 = 0

𝑟 − 7 𝑟 + 9 = 0

𝑟 = 7

Chapter 1 37

Chapter 1 38

Binary Numbers and Binary Coding

 Flexibility of representation

• Within constraints below, can assign any binary combination
(called a code word) to any data as long as data is uniquely
encoded

 Information Types

• Numeric

 Must represent range of data needed

 Very desirable to represent data such that simple, straightforward
computation for common arithmetic operations permitted

 Tight relation to binary numbers

• Non-numeric

 Greater flexibility since arithmetic operations not applied

 Not tied to binary numbers

Chapter 1 39

 Given n binary digits (called bits), a binary code is a mapping

from a set of represented elements to a subset of the 2n binary

numbers.

 Example: A binary code for the seven colors of the rainbow

 Code 100 is not used

Non-numeric Binary Codes

Color Binary Number

Red 000

Orange 001

Yellow 010

Green 011

Blue 101

Indigo 110

Violet 111

Number of Bits Required

 Given M elements to be represented by a binary code, the

minimum number of bits, n, needed, satisfies the following

relationships:

2𝑛 ≥ 𝑀 > 2𝑛−1

 𝑛 = 𝑙𝑜𝑔2𝑀 , where 𝑥 is called

the ceiling function, is the integer greater than or equal to x.

 Example: How many bits are required to represent decimal

digits with a binary code?

 𝑀 = 10

𝑛 = 𝑙𝑜𝑔210 = 3.33 = 4

Chapter 1 40

Chapter 1 41

Number of Elements Represented

 Given n digits in radix r, there are 𝒓𝒏distinct
elements that can be represented.

 But, you can represent m elements, 𝒎 ≤ 𝒓𝒏
Examples:

• You can represent 4 elements in radix r = 2 with n = 2
digits: (00, 01, 10, 11).

• You can represent 4 elements in radix r = 2 with n = 4
digits: (0001, 0010, 0100, 1000).

• This second code is called a "one hot" code.

DECIMAL CODES - Binary Codes for

Decimal Digits

 There are over 8,000 ways that you can chose 10 elements

from the 16 binary numbers of 4 bits. A few are useful:

Chapter 1 42

Decimal 8, 4, 2, 1 Excess 3 8, 4, -2, -1 Gray

0 0000 0011 0000 0000

1 0001 0100 0111 0001

2 0010 0101 0110 0011

3 0011 0110 0101 0010

4 0100 0111 0100 0110

5 0101 1000 1011 1110

6 0110 1001 1010 1010

7 0111 1010 1001 1011

8 1000 1011 1000 1001

9 1001 1100 1111 1000

Chapter 1 43

Binary Coded Decimal (BCD)

 Numeric code

 The BCD code is the 8, 4, 2, 1 code

 8, 4, 2, and 1 are weights  BCD is a weighted code

 This code is the simplest, most intuitive binary code for
decimal digits and uses the same powers of 2 as a binary
number, but only encodes the first ten values from 0 to 9

 Example: 1001 (9) = 1000 (8) + 0001 (1)

 How many “invalid” code words are there?

• Answer: 6

 What are the “invalid” code words?

• Answer: 1010, 1011, 1100, 1101, 1110, 1111

Chapter 1 44

Warning: Conversion or Coding?

 Do NOT mix up conversion of a decimal number to a

binary number with coding a decimal number with a

BINARY CODE.

 1310 = 11012 (This is conversion)

 13  0001|0011 (This is coding)

Excess 3 Code and 8, 4, –2, –1 Code

 What interesting property is common to these two codes?

• Answer: Both codes have the property that the codes for 0 and 9, 1

and 8, etc. can be obtained from each other by replacing the 0’s

with the 1’s and vice-versa. Such a code is sometimes called a

complement code.

Chapter 1 45

Decimal Excess 3 8, 4, –2, –1

0 0011 0000

1 0100 0111

2 0101 0110

3 0110 0101

4 0111 0100

5 1000 1011

6 1001 1010

7 1010 1001

8 1011 1000

9 1100 1111

Chapter 1 46

ALPHANUMERIC CODES - ASCII Character

Codes

 Non-numeric code

 ASCII stands for American Standard Code for
Information Interchange (Refer to Table 1-5 in the
text)

 This code is a popular code used to represent
information sent as character-based data. It uses 7-
bits (i.e. 128 characters) to represent:

• 95 Graphic printing characters

• 33 Non-printing characters

ASCII Code Table

Chapter 1 47

Least Significant

M
o

st
 S

ig
n

if
ic

a
n

t

ASCII Character Codes

 Graphic printing characters

 26 upper case letters (A-Z)

 26 lower case letters (a-z)

 10 numerals (0-9)

 33 special characters (e.g. %, @, $)

 Non-printing characters

 Format effectors: used for text format (e.g. BS = Backspace, CR =

carriage return)

 Information separators: used to separate the data into paragraphs

and pages (e.g. RS = record separator, FS = file separator)

 Communication control characters (e.g. STX and ETX start and

end text areas).

Chapter 1 48

ASCII Properties

 ASCII has some interesting properties:

• Digits 0 to 9 span Hexadecimal values 3016 to 3916

• Upper case A-Z span 4116 to 5A16

• Lower case a-z span 6116 to 7A16

• Lower to upper case translation (and vice versa) occurs by flipping

bit 6

Chapter 1 49

Chapter 1 50

UNICODE

 UNICODE extends ASCII to 65,536 universal characters

codes:

• Non-numeric

• For encoding characters in world languages

• Available in many modern applications

• 2 byte (16-bit) code words

Chapter 1 51

PARITY BIT Error-Detection Codes

 Non-numeric

 Redundancy (e.g. extra information), in the form of extra
bits, can be incorporated into binary code words to detect
and correct errors

 A simple form of redundancy is parity, an extra bit
appended onto the code word to make the number of 1’s
odd or even. Parity can detect all single-bit errors and some
multiple-bit errors

 A code word has even parity if the number of 1’s in the
code word is even

 A code word has odd parity if the number of 1’s in the
code word is odd

4-Bit Parity Code Example

 Fill in the even and odd parity bits:

 The code word "1111" has even parity and the code word

"1110" has odd parity. Both can be used to represent the

same 3-bit data

Chapter 1 52

Even Parity Message Odd Parity Message

000_ 000_

001_ 001_

010_ 010_

011_ 011_

100_ 100_

101_ 101_

110_ 110_

111_ 111_

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

Charles Kime & Thomas Kaminski

© 2008 Pearson Education, Inc.

 (Hyperlinks are active in View Show mode)

Chapter 2 – Combinational

Logic Circuits

Part 1 – Gate Circuits and Boolean Equations

Logic and Computer Design Fundamentals

Updated by Dr. Waleed Dweik

Chapter 2 - Part 1 2

Combinational Logic Circuits

 Digital (logic) circuits are hardware components

that manipulate binary information.

 Integrated circuits: transistors and

interconnections.

• Basic circuits is referred to as logic gates

• The outputs of gates are applied to the inputs of other

gates to form a digital circuit

 Combinational? Later…

Chapter 2 - Part 1 3

Chapter 2 - Part 1 4

Overview

 Part 1 – Gate Circuits and Boolean Equations

• Binary Logic and Gates

• Boolean Algebra

• Standard Forms

 Part 2 – Circuit Optimization

• Two-Level Optimization

• Map Manipulation

• Practical Optimization (Espresso)

• Multi-Level Circuit Optimization

 Part 3 – Additional Gates and Circuits

• Other Gate Types

• Exclusive-OR Operator and Gates

• High-Impedance Outputs

Chapter 2 - Part 1 5

Binary Logic and Gates

 Binary variables take on one of two values

 Logical operators operate on binary values and binary
variables

 Basic logical operators are the logic functions AND,
OR and NOT

 Logic gates implement logic functions

 Boolean Algebra: a useful mathematical system for
specifying and transforming logic functions

We study Boolean algebra as a foundation for
designing and analyzing digital systems!

Chapter 2 - Part 1 6

Binary Variables

 Recall that the two binary values have different
names:

• True/False

• On/Off

• Yes/No

• 1/0

 We use 1 and 0 to denote the two values

 Variable identifier examples:

• A, B, y, z, or X1 for now

• RESET, START_IT, or ADD1 later

Chapter 2 - Part 1 7

Logical Operations

 The three basic logical operations are:

• AND

• OR

• NOT

 AND is denoted by a dot (·) or (∧)

 OR is denoted by a plus (+) or (∨)

 NOT is denoted by an over-bar (¯), a single

quote mark (') after, or (~) before the variable

Notation Examples

 Examples:

• 𝑍 = 𝑋 ∙ Y = XY = 𝑋 ∧ 𝑌 : is read “Z is equal to X AND Y”

 Z = 1 if and only if X = 1 and Y = 1; otherwise, Z = 0

• 𝑍 = 𝑋 + 𝑌 = 𝑋 ∨ 𝑌 : is read “Z is equal to X OR Y”

 Z = 1 if (only X = 1) or if (only Y = 1) or if (X =1 and Y = 1)

• Z= 𝑋 = 𝑋′ = ~𝑋 : is read “Z is equal to NOT X”

 Z = 1 if X = 0; otherwise, Z = 0

 Notice the difference between arithmetic addition and

logical OR:

• The statement:

 1 + 1 = 2 (read “one plus one equals two”)

 is not the same as

 1 + 1 = 1 (read “1 or 1 equals 1”)

Chapter 2 - Part 1 8

Operator Definitions

 Operations are defined on the values "0" and "1" for each

operator:

Chapter 2 - Part 1 9

AND

0 . 0 = 0

0 . 1 = 0

1 . 0 = 0

1 . 1 = 1

OR

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

NOT

 𝟎 = 𝟏

𝟏 = 𝟎

Truth Tables

 Truth table - a tabular listing of the values of a function

for all possible combinations of values on its arguments

 Example: Truth tables for the basic logic operations:

Chapter 2 - Part 1 10

AND

Inputs Output

X Y Z = X . Y

0 0 0

0 1 0

1 0 0

1 1 1

OR

Inputs Output

X Y Z = X + Y

0 0 0

0 1 1

1 0 1

1 1 1

NOT

Inputs Output

X 𝒁 = 𝑿

0 1

1 0

Chapter 2 - Part 1 11

 Using Switches

• For inputs:

 logic 1 is switch closed

 logic 0 is switch open

• For outputs:

 logic 1 is light on

 logic 0 is light off

• NOT uses a switch such that:

 logic 1 is switch open

 logic 0 is switch closed

Logic Function Implementation

Switches in series => AND

Switches in parallel => OR

𝐶

Normally-closed switch => NOT

Chapter 2 - Part 1 12

 Example: Logic Using Switches

 Light is

 ON (L = 1) for 𝐿 𝐴, 𝐵, 𝐶, 𝐷 = 𝐴 . 𝐵𝐶 + 𝐷 = AB𝐶 + 𝐴𝐷

 and OFF (L = 0), otherwise.

 Useful model for relay circuits and for CMOS gate circuits,
the foundation of current digital logic technology

Logic Function Implementation (Continued)

B

A

D

𝐶

Chapter 2 - Part 1 13

Logic Gates

 In the earliest computers, switches were opened

and closed by magnetic fields produced by

energizing coils in relays. The switches in turn

opened and closed the current paths

 Later, vacuum tubes that open and close current

paths electronically replaced relays

 Today, transistors are used as electronic switches

that open and close current paths

 Optional: Chapter 6 – Part 1: The Design Space

Chapter 2 - Part 1 14

Logic Gate Symbols and Behavior

 Logic gates have special symbols:

 And waveform behavior in time as follows:

(b) Timing diagram

X 0 0 1 1

Y 0 1 0 1

X · Y (AND) 0 0 0 1

X + Y (OR) 0 1 1 1

(NOT) 𝑋 1 1 0 0

(a) Graphic symbols

OR gate

X

Y

Z = X + Y

X

Y

Z = X · Y

AND gate

X Z = 𝑋

NOT gate or

inverter

Chapter 2 - Part 1 15

Gate Delay

 In actual physical gates, if one or more input changes

causes the output to change, the output change does not

occur instantaneously

 The delay between an input change(s) and the resulting

output change is the gate delay denoted by tG:

tG
tG

Input

Output

Time (ns)

0

0

1

1

0 0.5 1 1.5

tG = 0.3 ns

Logic Gates: Inputs and Outputs

 NOT (inverter)

• Always one input and one output

 AND and OR gates

• Always one output

• Two or more inputs

Chapter 2 - Part 1 16

A

B

C

X = ABC

A

B

C X = A + B + C + D + E

D

E

Boolean Algebra

 An algebra dealing with binary variables and logic
operations

• Variables are designated by letters of the alphabet

• Basic logic operations: AND, OR, and NOT

 A Boolean expression is an algebraic expression formed
by using binary variables, constants 0 and 1, the logic
operation symbols, and parentheses

• E.g.: X . 1, A + B + C, (A + B)(C + D)

 A Boolean function consists of a binary variable
identifying the function followed by equals sign and a
Boolean expression

• E.g.: 𝐹 = 𝐴 + 𝐵 + 𝐶, 𝐿 𝐷, 𝑋, 𝐴 = 𝐷𝑋 + 𝐴

Chapter 2 - Part 1 17

Logic Diagrams and Expressions

1. Equation: 𝐹 = 𝑋 + 𝑌 𝑍

2. Logic Diagram:

3. Truth Table:

 Boolean equations, truth tables and

logic diagrams describe the same
function!

 Truth tables are unique; expressions
and logic diagrams are not. This gives
flexibility in implementing functions.

Chapter 2 - Part 1 18

Y

Z
X

F

X Y Z F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Example

 Draw the logic diagram and the truth table of the following

Boolean function: 𝐹 𝑊,𝑋, 𝑌 = 𝑋𝑌 + 𝑊𝑌

 Logic Diagram:

 Truth Table:

 This example represents a Single Output Function

 Chapter 2 - Part 1 19

X

W

Y

F

W X Y F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

Example

 Draw the logic diagram and the truth table of the following

Boolean functions: 𝐹 𝑊,𝑋 = 𝑊 𝑋 + 𝑊,𝐺 𝑊,𝑋 = 𝑊 + 𝑋

 Logic Diagram:

 Truth Table:

 This example represents a Multiple Output Function

Chapter 2 - Part 1 20

W

X

G

F

W X F G

0 0 1 1

0 1 0 0

1 0 1 1

1 1 1 1

Example:

 Given the following logic diagram, write the

corresponding Boolean equation:

 Logic circuits of this type are called combinational logic

circuits since the variables are combined by logical

operations

Chapter 2 - Part 1 21

𝑾.𝑿

𝑾 + 𝒀

𝒀 . 𝒁

𝑭 = 𝒀 . 𝒁

𝑮 = 𝑾.𝑿 + (𝑾 + 𝒀 . 𝒁)

𝑾 + 𝒀 . 𝒁

Basic Identities of Boolean Algebra

Chapter 2 - Part 1 22

1. 𝑋 + 0 = 𝑋 2. 𝑋 . 1 = 𝑋
Existence of 0 and 1

3. 𝑋 + 1 = 1 4. 𝑋 . 0 = 0

5. 𝑋 + 𝑋 = 𝑋 6. 𝑋 . 𝑋 = 𝑋 Idempotence

7. 𝑋 + 𝑋 = 1 8. 𝑋 . 𝑋 = 0 Existence of complement

9. 𝑋 = 𝑋 Involution

10. 𝑋 + 𝑌 = 𝑌 + 𝑋 11. 𝑋𝑌 = 𝑌𝑋 Commutative Laws

12. 𝑋 + 𝑌 + 𝑍 = 𝑋 + (𝑌 + 𝑍) 13. 𝑋𝑌 𝑍 = 𝑋(𝑌𝑍) Associative Laws

14. 𝑋 𝑌 + 𝑍 = 𝑋𝑌 + 𝑋𝑍 15. 𝑋 + 𝑌𝑍 = (𝑋 + 𝑌)(𝑋 + 𝑍) Distributive Laws

16. 𝑋 + 𝑌 = 𝑋 . 𝑌 17. 𝑋. 𝑌 = 𝑋 + 𝑌 DeMorgan’s Laws

Some Properties of Identities & the Algebra

 If the meaning is unambiguous, we leave out the symbol

“·”

 The identities above are organized into pairs

• The dual of an algebraic expression is obtained by interchanging

(+) and (·) and interchanging 0’s and 1’s

• The identities appear in dual pairs. When there is only one identity

on a line the identity is self-dual, i. e., the dual expression = the

original expression.

Chapter 2 - Part 1 23

Some Properties of Identities & the Algebra (Continued)

 Unless it happens to be self-dual, the dual of an

expression does not equal the expression itself

 Examples:

• 𝐹 = 𝐴 + 𝐶 . 𝐵 + 0
 𝐷𝑢𝑎𝑙 𝐹 = 𝐴 . 𝐶 + B . 1 = A . 𝐶 + 𝐵

• 𝐺 = XY + 𝑊 + 𝑍

 𝐷𝑢𝑎𝑙 𝐺 = 𝑋 + 𝑌 .𝑊𝑍 = 𝑋 + 𝑌 . (𝑊 + 𝑍)

• 𝐻 = 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶

 𝐷𝑢𝑎𝑙 𝐻 = 𝐴 + 𝐵 𝐴 + 𝐶 𝐵 + 𝐶 = 𝐴 + 𝐵𝐶 𝐵 + 𝐶
= 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶

 Are any of these functions self-dual?

• Yes, H is self-dual

Chapter 2 - Part 1 24

Boolean Operator Precedence

 The order of evaluation in a Boolean expression is:

1. Parentheses

2. NOT

3. AND

4. OR

 Consequence: Parentheses appear around OR expressions

 Examples:

• 𝐹 = 𝐴(𝐵 + 𝐶)(𝐶 + 𝐷)

• 𝐹 = ~𝐴𝐵 = 𝐴 𝐵

• 𝐹 = 𝐴𝐵 + 𝐶

• 𝐹 = 𝐴(𝐵 + 𝐶)

Chapter 2 - Part 1 25

Useful Boolean Theorems

Theorem Dual Name

𝑥. 𝑦 + 𝑥 . 𝑦 = 𝑦 𝑥 + 𝑦 𝑥 + 𝑦 = 𝑦 Minimization

𝑥 + 𝑥. 𝑦 = 𝑥 𝑥. (𝑥 + 𝑦) = 𝑥 Absorption

𝑥 + 𝑥 . 𝑦 = 𝑥 + 𝑦 𝑥. 𝑥 + 𝑦 = 𝑥. 𝑦 Simplification

𝑥. 𝑦 + 𝑥 . 𝑧 + 𝑦. 𝑧 = 𝑥. 𝑦 + 𝑥 . 𝑧
Consensus

𝑥 + 𝑦 𝑥 + 𝑧 𝑦 + 𝑧 = (𝑥 + 𝑦)(𝑥 + 𝑧)

Chapter 2 - Part 1 26

Example 1: Boolean Algebraic Proof

 A + A·B = A (Absorption Theorem)

 Our primary reason for doing proofs is to learn:

• Careful and efficient use of the identities and theorems of Boolean
algebra

• How to choose the appropriate identity or theorem to apply to
make forward progress, irrespective of the application

 Chapter 2 - Part 1 27

Proof Steps Justification (identity or theorem)

A + A·B

= A · 1 + A · B X = X · 1

= A · (1 + B) Distributive Law

= A · 1 1 + X = 1

= A X · 1 = X

Example 2: Boolean Algebraic Proofs

 𝐴𝐵 + 𝐴 𝐶 + 𝐵𝐶 = 𝐴𝐵 + 𝐴 𝐶 (Consensus Theorem)

Chapter 2 - Part 1 28

Proof Steps
Justification

(identity or theorem)

𝑨𝑩 + 𝑨 𝑪 + 𝑩𝑪

= 𝑨𝑩 + 𝑨 𝑪 + 𝟏.𝑩𝑪 𝟏. 𝑿 = 𝑿

= 𝑨𝑩 + 𝑨 𝑪 + (𝑨 + 𝑨). 𝑩𝑪 𝑿 + 𝑿 = 𝟏

= 𝑨𝑩 + 𝑨 𝑪 + 𝑨𝑩𝑪 + 𝑨 𝑩𝑪 Distributive Law

= 𝑨𝑩 + 𝑨𝑩𝑪 + 𝑨 𝑪 + 𝑨 𝑩𝑪 Commutative Law

= 𝑨𝑩. 𝟏 + 𝑨𝑩. 𝑪 + 𝑨 𝑪. 𝟏 + 𝑨 𝑪.𝑩 𝑿. 𝟏 = 𝑿and Commutative Law

= 𝑨𝑩(𝟏 + 𝑪) + 𝑨 𝑪(𝟏 + 𝑩) Distributive Law

= 𝑨𝑩. 𝟏 + 𝑨 𝑪. 𝟏 𝟏 + 𝑿 = 𝟏

= 𝑨𝑩 + 𝑨 𝑪 𝑿. 𝟏 = 𝑿

Proof of Simplification

 A + 𝐴 . 𝐵 = 𝐴 + 𝐵 (Simplification Theorem)

 A. (𝐴 + 𝐵) = 𝐴𝐵 (Simplification Theorem)

Chapter 2 - Part 1 29

Proof Steps Justification (identity or theorem)

𝐴 + 𝐴 . 𝐵

= (𝐴 + 𝐴)(𝐴 + 𝐵) Distributive Law

= 1. (𝐴 + 𝐵) 𝑋 + 𝑋 = 1

= 𝐴 + 𝐵 𝑋. 1 = 𝑋

Proof Steps Justification (identity or theorem)

𝐴. (𝐴 + 𝐵)

= 𝐴. 𝐴 + (𝐴. 𝐵) Distributive Law

= 0 + 𝐴𝐵 𝑋. 𝑋 = 0

= 𝐴𝐵 𝑋 + 0 = 𝑋

Proof of Minimization

 𝐴. 𝐵 + 𝐴 . 𝐵 = 𝐵 (Minimization Theorem)

 (𝐴 + 𝐵)(𝐴 + 𝐵) = 𝐵 (Minimization Theorem)

Chapter 2 - Part 1 30

Proof Steps Justification (identity or theorem)

𝐴. 𝐵 + 𝐴 . 𝐵

= 𝐵(𝐴 + 𝐴) Distributive Law

= 𝐵. 1 𝑋 + 𝑋 = 1

= 𝐵 𝑋. 1 = 𝑋

Proof Steps Justification (identity or theorem)

(𝐴 + 𝐵)(𝐴 + 𝐵)

= 𝐵 + (𝐴. 𝐴) Distributive Law

= 𝐵 + 0 𝑋. 𝑋 = 0

= 𝐵 𝑋 + 0 = 𝑋

Proof of DeMorgan’s Laws (1)

 𝑋 + 𝑌 = 𝑋 . 𝑌 (DeMorgan’s Law)

• We will show that, 𝑋 . 𝑌 , satisfies the definition of the complement of

(𝑋 + 𝑌), defined as 𝑋 + 𝑌 by DeMorgan’s Law.

• To show this, we need to show that 𝐴 + 𝐴′ = 1 and 𝐴. 𝐴′ = 0 with

𝐴 = 𝑋 + 𝑌 and 𝐴′ = 𝑋′. 𝑌′. This proves that 𝑋′. 𝑌′ = 𝑋 + 𝑌.

 Part 1: Show 𝑋 + 𝑌 + 𝑋′. 𝑌′ = 1

Chapter 2 - Part 1 31

Proof Steps
Justification (identity or

theorem)

(𝑋 + 𝑌) + 𝑋′. 𝑌′

= (𝑋 + 𝑌 + 𝑋′)(𝑋 + 𝑌 + 𝑌′) Distributive Law

= (1 + 𝑌)(𝑋 + 1) 𝑋 + 𝑋 = 1

= 1.1 𝑋 + 1 = 1

= 1 𝑋. 1 = 𝑋

Proof of DeMorgan’s Laws (2)

 Part 2: Show 𝑋 + 𝑌 .𝑋′. 𝑌′ = 0

 Based on the above two parts, 𝑋′. 𝑌′ = 𝑋 + 𝑌

 The second DeMorgans’ law is proved by duality

 Note that DeMorgan’s law, given as an identity is not an axiom in the

sense that it can be proved using the other identities.

Chapter 2 - Part 1 32

Proof Steps
Justification (identity or

theorem)

𝑋 + 𝑌 . 𝑋′. 𝑌′

= 𝑋. 𝑋′. 𝑌′ + (𝑌. 𝑋′. 𝑌′) Distributive Law

= 0. 𝑌′ + (𝑋′. 0) 𝑋. 𝑋 = 0

= 0 + 0 𝑋. 0 = 0

= 0 𝑋 + 0 = 𝑋

Example 3: Boolean Algebraic Proofs

 (𝑋 + 𝑌)𝑍 + 𝑋𝑌 = 𝑌 (𝑋 + 𝑍)

Chapter 2 - Part 1 33

Proof Steps
Justification (identity or

theorem)

(𝑋 + 𝑌)𝑍 + 𝑋𝑌

= 𝑋′𝑌′𝑍 + 𝑋. 𝑌′ DeMorgan’s law

= 𝑌′(𝑋′𝑍 + 𝑋) Distributive law

= 𝑌′(𝑋 + 𝑋′𝑍) Commutative law

= 𝑌′(𝑋 + 𝑍) Simplification Theorem

Boolean Function Evaluation

 𝐹1 = 𝑥𝑦𝑧

 𝐹2 = 𝑥 + 𝑦 𝑧

 𝐹3 = 𝑥 𝑦 𝑧 + 𝑥 𝑦𝑧 + 𝑥𝑦

 𝐹4 = 𝑥𝑦 + 𝑥 𝑧

Chapter 2 - Part 1 34

x y z F1 F2 F3 F4

0 0 0 0 0 1 0

0 0 1 0 1 0 1

0 1 0 0 0 0 0

0 1 1 0 0 1 1

1 0 0 0 1 1 1

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 0

Expression Simplification

 An application of Boolean algebra

 Simplify to contain the smallest number of literals (complemented and

uncomplemented variables)

 Example: Simplify the following Boolean expression

• 𝐴𝐵 + 𝐴′𝐶𝐷 + 𝐴′𝐵𝐷 + 𝐴′𝐶𝐷′ + 𝐴𝐵𝐶𝐷

Chapter 2 - Part 1 35

Simplification Steps Justification (identity or theorem)

𝐴𝐵 + 𝐴′𝐶𝐷 + 𝐴′𝐵𝐷 + 𝐴′𝐶𝐷′ + 𝐴𝐵𝐶𝐷

= 𝐴𝐵 + 𝐴𝐵𝐶𝐷 + 𝐴′𝐶𝐷 + 𝐴′𝐶𝐷′ + 𝐴′𝐵𝐷 Commutative law

= 𝐴𝐵 1 + 𝐶𝐷 + 𝐴′𝐶 𝐷 + 𝐷′ + 𝐴′𝐵𝐷 Distributive law

= 𝐴𝐵. 1 + 𝐴′𝐶. 1 + 𝐴′𝐵𝐷 1 + 𝑋 = 1 and 𝑋 + 𝑋′ = 1

= 𝐴𝐵 + 𝐴′𝐶 + 𝐴′𝐵𝐷 𝑋. 1 = 𝑋

= 𝐴𝐵 + 𝐴′𝐵𝐷 + 𝐴′𝐶 Commutative law

= 𝐵(𝐴 + 𝐴′𝐷) + 𝐴′𝐶 Distributive law

= 𝐵(𝐴 + 𝐷) + 𝐴′𝐶  5 Literals Simplification Theorem

Complementing Functions

 Use DeMorgan's Theorem to complement a function:

1. Interchange AND and OR operators

2. Complement each constant value and literal

 Example: Complement 𝐹 = 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′

𝐹′ = 𝑥 + 𝑦′ + 𝑧 (𝑥′ + 𝑦 + 𝑧)

 Example: Complement 𝐺 = 𝑎′ + 𝑏𝑐 𝑑′ + 𝑒

𝐺′ = 𝑎(𝑏′ + 𝑐′) + 𝑑 . 𝑒′

Chapter 2 - Part 1 36

Example

 Simplify the following:

• 𝐹 = 𝑋′𝑌𝑍 + 𝑋′𝑌𝑍′ + 𝑋𝑍

Chapter 2 - Part 1 37

Simplification Steps (identity or theorem)

𝑋′𝑌𝑍 + 𝑋′𝑌𝑍′ + 𝑋𝑍

= 𝑋′𝑌(𝑍 + 𝑍′) + 𝑋𝑍 Distributive law

= 𝑋′𝑌. 1 + 𝑋𝑍 𝑋 + 𝑋′ = 1

= 𝑋′𝑌 + 𝑋𝑍 𝑋. 1 = 𝑋

x y z 𝑋′𝑌𝑍 + 𝑋′𝑌𝑍′ + 𝑋𝑍 𝑋′𝑌 + 𝑋𝑍

0 0 0 0 0

0 0 1 0 0

0 1 0 1 1

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

3 terms and 8 literals 2 terms and 4 literals

X

Y

Z F

X

Y

Z
F

Example

 Show that 𝐹 = 𝑥′𝑦′ + 𝑥𝑦′ + 𝑥′𝑦 + 𝑥𝑦 = 1

• Solution1: Truth Table

• Solution2: Boolean Algebra

Chapter 2 - Part 1 38

x y F

0 0 1

0 1 1

1 0 1

1 1 1

Proof Steps (identity or theorem)

𝑥′𝑦′ + 𝑥𝑦′ + 𝑥′𝑦 + 𝑥𝑦

= 𝑦′ 𝑥′ + 𝑥 + 𝑦(𝑥′ + 𝑥) Distributive law

= 𝑦′. 1 + 𝑦. 1 𝑋 + 𝑋′ = 1

= 𝑦′ + 𝑦 𝑋. 1 = 𝑋

= 1 𝑋 + 𝑋′ = 1

Examples

 Show that 𝐴𝐵𝐶 + 𝐴′𝐶′ + 𝐴𝐶′ = 𝐴𝐵 + 𝐶′ using Boolean algebra.

 Find the dual and the complement of 𝑓 = 𝑤𝑥 + 𝑦′𝑧. 0 + 𝑤′𝑧

• 𝐷𝑢𝑎𝑙 𝑓 = 𝑤 + 𝑥 𝑦′ + 𝑧 + 1 𝑤′ + 𝑧

• 𝑓′ = (𝑤′+ 𝑥′)(𝑦 + 𝑧′ + 1)(𝑤 + 𝑧′)

Chapter 2 - Part 1 39

Proof Steps (identity or theorem)

𝐴𝐵𝐶 + 𝐴′𝐶′ + 𝐴𝐶′

= 𝐴𝐵𝐶 + 𝐶′(𝐴′ + 𝐴) Distributive law

= 𝐴𝐵𝐶 + 𝐶′. 1 𝑋 + 𝑋′ = 1

= 𝐴𝐵𝐶 + 𝐶′ 𝑋. 1 = 𝑋

= (𝐴𝐵 + 𝐶′)(𝐶 + 𝐶′) Distributive law

= 𝐴𝐵 + 𝐶′ . 1 𝑋 + 𝑋′ = 1

= 𝐴𝐵 + 𝐶′ 𝑋. 1 = 𝑋

Chapter 2 - Part 1 40

Overview – Canonical Forms

 What are Canonical Forms?

 Minterms and Maxterms

 Index Representation of Minterms and Maxterms

 Sum-of-Minterm (SOM) Representations

 Product-of-Maxterm (POM) Representations

 Representation of Complements of Functions

 Conversions between Representations

Boolean Representation Forms

Chapter 2 - Part 1 41

Forms

Non-Standard Forms Standard Forms

 Product terms (SOP) Sum terms (POS)

 Canonical

(SOM)

 Non-

Canonical

 Canonical

(POM)

 Non-

Canonical

Chapter 2 - Part 1 42

Canonical Forms

 It is useful to specify Boolean functions in a

form that:

• Allows comparison for equality

• Has a correspondence to the truth tables

• Facilitates simplification

 Canonical Forms in common usage:

• Sum of Minterms (SOM)

• Product of Maxterms (POM)

Minterms

 Minterms are AND terms with every variable present in
either true or complemented form

 Given that each binary variable may appear normal (e.g.,
𝑥) or complemented (e.g., 𝑥), there are 2n minterms for n
variables

 Example: Two variables (X and Y) produce 22 = 4
combinations:

𝑋𝑌 (both normal)

𝑋𝑌 (X normal, Y complemented)

𝑋 𝑌 (X complemented, Y normal)

𝑋 𝑌 (both complemented)

 Thus there are four minterms of two variables

Chapter 2 - Part 1 43

Maxterms

 Maxterms are OR terms with every variable in
true or complemented form

 Given that each binary variable may appear
normal (e.g., 𝑥) or complemented (e.g., 𝑥), there

are 2n maxterms for n variables

 Example: Two variables (X and Y) produce 22 = 4
combinations:

𝑋 + 𝑌 (both normal)

𝑋 + 𝑌 (X normal, Y complemented)

𝑋 + 𝑌 (X complemented, Y normal)

𝑋 + 𝑌 (both complemented)

 Chapter 2 - Part 1 44

Chapter 2 - Part 1 45

 Examples: Three variable (X, Y, Z) minterms and maxterms

 The index above is important for describing which variables in the
terms are true and which are complemented

Maxterms and Minterms

Index Minterm (m) Maxterm (M)

0 𝑋 𝑌 𝑍 𝑋 + 𝑌 + 𝑍

1 𝑋 𝑌 𝑍 𝑋 + 𝑌 + 𝑍

2 𝑋 𝑌𝑍 𝑋 + 𝑌 + 𝑍

3 𝑋 𝑌𝑍 𝑋 + 𝑌 + 𝑍

4 𝑋𝑌 𝑍 𝑋 + 𝑌 + 𝑍

5 𝑋𝑌 𝑍 𝑋 + 𝑌 + 𝑍

6 𝑋𝑌𝑍 𝑋 + 𝑌 + 𝑍

7 𝑋𝑌𝑍 𝑋 + 𝑌 + 𝑍

Chapter 2 - Part 1 46

Standard Order

 Minterms and maxterms are designated with a subscript

 The subscript is a number, corresponding to a binary pattern

 The bits in the pattern represent the complemented or normal
state of each variable listed in a standard order

 All variables will be present in a minterm or maxterm and will
be listed in the same order (usually alphabetically)

 Example: For variables a, b, c:

• Maxterms: (𝒂 + 𝒃 + 𝒄), (𝒂 + 𝒃 + 𝒄)

• Terms: (𝒃 + 𝒂 + 𝒄), 𝒂𝒄 𝒃, and (𝒄 + 𝒃 + 𝒂) are NOT in
standard order.

• Minterms: 𝒂𝒃 𝒄, 𝒂𝒃𝒄, 𝒂 𝒃 𝒄

• Terms: (𝒂 + 𝒄) , 𝒃 𝒄 , and (𝒂 + 𝒃) do not contain all
variables

Chapter 2 - Part 1 47

Purpose of the Index

 The index for the minterm or maxterm, expressed

as a binary number, is used to determine whether

the variable is shown in the true form or

complemented form

 For Minterms:

• “0” means the variable is “Complemented”

• “1” means the variable is “Not Complemented”

 For Maxterms:

• “0” means the variable is “Not Complemented”

• “1” means the variable is “Complemented”

Chapter 2 - Part 1 48

Index Example: Three Variables

Index

(Decimal)

Index (Binary)

n = 3 Variables
Minterm (m) Maxterm (M)

0 000 𝑚0 = 𝑋 𝑌 𝑍 𝑀0 = 𝑋 + 𝑌 + 𝑍

1 001 𝑚1 = 𝑋 𝑌 𝑍 𝑀1 = 𝑋 + 𝑌 + 𝑍

2 010 𝑚2 = 𝑋 𝑌𝑍 𝑀2 = 𝑋 + 𝑌 + 𝑍

3 011 𝑚3 = 𝑋 𝑌𝑍 𝑀3 = 𝑋 + 𝑌 + 𝑍

4 100 𝑚4 = 𝑋𝑌 𝑍 𝑀4 = 𝑋 + 𝑌 + 𝑍

5 101 𝑚5 = 𝑋𝑌 𝑍 𝑀5 = 𝑋 + 𝑌 + 𝑍

6 110 𝑚6 = 𝑋𝑌𝑍 𝑀6 = 𝑋 + 𝑌 + 𝑍

7 111 𝑚7 = 𝑋𝑌𝑍 𝑀7 = 𝑋 + 𝑌 + 𝑍

Index Example: Four Variables

Chapter 2 - Part 1 49

i (Decimal)
i (Binary)

n = 4 Variables
mi Mi

0 0000 𝑎 𝑏 𝑐 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑

1 0001 𝑎 𝑏 𝑐 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑

3 0011 𝑎 𝑏 𝑐𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑

5 0101 𝑎 𝑏𝑐 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑

7 0111 𝑎 𝑏𝑐𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑

10 1010 𝑎𝑏 𝑐𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑

13 1101 𝑎𝑏𝑐 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑

15 1111 𝑎𝑏𝑐𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑

Minterm and Maxterm Relationship

 Review: DeMorgan's Theorem

• 𝑥. 𝑦 = 𝑥 + 𝑦 and 𝑥 + 𝑦 = 𝑥 . 𝑦

 Two-variable example:

• 𝑀2 = 𝑥 + 𝑦 and 𝑚2 = 𝑥. 𝑦

• Using DeMorgan’s Theorem  𝑥 + 𝑦 = 𝑥 . 𝑦 = 𝑥. 𝑦

• Using DeMorgan’s Theorem  𝑥. 𝑦 = 𝑥 + 𝑦 = 𝑥 . 𝑦

• Thus, M2 is the complement of m2 and vice-versa

 Since DeMorgan's Theorem holds for n variables, the

above holds for terms of n variables:

𝑀𝑖 = 𝑚𝑖 and 𝑚𝑖 = 𝑀𝑖

 Thus, Mi is the complement of mi and vice-versa

Chapter 2 - Part 1 50

Function Tables for Both

 Minterms of 2 variables:

 Maxterms of 2 variables:

 Each column in the maxterm function table is the

complement of the column in the minterm function table

since Mi is the complement of mi.

Chapter 2 - Part 1 51

xy m0 m1 m2 m3

00 1 0 0 0

01 0 1 0 0

10 0 0 1 0

11 0 0 0 1

xy M0 M1 M2 M3

00 0 1 1 1

01 1 0 1 1

10 1 1 0 1

11 1 1 1 0

Chapter 2 - Part 1 52

Observations

 In the function tables:

• Each minterm has one and only one 1 present in the 2n terms (a
minimum of 1s). All other entries are 0.

• Each maxterm has one and only one 0 present in the 2n terms All
other entries are 1 (a maximum of 1s).

 We can implement any function by

• "ORing" the minterms corresponding to "1" entries in the function
table. These are called the minterms of the function.

• "ANDing" the maxterms corresponding to "0" entries in the
function table. These are called the maxterms of the function.

 This gives us two canonical forms for stating any Boolean
function:

• Sum of Minterms (SOM)

• Product of Maxterms (POM)

Minterm Function Example

 Example: Find 𝑭𝟏 = 𝒎𝟏 + 𝒎𝟒 + 𝒎𝟕

 𝑭𝟏 = 𝒙′𝒚′𝒛 + 𝒙𝒚′𝒛′ + 𝒙𝒚𝒛

Chapter 2 - Part 1 53

xyz Index 𝐦𝟏 + 𝐦𝟒 + 𝐦𝟕 = 𝐅𝟏

000 0 𝟎 + 𝟎 + 𝟎 = 𝟎

001 1 𝟏 + 𝟎 + 𝟎 = 𝟏

010 2 𝟎 + 𝟎 + 𝟎 = 𝟎

011 3 𝟎 + 𝟎 + 𝟎 = 𝟎

100 4 𝟎 + 𝟏 + 𝟎 = 𝟏

101 5 𝟎 + 𝟎 + 𝟎 = 𝟎

110 6 𝟎 + 𝟎 + 𝟎 = 𝟎

111 7 𝟎 + 𝟎 + 𝟏 = 𝟏

Chapter 2 - Part 1 54

Minterm Function Example

 𝑭 𝑨,𝑩, 𝑪, 𝑫, 𝑬 = 𝒎𝟐 + 𝒎𝟗 + 𝒎𝟏𝟕 + 𝒎𝟐𝟑

 𝐹 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝐴′𝐵′𝐶′𝐷𝐸′ + 𝐴′𝐵𝐶′𝐷′𝐸
+ 𝐴𝐵′𝐶′𝐷′𝐸 + 𝐴𝐵′𝐶𝐷𝐸

Maxterm Function Example

 Example: Implement F1 in maxterms:

 𝐹1 = 𝑀0 . 𝑀2 . 𝑀3 . 𝑀5 . 𝑀6

 𝐹1 = 𝑥 + 𝑦 + 𝑧 . 𝑥 + 𝑦′ + 𝑧 . 𝑥 + 𝑦′ + 𝑧′ . 𝑥′ + 𝑦 + 𝑧′ . (𝑥′ + 𝑦′ + 𝑧)

Chapter 2 - Part 1 55

xyz Index 𝐌𝟎 . 𝐌𝟐 . 𝐌𝟑 . 𝐌𝟓 . 𝐌𝟔 = 𝐅𝟏

000 0 𝟎 . 𝟏 . 𝟏 . 𝟏 . 𝟏 = 𝟎

001 1 𝟏 . 𝟏 . 𝟏 . 𝟏 . 𝟏 = 𝟏

010 2 𝟏 . 𝟎 . 𝟏 . 𝟏 . 𝟏 = 𝟎

011 3 𝟏 . 𝟏 . 𝟎 . 𝟏 . 𝟏 = 𝟎

100 4 𝟏 . 𝟏 . 𝟏 . 𝟏 . 𝟏 = 𝟏

101 5 𝟏 . 𝟏 . 𝟏 . 𝟎 . 𝟏 = 𝟎

110 6 𝟏 . 𝟏 . 𝟏 . 𝟏 . 𝟎 = 𝟎

111 7 𝟏 . 𝟏 . 𝟏 . 𝟏 . 𝟏 = 𝟏

Chapter 2 - Part 1 56

Maxterm Function Example

 𝐹 𝐴, 𝐵, 𝐶, 𝐷 = 𝑀3 . 𝑀8 . 𝑀11 . 𝑀14

 𝐹 𝐴, 𝐵, 𝐶, 𝐷
= 𝐴 + 𝐵 + 𝐶′ + 𝐷′ . 𝐴′ + 𝐵 + 𝐶 + 𝐷 .

𝐴′ + 𝐵 + 𝐶′ + 𝐷′ . (𝐴′ + 𝐵′ + 𝐶′ + 𝐷)

Canonical Sum of Minterms

 Any Boolean function can be expressed as a Sum
of Minterms (SOM):

• For the function table, the minterms used are the terms
corresponding to the 1's

• For expressions, expand all terms first to explicitly list
all minterms. Do this by “ANDing” any term missing a
variable 𝑣 with a term (𝑣 + 𝑣)

 Example: Implement 𝑓 = 𝑥 + 𝑥 𝑦 as a SOM?

1. Expand terms  𝑓 = 𝑥(𝑦 + 𝑦) + 𝑥 𝑦

2. Distributive law  𝑓 = 𝑥𝑦 + 𝑥𝑦 + 𝑥 𝑦

3. Express as SOM  𝑓 = 𝑚3 + 𝑚2 + 𝑚0 = 𝑚0 + 𝑚2 + 𝑚3

Chapter 2 - Part 1 57

Chapter 2 - Part 1 58

Another SOM Example

 Example: 𝐹 = 𝐴 + 𝐵 𝐶

 There are three variables: A, B, and C which we take to be
the standard order

 Expanding the terms with missing variables:

• 𝐹 = 𝐴 𝐵 + 𝐵 𝐶 + 𝐶 + 𝐴 + 𝐴 𝐵 𝐶

 Distributive law:

• 𝐹 = 𝐴𝐵𝐶 + 𝐴𝐵 𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵 𝐶 + 𝐴𝐵 𝐶 + 𝐴 𝐵 𝐶

 Collect terms (removing all but one of duplicate terms):

• 𝐹 = 𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵 𝐶 + 𝐴𝐵 𝐶 + 𝐴 𝐵 𝐶

 Express as SOM:

• 𝐹 = 𝑚7 + 𝑚6 + 𝑚5 + 𝑚4 + 𝑚1

• 𝐹 = 𝑚1 + 𝑚4 + 𝑚5 + 𝑚6 + 𝑚7

Chapter 2 - Part 1 59

Shorthand SOM Form

 From the previous example, we started with:

• 𝐹 = 𝐴 + 𝐵 𝐶

 We ended up with:

• 𝐹 = 𝑚1 + 𝑚4 + 𝑚5 + 𝑚6 + 𝑚7

 This can be denoted in the formal shorthand:

• 𝐹(𝐴, 𝐵, 𝐶) = (1,4,5,6,7)𝑚

 Note that we explicitly show the standard

variables in order and drop the “m”

designators.

Canonical Product of Maxterms

 Any Boolean Function can be expressed as a
Product of Maxterms (POM):

• For the function table, the maxterms used are the terms
corresponding to the 0's

• For an expression, expand all terms first to explicitly
list all maxterms. Do this by first applying the second
distributive law , “ORing” terms missing variable 𝑣
with (𝑣 . 𝑣) and then applying the distributive law again

 Example: Convert 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑥 𝑦 to POM?

• Distributive law  𝑓 = 𝑥 + 𝑥 . 𝑥 + 𝑦 = 𝑥 + 𝑦

• ORing with missing variable (z)  𝑓 = 𝑥 + 𝑦 + 𝑧 . 𝑧

• Distributive law  𝑓 = 𝑥 + 𝑦 + 𝑧 . 𝑥 + 𝑦 + 𝑧

• Express as POS  𝑓 = 𝑀2 . 𝑀3

Chapter 2 - Part 1 60

Another POM Example

 Convert 𝑓 𝐴, 𝐵, 𝐶 = 𝐴𝐶′ + 𝐵𝐶 + 𝐴′𝐵′ to POM?

 Use 𝑥 + 𝑦𝑧 = 𝑥 + 𝑦 . (𝑥 + 𝑧), assuming

𝑥 = 𝐴𝐶′ + 𝐵𝐶 and 𝑦 = 𝐴′ and 𝑧 = 𝐵′

• 𝑓 𝐴, 𝐵, 𝐶 = 𝐴𝐶′ + 𝐵𝐶 + 𝐴′ . (𝐴𝐶′ + 𝐵𝐶 + 𝐵′)

 Use Simplification theorem to get:

• 𝑓 𝐴, 𝐵, 𝐶 = 𝐵𝐶 + 𝐴′ + 𝐶′ . 𝐴𝐶′ + 𝐵′ + 𝐶

 Use Simplification theorem again to get:

• 𝑓 𝐴, 𝐵, 𝐶 = 𝐴′ + 𝐵 + 𝐶′ . 𝐴 + 𝐵′ + 𝐶 = 𝑀5 . 𝑀2

• 𝑓 𝐴, 𝐵, 𝐶 = 𝑀2 . 𝑀5 = (2,5)𝑀  Shorthand POM

form

Chapter 2 - Part 1 61

Chapter 2 - Part 1 62

Function Complements

 The complement of a function expressed as a sum of

minterms is constructed by selecting the minterms missing

in the sum-of-minterms canonical forms.

 Alternatively, the complement of a function expressed by a

sum of minterms form is simply the Product of Maxterms

with the same indices.

 Example: Given 𝐹 𝑥, 𝑦, 𝑧 = (1,3,5,7)𝑚 , find

complement F as SOM and POM?

• 𝐹 𝑥, 𝑦, 𝑧 = (0,2,4,6)𝑚

• 𝐹 𝑥, 𝑦, 𝑧 = (1,3,5,7)𝑀

Chapter 2 - Part 1 63

Conversion Between Forms

 To convert between sum-of-minterms and product-of-maxterms

form (or vice-versa) we follow these steps:

• Find the function complement by swapping terms in the list with terms

not in the list.

• Change from products to sums, or vice versa.

 Example:Given F as before: 𝐹 𝑥, 𝑦, 𝑧 = (1,3,5,7)𝑚

• Form the Complement:

 𝐹 𝑥, 𝑦, 𝑧 = (0,2,4,6)𝑚

• Then use the other form with the same indices – this forms the

complement again, giving the other form of the original function:

 𝐹(𝑥, 𝑦, 𝑧) = (0,2,4,6)𝑀

Important Properties of Minterms

 Maxterms are seldom used directly to express Boolean

functions

 Minterms properties:

• For 𝑛 Boolean variables, there are 2𝑛 minterms (0 to 2n -1)

• Any Boolean function can be represented as a logical sum of

minterms (SOM)

• The complement of a function contains those minterms not

included in the original function

• A function that include all the 2n minterms is equal to 1

Chapter 2 - Part 1 64

Standard Forms

 Standard Sum-of-Products (SOP) form: equations

are written as an OR of AND terms

 Standard Product-of-Sums (POS) form: equations

are written as an AND of OR terms

 Examples:

• SOP: 𝐴𝐵𝐶 + 𝐴 𝐵 𝐶 + 𝐵

• POS: 𝐴 + 𝐵 . 𝐴 + 𝐵 + 𝐶 . 𝐶

 These “mixed” forms are neither SOP nor POS

• 𝐴𝐵 + 𝐶 𝐴 + 𝐶

• 𝐴𝐵𝐶 + 𝐴𝐶(𝐴 + 𝐵)

Chapter 2 - Part 1 65

Chapter 2 - Part 1 66

Standard Sum-of-Products (SOP)

 A sum of minterms form for n variables can
be written down directly from a truth table

 Implementation of this form is a two-level
network of gates such that:

• The first level consists of n-input AND gates,
and

• The second level is a single OR gate (with
fewer than 2n inputs)

 This form often can be simplified so that the
corresponding circuit is simpler

Chapter 2 - Part 1 67

 A Simplification Example: 𝐹 𝐴, 𝐵, 𝐶 = (1,4,5,6,7)𝑚

 Writing the minterm expression:

• 𝐹 𝐴, 𝐵, 𝐶 = 𝐴′𝐵′𝐶 + 𝐴𝐵′𝐶′ + 𝐴𝐵′𝐶 + 𝐴𝐵𝐶′ + 𝐴𝐵𝐶

 Simplifying using boolean Algebra:

 Simplified F contains 3 literals compared to 15 in minterm F

Standard Sum-of-Products (SOP)

Simplification Steps (identity or theorem)

𝐴′𝐵′𝐶 + 𝐴𝐵′𝐶′ + 𝐴𝐵′𝐶 + 𝐴𝐵𝐶′ + 𝐴𝐵𝐶

= 𝐴′𝐵′𝐶 + 𝐴𝐵′ 𝐶′ + 𝐶 + 𝐴𝐵(𝐶′ + 𝐶) Distributive law

= 𝐴′𝐵′𝐶 + 𝐴𝐵′ + 𝐴𝐵 𝑋 + 𝑋′ = 1

= 𝐴′𝐵′𝐶 + 𝐴(𝐵′ + 𝐵) Distributive law

= 𝐴′𝐵′𝐶 + 𝐴 Simplification Theorem

= 𝐴 + 𝐵′𝐶

Chapter 2 - Part 1 68

AND/OR Two-level Implementation

of SOP Expression

 The two implementations for F are shown

below – it is quite apparent which is simpler!

F

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C

F

B

C

A

Two-level Implementation

 Draw the logic diagram of the following boolean function:

• 𝑓 = 𝐴𝐵 + 𝐶(𝐷 + 𝐸)

 Represent the function using two-level implementation:

• 𝑓 = 𝐴𝐵 + 𝐶𝐷 + 𝐶𝐸  SOP

Chapter 2 - Part 1 69

Chapter 2 - Part 1 70

SOP and POS Observations

 The previous examples show that:

• Canonical Forms (Sum-of-minterms, Product-of-
Maxterms), or other standard forms (SOP, POS)
differ in complexity

• Boolean algebra can be used to manipulate
equations into simpler forms.

• Simpler equations lead to simpler two-level
implementations

 Questions:

• How can we attain a “simplest” expression?

• Is there only one minimum cost circuit?

• The next part will deal with these issues.

Charles Kime & Thomas Kaminski

© 2008 Pearson Education, Inc.

 (Hyperlinks are active in View Show mode)

Chapter 2 – Combinational

Logic Circuits

Part 2 – Circuit Optimization

Logic and Computer Design Fundamentals

Updated by Dr. Waleed Dweik

Chapter 2 - Part 2 2

Chapter 2 - Part 2 3

Overview

 Part 1 – Gate Circuits and Boolean Equations

• Binary Logic and Gates

• Boolean Algebra

• Standard Forms

 Part 2 – Circuit Optimization

• Two-Level Optimization

• Map Manipulation

 Part 3 – Additional Gates and Circuits

• Other Gate Types

• Exclusive-OR Operator and Gates

• High-Impedance Outputs

Chapter 2 - Part 2 4

Circuit Optimization

 Goal: To obtain the simplest
implementation for a given function

 Optimization is a more formal approach to
simplification that is performed using a
specific procedure or algorithm

 Optimization requires a cost criterion to
measure the simplicity of a circuit

 Distinct cost criteria we will use:
• Literal cost (L)

• Gate input cost (G)

• Gate input cost with NOTs (GN)

Literal Cost

 Literal: a variable or its complement

 Literal cost (L): the number of literal

appearances in a Boolean expression

corresponding to the logic circuit diagram

 Examples:

• 𝐹 = 𝐵𝐷 + 𝐴𝐵′𝐶 + 𝐴𝐶′𝐷′
 𝐿 = 8 (Minimum cost  Best solution)

• 𝐹 = 𝐵𝐷 + 𝐴𝐵′𝐶 + 𝐴𝐵′𝐷′ + 𝐴𝐵𝐶′
 𝐿 = 11

• 𝐹 = (𝐴 + 𝐵)(𝐴 + 𝐷)(𝐵 + 𝐶 + 𝐷′)(𝐵′ + 𝐶′ + 𝐷)
 𝐿 = 10

Chapter 2 - Part 2 5

Gate Input Cost

 Gate input cost (G): the number of inputs to the gates in the

implementation corresponding exactly to the given equation or

equations. (G: inverters not counted, GN: inverters counted)

 For SOP and POS equations, it can be found from the equation(s) by

finding the sum of:

• All literal appearances

• The number of terms excluding single literal terms,(G) and

• optionally, the number of distinct complemented single literals (GN).

 Examples:

• 𝐹 = 𝐵𝐷 + 𝐴𝐵′𝐶 + 𝐴𝐶′𝐷′

 𝐺 = 11 , 𝐺𝑁 = 14 (Minimum cost  Best solution)

• 𝐹 = 𝐵𝐷 + 𝐴𝐵′𝐶 + 𝐴𝐵′𝐷′ + 𝐴𝐵𝐶′

 𝐺 = 15 , 𝐺𝑁 = 18

• 𝐹 = (𝐴 + 𝐵)(𝐴 + 𝐷)(𝐵 + 𝐶 + 𝐷′)(𝐵′ + 𝐶′ + 𝐷)

 𝐺 = 14 , 𝐺𝑁 = 17

Chapter 2 - Part 2 6

Chapter 2 - Part 2 7

 Example 1:

 F = A + B C +

 Cost Criteria (continued)

A

B
C

F

B C
L = 5

 L (literal count) counts the AND inputs and the single

 literal OR input.

G = L + 2 = 7

 G (gate input count) adds the remaining OR gate inputs

GN = G + 2 = 9

 GN(gate input count with NOTs) adds the inverter inputs

Cost Criteria (continued)

 Example 2:

 𝑭 = 𝑨,𝑩, 𝑪, 𝑫 = 𝑨𝑩𝑪 + 𝑫′ . 𝑪′

• 𝑳 = 𝟓

• 𝑮 = 𝟓 + 𝟐 = 𝟕

• 𝑮𝑵 = 𝟕 + 𝟐 = 𝟗

Chapter 2 - Part 2 8

D

A
B

C

F

Chapter 2 - Part 2 9

 Example 3:

 F = A B C +

 L = 6, G = 8, GN = 11

 F = (A +)(+ C)(+ B)

 L = 6 , G = 9, GN = 12

 Same function and same

literal cost

 But first circuit has better

gate input count and better

gate input count with NOTs

 Select it!

 Cost Criteria (continued)

B C

A

A
B
C

F

C B

F

A
B
C

A

Chapter 2 - Part 2 10

Boolean Function Optimization

 Minimizing the gate input (or literal) cost of a (a set

of) Boolean equation(s) reduces circuit cost

 We choose gate input cost

 Boolean Algebra and graphical techniques are tools to

minimize cost criteria values

 Some important questions:

• When do we stop trying to reduce the cost?

• Do we know when we have a minimum cost?

 Treat optimum or near-optimum cost functions

for two-level (SOP and POS) circuits

 Introduce a graphical technique using Karnaugh maps

(K-maps, for short)

Chapter 2 - Part 2 11

Karnaugh Maps (K-map)

 A K-map is a collection of squares

• Graphical representation of the truth table

• Each square represents a minterm, or a maxterm, or a row
in the truth table

• For n-variable, there are 2n squares

• The collection of squares is a graphical representation of a
Boolean function

• Adjacent squares differ in the value of one variable

• Alternative algebraic expressions for the same function are
derived by recognizing patterns of squares

Chapter 2 - Part 2 12

Some Uses of K-Maps

 Finding optimum or near optimum

• SOP and POS standard forms, and

• two-level AND/OR and OR/AND circuit
implementations

for functions with small numbers of variables

 Visualizing concepts related to
manipulating Boolean expressions, and

 Demonstrating concepts used by computer-
aided design programs to simplify large
circuits

Chapter 2 - Part 2 13

Two Variable Maps

 A 2-variable Karnaugh Map:

• Note that minterm m0 and

 minterm m1 are “adjacent”

 and differ in the value of the

 variable y

• Similarly, minterm m0 and

 minterm m2 differ in the x variable

• Also, m1 and m3 differ in the x variable as well

• Finally, m2 and m3 differ in the value of the
variable y

𝐲 = 𝟏 𝐲 = 𝟎

𝑚1 = 𝑥 𝑦 𝑚0 = 𝑥 𝑦 𝐱 = 𝟎

𝑚3 = 𝑥𝑦 𝑚2 = 𝑥𝑦 𝐱 = 𝟏

K-Map and Truth Tables

 The K-Map is just a different form of the truth table

 Example: Two variable function

• We choose a,b,c and d from the set {0,1} to implement

a particular function, 𝐹(𝑥, 𝑦)

Chapter 2 - Part 2 14

Input Values

(𝒙, 𝒚)
𝐅(𝐱, 𝐲)

0 0 a

0 1 b

1 0 c

1 1 d

𝐲 = 𝟏 𝐲 = 𝟎

𝒃 𝒂 𝐱 = 𝟎

𝒅 𝒄 𝐱 = 𝟏

Truth Table K-Map

Chapter 2 - Part 2 15

K-Map Function Representation

 Example: 𝐹 𝑥, 𝑦 = 𝑥

 For function 𝐹(𝑥, 𝑦), the two adjacent cells

containing 1’s can be combined using the

Minimization Theorem:

𝐹 𝑥, 𝑦 = 𝑥𝑦 + 𝑥𝑦 = 𝑥

𝐲 = 𝟏 𝐲 = 𝟎 𝑭 𝒙, 𝒚 = 𝒙

𝟎 𝟎 𝐱 = 𝟎

𝟏 𝟏 𝐱 = 𝟏

Chapter 2 - Part 2 16

K-Map Function Representation

 Example: 𝐺 𝑥, 𝑦 = 𝑥 + 𝑦

 For 𝐺(𝑥, 𝑦) , two pairs of adjacent cells

containing 1’s can be combined using the

Minimization Theorem:

𝐺 𝑥, 𝑦 = 𝑥𝑦 + 𝑥𝑦 + 𝑥 𝑦 + 𝑥𝑦

𝐺 𝑥, 𝑦 = 𝑥 + 𝑦

𝐲 = 𝟏 𝐲 = 𝟎 𝑮 𝒙, 𝒚 = 𝒙 + 𝒚

𝟏 𝟎 𝐱 = 𝟎

𝟏 𝟏 𝐱 = 𝟏

Chapter 2 - Part 2 17

Three Variable Maps

 A three-variable K-map:

 Where each minterm corresponds to the product terms:

 Note that if the binary value for an index differs in one
bit position, the minterms are adjacent on the K-Map

𝐲𝐳 = 𝟏𝟎 𝐲𝐳 = 𝟏𝟏 𝐲𝐳 = 𝟎𝟏 𝐲𝐳 = 𝟎𝟎

𝑚2 𝑚3 𝑚1 𝑚0 𝐱 = 𝟎

𝑚6 𝑚7 𝑚5 𝑚4 𝐱 = 𝟏

𝐲𝐳 = 𝟏𝟎 𝐲𝐳 = 𝟏𝟏 𝐲𝐳 = 𝟎𝟏 𝐲𝐳 = 𝟎𝟎

𝑥 𝑦𝑧 𝑥 𝑦𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝐱 = 𝟎

𝑥𝑦𝑧 𝑥𝑦𝑧 𝑥𝑦 𝑧 𝑥𝑦 𝑧 𝐱 = 𝟏

Alternative Map Labeling

 Map use largely involves:

• Entering values into the map, and

• Reading off product terms from the map

 Alternate labelings are useful:

Chapter 2 - Part 2 18

𝒀 𝒀

𝑿 0 1 3 2

𝑿 4 5 7 6

𝒁 𝒁 𝒁

 YZ

X
00 01 11 10

0
0 1 3 2

1
4 5 7 6

Y

Z

X

Example Functions

 By convention, we represent the minterms of 𝐹 by a "1" in

the map and leave the minterms of 𝐹 blank

 Example:

• 𝐹 𝑥, 𝑦, 𝑧 = (2,3,4,5)𝑚

 Example:

• 𝐺 𝑎, 𝑏, 𝑐 = (3,4,6,7)𝑚

 Learn the locations of the 8 indices based on the

variable order shown (X, most significant and Z,

least significant) on the map boundaries

 Chapter 2 - Part 2 19

𝒀

0

1

3

1
2

1

𝑿 4

1
5

1
7

6

𝒁

𝒃

0

1

3

1
2

𝒂 4

1
5

7

1
6

1

𝒄

Steps for using K-Maps to Simplify Boolean

Functions

 Enter the function on the K-Map

• Function can be given in truth table, shorthand notation, SOP,…etc

• Example:

 𝐹 𝑥, 𝑦 = 𝑥 + 𝑥𝑦

 𝐹 𝑥, 𝑦 = (0,1,3)𝑚

 Combining squares for simplification

• Rectangles that include power of 2 squares {1, 2, 4, 8, …}

• Goal: Fewest rectangles that cover all 1’s  as large as possible

 Determine if any rectangle is not needed

 Read-off the SOP terms

Chapter 2 - Part 2 20

𝐱 𝐲 𝐅(𝐱, 𝐲)

0 0 1

0 1 1

1 0 0

1 1 1

𝒚

0

1
1

1

𝒙 2

3

1

Chapter 2 - Part 2 21

Combining Squares

 By combining squares, we reduce number of literals in a

product term, reducing the literal cost, thereby reducing the

other two cost criteria

 On a 2-variable K-Map:

• One square represents a minterm with two variables

• Two adjacent squares represent a product term with one variable

• Four “adjacent” terms is the function of all ones (no variables) = 1.

 On a 3-variable K-Map:

• One square represents a minterm with three variables

• Two adjacent squares represent a product term with two variables

• Four “adjacent” terms represent a product term with one variable

• Eight “adjacent” terms is the function of all ones (no variables) = 1.

Example: Combining Squares

 Example: 𝐹 𝐴, 𝐵 = (0,1,2)𝑚

𝐹 𝐴, 𝐵 = 𝐴 𝐵 + 𝐴 𝐵 + 𝐴𝐵

 Using Distributive law

• 𝐹 𝐴, 𝐵 = 𝐴 + 𝐴𝐵

 Using simplification theorem

• 𝐹 𝐴, 𝐵 = 𝐴 + 𝐵

 Thus, every two adjacent terms that form a 2×1

rectangle correspond to a product term with

one variable

Chapter 2 - Part 2 22

𝑩

0

1
1

1

𝑨 2

1
3

0

Example: Combining Squares

 Example: 𝐹 𝑥, 𝑦, 𝑧 = (2,3,6,7)𝑚

 𝐹 𝑥, 𝑦, 𝑧 = 𝑥 𝑦𝑧 + 𝑥 𝑦𝑧 + 𝑥𝑦𝑧 + 𝑥𝑦𝑧

 Using Distributive law

• 𝐹 𝑥, 𝑦, 𝑧 = 𝑥 𝑦 + 𝑥𝑦

 Using Distributive law again

• 𝐹 𝑥, 𝑦, 𝑧 = 𝑦

 Thus, the four adjacent terms that form a 2×2

square correspond to the term "y"

Chapter 2 - Part 2 23

𝒚

0

1

3

1
2

1

𝒙 4

5 7

1
6

1

𝒛

Chapter 2 - Part 2 24

Three-Variable Maps

 Reduced literal product terms for SOP standard

forms correspond to rectangles on K-maps

containing cell counts that are powers of 2

 Rectangles of 2 cells represent 2 adjacent minterms

 Rectangles of 4 cells represent 4 minterms that form

a “pairwise adjacent” ring

 Rectangles can contain non-adjacent cells as

illustrated by the “pairwise adjacent” ring above

Chapter 2 - Part 2 25

Three-Variable Maps

 Example shapes of 2-cell rectangles:

 Read-off the product terms for the rectangles

shown:

• 𝑅𝑒𝑐𝑡 0,1 = 𝑋 𝑌

• 𝑅𝑒𝑐𝑡 0,2 = 𝑋 𝑍

• 𝑅𝑒𝑐𝑡 3,7 = 𝑌𝑍

Chapter 2 - Part 2 26

Three-Variable Maps

 Example shapes of 4-cell Rectangles:

 Read off the product terms for the rectangles

shown:

• 𝑅𝑒𝑐𝑡 1,3,5,7 = 𝑍

• 𝑅𝑒𝑐𝑡 0,2,4,6 = 𝑍

• 𝑅𝑒𝑐𝑡 4,5,6,7 = 𝑋

Three Variable Maps

 K-maps can be used to simplify Boolean functions

by systematic methods. Terms are selected to

cover the “1s”in the map.

 Example: Simplify 𝐹 𝑥, 𝑦, 𝑧 = (𝑚 1,2,3,5,7)

𝐹 𝑥, 𝑦, 𝑧 = 𝑧 + 𝑥 𝑦

Chapter 2 - Part 2 27

𝒚

0

1

1
3

1
2

1

𝒙 4

5

1
7

1
6

𝒛

Chapter 2 - Part 2 28

Three-Variable Map Simplification

 Use a K-map to find an optimum SOP equation

for 𝐹 𝑋, 𝑌, 𝑍 = (0,1,2,4,6,7)𝑚

𝐹 𝑋, 𝑌, 𝑍 = 𝑍 + 𝑋 𝑌 + 𝑋𝑌

𝒀
0

1
1

1
3

2

1

𝑿 4

1
5

7

1
6

1

𝒁

Four Variable Maps

 Map and location of minterms

𝐹(𝑊, 𝑋, 𝑌, 𝑍):

Chapter 2 - Part 2 29

𝒀
0

1

3

2

4

5

7

6

𝑿

𝑾

12 13 15 14

8 9 11 10

𝒁

Four Variable Terms

 Four variable maps can have rectangles

corresponding to:

• A single 1: 4 variables (i.e. Minterm)

• Two 1’s: 3 variables

• Four 1’s: 2 variables

• Eight 1’s: 1 variable

• Sixteen 1’s: zero variables (function of all ones)

Chapter 2 - Part 2 30

Chapter 2 - Part 2 31

Four-Variable Maps

 Example shapes of 4-cell rectangles:

𝒀
0

1

3

2

4

5

7

6

𝑿

𝑾

12 13 15 14

8 9 11 10

𝒁

Chapter 2 - Part 2 32

Four-Variable Maps

 Example shapes of 8-cell rectangles:

𝒀
0

1

3

2

4

5

7

6

𝑿

𝑾

12 13 15 14

8 9 11 10

𝒁

Four-Variable Map Simplification

 𝐹 𝑊,𝑋, 𝑌, 𝑍 = (𝑚 0,2,4,5,6,7,8,10,13,15)

𝐹 𝑊,𝑋, 𝑌, 𝑍 = 𝑋𝑍 + 𝑋 𝑍 +𝑊 𝑋
Chapter 2 - Part 2 33

𝒀
0

1
1

3

2

1
4

1
5

1
7

1
6

1
𝑿

𝑾

12

13

1
15

1
14

8

1
9

11

10

1

𝒁

Chapter 2 - Part 2 34

Four-Variable Map Simplification

 𝐹 𝑊,𝑋, 𝑌, 𝑍 = (𝑚 3,4,5,7,9,13,14,15)

𝐹 𝑊,𝑋, 𝑌, 𝑍 = 𝑊 𝑌𝑍 +𝑊 𝑋𝑌 +𝑊𝑋𝑌 +𝑊𝑌 𝑍

𝒀
0

1

3

1
2

4

1
5

1
7

1
6

𝑿

𝑾

12

13

1
15

1
14

1
8

9

1
11

10

𝒁

Systematic Simplification

 Prime Implicant: is a product term obtained by

combining the maximum possible number of adjacent

squares in the map into a rectangle with the number of

squares a power of 2

 A prime implicant is called an Essential Prime Implicant

if it is the only prime implicant that covers (includes) one

or more minterms

 Prime Implicants and Essential Prime Implicants can be

determined by inspection of a K-Map

 A set of prime implicants "covers all minterms" if, for each

minterm of the function, at least one prime implicant in the

set of prime implicants includes the minterm

Chapter 2 - Part 2 35

Chapter 2 - Part 2 36

D B

C B

1 1

1 1

1 1

B

D

A

1 1

1 1

1

Example of Prime Implicants

 Find ALL Prime Implicants

ESSENTIAL Prime Implicants

C

BD

CD

BD

 Minterms covered by single prime implicant

D B

1 1

1 1

1 1

B

C

D

A

1 1

1 1

1

AD

B A

Prime Implicant Practice

 Find all prime implicants for:

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = (0,2,3,8,9,10,11,12,13,14,15)

𝑚

 Prime Implicants:

• 𝐴

• 𝐵 𝐶

• 𝐵 𝐷

Chapter 2 - Part 2 37

𝑪
0

1
1

3

1
2

1

4

5

7

6

𝑩

𝑨

12

1
13

1
15

1
14

1

8

1
9

1
11

1
10

1

𝑫

Chapter 2 - Part 2 38

Another Example

 Find all prime implicants for:

𝐺 𝐴, 𝐵, 𝐶, 𝐷 = (0,2,3,4,7,12,13,14,15)

𝑚

 Hint: There are seven prime implicants!

 Prime Implicants:

• 𝐴𝐵

• 𝐵𝐶𝐷

• 𝐵𝐶 𝐷

• 𝐴 𝐶𝐷

• 𝐴 𝐶 𝐷

• 𝐴 𝐵 𝐶

• 𝐴 𝐵 𝐷

𝑪
0

1
1

3

1
2

1

4

1
5

7

1
6

𝑩

𝑨

12

1
13

1
15

1
14

1

8

9

11

10

𝑫

Chapter 2 - Part 2 39

Optimization Algorithm

1. Find all prime implicants

2. Include all essential prime implicants in the

solution

3. Select a minimum cost set of non-essential

prime implicants to cover all minterms not yet

covered

• Selection Rule: Minimize the overlap among prime

implicants as much as possible. In particular, in the

final solution, make sure that each prime implicant

selected includes at least one minterm not included in

any other prime implicant selected

Selection Rule Example

 Simplify F(A, B, C, D) given on the K-map

Chapter 2 - Part 2 40

𝑪
0

1
1

3

1
2

4

1
5

1
7

1
6

1
𝑩

𝑨

12

13

1
15

14

8

1
9

1
11

10

𝑫

Prime Implicants

𝑪
0

1
1

3

1
2

4

1
5

1
7

1
6

1
𝑩

𝑨

12

13

1
15

14

8

1
9

1
11

10

𝑫

Essential and Selected Non-essential

Prime Implicants

Essential Prime

Implicants

Selected Non-

essential Prime

Implicants

Chapter 2 - Part 2 41

Product of Sums Example

 Find the optimum POS solution for:

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = (1,3,9,11,12,13,14,15)

𝑚

 Solution:

• Find optimized SOP for 𝐹 by combining 0’s in K-Map of 𝐹

• Complement 𝐹 to obtain optimized POS for 𝐹

 𝐹 𝐴, 𝐵, 𝐶, 𝐷 = 𝐴 𝐵 + 𝐵 𝐷

 Using Demorgan’s Law:

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = (𝐴 + 𝐵)(𝐵 + 𝐷)

𝑪
0

0
1

1
3

1
2

0

4

0
5

0
7

0
6

0
𝑩

𝑨

12

1
13

1
15

1
14

1

8

0
9

1
11

1
10

0

𝑫

Example

 Find the optimum POS and SOP solution for:

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = (

𝑀

0, 2, 4, 5, 6, 7)

 POS solution (Red):

• Find optimized SOP for 𝐹 by combining 0’s in K-Map of 𝐹

• Complement 𝐹 to obtain optimized POS for 𝐹

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = 𝐴 𝐵 + 𝐴 𝐷
𝐹 𝐴, 𝐵, 𝐶, 𝐷 = (𝐴 + 𝐵)(𝐴 + 𝐷)

 SOP solution (Blue):

• Combining 1’s in K-Map of 𝐹

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = 𝐴 + 𝐵 𝐷

Chapter 2 - Part 2 42

𝑪
0

0
1

1
3

1
2

0

4

0
5

0
7

0
6

0
𝑩

𝑨

12

1
13

1
15

1
14

1

8

1
9

1
11

1
10

1

𝑫

Chapter 2 - Part 2 43

 Incompletely specified functions: Sometimes a function table or

map contains entries for which it is known:

• the input values for the minterm will never occur, or

• The output value for the minterm is not used

 In these cases, the output value is defined as a “don't care”

 By placing “don't cares” (an “x” entry) in the function table or

map, the cost of the logic circuit may be lowered

 Example: A logic function having the binary codes for the

BCD digits as its inputs. Only the codes for 0 through 9 are

used. The six codes, 1010 through 1111 never occur, so the

output values for these codes are “x” to represent “don’t cares”

 “Don’t care” minterms cannot be replaced with 1’s or 0’s

because that would require the function to be always 1 or 0

for the associated input combination

Don't Cares in K-Maps

Example: BCD “5 or More”

 The map below gives a function 𝐹(𝑤, 𝑥, 𝑦, 𝑧) which is defined as "5 or more" over

BCD inputs. With the don't cares used for the 6 non-BCD combinations:

 If don’t cares are treated as 1’s (Red):

 𝐹1 𝑤, 𝑥, 𝑦, 𝑧 = 𝑤 + 𝑥𝑦 + 𝑥𝑧

• 𝐺 = 7

 If don’t cares are treated as 0’s (Blue):

 𝐹2 𝑤, 𝑥, 𝑦, 𝑧 = 𝑤 𝑥𝑧 + 𝑤 𝑥𝑦 + 𝑤𝑥 𝑦
• 𝐺 = 12

 For this particular function, cost G for the POS solution for 𝑭 𝒘, 𝒙, 𝒚, 𝒛 is

not changed by using the don't cares

• Choose the one less inverters (i.e. less GN)

Chapter 2 - Part 2 44

𝒚
0

1

3

2

4

5

1
7

1
6

1
𝒙

𝒘

12

X
13

X
15

X
14

X

8

1
9

1
11

X
10

X

𝒛

Chapter 2 - Part 2 45

Selection Rule Example with Don't Cares

 Simplify F(A, B, C, D) given on the K-map.

Selected

 Minterms covered by essential prime implicants

1

1

x

x

x x

x

1

B

D

A

C

1

1 1

1

x

x

x x

x

1

B

D

A

C

1

1

Essential

Chapter 2 - Part 2 46

Product of Sums with Don’t Care

Example

 Find the optimum POS solution for:

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = (3,9,11,12,13,14,15)

𝑚

+ (1,4,6)

𝑑

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = 𝐴 𝐵 + 𝐵 𝐷

𝐹 𝐴, 𝐵, 𝐶, 𝐷 = (𝐴 + 𝐵)(𝐵 + 𝐷)

𝑪

0

0

1

X

3

1

2

0

4

X

5

0

7

0

6

X
𝑩

𝑨

12

1

13

1

15

1

14

1

8

0

9

1

11

1

10

0

𝑫

𝑪

0

0

1

X

3

1

2

0

4

X

5

0

7

0

6

X
𝑩

𝑨

12

1

13

1

15

1

14

1

8

0

9

1

11

1

10

0

𝑫

Chapter 2 - Part 2 47

Five Variable or More K-Maps

 For five variable problems, we use two adjacent K-maps.

It becomes harder to visualize adjacent minterms for

selecting PIs. You can extend the problem to six variables

by using four K-Maps.

X

Y

Z

W

V = 0

X

Z

W

V = 1

Y

Chapter 2 - Part 2 48

Terms of Use

 All (or portions) of this material © 2008 by Pearson
Education, Inc.

 Permission is given to incorporate this material or
adaptations thereof into classroom presentations and
handouts to instructors in courses adopting the latest
edition of Logic and Computer Design Fundamentals
as the course textbook.

 These materials or adaptations thereof are not to be
sold or otherwise offered for consideration.

 This Terms of Use slide or page is to be included within
the original materials or any adaptations thereof.

Charles Kime & Thomas Kaminski

© 2008 Pearson Education, Inc.

 (Hyperlinks are active in View Show mode)

Chapter 2 – Combinational

Logic Circuits
Part 3 – Additional Gates and Circuits

Logic and Computer Design Fundamentals

Updated by Dr. Waleed Dweik

Chapter 2 - Part 3 2

Chapter 2 - Part 3 3

Overview

 Part 1 – Gate Circuits and Boolean Equations

• Binary Logic and Gates

• Boolean Algebra

• Standard Forms

 Part 2 – Circuit Optimization

• Two-Level Optimization

• Map Manipulation

 Part 3 – Additional Gates and Circuits

• Other Gate Types

• Exclusive-OR Operator and Gates

• High-Impedance Outputs

Chapter 2 - Part 3 4

Other Gate Types

 Why?

• Implementation feasibility and low cost

• Power in implementing Boolean functions

• Convenient conceptual representation

 Gate classifications:

• Primitive gate: a gate that can be described using a

single primitive operation type (AND or OR) plus an

optional inversion(s).

• Complex gate: a gate that requires more than one

primitive operation type for its description

Chapter 2 - Part 3 5

Buffer

 A buffer is a gate with the function 𝐹 = 𝑋:

 In terms of Boolean function, a buffer is the same

as a connection!

 So why use it?

• A buffer is an electronic amplifier used to improve

circuit voltage levels and increase the speed of circuit

operation

• Protection and isolation between circuits

X F
X F

0 0

1 1

NAND Gate

 The NAND gate has the following symbol and truth table:

 NAND represents NOT-AND, i.e., the AND function with

a NOT applied. The symbol shown is an AND-Invert.

The small circle (“bubble”) represents the invert function

Chapter 2 - Part 3 6

X

Y
𝐹 = 𝑋. 𝑌

X Y F

0 0 1

0 1 1

1 0 1

1 1 0 X

Y

Z

𝐹 = 𝑋. 𝑌. 𝑍

NAND Gates (continued)

 Applying DeMorgan's Law gives Invert-OR (NAND)

 This NAND symbol is called Invert-OR, since inputs are
inverted and then ORed together

 AND-Invert and Invert-OR both represent the NAND
gate. Having both makes visualization of circuit function
easier

Chapter 2 - Part 3 7

X

Y

Z

𝐹 = 𝑋 + 𝑌 + 𝑍

Chapter 2 - Part 3 8

NAND Gates (continued)

 Universal gate: a gate type that can implement any Boolean
function. The NAND gate is a universal gate:

X 𝐹 = 𝑋. 𝑋 = 𝑋

Inverter using NAND
X

Y

𝑋. 𝑌
𝐹 = 𝑋. 𝑌

AND using NAND

X

Y

𝑋

𝑌

𝐹 = 𝑋 . 𝑌 = 𝑋 + 𝑌

OR using NAND

NOR Gate

 The NOR gate has the following symbol and truth table:

 NOR represents NOT-OR, i.e., the OR function with a

NOT applied. The symbol shown is an OR-Invert. The

small circle (“bubble”) represents the invert function

Chapter 2 - Part 3 9

X

Y
𝐹 = 𝑋 + 𝑌

X Y F

0 0 1

0 1 0

1 0 0

1 1 0 X

Y

Z

𝐹 = 𝑋 + 𝑌 + 𝑍

NOR Gates (continued)

 Applying DeMorgan's Law gives Invert-AND (NOR)

 This NOR symbol is called Invert-AND, since inputs are
inverted and then ANDed together

 OR-Invert and Invert-AND both represent the NOR gate.
Having both makes visualization of circuit function easier

Chapter 2 - Part 3 10

X

Y

Z

𝐹 = 𝑋 . 𝑌 . 𝑍

Chapter 2 - Part 3 11

NOR Gates (continued)

 The NOR gate is a universal gate:

X 𝐹 = 𝑋 + 𝑋 = 𝑋

Inverter using NOR

X

Y

𝑋 + 𝑌
𝐹 = 𝑋 + 𝑌

OR using NOR

X

Y

𝑋

𝑌

𝐹 = 𝑋 + 𝑌 = 𝑋. 𝑌

AND using NOR

Hi-Impedance Outputs

 Logic gates introduced thus far

• have 1 and 0 output values,

• cannot have their outputs connected together, and

• transmit signals on connections in only one direction

 Three-state logic adds a third logic value, Hi-Impedance

(Hi-Z), giving three states: 0, 1, and Hi-Z on the outputs.

 Hi-Z can be also denoted as Z or z

 The presence of a Hi-Z state makes a gate output as

described above behave quite differently:

• “1 and 0” become “1, 0, and Hi-Z”

• “cannot” becomes “can,” and

• “only one” becomes “two”

Chapter 2 - Part 3 12

Chapter 2 - Part 3 13

Hi-Impedance Outputs (continued)

 What is a Hi-Z value?

• The Hi-Z value behaves as an open circuit

• This means that, looking back into the circuit, the output

appears to be disconnected

• It is as if a switch between the internal circuitry and the

output has been opened

 Hi-Z may appear on the output of any gate, but we

restrict gates to 3-state buffer

Chapter 2 - Part 3 14

Tri-State Buffer (3-State Buffer)

 For the symbol and truth table, IN
is the data input, and EN is the
control input

 For EN = 0, regardless of the
value on IN (denoted by X), the
output value is Hi-Z

 For EN = 1, the output value
follows the input value

IN

EN

OUT

EN IN OUT

0 X Hi-Z

1 0 0

1 1 1

Symbol

Truth Table

Tri-State Buffer Variations

 By adding “bubbles” to signals:
• Data input, IN, can be inverted

• Control input, EN, can be inverted

Chapter 2 - Part 3 15

EN IN OUT

0 X Hi-Z

1 0 1

1 1 0

EN IN OUT

0 0 0

0 1 1

1 X Hi-Z

EN IN OUT

0 0 1

0 1 0

1 X Hi-Z

Resolving 3-State Values on a Connection

 Connection of two tri-state buffer outputs, B1 and B0, to a

wire, OL (Output Line)  Multiplexed Output

Chapter 2 - Part 3 16

EN1 EN0 IN1 IN0 B1 B0 OL

0 0 X X Hi-Z Hi-Z Hi-Z

0 1 X 0 Hi-Z 0 0

0 1 X 1 Hi-Z 1 1

1 0 0 X 0 Hi-Z 0

1 0 1 X 1 Hi-Z 1

1 1 0 0 0 0 0

1 1 1 1 1 1 1

1 1 0 1 0 1 Fire

1 1 1 0 1 0 Fire

Resolving 3-State Values on a Connection

 Resulting Rule: At least one buffer output value must

be Hi-Z. Why?

• Because any data combinations including (0,1) and (1,0) can

occur. If one of these combinations occurs, and no buffers are Hi-

Z, then high currents can occur, destroying or damaging the circuit

 How many valid buffer output combinations exist?

• 5 valid output combination

 What is the rule for “n” tri-state buffers connected to

wire, OL?

• At least “n-1” buffer outputs must be Hi-Z

• How many valid buffer output combinations exist ?

 Each of the n-buffers can have a 0 or 1 output with all others at Hi-Z.

Also all buffers can be Hi-Z. So there are 2n + 1 valid combinations.

Chapter 2 - Part 3 17

Chapter 2 - Part 3 18

Tri-State Logic Circuit

 Data Selection Function: If s = 0, OL = IN0, else OL = IN1

 Performing data selection with tri-state buffers:

 Since 𝑬𝑵𝟎 = 𝒔 and 𝑬𝑵𝟏 = 𝒔, one of the two buffer outputs

is always Hi-Z.

IN0

IN1

EN0

EN1

S OL

EN1 EN0 IN1 IN0 OL

0 1 X 0 0

0 1 X 1 1

1 0 0 X 0

1 0 1 X 1

Logic Functions using Tri-State Buffers

 Implement AND gate using 3-State buffers and inverters

𝐹 𝑋, 𝑌 = 𝑋. 𝑌

 Use X as control input:

• When 𝑋 = 0, 𝐹 = 0 regardless of the value of 𝑌

• When 𝑋 = 1, 𝐹 = 𝑌

Chapter 2 - Part 3 19

X Y F

0 0 0

0 1 0

1 0 0

1 1 1

0

Y

X F

Logic Functions using Tri-State Buffers

 Implement the following function using 3-State buffers

and inverters: 𝐹(𝑤, 𝑥, 𝑦) = 𝑤 𝑥 + 𝑤𝑦 + 𝑥𝑦

 Use w as control input:

• When 𝑤 = 0, 𝐹 = 𝑥 regardless of the value of 𝑌

• When 𝑤 = 1

 If 𝑥 = 0, 𝐹 = 𝑦

 If 𝑥 = 1, 𝐹 = 1

Chapter 2 - Part 3 20

w x y F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

x

w x

1

𝒚

F

Logic Functions using Tri-State Buffers

 Write the Boolean expression of 𝐹(𝐴, 𝐵, 𝐶) given the

diagram below:

𝐹 𝐴, 𝐵, 𝐶 = 𝐴𝐵 𝐶 + 𝐴 𝐵𝐶

Chapter 2 - Part 3 21

Chapter 2 - Part 3 22

Exclusive OR/ Exclusive NOR

 The eXclusive OR (XOR) function is an important

Boolean function used extensively in logic circuits

 The XOR function may be:

• implemented directly as an electronic circuit (truly a gate) or

• implemented by interconnecting other gate types (used as a

convenient representation)

 The eXclusive NOR (XNOR) function is the

complement of the XOR function

 By our definition, XOR and XNOR gates are complex

gates

Chapter 2 - Part 3 23

Exclusive OR/ Exclusive NOR

 Uses for the XOR and XNORs gate include:

• Adders/subtractors/multipliers

• Counters/incrementers/decrementers

• Parity generators/checkers

 Definitions

• The XOR function is: 𝑿⊕ 𝒀 = 𝑿 𝒀 + 𝑿𝒀

• The XNOR function is: 𝑿⊙ 𝒀 = 𝑿⊕ 𝒀 = 𝑿𝒀 + 𝑿 𝒀

 Strictly speaking, XOR and XNOR gates do no

exist for more than two inputs. Instead, they are

replaced by odd and even functions

Proof: XNOR is the complement of XOR

 𝑿⊕ 𝒀 = 𝑿 𝒀 + 𝑿𝒀

 𝑿⊕ 𝒀 = 𝑿 𝒀. 𝑿𝒀

 𝑿⊕ 𝒀 = (𝑿 + 𝒀)(𝑿 + 𝒀)

 𝑿⊕ 𝒀 = 𝑿𝑿 + 𝑿𝒀 + 𝑿 𝒀 + 𝒀𝒀

 𝑿⊙ 𝒀 = 𝑿⊕𝒀 = 𝑿𝒀 + 𝑿 𝒀

Chapter 2 - Part 3 24

Chapter 2 - Part 3 25

Symbols For XOR and XNOR

 XOR symbol:

 XNOR symbol:

 Shaped symbols exist only for two inputs

Truth Tables for XOR/XNOR

 The XOR function means: X OR Y, but NOT BOTH

 Why is the XNOR function also known as the equivalence
function, denoted by the operator ?

• Because the function equals 1 if and only if 𝑿 = 𝒀

Chapter 2 - Part 3 26

𝑿 𝒀 𝑿⊕𝒀

0 0 0

0 1 1

1 0 1

1 1 0

𝑿 𝒀 𝑿⊙𝒀(𝑿 ≡ 𝒀)

0 0 1

0 1 0

1 0 0

1 1 1

Chapter 2 - Part 3 27

XOR Implementations

 The simple SOP implementation uses the

following structure:

 A NAND only implementation is:

X

Y

X Y

X

Y

X Y

XOR

 The XOR identities:

 The XOR function can be extended to 3 or more variables.

For more than 2 variables, it is called an odd function or

modulo 2 sum (Mod 2 sum), not an XOR:

𝑋⊕ 𝑌⊕ 𝑍 = 𝑋 𝑌 𝑍 + 𝑋 𝑌𝑍 + 𝑋𝑌 𝑍 + 𝑋𝑌𝑍 (Odd # of 1’s)

Chapter 2 - Part 3 28

𝑿⊕ 𝟎 = 𝑿 𝑿⊕ 𝟏 = 𝑿

𝑿⊕𝑿 = 𝟎 𝑿⊕𝑿 = 𝟏

𝑿⊕𝒀 = 𝑿⊕𝒀 𝑿 ⊕ 𝒀 = 𝑿⊕𝒀

𝑿⊕𝒀 = 𝒀⊕𝑿

𝑿⊕𝒀 ⊕𝒁 = 𝑿⊕ 𝒀⊕𝒁 = 𝑿⊕𝒀⊕𝒁

XNOR

 The XNOR identities:

 The XNOR function can be extended to 3 or more

variables. For more than 2 variables, it is called an even

function, not an XNOR:

𝑋⊙ 𝑌⊙ 𝑍 = 𝑋 𝑌𝑍 + 𝑋𝑌 𝑍 + 𝑋𝑌𝑍 + 𝑋 𝑌 𝑍 (Even # of 1’s)

 The even function is the complement of the odd function

Chapter 2 - Part 3 29

𝑿⊙ 𝟎 = 𝑿 𝑿⊙ 𝟏 = 𝑿

𝑿⊙𝑿 = 𝟏 𝑿⊙𝑿 = 𝟎

𝑿⊙𝒀 = 𝒀⊙𝑿

𝑿⊙ 𝒀⊙𝒁 = 𝑿⊕ 𝒀 ⨀𝒁 = 𝑿⨀(𝒀⨁𝒁)

Chapter 2 - Part 3 30

Odd and Even Functions

 The 1s of an odd function correspond

to minterms having an index with an

odd number of 1s.

 The 1s of an even function correspond

to minterms having an index with an

even number of 1s.

𝒚

0

1

1

3

2

1

𝒙 4

1

5 7

1

6

𝒛

𝑪

0

1

1

3 2

1

4

1

5 7

1

6

𝑩

𝑨

12 13

1

15 14

1

8

1

9 11

1

10

𝑫

𝒚

0

1

1

3

1

2

𝒙 4 5

1

7 6

1

𝒛

𝑪

0

1

1

3

1

2

4

5

1

7

6

1
𝑩

𝑨

12

1

13

15

1

14

8

9

1

11

10

1

𝑫

Chapter 2 - Part 3 31

Example: Odd Function Implementation

 Design a 3-input odd function F = X Y Z

with 2-input XOR gates

 Factoring, F = (X Y) Z

 The circuit:

+ +

+ +

X

Y

Z
F

Chapter 2 - Part 3 32

Example: Even Function Implementation

 Design 4-input even function F = W X Y Z

with 2-input XOR and XNOR gates

 Factoring, F = (W X) (Y Z)

 The circuit:

+ + +

+ + +

W

X

Y

F

Z

Chapter 2 - Part 3 33

Parity Generators and Checkers

 In Chapter 1, a parity bit added to n-bit code to produce an n+1 bit code:

 Example: n = 3. Generate even
parity code words of length four
with odd function (XOR):

 Check even parity code words of
length four with odd function
(XOR):

 Operation: (X,Y,Z) = (0,0,1) gives
(X,Y,Z,P) = (0,0,1,1) and E = 0.
If Y changes from 0 to 1 between
generator and checker, then E = 1 indicates an error

X
Y

Z
P

X
Y

Z
E

P

Parity Generator and Checker

 Example: n = 3. Generate odd
parity code words of length four
with even function (XNOR):

 Check odd parity code words of
length four with even function
(XNOR):

 Operation: (X,Y,Z) = (0,0,1) gives
(X,Y,Z,P) = (0,0,1,0) and E = 0.
If Y changes from 0 to 1 between
generator and checker, then E = 1 indicates an error

Chapter 2 - Part 3 34

X
Y

Z
P

X
Y

Z
E

P

Chapter 2 - Part 3 35

Terms of Use

 All (or portions) of this material © 2008 by Pearson
Education, Inc.

 Permission is given to incorporate this material or
adaptations thereof into classroom presentations and
handouts to instructors in courses adopting the latest
edition of Logic and Computer Design Fundamentals
as the course textbook.

 These materials or adaptations thereof are not to be
sold or otherwise offered for consideration.

 This Terms of Use slide or page is to be included within
the original materials or any adaptations thereof.

Charles Kime & Thomas Kaminski

© 2008 Pearson Education, Inc.

 (Hyperlinks are active in View Show mode)

Chapter 3 – Combinational

Logic Design

Part 1 – Implementation Technology and Logic

Design

Logic and Computer Design Fundamentals

Updated by thoroughly by Dr. Waleed Dweik

Chapter 3 - Part 1 2

Chapter 3 - Part 1 3

Overview

 Part 1 – Design Procedure

• Steps

 Specification

 Formulation

 Optimization

 Technology Mapping

 Verification

• Technology Mapping - AND, OR, and NOT to NAND

or NOR

Chapter 3 - Part 1 4

Combinational Circuits

 A combinational logic circuit has:

• A set of m Boolean inputs,

• A set of n Boolean outputs, and

• n switching functions, each mapping the 2m input

combinations to an output such that the current output

depends only on the current input values

 A block diagram:

Chapter 3 - Part 1 5

Design Procedure

1. Specification

• Write a specification for the circuit if one is not
already available. What does the circuit do?
Including names or symbols for inputs and
outputs

2. Formulation

• Derive a truth table or initial Boolean equations
that define the required relationships between the
inputs and outputs, if not in the specification

3. Optimization

• Apply 2-level optimization using K-maps

• Draw a logic diagram for the resulting circuit using
ANDs, ORs, and inverters

Chapter 3 - Part 1 6

Design Procedure

4. Technology Mapping

• Map the logic diagram to the implementation

technology selected

5. Verification

• Verify the correctness of the final design

manually or using simulation

Design Example1

 Specification: Design a combinational circuit that has 3

inputs (X, Y, Z) and one output F, such that 𝐹 = 1 when

the number of 1’s in the input is greater than the number of

0’s (i.e. number of 1’s ≥ 2)

• This is called majority function (i.e. majority of inputs must be 1

for the function to be 1)

 Formulation:

Chapter 3 - Part 1 7

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Design Example1 Cont.

 Optimization:

𝐹 𝑋, 𝑌, 𝑍 = 𝑋𝑌 + 𝑋𝑍 + 𝑌𝑍

 Technology Mapping:

• Mapping with a library containing inverters, 2-input AND, 2-input

OR

Chapter 3 - Part 1 8

𝒀

0

1

3

1
2

𝑿 4

5

1
7

1
6

1

𝒁

X

Z

X

Y

Y

Z

F

Design Example2

 Specification: Design a combinational

circuit that compares 2-bit Binary number

(A, B) and produce two outputs (O1, O0),

such that:

 Formulation:

Chapter 3 - Part 1 9

A(A1A0) B(B1B0) O(O1O0)

00 00 00

00 01 01

00 10 01

00 11 01

01 00 10

01 01 11

01 10 01

01 11 01

10 00 10

10 01 10

10 10 00

10 11 01

11 00 10

11 01 10

11 10 10

11 11 11

𝑶𝟏𝑶𝟎 = 𝟎𝟎 When 𝑨 = 𝑩 𝒂𝒏𝒅 𝑩𝒐𝒕𝒉 𝒂𝒓𝒆 𝒆𝒗𝒆𝒏

𝑶𝟏𝑶𝟎 = 𝟎𝟏 When 𝑨 < 𝑩

𝑶𝟏𝑶𝟎 = 𝟏𝟎 When 𝑨 > 𝑩

𝑶𝟏𝑶𝟎 = 𝟏𝟏 When 𝑨 = 𝑩 𝒂𝒏𝒅 𝑩𝒐𝒕𝒉 𝒂𝒓𝒆 𝒐𝒅𝒅

Design Example2 Cont.

 Optimization and Technology Mapping:

𝑂0 = 𝐵1𝐵0 + 𝐴1𝐵1 + 𝐴1𝐵0

𝑂1 = 𝐴1𝐴0 + 𝐴0𝐵1 + 𝐴1𝐵1

Chapter 3 - Part 1 10

𝑩𝟏

0

1

1

3

1

2

1

4

5

1

7

1

6

1
𝑨𝟎

𝑨𝟏

12

13

15

1

14

8

9

11

1

10

𝑩𝟎

O0

𝑩𝟏

0

1

3

2

4

1

5

1

7

6

𝑨𝟎

𝑨𝟏

12

1

13

1

15

1

14

1

8

1

9

1

11

10

𝑩𝟎

O1

Chapter 3 - Part 1 11

Design Example3

1. Specification

• BCD to Excess-3 code converter

• Transforms BCD code for the decimal digits to Excess-3
code for the decimal digits

• BCD code words for digits 0 through 9: 4-bit patterns 0000
to 1001, respectively

• Excess-3 code words for digits 0 through 9: 4-bit patterns
consisting of 3 (binary 0011) added to each BCD code
word

• BCD input is labeled A, B, C, D

• Excess-3 output is labeled W, X, Y, Z

Chapter 3 - Part 1 12

Design Example3 Cont.

2. Formulation

ABCD WXYZ

0000 0011

0001 0100

0010 0101

0011 0110

0100 0111

0101 1000

0110 1001

0111 1010

1000 1011

1001 1100

1010 XXXX

1011 XXXX

1100 XXXX

1101 XXXX

1110 XXXX

1111 XXXX

Design Example3 Cont.

3. Optimization

𝑊 = 𝐴 + 𝐵𝐶 + 𝐵𝐷

𝑋 = 𝐵 𝐷 + 𝐵 𝐶 + 𝐵𝐶 𝐷

𝑌 = 𝐶 𝐷 + 𝐶𝐷

𝑍 = 𝐷

𝑪

0

1

3

2

4

5

1

7

1

6

1
𝑩

𝑨

12

X

13

X

15

X

14

X

8

1

9

1

11

X

10

X

𝑫

W

𝑪

0

1

1

3

2

1

4

1

5

7

6

1
𝑩

𝑨

12

X

13

X

15

X

14

X

8

1

9

11

X

10

X

𝑫

Z

Chapter 3 - Part 1 13

𝑪

0

1

1

3

1

2

4

1

5

7

1

6

𝑩

𝑨

12

X

13

X

15

X

14

X

8

1

9

11

X

10

X

𝑫

𝑪

0

1

1

3

1

2

1

4

1

5

7

6

𝑩

𝑨

12

X

13

X

15

X

14

X

8

9

1

11

X

10

X

𝑫

X

Y

Chapter 3 - Part 1 14

Design Example3 Cont.

4. Technology Mapping
• Mapping with a library containing inverters, 2-input AND,

2-input OR
B

C

D

C

W

B
A

B

D

C

D

B

X

Z

C

D

Y

Homework: BCD to 7-Segment

 Specification:

• Inputs: (A, B, C, D) BCD code from 0000-to-1001

• Outputs: (g, f, e, d, c, b, a)

 Formulation:

 Optimization:

• How many

K-maps?

Chapter 3 - Part 1 15

A B C D g f e d c b a

0 0 0 0 0 1 1 1 1 1 1

0 0 0 1 0 0 0 0 1 1 0

|

|

|

|

|

1 0 0 1 1 1 0 0 1 1 1

1 0 1 0 0 0 0 0 0 0 0

|

|

|

|

|

1 1 1 1 0 0 0 0 0 0 0

Chapter 3 - Part 1 16

Technology Mapping

 Mapping Procedures

• To NAND gates

• To NOR gates

Chapter 3 - Part 1 17

Mapping to NAND gates

 Assumptions:

• Gate loading and delay are ignored

• Cell library contains an inverter and n-input NAND

gates, n = 2, 3, …

• An AND, OR, inverter schematic for the circuit is

available

 The mapping is accomplished by:

• Replacing AND and OR symbols,

• Pushing inverters through circuit fan-out points,

and

• Canceling inverter pairs

Chapter 3 - Part 1 18

NAND Mapping Algorithm

1. Replace ANDs and ORs:

2. Repeat the following pair of actions until there

is at most one inverter between :

a. A circuit input or driving NAND gate output, and

b. The attached NAND gate inputs.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

Chapter 3 - Part 1 19

NAND Mapping Example

Chapter 3 - Part 1 20

Mapping to NOR gates

 Assumptions:

• Gate loading and delay are ignored

• Cell library contains an inverter and n-input NOR

gates, n = 2, 3, …

• An AND, OR, inverter schematic for the circuit is

available

 The mapping is accomplished by:

• Replacing AND and OR symbols,

• Pushing inverters through circuit fan-out points,

and

• Canceling inverter pairs

Chapter 3 - Part 1 21

NOR Mapping Algorithm

1. Replace ANDs and ORs:

2. Repeat the following pair of actions until there

is at most one inverter between :

a. A circuit input or driving NAND gate output, and

b. The attached NAND gate inputs.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

Chapter 3 - Part 1 22

NOR Mapping Example

A

B

C

D

E

F

(c)

F

A

B

X

C

D

E

(b)

A

B

C

D

E

F

(a)

2

3

1

Chapter 3 - Part 1 23

Terms of Use

 All (or portions) of this material © 2008 by Pearson
Education, Inc.

 Permission is given to incorporate this material or
adaptations thereof into classroom presentations and
handouts to instructors in courses adopting the latest
edition of Logic and Computer Design Fundamentals
as the course textbook.

 These materials or adaptations thereof are not to be
sold or otherwise offered for consideration.

 This Terms of Use slide or page is to be included within
the original materials or any adaptations thereof.

Charles Kime & Thomas Kaminski

© 2008 Pearson Education, Inc.
(Hyperlinks are active in View Show mode)

Chapter 3 – Combinational

Logic Design

Part 2 – Combinational Logic

Logic and Computer Design Fundamentals

Updated Thoroughly by Dr. Waleed Dweik

Chapter 3 2

Chapter 3 3

Overview

 Part 2 – Combinational Logic

• Functions and functional blocks

• Rudimentary logic functions

• Decoding using Decoders

 Implementing Combinational Functions with
Decoders

• Encoding using Encoders

• Selecting using Multiplexers

 Implementing Combinational Functions with
Multiplexers

Chapter 3 4

Functions and Functional Blocks

 The functions considered are those found to be very

useful in design

 Corresponding to each of the functions is a

combinational circuit implementation called a

functional block

 In the past, functional blocks were packaged as

small-scale-integrated (SSI), medium-scale

integrated (MSI), and large-scale-integrated (LSI)

circuits

 Today, they are often simply implemented within a

very-large-scale-integrated (VLSI) circuit

Rudimentary Logic Functions

 Functions of a single variable X

 Can be used on the

inputs to functional

blocks to implement

other than the block’s

intended function

 Value fixing : a, b

 Transferring : c

 Inverting : d

 Enabling : next slide

Chapter 3 5

0

1

F = 0

F = 1

(a)

F = 0

F = 1

V CC
 or V DD

(b)

X F = X

(c)

X F
= X

(d)

Functions of One Variable

𝑿 𝑭 = 𝟎 𝑭 = 𝟏 𝑭 = 𝑿 𝑭 = 𝑿

0 0 1 0 1

1 0 1 1 0

Chapter 3 6

Enabling Function

 Enabling permits an input signal to pass through

to an output

 Disabling blocks an input signal from passing

through to an output, replacing it with a fixed

value

 The value on the output when it is disable can be

Hi-Z (as for three-state buffers and transmission

gates), 0 , or 1

 When disabled, 0 output

 When disabled, 1 output

X
F

EN

(a)

EN

X
F

(b)

Chapter 3 7

 Decoding: the conversion of an n-bit input code to an

m-bit output code with n  m  2n such that each

valid code word produces a unique output code

 Circuits that perform decoding are called decoders

 Functional blocks for decoding are

• called n-to-m line decoders, where m  2n, and

• generate 2n (or fewer) minterms for the n input variables

Decoding

1-to-2 Line Decoder

 When the decimal value of A equals the subscript of 𝐷𝑖,
that 𝐷𝑖 will be 1 and all others will be 0’s

 Only one output is active at a time

 Decoders are used to control multiple circuits by enabling

only one of them at a time

 Chapter 3 8

A D 0
D 1

0 1 0

1 0 1

(a) (b)

D 1
= A A

D 0
= A 1-to-2

Decoder
A

𝐷0

𝐷1

(c)

2-to-4 Line Decoder

 No more optimization is possible

 Note that the 2-to-4 line decoder is made up of two 1-

to-2- line decoders and 4 AND gates

Chapter 3 9

A 1

0

0

1

1

A 0

0

1

0

1

D 0

1

0

0

0

D 1

0

1

0

0

D 2

0

0

1

0

D 3

0

0

0

1

(a)

D 0
= A 1

 A 0

D 1
= A 1

 A 0

D 2
= A 1

 A 0

D 3
= A 1

 A 0

(b)

A 1

A 0

2-to-4

Decoder

𝐴0
𝐷0

𝐷1

(c)

𝐴1
𝐷2

𝐷3

Chapter 3 10

Decoder Expansion

 General procedure given in book for any decoder with n

inputs and 2n outputs

 This procedure builds a decoder backward from the outputs

using

1. Let k = n

2. We need 2k 2-input AND gates driven as follows:

 If k is even, drive the gates using two k/2-to-2k/2 decoders

 If k is odd, drive the gates using one (k+1)/2-to-2(k+1)/2

decoder and one (k-1)/2-to-2(k-1)/2 decoder

3. For each decoder resulting from step2, repeat

step2 until k = 1. For k = 1, use 1-to-2 decoder

Chapter 3 11

Decoder Expansion - Example 1

 3-to-8-line decoder

• 𝑘 = 𝑛 = 3

• We need 23(8) 2-input AND gates driven as follows:

• 𝑘 is odd, so split to:

 2-to-4-line decoder

 1-to-2-line decoder

• 2-to-4-line decoder  𝑘 = 𝑛 = 2
 We need 22(4) 2-input AND gates driven as follows:

 𝑘 is even, so split to:

• Two 1-to-2-line decoder

 See next slide for result

Chapter 3 12

Decoder Expansion - Example 1

 𝑮𝑵 = 𝟖 × 𝟐 + 𝟒 × 𝟐 + 𝟑

 𝑮𝑵 = 𝟐𝟕

 Straight forward design

has the same GN cost

Chapter 3 13

Decoder Expansion - Example 2

 6-to-64-line decoder

• 𝑘 = 𝑛 = 6

• We need 26(64) 2-input AND gates driven as follows:

• 𝑘 is even, so split to:

 Two 3-to-8-line decoders

• Each 3-to-8-line decoder is designed as shown in Example 1

Decoder Expansion - Example 2

 𝑮𝑵 = 𝟔𝟒 × 𝟐 + 𝟏𝟔 × 𝟐 + 𝟖 × 𝟐 + 𝟔

 𝑮𝑵 = 𝟏𝟖𝟐

 Straight forward design has

GN cost of 390

Chapter 3 14

𝐴0

𝐴1

𝐴2

𝐴3

𝐴4

𝐴5

𝐷0 = 𝐴5 𝐴4 𝐴3 𝐴2 𝐴1 𝐴0

𝐷1 = 𝐴5 𝐴4 𝐴3 𝐴2 𝐴1𝐴0

𝐷63 = 𝐴5𝐴4𝐴3𝐴2𝐴1𝐴0

𝐷62 = 𝐴5𝐴4𝐴3𝐴2𝐴1𝐴0

Chapter 3 15

Decoder Expansion - Example 3

 7-to-128-line decoder

• 𝑘 = 𝑛 = 7

• We need 27(128) 2-input AND gates driven as follows:

• 𝑘 is odd, so split to:

 4-to-16-line decoder

 3-to-8-line decoder

• 4-to-16-line decoder

 𝑘 = 𝑛 = 4

 We need 24(16) 2-input AND gates driven as follows:

 𝑘 is even, so split to:

• Two 2-to-4-line decoders

• Complete using known 3-8 and 2-to-4 line decoders

 𝐺𝑁 = 128 × 2 + 16 × 2 + 8 × 2 + 12 × 2 + 7 = 335

 Compare to straight forward design with GN cost of 903

Building Larger Decoders

 Method_1: Decoder Expansion

 Method_2: Using Small Decoders with Enable input

 Example: 1-to-2 line decoder with enable

• In general, attach m-enabling circuits to the outputs

• See truth table below for function

 Note use of X’s to denote both 0 and 1

 Combination containing two X’s represent two binary combinations

 Alternatively, can be viewed as distributing value of signal EN to 1 of 2

outputs

• In this case, it is called a Demultiplexer

Chapter 3 16

A D 0
D 1

0 1 0

1 0 1

(a) (b)

D 1
A

D 0
1-to-2

Decoder
A

𝐷0

𝐷1

(c)

EN

1

1

X 0 0 0

EN

EN

Chapter 3 17

 Attach 4-enabling circuits to the outputs

 See truth table below for function

• Combination containing two X’s represent four binary combinations

 Alternatively, can be viewed as distributing value of signal EN to 1 of 4

outputs

• In this case, it is called a Demultiplexer
EN

A 1

A 0

D0

D1

D2

D3

(b)

EN A1 A0 D0 D1 D2 D3

0

1

1

1

1

X

0

0

1

1

X

0

1

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

(a)

2-to-4 Line Decoder with Enable

2-to-4

Decoder

𝐴0
𝐷0
𝐷1

𝐴1
𝐷2
𝐷3

𝐸𝑁

(c)

2-to-4 Decoder using 1-to-2 Decoders and Inverters

𝑨𝟏 𝑨𝟎 𝑫𝟎 𝑫𝟏 𝑫𝟐 𝑫𝟑

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

1st 1-to-2 Decoder 2nd 1-to-2 Decoder

Chapter 3 18

3-to-8 Decoder using 2-to-4 Decoders and Inverters

𝑨𝟐 𝑨𝟏 𝑨𝟎 𝑫𝟎 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒 𝑫𝟓 𝑫𝟔 𝑫𝟕

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

1st 2-to4 Decoder 2nd 2-to4 Decoder

Chapter 3 19

4-to-16 Decoder using Only 2-to-4 Decoders

Chapter 3 20

Chapter 3 21

Combinational Logic Implementation

- Decoder and OR Gates

 Implement m functions of n variables with:

• Sum-of-minterms expressions

• One n-to-2n-line decoder

• m OR gates, one for each function

• For each function, the OR gate has k inputs, where k is the number

of minterms in the function

 Approach 1:

• Find the truth table for the functions

• Make a connection to the corresponding OR from the

corresponding decoder output wherever a 1 appears in the truth

table

 Approach 2

• Find the minterms for each output function

• OR the minterms together

Example1

 Implement function 𝑓 using decoder and OR gate:
𝒇 𝒙, 𝒚, 𝒛 = 𝒙𝒛 + 𝒙 𝒚

 𝑛 = 3 variables  3-to-8 decoder

 One function  One OR gate

 Solution: Convert 𝑓 to SOM format

•𝑓 = 𝑥𝑧 𝑦 + 𝑦 + 𝑥 𝑦 𝑧 + 𝑧 = 𝑥𝑦𝑧 + 𝑥𝑦 𝑧 + 𝑥 𝑦𝑧 + 𝑥 𝑦𝑧

•𝑓 𝑥, 𝑦, 𝑧 = (2,3,4,6)𝑚 4-input OR gate

Decoder is a Minterm

Generator

Chapter 3 22

Example2

 Implement function 𝑓 using decoder and OR gate:

𝒇 𝒘, 𝒙, 𝒚, 𝒛 = (𝟎, 𝟒, 𝟖, 𝟏𝟏, 𝟏𝟐, 𝟏𝟒, 𝟏𝟓)

𝒎

 𝑛 = 4 variables  4-to-16 decoder

 One function with 7 minterms  One 7-input OR gate

 If number of minterms is greater

than
𝟐𝒏

𝟐
 , then design for

complement F (𝑭) and use NOR

gate instead of OR to generate F

Chapter 3 23

Example3

 Implement functions 𝐶 𝑎𝑛𝑑 𝑆 using decoder and OR gates:

 𝑛 = 3 variables  3-to-8 decoder

 Two function  Two OR gates

 Solution:

• 𝐶 = (3,5,𝑚 6,7) 4-input OR gate

• 𝑆 = (1,2,4,7)𝑚 4-input OR gate

Chapter 3 24

𝑿 𝒀 𝒁 𝑪 𝑺

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Chapter 3 25

Example4

 Implement the following set of odd parity functions of

(A7, A6, A5, A4)

P1 = A7 A5 A4

P2 = A7 A6 A4

P3 = A7 A6 A5

 Finding sum of

minterms expressions

 P1 = Sm(1,2,5,6,8,11,12,15)

P2 = Sm(1,3,4,6,8,10,13,15)

P3 = Sm(2,3,4,5,8,9,14,15)

 Find circuit

 Is this a good idea?

+

+

+

+

+

+

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

A4

A5

A6

A7

P1

P3

P2

Example5

 Implement function 𝐹 using 3-to-8 decoder, AND gate and

inverters: 𝐹 𝐴, 𝐵, 𝐶 = (1,3,5,7)𝑚

 Solution with 5 inverters:

 Solution with 4 inverters:

• 𝐹 𝐴, 𝐵, 𝐶 = (0,2,4,6)𝑀

Chapter 3 26

Chapter 3 27

Encoding

 Encoding: the opposite of decoding - the conversion of

an m-bit input code to a n-bit output code with n  m 

2n such that each valid code word produces a unique

output code

 Circuits that perform encoding are called encoders

 An encoder has 2n (or fewer) input lines and n output

lines which generate the binary code corresponding to

the input values

 Typically, an encoder converts a code containing exactly

one bit that is 1 to a binary code corresponding to the

position in which the 1 appears

2-to-1 Encoder & 4-to-2 Encoder

Chapter 3 28

2-to-1

Encoder
A

𝐷0

𝐷1

(c) (a) (b)

𝑨 𝑫𝟎 𝑫𝟏

Invalid Input 0 0

0 1 0

1 0 1

Invalid Input 1 1

4-to-2

Encoder

𝐷0

𝐷1

(c) (a)

(b)

𝑨𝟎 𝑨𝟏 𝑫𝟎 𝑫𝟏 𝑫2 𝑫3

0 0 1 0 0 0

1 0 0 1 0 0

0 1 0 0 1 0

1 1 0 0 0 1

𝐷2

𝐷3

𝐴0

𝐴1

𝐴 = 𝐷1. 𝐷0

𝐴0 = 𝐷1 + 𝐷3

𝐴1 = 𝐷2 + 𝐷3

D1

D0

A

`

8-to-3 Encoder (Octal-to-Binary Encoder)

Chapter 3 29

8-to-3

Encoder

𝐷0

𝐷1

(c)

(a)

(b)

𝑨𝟎 𝑨𝟏 𝑨𝟐 𝑫𝟎 𝑫𝟏 𝑫2 𝑫3 𝑫4 𝑫5 𝑫6 𝑫7

0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

1 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

𝐷2

𝐷3

𝐴0

𝐴1

𝐴0 = 𝐷1 + 𝐷3 + 𝐷5 + 𝐷7

𝐴1 = 𝐷2 + 𝐷3 + 𝐷6 + 𝐷7

𝐷4

𝐷5

𝐷6

𝐷7

𝐴2

𝐴2 = 𝐷4 + 𝐷5 + 𝐷6 + 𝐷7

Chapter 3 30

Decimal-to-BCD Encoder

 Inputs: 10 bits corresponding to decimal digits 0

through 9, (D0, …, D9)

 Outputs: 4 bits with BCD codes (A3, A2, A1, A0)

 Function: If input bit Di is a 1, then the output is

the BCD code for i

 The truth table could be formed, but alternatively,

the equations for each of the four outputs can be

obtained directly

Chapter 3 31

Decimal-to-BCD Encoder Cont.

 Input Di is a term in equation Aj if bit Aj is 1 in the binary value

for i

 Equations:

A3 = D8 + D9

A2 = D4 + D5 + D6 + D7

A1 = D2 + D3 + D6 + D7

A0 = D1 + D3 + D5 + D7 + D9

 What happens if two inputs are high simultaneously?

• For example if D3 and D6 are high, then the output is 0111 which

indicates that only D7 is high ???

• Solution: Establish input priority

Chapter 3 32

Priority Encoder

 If more than one input value is 1, then the encoder just designed does

not work

 One encoder that can accept all possible combinations of input values

and produce a meaningful result is a priority encoder

 Among the 1s that appear, it selects the most significant input position

(or the least significant input position) containing a 1 and responds with

the corresponding binary code for that position

• High priority encoder: gives priority for the input whose value is 1 and

has the highest subscript

• low priority encoder: gives priority for the input whose value is 1 and has

the lowest subscript

 If all inputs are 0’s, what happens?

• Define an output (V) to encode whether the input is valid or not

• When all inputs are 0’s, V is set to 0 indicating that the input is invalid,

otherwise V is set to 1

4-to-2 Low Priority Encoder

Chapter 3 33

4-to-2

Low

Priority

Encoder

𝐷0

𝐷1

(c)

(a)

(b)

V 𝑨𝟎 𝑨𝟏 𝑫𝟎 𝑫𝟏 𝑫2 𝑫3 #_of_Minterms/

Rows

0 X X 0 0 0 0 1

1 0 0 1 X X X 8

1 1 0 0 1 X X 4

1 0 1 0 0 1 X 2

1 1 1 0 0 0 1 1

𝐷2

𝐷3

𝐴0

𝐴1

𝐴0 = 𝐷1𝐷0 + 𝐷3𝐷2 𝐷1 𝐷0
𝐴0 = 𝐷0 𝐷1 + 𝐷3𝐷2 𝐷1
𝐴0 = 𝐷0 𝐷1 + 𝐷3𝐷2
𝐴0 = 𝐷1𝐷0 + 𝐷3𝐷2 𝐷0

𝐴1 = 𝐷2 𝐷1 𝐷0 + 𝐷3𝐷2 𝐷1 𝐷0
𝐴1 = 𝐷1 𝐷0(𝐷2 + 𝐷3𝐷2)
𝐴1 = 𝐷1 𝐷0(𝐷2 + 𝐷3)
𝐴1 = 𝐷2 𝐷1 𝐷0 + 𝐷3 𝐷1 𝐷0

𝑉 = 𝐷3 + 𝐷2 + 𝐷1 + 𝐷0

𝑉

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑛𝑡𝑒𝑟𝑚𝑠 𝑝𝑒𝑟 𝑅𝑜𝑤 = 2# 𝑜𝑓 𝑑𝑜𝑛
′𝑡 𝑐𝑎𝑟𝑒𝑠

4-to-2 High Priority Encoder

Chapter 3 34

4-to-2

High

Priority

Encoder

𝐷0

𝐷1

(c)

(a)

(b)

V 𝑨𝟎 𝑨𝟏 𝑫𝟎 𝑫𝟏 𝑫2 𝑫3 #_of_Minterms/

Rows

0 X X 0 0 0 0 1

1 0 0 1 0 0 0 1

1 1 0 X 1 0 0 2

1 0 1 X X 1 0 4

1 1 1 X X X 1 8

𝐷2

𝐷3

𝐴0

𝐴1

𝐴0 = 𝐷3 + 𝐷3 𝐷2𝐷1
𝐴0 = 𝐷3 + 𝐷2𝐷1

𝐴1 = 𝐷3 + 𝐷3𝐷2
𝐴1 = 𝐷3 + 𝐷2

𝑉 = 𝐷3 + 𝐷2 + 𝐷1 + 𝐷0

𝑉

Chapter 3 35

5-input Priority Encoder

 Priority encoder with 5 inputs (D4, D3, D2, D1, D0) - highest priority to most

significant 1 present - Code outputs A2, A1, A0 and V where V indicates at

least one 1 present

 X’s in input part of table represent 0 or 1; thus table entries correspond to

product terms instead of minterms. The column on the left shows that all 32

minterms are present in the product terms in the table

No. of Min-

terms/Row

Inputs Outputs

D4 D3 D2 D1 D0 A2 A1 A0 V

1 0 0 0 0 0 X X X 0

1 0 0 0 0 1 0 0 0 1

2 0 0 0 1 X 0 0 1 1

4 0 0 1 X X 0 1 0 1

8 0 1 X X X 0 1 1 1

16 1 X X X X 1 0 0 1

Chapter 3 36

5-input Priority Encoder Cont.

 Could use a K-map to get equations, but can be read

directly from table and manually optimized if careful:

A2 = D4

A1 = D3 + D2 = (D3 + D2)

A1 = D3 + D2

A0 = D3 + D1 = (D3 + D1)

A0 = D3 + D1

V = D4 + D3 + D2 + D1 + D0

D4 D3 D4 D4

D4 D3 D4 D2 D4 D2

D4 D4

D4 D2 D4

Chapter 3 37

 Selecting of data or information is a critical

function in digital systems and computers

 Circuits that perform selecting have:

• A set of information inputs from which the selection is

made

• A single output

• A set of control lines for making the selection

 Logic circuits that perform selecting are called

multiplexers

 Selecting can also be done by three-state logic

Selecting

Chapter 3 38

Multiplexers (MUX) (Data Selectors)

 A multiplexer selects information from an input line and

directs the information to an output line

 A typical multiplexer has n control inputs (𝑆𝑛−1, … 𝑆0)
called selection inputs, 2n information inputs (𝐼2𝑛−1, …

𝐼0), and one output Y

 A multiplexer can be designed to have m information

inputs with m < 2n as well as n selection inputs

 Multiplexers allow sharing of resources and reduce the cost

by reducing the number of wires

 MUX
2𝑛

𝐼

𝑛

𝑆

𝑌

Chapter 3 39

2-to-1-Line MUX

 Since 2 = 21, n = 1

 The single selection

variable S has two

values:

• S = 0 selects input I0

• S = 1 selects input I1

 The equation:

 𝒀 = 𝑺 𝑰𝟎 + 𝑺𝑰𝟏

 The circuit:

S

I0

I1

Decoder
Enabling
Circuits

Y

𝑺 𝑰𝟏 𝑰𝟎 𝒀

0 0 0 0

𝒀 = 𝑰𝟎
0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

𝒀 = 𝑰𝟏

1 0 1 0

1 1 0 1

1 1 1 1

𝑺 𝒀

0 I0

1 I1

𝑰𝟏

0

1

1
3

1
2

𝑺 4

5 7

1
6

1

𝑰𝟎

2-to-1

MUX

𝐼0

𝑆

𝑌
𝐼1

Chapter 3 40

2-to-1-Line MUX Cont.

 Note the regions of the multiplexer circuit

shown:

• 1-to-2-line Decoder

• 2 Enabling circuits

• 2-input OR gate

 In general, for an 2n-to-1-line multiplexer:

• n-to-2n-line decoder

• 2n 2-input AND gate

• One 2n-input OR gate

4-to-1-Line MUX

 Since 4 = 22, n = 2

 There are two selection

variables (𝑺𝟏𝑺𝟎) and

they have four values:

• 𝑺𝟏𝑺𝟎 = 𝟎𝟎 selects input I0

• 𝑺𝟏𝑺𝟎 = 𝟎𝟏 selects input I1

• 𝑺𝟏𝑺𝟎 = 𝟏𝟎 selects input I2

• 𝑺𝟏𝑺𝟎 = 𝟏𝟏 selects input I3

 The equation:

 𝒀 = 𝑺𝟏 𝑺𝟎𝑰𝟎 + 𝑺𝟏 𝑺𝟎𝑰𝟏 + 𝑺𝟏𝑺𝟎 𝑰𝟐 + 𝑺𝟏𝑺𝟎𝑰𝟑

Chapter 3 41

𝑺𝟏 𝑺𝟎 𝒀

0 0 𝐈𝟎

0 1 𝐈𝟏

1 0 𝐈𝟐

1 1 𝐈𝟑

4-to-1

MUX

𝑆1

𝑌

𝑆0

𝐼0

𝐼1

𝐼2

𝐼3

Chapter 3 42

4-to-1-line MUX Cont.

 2-to-4-line decoder

 4 2-input AND gates

 4-input OR gate

S 1

Decoder

S 0

Y

S 1

Decoder

S 0

Y

S 1

2-to-4 Decoder

 4 2-input AND gates

 4-input OR gate

S 0

Y

I 2

I 3

I 1

I 0

Y Y

Y

I 2

I 3

I 1

I 0

2-to-4

Decoder

𝑆0
𝐷0

𝐷1

𝑆1

𝐷2

𝐷3

Homework

 Implement 8-to-1-Line MUX and 64-to-1

MUX:

• How many select lines are needed?

• Decoder size?

• How many 2-input AND gates are needed?

• What is the size of the OR gate?

Chapter 3 43

Chapter 3 44

Multiplexer Width Expansion

 Select “vectors of bits” instead of “bits”

 Example: 4-to-1-line quad multiplexer

4-to-1

Quad

MUX

𝑆1

𝑌

𝑆0

𝐼0

𝐼1

𝐼2

𝐼3

4

4

4

4

4

2-to-4

Decoder

𝑆0
𝐷0

𝐷1

𝑆1

𝐷2

𝐷3

Y Y

𝐼0[0]

𝐼1[0]

𝐼2[0]

𝐼3[0]

𝑌[0]

Y Y

𝐼0[1]

𝐼1[1]

𝐼2[1]

𝐼3[1]

𝑌[1]

Y Y

𝐼0[3]

𝐼1[3]

𝐼2[3]

𝐼3[3]

𝑌[3]

𝐷0

𝐷0

𝐷0

Multiplexer Width Expansion Cont.

 Can be thought

of as four 4-to-1

MUXes:

Chapter 3 45

4-to-1

MUX
𝑌[0]

𝐼0[0]
𝐼1[0]

𝐼2[0]

𝐼3[0]

4-to-1

MUX
𝑌[1]

𝐼0[1]
𝐼1[1]

𝐼2[1]

𝐼3[1]

4-to-1

MUX
𝑌[3]

𝐼0[3]
𝐼1[3]

𝐼2[3]

𝐼3[3]

𝑠1

𝑠0

Chapter 3 46

Other Selection Implementations

 Three-state logic

I0

I1

I2

I3

S1

S0

(b)

Y

Building Large MUXes from Smaller Ones

 4-to-1 MUX using

three 2-to-1 MUXes

 6-to-1 MUX using

two 4-to-1 MUXes

and one 2-to-1 MUX

Chapter 3 47

𝑺𝟏 𝑺𝟎 𝒀

0 0 𝐈𝟎

0 1 𝐈𝟏

1 0 𝐈𝟐

1 1 𝐈𝟑

𝑺2 𝑺𝟏 𝑺𝟎 𝒀

0 0 0 𝐈𝟎

0 0 1 𝐈𝟏

0 1 0 𝐈𝟐

0 1 1 𝐈𝟑

1 0 0 𝐈4

1 0 1 𝐈5

1 1 0 𝑋

1 1 1 𝑋

Homework

 Build an 8-to-1 MUX using:

• Two 4-to-1 MUX and one 2-to-1 MUX

• One 4-to-1 MUX and multiple 2-to-1 MUXes

• Only 2-to-1 MUXes (How many MUXes are

need?)

Chapter 3 48

Chapter 3 49

Combinational Logic Implementation

- Multiplexer Approach 1

 Implement m functions of n variables with:

• Sum-of-minterms expressions

• An m-wide 2n-to-1-line multiplexer

 Design:

• Find the truth table for the functions

• In the order they appear in the truth table:

 Apply the function input variables to the multiplexer select

inputs Sn - 1, … , S0

 Label the outputs of the multiplexer with the output

variables

• Value-fix the information inputs to the multiplexer

using the values from the truth table (for don’t

cares, apply either 0 or 1)

Example1

 Implement the following function using a single MUX

based on Approach1 : 𝑭 𝒙, 𝒚, 𝒛 = (𝟎, 𝟓, 𝟕)𝒎

 Solution:

• Single function  m = 1

• 3 variables  n = 3  8-to-1 MUX

• Fill the truth table of 𝐹

Chapter 3 50

𝑥 𝑦 𝑧 𝐹

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1
8-to-1

MUX

𝑦

𝐹

𝑧

1

0
0
0
0

1
0
1

𝑥

Example2: Gray to Binary Code

 Design a circuit to

convert a 3-bit Gray

code to a binary code

 The formulation gives

the truth table on the

right

Chapter 3 51

Gray Code

ABC

Binary Code

XYZ

000 000

001 001

011 010

010 011

110 100

111 101

101 110

100 111

Chapter 3 52

Gray to Binary Code Cont.

 Rearrange the table so that the input

combinations are in counting order

 It is obvious from this table that X = A.

However, Y and Z are more complex

 Two functions (Y and Z)  m = 2

 3 variables (A, B, and C)  n = 3

 Functions Y and Z can be implemented

using a dual 8-to-1-line multiplexer by:

• connecting A, B, and C to the

multiplexer select inputs

• placing Y and Z on the two multiplexer

outputs

• connecting their respective truth table

values to the inputs

Gray Code

ABC

Binary Code

XYZ

000 000

001 001

010 011

011 010

100 111

101 110

110 100

111 101

Chapter 3 53

Gray to Binary Code Cont.

Dual

8-to-1

MUX

S2 S1 S0

A B C

0,0
0,1
1,1
1,0
1,1
1,0

0,1
0,0

Y,Z

X

Chapter 3 54

Combinational Logic Implementation

- Multiplexer Approach 2

 Implement any m functions of n variables by using:

• An m-wide 2(n-1)-to-1-line multiplexer

• A single inverter if needed

 Design:

• Find the truth table for the functions

• Based on the values of the most significant (n-1) variables,

separate the truth table rows into pairs

• For each pair and output, define a rudimentary function of the

least significant variable (𝟎, 𝟏, 𝑿, 𝑿)

• Connect the most significant (n-1) variables to the select lines of

the MUX, value-fix the information inputs to the multiplexer

with the corresponding rudimentary functions

• Use the inverter to generate the rudimentary function 𝑿

Example1

 Implement the following function using

a single MUX and an inverter (if needed)

based on Approach2 :

𝑭 𝑨,𝑩, 𝑪,𝑫 = (𝟏, 𝟑, 𝟒, 𝟏𝟎, 𝟏𝟑, 𝟏𝟒, 𝟏𝟓)
𝒎

 Solution:

• Single function  m = 1

• 4 variables  n = 4  8-to-1 MUX

• Fill the truth table of 𝐹

Chapter 3 55

𝐴 𝐵 𝐶 𝐷 𝐹

0 0 0 0 0
𝐹 = 𝐷

0 0 0 1 1

0 0 1 0 0
𝐹 = 𝐷

0 0 1 1 1

0 1 0 0 1
𝐹 = 𝐷

0 1 0 1 0

0 1 1 0 0
𝐹 = 0

0 1 1 1 0

1 0 0 0 0
𝐹 = 0

1 0 0 1 0

1 0 1 0 1
𝐹 = 𝐷

1 0 1 1 0

1 1 0 0 0
𝐹 = 𝐷

1 1 0 1 1

1 1 1 0 1
𝐹 = 1

1 1 1 1 1

8-to-1

MUX

𝐵

𝐹

𝐶

𝐷

0
0

1

𝐴

Example2: Gray to Binary Code

Chapter 3 56

Gray Code

ABC

Binary Code

XYZ

Rudimentary

Functions of C

for Y

Rudimentary

Functions of C

for Z

000 000
𝒀 = 𝟎 𝒁 = 𝑪

001 001

010 011
𝒀 = 𝟏 𝒁 = 𝑪

011 010

100 111
𝒀 = 𝟏 𝒁 = 𝑪

101 110

110 100
𝒀 = 𝟎 𝒁 = 𝑪

111 101

Chapter 3 57

 Assign the variables and functions to the multiplexer

inputs:

 Note that Approach2 reduces the cost by almost half

compared to Approach1

Gray to Binary Code Cont.

C

Dual

4-to-1

MUX

S1 S0

A B

0, 𝐶

Y,Z

1, 𝐶

1, 𝐶

0, 𝐶

𝐂

Demultiplexer (DMUX)

 Opposite of multiplexer

 Receives one input and directs it to one from 2n outputs

based on n-select lines

 Example: 1-to-2 DMUX

 DMUX ≡ Decoder with Enable

Chapter 3 58

1-to-2

DMUX
𝐼

𝑆

𝑄0

𝑄1

𝑺 𝑰 𝑸𝟏 𝑸𝟎

0 0 0 0

0 1 0 1

1 0 0 0

1 1 1 0

Q 1
S

Q 0

I

𝑄0 = 𝑆 𝐼
𝑄1 = 𝑆𝐼

1-to-4 DMUX

 𝑄0 = 𝑆1 𝑆0𝐼

 𝑄1 = 𝑆1 𝑆0𝐼

 𝑄2 = 𝑆1𝑆0𝐼

 𝑄3 = 𝑆1𝑆0𝐼

Chapter 3 59

𝑺𝟏 𝑺𝟎 𝑸𝟑 𝑸𝟐 𝑸𝟏 𝑸𝟎

0 0 0 0 0 I

0 1 0 0 I 0

1 0 0 I 0 0

1 1 I 0 0 0

I

S 1

S 0

Q 0

Q 1

Q 2

Q 3

2-to-4

Decoder

𝑆0
𝑄0
𝑄1

𝑆1
𝑄2
𝑄3

𝐼

1-to-4

DMUX 𝐼

𝑄0
𝑄1
𝑄2
𝑄3

𝑆1 𝑆0

Chapter 3 60

Terms of Use

 All (or portions) of this material © 2008 by Pearson
Education, Inc.

 Permission is given to incorporate this material or
adaptations thereof into classroom presentations and
handouts to instructors in courses adopting the latest
edition of Logic and Computer Design Fundamentals as
the course textbook.

 These materials or adaptations thereof are not to be
sold or otherwise offered for consideration.

 This Terms of Use slide or page is to be included within
the original materials or any adaptations thereof.

Charles Kime & Thomas Kaminski

© 2008 Pearson Education, Inc.

 (Hyperlinks are active in View Show mode)

Chapter 4 – Arithmetic

Functions

Logic and Computer Design Fundamentals

Updated Thoroughly by Dr. Waleed Dweik

Chapter 4 2

Chapter 4 3

Overview

 Iterative combinational circuits

 Binary adders

• Half and full adders

• Ripple carry adders

 Binary subtraction

 Binary adder-subtractors

• Signed binary numbers

• Signed binary addition and subtraction

• Overflow

 Binary multiplication

 Other arithmetic functions

• Design by contraction

Chapter 4 4

Iterative Combinational Circuits

 Arithmetic functions

• Operate on binary vectors

• Use the same sub-function in each bit position

 Can design functional block for the sub-function

and repeat to obtain functional block for overall

function

 Cell: sub-function block

 Iterative array: array of interconnected cells

Chapter 4 5

Block Diagram of an Iterative Array

 Example: n = 32

• Number of inputs = 32*2 + 1 + 1 = 66

• Truth table rows = 266

• Equations with up to 66 input variables

• Equations with huge number of terms

• Design impractical!

 Iterative array takes advantage of the regularity to make design feasible

Chapter 4 6

Functional Blocks: Addition

 Binary addition used frequently

 Addition Development:

• Half-Adder (HA): a 2-input bit-wise addition
functional block

• Full-Adder (FA): a 3-input bit-wise addition
functional block

• Ripple Carry Adder: an iterative array to
perform vector binary addition

Chapter 4 7

Functional Block: Half-Adder

 A 2-input, 1-bit width binary adder that performs the following

computations:

 A half adder adds two bits to produce a two-bit sum

 The sum is expressed as a

sum bit (S) and a carry bit (C)

 The half adder can be specified

as a truth table for S and C 

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 0 0 1 0 1 1 0

X Y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Chapter 4 8

Logic Simplification and Implementation:

Half-Adder

 The K-Map for S, C is:

 The most common half adder implementation is:

Y

X

0 1

3 2
1

1

S Y

X

0 1

3 2
1

C

Y X Y X Y X S  =  +  =

Y X C  =

X
Y

C

S

HA
X

Y

S

C

Chapter 4 9

Functional Block: Full-Adder

 A full adder is similar to a half adder, but includes a carry-in bit from

lower stages. Like the half-adder, it computes a sum bit (S) and a

carry bit (C)

• For a carry-in (Z) of

0, it is the same as

the half-adder:

• For a carry- in

(Z) of 1:

Z 0 0 0 0

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 0 0 1 0 1 1 0

Z 1 1 1 1

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 1 1 0 1 0 1 1

Chapter 4 10

Logic Optimization: Full-Adder

 Full-Adder Truth Table:

 Full-Adder K-Map:

𝑺 = 𝑿 𝒀 𝒁 + 𝑿 𝒀𝒁 + 𝑿𝒀 𝒁 + 𝑿𝒀𝒁 𝑪 = 𝑿𝒁 + 𝑿𝒀 + 𝒀𝒁

 The S function is the three-bit XOR function (Odd Function):

• 𝑺 = 𝑿⊕𝒀⨁𝒁

 The Carry bit C is 1 if both X and Y are 1 (the sum is 2), or if the sum

is 1 and a carry-in (Z) occurs. Thus C can be re-written as:

• 𝑪 = 𝑿𝒀 + 𝑿⨁𝒀 𝒁

X Y Z C S

0 0 0 0 0
0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

X

Y

Z

0 1 3 2

4 5 7 6
1

1

1

1

S

X

Y

Z

0 1 3 2

4 5 7 6
1 1 1

1

C

Chapter 4 11

Implementation: Full Adder

FA
X

Y

S

C

Z

Chapter 4 12

Binary Adders

 To add multiple operands, we “bundle” logical signals

together into vectors and use functional blocks that operate

on the vectors

 Example: 4-bit ripple carry

adder adds input vectors

A(3:0) and B(3:0) to get

a sum vector S(3:0)

 Note: carry-out of cell i

becomes carry-in of cell i + 1

Description Subscript

 3 2 1 0

Name

Carry In 0 1 1 0 Ci

Augend 1 0 1 1 Ai

Addend 0 0 1 1 Bi

Sum 1 1 1 0 Si

 Carry out

 0 0 1 1 Ci+1

Chapter 4 13

4-bit Ripple-Carry Binary Adder

 A four-bit Ripple Carry Adder made from four 1-bit Full

Adders:

B3 A 3

FA

B2 A 2

FA

B1

S3C4

C0

C3 C2 C1

S2 S1 S0

A 1

FA

B0 A 0

FA

Homework

 Design a 4-bit ripple-carry adder using

HA’s only?

Chapter 4 14

Chapter 4 15

Unsigned Subtraction

 When we subtract one bit from another, two bits are produced:

difference bit (D) and borrow bit (B)

 Algorithm:

• Subtract the subtrahend (N) from the minuend (M)

• If no end borrow occurs, then M  N and the result is a non-negative

number and correct

• If an end borrow occurs, then N > M and the difference (M - N + 2n) is

subtracted from 2n, and a minus sign is appended to the result

X 0 0 1 1

− Y − 0 − 1 − 0 − 1

B D 0 0 1 1 0 1 0 0

1 0 0 0

Unsigned Subtraction

 Examples:

Chapter 4 16

 0 1

 1001 0100

- 0111 - 0111

 0010 1101

 10000

 - 1101

 (-) 0011

 1

 10011

 - 11110

 10101

 100000

 - 10101

 (-) 01011

 0

 10010110

 - 01100100

 00110010

 1

 01100100

 - 10010110

 11001110

 100000000

 - 11001110

 (-) 00110010

Chapter 4 17

Unsigned Subtraction (continued)

 The subtraction, 2n - D, is taking the 2’s complement of D

 To do both unsigned addition and unsigned subtraction

requires:

• Addition and Subtraction are

performed in parallel and

Subtract/𝐴𝑑𝑑chooses

between them

 Quite complex!

 Goal: Shared simpler

logic for both addition

and subtraction

 Introduce complements

as an approach

A B

Binary adder Binary subtractor

Selective
2's complementer

Quadruple 2-to-1
multiplexer

Result

Borrow

Complement

S

0 1
Subtract/Add

Chapter 4 18

Complements

 For a number system with radix (r), there are two complements:

• Diminished Radix Complement

 Famously known as (r - 1)’s complement

 Examples:

• 1’s complement for radix 2

• 9’s complement for radix 10

 For a number (N) with n-digits, the diminished radix complement is defined as:

• (r n - 1) - N

• Radix Complement

 Famously known as r’s complement for radix r

 Examples:

• 2’s complement in binary

• 10’s complement in decimal

 For a number (N) with n-digits, r’s complement is defined as:

• r n – N, when N ≠ 0

• 0, when N = 0

Diminished Radix Complement

 If N is a number of n-digits with radix (r), then

• 𝑵 + 𝒓 − 𝟏 ′𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕 𝒐𝒇 𝑵 = 𝒓 − 𝟏 𝒓 − 𝟏 𝒓 − 𝟏 … (𝒓 − 𝟏)

• The (r – 1)’s complement can be computed by subtracting each digit from (r – 1)

 Example: Find 1’s complement of (1011)2

• r = 2, n = 4

• Answer is (24 – 1) – (1011)2 = (0100)2

• Notice that (1011)2 + (0100)2 = (1111)2 which is (2 – 1) (2 – 1) (2 – 1) (2 – 1)

 Example: Find 9’s complement of (45)10

• r = 10, n = 2

• Answer is (102 – 1) – (45)10 = (54)10

• Notice that (45)10 + (54)10 = (99)10 which is (10 – 1) (10 – 1)

 Example: Find 7’s complement of (671)8

• r = 8, n = 3

• Answer is (83 – 1) – (671)8 = (106)8

• Notice that (671)8 + (106)8 = (777)8 which is (8 – 1) (8 – 1) (8 – 1)

Chapter 4 19

n-digits

4-digits

3-digits

2-digits

Chapter 4 20

Binary 1's Complement

 For r = 2, N = 011100112, n = 8 (8 digits):

 (rn – 1) = 256 -1 = 25510 or 111111112

 The 1's complement of 011100112 is then:

 11111111

 – 01110011

 10001100

 Since the 2n – 1 factor consists of all 1's and since

1 – 0 = 1 and 1 – 1 = 0, the one's complement is
obtained by complementing each individual bit
(bitwise NOT)

Radix Complement

 For number N with n-digit and radix (r):

• If N ≠ 0, r’s complement of N = rn – N

 r’s complement = (r-1)’s complement + 1

• If N = 0, r’s complement of N = 0

 Example: Find 10’s complement of (92)10

• r = 10, n = 2

• Answer is 102 – (92)10 = (8)10

• Notice that 9’s complement of (92)10 is (7)10

10’s complement = 9’s complement + 1

 Example: Find 16’s complement of (3AE7)16

• r = 16, n = 4

• Answer is 164 – (3AE7)16 = (10000)16 – (3AE7)16 = (C519)16

• 15’s complement = (C518)16  16’s complement = (C518)16 + 1 = (C519)16

Chapter 4 21

Chapter 4 22

Binary 2's Complement

 For r = 2, N = 011100112, n = 8 (8 digits), we have:

• (rn) = 25610 or 1000000002

 The 2's complement of 01110011 is then:

 100000000

 – 01110011

 10001101

 Note the result is the 1's complement plus 1, a fact that can be used
in designing hardware

 Remember the 2’s complement of (000..00)2 is (000..00)2

 Complement of a complement restores the number to its original
value:

• The Complement of complement N = 2n – (2n – N) = N

Chapter 4 23

Alternate 2’s Complement Method

 Given: an n-bit binary number, beginning at the least
significant bit and proceeding upward:

• Copy all least significant 0’s

• Copy the first 1

• Complement all bits thereafter

 2’s Complement Example:

 10010100

• Copy underlined bits:

 100

• and complement bits to the left:

 01101100

Chapter 4 24

Subtraction with 2’s Complement

 For n-digit, unsigned numbers M and N, find M - N in
base 2:

• Add the 2's complement of the subtrahend N to the
minuend M:

 M – N M + (2n - N) = M - N + 2n

 If M  N, the sum produces end carry 2n which is discarded;
and from above, M - N remains

 If M < N, the sum does not produce end carry, and from
above, is equal to 2n - (N - M) which is the 2's complement
of (N - M)

 To obtain the result - (N – M) , take the 2's complement of
the sum and place a “-” to its left

Chapter 4 25

Unsigned 2’s Complement Subtraction Example:

(M > N)

 Find 010101002 – 010000112

 01010100 01010100

 – 01000011 + 10111101

 00010001

 The carry of 1 indicates that no correction of

the result is required

1

2’s comp

Chapter 4 26

Unsigned 2’s Complement Subtraction Example:

(M < N)

 Find 010000112 – 010101002

 01000011 01000011

 – 01010100 + 10101100

 11101111

 00010001

 The carry of 0 indicates that a correction of
the result is required

 Result = – (00010001)

0

2’s comp

2’s comp

Chapter 4 27

2’s Complement Adder/Subtractor for

Unsigned Numbers

 Subtraction can be done by addition of the 2's Complement

1. Complement each bit (1's Complement)

2. Add 1 to the result

 The circuit shown computes A + B and A – B:

 Subtract (S = 1): A – B = A + (2n – B) = A + 𝐵 + 1

• The 2’s complement of B is formed by using XORs to form the 1’s complement and

adding the 1 applied to C0

• If C4 = 1 (A ≥ B): correct result

• If C4 = 0 (A < B): result = 2n – (B – A)

 Use 2’s complement logic OR

 Use Adder/Subtractor again with:

• A = 0

• B = 2n – (B – A)

 Add (S = 0): A + B

• B is passed through unchanged

FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A 3 B2 A 2 B1 A 1 B0 A 0

Chapter 4 28

Signed Integers

 Positive numbers and zero can be represented by

unsigned n-digit, radix r numbers. We need a

representation for negative numbers

 To represent a sign (+ or –) we need exactly one more bit

of information (1 binary digit gives 21 = 2 elements which

is exactly what is needed).

 Since computers use binary numbers, by convention, the

most significant bit is interpreted as a sign bit:

 s an–2  a2a1a0

where:

 s = 0 for Positive numbers

 s = 1 for Negative numbers

and ai = 0 or 1 represent the magnitude in some form

Chapter 4 29

Signed Integer Representations

 Signed-Magnitude: here the (n – 1) digits are interpreted as a positive

magnitude

• Max = + (2n-1 – 1)

• Min = – (2n-1 – 1)

• Two representation for zero (i.e. ± 0)

 Signed-Complement: here the digits are interpreted as the rest of the

complement of the number. There are two possibilities here:

• Signed 1's Complement: Uses 1's Complement Arithmetic

 Max = + (2n-1 – 1)

 Min = – (2n-1 – 1)

 Two representation for zero (i.e. ± 0)

• Signed 2's Complement: Uses 2's Complement Arithmetic

 Max = + (2n-1 – 1)

 Min = – 2n-1

 Single representation for zero

Signed Integer Representation Example

 r = 2, n = 3

 Represent the number -9 using 8-bits

• Sign-Magnitude = 10001001

• 1’s complement = 11110110

• 2’s complement = 11110111

Chapter 4 30

Number Signed-Magnitude 1’s Complement 2’s Complement

+3 011 011 011

+2 010 010 010

+1 001 001 001

+0 000 000 000

-0 100 111 ----

-1 101 110 111

-2 110 101 110

-3 111 100 101

-4 ---- ---- 100

2’s Complement Signed Numbers

 Signed 2’s complement is the most common representation

for signed numbers

• Focus of the course

 For any n-bit 2’s complement signed number (bn-1bn-2bn-3

… b2b1b0), the decimal value is given by

𝑉𝑎𝑙𝑢𝑒 = −2𝑛−1 × 𝑏𝑛−1 + 2
𝑖 × 𝑏𝑖

𝑛−2

𝑖=0

 Example: What is value of the 2’s complement number

(100111)2?

𝑉𝑎𝑙𝑢𝑒 = −25 × 1 + 7 = −25

Chapter 4 31

Chapter 4 32

Signed-2’s Complement Arithmetic

 Addition:
• Add the numbers including the sign bits

• Discard the carry out of the sign bits

 Subtraction:
• Form the complement of the number you are subtracting

• Follow the same rules for addition

• 𝑨 − 𝑩 = 𝑨 + −𝑩 = 𝑨 + (𝑩 + 𝟏)

Signed 2’s Complement Addition

Chapter 4 33

 (+6) 00000110

+ +

 (+13) 00001101

 00010011 (+19)

 (-6) 11111010

+ +

 (+13) 00001101

 100000111 (+7)

Carry-out is ignored

 (+6) 00000110

+ +

 (-13) 11110011

 11111001 (-7)

 (-6) 11111010

+ +

 (-13) 11110011

 111101101 (-19)

Carry-out is ignored

Signed 2’s Complement Subtraction

Chapter 4 34

 (+6) 00000110

- +

 (+13) 11110011

 11111001 (-7)

 (-6) 11111010

- +

 (+13) 11110011

 111101101 (-19)

Carry-out is ignored

 (+6) 00000110

- +

 (-13) 00001101

 00010011 (+19)

 (-6) 11111010

- +

 (-13) 00001101

 100000111 (+7)

Carry-out is ignored

Chapter 4 35

2’s Complement Adder/Subtractor for

Signed Numbers

 Subtraction can be done by addition of the 2's Complement

1. Complement each bit (1's Complement)

2. Add 1 to the result

 The circuit shown computes A + B and A – B:

 Subtract (S = 1): A – B = A + (2n – B) = A + 𝐵 + 1

• The 2’s complement of B is formed by using XORs to form the 1’s complement and

adding the 1 applied to C0

 Add (S = 0): A + B

• B is passed through unchanged

 Same Hardware for Signed

and Unsigned numbers

FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A 3 B2 A 2 B1 A 1 B0 A 0

Chapter 4 36

Overflow Detection

 In computers, the number of bits is fixed

 Overflow occurs if n + 1 bits are required to contain the result from an

n-bit addition or subtraction

 Unsigned number overflow is detected from the end carry-out when

adding two unsigned numbers

• Overflow is impossible for unsigned subtraction

 Signed number overflow can occur for:

• Addition of two operands with the same sign

• Subtraction of operands with different signs

 (8) 1000

+ +

 (12) 1100

 10100 (4)

Carry-out = 1  Overflow

Chapter 4 37

Signed-number Overflow Detection

 Signed number cases with carries Cn and Cn-1 shown for correct

result signs:

 0 0 0 0 1 1 1 1

 0 0 1 1

 + 0 - 1 - 0 + 1

 0 0 1 1

 Signed number cases with carries shown for erroneous result signs

(indicating overflow):

 0 1 0 1 1 0 1 0

 0 0 1 1

 + 0 - 1 -0 + 1

 1 1 0 0

 Simplest way to implement signed overflow is: V = Cn ⊕ Cn - 1

Signed-number Overflow Examples

 8-bit signed number range between: -128 to +127

Chapter 4 38

 (+70) 01000110

+ +

 (+80) 01010000

 10010110 (-106)

𝑉 = 𝐶7⨁𝐶8 = 1⨁0 = 1

 (-70) 10111010

+ +

 (-80) 10110000

 101101010 (+106)

𝑉 = 𝐶7⨁𝐶8 = 0⨁1 = 1

 (+70) 01000110

- +

 (-80) 01010000

 10010110 (-106)

𝑉 = 𝐶7⨁𝐶8 = 1⨁0 = 1

 (-70) 10111010

- +

 (+80) 10110000

 101101010 (+106)

𝑉 = 𝐶7⨁𝐶8 = 0⨁1 = 1

Chapter 4 39

Other Arithmetic Functions

 Incrementing

 Decrementing

 Multiplication by Constant

 Division by Constant

 Zero Fill and Extension

Incrementer and Decrementer

 Start with Adder/Subtractor

 Set 𝐵3𝐵2𝐵1𝐵0 = 0001

 For Incrementer  Set 𝑆 = 0

 For Decrementer  Set 𝑆 = 1

 For Incrementer/Decrementer  S remains variable

• In this case, the full adder complexity stays the same in the typical

bit positions (i.e. Cell1 and Cell2)

Chapter 4 40

FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A 3 B2 A 2 B1 A 1 B0 A 0

Binary Multiplication

The binary multiplication table is simple:

0  0 = 0 | 1  0 = 0 | 0  1 = 0 | 1  1 = 1

Extending multiplication to multiple digits:

Multiplicand 1011

Multiplier x 101

Partial Products 1011

 0000 -

 1011 - -

Product 110111

Chapter 4 41

Binary Division

Chapter 4 42

Chapter 4 43

Multiplication/Division by 2n

 Multiplication by 2𝑛: Shift left by n

• Add n-zeros on the left

 Division by 2𝑛: Shift right by n

• Add n-zeros on the right

 Multiplication by (100)2

• Shift left by 2

 Division by (100)2

• Shift right by 2

• Quotient = 𝑪𝟑𝑪𝟐𝑪𝟏𝑪𝟎

• Remainder = 𝑪−𝟏𝑪−𝟐

B 0
B 1

B 2
B 3

C 0
C 1

0 0

C 2
C 3

C 4
C 5

(a)

B 0
B 1

B 2
B 3

C 0
C -1

C -2
C 1

C 2

0 0

C 3

(b)

Chapter 4 44

Multiplication by a Constant

 Multiplication of B(3:0) by 101

 See text Figure 4-10 in page 171 for contraction

B 1
B 2

B 3
0 0 B 0

B 1
B 2

B 3

Carry

output

4-bit Adder

Sum

B 0

C 0
C 1

C 2
C 3

C 4
C 5

C 6

Chapter 4 45

Zero Fill

 Zero fill: filling an m-bit operand with 0s to

become an n-bit operand with n > m

 Filling usually is applied to the MSB end of

the operand, but can also be done on the

LSB end

 Example: 11110101 filled to 16 bits

• MSB end: 0000000011110101 (Zero Extension)

• LSB end: 1111010100000000

Chapter 4 46

Extension

 Extension: increase in the number of bits at the

MSB end of an operand by using a complement

representation

• Copies the MSB of the operand into the new

positions

• Positive operand example - 01110101 extended to 16

bits:

 0000000001110101

• Negative operand example - 11110101 extended to 16

bits:

 1111111111110101

Hexadecimal, Octal, BCD Addition

 Hexadecimal and Octal Addition:

• Add each digit then take modulus (r)

 BCD Addition:

• Add each 4-bit together

 If the binary sum is

greater than 1001

• Add 0110 to the result

Chapter 4 47

 (59F)16

+

(E46)16

 (13E5)16

 (762)8

+

(345)8

 (1327)8

(448)10 (0100 0100 1000)BCD

+ +

(489)10 (0100 1000 1001)BCD

(937)10 1001 110110001

 + 0110 0110

 10011001110111

Chapter 4 48

Terms of Use

 All (or portions) of this material © 2008 by Pearson
Education, Inc.

 Permission is given to incorporate this material or
adaptations thereof into classroom presentations and
handouts to instructors in courses adopting the latest
edition of Logic and Computer Design Fundamentals as
the course textbook.

 These materials or adaptations thereof are not to be
sold or otherwise offered for consideration.

 This Terms of Use slide or page is to be included within
the original materials or any adaptations thereof.

Charles Kime & Thomas Kaminski

© 2008 Pearson Education, Inc.
(Hyperlinks are active in View Show mode)

Chapter 5 – Sequential

Circuits

Part 1 – Storage Elements and Sequential

Circuit Analysis

Logic and Computer Design Fundamentals

Updated based on Dr. Fahed Jubair slides

Chapter 5 - Part 1 2

Overview

 Part 1 - Storage Elements and Analysis

• Introduction to sequential circuits

• Types of sequential circuits

• Storage elements

 Latches

 Flip-flops

• Sequential circuit analysis

 State tables

 State diagrams

 Equivalent states

 Moore and Mealy Models

 Part 2 - Sequential Circuit Design

Chapter 5 - Part 1 3

Introduction to Sequential Circuits

 A Sequential circuit contains:

• Storage elements:
 Latches or Flip-Flops

• Combinational Logic:
 Implements a multiple-output switching

function

 Inputs are signals from the outside

 Outputs are signals to the outside

 Other inputs, State or Present State, are signals from storage
elements

 The remaining outputs, Next State are inputs to storage elements

Combina-

tional

LogicStorage

Elements

Inputs
Outputs

State

Next

State

Chapter 5 - Part 1 4

 Combinatorial Logic

• Next state function

Next State = f(Inputs, State)

OR Next State = f(State)

• Output function (Mealy)

Outputs = g(Inputs, State)

• Output function (Moore)

Outputs = g(State)

 Output function type depends on specification and affects

the design significantly

Combina-

tional

Logic
Storage

Elements

Inputs Outputs

State

Next

State

Introduction to Sequential Circuits

Chapter 5 - Part 1 5

Types of Sequential Circuits

 Depends on the times at which:

• storage elements observe their inputs, and

• storage elements change their state

 Synchronous

• Behavior defined from knowledge of its signals at discrete
instances of time

• Storage elements observe inputs and can change state only in
relation to a timing signal (clock pulses from a clock)

• Simple to design but slow

 Asynchronous

• Behavior defined from knowledge of inputs at any instant of time
and the order in continuous time in which inputs change

• Complex to design but fast

Chapter 5 - Part 1 6

Storage Elements

 Any storage element can maintain a binary state

indefinitely (as long as the power is on) until directed by

the input signals to switch

 Storage elements: Latches and Flip-flops (FFs)

 Latches and FFs differ in:

• Number of inputs

• Manner in which the inputs affect the binary state

 Latch:

• Asynchronous

• Although difficult to design, we discuss latches first because they

are the building blocks for flip-flops

Chapter 5 - Part 1 7

Basic (NOR) SR Latch

 Cross-coupling two NOR gates

 Time sequence

behavior:

 S = 1, R = 1 is

forbidden as

input pattern

S (set)

R (reset)
Q

Q

R S Q Q Comment

0 0 ? ? Stored state unknown

0 1 1 0 “Set” Q to 1

0 0 1 0 Now Q “remembers” 1

1 0 0 1 “Reset” Q to 0

0 0 0 1 Now Q “remembers” 0

1 1 0 0 Both go low

0 0 ? ? Unstable!

Time

R S Q Comment

0 0 Q Hold, no change

0 1 1 0 Set

1 0 0 1 Reset

1 1 0 0 Not allowed

Chapter 5 - Part 1 8

S

R

SR

Timing Waveform of NOR SR Latch

Chapter 5 - Part 1 9

Q Q Comment

1 1 ? ? Stored state unknown

1 0 1 0 “Set” Q to 1

1 1 1 0 Now Q “remembers” 1

0 1 0 1 “Reset” Q to 0

1 1 0 1 Now Q “remembers” 0

0 0 1 1 Both go high

1 1 ? ? Unstable!

Time

Q

Q

Q Comment

0 0 1 1 Not allowed

0 1 0 1 Reset

1 0 1 0 Set

1 1 Q Hold, no change

Chapter 5 - Part 1 10

SR

S

R

C

Clocked SR Latch (Pulse-triggered Latch)



S

R

Q

C

Q

C R S Q Comment

0 x x Q Hold, no change

1 0 0 Q Hold, no change

1 0 1 1 0 Set

1 1 0 0 1 Reset

1 1 1 Not allowed

Chapter 5 - Part 1 11

Clocked SR Latch (continued)

 The Clocked SR Latch can be described by a table:

 The table describes

what happens after the

clock [at time (t+1)]

based on:

• current inputs (S,R) and

• current state Q(t)

Q(t) S R Q(t+1) Comment

0 0 0 0 No change

0 0 1 0 Clear Q

0 1 0 1 Set Q

0 1 1 ??? Indeterminate

1 0 0 1 No change

1 0 1 0 Clear Q

1 1 0 1 Set Q

1 1 1 ??? Indeterminate

S

R

Q

Q

C

Chapter 5 - Part 1 12

S

R

Clocked SR

C

D Latch

 Adding an inverter

to the S-R Latch,

gives the D Latch:

 Note that there are

no “indeterminate”

states! The graphic symbol for a

D Latch is:

C

D Q

Q

D
Q

C

Q

C D Q Comment

0 x Q Hold, no change

1 0 0 1 Reset

1 1 1 0 Set

Chapter 5 - Part 1 13

Variations of Clocked SR and D Latches

Chapter 5 - Part 1 14

C

D Q

Q C

D Q

Q

+ve pulse-triggered D

latch

-ve pulse-triggered D

latch

C

S Q

Q

C

S Q

Q

+ve pulse-triggered SR latch -ve pulse-triggered SR

latch

R R

C = 0  Hold

C = 1  Change

C = 0  Change

C = 1  Hold

Flip-Flops

Master-slave flip-flop

 Edge-triggered flip-flop

 Standard symbols for storage elements

 Direct inputs to flip-flops

Chapter 5 - Part 1 15

 Consists of two clocked

SR latches in series

with the clock on the

second latch inverted

 The input is observed by the first latch with C = 1

 The output is changed by the second latch with C = 0

 The path from input to output is broken by the

difference in clocking values (C = 1 and C = 0)

C

S

R

Q

Q

C

R

Q

Q

C

S

R

QS

Q

SR Master-Slave Flip-Flop

M
a

st
er

S
la

v
e

Y

Chapter 5 - Part 1 16

Timing diagram for SR Master-Slave Flip-Flop

C

S

R

Y

Q
Slave out

Master out

Master

active

Slave

active

0

0

C

S

R

Q

Q

Q

Q

C

R

Q

Q

C

S

R

S
Y

Y’

Chapter 5 - Part 1 17

Master-Slave Flip-Flop Problem

 S and/or R are permitted to change while C = 1

• Chances of 0s or 1s catching

C

S

R

Y

Q

Slave out

Master out

Master

active

Slave

active
1s catching

wrong output

should have been 0

Chapter 5 - Part 1 18

0s Catching

C

S

R

Y

Q

Slave out

Master out

Master

active

Slave

active
0s catching

wrong output

should have been 1

Chapter 5 - Part 1 19

Flip-Flop Solution

 Use edge-triggering instead of master-slave

 An edge-triggered flip-flop ignores the pulse

while it is at a constant level and triggers only

during a transition of the clock signal

 Edge-triggered flip-flops can be built directly at

the electronic circuit level, or

 A master-slave D flip-flop which also exhibits

edge-triggered behavior can be used

Chapter 5 - Part 1 20

Edge-Triggered D Flip-Flop

 The edge-triggered D flip-flop is the same as the

master-slave D flip-flop

 It can be formed by:

• Replacing the first clocked SR latch with a clocked D latch or

• Adding a D input and inverter to a master-slave SR flip-flop

 The 1s and 0s catching behaviors are not present with D

replacing S and R inputs

 The change of the D flip-flop output is associated with the

negative edge at the end of the pulse

 It is called a negative-edge triggered flip-flop

C

S

R

Q

Q
C

Q

QC

D
QD

Q

Chapter 5 - Part 1 21

No 1s catching in the edge-triggered D Flip-

Flops

C

S

R

Q

Q
C

Q

QC

D
QD

Q

C

D

Y

Q

Slave out

Master out

Master

active

Slave

active no 1s catching

correct output

Y

Chapter 5 - Part 1 22

Positive-Edge Triggered D Flip-Flop

 Formed by

adding inverter

to clock input

 Q changes to the value on D applied at the

positive clock edge

 Our choice as the standard flip-flop for most

sequential circuits

C

S

R

Q

Q
C

Q

QC

D QD

Q

Chapter 5 - Part 1 23

 Latches:

 Master-Slave:

Postponed output

indicators

 Edge-Triggered:

Dynamic

indicator

D with 0 Control

Triggered D

(a) Latches

S

R

SR SR

S

R

D

C

D with 1 Control

D

C

(b) Master-Slave Flip-Flops

D

C

Triggered DTriggered SR

S

R

C

D

C

Triggered SR

S

R

C

(c) Edge-Triggered Flip-Flops

Triggered D

D

C

Triggered D

D

C

Standard Symbols for Storage

Elements

Master active when C = 1

Slave active when C = 0

Master active when C = 0

Slave active when C = 1

Chapter 5 - Part 1 24

Direct Inputs

 At power up or at reset, all or part

of a sequential circuit usually is

initialized to a known state before

it begins operation

 This initialization is often done

outside of the clocked behavior

of the circuit, i.e., asynchronously

 Direct R and/or S inputs that control the state of the

latches within the flip-flops are used for this

initialization

 For the example flip-flop shown

• 0 applied to R resets the flip-flop to the 0 state

• 0 applied to S sets the flip-flop to the 1 state

D

C

S

R

Q

Q

Chapter 5 - Part 1 25

26

Direct inputs

 D flip-flop with active-low direct inputs :

 Active high direct inputs:

D

C

S

R

Q

Q

D

C

S

R

Q

Q

S R C D Q Q’

0 1 x x 1 0

1 0 x x 0 1

1 1 0 0 1

1 1 1 1 0

S R C D Q Q’

0 1 x x 0 1

1 0 x x 1 0

0 0 0 0 1

0 0 1 1 0

Direct

inputs

27

Timing diagram of A SR Master-Slave Flip-Flop

C

Slave out

Master

active

Y

Master out

Q

S

C

R

Q

Q

S

R

Slave

active
Master

active

Y’

C

S

R

Q

Q

Q

Q

C

R

Q

Q

S
Y

Y’

S

R

C=

undefined

undefined

undefined

28

Sections 5.4, 5.5, and 5.6 courtesy Dr. Fahed Jubair

29

5-4 Sequential Circuit Analysis

 Consider the following circuit:

C

D Q

Q’

C

D Q

Q'

y

x
A

A

B

CLK

What does it do?

How do the outputs

change when an

input arrives?

input

s
ta

te
s

output

30

Sequential Circuit Model

 General Model
• Current or Present State at time (t) is stored in an

array of flip-flops.

• Next State is a Boolean function of State and
Inputs.

• Outputs at time (t) are a Boolean function of State
(t) and (if Mealy model) Inputs (t).

Combina-

tional

Logic Storage (D

Flip-flops)

Inputs

State

(or current state)

Next

State

OutputsComb.

logic

CLOCK

Mealy

31

Previous Example (from Fig. 5-15)

 Input: X

 Output: Y

 State: (A(t), B(t))

Example: (AB)= (01), (10)

 Next State:

(DA(t), DB(t))

= (A(t+1), B(t+1))

C

D Q

Q’

C

D Q

Q'

y

x
A

A

B

CLK

Output logic

Next State

DA

DB

Is this a Moore or Mealy machine?

Comb. Input logic

P
re

s
e
n

t s
ta

te

32

Steps for Analyzing a Sequential Circuit

1. Find the input equations (DA, DB) to

the flip-flops (next state equations)

and the output equation.

2. Derive the State Table (describes the

behavior of a sequential circuit).

3. Draw the State Diagram (graphical

description of the behavior of the

sequential circuit).

4. Simulation

33

Step 1: Input and output equations

 Boolean equations for the

inputs to the flip flops:

• DA = AX + BX

• DB = A X

 Output Y

• Y = X (A + B)

 Also can be written as

• A(t+1) = DA = A(t) X + B(t) X

• B(t+1) = DB = A(t) X

• Y = X (A(t) + B(t))

C

D Q

Q’

C

D Q

Q'

y

x
A

A

B

CLK

Next State

Output

DA

DB

P
re

s
e
n

t s
ta

te

34

Step 2: State Table

 The state table: shows what the next state
and the output will be as a function of the

present state and the input:

 The State Table can be considered a truth

table defining the combinational circuits:

• the inputs are Present State and Input,

• and the outputs are Next State and Output

Present State Input Next State Output

Inputs of the combinational circuit Outputs of the table

35

State Table For The Example

 For the example: A(t+1) = A(t) x + B(t) x

B(t+1) = A’(t) x

Y(t) = X’ (B(t) + A(t))

Present State Input Next State Output

A(t) B(t) X A(t+1) B(t+1) Y

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

2
3
ro

w
s

(2
m

+
n
)

ro
w

s

m: no. of flip-flops

n: no. of inputs

Inputs of the table Outputs of the table

0 0 0

0 1 0

0 0 1

1 1 0

0 0 1

1 0 0

0 0 1

1 0 0

36

Alternate State Table

 The previous (1-dimensional table) can become quite lengthy

with 2m+n rows (m=no. of flip-flops; n=no. of inputs)

 Alternatively, a 2-dimensional table has the present state in the

left column and inputs across the top row

• A(t+1) = A(t) X + B(t) X

• B(t+1) =A’(t) X

• Y = X’ (B(t) + A(t))

0 0 0 1

0 0 1 1

0 0 1 0

0 0 1 0

0 0

1 0

1 0

1 0

Present

State

Next State

X = 0 X = 1

Output

X=0 X=1

A(t) B(t) A(t+1) B(t+1) A(t+1) B(t+1) Y Y

0 0

0 1

1 0

1 1

2m

37

Step 3: State Diagrams

 The sequential circuit function can be
represented in graphical form as a state
diagram with the following components:
• A circle with the state name in it for each state

• A directed arc from the Present State to the Next
State for each state transition

• A label on each directed arc with the Input values
which causes the state transition, and

• A label:

 In each circle with the output value produced,
or

 On each directed arc with the output value
produced.

State

State

In/out

State

out

in

in

38

State Diagram Convention

Moore Machine:

State

out

in

Moore type output depends

only on state

to next

state

01

1

1

Mealy Machine:

Mealy type output depends

on state and input

State

In/out

01

x=1/y=0

AB

y

x

Example:

01

x/y’

39

State Diagram For The Example

 Graphical representation of the state table:

A B

0 0

0 1 1 1

1 0

x=0/y=1 x=1/y=0

x=1/y=0

x=0/y=1

x=0/y=1

x=1/y=0

Present State Input Next State Output

A(t) B(t) x(t) A(t+1) B(t+1) y(t)

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 1 1 0 0

1 1 0 0 0 1

1 1 1 1 0 0

x=0/y=0

x=1/y=0

40

Step 4: Simulation

 Two types:

• Functional simulation: objective is to verify the

functionality of the circuit

• Timing simulation: objective is to perform a

more realistic testing (with gate delays counted)

 More about this step in the lab

(CPE0907234)

41

Example2



42

Example2 Cont.

 State Table:

 State Diagram:

Preset

State

A(t)

Next State

ZXY = 00 XY = 01 XY = 10 XY = 11

A(t+1) A(t+1) A(t+1) A(t+1)

0 0 1 1 0 0

1 1 0 0 1 1

0/0 1/1

01,10

01,10

00,11 00,11

43

Example3



C

D Q

Q’

C

D Q

Q'

y

x
A

A

B

CLK B

44

Example3 Cont.

 State Table:

 State Diagram:

Preset

State

A(t) B(t)

Next State Output

X = 0 X = 1 X = 0 X = 1

A(t+1) B(t+1) A(t+1) B(t+1) Y Y

0 0 0 0 1 0 0 1

0 1 1 1 0 1 1 1

1 0 1 1 1 1 1 1

1 1 0 0 0 0 1 1

000/0

01

10

11

1/1

1/1
0/1

0/1, 1/1

0/1, 1/1

45

Example4



46

Example4 Cont.

 State Table

 State Diagram:

Present State

QA QB

Input

X
SA RA SB RB

Next State

QA(t+1) QB(t+1)

Output

Y

0 0 0 0 1 0 1 0 0 0

0 0 1 1 0 0 1 1 0 1

0 1 0 0 1 0 1 0 0 0

0 1 1 1 0 0 1 1 0 1

1 0 0 0 1 1 0 0 1 1

1 0 1 0 1 1 0 0 1 1

1 1 0 0 1 0 1 0 0 0

1 1 1 0 1 0 1 0 0 1

000/0

01

10

11

1/1

0/0

0/0, 1/1

0/0, 1/1

1/1

0/1, 1/1

47

Equivalent State Definitions

 Two states are equivalent if their

response for each possible input

sequence is an identical output

sequence.

 Alternatively, two states are equivalent if

their outputs produced for each input

symbol is identical and their next states

for each input symbol are the same or

equivalent.

48

Equivalent State Example

 Consider the following state diagram:

 Which states are equivalent?

S2 S3

1/0
0/1

1/0

0/0

S0 S1

1/0

0/1

1/0

0/1

49

Equivalent State Example

 Equivalent states in the state diagram:

 For states S2 and S3,
• the output for input

0 is 1 and the for input 1,

the output is 0

• the next state for input
0 is S0 and for input
1 is S2.

• By the alternative definition, states S2 and S3 are
equivalent.

S2 S3

1/0
0/1

1/0

0/0

S0 S1

1/0

0/1

1/0

0/1

50

Equivalent State Example

 Replacing S2 and S3 by a single state gives

state diagram:

S2

1/0

0/0

S0 S1

1/0

0/1

1/0

0/1

S2 S3

1/0
0/1

1/0

0

S0/0 S1

1/0

0/1

1

0/1

51

Equivalent State Example

 Are there other equivalent states?

 Examining the new diagram,
states S1 and S2 are equivalent since

• their outputs for input
0 is 1 and input 1 is 0,
and

• their next state for input
0 is both S0 and for input
1 is both S2,

 Replacing S1 and S2 by a
single state gives state
diagram:

S2

1/0

0/0

S0 S1

1/0

0/1

1/0

0/1

0/0

S0 S1

1/0

0/1

1/0

52

Exercise: Derive the state diagram of the

following Circuit

 Logic Diagram:

Clock

Reset

D

QC

Q

R

D

QC

Q

R

D

QC

Q

R

A

B

C

Z

Moore or Mealy?

What is the reset state?

•

•

5V

53

Step1: Flip-Flop Input Equations

 Variables

• Inputs: None

• Outputs: Z

• State Variables: A, B, C

 Initialization: Reset to (0,0,0)

 Equations

• A(t+1) = BC Z = A

• B(t+1) = B’C + BC’= B  C

• C(t+1) = A’C’

54

Step 2: State Table

A B C A+ B+ C+ Z

0 0 0 0 0 1 0

0 0 1 0 1 0 0

0 1 0 0 1 1 0

0 1 1 1 0 0 0

1 0 0 0 0 0 1

1 0 1 0 1 0 1

1 1 0 0 1 0 1

1 1 1 1 0 0 1

A(t+1) = BC Z = A

B(t+1) = B’C + BC’ =

BC

C(t+1) = A’C’

55

Step 3: State Diagram

 Are all states used? Which ones?

A B C A+B+ C+ Z

0 0 0 0 0 1 0

0 0 1 0 1 0 0

0 1 0 0 1 1 0

0 1 1 1 0 0 0

1 0 0 0 0 0 1

1 0 1 0 1 0 1

1 1 0 0 1 0 1

1 1 1 1 0 0 1

Start from the reset state

000

0

Reset

000

011 010

001100

101

110

111

Reset
ABC

0

0

00

11

1

1

56

5-5 Sequential Circuit Design

Idea,

New product

Specification

DA

DB

Comb.

Crct.

O

U

T

IN?

•Word description

State Diagram

•State Table

•Select type of Flip-flop

•Input equations to FF, output eq.

•Verification

State encoding

Design

procedure

57

Specification

 Component Forms of Specification

• Written description

• Mathematical description

• Hardware description language

• Tabular description

• Equation description

• Diagram describing operation (not just structure)

58

Formulation: Finding a State

Diagram
 In specifying a circuit, we use states to remember

meaningful properties of past input sequences that
are essential to predicting future output values.

 As an example, a sequence recognizer is a
sequential circuit that produces a distinct output value
whenever a prescribed pattern of input symbols occur
in sequence, i.e, recognizes an input sequence
occurrence.

 Next, the state diagram, will be converted to a state
table from which the circuit will be designed.

59

Sequence Detector Example: 1101

X

CLK

Z

Input X:

Output Z: 00000000001000010010000000100

?

Mealy machine

Overlapping sequences are allowed

00111001101011011010011110111
1 1 1 1

60

Step2: Finding A State Diagram

 Define states for the sequence to be recognized:

• assuming it starts with first symbol X=1,

• continues through the right sequence to be recognized, and

• uses output 1 to mean the full sequence has occurred,

• with output 0 otherwise.

 Starting in the initial state (named “S0"):

• Add a state that recognizes
the first "1.“

• State “S0" is the initial state, and state “S1" is the state which
represents the fact that the "first" one in the input subsequence has
occurred. The first “1” occurred while being in state S0 during the
clock edge.

S0 S1

1/0

outputinputReset

61

Finding a State Diagram(cont.)

 Assume that the 2nd 1 arrives of the sequence
1101: needs to be remembered: add a state
S2

 Next, a “0” arrives: part of the sequence 1101
that needs to be remembered; add state S3

 The next input is “1” which is part of the right
sequence 1101; now output Z=1

S0 S1

1/0

…1

S2

1/0

…11

0/0
S3

…110

1/1 ?

62

Completing The State Diagram

 Where does the final arrow go to:

• The final 1 of the sequence 1101 can be

the beginning of another sequence; thus

the arrow should go to state S1

?S0 S1

1/0

…1

S2

1/0

…11

0/0
S3

…110

1/1

63

Completing The State Diagram

 Start is state S0: assume an input X=0
arrives; what is the next state?

 Next, consider state S1: input X=0; next
state?

 Next state S2 and S3: completes the diagram

 Each state should have two arrows leaving

S0 S1

1/0

…1

S2

1/0

…11

0/0
S3

…110

1/1

0/0
…0

0/0

0/0

1/0

64

Deriving State Table

Present

State

Next State

x=0 x=1

Output

x=0 x=1

0 0

0 0

0 0

0 1

S0 S0 S1

S1 S0 S2

S2 S3 S2

S3 S0 S1

S0 S1

1/0

…1

S2

1/0

…11

0/0
S3

…110

1/1

0/0
…0

0/0

0/0

1/0

65

Step 3: State Assignment

 Right now States have names such as S0, S1, S2 and

S3

 In actuality these state need to be represented by the

outputs of the flip-flops.

 We need to assign each state to a certain output

combination AB of the flip-flops:

• e.g. State S0=00, S1=01, S2=10, S3=11

• Other combinations are possible: S0=00, S1=10, S2=11,

S3=01

Combina-

tional

Circuit Storage

(D Flip-

flops)

External

Inputs

State

Next

State

Comb.

crct

CLOCK

Present

state

66

 1. Counting order assignment:
• 00, 01, 10, 11

 2. Gray code assignment:

• 00, 01, 11, 10

 3. One-hot state assignment

• 0001, 0010, 0100, 1000

 Does state assignment make a

difference in cost?

Popular State Assignments

67

“Counting Order” Assignment:

State Assignment: Counting order

Present

State

A B

Next State

x = 0 x = 1
A+ B+ A+ B+

Output

x = 0 x = 1

Z Z

0 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0

1 0 1 1 1 0 0 0

1 1 0 0 0 1 0 1

Present

State

Next State

x=0 x=1

Output

x=0 x=1

0 0

0 0

0 0

0 1

S0 S0 S1

S1 S0 S2

S2 S3 S2

S3 S0 S1Resulting coded state table:

S0 = 0 0

S1 = 0 1

S2 = 1 0

S3 = 1 1

State Table:

68

Step 4: Find Flip-Flop Input and Output Equations

Idea,

New product

Specification

DA

DB

Comb.

Crct.

O

U

T

IN

•State Diagram

•State Table

•Select type of Flip-flop

•Input equations to FF, output eq.

•Verification

State encoding

A

B

Next state A+ and B+

69

Find Flip-Flop Input and Output Equations:

Example – Counting Order Assignment

1

0

00

00

1

1

 Using D flip-flops: thus DA=A+,

DB=B+(the state table is the truth table

for DA and DB).

 Interchange the bottom two rows of

the state table, to obtain K-maps for

DA, DB, and Z:

Present

State

Next State

x = 0 x = 1

Output

x = 0 x = 1

AB A+ B+ A+ B+ Z Z

0 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0

1 0 1 1 1 0 0 0

1 1 0 0 0 1 0 1

DA = AB + XAB
DB = XAB + XAB + XAB

Z = XAB

Gate Input Cost = 22
B

A

XDA

0

0

10

10

0

1

B

A

XDB

70

Step 5: Verification

 We will learn software tools for verifying

the functionality of sequential circuits in the

lab (CPE0907234)

71

Moore model for Sequence Recognizer “1101”

 State Assignment:

• Counting order (3 Flip-flops):

 A = 000, B = 001, C = 010,

D = 011, E = 100

• Gray code (3 Flip-flops):

 A = 000, B = 001, C = 011,

D = 010, E = 110

• One hot (5 Flip-flops):

 A = 00001, B = 00010, C = 00100,

D = 01000, E = 10000

A/0 B/0
1

…1

C/0
1

…11

0
D/0

…110

1
0

…0
0

0

1

E/1

…11011

0

Present

State

Next State
Output

X = 0 X = 1

A A B 0

B A C 0

C D C 0

D A E 0

E A C 1

72

Exercise

 Use D Flip-Flops design a counter that counts

00,01,10,11,00,01,10,11, ..etc.

 The counter also has an input x such that the counter pauses if x=0 and

proceeds to the next state if x=1.

00 01
1

10
1 1

110

0

1

0 0
Present

State

Q1Q0

Next State

X = 0

Q1
+Q0

+

X = 1

Q1
+Q0

+

00 00 01

01 01 10

10 10 11

11 11 00

X

Q1

10 2

4

3

5 67
1

11

Q
0

1

X

Q1

10 2

4

3

5 67
1

11

Q
0

1

Q0
+

Q1
+

73

Unused States in Sequential Circuits Design

 Unused states are states which the system cannot enter

under normal operation.

 The system can enter an unused state due to:

• Outside interference OR

• Malfunction

 Three ways to accommodate unused states:

• Assume the next state for the unused state to be don’t care

• Force the next state for the unused state to be one of the used states

• Include a special output to indicate that the present state is unused.

This output can change the state asynchronously through direct

inputs of the state flip-flops

74

Exercise

 Use D-FFs to design the sequential circuit that

implements the following state table. Note that

there are three unused states (000, 110 and 111).

75

Solution

 Asynchronously change the state to “011”

0 1 3 2

4 5

1

7

1

6

12 13 15 14

8

1

9

1

11

1

10

0 1 3

1

2

4

1

5 7 6

12 13 15 14

8 9 11 10

0 1 3 2

1

4

1

5 7 6

1

12 13 15 14

8

1

9 11 10

1

A B
D D

C
R

C
R

C
D

C
R

SSS
A
B
C

A
B
C

A
B
C

F

F F

F

76

5-6 Other Flip-Flop Types

 J-K and T flip-flops

• Behavior

• Implementation

 Basic descriptors for understanding and

using different flip-flop types

• Characteristic tables

 Defines the next state as a function of the

present state and input

• Characteristic equations

• Excitation tables

77

J-K Flip-flop

 Behavior of JK flip-flop:

• Same as S-R flip-flop with J

analogous to S and K

analogous to R

• Except that J = K = 1 is

allowed, and

• For J = K = 1, the flip-flop

changes to the opposite
state (toggle)

 Behavior described by

the characteristic table
(function table):

J

C

K

Q

J K Q(t+1)

0 0 Q(t) no change

0 1 0 reset

1 0 1 set

1 1 Q(t) toggle

78

Design of an edge-triggered

J-K Flip-Flop
State table of a JK FF:

Q J K Q(t+1)

Present Inputs Next

state state

0

0

1

1

1

0

1

0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Q

J

K

Q(t+1)=DA

0 0 1 1

1 0 0 1

Q(t+1)= DA=JQ’ + K’Q
Called the characteristic equation

D

C
K

J

79

J-K Flip-Flop Excitation Table

80

T Flip-Flop

 Behavior described

by its characteristic

table:

• Has a single input T

 For T = 0, no change

to state

 For T = 1, changes to

opposite state

 Same as a J-K flip-

flop with J = K = T

Characteristic equation:

Q(t+1)=T’Q(t) + TQ’(t)

= TQ(t)

T

C

T Q(t+1)

0 Q(t) no change

1 Q(t) complement

81

T Flip-Flop Realization

 Using a D Flip-flop: D=TQ(t)

 Cannot be initialized to a known state

using the T input

• Reset (asynchronous or synchronous)

essential

C

D
T

82

T Flip-Flop Excitation Table

83

Flip-Flops Characteristics

• Characteristic table - defines the next state
of the flip-flop in terms of flip-flop inputs
and current state

• Characteristic equation - defines the next
state of the flip-flop as a Boolean function
of the flip-flop inputs and the current state.

• Excitation table - defines the flip-flop input
variable values as function of the current
state and next state. In other words, the table
tells us what input is needed to cause a transition
from the current state to a specific next state.

F
o
r

a
n

a
ly

s
is

F
o
r

d
e

s
ig

n

84

D Flip-Flop Descriptors

 Characteristic Table

 Characteristic Equation

Q(t+1) = D

 Excitation Table

D

0
1

Operation

Reset
Set

0
1

Q(t 1)+

Q(t +1)

0
1

0
1

D Operation

Reset
Set

85

S-R Flip-Flop Descriptors

 Characteristic Table

 Characteristic Equation

Q(t+1) = S + R Q, S.R = 0

 Excitation Table

0

0

1

1

OperationS

0

1

0

1

R

No change

Reset

Set

Undefined

0

1

?

Q(t+1)

Q(t)

Operation

No change

Set

Reset

No change

S

X

0

1

0

Q(t+1)

0

1

1

0

Q(t)

0

0

1

1

R

X

0

1

0

86

Flip-flop Behavior Example

 Use the characteristic tables to find the output waveforms for

the flip-flops shown:

T

C

Clock

D,T

QD

QT

D

C

87

Flip-Flop Behavior Example

(continued)
 Use the characteristic tables to find the output waveforms for

the flip-flops shown:

J
C

K

S
C
R

Clock

S,J

QSR

QJK

R,K

?

88

Exercise: Find State Diagram

T

C

Q

T

C

Q

T

C

Q

Reset

C

A

B

y

A

B

C

Clock

89

Present state Next State Y

A B C TA TB TC A+ B+ C+ y

0 0 0 1 0 1 1 0 1 0

0 0 1 0 0 1 0 0 0 1

0 1 0 1 0 0 1 1 0 1

0 1 1 0 0 0 0 1 1 0

1 0 0 1 1 1 0 1 1 1

1 0 1 0 1 1 1 1 0 0

1 1 0 1 1 0 0 0 0 0

1 1 1 0 1 0 1 0 1 1

90

000

0

001

1

010

1

011

0

100

1

101

0

110

0

111

1

91

92

Exercise: Find State Diagram

clock

A

B y

J

K

Q

k

Q
A

J
B

X

X

93

Present state Next State Y

A B X JA KA JB KB A+ B+ y

0 0 0 0 0 0 1 0 0 1

0 0 1 0 0 0 1 0 0 1

0 1 0 0 0 0 1 0 0 0

0 1 1 0 1 0 1 0 0 0

1 0 0 0 0 1 0 1 1 1

1 0 1 1 0 1 0 1 1 1

1 1 0 0 0 1 0 1 1 0

1 1 1 1 1 1 0 0 1 0

94

10

1

00

1

01

0

11

0

95

 Given the following state diagram design

the sequential circuit that implements it.

Compare the design when TFF & DFF is

used.

0 1

1/1

0/1

1/1
0/0

96

PS input NS out

A X A+ y

0 0 0 0

0 1 1 0

1 0 0 0

1 1 1 1

Fluffy
Rectangle

Fluffy
Pencil

Fluffy
Rectangle

Fluffy
Rectangle

Fluffy
Pencil

Fluffy
Pencil

97

Exercise

 Design the sequential circuit that implements the

following state table using

• JK Flip-Flops

• T Flip-Flops

• SR Flip-Flops

• D Flip-Flops

Present State Input Next State Output

A(t) B(t) X A(t+1) B(t+1) Y

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 1 1

0 1 0

1 0 1

1 0 1

1 1 1

1 1 1

0 0 1

98

Using JK FF

Present state Next State Y

A B X JA KA JB KB A+ B+ y

0 0 0 0 X 0 X 0 0 0

0 0 1 0 X 1 X 0 1 1

0 1 0 0 X X 0 0 1 0

0 1 1 1 X X 1 1 0 1

1 0 0 X 0 0 X 1 0 1

1 0 1 X 0 1 X 1 1 1

1 1 0 X 0 X 0 1 1 1

1 1 1 X 1 X 1 0 0 1

99

Using TFF

Present state Next State Y

A B X TA TB A+ B+ y

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 1

0 1 0 0 0 0 1 0

0 1 1 1 1 1 0 1

1 0 0 0 0 1 0 1

1 0 1 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 1 1 0 0 1

100

Using SR FF

Present state Next State Y

A B X SA RA SB RB A+ B+ y

0 0 0 0 X 0 X 0 0 0

0 0 1 0 X 1 0 0 1 1

0 1 0 0 X X 0 0 1 0

0 1 1 1 0 0 1 1 0 1

1 0 0 X 0 0 X 1 0 1

1 0 1 X 0 1 0 1 1 1

1 1 0 X 0 X 0 1 1 1

1 1 1 0 1 0 1 0 0 1

101

Exercise

 Design the sequential circuit that implements the

following state table using

• JK Flip-Flops

• T Flip-Flops

• SR Flip-Flops

• D Flip-Flops

Present State Input Next State Output

A(t) B(t) X A(t+1) B(t+1) Y

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 1 1

0 0 1

1 0 0

1 1 0

0 1 1

0 0 1

1 1 0

1 0 0

102

Topics Covered

 Storage Elements and Analysis

• Introduction to sequential circuits

• Types of sequential circuits

• Storage elements

 Latches

 Flip-flops

 Sequential circuit analysis

• State tables

• State diagrams

• Equivalent states

• Moore and Mealy Models

 Sequential Circuit Design

 Other Flip-Flops Types

Terms of Use

 All (or portions) of this material © 2008 by Pearson
Education, Inc.

 Permission is given to incorporate this material or
adaptations thereof into classroom presentations and
handouts to instructors in courses adopting the latest
edition of Logic and Computer Design Fundamentals as
the course textbook.

 These materials or adaptations thereof are not to be
sold or otherwise offered for consideration.

 This Terms of Use slide or page is to be included within
the original materials or any adaptations thereof.

Chapter 5 - Part 1 103

Updates of Chapter5 Slides
By Dr. Waleed Dweik

Updates on Slide 45

 Input equations:

◦ 𝑆𝐴 = 𝑄𝐴. 𝑋

◦ 𝑅𝐴 = 𝑄𝐴 + 𝑋

◦ 𝑆𝐵 = 𝑄𝐴. 𝑄𝐵

◦ 𝑅𝐵 = 𝑄𝐴 + 𝑄𝐵

 Output equation:

◦ 𝑌 = 𝑄𝐴. 𝑄𝐵 + 𝑋  Mealy

Updates on Slide 88

 Input equations:

◦ 𝑇𝐴 = 𝐶

◦ 𝑇𝐵 = 𝐴

◦ 𝑇𝐶 = 𝐵

 Output equation:

◦ 𝑌 = 𝐴⨁𝐵⨁𝐶  Moore

Updates on Slide 90

000

0

001

1

010

1

011

0

100

1

101

0

111

1

110

0

Updates on Slide 92

 Input equations:

◦ 𝐽𝐴 = 𝐴. 𝑋

◦ 𝐾𝐴 = 𝐵. 𝑋

◦ 𝐽𝐵 = 𝐴

◦ 𝐾𝐵 = 𝐴

 Output equation:

◦ 𝑌 = 𝐵  Moore

Updates on Slide 94

00

1

01

0

10

1

11

0

0,1

0,1

0,1

0

1

Updates on Slide 96

 Implementation using D-FF:

Present

State
Input

Next

State
Output

A X A+ = DA Y

0 0 0 0

0 1 1 1

1 0 0 1

1 1 1 1

0 1

0 1

X

A

𝐷𝐴 = 𝑋

0 1

1 1

X

A

𝑌 = 𝐴 + 𝑋

D A Q X

Y

Updates on Slide 96

 Implementation using T-FF:

Present

State
Input

Next

State
Output

A X A+ Y TA

0 0 0 0 0

0 1 1 1 1

1 0 0 1 1

1 1 1 1 0

0 1

1 0

X

A

𝑇𝐴 = 𝐴 𝑋 + 𝐴𝑋 = 𝐴⨁𝑋

0 1

1 1

X

A

𝑌 = 𝐴 + 𝑋

TA
A Q X

Y

A

Updates on Slide 98

0 0 1 0

x x x x A

X

B

x x x x

0 0 1 0 A

X

B

𝐽𝐴 = 𝐵. 𝑋 𝐾𝐴 = 𝐵. 𝑋

0 1 x x

0 1 x x A

X

B

x x 1 0

x x 1 0 A

X

B

𝐽𝐵 = 𝑋 𝐾𝐵 = 𝑋

0 1 1 0

1 1 1 1 A

X

B

𝑌 = 𝐴 + 𝑋

JA

KA

A

JB

KB

B

B
X

Y
A

Updates on Slide 99

0 0 1 0

0 0 1 0 A

X

B

0 1 1 0

0 1 1 0 A

X

B

𝑇𝐴 = 𝐵. 𝑋 𝑇𝐵 = 𝑋

0 1 1 0

1 1 1 1 A

X

B

𝑌 = 𝐴 + 𝑋

TA
A

TB
B

B
X

Y
A

Updates on Slide 100

0 0 1 0

x x 0 x A

X

B

x x 0 x

0 0 1 0 A

X

B

𝑆𝐴 = 𝐴 . 𝐵. 𝑋 𝑅𝐴 = 𝐴. 𝐵. 𝑋

0 1 0 x

0 1 0 x A

X

B

x 0 1 0

x 0 1 0 A

X

B

𝑆𝐵 = 𝐵 . 𝑋 𝑅𝐵 = 𝐵. 𝑋

0 1 1 0

1 1 1 1 A

X

B

𝑌 = 𝐴 + 𝑋

SA

RA

A

SB

RB

B

B
X

Y
A

𝐵
X

B
X

X

𝐴

B
X

A

