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Lectwe 1

Introduction to Compilers
Spring 2018/2019

Instructor: Dr. Fahed Jubair
Computer Engineering Department

University of Jordan
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o A compiler is a program that translates a program
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 User Expectatio’n

We ex pect the compllet to:

) Preserve the meaning of the program bemg
translated Cof(eCiness «

2.) Report “detectable” errors — ! re(acHL
3. Perform OptlledLQﬂs during the translation
Lr‘ o exuke on oﬁ Yocunre
mMoCwve
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e lore ! ‘
w e j\Og “ompile-time: the source program is tr'mslated into

Cpreuidon).
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Program Lifecycle

,G Run-time: executable file is executed

object coa'e

able

e

« Link-time: the object code is tumed into an e
ﬁle
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Source-to-Executable

Source dee

1. Preprocessors take the input
! Preprocessed Code source code and prepare it
' E(iom@ , for the compiler
Assembly Code » Handle directives
Léi%eméi{] _ .« Expand macros

] [}
ﬂ Object Code ‘ e
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Source-to-Executable
Source Code
e | % C rs translate the N
Q, Preprocessed Code source code into a machine (PSP é)
e ot
LComplier Lya : gode . v ,
: Assembiy Code « Often referred to as the
Assembier] assembly code
- ‘ ‘= Some compilers g
_ L b Code” 25 - - compilers generate
o e T machine-independent codes
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Source-to-Executable

Source Code

O« Vs
<
3. Assemblers translate the
Preprocessed Code S G 2 Ce ae
e assembly code into binary
L CO"‘Eila CQdQ Qb-w\g_,(
4} Assembly Code * Often referred to as the object Cd Q,\
| Assembler | code
Object Code
Linl_\'cr [
Executable © All Rights Reserved
Source-to-Executable

Source Code

Preprocessor

l Preprocessed Code
Compiler

!, Assembly Code

Assembier ]

Object Code

Executable

4. Linkers take one or more
object files and link them
together into a single
executable file

* Resolve memory addresses for
external or OS function calls

& All Rights Reserved
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Some Existing Compilers

B v
* GCC (GNU Compiler Collection)

* Multiple languages: Fortran, C, C++, etc

* Open source

* ICC (Intel C and C++ Compiler)

* Microsoft Visual C++ Compiler -
""‘_‘\___ 4

* Javac (Java Compiler)

«© All Rights Reserved

Compiler Command Options

« Compilers have user options that make the
compilation process more flexible and interactive

= Help users debug their code
= Help users control how to utilize machine resources

= Help users find performance bottlenecks

* Compilers have a default behavior
# Users need not worry about specifying all options

© All Rights Reserved
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Demo With GCC on Linux

e

* Consider (W saurce code files in C:
* factorial.c

* Computes the factorial for an integer x

* main
* Reads an input integer from the user

* Computes the factorial of this integer by calling
routines from factorial.c

® Prints the result

€ All Rights Reserved

gu \xovd
OW“"" ,,\Demo With GCC on Linux

ace -*S)j_—g main.c —o0 main.o

P e
* Compiles “main.c” and produces the object file “main.o” I DG
* Option “O3” specifies the optimization level \!L v T
® Option “c” instructs the compiler to compile and assemble but exculoble- 3
& do not link “\e_
-l s\
\Boeazin) Lot 5 s 4 Option “a” specifies the name of the output file = O

o
* Note that this command performs preprocessing, compiling g
and assembling in one command

f»\ wned §C P
W)
* gee —03 —c¢ factorial.c —o factorial.o

= Compiles “futorlal ¢” and produces the object file
“factorial.0”

£ All Righas Reserved
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Demo With Gcc n Linux

* o
*L:j)b

* Links and combines both object files together into a single

> gee ~03 main.c factorial.c —o exec

e a1 o 5 4
CC mam.o factorial.o —o exec
L eXec

¢xecutable file “exec”
* The linking process also includes any runtime routines

® /Do everything in one go: compile and assemble both “main.c’
and “factorial.c” to obtain object files, then link and combine
the object files to obtain the executable file “exec”

ke
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Related Terminology

Runtime library

Interpreter
JIT: Just-in-time compilation
Source-to-source translation

IDE: Integrated Development Environment

£ All Rights Reserved
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* Collection of routines that provides services to

Programs during their executions

* Examples: garbage collection, stream input/output,

thread management, memory management, etc
* Programmers can directly request specific runtime
services using the APIs provided by runtime libraries

L < All Rights Reseryveq

Puthon uges
TP ke Interpreters

* An interpreter is a program that directly executes
an input program without the need to do
translation first

* Interpreters often rely on runtime support from the QS

Seurce r

Program . fl
Input g

Data

58
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- An Example: Java

* At compile time, Java

compiler translates the source
Program intg g

virtual” machine code called

* Unlike “natjve” machine codes produced by traditional
compilers, bytecode is machine-inde endent, i.e., designed
for an abstract (i.e., virtual) machine

* At execution time, Java Virtual Machine (JVI»ﬁhas
an interpreter that executes bytecode programs

€ AD Rights Reserved
T — -

\\\\‘\%

An Example: Java

* Advantage of Java: codes run everywhere!
* Compile on one machine

and execute on any other machine
* Bytecode is designed to favor compactness

= Making it popular with web application

* Disadvantage of Java: virtual codes are s

lower than -
traditional native machine codes
M\%

£ Al Rights Reserved
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* Combine the best of both worlds

" At comgi.le titme, a compiler translates the source
program in ggﬂaL_&eruaLma_Chiﬂ.?.CRCle

* At execution time, a virtual machine quickly translates

dMﬂdﬂmmw&Chine code, then the
—

code is executed

* JIT compilation is both{portablelandlfast )

* JIT is used by Microsoft Net framework and
most current implementations of JVM

i ‘w—g >
< All Rights Rescrved = }a\la

"N-time Compilation (JiT) (g

Source-to-Source Translators

* Compilers that translate from any
progr Ing langu other

programming language

* Examples:
*_f2¢: translates from Fortran77 to C
* Rosg: translates multiple languages, including
C++, C and Fortran ROSE@LLNL

» LLVM: translates any language supported by

g Rt
= Cetus: translates sequential C programs into o
parallel C programs

T All Rights Reserved m
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Integrqted Development
Environment (IDE)

* ID
prc],Es; are software development tools where
g ammefs can edit their codes, compile them
and test their performance

& :
In?medlate feedback concerning syntax or semantic
problems as the code being developed

* IDE examples:

[ | E 1 ’
+ Nethieans Sedipse v
* Emacs— 0 NetBeans 5/%&:,

& All Rights Reserved

Summary

. A compiler is a computer program that translates a source
code written in high-level language into assembly code

he translation fully offline, no

. . — =5

? 7>

« Compilers perform t

During the translation, we expect compilers to preserve
correctness, detect errors and perform optimizations

Existing compilers in the market provide user-options for

more flexibility

¢ Al Riglis Reserved
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Le(‘)ua 2

Compiler Structure
Spring 2018/2019

Instructor: Dr. Fahed Jubair
Computer Engineering Department

University of Jordan

The Topic of This Lecture

» Describe the compilation process in high-level

« QOur goal is to see the big picture first before we dive
into the details

+ A lot of terminology will be introduced so make sure
to keep up

© All Rights Reserved
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> (1)) Understand the input program and ensure no errors

[\r——\\

Compiler Structure

* The goal of the compilation process is to translate a
Source program into a target program

* To do so, the compiler naturally needs to:

ﬁ e Map the input program into an equivalent and
optimized target program

C The first task is done by the front-end of a compiler

The second task is done by the back-end of a
compiler

@ All Rights Reserved
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e of Phase 1: Scanner
nneC

* Also called lexer

* A scanner reads the input program text character by
character and transforms these characters into tokens

* AYokendefines a minimal syntactic unit in
programming languages
®* Similar to a word in the English language

© All Rights Reserved

doken N
a) il o5 ¥
(524

Tokens

« Example: Consider the following C code
f(X>=0)thenY=X;elseY=-X
The tokens are:
1 PR RSN R U 101 i R
L CBIRE T e e e
+ Scanner will also detect all “illegal” substrings that

do not form any token
= But how can scanners recognize substrings that are
tokens and substrings that are not?

4 All Riglus Resenved
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B Regular Expression
: / xS @) N> (ye L
* Aregular expressi exp
_ 3 on expresses a set of rules for

v S(cmn@_r de g valid tokens in a language can be formed
Vekons  Siss tee - Usmg regular expressions, a scanner can recoonize all

5 tokens for an input program text, as well as identify
Ors Lomrop t” erroneous tokens

) * We refer to a language that can be fully expressed by

regular expressions as a regular language
* Modern programming languages are regular languages

¢ All Rights Reserved

Phase 2: Parser Q o effor
J\’DP level of LR * ;%’-L’_I!,
e oxs e * A parser reads the string of tokens returned by a dag
P scanner and performs the following two tasks: Scogre ! Pov
bvee s 1. Confirm whether this string has a valid structure in evroy ol
the programming language or not
P(CTS(&W\) 2. Generate a tree representation, called the purse tree,

of the input code structure

* The parser returns a syntax error if the - code structure of

the input program isﬁigiali_d for the given programming

language
Sconwve :
5 {\ \J} y *‘okem 3 ‘_)‘ §
Sconte ! —; k. S CTRTON - R CVA. D Lo
Volid \
Dovse —s POl 038 G5 Bk P8 e |5 O dokens 3 S+

S'Wudrwt-i\on SGo -

T T T T—
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Syntactic Structure

13: string Qf tokens is legal if it has a valid syntactic
Structure in the programming language

§ But how can a parser validate the code structure of an
Input program?
* For a human language such English or Arabic, it is easy, just
check the grammar
* Compilers do the same! They check the grammar of the

programming language

£ All Rights Reserved

Grammar

« Set of production or derivation rules that describe
how to form strings in a language

« The English language has a grammar: a set of rules
that describe how a sentence, 1.e, a set of words, can
be structured

» A programming language has a grammar: a set of
rules that describe how a code statement, i.e., a set of
t_éi_{-e?s, can be structured

© All Rights Reserved
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A Sentence in English

I:l El?‘gllsh, we have the following production rules
. i ‘:i?;;{N(:,F” can have the structure “SUBJECT VERB OBJECT”
3JECT” can have the structure “PRONOQUN”
* A“VERB” can have the structure “AUXILIARY”
* An “OBIECT” can have the structure “ADJECTIVE”
* A“PRONOUN” s “he | she|it]...”
® An“AUXILIARY" is “is | was | has| ...”
* An“ADIJECTIVE” is “ big | small | ...”

» Exercise: use the above rules to validate the structure of
the sentence “He is late”

€ All Rights Reserved

An Assignment Statement In C

» In C, we have the following production rules

= A“STATMENT” can have the structure “ASSIGN_STATMENT”

&« A“ASSIGN STATMENT” can have the structure “IDENTIFIER
EQUAL EXPRESSION SCOLON”

s An “IDENTIFIER ” is any sequence of [a-z] characters

s An“EQUAL”is “=”

& Apn “EXPRESSION” is “IDENTIFIER OPERATOR IDENTIFIER”

= An “OPERATOR”is “+|—|*]...”

= An “SCOLON"is "

e Exercise: use the above rules to validate the structure of
the sentence “x=x+y,;”

€ All Rights Reserved
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The parser produces a parse tree for a valid input
Program, which is a tree representation of the syntactic
structure in the input code

* Parse trees are really intuitive — see the below example:

Al Rights Reserved

So Far: Scanner and Parser

* Both scanning and parsing analyze the program text
for syntax errors, i.e., they check the “structure”

* The term syntax analysis is used to refer to both steps:
scanning and parsing

* However, they do not check the “meaning”

*= Example: “X =Y + |:” s syntactically correct but
meaningless if Y is a string and X is an integer

* Therefore, the third and last step of the front-end
compiler is to check the semantics, i.e, the “meaning”
of the input program

€ All Rights Reserved
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Phase 3: Semantigﬁp‘alxgi;sﬂ

* The purpase of Semantic analysis is to

r\\w
i
5 b s
o

( l.')Check for semantic errors

@Build a data structure for storing declared variables,
called the symbol table

@ Convert the parse tree into another data structure,
called the intermediate representation (IR)

< All Rights Reserved
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Examples on Semantic Errors

@Multiple declaration of the same variable within the

same scope
@J A variable is not declared before it is used
@ A function call with the incorrect number or type of
A unc e S e il

arguments

@ An algebraic expression performing operations with

invalid types

© All Rights Reserved
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ngbo\s 3 XS
\ ggmbo\
S.is
= > ;)SU\J @)\ RS . \_9 ClosS name
: about declared identifiers in
5%5\’“\‘20\ il the input program Ly dortcbde e
* Examples of stored information in symbol tables: L; Punc¥on  rone |
(9:"" \ %“‘ sy * Each variable; S type and scope
* Each function’s refurn type and number and type of its
arguments
" Each class’s name and relationships
" etc
€ All Rights Reserved

Intermediate Representation (IR)

* A popularly used term for dﬁ%ﬁen_ml

representation of the input program by the compiler
The IR preserves the meaning of the input program

Some compilers may use the parse tree as an IR

Other IR formats are also available

® For flexibility

* The selection of the IR format significantly affects the
design and implementation of the back-end compiler

£ All Rights Reserved
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IR Example:
Three-Address Code

* A popular IR in compilers is the three-address code
= Each instruction can take at most three operands
= Easy to map into machine (i.e., assembly) code

* Three-address code Example

Label L1
Add a,b=>T
SW T =c¢
Add i, 1 =i
BEQi, 10, LI

€ All Rights Reserved

gcxd\' o
end Phase 4: Optimizer

* The purpose of this phase is to improve the translated
program in some discernable way

= Minimize execution time” SRR 5 0B W 8

y ., i . y SR T - .
WW@ \-@Mlmmlze memory footprint ‘ms’hfu(h--l‘ Cany p<V 2\

= Minimize power consumption

= etc

¢ Golden suler optimization must preserve correctness,
i.e., the meaning of the input program
* An optimization technique must guarantee that any

changes this technique performs on the IR preserve
correctness

& All Rights Resenved
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Optimization Example: ?;%J
Dead Code Elimination &Y

-

* Dead code is a code segment whose execution result does
not affect the result of the program

* Example: in the below code example, the statements
“b=a;”and “d=c+...” are dead because they do not
affect the final result

SEX NN LN

SV g\ a2

voic main (}{ Write an optimized code
’ for function main
r L4 * L]

a = 1 ; Assuming that you want to

4 = a H ane H

= 6 8 o e B déve}opacon1pller anfllysxs that
¢ = ¢+ C % c + 100 eliminates dead code, in your
RS 0S & opinion, how can this analysis

} guarantee correctness?
< All Rights Reserved
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£

Optimizations are
Challenging

J\,’wﬁ’ 8=y

v QEI»{P‘—"J’?\“
)_3)::\\ U;>J.>A3095

+ Optimizing programs cerrectly and efficiently require
compiler analyses to prove whether certain properties hold
or not in the compiled programs

+ This is challenging for many reasons, some of which are:

‘Ggmmmn%ﬁgme, where the knowledge about
runtime behavioris i e

= Some optimizations can be machine-sensitive, i.e., different
machines may have difterent performances for the same program

= Some optimizations can also be application-sensitive, different
programs tay have ditferent performance for the same machine

€ All Rugins Reserved
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But Doing Optimizations
is What Gets You Paid, s ,

* Compilers that are “smart” will always be in demand

* For example, consider the following issue:

= New architectures with new performance considerations are
coming out everyday

= Therefore, old codes may become slow and obsolete

® Hiring programmers to rewrite old codes is expensive and time
consuming

= Cheaper solution: perform compiler optimizations on old codes
to make them run faster!

« All Rights Reserved

Phase 5: Code Generator

* The code generator maps the IR code into the
target machine code
= E.g., MIPS or x86 assembly code

* Main tasks of code generation
(D) Ingtruction selection: which machine instructions to use
(2> Instruction scheduling: which order of machine
instructions to use
@ Register allocations: map variables to physical registers
o Input programs (as well as front-end compilers) assume_

unlimited memory, for simplicity

o Back-end compiler: ith_reality: machines have finite

resources £ All Rights Reserved l
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Scanners
Spring 2018/2019

Instructor: Dr. Fahed Jubair
Computer Engineering Department
University of Jordan

Scanner Role

Program

Text

* Scanner (or lexer) role is to convert the input stream of

{

| Tokens|

E%*Jmmmdﬁd

J

|

characters into a string of tokens

* Tokens define the minimal syntactic unit in a program

* A token has a type and a value:
* E.g., ‘5 is an integer with value 5
s E.g., ‘X’ is an identifier with value x
= E.g., “=*is an operator with value =

& All Riglus Reserved

Parse

| Tree | -
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Basic Questions For Scanners (&,

1. How tokens are defined?

C——> Regular Expressions

2. How tokens are recognized for a stream of
character?

3. How scanners are coded?

€ All Raghts Reserved

Regular Expressions

« A regular expression ¢ describes the rules of which all
string patterns for a language L with an alphabet T
can be formed

= This language is said to be a regular language and is
denoted by L(¢)

e An alphabet ¥ defines a finite set of characters that all
strings in a language may contain
= E.g., integers have L= {0, 1,2, 3, 4,5, 6,7,8,9}

£ All Rights Reserved
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Basic Regular Languages

+ Ifasingle character x € X, then x is a regular
feoytl

expression denoting the regular language {“x"}
« The empty string(s)=“ > is a regular expression and
{e} is aregular language with one member: g

* The empty set ¢ is the regular language that contains
no string members

© All Rights Resenved

Basic Operations For Building
Regular Expressions

 If s and 7 are regular expressions, then

e %S)d <’_F\@The concatenation ( s¢ ) is also a regular expression
DQ 4 ——(¥ The alternation ( s | t ) is also a regular expression

/,@The kleene closure s* is also a regular expression,

-

e v where s*=¢|s|ss|sss|ssss]..
,P& @\o(‘ oi.e., s* denotes zero or more occurrences of s
o¥ ’ © of * The positive closure s' is also a regular expression,
Loz where s*=s|ss|555]|s885] ...
e 3 N §)ﬁ‘ oi.e., s* denotes one or more occurrences of s
S —ﬁ* o Note that 5" = 5 s*
& { € All Rights Reserved
”
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Precedence Rule
1. Parenthesis ()

4. Alternation

2. Kleene Closure *
3. Concatenation

€ All Rights Reserved

Regular-
Expressions:

i( 'OF.} f ([b). _‘

E[d—fz | Afz']f'@"-. :

5 g P

‘ . al@gmail, B
P Compx]er@gmail
14 comPutER@gmall

o FExamples on valid =
string pa'ttems- 9
' 0,11, 0a, 0b, Oabab, 1ab, "a;aa,aba 0a)) ¢ (@)
1bb, Oaa 00”.0[ 01, A,L\g q:k‘ Al | -
1111 10lab R

£ Al Rights Reserved
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Tokens and Regular Expressions

~» We will now describe the re ular -essions of the
following tokens

@themls o

(W Identifiers

@ Comments s Often foundin.. -
@Reserved words ™ programming languages
® Operators

Q}’unctuation’s o

€ All Rights Reserved

Strngs /G Literals

o let D be a single digit integer, J be an integer number, and
E be a real number

* We can describe the regular expresmons D,IandE as

follows:
‘ D=(0] 1PI314!416171319}‘:{0*‘9]
S | I=D"=[0-9]" Mtqer numpers
L&.,Eu 6 o ~—F = Dr Dt = [0 """" or. [O o1 E\oc{k Hume(S
_ EO q} [p C\] _Ezmmse write a regular expression that describes
.3 \/ ~ integers with no leading 0s, ie., numbers such as 01 and

001 are not allowed, but numbers such as 0, 10 and 201
- are allgwed

LAl Ru,lu. Rm.cned

s

So\@ﬂow 9 Eﬁ‘?fo‘se'% e o

E»~ﬂ Lo q}@t@ﬁ Cetiteve

o = RN e e
-‘, -~ ,\ ___.3«-9 L - o 5 e jCe - Sl
"&”’5 ; J s PR

) S‘“’ .i \‘Q)‘YD\ : ] S 2
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Exercise D8 ( Ca—t_')] CA-3l Lo ) ) . @ 1/20/19

ldentifiers

* Let IDEN be any string that has any of the following
characters: a-z, A-Z, 0-9.

IDEN = ([a—z]|[A—2]|[0~-9])"

@- Exercise: rewrite the regular expression of IDEN so
that the first character in the identifier string can only
| bea capital letter

(2. Exercise: rewrite the regular expression of IDEN so
that it must have the substring 00’

(. Exercise: rewrite the regular expression of IDEN so
that it must end with the character ‘0’

© All Righis Reserved

Comments

» Different programming languages have different format
for comments

* As an example, Assume that a comment must start and
end with ##

= The character “#” may appear inside the comment

¢ For a given alphabet Z, it x € Z, then we define Not(x)
to be the set of all characters in X except x

* The following regular expression describes comments:

COMMENT = ## ( (#] ¢ )* B4
S Sh 0 g
£ All Rights Reserved :ﬂ: Los A

Commends .

oy #de o formed T
2oV Pody s H#Htt Vokid  Comment
ERE R R 6
Covr\mgud)\@"‘p/' 6}“-9)
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e

Reserved Words, Operators
and Punctuations

* Generally, reserved words, punctuations and
operators have unique strings

=) Their regular expressions are straightforward

* Examples g
~ Y
* IF =(if) Rl
2 AN .
« GT=(>) 5 s S

o

= GEQ=(>=) /)p %\3 “We add * ° to distinguish an
GO °

* LPARN =( 7\ inputcharacter from meta-

« RPARN=(‘)) - o characters

€ All Rights Reserved

Exercises

« For each of the following regular expressions,
write four possible string patterns:
D « ¢ (0f(1]2) (09713 [0-2])
@ = (00]99)* (2| 3)*
G = (al(be)*d)
(W) = (aNot(a) )* aaa

€ All Rights Reserved

Scanned with CamScanner



R

Execcise @(gl[ 1-q] [o -(\]*),(_EO—QJ*D ff«j\o)

E_xe(c?se@jg ("_\,\o)* = (1\0)* O Q’l\o)*
Exerczse @3 (O\ l‘«)-i‘ (O’E,)

1/20/19

Exercises

‘@‘ Write a regular expression that defines a C-like, fixed-
decimal literal with no superfluous leading or trailing
zeros. That is, 0.0, 123.01, and 123005.0 are legal, but
00.0, 001.000, and 002345.1000 are illegal.

@D . Writea regular expression that describes all strings of 0’s
and 1’s with at least two 0’s. For example, 0100, 01110,

| and 00 are legal but 1, 10, and 1011 are not.

(B« Write a regular expression that describes all strings of 0’s
and 1’s such that two consecutive 0’s are not allowed. For
example, 0, 1, 0110, and 1010 are legal but 00, 0010, and

101001 are not.

& All Rights Reserved

Basic Questions For Scanners

5 ¥ ¥ [ ] e 3%
{ Frivar #rsbemme orees rlotres el
. DrOW IGKRCHS are aotinea.)

> Regular Expressions

2. How tokens are recognized for a stream of
character?

C—> Finite Automata

I. How scanners are coded?

1 Al Rights Reserved
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Finite Automata (FA)

qﬂ' He * Assume you are given a string S and a regular
expression R that expresses a token class T

* A finite automaton (FA) is a finite state machine

!chac,\* He that accepts S if S € L(R), and the token class of S
would be T. Otherwise, S is rejected

Uesked » By building proper finite automata, a scanner can

recognize tokens for a stream of characters, as

well as identify erroneous tokens

€ All Rights Reserved

Finite State Machines

« First, let us review finite state states

machines (FSMs) /\

* A FSM consists of sets and ] P
transitions that are event- Q‘ Jrresmiimsion, 32)
‘ /A N
triggered
= |n scanners, an event occurs T
when a new input character is A transition from state
consumed S1 to S2 occurs when
« FMSs memorize previous event A is triggered

events (how?)

€ All Riglus Reserved
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Finite Automata (FA)
* A FA consists of Consisls o P
, 1. A finite set of states S Stete
2. Astartstate n Glert ( L)
! 3. A finite alphabet X
4. A set of accepting states G, where G € S
I ; R _ i STt S
| 5. Asetof transitions s,_ 8,5, wherc a€X , s, S,€ S ~byos
i‘ — (Cq;p SI‘(J’C
' ¢ Basically, a transition occurs in the FA when a new
J{ input character is consumed
| + If the input character does not correspond to any
4 transition, then the sz\MﬁldygncS:s to the error state
| |
| An FA Example
. . aSots Y
* The below FA is generated for the regular expression: Jolad Yokew
E=[0=9]* [0~ 9)* e e
* Specify S, n, £, G and all transitions in the FA Yrodts o> b By
* Does the FA accept or reject the following inputs (show
your answer) ?
0090011 AccePred Yokem
010. _, Rejccted ol
ola3 [0-9]
g
L= ToRal =¥ o)
. -. 83
N N AN
‘ £ All Rights Reserved
T aior
y { OC\O'OlHSW AC_Q L(C)
Stort Stk — @40 g0 ¢ SETA i e
i (? - 2 CISESLS
0
it élu\
—-—

C‘AFL‘O‘OC’ri = }OIIILl ______'__}o\ /‘3
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Another FA Example

. The below FA is generated for the regular expression:
E=(A[B)'$
= Specity S, n, Z, G and all ransitions in the FA

= Does the FA accept or reject the following inputs (show
your answetr) ?

oA$ $ Vv

of$ \/ ; [\AIB

o ABABS v~ &

on$B K &P g] \ @}
o ABB$$ S

L Accepr  ond Qyeves 2, fotens LABG’S’

< All Rights Reserved.

Finite Automaté Types

+ Two types of FA o '
@Jetermmlstlc Finite Automata (DFA)

@Non—dcﬁ:tg_ rm inistic Finite Automata @FA) '

. In order to explam each type we ﬁrst nced to
mtroduce the concept of e—-Tnansmons

Al Rights Réseped
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Uncondiirovad ot e \ okl )

ul

a '\

e=Transitions

* The e-transition s—&»w allows moving from state s to
state w without reading any alphabet input
= j.e., e-transition is unconditional move
* g-transitions allow states in a FA to have multiples
moves for the same input

_930&5‘;;10_1

© All Rights Reserved.

DFA and NFA

+ A deterministic finite automata (DEA) is a FA
where all transition are unigue, i.e., if s<$<»w and

s-¢,z,thenw=z
» DFAs do not have e-transitions

+ A FA where states can have multiple moves for
the same input is called a non-deterministic finite

automata (NFA)
« Unlike DFAs, NFAs can have g-transitions

» Note that NFA is a generalization of DFA, 1.e.,
every DFA is also an NFA

Scanned with CamScanner

1/20/19
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Which FA to Use?

* Which FA: DFA or NFA should be used for
recognizing tokens?

* In general, either can be used because both are
equivalent in terms of computation power
* The main difference is their implementation

* DFAs are usually easier to implement and faster to
execute due to their transitions being unique

* NFAs are generally smaller, i.e., less memory is_

needed
= We will learn how to construct both NFAs and DFAs

for regular expressions
¢ All Rights Resenved

nstructing FA For

Regular Expressions

* Constructing FA for regular expressions is not trivial

» For example, try guessing the FA for the following
., regular expression: (a|(bc)* d)

. need an algorithmi ch for constructing
FAs from regular expressions

£ All Riglus Reserved
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Finite Automata Construction ‘

@ Thompson’s construction

* An algorithm that generates an NFA for a regular
expression

@ Subset construction
* An algorithm that converts an NFA into a DFA

L 4 All Righis Reserved

Thompson’s Construction

Key idea is simple
* Draw NFA pattern for each symbol & each operator
* Join them with € moves in precedence order

1/20/19

= Coﬂ(o.km&‘»{s Ll
4

s s, {5, )-2—{s.

NFA fora NFA for ab

NFA fora | b NFA for a’

£ All Rights Reserved

o \';‘6 W%
b o a o
S“\ FPe\ LS
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N

Thompson's Construction
S Example
Let'stry:a (b|c)

- e
2 ble YOO

< All Rights Reserved

Thompson’s Construction
Example (cont’)

4. a(b|c)

&)

& All Rights Reserved

3
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Exercise

—

* Use Thompson’s construction to determine the NFA
for the following regular expressions

= (a]|b)*abb

«r[0—-9]*

" (af{be)*d)

@ All Rights Reserved

Subset Construction

+ Transforms an NFA N into an equivalent DFA 1)

« The algorithm associates each state of D with a set of
states of N

. The algorithm uses two key functions:
<52»ﬂ b dg l’J’ T (®e-C &=Closure( x ): returns the set of states reachable from x by &

I\ ) Move( X «):returns the set of states reachable from X'b
O L
U’*? S 2 5(& 5 fwhere a€X and X is a set of states
£ Al Riglus Reserved
iQ..-‘!:. $ &Y
G D U o

VY (\W\”
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€-Closure Function

———

* The e-closure function determines, for a state x, all
States that can be reached via e-transitions in the NFA

* Example:

S 350 Lo bt ¥R

g~closure (S;)=1{S;}

e—-closure(So);@ S1,S2,54,57,8s}
g-closure (8;)=1{53,56,51.5,,84,57,S8;}

NS S AN

w\f&v‘ﬁi .
s Ssres b
Bde s S

q\;;‘) 2:\'/5‘;»6)

Z_w Lo

S ————

T Al Rights Reserved

5¢ T
C

Move ( X, a ) Function

* The Move( X, a) function determines, for a set of
states X, all states that can be reached via “a-
transitions”

p—

Move ( {S5, Ss, S1,(5) 84,57, Ss} ,b)={S3}
MOVG({SJ,S&,S[,Sz,@,ST:SS}sc)={55}‘ﬁ
Move ({83, 5,81, 82, 84,87 (5 .a)={S,}

© All Raghts Reserved

3
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Subset Construction Algorithm ,

Input: NFA N
Output: DFA D

do « g-closure({N.start_state}) .
D.states « { d,}
WorkList «{dy}
while ( WorkList # @ )
select and remave s from W
foreacha e X
t « e-closure{Move(s,a))
add s —2» t to D.transitions
if (t & D.states ) then < |
add t to D.states

Note that N and D will
have the same T

Compute d,: the start state of D

— For each character in alphabet

| Associate a set of states in ¥
withasetin D

~ Iterate till no more states are added

add t to Worklist

€ All Rights Reserved

=\ (new s

Subset C

Example

onstruction

« Let us try the following NFA

1.

 All Rights Reserved

Compute dy ¢ e-closure({So})

Je S 4\

——
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\B d, = & closure (So) = SISO% m& ' ‘ -y _
@ Pove(do, &) = SlSs"] _y € ~Clodwe = is\ /Stfg_s,fiff g\%
MNor (c)ﬂ; o) = QS 0\
move (d (new grede)
0, ) :Qﬁ
f@ﬁa\/( Cd\,c\\'_ﬂg l C”L

Ofwr S S S
move (dy, b= ?555Cq = i'??’?%go‘ PR g kg CB

mev(dy, ¢ = §53% &% = 53,88, S, S3, 59

@Nﬂo\le(dljaquf
Wove (d ¢ b);f%@ . ﬁs; ,58,Sa, S3.,Su, 4G i
!’Y’o\/ﬂ\d?-lc’-\ :7573.—9%5?188 /SC\ISBI Su‘{SCﬁ CJ5

&> move(ds 1oy =&
Tsc) Sy 155, 54, 5

35?’6 Q,E‘l:';" 38};58/50\ /S'S/SL{’Sé'S 613

33/&4 Sozs Jdx
move (ds , b) =

move(dy , c) =

Scanned with CamScanner
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Subset Construction
Example (cont.)

2. Compute d; < e-closure( Move(d,, a))
add d(;-—vg—; d]
add d, to WorkList

)

<: All Rights Reserved \

Subset Construction
Example (cont.)

3. Compute dy ¢« &-closure( Move(d;, b))
add dj~2-d;
d; ¢ e-closure( Move(d;, c) )
add d ] ...f-.-g. d 3
add d,, d3 to WorkList

© All Rights Reserved
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Subset Construction
Example (cont.)
4. Compute d; « e-closure( Move(d;, b))
but dgz d4, add dz-—b——bd2

ds « g-closure( Move(d;, c))
but d3=ds, add dy £ d3

€« All Rights Reserved

Subset Construction
Example (cont.)
5. Compute ds < e-closure( Move(ds , b))
but d2= dg, add d3_.é_.;d2
d; « e-closure( Move(ds, ¢))
but dz=d7, add d3 S d3

id; ={Ss, Ss, 53,
Ss, Se, So}

€ All Ruglits Reserved
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Subset Construction
Example (cont.)

6. WorkList is empty, terminate the algorithm

€ All Rights Reserved.

Exercises

« Construct a DFA for the following regular
expressions:

* (ab|ac)”
* (af(bc)"d)

»ab'cl|abc’

& All Rghus Reserved
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Bonus: DFA Minimization

* DFAs generated with the Subset construction
are not necessarily optimal

As one example, the DFA we obtained in
slide 42 is not optimal (why?)

Section 2.4.4 introduce the Hopcroft's
Algorithm: a minimization algorithm to

transform a DFA into an equivalent but
optimal DFA

© All Rights Reserved

Basic Questions For Scanners

" w“ 40y
i FET vty Famrbrestis D> sdeabyeyingt /
P, 10w 1L MCEHS dfe Ut oG

——> Regular Expressions

¥ 2 :

H 5 & - E—— R e e e P Ta R PR e N el G Y
FRT Y TN TS a 8! £ &S Bt B oA B o g 3 i F RV 31451
FIOW TORCHDS iU 1LLU Ml 1870 e YLk iiit

5 T oA
1.4 § L8 |

—> Finite Automata
1. How scanners are coded?

> 1. Table-driven implementation
= m— TN
2. Automatic scanner generators

€ All Rights Reserved
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Scanner Generation Cycle
Thompsor.\’s NFA Subset
ConsW Wtion

Regular DFA
Expressions
Table-driven
By Hand Implementation
Lexical Scanner
Specification Code
€ All Rights Reserved

Coding The DFA

« Multiple methods have been used to implement
scanners

» We will consider the table-driven form, the more
common method for building scanners

* Table-driven scanners take advantage of

transition diagrams: a tabular representation of
FA

£ All Rights Reserved
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Transition Table

* A transition table T is a 2D array indexed by a FA

state s and an alphabet symbol ¢ Elico can

* Each entry T[s,c] in the transition table is
computed as follows:
® If the transition s—S-» w exists, then T[s,c] = w
= Otherwise, T[s,c] contains an error flag

¢ All Rights Reserved i

O I 4ol o s S g0

d| el dz d;
d2 dz

By default, blank
entries have error flags

b C

-3

d3 d2 d3

£ Al Rights Reserved

S Feve i
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Table=Driven Implementation

. Dlregt.and simple interpretation of a FA’s
transition Table T

/% Assume CurrentChar contains the first character to be scanned %/

State « StariState

while true do
NextState « T[State, CurrentChar]

if NextState = etror
then break

State «— NextState
CurrentChar « Reap( )

if State € AcceptingStates
then /+ Return or process the valid token x/

else /x Signal a lexical error */

< All Rights Reserved

=
Automatic Scanner Generators

Scanner
Code

Regular mwm“ﬁi;' i
Expressions sl

. Software tools that automatically generates scanners’ codes

+ As an input, programmers only need to specify regular
expressions (usually written inside a text file)

« Internally, these tools will do the transformations we did

manually before:
Regular Expressions = NFA = DFA = scanner code

+ Two popular scanner generators:
es are generated in C/C++
" codes are generated in Java
m & © All Rights Reserved =
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ANTLR

http://www antlr.ore/

Very
\ Iy popular parser and scanner generator tool
AS an input, ANTLR reads a text file that contains the

language grammar, as well as the regular expressions of
the language tokens

* We will describe grammars when we study parsers
ANTLR has two key components:

1. ANTLR tool: converts the grammar into a scanner and a parser

2. ANTLR runtime: set of classes and methods needed when
compiling and running the scanner and parser codes

We will use ANTLR v4 for our course project

© All Rights Reserved

ANTLR Input Example

grammar Hello;

r: 'hello'ID ;

ID :

// Define a grammar in a file called Hello.g4

[a-z]+;  // match lower-case identifiers

WS : [\tr\n]+->skip ;  // skip spaces, tabs, newlines

€ All Rights Reserved

// match keyword hello followed by an identifier

1/20/19
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ANTLR Tool Output

. lLet usj run the ANTLR tool on the grammar example
$ java —jar antlr-4.5.3-complete.jar Hello.g4

* The ANTLR tool generates the following outputs:

Scanner code

[' HelloLexer.java J + HelloParser.java
« HelloListener.java

» Hello.tokens
+ HelloLexer.tokens + HelloBaseListener.java

« Read more from the ANTLR v4 Book
httm:f/nramog.com.:’book/tnantlr?./the-definiti_vc-antlr-ét-

reference
© All Rights Reserved.

Summary

Scanning (or lexical analysis) is the first step in the
compilation process
Scanners convert the input program text into a string

of tokens
Tokens define the minimum syntactical unit in

programming languages
Scanners take advantage of the concepts of regular
expressions and finite automata in its implementation

. Automatic software tools for generating source codes

of scanners are available

£ All Rights Reserved
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Exercise

Which of the following strings is accepted by the above DFA

+ 0202
« 01010
« 0102012

« (20102
R

< All Rights Reserved

DU SINCRUR ©o s i A

Exercise

the transition tables for the following DFAs

[0-9) [0“9}(\

N[0-9) N 0-91 7N\
- —>» 2 ,,‘r =@}[ ].»‘@}

« Specify

sl |
S o N

N £,
S B N D
b,___ o :“.‘}l‘ Reserved

@—”e ulor RYES A

&\ P (eSSon

2
7p
N
e
‘.a

< %q

wn
va
(N
)
V)
W
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Leckue Y -

Introduction To Parsing
Spring 2018/2019

Instructor: Dr. Fahed Jubair

Computer Engineering Department

University of Jordan

The Parser Role

Parse _ ‘
1 Tree |

: Tokens' £

Program__|
Text

o The parser role is to

1. Determine whether or nota string of tokens is a

syntactically valid sentence in a programming language
2 Build the parse tree, a tree representation that describes
the code structure of the input program

© All Rights Reserved
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stv(geﬁl__ Strerg o? bokens — N
Grammpol— G

What is Parsing?

* Fora gix@laneuage@that has a ggammar@ a string

of tokengN)is a valid sentence in L if there is a
sequence of derivation steps that derives N using the
production rules of G

. [Parsingl is essentially the process of discovering a
derivation for some sentence in a language

Process of  discovering o Pof.se, R (4%

€ All Rights Reserved

« First, we will study context-freec grammars: a

mathematical model for describing syntax in
programming languages

» Second, we will study top-down parsing: an
@algorithm for testing the membership of sentences in
a language using the rules of a context-free grammar

= We will also cover how to write the code of top-down
parsers e
S

© All Rights Reserved
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Context-Free Grammar (CEG)

——

* Aset of production rules that abstractly describes
how strings are derived in a language

* For example, the following grammar describes how
strings of brackets can be formed

R"ﬁ'j{) fD » onterminalSymbols
N ~ T 1 S B
L = 2\ B :
o ZJA Production 3. OR.@ [(B
AR PRPLI S s Y g ’ O
. 4 5 [ ]
ses, 02 8,8 | 1o
= ) < All Righis Resenved - Alternation -
G\/Bﬁ\uc?¢>—’é§§§ - —
(g) oR LB] ©oR () oR L[] (QEVRERPY

Deriving Sentences with A CFG

* S.is called the start symbol 1. S B
because its where the 2. B (B)
derivation starts 3. | [B]

* Let us try deriving the string § : % %
“Irolr -

S=>8B Start with rule 1
= [B] Use rule 3
= [[B]] Use rule 3
= [[0O]] Use rule 4

© All Rights Reserved

Tokens =

1/25/19
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Components of A CFG

- S
* Formally, a context-free grammar G is a quadruple

(T, NT, S, P) where:
is the set of tenninals

o Terminals are basically the syntac
by the scanner
iS the set of nonterminals _
o Nonterminals are syntactic variables in'groduced to provide
abstraction and structure in the productions
is the non-terminal designated as the start symbol

*(P)is the set of productions in G

o Each rule in P has the form NT — (T U NT)+; that is, it
replaces a single nonterminal with a string of one or more

grammar symbols
T All Rights Reserved

tic categories returned

CFG Examples

Specify the terminals and the nonterminals for each grammar

1. l r— @Op num Etai/—S —% ler
2 m.._...--) Op num Etail
| €

—> ( Arg_list)
— id Arg_Tail
—> , id Arg_Tail

| €

€ All Rights Reserved
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Derivation Process

b 1 7 & . .
A derivation consists of a series of rewrite steps

S= hsh=..27,3Y,=N

1. The derivati i
ation always  starts with the start symbol S
2. To get ¥, from Y,.1, expand some nonterminal AEY
by using production rule A = o
3. Repeat (2) until there are no terminals
®*  The derivation terminates with N: a valid sentence in the
language L(G)

€ All Rights Resenved

Terminology for Derivation

* A sentential form is a string of terminal & nonterminal
symbols that is a valid step in some derivation

* The derivation S =* N denotes the start symbol S
derives the sentence N in zero or more steps

« The derivation S =* N denotes the start w

derives the sentence N in one or more steps

© All Rights Reserved
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Parse Tree

* Parse tree: a directed graph that represents a derivation

Parse Tree o

i-ﬁ-
FR1od
| [B] ?33'[31
O Bsl 21 7,
Eaa [

oA e~

T All Rights Resenved

S="[[()]]
Grammar /
TRule Sentential Form | 0
B — (B) ¥
O @

1/25/19
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Parse Tree Properties

A parse tree has
* The start symbol at the[root]

= Terminals at the leaves

= Nontermi S
* A post-order traversal of the leaves yields the original
input string
« The parse tree shows which operands associate with
which operations

© All Rights Reserved
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Derivation Types

1. Leftmost derivation: replace, at each derivation step,
the leftmost nonterminal

2. Rightmost derivation: replace, at each derivation
step, the rightmost nontermmal

» Of course, replacing nonterminals can occur in any
order but the above two orders are the most
commonly used

& All Rights Reserved

A Derivation Example

We will use the below grammar to

show a leftmost derivation and a

rightmost derivation for the string

“x+8*y” « The terminals are

S / E/ Of described by the

following regular

\\)o\(\ ke (W‘f\"aq R 1. § = E expressions:
2.E —— EOpE _
3 | id id:  ([a-z]| [A-Z] )+
‘.(J/ yTum / (7 \U‘S/ " UX 4. |  num num: [0-9]+
Q 5. Op = plus plus: 4
‘rU(V‘W\OJS ' b | mud mul: ¥

@ All Rights Reserved
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Leftmost Derivation

S="x+8 *y

{Rule Sentential Form
1

I £

2 (EOpE

3 <dx>OpE

5 «dx+E

2 <tdx>+EOpE
4

6

3

A

<idx> +<num8> Op E
<idx> +<num8> *E
L <idx> +<num,8> *<idy>

*
post-order tree walk of thlS s parse tree evaluates a§x + (8 *y)

Righis Reserve

e A 559, A

1/25/19

E istnule
3 \a=>\ oo\)',S’;

(E<PE /0f,)

|3 8P O a0

eXQ fessom 3\0\'}6
e s g W
= -

= SR
;r\om 0 \
Qumwcﬁ‘s
al\s) S~ l}}"
Expounc S
r_SDwJ 0sh % Jan
L{Q*\’Y\eSt 5N ajé
der3vedion
ﬁcj\/\’\’ YWiosY
du‘ X \JU\,\*Q\A,

Another Leftmost Derivation

S=>"x+8 %y

TRule  Senfential Form = . |

=15
;
B (£)
Eio g EOpEOpE (7) (o)
B3 *</dx> OpEOpE
LB lddxo+EOQPE
L4 <idx> +<numB> Op E (o (&) -
i 6, L <idx> +<numB> *E l 1 £
L3 <idxo +<numB> *<idy> x

A post-order tree walk of this s parse tree evaluates as@
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Rightmost Derivation

S="x+8 *y
{Rule  Sentential Form g ©
B
B ®
B2E FOp £
g3 E Op <idy> e @ e
6 £ *<idy>
L2 EQOpErady :-j y

4 £ Op<num8> *<idy> l
5  E+<num8> *<idy> : 4

.

3 <d.x> +<num,B> *<idy>
A

post-order tree walk of thlS s parse tree evaluatesas (x+ 8 ) *y
All Rights Reserved

Another Rightmost Derivation

S=>'x+8*y
IRule = Sentential Form - =~ ! 1'5'
=5
- (5
2 EgpE )/
' 2 EQpEOpE
3 :ﬁ".ﬁ E Op € Op <idy> l o
6 ,  EOp £ *<idy> vy
g | 1 E Op<num,8> </d,y> @ @ %)
b3t </d x> # <umB> *<id, y> N
A post-order tree walk of thﬁ parse tree evaluatesasx + (8 *y)

Scanned with CamScanner
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L

Ambi_gag_it_y

* A context-free grammar G is ambiguous if it has
-multiple lefimost (or multiple rightmost) derivations for
some string in [(G)

* Equivalently, a context-free grammar G is atnnbiguous\g’_
-there is multiple parse trees for some string in L(G)

* Therefore, a context-free grammar G is_not ambiguous

ifall strings in L(G) have unique parse trees

* Ambiguity is bad in a programming language bef:ause it
can lead the compiler to interpret different meanings for
the same program

< All Rights Resenved

Eliminating Ambiguity

* To disambiguate an ambiguous grammar, rewrite it by
hand

1. § = E
1. S =~ E 2. E = E plusE _
2. E ——— E Op E 3 | E
3. | id 4. E > id mul B
4. | num 5. | num mul E
5. Op w——s plus 6. | id
6. | mul s | num

\

Rewritten Grammar: we gave
multiplication precedence

over summation
© All Rights Reserved

Ambiguous Grammar

—b Sram RY:-X
| .

g R B

10
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S=>’x+8*y

{Rule  Sentential Form
s S
a1 £

li24

2 (E+E
S L E

6 <idx +E
B

6

- <fidx> +<num,8> *E

,{

Leftmost derivation of S=*x+8 *y is unigue

€ All Righis Reserved

Let us Try Rightmost Derivation

| S=2"x+8*y

' fRule: Sentential Form =
ezl 5
i |
A FRd . :
[ B E+cumB *E é)

E +<num,8> *<idy>
A

6 <idx> +<num,B> *<idy> 1
it e x Y

Rightmost derivation of S =*x + 8 *y is unique

Note that | ightmost derivations yield the same parse tree

Scanned with CamScanner
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Adding Precedence to Grammars

* Adding precedence to grammars rg{n_(g}’?_s_iﬂ‘f_‘?ig‘fty

* General guidelines to adding precedence
(r‘ Create a nonterminal for each level of precedence
(= Isolate the corresponding part of the grammar
/= Force the parser to recognize high precedence

subexpressions first

€ All Rights Reserved

———
L ——

Example:
Algebraic Expression Grammar

Straightforward grammar is ambiguous

1 Start - Expr

1577 Gpropenr
k4 | B
pod L

o -

0 -

AL I/

Exercise: show that parsing the string “ (x+1)/y-2
© All Rights Reserved

” is ambiguous
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Adding Precedence to
Algebraic Expression Grammar

F1 Start > Expr
- (2 Expr > Expr+ Term
Addition and Kan QoD
subtraction, last { B | Expr- Term ” il wec
—_— 4 | Term 5 Ul 3
Multiplication and 5 Term — Term* Factor !
division, next { £61 | Term/ Factor =3 (P
e i pe | Factor o 3
- 8 Factor — (Expr)
Parentheses have{ ‘9 | number 4‘Cfn/ﬁ\fm&
hi ot
ighest preceden-ce 10 | id al G
Exercise: show the parse tree for the string “ (x+1)/y-2"
€ All Rights Resened
If-then-else Preblem
* Another classic ambiguity example
* Consider the following straightforward grammar:
Symmedry 3
L. STMT — if EXPR then STMT > s i
5, |if EXPR then QT else@ _
3 | ... other statements .., gre Gl
omblyuy.
* Let us inspect whether leftmost derivation for the
following string is unique:
“ if expr, then if expr, then stmt, else stmt, ”
© All Rights Reserved
13
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Leftmost Derivations

STMT =" if expr, then if expr; then stmt else stmtz

expry stmty

Two parse trees = meaning is ambiguous

< All Rights Reseny ed

Syt gl
\ed Yo ‘O{GCXQ W,

ke A SES

—

Solution

+ Rewrite grammar to remove ambiguity by matching
each “else” to innermost unmatched “if”

F1l  STMT — if EXPR then STMT
b2 | if EXPR then STMT* else STMT
%3 | Other Statements
;4 STMT#* — if EXPR then STMT# else STMT*
5y | Other Statements

d else

[ntuition: once into STMT¥, we cannot generate an unmatche

© All Rights Reserved.
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| Parse Tree
With Rewritten Grammar

STMT =* if expr then if expr; then stmt, else stmt,

stmt; stmt;

expr;

Parse tree is now unique

€ All Rights Reserved

Is There An Algorithm To Do it?

» There are no known algorithms to disambiguate
_ambiguous context-free grammars

* In fact, the problem of deciding if a context-free
grammar G is ambiguous or not is undecidable

* To deal with ambiguous grammars, compiler writers:

1. Modify context-free grammars hy hand and ensure
their unambiguity
2. Or, allow compilers to accept ambiguous context-

free grammars

»  Compiler writers include “guidelines” that tell the
compiler which parse tree to choose when multiple trees

can be generated

© All Rights Reserved.
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o wwally  choose et pssocra vt

Wy Qfomier
Associativity it 8

* We alre:ady saw examples on how parse trees Lo
determine the evaluation order - =

* We use the term grammar associativity to describe the [ .
evaluation order direction in parse trees ]
* Example: evaluation order when parsing nym .

the string {Elo -2+ 3§ in the following grammars Ees E |

%14 E > E+num ?1*“2 E —> num+E

{23 | E-num ‘%2" | num-E Nun

7 B 31 e 3
Left-associative grammar Right-associative grammar = 5

T All Rights Reserved

Abstract Syntax Tree (AST)

* Abstract syntax trees are parse tress but may ignore At Less

some details NN O
AST: some interior nonterminal SPELR —S

nodes are removed CM\(-‘)

Less
Conplexiiy

Parse tree

16
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Summary

Context-free grammars are powerful mathematical
model of syntax in programming languages
For a given context-free grammar G with a start
symbol S, the language L(G) is all strings N such that:
= N contains only terminal symbols, i.e., legal tokens in the
language
» §=" N, i.e, there is a derivation of N in L(G) using the
production rules of G
A Parse tree is a directed graph that represents the
derivation of a string in L(G)

Ambiguity in context-free grammars is undesirable

© All Rights Reserved

L}

5

Pt

Exercise
‘ Jﬁ (¥>AVE P Sm
____\,_,\p J-—'! O
/ %_.) u\_-;’:'\/%u\o
\»W ,ﬁ' Jefmin

non - ttmin \y.so-l

" Specify the terminals and the nonterminals of this grammar

Write a regular expression that can generate the language
described by this grammar
Using leftmost derivation, draw the parse tree for the string

© All Rights Reserved

Clokars)
D ¥efﬁ\kan2qso wytiim  © 'g .

o - ’re(f\fﬁ\(\ojs

“011$” -
@ 0%
S A B

1/25/19
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Exercise

@ * Write a context-free grammar that describes the same ——
language as the regular expression 0°1

@ Write a context-free grammar that describes the same
language as the regular expression 0 I* up Yo L
hon-+eminals
« Write a context-free grammar that describes the same
language as the regular expression O*1 | O *

2) S— A\B B—»od8
A— oAl Bﬁg—g

« All Rights Reserved

i~

1/25/19

NSTRTEIC P

yon \'ﬁ(«\?“& i 2

—>Sel
s OA ol

N

A— o A S

'

Exercise ﬁ”

« Is the following grammar ambiguous? Justify your

answer
s s — XaaX
34 x - Xa
2 | X
I |
E5] | e

© All Riglts Resenved
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lectie 5

Top-Down Parsing
Spring 2018/2019

Instructor: Dr. Fahed Jubair
Computer Engineering Department
University of Jordan

The Parser Role

_ LM) String of Parse Tree

tokens

» The parser processes all tokens returned from the scanner
and produces a parse tree that represents the input program
structure (or a syntax error if an invalid structure is found)
In this lecture, we will study top-down parsing: a computer
algorithm that builds the parse tree using the derivation

rules of a context-free grammar
There is also bottom-up parsing but it will not be covered

by this course

& All Paghs Reserved
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- Parse Tree Properties

* A parse tree has _
&5 The_ start symbol at the root
* Nonterminals at the interior nodes
® Terminals at the leaves '

* A derivation is discovered if a post-order traversal of
the leaves (i.e., terminal nodes) match the tokens

returned by the scanner

€ All Rights Reserved

Top-Down Parsing

* A basjc top-down parsing algorithm:
" 1. Construct the > 100t node of the parse tree

Lo4” 2. Repeat until lower fringe of the parse tree matches the

string of tokens ‘ _
At a node labeled A, select a production with A on its Ihs and,
for each symbol on its rhs, construct the appropriate child

- When a terminal symbol is added to the frmge and it doesn 5
match the fringe, backtrack : !
-iii.  Find the next node to be expandedr

g

ii.

SR A Paahts Reoversedt
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Recall The Algebraic Expression
Grammar

- Expr
— Expr+ Term
|  Expr- Term
| Term
Term — Term™ Factor
|  Term/ Factor
| Factor
- ( &Expr)
|  number
| id

Factor

OWVWONOTUODAWN -

[

Let us try deriving S =° x -2 *y

using the basic top;d”oR\\lm Kparﬁing algorithm
© All Rights Reserved

*
S="x-2%y
Input Stream (the arrow points to tm _9 %
next input token ) = 2%y
The root is the start symbol = AP
V% -
Pick rule 1 = Wb, 0=\
(Oﬂf)orgg_, Pick rule 2 =
Pick rule 4 =p EiP 3 @PLMSOM Jds
Pick rule 7 = Teym U)o
Pick rule 10 o ( ‘E‘ A e Q;Cu
“x” matches “id” type = advance arrow, = '
T Al ;{‘;“;, Resered

v
ern A q()oms‘eowd}' \E‘be A fand (2
3 s e Techor » LoV <R§:> AL
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— !
S=>"x-2*y

‘\c§ s ¥ ey W\dt"\ L P g YQ“J RS gy

\
Input Stream (the arrow points to the = -2 * y
next input token):

“+7 does not match -

The algorithm backtracks
and try a different rule
while reversing focus arrow

e i

< All Rights Reserved

S=>"x-2*%y

Input Stream (the arrow points to the (i *
Xx—-2
next input token); g Y

Pick rule 3

=
Pick rule 4 =
Pick rule 7 =

Pick rule 10 = <id,x>
matches “id” type - advance to the next input token

66 *
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S="x-2*y

Input Stream (the arrow points to the
next input token):

=

=

=" matches *-"

advance to the next input token

© All Rights Reserved

e
@3@

xT-2*y

<id,x>

S="x-2*%y

Input Stream (the arrow points to the
next input token):

-

mokc (RIS ¢ 0

Pick rule 7

Pick rule 9

“2” matches “number” type = advanc

Vi R alits Reser e

eto the nex

Oand Jss-

0o
’ .S.' Cs | B T
mokch

\
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S=2"x-2%y

Input Stream (the arrow points to the =
next input token):

ek Mack (g (b
A Lec)® femmtnale gx O

No nonterminals left to expand

X O\ g

™

input stream is not fully consumed yet

Parse tree terminated too soon

The algorithm backtracks
£ ACKUracks
=T AT RTahts Reserved

S="x-2%y 52

Input Stream (the arrow points to the =
next input token):

Pick rule 5 @ @’
Pickrule7 &  Facd

Pick rule 9 = <id,x>

“2” matches “number” type = adyance to the next input token

<number,2>

Scanned with CamScanner
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S="x-2%y

Input Stream (the arrow points to the = x—2T*y
next input token):

(Expp
Epp - Term
“maches @ Terd Term *
advance to the next input token Fach) (Fach)
<id%> <pumber2>

< All Rights Reserved 13

S="x-2%y

Input Stream (the arrow points to the = x—2 % Ty
next input token):

Pick rule 10 = @ @ <idy>

<id,x> <number,2>

“y” matches “id” type = advance to the next input character
Al Dyghbts Reserved
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S="x-2"y

Input Stream (the arrow points to the = x-2* yT
next token to be consumed)

No more srinals to expand
and the input is fully consume

Term Term *
<id,y>
The algorithm terminates @ @

S = <id,x> <number,2>

A derivation js found

€ All Rights Reserved

Observations

* Top-down parsing uses leftmost derivation

* Top-down parsing begins with the root of the parse tree
and systematically extends the tree downward until its
leaves match the tokens returned by the scanner

 Ifthe parser expands the lower fringe using the wrong
production, a mismatch between the leaves and the tokens
eventually occurs

* The parser backtracks, undo its actions and start over with
a different production

* The parser terminates with a syntax error if all
productions are used and no match for the string of tokens

is found e

; Ve e -4
oo G Yo ke ) @,A‘_g.\j Makch g ) o) e podth alsl oS Q’ro\c::;lofj 5\
bodedvecy . 08 (8 MRt 3 8
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One Possible Bad Scenario

' : -2 *
Consider the following scenario Tx Y
when deriving S =" x -2 *y D
b A%S | R Pick rule3 &= @
3 bl

@ lfc\mm&ﬂi\ 'J‘J-’"’—) \QQI\- S romme ) Qa) Pick rule 3 &9 @ . @
, - YauSsv
\Qﬁ' e wSiney, f\) *"OP‘dOI:‘;\ —)@‘;&\ , Pick rule 3 & /%. @
(rerm)

H«S\f\hws’r oo || &‘55 7 pickrule 3
,} Qv TV C\.L\C LA le Mas ¥ (_p.u!
- devivedsow  Pickrule3 &P .

j"} NSyl 20 And so on e p
eres ., Because rule 3 is left-recursive, top-down parsing
Sfckmﬂof )“‘Q’_ = ‘(:?;‘3"“ has the possibility ef infinite.executj .
Y 5.3\/\* (LLwSIVE

1k mos ¥ B> 5

duwsvelien
b
' &' J:S »ub 5
LR The Left Recursion Problem
aj M
g 5 - Expr * Recursive use of rules 2,
2 Expr o Expr+ Term 3, 5 and 6 leads to an
3 |  Expr- Term infinite sequence of
4 | Term expansions
5 Term — Term™ Factor * Non-termination is
6 | Term/ Factor definitely a bad property
7 | Factor for compilers
8 Factor — (Expr) *  We refer to this problem as
9 | number the left recursion problem
10 | id
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Eliminating Left Recursion

* Solution: rewrite grammars so that they are right-recursive
* By hand
* Using an automatic tool

* Consider the following simple left recursive grammar:

A > Aa “” ?0(*_

| B

We (or an automatic tool) can rewrite the grammar as follows:

A A
QS\A‘\" WO LIS « 4 : E;, g The new grammar is
(LN | e right-recursive
“' gt ‘p CL' \ d ‘&'7‘ Qe £ All Rights Reserved 19
‘ s
Viovi — Fevivk ol
A >

Let us Generalize

A general left-recursive A > Aa; |Aas].. | Aa,
grammar [ BilBzl...|Bm

The equivalent right- A — B A | B2 4| woo | Brm A
recursive grammar A > oAl aAl.|a,Al ¢
O All Rights Reserved

10
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o

Eliminating Left Recursion

PR
in the Expression Grammar

The expression grammar
contain the following left

Applying the transformation

1
1
; : yields
recursion cases ]
- =
{?’ A : Expr - Term E_
Expr  — Expr+ Term : £ > + Term €
|  Expr- Term | = FermE
l Term 1 I £
1
Bl i
A A ) )
Pl Term — Term™ Factor ; 7:erm — Factor T,
|  Term/ Factor L7 — * Factor 7
| Facfar'(g O | 7/ Factor T
1 l £

Al Ri::\lts Resenved 21

The Right-Recursive Algebraic
Expression Grammar
R’ﬁh#—?e W20 (s [06
12 5 - Expr
2 Expr - Term £
3¢ £ - + TermE * Atop-down parser will
4 | - TermE always terminate when
5 | ¢ using this grammar
6 Term — Factor T_
& T — * Factor T
8 | / Factor T * Exercise: show the parse
9 | ¢ tree of S =" x -2 *y ysing
the basic top-down parsing
10 Factor — ( Expr) leorith
11 | number Feortm
12 | id
O Al Faghts Resers ed
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How to Code

Top-Down Parsers?

. Multiple approaches have been introduced in the
literature to implement top-down parsers

* A popular implementation is the recursive-descendent
parser

* Arecursive-descendent parser comprises a set of
mutually recursive routines that cooperate to parse a
string of tokens

= Each routine typically corresponds to a single production
rule

€ All Rights Reserved

A Basic Function For
The Recursive-Descendent Parser

* Let(nexpbe a pointer that points to the next token to be
constmed in the input stream T e
* Define a boolean function that checks for a match of a
token with the next input token:
bool MATCH (Token ?) {
if (t == *next)
IsEqual = frue ;

else
I[sEqual = false ;
next ++; — Js>F U£7
return IsEqual; % m::uk. ) .
} )H\lP\« s J Pom\ed\ Y )

~ -

1/25/19
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Top-Down Parser Code
For A Simple Grammar
\ 250 \',6\52)5 S oypPs D
Rule S 1 S —» BCA
bool S () {retumB()é@C()&&A() 3} 2 A > 5
!uy‘(:“’ov\ - » 13 | ¢
A/C] B I espug D o €
Rule A > } E
bool A1 () { return S() ;} -
bool A2 () { return true 3} ERP C P | = f;"’"be’"
|| bootA(){ u2>d | 8 | i
. | (Token *save = next;>
Yrue ety ) - return ___ (A1();) // try A1 rule first
- 1 )‘ J,\ (next=save; A2();); //thentry A2 rule
ity s e AL FALRils B e e
Pl 2wy Frue CAer>5 %5 ()
Sove o §\D &=
: back z-
Yokew Vo= next 2 hock- T -
SCXU& - el
Top-Down Parser Code
For A Simple Grammar
1 S > BCA
2
Rule 8 3 A T f
bool B1 () { return MATCH( € ) ;} 4 B - €
bool B2 () { return MATCH(E) ;} 5 | £
bool B3 () { return frue ;} 6 | e
bool B () { 7 C — number
e 8 | id
Token *save = next;
return  (BI1();) // try B1 rule first
| (next=save; B2();) // then try B2 rule
| (next=save;B3();); //thentry B3 rule
j
0 Al Rigbits Reserved
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Top-Down Parser Code
For A Simple Grammar
1 S - BCA
2 A > S
Rule £ 3 | ¢
bool C1 () { return MATCH( number):} | 4 8 — €
bool C2 () { return MATCH( id ) :} 5 | £
6 | ¢
7 ¢ — number
bool C () { 8 | id
Token *save = next;
return ~ (C1();) // try C1 rule first
| (next=save; C2();); //thentry C2rule
}
& All Rights Reserved 27

Exercise
1 5 - Expr
2 Expr - Term E
3: £ — + TermLi
* Write the code of a 4 | - TermE
recursive-descendent | D | EF 5
6 Term — Factor T
arser for the 8 .
p : 75 7 — * Factor T
expression grammar 8 |/ Factor T
9 | ¢
10 Factor — ( Expr)
11 | number
12 | id
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Invoking A Recursive-Descendent

Parser

To start a recursive-descendent parser:
" Initialize next to point to the first token
* Invoke the start symbol routine
Easy to implement by hand
Similar to scanners, there are software tools that
generate the code of parsers automatically

Example: ANTLR

Input Grammar Java codes for a

by user scanner and a parser

© All Rights Reserved 29

Summary

« Top-down parsers find a derivation for a string of
tokens by building a parse tree

= The parser starts at the root and then extends the tree
downward (hence the name top-down parsing)

» The parser terminates when the leaves matches the tokens
returned by the scanner

» [eftmost derivation is used
« Backtracking is needed when a “bad” pick of a
production rule is used
« Top-down parsers cannot handle left recursive

grammars

» Solution: rewrite grammars to be right recursive
S AN Riglits Resers ed

1/25/19

lorel » QAN
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Summary (cont.)

. ,
Recurswe-descendent parsers are popular
Implementation for top-down parsers

* However, a major source of inefficiency is the need to
backtrack

* Luckily, there are algorithms for backtrack—fre;‘e top-
down parsing @ PerFormance >) Foio 4)

®= The topic of our next lecture

© All Rughts Reserved 31

w—
Nt

Exercise =02

— (A)x(B)
—> T num
— T num +

| €
B — B + num
| num

— 2> W

R

« Rewrite the above grammar into a right-recursive grammar
e Using your new grammar, show the parse tree for the
following strings:
m (1+2+3)x(2)
= (2)x(1+2+3)

Al Rights Reserved
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Lechue 6

Predictive Parsing
Spring 2018/2019

Instructor: Dr. Fahed Jubair
Computer Engineering Department
University of Jordan

Review: The Problem
of Backtracking

« Backtracking makes top-down parsers really slow and
inefficient

« This inefficiency arises from the parser’s lack of
knowledge of which production role is the correct one

s Therefore, it tries all rules till finding the correct one

 This lecture introduces LL parsing: a computer
algorithm for performing backtrack-free top-down

parsing
—_— © All Rights Reserved a

Scanned with CamScanner



1/25/19

- A
PG s e ||
P G5 Porform
¥
Dackireck g
- BN S - Expr
“l [2i&pr o Term €
3; E - « TermE
4 | - TermE
5 | e
6 Term - Factor T
7/ - * Factor T
‘8. | 7 Factor T
9 |
1 0, Factor — ( Expr) A smart parser would lookahead at
11; I r‘umbe‘r the next input token “x™ and
12 | id conclude that the rule Factor — id is
- ,ﬁﬁe cottrect rule to choose "

Backtrack-Free Parsers

* Given A — a| B, a backtrack-free top-down parser should
be able to choose between o &  without the need to.

backtrack
The key idea is to “look alicad” at the next input token

when selecting the production rule
® Let us call this token the lookahead foken
We refer to such parsers as predictive parsers because
they predict the “correct” rule to use
Predictive top-down parsers are also called LL parsers

* They read the input stream from left to right (hence the first “L”)
and they use leftmost derivation (hence the second “L>)

© All Rights Reserved. 4
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Moy, 415
Jes Nine.

S
trudes 53
\

Aque o . LL(1) Grammar

‘- /;A.Q \._,‘)3—
Stovt

* A grammar for which a top-down parser that reads
the input from left to right and uses leftmost
derivation needs a lookahead of at most one token to

always predict the correct rule
e ——

* Using LL(1) grammars, a top-down parser can always
predict the correct rule every time it expands a

nonterminal

‘@ All Rights Reserved

Predictive Top-Down Parsing

* Consider a top-down parser that uses an LL(1)

grammar
* Let the next nonterminal node to be expanded by a

the parser be 4
* Let the lookahead token be ¢

« When expanding A, the LL(1) grammar has the
property that there is a unique production rule 4 — o
such that o« =7 ¢ B, i.e., there is only one rule that can

derive token ¢ in the first position
* Therefore, LL(1) grammars enable top-down parsers
to be predictive

£ All Riglus Reserved
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Expr i
Term £

+ Term Ef
- Term £
£

Factor T
* Factor T
/ Factor T
£

( Expr)
number

id

Lookahead token is X
Factor - id is the only rule that

derives x in the first position

 All Rights Reserved 7

Prediction Criterig

* A production rule 4 — ¢ can derive a terminal ¢ in the

first position under one of
I. 1€ FIRST(«), OR

the following two conditions:

2. €€ FIRST(a) and 1€ FOLLOW(q)

Let us define FIRST
and FOLLOW sets

© All Rights Reserved
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FIRST Sets

oca—>¢g, OR

3. FIRST(a) € FIRST(B)

@ All Rights Reserved

* Let A — « be a production rule in an LL(1) grammar

* FIRST(«a) is the set of all terminals that appear as the
first token in some string that derives from o

FIRST(o) = { all terminal tokens 7 such that . ="/ }

* FIRST sets have the following properties:
1. FIRST (t)={t}, wheretis aterminal
2. & € FIRST( o) if any of the following holds:

oa—->X X;...X, andXj—eforalli: 1 <i<n

ifRoXiX;...Xpaand X; = cforalliz 1 <i<n

Example 1

2 FIRST(+)={+}

G Yoken oS

[=PRTIN

(ﬁ“ Yokaus ) %} .

*| FIRST(-)={-}
| FIRST(*)={*}
o) FIRST(/)={/}

: %
Fodtol® < O

*/ FIRST ( Factor) = { (, number, id }
« FIRST(* FactorT)={*}

* FIRST(T)={*,/,¢}

¢ FIRST (Term) = { (, number, id }
« FIRST(E)={+,-,¢}

* FIRST (Expr)= { (, number, id }
* FIRST(S)={(, number, id }

- Expr
— Term E,.
S Termﬁi
| - TermE
| e "
- Factor — v 4h qa-"&l
— * Factor T - :
| / Factor T ,\)D Term Nt
| ¢ G ) aua)
> (Ber) Foltor, s

| number
| id

© All Rights Reserved
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Example 2

= * Terminals are €, €, number, id
o _ * Nonterminals are 4, 8, C, S 5
£ S5 S 6 i 6
| O_,ao - ) é <
CEES Bie § ) « FIRST (C) = { number, id }

Frist (@) eund - FIRST(8)={€£.6} ==
FeesT (R) _G';_—" —(*) FIRST (S)={ €, £ ,number, id } \

,_éi- * FIRST(A)={¥,£ , number,id, ¢} g?\ g;.ﬁjjm
Ferst (&) e %)(JD@; R 5 Forst o) aus; B I s @

GaPoe G0 A J‘J-W S J Pust e € :\Q){N'\ﬁ\_fv

€ All Rights Reserved.

Numper %c} . D @l o) J‘ kg L6 ) (CLYEYRE L Jero

FOLLOW Sets

* Let 4 be nonterminal in an LL(1) grammar that has
start symbol §

*_FOLLOW(A) is the set of all terminals that follow 4 in
_some sentential form

FOLLOW(A) = {all terminals ¢ suchthat S=" A (B }

« FOLLOW sets have the following propetties:
1. $ € FOLLOW(S), where § is a special end-of-input token
2. Ignore € when computing FOLLOW sets

If 4 — o B, then FIRST(B) € FOLLOW ( o.)

IfA— a3, then FOLLOW (A) E FOLLOW ()

IfA— o Band B ="¢ then FOLLOW(A) € F OLLOW(oc)

£ All Riglis Reserved
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Example 1

FIRST(Expry € FOLLOW (")

© All Rights Reserved

FOLLOW () € FOLLOW (Expr) = B
FOLLOW (Expr) € FOLLOW (&) - Term £
FOLLOW (Expr) € FOLLOW ( Term) —~> + Term £
FIRST(£) € FOLLOW ( Term) | - Termé€&
FOLLOW(£) € FOLLOW ( Term) (I

FIRST( Term) € FOLLOW (+) - Factor T
FIRST( Term) € FOLLOW (-) *
FOLLOW ( Term) € FOLLOW (7 T / ﬁ:ﬁﬁ;ﬁﬂ ;7;
EOLL?f\F;I( Term) c FO}IE_LOW(Facfar) [ ¢

IRST(7) € FOLLOW (Factor)
FOLLOW(?ngOLLo(w (Factory  |104 Factor — ( Expr)
FIRST(Factor) € FOLLOW (*) A1 | number
FIRST(Factor) € FOLLOW (/) 12 |_id

Example 1 (cont.)

FOLLOW (S)={ $ }

FOLLOW (Expr)=1{ $,)}
FOLLOW (£)=1{$,)}
FOLLOW (Term)=1{$,),+, -}
FOLLOW(N=1{$,),+ -} ‘
FOLLOW (Factory={$,),+ -,*,/}|
FOLLOW (+) = (number , id , ( }
FOLLOW (-) = {number , id , ( }
FOLLOW (*) = {number , id , ( }
FOLLOW (/) = {number , id , (}
FOLLOW ('(" ) = {number , id , (}
FOLLOW (') )={$, )+, -.%,/} Dk
'9* :/] { 1

il S - Expr

a7’ — * Factor T

| Factor — ( Expr)

Expr - Term £ .
£ - + Term £
| -TermE

| ¢
- Factor T

| /7 Factor T
| ¢

| number

FOLLOW (number) = {$, ), +, | id
FOLLOW (id)=($,),+-,*,/}
© Al Riglus Reserved 14
SAsBues et s
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Example 2

* Terminals are €. £, number, id

BCA
¢ Nonterminals are A,B,C, 5 L I
FOLLOW (5) = FoLLow (A) (why?) *"4 ;
FOLLOW (5) c FoLLOW () Fs
FIRST (¢) € FOLLOW (8 £
FIRST (4) € FOLLOW (¢) € i

number

FOLLOW (s)={ $ } id

FOLLOW (4) = { § }
FOLLOW (8)={ number, id }
FOLLOW(C)=($,€ £, number, id }

FOLLOwW (€) =FOLLOW (£)={ number, id }

FOLLOW (number) = FOLLOW (id)={$,€,£, number, id }

© All Rights Reserved

PREDICT Sets

* We now merge FIRST and F OLLOW sets into a
single set, called the PREDICT set

* For each production rule 4 — o in the LL(1)
grammar, we define PREDICT(ct) as the set of all

terminals that appear as the first token in some string
that derives from o

* PREDICT(«) is computed as follows:
Predict (o) = FIRST (o) - { ¢ }
if (& € FIRST () )
Predict () = Predict (o) U FOLLOW(o)

© All Riglus Reserved

— Pregict (&)
s Brst)
% o RSt
Cordesnn £
_sTF By
Contadns €,
Predict (o)

ts g (o)

J E,How(tx)
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Example 1
_)
%
_)
PREDICT(.S) = { number, id |, (} |
PREDICT(Expr) = { number, id , (} I
PREDICT(E)={+,-,),$} Term —
PREDICT( Term ) = { number, id , (} — * Factor T
PREDICT(7)={+,-,*,/,).$} 7
PREDICT(Factor) = { number, id , (} { iFador
Factor — ( Expr)
| number
[ id
L © All Rights Reserved. b

Example 2
- BCA
* Terminals are €, £, number, id > 5
* Nonterminals are A, B, C, S | €
- €
| £
| ¢
- humber
18! | id
» PREDICT(C) = { number, id }
« PREDICT(B) = {€, £ , number, id }
e PREDICT(S)={¥€, £ , number, id }
+ PREDICT(A)={%,£ ,number,id, $ }
£ All Rights Reserved 18
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LL(1) Parsing Table

* Fora given LL(1) grammar G, a parsing table T is a
2D array that informs the parser of which production

rule to use when expanding a nonterminal A in a
parse tree

* Hence, if 4 is a non-terminal and ¢ is a terminal in G:
T[4, f] = a such that 4 = a and ¢t € PREDICT()

* T[4, 1] is set to an error flag if no such production
rule existed

& All Rights Reserved. 19

LL(1) Parsing Table For
The Expression Grammar

A

> kens QP

7 8 =+ fes naes 9 9

- - 12 1 10 - -

¢ All Rights Reserved 20
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© All Rights Reserved

Example 2 (cont.)

We can also write the LL(1) parsing table as follows:

Loy =2 & : | e ,
&S expr I s (8c? Bca Bca BeA -

quLJ‘v”/‘J*-’ i | s s s s ¢

£ All Rights Reserved 22

Scanned with CamScanner



1/25/19

Predictive Top-Down Parsing

* The algorithm of predictive top-down parsing :
1. Construct the parse table T

2. Construct the root node of the parse tree
3. Repeat until lower fringe of the parse tree matches the

input string

i.  Atanode labeled A, select the production rule T[4,7] from
the parse table (where ¢ is the lookahead token), and for each

symbol on the rhs of this rule, construct the appropriate child
ii. Find the next node to be expanded

€ All Rights Reserved.

23

Letus Redo S =" x—2*y

An LL(1) version of the algebraic expression grammar

- Expr
- Term £
— + Term £ The parse table is
: - TermE shown on slide 20
£
— Factor T
*
- ™ Factor 7: Let us take it to
| 7/ Factor T e board
| ¢
| Factor — ( Expr)
' | number
! !d © All Rights Reserved 24
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Recursive-Descendent LL(1)
Parsers

« In previous lecture, we studied recursive-descendent
parsers: a popular implementation for top-down
parsers

+ We introduced:

» pext: a pointer that points to the next token to be consumed
in the input stream

= MATCH(Token t): a function that checks if a token ¢
matches the next token to be consumed in the input stream

« We now introduce one more function:

(%) PEEK() as the function that peeks at the input stream and

returns the lookahead token
© All Rights Reserved

26
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Predictive Top-Down Parser Code|
For A Simple Grammar

— BCA
Rl 5 This is the PREDICT set T f
bool S () {
Token ¢ = PEEK () ; / - ¢
if(r€ {£ £ ,number,id }) || £
return B() && C() && A() ; b
else . n:m er
return false ; // parse error |

\OD ko_t\fad -}_D ke‘\‘ B) —)ﬁ“ 8')'[?‘) 3‘),0 1) 3"\
B0 Predick  toble  aLosfa\d) G

& All Rights Reserved. 27

2% 21 mMakth Wie S, B2 s

Predictive Top-Down Parser Code
For A Simple Grammar

Rule A
bool A () {
Token t = PEEK () ;
if (1€ {€, £ ,number,id })
return S() ;
elseif (¢€{$})
return frue ;
else
return false ; // parse error

} Note that Backtracking is not
needed in this version of code

© All Rights Reserved 28
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Predictive Top-Down Parser Code g A
For A Simple Grammar
Rule 8
bool B () { 155 - BCA
Token ¢t = PEEK () ; 2, A - S
if(1e{€}) 3 | e
return MATCH(€) ; 4 B - €
clscif (te {£}) 5 | £
return MATCH(E) ;;,5;5} | €
clse if (£ € { number, id } ) s c ‘_’"”"be"
return frue ; 8 | id
else
return false ; // parse error
}
@ All Rights Reserved. 29 J
Predictive Top-Down Parser Code
For A Simple Grammar
Rule &
bool C () {
Token ¢t = PEEK () ;
if (¢ € { number })
return MATCH( number ) ;
elseif (t€ {id })
return MATCH( id )
else

return false ; // parse error

© All Rights Reserved. 10
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\
T
- Expr
- Term £
. — + Term €
* Write the code of a 4 | - Term&
recursive-descendent |5 | e 2
LL(1) parser for the | © ~ f‘;_fm: T—f
expression grammar T / FZ;‘Z: A
| e
101 Factor — ( Expr)
11 | number
12 | id
€ All Rights Reserved 31

The Problem is That Not
All Grammars are LL(1)

* Assume a context-free grammar G with the
production rules A — o | B

* Remember that for G to be an LL(1) grammar, then
there is at most one production rule in A — o | § that
derives a Token ¢ in the first position

* Therefore, G is LL(1) grammar if
PREDICT(0)) N PREDICT(}) =@

* Otherwise, G is not an LL(1) grammar

= The predictive top-down parsing algorithm shown in slide
22 cannot be used with grammars that are not LL(1)

© All Rights Reserved 32

Cx 3 LLWU) ,wal syt S .
° Qammos” -

Ll - <y Pféc)fci‘ J aw PO sy 4
Sfcxmmfr%} Ty Rt e

Scanned with CamScanner



s
A Non-LL(1) Grammar
Example

1”1;‘ Function — id

2 | id(ArglList)
w3 | id[Arglist]
A
5

6

A Arglist — id MoreArgs
i i;;_ﬁ MoreArgs — ,id MoreArgs
3, 3 I £

» Rules 1, 2 and 3 can all derive token /d in the
first position from nonterminal Function

+ (Can we rewrite this non-LL(1) grammar so
that it is LL(1) grammar? not  (&(3) ofommars -

@ All Rights Reserved.

33

Left Factoring

« Consider the following non-LL(1) grammar G
A—apyaB|aps|...[aBaly

The problem is that token o is a common prefix

Solution: let us factor token o out
Therefore, we can obtain the equivalent LL(1)

*

L]

A—>oad |y
Aﬂ%ﬁllf’zlﬁslmmn

£y Alt Rights Reserved

version of G by introducing a new nonterminal 4:

34
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Left Factoring Example

L Function g A Function = id X
e | T
| idrArgList) | [0 "
Arglist — id MoreArgs '
MoreArgs - | id More Args | |G Arglist - tcf MoreArgs
6 [ e | MoreArgs — ,id MoreArgs
] I a

Non-LL(1) LLOT, WP 28 LL(1)

Grammar U Gromme~ _Grammar

< All Rights Reserved

35

()s)uzm»\ g ame VIOW Q.\f = _’Jjﬁﬁ Ue\e 9 LY
oo -

Yeros

Predid () =¥ €, C, % — Unigue —»

Ce() Af anman

R

Left Factoring
Doesn’t Always Work

* Even with left factoring, some grammars still cannot
be converted into an LL(1) grammar
* Possible solution: use LL(k) parsing, an advanced
top-down parsing that uses & lookahead characters
* Another possible solution: use bottom-up parsing,
another algorithm for parsing that covers a bigger
class of grammars than top-down parsing

£ All Rights Reserved

R
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N

Summary

——

. .
Predlqwe top-down parsing is an efficient parsing
technique that does not require backtracking

* To use predictive top-down parsing, context-free
grammars must be rewritten as LL grammars
* This can be done by hand or by an automatic software tool
* Predictive top-down parsers can be implemented as
fecursive-descendent parsers
* Most programming languages can be parsed using LL(1)
parsers

37

€1 All Rights Reserved.

Exercise
S > ABF
A - x8

| xw
B -5 xyA
| z

The above grammar is not LL(1). Explain why.

Use left factoring to rewrite the grammar into an LL(1)
grammar

. Show the LL(1) parsing table for your grammar in part ii
iv. Using the parsing table, show the derivation steps for the string
xXxyxwz$

© All Rights Reserved 38
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Leckure F

Semantic Actions
Spring 2018/2019

Instructor: Dr. Fahed Jubair
Computer Engineering Department

University of Jordan

Semantic Actions’ Role

Parse
o i et P —m«w-—..._——--‘-—...-ﬂ
Program TOkﬁﬂ% St st 'I‘ree P e I
Text = i Larser > SR R

(Font end ) L , )

* The role of semantic actions (or semantic analysis) is to
analyze the parse tree in order to

1. Build the symbol table
2. Check for semantic errors
3. Generate the intermediate representation (IR)

———

o — -

a All Rights Resened
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Semantic Errors

* Some errors are beyond syntax analysis | .
» For example, what is wrong with the following C code

Supfox e W L0

void main {){ (Z,?O-fum‘d'a&)\ ?oo C_):JQL,.U\ _\/(;:o

int a, b ;
float [4]
char »p

P(,“GWdﬁ" WJ\/‘ LQJJ o8 c_),-uo i

Q"(Cr

1s y\gf éec\o.xed.__, scwﬁc.erro(s :

~ When U:sx—H‘VB
ne Qorle  hvee
we do mo€

=

Semantic Actions

* Semantics actions are routines that are invoked
while traversing the parse tree to examine the
meaning of the program

* These routines check the meaning by applying a
verity of correctness checks

* Inthe end of the semantic analysis, the parse tree is
traversed in order to construct the [R

¢ All Rights Resen e
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rﬁo*\’ _3 o o e s "
" Jisiy 0 b +—The Visitor Pattern () - ()
J e \Dvsn
c\\dven 0 _C\M —_
* We will define a visitor pattern that o A gf ey
Lot C traverses all the nodes of a parse tree c\ldven .
= O\ Wa . E;lch node recursively visits its 0 °
children
BV owe
(P \f) * Default behavior: do nothing o @ o e
* For example, consider the shown
parse tree example
Visit Y() {
VisitS () { Visit X () { visit(B) 5
visit (X); visit (A4); vgsgt(C).
visit( Y); } visit(D):
- H
Cden o S ord by
S8 ) i Sn ~ ~

Parse Tress With
The Same Children Type

» In parse trees, multiple instances of the same node may
appear in the same level (e.g., see the parse tree below)

» To distinguish between these nodes, the visitor pattern uses
an array

Visit X () { b Ambfﬁuos
visit@ / %f amma(”
visit ( B )
visit (@[LD) 4

SRS me up 4y

} Avvew n ;
a All Kagh(ﬂ"wu‘a . (\ e \" v’Ef) )\‘,?
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lntegratmg Semantlc Actions |
Wlth The Visitor Pattern

t N Compiler'wrlters override the o
Visitor pattern functions to msert

- Semantic actions e i @ o o

e ———

Visit ¥ () §

#Haction] " Insert code here to perform
visit (B); Kactions before visiting the
visit (C); children nodes
visit (D) ; .
#action2 Insert code here to perform
} actions after visiting the
children nodes
Ml Rights Resvved
Example 1

* The below grammar describes a list of identifier,
which is often needed in programming languages

. 'Write semantic actions to count the number of IDs
* E.g., when traversing the parse tree of ( X, y, Z) the count

of IDsis 3 |
j:’l‘,j_u‘5 o= (id list) A (’t (UJQS (§_AJ.S-
_ 2 id_list. o idlist_tail - O ssiys. \_SMB
3 dist_tall > id fist_tail ;. apt
' e

H"z yhte Resened

- _",,\}’Sﬁ-\— fu.lﬂ( )5%
Vi fies)i o

SIS (e Y

SR G Y
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Example 1 (cont.)

e TR

The Visitor pattern: default routines

Visit Rule! ()

Teturn §

visit (¢id_list) ;

Visit Rule2 () {
visit ( /d) s
visit { fist_tail);
return :

Visit Rule3 () {
visit { /id)
visit (/ist_tail);
[ENRUNEIN ' }

retarn :

@ Al Raghits Reserved.

Visit Ruled () {

list_tail has two rules
Which one is invoked ?

Example 1 (cont.)

We write semantic action pass that overrides
the routines of the Visitor pattern

{ int count} / global variable

\)’5 4d (»r\x/

20k, 5 C»\«bﬁu

(SY (30)
uad X+ V>

Visi @ Visit Rufe2 () {
count = count++ ;
vxs:t‘—\ visit ( fist_tail);
refwen ; LL%N Q-”D . return

fo_\sy

TN

5 .

Note that count is passed
down from parents to

£ ( ount++3 , Visit Ruled () { ;i‘:lﬁf]‘lfi‘ ‘::::3 traversing J ‘% \
visit (/157 fa.'/) 1 returh : \‘
. return |
kS A\e et
o nRu:: tesen o

IVRRE ) :‘5!5
\}oﬁcxb\‘iul)

j N D f
Copd

5\

3 = Qow«i")l:;,&\ga\w\

)

* 30 Aol
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Yorse trea-

By

Exp

Example 2 /\
* The grammar describes an algebraic expression of PQ%X —1
Integers that are added to each other
* Write semantic actions to evaluate the expression 9 4
Code c_‘:,Sﬂ LS\,, aslaly " E.g., when traversing the parse tree of 3 + 8 + 7, the P{EQ—H

expression evaluates to 18
- _é,é' ) el * Assume GetValue(Token t) is a function that returns the N‘ ¥
\’ - integer value of £, where ¢ is a token with the type INT K)
prebey
c

1 Expr - Expr_prefix INT
2 Expr_prefix - Expr_prefix INT +
3 | ¢

@ Al Rights Resenod

! rr————

Example 2 (cont.)

Visit Rulel () {
int sum = visit (Expre_prefix) ;
sum = sum + GetValue(INT) ;

print sum ;
return ;
}
Visit Rule2 () { Note that sum is passed up

from children to parents while
traversing the parse tree

int sum = visit (Expr._prefix) ;
sum = sum + Getlalue(INT) ;
return sum ;

}

Visit Rufe3 ()4
return 0
H

o Adl Rights Buseined
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Vit (prefen)
vessy (\NT)

§
Rk
\,mg )
| return 05 §

5 O 80 >V A%
SO U

Uit Rode 2.C) 51

k. X = Vzsek (prefax)
X = X—\—Ge’\\/w‘\k(,(\UT)

(Q‘*LL(Y\ * p

g

- Rl 0 %. U%Sﬁ" Quk}'\ :
\is iy (Preﬁrx) <

visst (AN T) ?]
Vs iv ((+)

5

Vist Rule2 U7
et X o= VA (P(dix)
R Get Vot (\UT)

]SW' Vel ¥ |
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W Seslabl Somantic Attributes

e, G

* Semantics attributes are information that descr}be
Some meaning of a terminal or a non-terminal in the
parse tree

* Information passed from children nodes to parent
-nodes are called/synthesized attributes)

* Information passed from parent nodes to children
nodes are calledinfierited attributeX

o All Rights Resunved

Semantic Action Passes

* The number and functionality of semantic action
passes vary from a compiler to a compiler

* In this course, we will consider the following
traditional semantic action passes:
* First Pass: building the symbol Tablt (eey , vaue.)

*= Second Pass: performing type checking

* Third Pass: generating thej_li

e Al Raghae Rosend
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