
1/29/20

1

Chapter 1: Introduction to
Computers, Programs, and C++

Sections 1.1-1.3, 1.6-1.9

1

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University
of Jordan for the Course: Computer Skills for Engineers (0907101)

1

Outline

• Introduction and Computers (§§1.1–1.2)
• Programming languages (§§1.3)
• A simple C++ program for console output (§1.6)
• C++ program-development cycle (§1.7)
• Programming style and documentation (§1.8)
• Programming errors (§1.9)

2

2

1/29/20

2

What is a Computer?

3

A computer consists of a CPU, memory, hard disk,
monitor, and communication devices.

CPU

e.g., Disk, CD,
and Tape

Input
Devices

e.g., Keyboard,
Mouse

e.g., Monitor,
Printer

Communication
Devices

e.g., Modem,
and NIC

Storage
Devices

Memory

Output
Devices

Bus

3

CPU

CPU

e.g., Disk, CD,
and Tape

Input
Devices

e.g., Keyboard,
Mouse

e.g., Monitor,
Printer

Communication
Devices

e.g., Modem,
and NIC

Storage
Devices

Memory

Output
Devices

Bus

4

The central processing unit (CPU) is the brain of a
computer. It retrieves instructions from memory and
executes them. The CPU speed is measured in megahertz
(MHz), with 1 megahertz equaling 1 million pulses per
second. The speed of the CPU has been improved
continuously. If you buy a PC now, you can get an Intel
Core i7 Processor at 3 gigahertz (1 gigahertz is 1000
megahertz).

4

1/29/20

3

Memory

CPU

e.g., Disk, CD,
and Tape

Input
Devices

e.g., Keyboard,
Mouse

e.g., Monitor,
Printer

Communication
Devices

e.g., Modem,
and NIC

Storage
Devices

Memory

Output
Devices

Bus

5

Memory is to store data and program instructions for CPU
to execute. A memory unit is an ordered sequence of
bytes, each holds eight bits. A program and its data must
be brought to memory before they can be executed. A
memory byte is never empty, but its initial content may be
meaningless to your program. The current content of a
memory byte is lost whenever new information is placed
in it.

5

How Data is Stored?
• Data of various kinds are

encoded as a series of bits (zeros
and ones).

• The encoding scheme varies. For
example, character ‘J’ is
represented by 01001010 in one
byte.

• A small number such as 3 can be
stored in a single byte.

• If computer needs to store a
large number that cannot fit into
a single byte, it uses a number of
adjacent bytes.

• A byte is the minimum storage
unit.

6

6

1/29/20

4

Storage Devices

CPU

e.g., Disk, CD,
and Tape

Input
Devices

e.g., Keyboard,
Mouse

e.g., Monitor,
Printer

Communication
Devices

e.g., Modem,
and NIC

Storage
Devices

Memory

Output
Devices

Bus

7

Memory is volatile, because information is lost when the
power is off. Programs and data are permanently stored
on storage devices and are moved to memory when the
computer actually uses them. There are four main types
of storage devices: Disk drives (hard disks), Solid-state
devices (SSD, Flash), CD drives (CD-R and CD-RW), and
Tape drives.

7

Outline

• Introduction and Computers (§§1.1–1.2)
• Programming languages (§§1.3)
• A simple C++ program for console output (§1.6)
• C++ program-development cycle (§1.7)
• Programming style and documentation (§1.8)
• Programming errors (§1.9)

8

8

1/29/20

5

Programs

Computer programs, known as software, are instructions
to the computer.

You tell a computer what to do through programs. Without
programs, a computer is an empty machine. Computers do
not understand human languages, so you need to use
computer languages to communicate with them.

Programs are written using programming languages.

9

9

Programming Languages
Machine Language Assembly Language High-Level Language

10

Machine language is a set of primitive instructions built
into every computer. The instructions are in the form of
binary code, so you have to enter binary codes for various
instructions. Program with native machine language is a
tedious process. Moreover the programs are highly
difficult to read and modify. For example, to add two
numbers, you might write an instruction in binary like this:

1101101010011010

10

1/29/20

6

Programming Languages
Machine Language Assembly Language High-Level Language

11

Assembly languages were developed to make
programming easy. Since the computer cannot understand
assembly language, however, a program called assembler
is used to convert assembly language programs into
machine code. For example, to add two numbers, you
might write an instruction in assembly code like this:

add 2, 3, result

11

Programming Languages
Machine Language Assembly Language High-Level Language

12

The high-level languages are English-like and easy to learn
and program. For example, the following is a high-level
language statement that computes the area of a circle with
radius 5:

area = 5 * 5 * 3.1416;

12

1/29/20

7

Popular High-Level Languages
• COBOL (COmmon Business Oriented Language)
• FORTRAN (FORmula TRANslation)
• BASIC (Beginner All-purpose Symbolic Instructional Code)
• Pascal (named for Blaise Pascal)
• Ada (named for Ada Lovelace)
• C (whose developer designed B first)
• Visual Basic (Basic-like visual language developed by Microsoft)
• Delphi (Pascal-like visual language developed by Borland)
• C++ (an object-oriented language, based on C)
• Java (a popular object-oriented language, similar to C++)
• C# (a Java-like developed my Microsoft)

13

13

Compiling Source Code
A program written in a high-level language is called a
source program. Since a computer cannot understand a
source program. Program called a compiler is used to
translate the source program into a machine language
program called an object program. The object program is
often then linked with other supporting library code
before the object can be executed on the machine.

14

Compiler Source File Object File Linker Excutable File

14

1/29/20

8

Compiling versus Interpretation
• Some programming languages like Python have

interpreters that translate and execute a program one
statement at a time (a).

• C++ needs a compiler that translates the entire source
program into a machine-language file for execution (b).

15

15

Outline

• Introduction and Computers (§§1.1–1.2)
• Programming languages (§§1.3)
• A simple C++ program for console output (§1.6)
• C++ program-development cycle (§1.7)
• Programming style and documentation (§1.8)
• Programming errors (§1.9)

16

16

1/29/20

9

A Simple C++ Program

17

Let us begin with a simple C++ program that displays the
message “Welcome to C++!” on the console.
#include <iostream>
using namespace std;
int main()
{
// Display Welcome to C++ to the console
cout << "Welcome to C++!" << endl;
return 0;

}

Note: Clicking the blue button runs the code from Windows. To
enable the buttons, you must download the entire slide file slide.zip
and unzip the files into a directory (e.g., c:\slide). If you are using
Office 2010 or higher, check PowerPoint2010.doc located in the
same folder with this ppt file.

Run
Welcome

Note: Clicking the green button displays the source code with
interactive animation and live run. Internet connection is needed for
this button.

17

Special Characters in C++

18

18

http://PowerPoint2010.doc

1/29/20

10

Comments in C++

19

19

Extending the Simple C++ Program

20

Once you understand the program, it is easy to extend it to
display more messages. For example, you can rewrite the
program to display three messages.

#include <iostream>
using namespace std;
int main()
{
cout << "Programming is fun!" << endl;
cout << "Fundamentals First" << endl;
cout << "Problem Driven" << endl;
return 0;

} RunWelcomeWithThreeMessages

20

1/29/20

11

Computing with Numbers

21

Further, you can perform mathematical computations and
displays the result to the console. Listing 1.3 gives such an
example.

#include <iostream>
using namespace std;
int main()
{

cout << "(10.5 + 2 * 3) / (45 - 3.5) = ";
cout << (10.5 + 2 * 3) / (45 - 3.5) << endl;

return 0;
} RunComputeExpression

21

Outline

• Introduction and Computers (§§1.1–1.2)
• Programming languages (§§1.3)
• A simple C++ program for console output (§1.6)
• C++ program-development cycle (§1.7)
• Programming style and documentation (§1.8)
• Programming errors (§1.9)

22

22

1/29/20

12

1. Creating and Compiling

23

23

2. Linking and Running Programs

24

24

1/29/20

13

C++ IDE Tutorial

25

You can develop a C++ program from a command window
or from an IDE. An IDE is software that provides an
integrated development environment (IDE) for rapidly
developing C++ programs. Editing, compiling, building,
debugging, and online help are integrated in one graphical
user interface. Just enter source code or open an existing
file in a window, then click a button, menu item, or
function key to compile and run the program. Examples of
popular IDEs are Microsoft Visual Studio, Dev-C++, Eclipse,
and NetBeans. All these IDEs can be downloaded free.

25

Outline

• Introduction and Computers (§§1.1–1.2)
• Programming languages (§§1.3)
• A simple C++ program for console output (§1.6)
• C++ program-development cycle (§1.7)
• Programming style and documentation (§1.8)
• Programming errors (§1.9)

26

26

1/29/20

14

Programming Style and Documentation

• Appropriate Comments
• Proper Indentation and Spacing Lines
• Block Styles

#include <iostream>
using namespace std;
int main()
{

cout << "(10.5 + 2 * 3) / (45 - 3.5) = ";
cout << (10.5 + 2 * 3) / (45 - 3.5) << endl;

return 0;
} 27

27

Outline

• Introduction and Computers (§§1.1–1.2)
• Programming languages (§§1.3)
• A simple C++ program for console output (§1.6)
• C++ program-development cycle (§1.7)
• Programming style and documentation (§1.8)
• Programming errors (§1.9)

28

28

1/29/20

15

Programming Errors

1. Syntax Errors
2. Runtime Errors
3. Logic Errors

29

29

Syntax Errors

30

ShowSyntaxErrors

30

1/29/20

16

Runtime Errors

31

RunShowRuntimeErrors

31

Logic Errors

32

RunShowLogicErrors

32

1/29/20

17

Common Errors

1. Missing Braces
2. Missing Semicolons
3. Missing Quotation Marks
4. Misspelling Names

33

33

Outline

• Introduction and Computers (§§1.1–1.2)
• Programming languages (§§1.3)
• A simple C++ program for console output (§1.6)
• C++ program-development cycle (§1.7)
• Programming style and documentation (§1.8)
• Programming errors (§1.9)

34

34

1/29/20

1

Chapter 2: Elementary
Programming

Sections 2.1-2.13, 2.15, 2.16

1

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University
of Jordan for the Course: Computer Skills for Engineers (0907101)

1

Outline

• Writing a Simple Program
• Reading Input from the

Keyboard
• Identifiers
• Variables
• Assignment Statements and

Assignment Expressions
• Named Constants
• Numeric Data Types and

Operations
• Evaluating Expressions and

Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions
• Case Study: Counting

Monetary Units
• Common Errors

2

2

1/29/20

2

Writing a Simple Program

A program that computes the area of the circle.

3

Run

ComputeArea
Note: Clicking the blue button runs the code from

Windows. If you cannot run the buttons, see
IMPORTANT NOTE: If you cannot run the buttons, see

www.cs.armstrong.edu/liang/javaslidenote.doc.

Note: Clicking the green button displays the source code
with interactive animation. You can also run the code in
a browser. Internet connection is needed for this
button.

3

Trace the Program Execution
#include <iostream>
using namespace std;

int main() {
double radius;
double area;

// Step 1: Read in radius
radius = 20;

// Step 2: Compute area
area = radius * radius * 3.14159;

// Step 3: Display the area
cout << "The area is ";
cout << area << endl;

}

4

no valueradius

allocate memory
for radius

animation

4

http://www.cs.armstrong.edu/liang/javaslidenote.doc

1/29/20

3

Trace the Program Execution

5

no valueradius

memory

animation

#include <iostream>
using namespace std;

int main() {
double radius;
double area;

// Step 1: Read in radius
radius = 20;

// Step 2: Compute area
area = radius * radius * 3.14159;

// Step 3: Display the area
cout << "The area is ";
cout << area << std::endl;

}

no valuearea

allocate memory
for area

5

Trace the Program Execution

6

20radius

no valuearea

assign 20 to radius

animation

#include <iostream>
using namespace std;

int main() {
double radius;
double area;

// Step 1: Read in radius
radius = 20;

// Step 2: Compute area
area = radius * radius * 3.14159;

// Step 3: Display the area
cout << "The area is ";
cout << area << std::endl;

}

6

1/29/20

4

Trace the Program Execution

7

20radius

memory

1256.636area

compute area and assign it
to variable area

animation

#include <iostream>
using namespace std;

int main() {
double radius;
double area;

// Step 1: Read in radius
radius = 20;

// Step 2: Compute area
area = radius * radius * 3.14159;

// Step 3: Display the area
cout << "The area is ";
cout << area << std::endl;

}

7

Trace the Program Execution

8

20radius

memory

1256.636area

print a message to the
console

animation

#include <iostream>
using namespace std;

int main() {
double radius;
double area;

// Step 1: Read in radius
radius = 20;

// Step 2: Compute area
area = radius * radius * 3.14159;

// Step 3: Display the area
cout << "The area is ";
cout << area << std::endl;

}

8

1/29/20

5

Outline

• Writing a Simple Program
• Reading Input from the

Keyboard
• Identifiers
• Variables
• Assignment Statements and

Assignment Expressions
• Named Constants
• Numeric Data Types and

Operations
• Evaluating Expressions and

Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions
• Case Study: Counting

Monetary Units
• Common Errors

9

9

Reading Input from the Keyboard

You can use the cin object to read input from the
keyboard.

10

RunComputeAreaWithConsoleInput

10

1/29/20

6

#include <iostream>
using namespace std;

int main()
{
// Prompt the user to enter three numbers
double number1, number2, number3;
cout << "Enter three numbers: ";
cin >> number1 >> number2 >> number3;

// Compute average
double average = (number1 + number2 + number3) / 3;

// Display result
cout << "The average of " << number1 << " " << number2

<< " " << number3 << " is " << average << endl;

return 0;
}

Reading Multiple Input in One
Statement

11

RunComputeAverage

11

Outline

• Writing a Simple Program
• Reading Input from the

Keyboard
• Identifiers
• Variables
• Assignment Statements and

Assignment Expressions
• Named Constants
• Numeric Data Types and

Operations
• Evaluating Expressions and

Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions
• Case Study: Counting

Monetary Units
• Common Errors

12

12

1/29/20

7

Identifiers
Identifiers are the names that identify elements such as

variables and functions in a program.
• An identifier is a sequence of characters that consists of

letters, digits, and underscores (_).
• An identifier must start with a letter or an underscore. It

cannot start with a digit.
• An identifier cannot be a reserved word. (See Appendix

A, “C++ Keywords,” for a list of reserved words.)
• An identifier can be of any length, but your C++

compiler may impose some restriction. Use identifiers of
31 characters or fewer to ensure portability.

13

13

Outline

• Writing a Simple Program
• Reading Input from the

Keyboard
• Identifiers
• Variables
• Assignment Statements and

Assignment Expressions
• Named Constants
• Numeric Data Types and

Operations
• Evaluating Expressions and

Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions
• Case Study: Counting

Monetary Units
• Common Errors

14

14

1/29/20

8

Variables
Variables are used to represent values that may be

changed in the program.

// Compute the first area
radius = 1.0;
area = radius * radius * 3.14159;
cout << area;

// Compute the second area
radius = 2.0;
area = radius * radius * 3.14159;
cout << area;

15

15

Declaring Variables

datatype variable1, variable2,..., variablen;

int x; // Declare x to be an
// integer variable;

double radius; // Declare radius to
// be a double variable;

char a; // Declare a to be a
// character variable;

16

16

1/29/20

9

Declaring Variables

int i, j, k; // Declare three integers

int i = 10; // Declare and initialize

int i(1), j(2); // Is equivalent to
int i = 1, j = 2;

17

17

Outline

• Writing a Simple Program
• Reading Input from the

Keyboard
• Identifiers
• Variables
• Assignment Statements and

Assignment Expressions
• Named Constants
• Numeric Data Types and

Operations
• Evaluating Expressions and

Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions
• Case Study: Counting

Monetary Units
• Common Errors

18

18

1/29/20

10

Assignment Statements

An assignment statement designates a value for a variable. An
assignment statement can be used as an expression in C++.

x = 1; // Assign 1 to x;

y = x + 1; // Assign 2 to y;

radius = 1.0; // Assign 1.0 to radius;

a = 'A'; // Assign 'A' to a;

19

19

Assignment Statements

An assignment statement designates a value for a variable.

i = j = k = 1; // Assigns 1 to the three

// variables

cout << x = 1; // Assigns 1 to x and

// outputs 1

20

20

1/29/20

11

Outline

• Writing a Simple Program
• Reading Input from the

Keyboard
• Identifiers
• Variables
• Assignment Statements and

Assignment Expressions
• Named Constants
• Numeric Data Types and

Operations
• Evaluating Expressions and

Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions
• Case Study: Counting

Monetary Units
• Common Errors

21

21

Named Constants
A named constant is an identifier that represents a

permanent value.

const datatype CONSTANTNAME = VALUE;

const double PI = 3.14159;

22

RunComputeAreaConstant

22

1/29/20

12

Outline

• Writing a Simple Program
• Reading Input from the

Keyboard
• Identifiers
• Variables
• Assignment Statements and

Assignment Expressions
• Named Constants
• Numeric Data Types and

Operations
• Evaluating Expressions and

Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions
• Case Study: Counting

Monetary Units
• Common Errors

23

23

Numerical Data Types

• Signed integers
– 16 bits: short -3
– 32 bits: int 100000
– 64 bits: long long -2147483648

• Unsigned integers
– 16 bits: unsigned short 4
– 32 bits: unsigned
– 64 bits: unsigned long long

24

24

1/29/20

13

Synonymous Types

short int is synonymous to short. For example,
short int i = 2;

is same as
short i = 2;

unsigned short int ≡ unsigned short
unsigned int ≡ unsigned
long int ≡ long
unsigned long int ≡ unsigned long

25

25

Numerical Data Types

• Floating-point numbers
– 32 bits: float 1.5
– 64 bits: double -1.23456E+2
– 80 bits: long double 9.1e-1000

• When a number such as 50.534 is converted into
scientific notation such as 5.0534e+1, its decimal
point is moved (i.e., floated) to a new position.

26

26

1/29/20

14

double vs. float
The double type values are more accurate than the float
type values. For example,

27

cout << "1.0 / 3.0 is " << 1.0 / 3.0 << endl;

 1.0 / 3.0 is 0.33333333333333331

16 digits

cout << "1.0F / 3.0F is " << 1.0F / 3.0F << endl;

 1.0F / 3.0F is 0.3333333432674408

7 digits

27

Numerical Data Types

28

Name Synonymy Range Storage Size

short short int –215 to 215–1 (-32,768 to 32,767) 16-bit signed

unsigned short unsigned short int 0 to 216–1 (65535) 16-bit unsigned

int signed –231 to 231–1 (-2147483648 to 2147483647) 32-bit

unsigned unsigned int 0 to 232–1 (4294967295) 32-bit unsigned
signed

long long –263 (-9223372036854775808) to
 263–1 (9223372036854775807) 64-bit signed

unsigned long unsigned long int 0 to 232–1 (4294967295) 32-bit unsigned

float Negative range: 32-bit IEEE 754
 -3.4028235E+38 to -1.4E-45
 Positive range:
 1.4E-45 to 3.4028235E+38

 double Negative range: 64-bit IEEE 754
 -1.7976931348623157E+308 to -4.9E-324
 Positive range:
 4.9E-324 to 1.7976931348623157E+308

 long double Negative range: 80-bit
 -1.18E+4932 to -3.37E-4932
 Positive range:
 3.37E-4932 to 1.18E+4932
 Significant decimal digits: 19

long long int –231 (-2147483648) to 231–1 (2147483647) 32-bit signed

28

1/29/20

15

sizeof Function
You can use the sizeof function to find the size of a type.
For example, the following statement displays the size of
int, long, and double on your machine.

cout << sizeof(int) << " " <<
sizeof(long) << " " << sizeof(double);

4 4 8

double area = 5.4;
cout << "Size of area: " << sizeof(area)
<< " bytes" << endl;

Size of area: 8 bytes
29

29

Numeric Literals

A literal is a constant value that appears directly in a
program. For example, 34, 1000000, and 5.0 are literals in
the following statements:

int i = 34;
long k = 1000000;
double d = 5.0;

30

30

1/29/20

16

octal and hex literals
• By default, an integer literal is a decimal number.
• To denote a binary integer literal, use a leading
0b or 0B (zero b).

• To denote an octal integer literal, use a leading 0
(zero)

• To denote a hexadecimal integer literal, use a
leading 0x or 0X (zero x).

cout << 10 << " " << 0b10 << " " << 010
<< " " << 0x10;

10 2 8 16

31

31

Outline

• Writing a Simple Program
• Reading Input from the

Keyboard
• Identifiers
• Variables
• Assignment Statements and

Assignment Expressions
• Named Constants
• Numeric Data Types and

Operations
• Evaluating Expressions and

Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions
• Case Study: Counting

Monetary Units
• Common Errors

32

32

1/29/20

17

Numeric Operators

33

33

Integer Division

5 / 3 yields an integer 1.

5.0 / 2 yields a double value 2.5

5 % 2 yields 1 (the remainder of the division)

34

34

1/29/20

18

Remainder Operator
Remainder is very useful in programming. For example, an
even number % 2 is always 0 and an odd number % 2 is
always 1. So you can use this property to determine
whether a number is even or odd.
Suppose today is Saturday and you and your friends are
going to meet in 10 days. What day is in 10 days? You can
find that day is Tuesday using the following expression:

35

S M T W T F S
0 1 2 3 4 5 6

35

Example: Displaying Time

A program that obtains minutes from seconds.

36

RunDisplayTime

36

1/29/20

19

Exponent Operations

pow(a, b) = ab

cout << pow(2.0, 3) << endl;
8
cout << pow(4.0, 0.5) << endl;
2

cout << pow(2.5, 2) << endl;
6.25
cout << pow(2.5, -2) << endl;
0.16

37

37

Overflow
When a variable is assigned a value that is
too large to be stored, it causes overflow.
For example, executing the following
statement causes overflow, because the
largest value that can be stored in a variable
of the short type is 32767. 32768 is too
large.

short value = 32767 + 1;

38

38

1/29/20

20

Outline

• Writing a Simple Program
• Reading Input from the

Keyboard
• Identifiers
• Variables
• Assignment Statements and

Assignment Expressions
• Named Constants
• Numeric Data Types and

Operations
• Evaluating Expressions and

Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions
• Case Study: Counting

Monetary Units
• Common Errors

39

39

Arithmetic Expressions

40

is translated to

(3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x +
(9+x)/y)

40

1/29/20

21

Precedence

() Operators contained within pairs of
parentheses are evaluated first.

* / % Multiplication, division, and remainder
operators are applied next.

+ - Addition and subtraction operators are
applied last.

→ If an expression contains several similar
operators, they are applied from left to right.

41

41

Precedence Example

42

42

1/29/20

22

Example: Converting
Temperatures

Write a program that converts a Fahrenheit degree
to Celsius using the formula:

43

)32)((95 -= fahrenheitcelsius

RunFahrenheitToCelsius

43

Outline

• Writing a Simple Program
• Reading Input from the

Keyboard
• Identifiers
• Variables
• Assignment Statements and

Assignment Expressions
• Named Constants
• Numeric Data Types and

Operations
• Evaluating Expressions and

Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions
• Case Study: Counting

Monetary Units
• Common Errors

44

44

1/29/20

23

Displaying the Current Time

45

Write a program that displays current time in GMT in the
format hour:minute:second such as 1:45:19.

The time(0) function in the ctime header file returns
the current time in seconds elapsed since the time
00:00:00 on January 1, 1970 GMT, as shown in Figure 2.1.
This time is known as the Unix epoch because 1970 was
the year when the Unix operating system was formally
introduced.

Elapsed
time

Unix Epoch
01-01-1970
00:00:00 GMT

Current Time

Time

time(0) RunShowCurrentTime

45

ShowCurrentTime.cpp
#include <iostream>
#include <ctime>
using namespace std;
int main() {
// Obtain the total seconds since the midnight, Jan 1, 1970
int totalSeconds = time(0);
// Compute the current second in the minute in the hour
int currentSecond = totalSeconds % 60;
// Obtain the total minutes
int totalMinutes = totalSeconds / 60;
// Compute the current minute in the hour
int currentMinute = totalMinutes % 60;
// Obtain the total hours
long totalHours = totalMinutes / 60;
// Compute the current hour
int currentHour = (int)(totalHours % 24);
// Display results
cout << "Current time is " << currentHour << ":"
<< currentMinute << ":" << currentSecond << " GMT" << endl;

return 0;
} 46

46

1/29/20

24

Outline

• Writing a Simple Program
• Reading Input from the

Keyboard
• Identifiers
• Variables
• Assignment Statements and

Assignment Expressions
• Named Constants
• Numeric Data Types and

Operations
• Evaluating Expressions and

Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions
• Case Study: Counting

Monetary Units
• Common Errors

47

47

Augmented Assignment Operators

48

48

1/29/20

25

Outline

• Writing a Simple Program
• Reading Input from the

Keyboard
• Identifiers
• Variables
• Assignment Statements and

Assignment Expressions
• Named Constants
• Numeric Data Types and

Operations
• Evaluating Expressions and

Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions
• Case Study: Counting

Monetary Units
• Common Errors

49

49

Increment and Decrement Operators

50

Operator Name Description

++var pre-
increment

Increments var by 1 and evaluates to the new
value in var after the increment.

var++ post-
increment

Evaluates to the original value in var and
increments var by 1.

--var pre-
decrement

Decrements var by 1 and evaluates to the new
value in var after the decrement.

var-- post-
decrement

Evaluates to the original value in var and
decrements var by 1.

50

1/29/20

26

Increment and
Decrement Operators, cont.

51

What is the output of the following two sequences?

51

Increment and
Decrement Operators, cont.

52

Using increment and decrement operators makes
expressions short, but it also makes them complex
and difficult to read. Avoid using these operators in
expressions that modify multiple variables, or the
same variable for multiple times such as this:

int k = ++i + i; // Avoid!

52

1/29/20

27

Outline

• Writing a Simple Program
• Reading Input from the

Keyboard
• Identifiers
• Variables
• Assignment Statements and

Assignment Expressions
• Named Constants
• Numeric Data Types and

Operations
• Evaluating Expressions and

Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions
• Case Study: Counting

Monetary Units
• Common Errors

53

53

Numeric Type Conversion

Consider the following statements:

short i = 100;

long k = i * 3 + 4;
double d = i * 3.1 + k / 2;

54

54

1/29/20

28

Type Casting
Implicit casting
double d = 3; // type widening

Explicit casting
int i = static_cast<int>(3.0);

// type narrowing
int i = (int)3.9; // C-style casting

// Fraction part is truncated

55

55

NOTE

Casting does not change the variable being cast.
For example, d is not changed after casting in
the following code:

double d = 4.5;

int i = static_cast<int>(d);
// d is not changed

56

56

1/29/20

29

NOTE

The GNU and Visual C++ compilers will give a
warning when you narrow a type unless you use
static_cast to make the conversion explicit.

57

57

Example: Keeping Two Digits
after Decimal Points

Write a program that displays the 6%-sales tax with
two digits after the decimal point.

cout << "Sales tax is " <<
static_cast<int>(tax * 100) / 100.0;

58

RunSalesTax

58

1/29/20

30

Outline

• Writing a Simple Program
• Reading Input from the

Keyboard
• Identifiers
• Variables
• Assignment Statements and

Assignment Expressions
• Named Constants
• Numeric Data Types and

Operations
• Evaluating Expressions and

Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions
• Case Study: Counting

Monetary Units
• Common Errors

59

59

Case Study: Counting Monetary Units

60

This program lets the user enter the amount in decimal
representing dollars and cents and output a report
listing the monetary equivalent in single dollars,
quarters, dimes, nickels, and pennies.

Dollar = 100 cents

Quarters = 25 cents

Dime = 10 cents

Nickel = 5 cents RunComputeChange

60

1/29/20

31

Trace ComputeChange
int remainingAmount = (int)(amount * 100);

// Find the number of one dollars
int numberOfOneDollars = remainingAmount / 100;
remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining
amount

int numberOfQuarters = remainingAmount / 25;
remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount
int numberOfDimes = remainingAmount / 10;
remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining
amount

int numberOfNickels = remainingAmount / 5;
remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining
amount

int numberOfPennies = remainingAmount;

61

1156remainingAmount

remainingAmount
initialized

Suppose amount is 11.56

61

Trace ComputeChange
int remainingAmount = (int)(amount * 100);

// Find the number of one dollars
int numberOfOneDollars = remainingAmount / 100;
remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining
amount

int numberOfQuarters = remainingAmount / 25;
remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount
int numberOfDimes = remainingAmount / 10;
remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining
amount

int numberOfNickels = remainingAmount / 5;
remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining
amount

int numberOfPennies = remainingAmount;

62

1156remainingAmount

Suppose amount is 11.56

11numberOfOneDollars

numberOfOneDollars
assigned

animation

62

1/29/20

32

Trace ComputeChange
int remainingAmount = (int)(amount * 100);

// Find the number of one dollars
int numberOfOneDollars = remainingAmount / 100;
remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining
amount

int numberOfQuarters = remainingAmount / 25;
remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount
int numberOfDimes = remainingAmount / 10;
remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining
amount

int numberOfNickels = remainingAmount / 5;
remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining
amount

int numberOfPennies = remainingAmount;

63

56remainingAmount

Suppose amount is 11.56

11numberOfOneDollars

remainingAmount
updated

animation

63

Trace ComputeChange
int remainingAmount = (int)(amount * 100);

// Find the number of one dollars
int numberOfOneDollars = remainingAmount / 100;
remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining
amount

int numberOfQuarters = remainingAmount / 25;
remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount
int numberOfDimes = remainingAmount / 10;
remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining
amount

int numberOfNickels = remainingAmount / 5;
remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining
amount

int numberOfPennies = remainingAmount;

64

56remainingAmount

Suppose amount is 11.56

11numberOfOneDollars

2numberOfOneQuarters

numberOfOneQuarters
assigned

animation

64

1/29/20

33

Trace ComputeChange
int remainingAmount = (int)(amount * 100);

// Find the number of one dollars
int numberOfOneDollars = remainingAmount / 100;
remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining
amount

int numberOfQuarters = remainingAmount / 25;
remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount
int numberOfDimes = remainingAmount / 10;
remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining
amount

int numberOfNickels = remainingAmount / 5;
remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining
amount

int numberOfPennies = remainingAmount;

65

6remainingAmount

Suppose amount is 11.56

11numberOfOneDollars

2numberOfQuarters

remainingAmount
updated

animation

65

Outline

• Writing a Simple Program
• Reading Input from the

Keyboard
• Identifiers
• Variables
• Assignment Statements and

Assignment Expressions
• Named Constants
• Numeric Data Types and

Operations
• Evaluating Expressions and

Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions
• Case Study: Counting

Monetary Units
• Common Errors

66

66

1/29/20

34

Common Errors
1. Undeclared or Uninitialized Variables

double interestRate = 0.05;
double interest = interestrate * 45;

2. Integer Overflow
short value = 32767 + 1; // is -32768

3. Round-off Errors
float a = 1000.43;
float b = 1000.0;
cout << a - b << endl;
displays 0.429993, not 0.43

67

67

Common Errors
4. Unintended Integer Division

(a) displays 1, (b) displays 1.5

5. Forgetting Header Files
#include <cmath> // needed for pow()
#include <ctime> // needed for time()

68

68

1/29/20

35

Outline

• Writing a Simple Program
• Reading Input from the

Keyboard
• Identifiers
• Variables
• Assignment Statements and

Assignment Expressions
• Named Constants
• Numeric Data Types and

Operations
• Evaluating Expressions and

Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions
• Case Study: Counting

Monetary Units
• Common Errors

69

69

1/29/20

1

1

Chapter 3: Selections

Sections 3.1-3.16

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University
of Jordan for the Course: Computer Skills for Engineers (0907101)

1

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

2

2

1/29/20

2

Introduction

If you assigned a negative value for radius in
Listing 2.1, ComputeArea.cpp, the program would
print an invalid result. If the radius is negative, you
don't want the program to compute the area. How
can you deal with this situation?

3

3

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

4

4

1/29/20

3

The bool Type and Operators
Often in a program you need to compare two values,
such as whether i is greater than j. C++ provides six
relational operators (also known as comparison
operators):

5

5

The bool Type and Operators
A variable that holds a Boolean value is known as a
Boolean variable, which holds true or false.
bool lightsOn = true;
cout << lightsOn; // Displays 1
cout << (4 < 5); // Displays 1
cout << (4 > 5); // Displays 0

Any nonzero value evaluates to true and zero value
evaluates to false.
bool b1 = -1.5; // ≡ bool b1 = true;
bool b2 = 0; // ≡ bool b2 = false;
bool b3 = 1.5; // ≡ bool b3 = true;

6

6

1/29/20

4

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

7

7

One-way if Statements

if (booleanExpression)
{
statement(s);

}

if (radius >= 0)
{

area = radius * radius * PI;
cout << "The area for the circle of " <<
" radius " << radius << " is " << area;

}
8

8

1/29/20

5

Notes

• The boolean-expression must be enclosed in
parentheses.

• The braces can be omitted if they enclose a single
statement.

9

9

Simple if Demo

10

A program that prompts the user to enter an integer. If the number
is a multiple of 5, displays HiFive. If the number is even, displays
HiEven.

RunSimpleIfDemo

10

1/29/20

6

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

11

11

Two-Way if-else Statement
if (booleanExpression)
{
statement(s)-for-the-true-case;

}
else
{
statement(s)-for-the-false-case;

}

12

12

1/29/20

7

Examples

13

13

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

14

14

1/29/20

8

Nested if Statements
You can nest multiple if statements

if (i > k)
{
if (j > k)
cout << "i and j are greater than k";

}
else
cout << "i is less than or equal to k";

15

15

Multiple Alternative if Statements

16

16

1/29/20

9

Trace if-else statement

17

if (score >= 90.0)
cout << "Grade is A";

else if (score >= 80.0)
cout << "Grade is B";

else if (score >= 70.0)
cout << "Grade is C";

else if (score >= 60.0)
cout << "Grade is D";

else
cout << "Grade is F";

Suppose score is 70.0 The condition is false

animation

17

if (score >= 90.0)
cout << "Grade is A";

else if (score >= 80.0)
cout << "Grade is B";

else if (score >= 70.0)
cout << "Grade is C";

else if (score >= 60.0)
cout << "Grade is D";

else
cout << "Grade is F";

Trace if-else statement

18

Suppose score is 70.0 The condition is false

animation

18

1/29/20

10

if (score >= 90.0)
cout << "Grade is A";

else if (score >= 80.0)
cout << "Grade is B";

else if (score >= 70.0)
cout << "Grade is C";

else if (score >= 60.0)
cout << "Grade is D";

else
cout << "Grade is F";

Trace if-else statement

19

Suppose score is 70.0 The condition is true

animation

19

if (score >= 90.0)
cout << "Grade is A";

else if (score >= 80.0)
cout << "Grade is B";

else if (score >= 70.0)
cout << "Grade is C";

else if (score >= 60.0)
cout << "Grade is D";

else
cout << "Grade is F";

Trace if-else statement

20

Suppose score is 70.0 grade is C

animation

20

1/29/20

11

if (score >= 90.0)
cout << "Grade is A";

else if (score >= 80.0)
cout << "Grade is B";

else if (score >= 70.0)
cout << "Grade is C";

else if (score >= 60.0)
cout << "Grade is D";

else
cout << "Grade is F";

Trace if-else statement

21

Suppose score is 70.0 Exit the if statement

animation

21

Note

The else clause matches the most recent if clause in
the same block.

22

22

1/29/20

12

Note, cont.
Nothing is printed from the Statement (a) above. To force
the else clause to match the first if clause, you must
add a pair of braces:

int i = 1, j = 2, k = 3;
if (i > j)
{
if (i > k)
cout << "A";

}
else
cout << "B";

This statement prints B. 23

23

TIP

24

24

1/29/20

13

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

25

25

Common Errors

1: Forgetting Necessary Braces

26

26

1/29/20

14

Common Errors

27

2: Wrong Semicolon at the if Line

27

Common Errors

3: Mistakenly Using = for ==

28

if (count = 1)

cout << "count is zero" << endl;
else
cout << "count is not zero" << endl;

28

1/29/20

15

Common Errors

29

4: Redundant Testing of Boolean Values

29

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

30

30

1/29/20

16

Case Study: Body Mass Index
The Body Mass Index (BMI) is a measure of health on
weight. It can be calculated by taking your weight in
kilograms and dividing by the square of your height in
meters (𝐵𝑀𝐼 = ⁄& '(). The interpretation of BMI for
people 16 years or older is as follows:

31

RunComputeBMI

31

Case Study: Body Mass Index

32

32

1/29/20

17

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

33

33

Case Study: Computing Taxes
The US federal personal income tax is calculated based on
the filing status and taxable income. There are four filing
statuses: single filers, married filing jointly, married filing
separately, and head of household. The tax rates for 2002
are shown below.

34

34

1/29/20

18

Computing Taxes: Skeleton Code
if (status == 0)
{
// Compute tax for single filers

}
else if (status == 1)
{
// Compute tax for married file jointly

}
else if (status == 2)
{
// Compute tax for married file separately

}
else if (status == 3)
{
// Compute tax for head of household

}
else
{
// Display wrong status

}
35

RunComputeTax

35

Computing Taxes: First Case Details

if (status == 0)
{
// Compute tax for single filers
if (income <= 6000)
tax = income * 0.10;

else if (income <= 27950)
tax = 6000 * 0.10 + (income - 6000) * 0.15;

else if (income <= 67700)
tax = 6000 * 0.10 + (27950 - 6000) * 0.15 +

(income - 27950) * 0.27;
else if (income <= 141250)
…

}
else if (status == 1)

36

36

1/29/20

19

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

37

37

Generating Random Numbers

• You can use the rand() function to obtain a
random integer.

• This function returns a random integer between 0
and RAND_MAX (32,767 in Visual C++).

• To start with a different seed at each execution,
use

srand(time(0));
• To obtain a random integer between 0 and 9, use

rand() % 10

38

38

1/29/20

20

Example: A Simple Math Learning Tool

39

• This example creates a program for a first grader to
practice subtractions.

• The program randomly generates two single-digit
integers number1 and number2 with number1
>= number2 and displays a question such as
“What is 9 – 2?” to the student.

• After the student types the answer, the program
displays a message to indicate whether the answer is
correct.

RunSubtractionQuiz

39

SubtractQuiz.cpp 1/2
#include <iostream>
#include <ctime> // for time function
#include <cstdlib> // for rand and srand functions
using namespace std;

int main()
{
// 1. Generate two random single-digit integers
srand(time(0));
int number1 = rand() % 10;
int number2 = rand() % 10;

// 2. If number1 < number2, swap number1 with number2
if (number1 < number2)
{
int temp = number1;
number1 = number2;
number2 = temp;

}
40

40

1/29/20

21

SubtractQuiz.cpp 2/2
// 3. Ask the student “what is number1 – number2?”
cout << "What is " << number1 << " - " << number2 << "? ";
int answer;
cin >> answer;

// 4. Grade the answer and display the result
if (number1 - number2 == answer)
cout << "You are correct!";

else
cout << "Your answer is wrong.\n“

<< number1 << " - “ << number2
<< " should be " << (number1 - number2) << endl;

return 0;
}

41

41

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

42

42

1/29/20

22

Logical Operators

43

• The logical operators !, &&, and || can be used to
create a compound Boolean expression.

43

44

44

1/29/20

23

Examples

45

A program that checks whether a number is
divisible by 2 and 3, whether a number is divisible
by 2 or 3, and whether a number is divisible by 2
or 3 but not both:

RunTestBooleanOperators

45

TestBooleanOperators.cpp
#include <iostream>
using namespace std;

int main()
{
int number;
cout << "Enter an integer: ";
cin >> number;

if (number % 2 == 0 && number % 3 == 0)
cout << number << " is divisible by 2 and 3." << endl;

if (number % 2 == 0 || number % 3 == 0)
cout << number << " is divisible by 2 or 3." << endl;

if ((number % 2 == 0 || number % 3 == 0) &&
!(number % 2 == 0 && number % 3 == 0))

cout << number << " divisible by 2 or 3, but not both." << endl;

return(0);
}

46

46

1/29/20

24

Short-Circuit Operator

47

• When evaluating p1 && p2, C++ first evaluates p1
and then evaluates p2 if p1 is true; if p1 is false,
it does not evaluate p2.

• When evaluating p1 || p2, C++ first evaluates p1
and then evaluates p2 if p1 is false; if p1 is true,
it does not evaluate p2.

• Therefore, && is referred to as the conditional or
short-circuit AND operator, and || is referred to as the
conditional or short-circuit OR operator.

47

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

48

48

1/29/20

25

Case Study: Determining Leap Year

49

A program that lets the user enter a year and checks
whether it is a leap year.

A year is a leap year if it is divisible by 4 but not by 100 or
if it is divisible by 400. So you can use the following
Boolean expression to check whether a year is a leap
year:

(year % 4 == 0 && year % 100 != 0) ||
(year % 400 == 0)

RunLeapYear

49

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

50

50

1/29/20

26

Case Study: Lottery
Randomly generates a lottery of a two-digit number,
prompts the user to enter a two-digit number, and
determines whether the user wins according to the
following rule:

• If the user input matches the lottery in exact order,
the award is $10,000.

• If the user input matches the lottery, the award is
$3,000.

• If one digit in the user input matches a digit in the
lottery, the award is $1,000.

RunLottery

51

Lottery.cpp 1/2
#include <iostream>
#include <ctime> // for time function
#include <cstdlib> // for rand and srand functions
using namespace std;

int main()
{
// Generate a lottery
srand(time(0));
int lottery = rand() % 100;

// Prompt the user to enter a guess
cout << "Enter your lottery pick (two digits): ";
int guess;
cin >> guess;

52

52

1/29/20

27

Lottery.cpp 1/2
// Check the guess
if (guess == lottery)
cout << "Exact match: you win $10,000" << endl;

else if (guess % 10 == lottery / 10
&& guess / 10 == lottery % 10)

cout << "Match all digits: you win $3,000" << endl;
else if (guess % 10 == lottery / 10

|| guess % 10 == lottery % 10
|| guess / 10 == lottery / 10
|| guess / 10 == lottery % 10)

cout << "Match one digit: you win $1,000" << endl;
else
cout << "Sorry, no match" << endl;

return 0;
}

53

53

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

54

54

1/29/20

28

switch Statements

switch (status)
{
case 0: compute taxes for single filers;

break;
case 1: compute taxes for married file jointly;

break;
case 2: compute taxes for married file separately;

break;
case 3: compute taxes for head of household;

break;
default: cout << "Errors: invalid status" << endl;

}

55

55

switch Statement Flow Chart

56

56

1/29/20

29

The switch-expression
must yield a integral value
and must always be
enclosed in parentheses.

switch Statement Rules

57

The case values must be
integral constant expressions,
meaning that they cannot
contain variables in the
expression, such as 1 + x.

57

switch Statement Rules

The break is optional, but it
should be used at the end of
each case in order to
terminate the remainder of
the switch statement.

58

The default
case, which is optional,
can be used to perform
actions when none of
the specified cases is
executed.

When the value in a case statement matches the
value of the switch-expression, the statements
starting from this case are executed until either
a break statement or the end of the switch
statement is reached.

58

1/29/20

30

Trace switch statement

59

Suppose day is 3:

animation

59

Trace switch statement

60

Execute case 3

animation

60

1/29/20

31

Trace switch statement

61

Fall to case 4

animation

61

Trace switch statement

62

Fall to case 5 then break

animation

62

1/29/20

32

Trace switch statement

63

Execute what is next

animation

63

Example: Chinese Zodiac
A program that prompts the user to enter a year and
displays the animal for the year.

64

RunChineseZodiac

64

1/29/20

33

ChineseZodiac.cpp

65

65

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

66

66

1/29/20

34

Conditional Expressions
A conditional expression evaluates an expression based

on a condition.

Syntax:
(booleanExpression) ? expression1 : expression2

The result of this conditional expression is expression1 if
boolean-expression is true; otherwise, the result is
expression2.

67

67

Examples
• Equivalent statements:

• Finding the max:

• Odd of even:

68

68

1/29/20

35

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

69

69

Operator Precedence and
Associativity

Operator precedence and associativity determine the
order in which operators are evaluated.

How to evaluate 3 + 4 * 4 > 5 * (4 + 3) – 1?
false?

3 + 4 * 4 > 5 * (4 + 3) – 1 && (4 – 3 > 5)?
false?

70

70

1/29/20

36

Operator Precedence

71

71

Operator Associativity

72

• All binary operators except assignment
operators are left associative.

• Assignment operators are right associative.

72

1/29/20

37

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

73

73

Debugging
• Debugging is the process of finding and fixing

errors in a program.
• Visual Studio supports debugging:

– Executing a single statement at a time
– Tracing into or stepping over a function
– Setting breakpoints
– Displaying variables
– Displaying call stacks
– Modifying variables

• Show demo on Visual Studio 2019.
74

74

1/29/20

38

Outline
• Introduction
• The bool Data Type
• if Statements
• Two-Way if-else Statements
• Nested if and Multi-Way if-

else Statements
• Common Errors and Pitfalls
• Case Study: Computing

Body Mass Index
• Case Study: Computing

Taxes

• Generating Random
Numbers

• Logical Operators
• Case Study: Determining

Leap Year
• Case Study: Lottery
• switch Statements
• Conditional Expressions
• Operator Precedence and

Associativity
• Debugging

75

75

1/29/20

1

Chapter 4: Mathematical
Functions, Characters, and Strings

Sections 4.1-4.11

1

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University
of Jordan for the Course: Computer Skills for Engineers (0907101)

1

Outline
• Introduction
• Mathematical Functions
• Character Data Type and Operations
• Case Study: Generating Random Characters
• Case Study: Guessing Birthdays
• Character Functions
• Case Study: Converting Hexadecimal Decimal
• The string Type
• Case Study: Revising the Lottery Program Using Strings
• Formatting Console Output
• Simple File Input and Output

2

2

1/29/20

2

Introduction
Suppose you need to estimate the area enclosed by four
cities, given the GPS locations (latitude and longitude) of
these cities, as shown in the following diagram. How
would you write a program to solve this problem? You will
be able to write such a program after completing this
chapter.

3

3

Outline
• Introduction
• Mathematical Functions
• Character Data Type and Operations
• Case Study: Generating Random Characters
• Case Study: Guessing Birthdays
• Character Functions
• Case Study: Converting Hexadecimal Decimal
• The string Type
• Case Study: Revising the Lottery Program Using Strings
• Formatting Console Output
• Simple File Input and Output

4

4

1/29/20

3

Mathematical Functions
C++ provides many useful functions in the cmath
header for performing common mathematical
functions.

1. Trigonometric functions
2. Exponent functions
3. Service functions

To use them, you need to include:
#include <cmath>

5

5

Trigonometric Functions

6

6

1/29/20

4

Exponent Functions

7

7

Service Functions

8

Function Description Example
ceil(x) x is rounded up to its nearest

integer. This integer is
returned as a double value.

ceil(2.1) returns 3.0
ceil(-2.1) returns -2.0

floor(x) x is rounded down to its
nearest integer. This integer
is returned as a double value.

floor(2.1) returns 2.0
floor(-2.1) returns -3.0

min(x, y) Returns the minimum of x
and y.

max(2, 3) returns 3

max(x, y) Returns the maximum of x
and y.

min(2.5, 4.6) returns
2.5

abs(x) Returns the absolute value of
x.

abs(-2.1) returns 2.1

8

1/29/20

5

Case Study: Computing Angles
of a Triangle

A program that prompts the user to enter the x-
and y-coordinates of the three corner points in a
triangle and then displays the triangle’s angles.

9

RunComputeAngles

9

ComputeAngles.cpp 1/2
#include <iostream>
#include <cmath>
using namespace std;

int main()
{

// Prompt the user to enter three points
cout << "Enter three points: ";
double x1, y1, x2, y2, x3, y3;
cin >> x1 >> y1 >> x2 >> y2 >> x3 >> y3;

// Compute three sides
double a = sqrt((x2 - x3) * (x2 - x3) + (y2 - y3) * (y2 - y3));
double b = sqrt((x1 - x3) * (x1 - x3) + (y1 - y3) * (y1 - y3));
double c = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));

10

10

1/29/20

6

ComputeAngles.cpp 2/2
// Obtain three angles in radians
double A = acos((a * a - b * b - c * c) / (-2 * b * c));
double B = acos((b * b - a * a - c * c) / (-2 * a * c));
double C = acos((c * c - b * b - a * a) / (-2 * a * b));

// Display the angles in degress
const double PI = 3.14159;
cout << "The three angles are " << A * 180 / PI << " "

<< B * 180 / PI << " " << C * 180 / PI << endl;

return 0;
}

11

11

Outline
• Introduction
• Mathematical Functions
• Character Data Type and Operations
• Case Study: Generating Random Characters
• Case Study: Guessing Birthdays
• Character Functions
• Case Study: Converting Hexadecimal Decimal
• The string Type
• Case Study: Revising the Lottery Program Using Strings
• Formatting Console Output
• Simple File Input and Output

12

12

1/29/20

7

Character Data Type
• A character data type represents a single character.
char letter = 'A'; (ASCII)
char numChar = '4'; (ASCII)

• The increment and decrement operators can also be
used on char variables to get the next or preceding
character. For example, the following statements
display character b.
char ch = 'a';
cout << ++ch;

• The characters are encoded into numbers using the
ASCII code.

13

13

Appendix B: ASCII Character Set

14

ASCII Character Set is a subset of the Unicode from \u0000 to \u007f

14

1/29/20

8

ASCII Character Set in the Hexadecimal Index

15

15

Read Characters

16

To read a character from the keyboard, use

cout << "Enter a character: ";
char ch;
cin >> ch; // Read a character

16

1/29/20

9

C++ uses a special notation to represent special character.

cout << "He said \"Hi\".\n";
The output is: He said "Hi".

Escape Sequences

17

17

Casting between char and
Numeric Types

18

• A char can be cast into any numeric type, and vice
versa.

• When an integer is cast into a char, only its lower 8 bits
of data are used; the other part is ignored.

int i = 'a';

// Same as int i = static_cast<int>('a');

char c = 97;

// Same as char c = static_cast<char>(97);

18

1/29/20

10

Numeric Operators on Characters
The char type is treated as if it is an integer of the byte
size. All numeric operators can be applied to char
operands.

Display

19

19

Example: Converting a Lowercase to
Uppercase

20

A program that prompts the user to enter a
lowercase letter and finds its corresponding
uppercase letter.

RunToUppercase

20

1/29/20

11

Comparing and Testing Characters

21

• The ASCII for lowercase letters are consecutive integers
starting from the code for 'a', then for 'b', 'c', ..., and 'z'. The
same is true for the uppercase letters.

• The lower case of a letter is larger than its upper case by 32.

• Two characters can be compared using the comparison
operators just like comparing two numbers.

• 'a' < 'b' is true because the ASCII code for 'a' (97) is
less than the ASCII code for 'b' (98).

• 'a' < 'A' is false.

• '1' < '8' is true.

21

Outline
• Introduction
• Mathematical Functions
• Character Data Type and Operations
• Case Study: Generating Random Characters
• Case Study: Guessing Birthdays
• Character Functions
• Case Study: Converting Hexadecimal Decimal
• The string Type
• Case Study: Revising the Lottery Program Using Strings
• Formatting Console Output
• Simple File Input and Output

22

22

1/29/20

12

Case Study: Generating Random
Characters

The rand() function returns a random integer. You can
use it to write a simple expression to generate random
numbers in any range.

23

23

Case Study: Generating Random
Characters, cont.

24
RunDisplayRandomCharacter

Every character has a unique ASCII code between 0 and 127. To
generate a random character is to generate a random integer
between 0 and 127. The srand(seed) function is used to set a
seed.

24

1/29/20

13

Outline
• Introduction
• Mathematical Functions
• Character Data Type and Operations
• Case Study: Generating Random Characters
• Case Study: Guessing Birthdays
• Character Functions
• Case Study: Converting Hexadecimal Decimal
• The string Type
• Case Study: Revising the Lottery Program Using Strings
• Formatting Console Output
• Simple File Input and Output

25

25

Case Study: Guessing Birthdays

26

RunGuessBirthday

• The program can find your birth date. The program
prompts you to answer whether your birth date is in
the following five sets of numbers:

26

1/29/20

14

Case Study: Guessing Birthdays

27

27

Outline
• Introduction
• Mathematical Functions
• Character Data Type and Operations
• Case Study: Generating Random Characters
• Case Study: Guessing Birthdays
• Character Functions
• Case Study: Converting Hexadecimal Decimal
• The string Type
• Case Study: Revising the Lottery Program Using Strings
• Formatting Console Output
• Simple File Input and Output

28

28

1/29/20

15

Character Functions

29

RunCharacterFunctions

C++ contains functions for working with characters.

29

Example using Character
Functions

30

RunCharacterFunctions

30

1/29/20

16

Character Functions

31

• You can use isupper(), islower() and
isdigit() in the code below.

31

Outline
• Introduction
• Mathematical Functions
• Character Data Type and Operations
• Case Study: Generating Random Characters
• Case Study: Guessing Birthdays
• Character Functions
• Case Study: Converting Hexadecimal Decimal
• The string Type
• Case Study: Revising the Lottery Program Using Strings
• Formatting Console Output
• Simple File Input and Output

32

32

1/29/20

17

Case Study: Converting a Hexadecimal
Digit to a Decimal Value

A program that converts a hexadecimal digit to decimal.

33

RunHexDigit2Dec

33

HexDigit2Dec.cpp

34

34

1/29/20

18

Outline
• Introduction
• Mathematical Functions
• Character Data Type and Operations
• Case Study: Generating Random Characters
• Case Study: Guessing Birthdays
• Character Functions
• Case Study: Converting Hexadecimal Decimal
• The string Type
• Case Study: Revising the Lottery Program Using Strings
• Formatting Console Output
• Simple File Input and Output

35

35

The string Type
A string is a sequence of characters.

#include <string>
string s;
string message = "Programming is fun";

36

36

1/29/20

19

String Subscript Operator
C++ provides the subscript operator for accessing the

character at a specified index in a string using the
syntax stringName[index].

string s = "welcome to C++";
s.at(0) = 'W';
cout << s.length() << s[0] << endl;

14W

37

37

Concatenating Strings

C++ provides the + operator for concatenating two strings.

string s3 = s1 + s2;

string m = "Good";
m += " morning";
m += '!';
cout << m << endl;

Good morning!

38

38

1/29/20

20

Comparing Strings
You can use the relational operators ==, !=, <, <=, >, >= to

compare two strings. This is done by comparing their
corresponding characters on by one from left to right.
For example,

39

39

Reading Strings
Reading a word:

Reading a line using getline(cin, s, delimitCharacter):

40

40

1/29/20

21

Example: Order Two Cities

A program that prompts the user to enter two
cities and displays them in alphabetical order.

41

RunOrderTwoCities

41

OrderTwoCities.cpp
#include <iostream>
#include <string>
using namespace std;

int main() {
string city1, city2;
cout << "Enter the first city: ";
getline(cin, city1);
cout << "Enter the second city: ";
getline(cin, city2);

cout << "The cities in alphabetical order are ";
if (city1 < city2)

cout << city1 << " " << city2 << endl;
else

cout << city2 << " " << city1 << endl;

return 0;
} 42

42

1/29/20

22

Outline
• Introduction
• Mathematical Functions
• Character Data Type and Operations
• Case Study: Generating Random Characters
• Case Study: Guessing Birthdays
• Character Functions
• Case Study: Converting Hexadecimal Decimal
• The string Type
• Case Study: Revising the Lottery Program Using Strings
• Formatting Console Output
• Simple File Input and Output

43

43

Case Study: Revising the Lottery
Program Using Strings

A problem can be solved using many different approaches.
This section rewrites the lottery program in Listing 3.7 using
strings. Using strings simplifies this program.

44RunLotteryUsingStrings

44

1/29/20

23

Outline
• Introduction
• Mathematical Functions
• Character Data Type and Operations
• Case Study: Generating Random Characters
• Case Study: Guessing Birthdays
• Character Functions
• Case Study: Converting Hexadecimal Decimal
• The string Type
• Case Study: Revising the Lottery Program Using Strings
• Formatting Console Output
• Simple File Input and Output

45

45

Formatting Console Output

46

You can use the stream manipulators to display formatted
output on the console.

46

1/29/20

24

setprecision(n) Manipulator

#include <iomanip>

displays
12.3 12.35 12.346 12.3457

47

47

fixed Manipulator
cout << 232123434.357;
displays
2.32123e+08

cout << fixed << 232123434.357;
displays
232123434.357000

cout << fixed << setprecision(2)
<< 232123434.357;

displays
232123434.36

48

48

1/29/20

25

showpoint Manipulator
cout << setprecision(6);
cout << 1.23 << endl;
cout << showpoint << 1.23 << endl;
cout << showpoint << 123.0 << endl;

displays
1.23
1.23000
123.000

49

49

setw(width) Manipulator

displays
C++ 101
Java 101
HTML 101

Prgramming#101
50

50

1/29/20

26

left and right Manipulators

displays
□□□□1.23
□□351.34

51

51

left and right Manipulators

displays
1.23□□□□351.34□□

52

52

1/29/20

27

Outline
• Introduction
• Mathematical Functions
• Character Data Type and Operations
• Case Study: Generating Random Characters
• Case Study: Guessing Birthdays
• Character Functions
• Case Study: Converting Hexadecimal Decimal
• The string Type
• Case Study: Revising the Lottery Program Using Strings
• Formatting Console Output
• Simple File Input and Output

53

53

Simple File Output
To write data to a file, first declare a variable of the ofstream

type:
#include <fstream>
ofstream output;

To specify a file, invoke the open function from output object as
follows:
output.open("numbers.txt");

Optionally, you can create a file output object and open the file in
one statement like this:
ofstream output("numbers.txt");

To write data, use the stream insertion operator (<<) in the same
way that you send data to the cout object. For example,
output << 95 << " " << 56 << " " << 34 << endl;

Finally:
output.close();

54

RunSimpleFileOutput

54

1/29/20

28

Simple File Input
To read data from a file, first declare a variable of the ifstream

type:
#include <fstream>
ifstream input;

To specify a file, invoke the open function from input as follows:
input.open("numbers.txt");

Or:
ifstream input("numbers.txt");

To read data, use the stream extraction operator (>>) in the same
way that you read data from the cin object. For example,
input >> score1 >> score2 >> score3;

Finally:
input.close();

55

RunSimpleFileInput

55

Outline
• Introduction
• Mathematical Functions
• Character Data Type and Operations
• Case Study: Generating Random Characters
• Case Study: Guessing Birthdays
• Character Functions
• Case Study: Converting Hexadecimal Decimal
• The string Type
• Case Study: Revising the Lottery Program Using Strings
• Formatting Console Output
• Simple File Input and Output

56

56

1/29/20

1

Chapter 5: Loops

Sections 5.1-5.6, 5.9

1

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University
of Jordan for the Course: Computer Skills for Engineers (0907101)

1

Outline

• Introduction
• The while Loop
• The do-while Loop
• The for Loop
• Which Loop to Use?
• Nested Loops
• Keywords break and continue

2

2

1/29/20

2

Introduction

Suppose that you need to print a string (e.g.,
"Welcome to C++!") a hundred times. It would be
tedious to have to write the following statement a
hundred times:

cout << "Welcome to C++!" << endl;

3

3

Introduction

So, how do you solve this problem?
4

cout << "Welcome to Java!" << endl;
cout << "Welcome to Java!" << endl;
cout << "Welcome to Java!" << endl;
cout << "Welcome to Java!" << endl;
cout << "Welcome to Java!" << endl;

…

cout << "Welcome to Java!" << endl;
cout << "Welcome to Java!" << endl;
cout << "Welcome to Java!" << endl;
cout << "Welcome to Java!" << endl;
cout << "Welcome to Java!" << endl;

100
times

4

1/29/20

3

Outline

• Introduction
• The while Loop
• The do-while Loop
• The for Loop
• Which Loop to Use?
• Nested Loops
• Keywords break and continue

5

5

Introducing while Loops

6

A while loop executes statements repeatedly while the
condition is true.

int count = 0;
while (count < 100)
{
cout << "Welcome to C++!\n";
count++;

}

6

1/29/20

4

while Loop Flow Chart

7

7

Trace while Loop

8

int count = 0;

while (count < 2)

{

cout << "Welcome to C++!";

count++;

}

Initialize count

animation

8

1/29/20

5

int count = 0;

while (count < 2)

{

cout << "Welcome to C++!";

count++;

}

Trace while Loop, cont.

9

(count < 2) is true

animation

9

int count = 0;

while (count < 2)

{

cout << "Welcome to C++!";

count++;

}

Trace while Loop, cont.

10

Print Welcome to C++

animation

10

1/29/20

6

int count = 0;

while (count < 2)

{

cout << "Welcome to C++!";

count++;

}

Trace while Loop, cont.

11

Increase count by 1
count is 1 now

animation

11

int count = 0;

while (count < 2)

{

cout << "Welcome to C++!";

count++;

}

Trace while Loop, cont.

12

(count < 2) is still true since count
is 1

animation

12

1/29/20

7

int count = 0;

while (count < 2)

{

cout << "Welcome to C++!";

count++;

}

Trace while Loop, cont.

13

Print Welcome to C++

animation

13

int count = 0;

while (count < 2)

{

cout << "Welcome to C++!";

count++;

}

Trace while Loop, cont.

14

Increase count by 1
count is 2 now

animation

14

1/29/20

8

int count = 0;

while (count < 2)

{

cout << "Welcome to C++!";

count++;

}

Trace while Loop, cont.

15

(count < 2) is false since count is 2
now

animation

15

int count = 0;

while (count < 2)

{

cout << "Welcome to C++!";

count++;

}

Trace while Loop

16

The loop exits. Execute the next
statement after the loop.

animation

16

1/29/20

9

Case Study: Guessing Numbers
Write a program that randomly generates an
integer between 0 and 100, inclusive. The
program prompts the user to enter a number
continuously until the number matches the
randomly generated number. For each user input,
the program tells the user whether the input is
too low or too high, so the user can choose the
next input intelligently. Here is a sample run:

17

RunGuessNumberOneTime

RunGuessNumber

17

GuessNumber.cpp 1/2
#include <iostream>
#include <cstdlib>
#include <ctime> // Needed for the time function
using namespace std;

int main()
{

// Generate a random number to be guessed
srand(time(0));
int number = rand() % 101;

cout << "Guess a magic number between 0 and 100";

18

18

1/29/20

10

GuessNumber.cpp 1/2
int guess = -1;
while (guess != number)
{

// Prompt the user to guess the number
cout << "\nEnter your guess: ";
cin >> guess;

if (guess == number)
cout << "Yes, the number is " << number << endl;

else if (guess > number)
cout << "Your guess is too high" << endl;

else
cout << "Your guess is too low" << endl;

} // End of loop

return 0;
} 19

19

Loop Design Strategy

20

20

1/29/20

11

Case Study: Multiple Subtraction Quiz

Take the subtraction quiz 5 times.

Report number of correct answers and the quiz
time.

21

RunSubtractionQuiz

21

SubtractionQuizLoop.cpp 1/3
#include <iostream>
#include <ctime> // Needed for time function
#include <cstdlib> // Needed for the srand and rand functions
using namespace std;
int main()
{

int correctCount = 0; // Count the number of correct answers
int count = 0; // Count the number of questions
long startTime = time(0);
const int NUMBER_OF_QUESTIONS = 5;
srand(time(0)); // Set a random seed
while (count < NUMBER_OF_QUESTIONS)
{ See next slides }
long endTime = time(0);
long testTime = endTime - startTime;
cout << "Correct count is " << correctCount << "\nTest time is "

<< testTime << " seconds\n";
return 0;

}
22

22

1/29/20

12

SubtractionQuizLoop.cpp 2/3
while (count < NUMBER_OF_QUESTIONS)

{
// 1. Generate two random single-digit integers
int number1 = rand() % 10;
int number2 = rand() % 10;

// 2. If number1 < number2, swap number1 with number2
if (number1 < number2)
{

int temp = number1;
number1 = number2;
number2 = temp;

}

23

23

SubtractionQuizLoop.cpp 3/3
// 3. Prompt the student to answer “what is num1 – num2?”
cout << "What is " << number1 << " - " << number2 << "? ";
int answer;
cin >> answer;
// 4. Grade the answer and display the result
if (number1 - number2 == answer)
{

cout << "You are correct!\n";
correctCount++;

}
else

cout << "Your answer is wrong.\n" << number1 << " - " <<
number2 << " should be " << (number1 - number2) << endl;

// Increase the count
count++;

} 24

24

1/29/20

13

Controlling a Loop with User
Confirmation

25

25

Controlling a Loop with a Sentinel Value

You may use an input value to signify the end of the loop.
Such a value is known as a sentinel value.

A program that reads and calculates the sum of an
unspecified number of integers. The input 0 signifies the
end of the input.

26

RunSentinelValue

26

1/29/20

14

SentinelValue.cpp
int data;
cin >> data;

// Keep reading data until the input is 0
int sum = 0;
while (data != 0)
{

sum += data;

// Read the next data
cout << "Enter an integer (the input ends " <<

"if it is 0): ";
cin >> data;

}

cout << "The sum is " << sum << endl;

27

27

Input and Output Redirections
• If you have a large number of data to enter, it would be

cumbersome to type from the keyboard.
• You may store the data separated by whitespaces in a

text file, say input.txt, and run the program and
redirecting input to the file.

• You can also redirect program output to a text file, say
outpu.txt.

SentinelValue.exe < input.txt > output.txt

28

28

1/29/20

15

Reading Data from a File
• If you have many numbers to read from a file,

you need to write a loop to read all these
numbers.

• You can invoke the eof() function on the input
object to detect the end of file.

• A program that reads all numbers from the file
numbers.txt.

29

RunReadAllData

29

ReadAllData.cpp
#include <iostream>
#include <fstream>
using namespace std;
int main()
{

// Open a file
ifstream input("numbers.txt");

double sum = 0;
double number;
while (!input.eof()) // Read data to the end of file
{

input >> number; // Read data
cout << number << " "; // Display data
sum += number;

}
input.close();
cout << "\nTotal is " << sum << endl;
return 0;

} 30

30

1/29/20

16

Caution

• Don’t use floating-point values for equality checking in a
loop control expression; they are approximations, using
them can result in inaccurate results.

• The following loop does not stop.

double item = 1;
double sum = 0;
while (item != 0) // No guarantee it will be 0
{

sum += item;
item -= 0.1;

}

31

31

Outline

• Introduction
• The while Loop
• The do-while Loop
• The for Loop
• Which Loop to Use?
• Nested Loops
• Keywords break and continue

32

32

1/29/20

17

do-while Loop

33

A do-while loop is the same as
a while loop except that it

executes the loop body first and
then checks the loop

continuation condition.

RunTestDoWhile

33

TestDoWhile.cpp
// Initialize data and sum
int data = 0;
int sum = 0;

do
{

sum += data;

// Read the next data
cout << "Enter an integer (the input ends " <<

"if it is 0): ";
cin >> data; // Keep reading until the input is 0

} while (data != 0);

cout << "The sum is " << sum << endl;

34

34

1/29/20

18

Outline

• Introduction
• The while Loop
• The do-while Loop
• The for Loop
• Which Loop to Use?
• Nested Loops
• Keywords break and continue

35

35

for Loops

A for loop has a
concise syntax for

writing loops.

36

1/29/20

19

Trace for Loop

37

int i;
for (i = 0; i < 2; i++)
{
cout << "Welcome to C++!";

}

Declare i

animation

37

int i;
for (i = 0; i < 2; i++)
{
cout << "Welcome to C++!";

}

Trace for Loop, cont.

38

Execute initializer
i is now 0

animation

38

1/29/20

20

int i;
for (i = 0; i < 2; i++)
{
cout << "Welcome to C++!";

}

Trace for Loop, cont.

39

(i < 2) is true
since i is 0

animation

39

int i;
for (i = 0; i < 2; i++)
{
cout << "Welcome to C++!";

}

Trace for Loop, cont.

40

Print Welcome to C++!

animation

40

1/29/20

21

int i;
for (i = 0; i < 2; i++)
{
cout << "Welcome to C++!";

}

Trace for Loop, cont.

41

Execute adjustment statement
i now is 1

animation

41

int i;
for (i = 0; i < 2; i++)
{
cout << "Welcome to C++!";

}

Trace for Loop, cont.

42

(i < 2) is still true
since i is 1

animation

42

1/29/20

22

int i;
for (i = 0; i < 2; i++)
{
cout << "Welcome to C++!";

}

Trace for Loop, cont.

43

Print Welcome to C++

animation

43

int i;
for (i = 0; i < 2; i++)
{
cout << "Welcome to C++!";

}

Trace for Loop, cont.

44

Execute adjustment statement
i now is 2

animation

44

1/29/20

23

int i;
for (i = 0; i < 2; i++)
{
cout << "Welcome to C++!";

}

Trace for Loop, cont.

45

(i < 2) is false
since i is 2

animation

45

int i;
for (i = 0; i < 2; i++)
{
cout << "Welcome to C++!";

}

Trace for Loop, cont.

46

Exit the loop. Execute the next
statement after the loop

animation

46

1/29/20

24

Note

47

• The initial-action in a for loop can be a list of zero
or more comma-separated expressions.

• The action-after-each-iteration in a for loop
can be a list of zero or more comma-separated
statements.

47

Note

48

• If the loop-continuation-condition in a for loop
is omitted, it is implicitly true. Thus the for statement
given below, which is an infinite loop, is correct.

• It is better to use the equivalent while loop to avoid
confusion:

48

1/29/20

25

Outline

• Introduction
• The while Loop
• The do-while Loop
• The for Loop
• Which Loop to Use?
• Nested Loops
• Keywords break and continue

49

49

Which Loop to Use?

50

• The loop statements, while, do-while, and for, are
expressively equivalent; that is, you can write a loop in any of
these three forms.

• The while loop can always be converted into the for loop.

• The for loop can generally be converted into the while loop.

50

1/29/20

26

Which Loop to Use?

51

• Use the one that is most intuitive and comfortable for
you.

• In general, a for loop may be used if the number of
repetitions is counter-controlled, as, for example,
when you need to print a message 100 times.

• A while loop may be used if the number of
repetitions is sentinel-controlled, as in the case of
reading the numbers until the input is 0.

• A do-while loop can be used to replace a while loop
if the loop body has to be executed before testing the
continuation condition.

51

Outline

• Introduction
• The while Loop
• The do-while Loop
• The for Loop
• Which Loop to Use?
• Nested Loops
• Keywords break and continue

52

52

1/29/20

27

Nested Loops
A loop can be nested inside another loop.

Example: A program that uses nested for loops to print a
multiplication table.

53

RunMultiplicationTable

53

MultiplicationTable.cpp 1/2
#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

cout << " Multiplication Table\n";

// Display the number title
cout << " | ";
for (int j = 1; j <= 9; j++)

cout << setw(3) << j;
cout << "\n";

cout << "--------------------------------\n";

54

54

1/29/20

28

MultiplicationTable.cpp 2/2
// Display table body

for (int i = 1; i <= 9; i++)
{

cout << i << " | ";
for (int j = 1; j <= 9; j++)
{

// Display the product and align properly
cout << setw(3) << i * j;

}
cout << "\n";

}

return 0;
}

55

55

Outline

• Introduction
• The while Loop
• The do-while Loop
• The for Loop
• Which Loop to Use?
• Nested Loops
• Keywords break and continue

56

56

1/29/20

29

Using break and continue

57

RunTestBreak

Use break in a loop to immediately terminate the
loop.

Example: adding integers from 1 to 20 until sum is
greater than or equal to 100.

while (number < 20)
{

number++;
sum += number;
if (sum >= 100)

break;
}

57

Using break and continue

58

RunTestContinue

Use continue in a loop to proceed to the next
iteration.

Example: adding integers from 1 to 20 except 10 and 11.

while (number < 20)
{

number++;
if (number == 10 || number == 11)

continue;
sum += number;

}

58

1/29/20

30

Outline

• Introduction
• The while Loop
• The do-while Loop
• The for Loop
• Which Loop to Use?
• Nested Loops
• Keywords break and continue

59

59

1/29/20

1

Chapter 6: Functions

Sections 6.1-6.13

1

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University
of Jordan for the Course: Computer Skills for Engineers (0907101)

1

Outline
• Introduction
• Defining a Function
• Calling a Function
• void Functions
• Passing Arguments by Value
• Modularizing Code
• Overloading Functions
• Function Prototypes
• Default Arguments
• Inline Functions
• Local, Global, and Static Local Variables
• Passing Arguments by Reference
• Constant Reference Parameters

2

2

1/29/20

2

Introduction

3

Find the sum of integers from 1 to 10, from 20 to 37,
and from 35 to 49, respectively.

3

Introduction

4

int sum = 0;
for (int i = 1; i <= 10; i++)
sum += i;

cout << "Sum from 1 to 10 is " << sum << endl;

sum = 0;
for (int i = 20; i <= 37; i++)
sum += i;

cout << "Sum from 20 to 37 is " << sum << endl;

sum = 0;
for (int i = 35; i <= 49; i++)
sum += i;

cout << "Sum from 35 to 49 is " << sum << endl;

Write 3 loops

4

1/29/20

3

Introduction

5

int sum = 0;
for (int i = 1; i <= 10; i++)
sum += i;

cout << "Sum from 1 to 10 is " << sum << endl;

sum = 0;
for (int i = 20; i <= 37; i++)
sum += i;

cout << "Sum from 20 to 37 is " << sum << endl;

sum = 0;
for (int i = 35; i <= 49; i++)
sum += i;

cout << "Sum from 35 to 49 is " << sum << endl;

Very similar 3
loops

5

Introduction

6

int sum(int i1, int i2)
{

int sum = 0;
for (int i = i1; i <= i2; i++)

sum += i;
return sum;

}

int main()
{

cout << "Sum from 1 to 10 is " << sum(1, 10) << endl;
cout << "Sum from 20 to 37 is " << sum(20, 37) << endl;
cout << "Sum from 35 to 49 is " << sum(35, 49) << endl;
return 0;

}

Functions can be used to define reusable code and
organize and simplify code.

6

1/29/20

4

Outline
• Introduction
• Defining a Function
• Calling a Function
• void Functions
• Passing Arguments by Value
• Modularizing Code
• Overloading Functions
• Function Prototypes
• Default Arguments
• Inline Functions
• Local, Global, and Static Local Variables
• Passing Arguments by Reference
• Constant Reference Parameters

7

7

Defining a Function

8

• A function is a collection of statements that are
grouped together to perform an operation.

• A function definition consists of its function name,
parameters, return value type, and body.

8

1/29/20

5

Defining Functions, cont.

9

• Function signature is the combination of the
function name and the parameter list.

• The variables defined in the function header
are known as formal parameters.

• When a function is invoked, you pass a value to
the parameter. This value is referred to as
actual parameter or argument.

9

Defining Functions, cont.

10

• A Function may return a value.

• The return value type is the data type of the
value the function returns.

• If the function does not return a value, the
return value type is the keyword void.

10

1/29/20

6

Outline
• Introduction
• Defining a Function
• Calling a Function
• void Functions
• Passing Arguments by Value
• Modularizing Code
• Overloading Functions
• Function Prototypes
• Default Arguments
• Inline Functions
• Local, Global, and Static Local Variables
• Passing Arguments by Reference
• Constant Reference Parameters

11

11

Calling a Function

12

This program demonstrates calling a Function
max to return the largest of the int values

RunTestMax

12

1/29/20

7

Trace Function Invocation

13

animation

i is now 5

13

Trace Function Invocation

14

animation

j is now 2

14

1/29/20

8

Trace Function Invocation

15

animation

invoke max(i, j)

15

Trace Function Invocation

16

animation

invoke max(i, j)
Pass the value of i to num1
Pass the value of j to num2

16

1/29/20

9

Trace Function Invocation

17

animation

declare variable result

17

Trace Function Invocation

18

animation

(num1 > num2) is true since num1
is 5 and num2 is 2

18

1/29/20

10

Trace Function Invocation

19

animation

result is now 5

19

Trace Function Invocation

20

animation

return result, which is 5

20

1/29/20

11

Trace Function Invocation

21

animation

return max(i, j) and assign the
return value to k

21

Trace Function Invocation

22

animation

Execute the print statement

22

1/29/20

12

Call Stacks

23

• Each time a function is invoked, the system
creates an activation record.

• The activation record is placed in an area of
memory known as a call stack.

23

Outline
• Introduction
• Defining a Function
• Calling a Function
• void Functions
• Passing Arguments by Value
• Modularizing Code
• Overloading Functions
• Function Prototypes
• Default Arguments
• Inline Functions
• Local, Global, and Static Local Variables
• Passing Arguments by Reference
• Constant Reference Parameters

24

24

1/29/20

13

void Functions

25

A void function does not return a value.

Want to print the grade for a given score.
Two solutions:
1. printGrade prints the grade
2. getGrade prints the grade

RunTestVoidFunction

RunTestReturnGradeFunction

25

void Functions
void printGrade(double score)
{

if (score >= 90.0)
cout << 'A' << endl;

else if (score >= 80.0)
cout << 'B' << endl;

else if (score >= 70.0)
cout << 'C' << endl;

else if (score >= 60.0)
cout << 'D' << endl;

else
cout << 'F' << endl;

}

int main()
{

cout << "Enter a score: ";
double score;
cin >> score;

cout << "The grade is ";
printGrade(score);
return 0;

}

char getGrade(double score)
{

if (score >= 90.0)
return 'A';

else if (score >= 80.0)
return 'B';

else if (score >= 70.0)
return 'C';

else if (score >= 60.0)
return 'D';

else
return 'F';

}

int main()
{
cout << "Enter a score: ";

double score;
cin >> score;

cout << "The grade is ";
cout << getGrade(score) << endl;
return 0;

}
26

26

1/29/20

14

Terminating a Program
• You can terminate a

program at abnormal
conditions by calling
exit(n).

• Select the integer n to
specify the error type.

void printGrade(double score)
{

if (score < 0 || score > 100)
{

cout << "Invalid score" << endl;
exit(1);

}
if (score >= 90.0)

cout << 'A';
else if (score >= 80.0)

cout << 'B';
else if (score >= 70.0)

cout << 'C';
else if (score >= 60.0)

cout << 'D';
else

cout << 'F';
}

27

27

Outline
• Introduction
• Defining a Function
• Calling a Function
• void Functions
• Passing Arguments by Value
• Modularizing Code
• Overloading Functions
• Function Prototypes
• Default Arguments
• Inline Functions
• Local, Global, and Static Local Variables
• Passing Arguments by Reference
• Constant Reference Parameters

28

28

1/29/20

15

Passing Arguments by Value
• By default, the arguments

are passed by value to
parameters when
invoking a function.

• When calling a function,
you need to provide
arguments, which must
be given in the same
order as their respective
parameters in the
function signature.

• The shown code prints a
character 3 times.

void nPrint(char ch, int n)
{

for (int i = 0; i < n; i++)
cout << ch;

}

nPrint('a', 3);

aaa

29

29

Outline
• Introduction
• Defining a Function
• Calling a Function
• void Functions
• Passing Arguments by Value
• Modularizing Code
• Overloading Functions
• Function Prototypes
• Default Arguments
• Inline Functions
• Local, Global, and Static Local Variables
• Passing Arguments by Reference
• Constant Reference Parameters

30

30

1/29/20

16

Modularizing Code
• Modularizing makes the code easy to maintain and

debug and enables the code to be reused.
• These two examples use functions to reduce

complexity.

31

RunPrimeNumberFunction

RunGreatestCommonDivisorFunction

31

GreatestCommonDivisorFunction.cpp
int gcd(int n1, int n2)
{

int gcd = 1; // Initial gcd is 1
int k = 2; // Possible gcd

while (k <= n1 && k <= n2)
{

if (n1 % k == 0 && n2 % k == 0)
gcd = k; // Update gcd

k++;
}
return gcd; // Return gcd

}
int main()
{

...
cout << "The greatest common divisor for " << n1 <<

" and " << n2 << " is " << gcd(n1, n2) << endl;

return 0;
}

32

32

1/29/20

17

PrimeNumberFunction.cpp 1/3
#include <iostream>
#include <iomanip>
using namespace std;

// Check whether number is prime
bool isPrime(int number)
{

for (int divisor = 2; divisor <= number / 2; divisor++)
{

if (number % divisor == 0)
{

// If true, number is not prime
return false; // number is not a prime

}
}

return true; // number is prime
}

33

33

PrimeNumberFunction.cpp 2/3
void printPrimeNumbers(int numberOfPrimes)
{

int count = 0; // Count the number of prime numbers
int number = 2; // A number to be tested for primeness

// Repeatedly find prime numbers
while (count < numberOfPrimes)
{

// Print the prime number and increase the count
if (isPrime(number))
{

count++; // Increase the count
if (count % 10 == 0) // 10 numbers per line
{

// Print the number and advance to the new line
cout << setw(4) << number << endl;

}
else

cout << setw(4) << number;
}
number++; // Check if the next number is prime

}
}

34

34

1/29/20

18

PrimeNumberFunction.cpp 3/3

int main()
{

cout << "The first 50 prime numbers are \n";
printPrimeNumbers(50);

return 0;
}

35

35

Outline
• Introduction
• Defining a Function
• Calling a Function
• void Functions
• Passing Arguments by Value
• Modularizing Code
• Overloading Functions
• Function Prototypes
• Default Arguments
• Inline Functions
• Local, Global, and Static Local Variables
• Passing Arguments by Reference
• Constant Reference Parameters

36

36

1/29/20

19

Overloading Functions

Overloading functions enables you to define
functions with the same name as long as their

signatures are different.
• The max function that was used earlier works only with

the int data type.
• We can define and use other max functions that

accept different parameter counts and types.

37

RunTestFunctionOverloading

37

TestFunctionOverloading.cpp 1/2
#include <iostream>
using namespace std;

// Return the max between two int values
int max(int num1, int num2)
{

if (num1 > num2)
return num1;

else
return num2;

}

// Find the max between two double values
double max(double num1, double num2)
{

if (num1 > num2)
return num1;

else
return num2;

}
38

38

1/29/20

20

TestFunctionOverloading.cpp 2/2
// Return the max among three double values
double max(double num1, double num2, double num3)
{

return max(max(num1, num2), num3);
}

int main()
{

// Invoke the max function with int parameters
cout << "The max between 3 and 4 is " << max(3, 4) << endl;

// Invoke the max function with the double parameters
cout << "The maximum between 3.0 and 5.4 is "

<< max(3.0, 5.4) << endl;

// Invoke the max function with three double parameters
cout << "The maximum between 3.0, 5.4, and 10.14 is "

<< max(3.0, 5.4, 10.14) << endl;

return 0;
} 39

39

Ambiguous Invocation

Sometimes there may be two or more possible
matches for an invocation of a function, but the
compiler cannot determine the most specific
match. This is referred to as ambiguous
invocation. Ambiguous invocation is a
compilation error.

40

40

1/29/20

21

Ambiguous Invocation
#include <iostream>
using namespace std;
int maxNumber(int num1, double num2)
{

if (num1 > num2)
return num1;

else
return num2;

}
double maxNumber(double num1, int num2)
{

if (num1 > num2)
return num1;

else
return num2;

}
int main()
{

cout << maxNumber(1, 2) << endl; // Compilation error
return 0;

} 41

maxNumber(1.0, 2)
And
maxNumber(1, 2.0)
Are OK

41

Outline
• Introduction
• Defining a Function
• Calling a Function
• void Functions
• Passing Arguments by Value
• Modularizing Code
• Overloading Functions
• Function Prototypes
• Default Arguments
• Inline Functions
• Local, Global, and Static Local Variables
• Passing Arguments by Reference
• Constant Reference Parameters

42

42

1/29/20

22

Function Prototypes
• Before a function is called, it must be declared first.
• One way to ensure it is to place the declaration before all

function calls.
• Another way to approach it is to declare a function

prototype before the function is called.
• A function prototype is a function declaration without

implementation.
• The implementation can be given later in the program.

43

RunTestFunctionPrototype

43

TestFunctionPrototype.cpp
#include <iostream>
using namespace std;
// Function prototype
int max(int num1, int num2);
double max(double num1, double num2);
double max(double num1, double num2, double num3);

int main()
{

// Invoke the max function with int parameters
cout << "The maximum between 3 and 4 is " <<

max(3, 4) << endl;
...

}
// Return the max between two int values
int max(int num1, int num2)
{

if (num1 > num2)
return num1;

else
return num2;

}
... 44

Or simply:
int max(int, int);
double max(double, double);
double max(double, double, double);

44

1/29/20

23

Outline
• Introduction
• Defining a Function
• Calling a Function
• void Functions
• Passing Arguments by Value
• Modularizing Code
• Overloading Functions
• Function Prototypes
• Default Arguments
• Inline Functions
• Local, Global, and Static Local Variables
• Passing Arguments by Reference
• Constant Reference Parameters

45

45

Default Arguments

You can define default values for parameters in a
function.

The default values are passed to the parameters
when a function is invoked without the arguments.

46

RunDefaultArgumentDemo

46

1/29/20

24

DefaultArgumentDemo.cpp
#include <iostream>
using namespace std;

// Display area of a circle
void printArea(double radius = 1)
{

double area = radius * radius * 3.14159;
cout << "area is " << area << endl;

}

int main()
{

printArea();
printArea(4);

return 0;
}

47

47

Default Arguments

• When a function contains a mixture of parameters
with and without default values, those with default
values must be declared last.

• When an argument is left out of a function, all
arguments that come after it must be left out as well.

48

48

1/29/20

25

Outline
• Introduction
• Defining a Function
• Calling a Function
• void Functions
• Passing Arguments by Value
• Modularizing Code
• Overloading Functions
• Function Prototypes
• Default Arguments
• Inline Functions
• Local, Global, and Static Local Variables
• Passing Arguments by Reference
• Constant Reference Parameters

49

49

Inline Functions

50

C++ provides inline functions for improving performance for
short functions.

• Inline functions are not called; rather, the compiler
copies the function code in line at the point of each
invocation.

• To specify an inline function, precede the function
declaration with the inline keyword.

• Inline functions are desirable for short functions but not
for long ones.

RunInlineDemo

InlineExpandedDemo

50

1/29/20

26

InlineDemo.cpp
#include <iostream>
using namespace std;

inline void f(int month, int year)
{

cout << "month is " << month << endl;
cout << "year is " << year << endl;

}

int main()
{

int month = 10, year = 2008;
f(month, year); // Invoke inline function
f(9, 2010); // Invoke inline function

return 0;
}

51

51

Outline
• Introduction
• Defining a Function
• Calling a Function
• void Functions
• Passing Arguments by Value
• Modularizing Code
• Overloading Functions
• Function Prototypes
• Default Arguments
• Inline Functions
• Local, Global, and Static Local Variables
• Passing Arguments by Reference
• Constant Reference Parameters

52

52

1/29/20

27

Scope of Variables
• Scope: the part of the program where the

variable can be referenced.
• The scope of a variable starts from its

declaration and continues to the end of the
block that contains the variable.

• A variable can be declared as a local, a global,
or a static local.

• A local variable: a variable defined inside a
function.

• You can declare a local variable with the same
name in different blocks.

53

53

Scope of Local Variables
• A variable declared in the initial action part of a for loop

has its scope in the entire loop.
• A variable declared inside a for loop body has its scope

limited the rest of the loop body.

54

54

1/29/20

28

Scope of Local Variables, cont.

55

• It is acceptable to declare a local variable with the same
name in different non-nesting blocks.

• Avoid using same variable name in nesting blocks to
minimize making mistakes.

55

Global Variables
• Global variables are declared outside all

functions and are accessible to all functions in
their scope.

• Local variables do not have default values, but
global variables are defaulted to zero.

56

RunVariableScopeDemo

56

1/29/20

29

VariableScopeDemo.cpp
#include <iostream>
using namespace std;

void t1(); // Function prototype
void t2(); // Function prototype

int main()
{

t1();
t2();

return 0;
}

int y; // Global variable
// default to 0

void t1()
{

int x = 1;
cout << "x is " << x << endl;
cout << "y is " << y << endl;
x++;
y++;

}

void t2()
{

int x = 1;
cout << "x is " << x << endl;
cout << "y is " << y << endl;

}

57

57

Unary Scope Resolution
If a local variable name is the same as a global variable
name, you can access the global variable using
::globalVariable. The :: operator is known as the
unary scope resolution.

58

#include <iostream>
using namespace std;
int v1 = 10;
int main()
{

int v1 = 5;
cout << "local variable v1 is " << v1 << endl;
cout << "global variable v1 is " << ::v1 << endl;
return 0;

} local variable v1 is 5
global variable v1 is 10

58

1/29/20

30

Static Local Variables
• After a function completes its execution, all its local

variables are destroyed.
• To retain the value stored in local variables so that they

can be used in the next call, use static local variables.
• Static local variables are permanently allocated in the

memory for the lifetime of the program.
• To declare a static variable, use the keyword static.

59

RunStaticVariableDemo

59

StaticVariableDemo.cpp
#include <iostream>
using namespace std;

void t1(); // Function prototype

int main()
{

t1();
t1();
return 0;

}

void t1()
{

static int x = 1; // Static local
int y = 1; // Local, not static
x++;
y++;
cout << "x is " << x << endl;
cout << "y is " << y << endl;

} 60

60

1/29/20

31

Outline
• Introduction
• Defining a Function
• Calling a Function
• void Functions
• Passing Arguments by Value
• Modularizing Code
• Overloading Functions
• Function Prototypes
• Default Arguments
• Inline Functions
• Local, Global, and Static Local Variables
• Passing Arguments by Reference
• Constant Reference Parameters

61

61

Pass by Value

62

• When you invoke a function with a
parameter, the value of the argument is
passed to the parameter. This is referred to
as pass-by-value.

• The variable is not affected, regardless of the
changes made to the parameter inside the
function.

RunIncrement

62

1/29/20

32

Increment.cpp
#include <iostream>
using namespace std;

void increment(int n)
{

n++;
cout << "\tn inside the function is " << n << endl;

}

int main()
{

int x = 1;
cout << "Before the call, x is " << x << endl;
increment(x);
cout << "after the call, x is " << x << endl;

return 0;
}

63

63

Reference Variables

64

• A reference variable can be used as a function parameter to
reference the original variable.

• A reference variable is an alias for another variable.

• Any changes made through the reference variable are
actually performed on the original variable.

• To declare a reference variable, place the ampersand (&) in
front of the name.

RunTestReferenceVariable

64

1/29/20

33

TestReferenceVariable.cpp
#include <iostream>
using namespace std;

int main()
{

int count = 1;
int& r = count;
cout << "count is " << count << endl;
cout << "r is " << r << endl;

r++;
cout << "count is " << count << endl;
cout << "r is " << r << endl;

count = 10;
cout << "count is " << count << endl;
cout << "r is " << r << endl;

return 0;
} 65

65

Pass By Reference

66

Parameters can be passed by reference, which makes
the formal parameter an alias of the actual argument.

Thus, changes made to the parameters inside the
function also made to the arguments.

RunSwapByReference

66

1/29/20

34

SwapByReference.cpp 1/2
#include <iostream>
using namespace std;

// Swap two variables
void swap(int& n1, int& n2)
{

cout << "\tInside the swap function" << endl;
cout << "\tBefore swapping n1 is " << n1 <<

" n2 is " << n2 << endl;

// Swap n1 with n2
int temp = n1;
n1 = n2;
n2 = temp;

cout << "\tAfter swapping n1 is " << n1 <<
" n2 is " << n2 << endl;

} 67

67

SwapByReference.cpp 2/2
int main()
{

// Declare and initialize variables
int num1 = 1;
int num2 = 2;

cout << "Before invoking the swap function, num1 is "
<< num1 << " and num2 is " << num2 << endl;

// Invoke the swap function to attempt to swap two variables
swap(num1, num2);

cout << "After invoking the swap function, num1 is " << num1
<< " and num2 is " << num2 << endl;

return 0;
}

68

68

1/29/20

35

Pass-by-Value vs. Pass-by-
Reference

69

• In pass-by-value, the actual parameter and its formal
parameter are independent variables.

• In pass-by-reference, the actual parameter and its
formal parameter refer to the same variable.

• Pass-by-reference is more efficient than pass-by-value.
However, the difference is negligible for parameters of
primitive types such as int and double.

• So, if a primitive data type parameter is not changed
in the function, you should declare it as pass-by-value
parameter.

69

Outline
• Introduction
• Defining a Function
• Calling a Function
• void Functions
• Passing Arguments by Value
• Modularizing Code
• Overloading Functions
• Function Prototypes
• Default Arguments
• Inline Functions
• Local, Global, and Static Local Variables
• Passing Arguments by Reference
• Constant Reference Parameters

70

70

1/29/20

36

Constant Reference Parameters

71

You can specify a constant reference parameter to
prevent its value from being changed by accident.

// Return the max between two numbers
int max(const int& num1, const int& num2)
{

int result;
if (num1 > num2)

result = num1;
else

result = num2;
return result;

}

71

Outline
• Introduction
• Defining a Function
• Calling a Function
• void Functions
• Passing Arguments by Value
• Modularizing Code
• Overloading Functions
• Function Prototypes
• Default Arguments
• Inline Functions
• Local, Global, and Static Local Variables
• Passing Arguments by Reference
• Constant Reference Parameters

72

72

Chapter 7: Single-Dimensional
Arrays and C-Strings

Sections 7.1-7.7, 7.11

1

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University
of Jordan for the Course: Computer Skills for Engineers (0907101)

1

Outline

• Introduction
• Array Basics
• Problem: Lotto Numbers
• Problem: Deck of Cards
• Passing Arrays to Functions
• Preventing Changes of Array Arguments in

Functions
• Returning Arrays from Functions
• C-Strings

2

2

Introduction

• How to read one
hundred numbers and
compute their average?

•
• Use A1, A2, …, A100?

• Or use a single array
that stores all the
numbers?

#include <iostream>
using namespace std;

int main()
{

double numbers[100];
double sum = 0;

for (int i = 0; i < 100; i++)
{

cout << "Enter a number: ";
cin >> numbers[i];
sum += numbers[i];

}
double average = sum / 100;
cout << "Average is " << average

<< endl;
return 0;

}

3

3

Introduction

4

Array is a data structure that represents a collection of the
same types of data.

4

Outline

• Introduction
• Array Basics
• Problem: Lotto Numbers
• Problem: Deck of Cards
• Passing Arrays to Functions
• Preventing Changes of Array Arguments in

Functions
• Returning Arrays from Functions
• C-Strings

5

5

Declaring Array Variables
datatype arrayRefVar[arraySize];

Example:
double myList[10];

6

C++ requires that the array size used to declare an array must be a
constant expression. For example, the following code is illegal:
int size = 10;
double myList[size]; // Wrong

But it would be OK, if size is a constant as follow:
const int size = 10;
double myList[size], list2[5]; // Correct

6

Arbitrary Initial Values

When an array is created, its elements are assigned
with arbitrary values.

They are not initialized.

7

7

Accessing Array Elements

• The array elements are accessed through the index.
Array indices are 0-based; that is, they start from 0 to
arraySize-1.

• Each element in the array is represented using the
following syntax, known as an indexed variable:

arrayName[index];

• For example, myList[9] represents the last element in
the array myList.

8

8

Using Indexed Variables

• After an array is created, an indexed variable can be
used in the same way as a regular variable.

• Examples:
myList[2] = myList[0] + myList[1];
myList[3]++;
cout << max(myList[0], myList[1]) << endl;

• C++ does not check array’s boundary. So, accessing array
elements using subscripts beyond the boundary (e.g.,
myList[-1] and myList[11]) does not cause syntax
errors, but the operating system might report a memory
access violation.

9

9

Array Initializers

Declaring, creating, initializing in one step:
dataType arrayName[arraySize] = {value0, value1,

..., valuek};

Examples:
double myList[4] = {1.9, 2.9, 3.4, 3.5};

double myList[] = {1.9, 2.9, 3.4, 3.5};

double myList[4] = {1.9, 2.9};

10

10

Trace Program with Arrays

int main()
{

int values[5] = { 0, 0, 0, 0, 0 };
for (int i = 1; i < 5; i++)
{

values[i] = i + values[i - 1];
}
values[0] = values[1] + values[4];

}

11

Declare array variable values, create an
array, and assign its reference to values

After the array is created

0

1

2

3

4

0

0

0

0

0

animation

11

int main()
{

int values[5] = { 0, 0, 0, 0, 0 };
for (int i = 1; i < 5; i++)
{

values[i] = i + values[i - 1];
}
values[0] = values[1] + values[4];

}

Trace Program with Arrays

12

i becomes 1

animation

After the array is created

0

1

2

3

4

0

0

0

0

0

12

int main()
{

int values[5] = { 0, 0, 0, 0, 0 };
for (int i = 1; i < 5; i++)
{

values[i] = i + values[i - 1];
}
values[0] = values[1] + values[4];

}

Trace Program with Arrays

13

i (=1) is less than 5

animation

After the array is created

0

1

2

3

4

0

0

0

0

0

13

After the array is created

0

1

2

3

4

0

1

0

0

0

int main()
{

int values[5] = { 0, 0, 0, 0, 0 };
for (int i = 1; i < 5; i++)
{

values[i] = i + values[i - 1];
}
values[0] = values[1] + values[4];

}

Trace Program with Arrays

14

After this line is executed, value[1] is 1

animation

14

int main()
{

int values[5] = { 0, 0, 0, 0, 0 };
for (int i = 1; i < 5; i++)
{

values[i] = i + values[i - 1];
}
values[0] = values[1] + values[4];

}

Trace Program with Arrays

15

After i++, i becomes 2

animation

After the array is created

0

1

2

3

4

0

1

0

0

0

15

int main()
{

int values[5] = { 0, 0, 0, 0, 0 };
for (int i = 1; i < 5; i++)
{

values[i] = i + values[i - 1];
}
values[0] = values[1] + values[4];

}

Trace Program with Arrays

16

i (= 2) is less than 5

animation

After the array is created

0

1

2

3

4

0

1

0

0

0

16

After the array is created

0

1

2

3

4

0

1

3

0

0

int main()
{

int values[5] = { 0, 0, 0, 0, 0 };
for (int i = 1; i < 5; i++)
{

values[i] = i + values[i - 1];
}
values[0] = values[1] + values[4];

}

Trace Program with Arrays

17

After this line is executed,
values[2] is 3 (2 + 1)

animation

17

int main()
{

int values[5] = { 0, 0, 0, 0, 0 };
for (int i = 1; i < 5; i++)
{

values[i] = i + values[i - 1];
}
values[0] = values[1] + values[4];

}

Trace Program with Arrays

18

After this, i becomes 3.

animation

After the array is created

0

1

2

3

4

0

1

3

0

0

18

int main()
{

int values[5] = { 0, 0, 0, 0, 0 };
for (int i = 1; i < 5; i++)
{

values[i] = i + values[i - 1];
}
values[0] = values[1] + values[4];

}

Trace Program with Arrays

19

i (=3) is still less than 5.

animation

After the array is created

0

1

2

3

4

0

1

3

0

0

19

After the array is created

0

1

2

3

4

0

1

3

6

0

int main()
{

int values[5] = { 0, 0, 0, 0, 0 };
for (int i = 1; i < 5; i++)
{

values[i] = i + values[i - 1];
}
values[0] = values[1] + values[4];

}

Trace Program with Arrays

20

After this line, values[3] becomes 6 (3 + 3)

animation

20

int main()
{

int values[5] = { 0, 0, 0, 0, 0 };
for (int i = 1; i < 5; i++)
{

values[i] = i + values[i - 1];
}
values[0] = values[1] + values[4];

}

Trace Program with Arrays

21

After this, i becomes 4

animation

After the array is created

0

1

2

3

4

0

1

3

6

0

21

int main()
{

int values[5] = { 0, 0, 0, 0, 0 };
for (int i = 1; i < 5; i++)
{

values[i] = i + values[i - 1];
}
values[0] = values[1] + values[4];

}

Trace Program with Arrays

22

i (=4) is still less than 5

animation

After the array is created

0

1

2

3

4

0

1

3

6

0

22

After the array is created

0

1

2

3

4

0

1

3

6

10

int main()
{

int values[5] = { 0, 0, 0, 0, 0 };
for (int i = 1; i < 5; i++)
{

values[i] = i + values[i - 1];
}
values[0] = values[1] + values[4];

}

Trace Program with Arrays

23

After this, values[4] becomes 10 (4 + 6)

animation

23

int main()
{

int values[5] = { 0, 0, 0, 0, 0 };
for (int i = 1; i < 5; i++)
{

values[i] = i + values[i - 1];
}
values[0] = values[1] + values[4];

}

Trace Program with Arrays

24

After i++, i becomes 5

animation

After the array is created

0

1

2

3

4

0

1

3

6

10

24

int main()
{

int values[5] = { 0, 0, 0, 0, 0 };
for (int i = 1; i < 5; i++)
{

values[i] = i + values[i - 1];
}
values[0] = values[1] + values[4];

}

Trace Program with Arrays

25

i (=5) < 5 is false. Exit the loop

animation

After the array is created

0

1

2

3

4

0

1

3

6

10

25

After the array is created

0

1

2

3

4

11

1

3

6

10

int main()
{

int values[5] = { 0, 0, 0, 0, 0 };
for (int i = 1; i < 5; i++)
{

values[i] = i + values[i - 1];
}
values[0] = values[1] + values[4];

}

Trace Program with Arrays

26

After this line, values[0] is 11 (1 + 10)

animation

26

Processing Arrays
• The following loop initializes the array myList with random

values between 0 and 99:
const int ARRAY_SIZE = 10;
double myList[ARRAY_SIZE];
for (int i = 0; i < ARRAY_SIZE; i++)
{

myList[i] = rand() % 100;
}

• Summing all elements:
double total = 0;
for (int i = 0; i < ARRAY_SIZE; i++)
{

total += myList[i];
}

27

27

Printing Arrays

To print an array, you have to print each element in the
array using a loop like the following:

for (int i = 0; i < ARRAY_SIZE; i++)
{

cout << myList[i] << " ";
}

28

28

Copying Arrays

Can you copy array using a syntax like this?
list = myList; // Does not work

This is not allowed in C++. You have to copy individual
elements from one array to the other as follows:

for (int i = 0; i < ARRAY_SIZE; i++)
{

list[i] = myList[i];
}

29

29

Finding the Largest Element
• Use a variable named max to store the largest element.

Initially max is myList[0].
• To find the largest element in the array myList,

compare each element in myList with max, update max
if the element is greater than max.

double max = myList[0];
for (int i = 1; i < ARRAY_SIZE; i++)
{

if (myList[i] > max)
max = myList[i];

}
30

30

Finding the Smallest Index of
the Largest Element

double max = myList[0];
int indexOfMax = 0;
for (int i = 1; i < ARRAY_SIZE; i++)
{

if (myList[i] > max)
{

max = myList[i];
indexOfMax = i;

}
}

31

31

Shifting/Rotating Elements

double temp = myList[0]; // Save the first
// Shift elements up
for (int i = 1; i < ARRAY_SIZE; i++)
{

myList[i - 1] = myList[i];
}
// First element to last position
myList[ARRAY_SIZE - 1] = temp;

32

32

Foreach Loops

double myList[] = { 0, 1.5, 2.1 };
for (double e : myList) {

cout << e << endl;
}

33

C++11: Foreach loops
are defined in C++11

0
1.5
2.1

33

Outline

• Introduction
• Array Basics
• Problem: Lotto Numbers
• Problem: Deck of Cards
• Passing Arrays to Functions
• Preventing Changes of Array Arguments in

Functions
• Returning Arrays from Functions
• C-Strings

34

34

Problem: Lotto Numbers
The problem is to write a program that checks if all the
input numbers cover 1 to 99

35

supplement

LottoNumbers Run

35

LottoNumbers.cpp 1/2
#include <iostream>
using namespace std;

int main()
{

bool isCovered[99];
int number; // number read from a file

// Initialize the array
for (int i = 0; i < 99; i++)

isCovered[i] = false;

// Read each number and mark its corresponding element
cin >> number;
while (number != 0)
{

isCovered[number - 1] = true;
cin >> number;

}
36

36

LottoNumbers.cpp 2/2
// Check if all covered
bool allCovered = true; // Assume all covered initially
for (int i = 0; i < 99; i++)

if (!isCovered[i])
{

allCovered = false; // Find one number not covered
break;

}

// Display result
if (allCovered)

cout << "The tickets cover all numbers" << endl;
else

cout << "The tickets don't cover all numbers" << endl;

return 0;
}

37

37

Outline

• Introduction
• Array Basics
• Problem: Lotto Numbers
• Problem: Deck of Cards
• Passing Arrays to Functions
• Preventing Changes of Array Arguments in

Functions
• Returning Arrays from Functions
• C-Strings

38

38

Problem: Deck of Cards
• The problem is to write a program that picks four cards randomly

from a deck of 52 cards.
• All the cards can be represented using an array named deck, filled

with initial values 0 to 52, as follows:

const int NUMBER_OF_CARDS = 52;
int deck[NUMBER_OF_CARDS];

// Initialize cards
for (int i = 0; i < NUMBER_OF_CARDS; i++)

deck[i] = i;

39

39

Problem: Deck of Cards, cont.

40

DeckOfCards Run

40

DeckOfCards.cpp 1/2
#include <iostream>
#include <ctime>
#include <cstdlib>
#include <string>
using namespace std;

int main()
{

const int NUMBER_OF_CARDS = 52;
int deck[NUMBER_OF_CARDS];
string suits[] = { "Spades", "Hearts", "Diamonds", "Clubs" };
string ranks[] = { "Ace", "2", "3", "4", "5", "6", "7", "8", "9",
"10", "Jack", "Queen", "King" };

// Initialize cards
for (int i = 0; i < NUMBER_OF_CARDS; i++)

deck[i] = i;
41

41

DeckOfCards.cpp 2/2
// Shuffle the cards
srand(time(0));
for (int i = 0; i < NUMBER_OF_CARDS; i++)
{

// Generate an index randomly
int index = rand() % NUMBER_OF_CARDS;
int temp = deck[i];
deck[i] = deck[index];
deck[index] = temp;

}

// Display the first four cards
for (int i = 0; i < 4; i++)
{

string suit = suits[deck[i] / 13];
string rank = ranks[deck[i] % 13];
cout << "Card number " << deck[i] << ": "

<< rank << " of " << suit << endl;
}

return 0;
} 42

42

Outline

• Introduction
• Array Basics
• Problem: Lotto Numbers
• Problem: Deck of Cards
• Passing Arrays to Functions
• Preventing Changes of Array Arguments in

Functions
• Returning Arrays from Functions
• C-Strings

43

43

Passing Arrays to Functions

• You can pass an entire array to a function.
• You need also to pass the size of the array.
• This program gives an example to demonstrate

how to declare and invoke this type of
functions.

44

PassArrayDemo Run

44

PassArrayDemo.cpp
#include <iostream>
using namespace std;

void printArray(int list[], int arraySize); // Prototype

int main()
{

int numbers[6] = { 1, 4, 3, 6, 8, 9 };
printArray(numbers, 6); // Invoke the function

return 0;
}

void printArray(int list[], int arraySize)
{

for (int i = 0; i < arraySize; i++)
{

cout << list[i] << " ";
}

}
45

1 4 3 6 8 9

45

Pass-by-Value

• Passing an array variable means that the starting
address of the array is passed to the formal
parameter by value.

• The parameter inside the function references to
the same array that is passed to the function. No
new arrays are created.

46

EffectOfPassArrayDemo Run

46

EffectOfPassArrayDemo.cpp
#include <iostream>
using namespace std;

void m(int, int[]);

int main()
{

int x = 1; // x represents an int value
int y[10] = { 0 }; // y represents an array of int values

m(x, y); // Invoke m with arguments x and y

cout << "x is " << x << endl;
cout << "y[0] is " << y[0] << endl;

return 0;
}

void m(int number, int numbers[])
{

number = 1001; // Assign a new value to number
numbers[0] = 5555; // Assign a new value to numbers[0]

}
47

47

Outline

• Introduction
• Array Basics
• Problem: Lotto Numbers
• Problem: Deck of Cards
• Passing Arrays to Functions
• Preventing Changes of Array Arguments in

Functions
• Returning Arrays from Functions
• C-Strings

48

48

Preventing Changes of Array
Arguments in Functions

• Passing arrays by reference makes sense for
performance reasons. If an array is passed by value, all
its elements must be copied into a new array.

• However, passing arrays by its reference value could lead
to errors if your function changes the array accidentally.

• To prevent it from happening, you can put the const to
tell the compiler that the array cannot be changed.

• The compiler will report errors if the code in the
function attempts to modify the array.

49

Compile errorConstArrayDemo

49

ConstArrayDemo.cpp
#include <iostream>
using namespace std;

void p(int const list[], int arraySize)
{
// Modify array accidentally
list[0] = 100; // Compile error!

}

int main()
{
int numbers[5] = {1, 4, 3, 6, 8};
p(numbers, 5);

return 0;
}

50

1>C:\ConstArrayDemo.cpp(7,18): error C3892: 'list': you cannot assign to a
variable that is const
1>Done building project "Testing.vcxproj" -- FAILED.
========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ==========

50

Outline

• Introduction
• Array Basics
• Problem: Lotto Numbers
• Problem: Deck of Cards
• Passing Arrays to Functions
• Preventing Changes of Array Arguments in

Functions
• Returning Arrays from Functions
• C-Strings

51

51

Returning Arrays from Functions

• How to return an array from a function?
• You may attempt to declare a function that returns a new

array that is a reversal of an array as follows:

// Return the reversal of list
int[] reverse(const int list[], int size);

• This is not allowed in C++.

52

52

Returning Arrays from Functions,
cont.

• However, you can pass two array arguments in the
function, as follows:
// newList is the reversal of list
void reverse(const int list[], int newList[],

int size);

53

ReverseArray Run

53

ReverseArray.cpp 1/2
#include <iostream>
using namespace std;

// newList is the reversal of list
void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

void printArray(const int list[], int size)
{

for (int i = 0; i < size; i++)
cout << list[i] << " ";

} 54

54

ReverseArray.cpp 1/2
int main()
{

const int SIZE = 6;
int list[] = { 1, 2, 3, 4, 5, 6 };
int newList[SIZE];

reverse(list, newList, SIZE);

cout << "The original array: ";
printArray(list, SIZE);
cout << endl;

cout << "The reversed array: ";
printArray(newList, SIZE);
cout << endl;

return 0;
} 55

55

Trace the reverse Function

56

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

list

newList

1 2 3 4 5 6

0 0 0 0 0 0

animation

56

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse function, cont.

57

list 1 2 3 4 5 6

0 0 0 0 0 0

animation

i = 0 and j = 5

57

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse function, cont.

58

list 1 2 3 4 5 6

0 0 0 0 0 0

animation

i (= 0) is less than 6

58

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse function, cont.

59

list 1 2 3 4 5 6

0 0 0 0 0 1

animation

i = 0 and j = 5
Assign list[0] to result[5]

59

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse function, cont.

60

list 1 2 3 4 5 6

0 0 0 0 0 1

animation

After this, i becomes 1 and j
becomes 4

60

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse function, cont.

61

list 1 2 3 4 5 6

0 0 0 0 0 1

animation

i (=1) is less than 6

61

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse function, cont.

62

list 1 2 3 4 5 6

0 0 0 0 2 1

animation

i = 1 and j = 4
Assign list[1] to result[4]

62

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse function, cont.

63

list 1 2 3 4 5 6

0 0 0 0 2 1

animation

After this, i becomes 2 and
j becomes 3

63

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse function, cont.

64

list 1 2 3 4 5 6

0 0 0 0 2 1

animation

i (=2) is still less than 6

64

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse function, cont.

65

list 1 2 3 4 5 6

0 0 0 3 2 1

animation

i = 2 and j = 3
Assign list[i] to result[j]

65

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse function, cont.

66

list 1 2 3 4 5 6

0 0 0 3 2 1

animation

After this, i becomes 3 and
j becomes 2

66

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse function, cont.

67

list 1 2 3 4 5 6

0 0 0 3 2 1

animation

i (=3) is still less than 6

67

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse function, cont.

68

list 1 2 3 4 5 6

0 0 4 3 2 1

animation

i = 3 and j = 2
Assign list[i] to result[j]

68

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse function, cont.

69

list 1 2 3 4 5 6

0 0 4 3 2 1

animation

After this, i becomes 4 and
j becomes 1

69

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse Function, cont.

70

list 1 2 3 4 5 6

0 0 4 3 2 1

animation

i (=4) is still less than 6

70

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse Function, cont.

71

list 1 2 3 4 5 6

0 5 4 3 2 1

animation

i = 4 and j = 1
Assign list[i] to result[j]

71

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse Function, cont.

72

list 1 2 3 4 5 6

0 5 4 3 2 1

animation

After this, i becomes 5 and
j becomes 0

72

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse Function, cont.

73

list 1 2 3 4 5 6

0 5 4 3 2 1

animation

i (=5) is still less than 6

73

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse Function, cont.

74

list 1 2 3 4 5 6

6 5 4 3 2 1

animation

i = 5 and j = 0
Assign list[i] to result[j]

74

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse Function, cont.

75

list 1 2 3 4 5 6

6 5 4 3 2 1

animation

After this, i becomes 6 and
j becomes -1

75

int list[] = { 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)
{

newList[j] = list[i];
}

}

newList

Trace the reverse function, cont.

76

list 1 2 3 4 5 6

6 5 4 3 2 1

animation

i (=6) < 6 is false. So exit
the loop.

76

Outline

• Introduction
• Array Basics
• Problem: Lotto Numbers
• Problem: Deck of Cards
• Passing Arrays to Functions
• Preventing Changes of Array Arguments in

Functions
• Returning Arrays from Functions
• C-Strings

77

77

C-Strings

• You studied the string type in Chapter 4.
• Example:

string s = "welcome to C++";
s.at(0) = 'W';
cout << s.length() << s[0] << endl;

14W

• Here we study the older C-strings because of
their popularity.

78

78

Initializing Character Arrays
• You can define arrays of characters.

char city[] = { 'D', 'a', 'l', 'l', 'a', 's' };

• C-strings are defined as follows:
char city[] = "Dallas";

• In this case, C++ adds the character '\0', called the null
terminator, to indicate the end of the string.

79

79

Reading C-Strings

You can read a string from the keyboard using the
cin object. For example, see the following code:

char city[10];
cout << "Enter a city: ";
cin >> city; // read to array city
cout << "You entered " << city << endl;

80

80

Printing Character Array

For a character array, it can be printed using one print
statement. For example, the following code displays Dallas:

char city[] = "Dallas";
cout << city;

81

81

Reading C-Strings Using getline
• C++ provides the cin.getline function in the iostream

header file, which reads a string into an array:
cin.getline(char array[], int size, char delimitChar);

• The function stops reading characters when the
delimiter character is encountered or when the size -
1 number of characters are read.

• The last character in the array is reserved for the null
terminator ('\0').

• If the delimiter is encountered, it is read, but not stored
in the array.

• The third argument delimitChar has a default value
('\n').

82

82

Working with C-Strings

• The following function finds the length of a C-
string:
unsigned int strlen(char s[])
{

for (int i = 0; s[i] != '\0'; i++)
;

return i;
}

• The cstring and cstdlib headers provide
many useful C-strings functions.

83

83

C-String Functions

84

84

C-String Examples

85

CombineString Run

CompareString Run

CopyString Run

StringConversion Run

85

CopyString.CPP
#include <iostream>
#include <cstring>
using namespace std;

int main()
{

char s1[20];
char s2[20] = "Dallas, Texas";
char s3[20] = "AAAAAAAAAA";

strcpy(s1, s2);
strncpy(s3, s2, 6);
s3[6] = '\0'; // Insert null terminator

cout << "The string in s1 is " << s1 << endl;
cout << "The string in s2 is " << s2 << endl;
cout << "The string in s3 is " << s3 << endl;
cout << "The length of string s3 is " << strlen(s3) << endl;

return 0;
} 86

The string in s1 is Dallas, Texas
The string in s2 is Dallas, Texas
The string in s3 is Dallas
The length of string s3 is 6

86

CombineString.cpp
#include <iostream>
#include <cstring>
using namespace std;

int main()
{

char s1[20] = "Dallas";
char s2[20] = "Texas, USA";
char s3[20] = "Dallas";

strcat(strcat(s1, ", "), s2);
strncat(strcat(s3, ", "), s2, 5);

cout << "The string in s1 is " << s1 << endl;
cout << "The string in s2 is " << s2 << endl;
cout << "The string in s3 is " << s3 << endl;
cout << "The length of string s1 is " << strlen(s1) << endl;
cout << "The length of string s3 is " << strlen(s3) << endl;

return 0;
} 87

The string in s1 is Dallas, Texas, USA
The string in s2 is Texas, USA
The string in s3 is Dallas, Texas
The length of string s1 is 18
The length of string s3 is 13

87

CompareString.cpp
#include <iostream>
#include <cstring>
using namespace std;

int main()
{

char s1[] = "abcdefg";
char s2[] = "abcdg";
char s3[] = "abcdg";

cout << "strcmp(s1, s2) is " << strcmp(s1, s2) << endl;
cout << "strcmp(s2, s1) is " << strcmp(s2, s1) << endl;
cout << "strcmp(s2, s3) is " << strcmp(s2, s3) << endl;
cout << "strncmp(s1, s2, 3) is " << strncmp(s1, s2, 3)

<< endl;

return 0;
}

88

strcmp(s1, s2) is -1
strcmp(s2, s1) is 1
strcmp(s2, s3) is 0
strncmp(s1, s2, 3) is 0

88

StringConversion.cpp
#include <iostream>
#include <cstring>
using namespace std;

int main()
{

cout << atoi("4") + atoi("5") << endl;
cout << atof("4.5") + atof("5.5") << endl;

char s[10];
itoa(42, s, 8);
cout << s << endl;

itoa(42, s, 10);
cout << s << endl;

itoa(42, s, 16);
cout << s << endl;

return 0;
} 89

9
10
52
42
2a

89

Converting Numbers to Strings
• Note that the to_string function is useful to convert numbers to string

type.
#include <iostream>
#include <string>
using namespace std;

int main()
{

int x = 15;
double y = 1.32;
long long int z = 10935;
string s = "Three numbers: " + to_string(x) + ", " +

to_string(y) + ", and " + to_string(z);
cout << s << endl;

return 0;
}

90

C++11: the to_string function
is defined in C++11

Three numbers: 15, 1.320000, and 10935

90

Outline

• Introduction
• Array Basics
• Problem: Lotto Numbers
• Problem: Deck of Cards
• Passing Arrays to Functions
• Preventing Changes of Array Arguments in

Functions
• Returning Arrays from Functions
• C-Strings

91

91

Chapter 8: Multidimensional
Arrays

Sections 8.1-8.5, 8.8

1

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University
of Jordan for the Course: Computer Skills for Engineers (0907101)

1

Outline

• Introduction
• Declaring Two-Dimensional Arrays
• Processing Two-Dimensional Arrays
• Passing Two-Dimensional Arrays to Functions
• Problem: Grading a Multiple-Choice Test
• Multidimensional Arrays

2

2

Introduction

Data in a table or a matrix can be represented
using a two-dimensional array.

3

3

Outline

• Introduction
• Declaring Two-Dimensional Arrays
• Processing Two-Dimensional Arrays
• Passing Two-Dimensional Arrays to Functions
• Problem: Grading a Multiple-Choice Test
• Multidimensional Arrays

4

4

Declaring Two-Dimensional
Arrays

elementType arrayName[ROW_SIZE][COLUMN_SIZE];

• Example
int distances[7][7];

• An element in a two-dimensional array is
accessed through a row and column index.
int bostonToDalas = distances[1][5];

5

5

Two-Dimensional Array Illustration

6

6

Outline

• Introduction
• Declaring Two-Dimensional Arrays
• Processing Two-Dimensional Arrays
• Passing Two-Dimensional Arrays to Functions
• Problem: Grading a Multiple-Choice Test
• Multidimensional Arrays

7

7

Initializing Arrays with Random
Values

• Nested for loops are often used to process a two-
dimensional array.

• The following loop initializes the array with random
values between 0 and 99:

for (int row = 0; row < rowSize; row++)
{

for (int column = 0; column < columnSize; column++)
{

matrix[row][column] = rand() % 100;
}

}

8

8

Printing Arrays
• To print a two-dimensional array, you have to print each

element in the array using a loop like the following:

for (int row = 0; row < rowSize; row++)
{

for (int column = 0; column < columnSize; column++)
{

cout << matrix[row][column] << " ";
}
cout << endl;

}

9

9

Summing All Elements
• To sum all elements of a two-dimensional array:

int total = 0;
for (int row = 0; row < ROW_SIZE; row++)
{

for (int column = 0; column < COLUMN_SIZE; column++)
{

total += matrix[row][column];
}

}

10

10

Summing Elements by Column
• For each column, use a variable named total to store

its sum. Add each element in the column to total
using a loop like this:

for (int column = 0; column < columnSize; column++)
{

int total = 0;
for (int row = 0; row < rowSize; row++)

total += matrix[row][column];
cout << "Sum for column " << column << " is “

<< total << endl;
}

11

11

Which row has the largest sum?
• Use variables maxRow and indexOfMaxRow to track the largest sum and index

of the row. For each row, compute its sum and update maxRow and
indexOfMaxRow if the new sum is greater.

int maxRow = 0;
int indexOfMaxRow = 0;
// Get sum of the first row in maxRow
for (int column = 0; column < COLUMN_SIZE; column++)

maxRow += matrix[0][column];
for (int row = 1; row < ROW_SIZE; row++)
{

int totalOfThisRow = 0;
for (int column = 0; column < COLUMN_SIZE; column++)

totalOfThisRow += matrix[row][column];
if (totalOfThisRow > maxRow)
{

maxRow = totalOfThisRow;
indexOfMaxRow = row;

}
}
cout << "Row " << indexOfMaxRow

<< " has the maximum sum of " << maxRow << endl; 12

12

Outline

• Introduction
• Declaring Two-Dimensional Arrays
• Processing Two-Dimensional Arrays
• Passing Two-Dimensional Arrays to Functions
• Problem: Grading a Multiple-Choice Test
• Multidimensional Arrays

13

13

Passing Two-Dimensional Arrays
to Functions

• You can pass a two-dimensional array to a function.

• The column size to be specified in the function
declaration.

• A program that for a function that returns the sum
of all the elements in a matrix.

14

PassTwoDimensionalArray Run

14

PassTwoDimensionalArray.cpp 1/2
#include <iostream>
using namespace std;

const int COLUMN_SIZE = 4;

int sum(const int a[][COLUMN_SIZE], int rowSize)
{

int total = 0;
for (int row = 0; row < rowSize; row++)
{

for (int column = 0; column < COLUMN_SIZE; column++)
{

total += a[row][column];
}

}

return total;
}

15

15

PassTwoDimensionalArray.cpp 2/2
int main()
{

const int ROW_SIZE = 3;
int m[ROW_SIZE][COLUMN_SIZE];

cout << "Enter " << ROW_SIZE << " rows and "
<< COLUMN_SIZE << " columns: " << endl;

for (int i = 0; i < ROW_SIZE; i++)
for (int j = 0; j < COLUMN_SIZE; j++)

cin >> m[i][j];

cout << "\nSum of all elements is " << sum(m, ROW_SIZE)
<< endl;

return 0;
}

16

16

Outline

• Introduction
• Declaring Two-Dimensional Arrays
• Processing Two-Dimensional Arrays
• Passing Two-Dimensional Arrays to Functions
• Problem: Grading a Multiple-Choice Test
• Multidimensional Arrays

17

17

Problem: Grading Multiple-Choice Test

18

GradeExam Run

18

GradeExam.cpp 1/2
#include <iostream>
using namespace std;

int main()
{

const int NUMBER_OF_STUDENTS = 8;
const int NUMBER_OF_QUESTIONS = 10;

// Students' answers to the questions
char answers[NUMBER_OF_STUDENTS][NUMBER_OF_QUESTIONS] =
{
{'A', 'B', 'A', 'C', 'C', 'D', 'E', 'E', 'A', 'D'},
{'D', 'B', 'A', 'B', 'C', 'A', 'E', 'E', 'A', 'D'},
{'E', 'D', 'D', 'A', 'C', 'B', 'E', 'E', 'A', 'D'},
{'C', 'B', 'A', 'E', 'D', 'C', 'E', 'E', 'A', 'D'},
{'A', 'B', 'D', 'C', 'C', 'D', 'E', 'E', 'A', 'D'},
{'B', 'B', 'E', 'C', 'C', 'D', 'E', 'E', 'A', 'D'},
{'B', 'B', 'A', 'C', 'C', 'D', 'E', 'E', 'A', 'D'},
{'E', 'B', 'E', 'C', 'C', 'D', 'E', 'E', 'A', 'D'}

}; 19

19

GradeExam.cpp 2/2
// Key to the questions
char keys[] = { 'D', 'B', 'D', 'C', 'C', 'D', 'A', 'E', 'A', 'D' };

// Grade all answers
for (int i = 0; i < NUMBER_OF_STUDENTS; i++)
{

// Grade one student
int correctCount = 0;
for (int j = 0; j < NUMBER_OF_QUESTIONS; j++)
{

if (answers[i][j] == keys[j])
correctCount++;

}

cout << "Student " << i << "'s correct count is " <<
correctCount << endl;

}

return 0;
} 20

20

Outline

• Introduction
• Declaring Two-Dimensional Arrays
• Processing Two-Dimensional Arrays
• Passing Two-Dimensional Arrays to Functions
• Problem: Grading a Multiple-Choice Test
• Multidimensional Arrays

21

21

You can create n-dimensional arrays for any integer n.

For example, you may use a three-dimensional array to store exam
scores for a class of 6 students with 5 exams and each exam has 2
parts (multiple-choice and essay).

double scores[6][5][2];

With initialization:
double scores[6][5][2] = {
{{7.5, 20.5}, {9.0, 22.5}, {15, 33.5}, {13, 21.5}, {15, 2.5}},
{{4.5, 21.5}, {9.0, 22.5}, {15, 34.5}, {12, 20.5}, {14, 9.5}},
{{6.5, 30.5}, {9.4, 10.5}, {11, 33.5}, {11, 23.5}, {10, 2.5}},
{{6.5, 23.5}, {9.4, 32.5}, {13, 34.5}, {11, 20.5}, {16, 7.5}},
{{8.5, 26.5}, {9.4, 52.5}, {13, 36.5}, {13, 24.5}, {16, 2.5}},
{{9.5, 20.5}, {9.4, 42.5}, {13, 31.5}, {12, 20.5}, {16, 6.5}} };

Multidimensional Arrays

22

22

Weather Run

Problem: Daily Temperature and
Humidity

• Suppose a meteorology station records the temperature
and humidity at each hour of every day and stores the
data for the past ten days in a text file named
weather.txt.

• Each line of the file consists of four numbers that
indicates the day, hour, temperature, and humidity.

23

A program that calculates the average
daily temperature and humidity for the 10
days.

23

Weather.cpp 1/2
#include <iostream>
using namespace std;

int main()
{

const int NUMBER_OF_DAYS = 10;
const int NUMBER_OF_HOURS = 24;
double data[NUMBER_OF_DAYS][NUMBER_OF_HOURS][2];

// Read input using input redirection from a file
int day, hour;
double temperature, humidity;
for (int k = 0; k < NUMBER_OF_DAYS * NUMBER_OF_HOURS; k++)
{

cin >> day >> hour >> temperature >> humidity;
data[day - 1][hour - 1][0] = temperature;
data[day - 1][hour - 1][1] = humidity;

} 24

24

Weather.cpp 2/2
// Find the average daily temperature and humidity
for (int i = 0; i < NUMBER_OF_DAYS; i++)
{

double dailyTemperatureTotal = 0, dailyHumidityTotal = 0;
for (int j = 0; j < NUMBER_OF_HOURS; j++)
{

dailyTemperatureTotal += data[i][j][0];
dailyHumidityTotal += data[i][j][1];

}

// Display result
cout << "Day " << i << "'s average temperature is "

<< dailyTemperatureTotal / NUMBER_OF_HOURS << endl;
cout << "Day " << i << "'s average humidity is "

<< dailyHumidityTotal / NUMBER_OF_HOURS << endl;
}

return 0;
}

25

25

Problem: Guessing Birthday

• Listing 4.4, GuessBirthday.cpp, gives a
program that guesses a birthday.

• The program can be simplified by storing the
numbers in five sets in a three-dimensional
array, and it prompts the user for the answers
using a loop.

26

GuessBirthdayUsingArray Run

26

GuessBirthdayUsingArray.cpp 1/2

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

int day = 0; // Day to be determined
char answer;

int dates[5][4][4] = {
{{ 1, 3, 5, 7},
{ 9, 11, 13, 15},
{17, 19, 21, 23},
{25, 27, 29, 31}},
{{ 2, 3, 6, 7},
{10, 11, 14, 15},
{18, 19, 22, 23},
{26, 27, 30, 31}},
{{ 4, 5, 6, 7},
{12, 13, 14, 15},
{20, 21, 22, 23},
{28, 29, 30, 31}},
{{ 8, 9, 10, 11},
{12, 13, 14, 15},
{24, 25, 26, 27},
{28, 29, 30, 31}},
{{16, 17, 18, 19},
{20, 21, 22, 23},
{24, 25, 26, 27},
{28, 29, 30, 31}} };

27

27

GuessBirthdayUsingArray.cpp 1/2
for (int i = 0; i < 5; i++)
{

cout << "Is your birthday in Set" << (i + 1) << "?" << endl;
for (int j = 0; j < 4; j++)
{

for (int k = 0; k < 4; k++)
cout << setw(3) << dates[i][j][k] << " ";

cout << endl;
}
cout << "\nEnter N/n for No and Y/y for Yes: ";
cin >> answer;
if (answer == 'Y' || answer == 'y')

day += dates[i][0][0];
}

cout << "Your birthday is " << day << endl;

return 0;
}

28

28

Outline

• Introduction
• Declaring Two-Dimensional Arrays
• Processing Two-Dimensional Arrays
• Passing Two-Dimensional Arrays to Functions
• Problem: Grading a Multiple-Choice Test
• Multidimensional Arrays

29

29

1/29/20

1

Chapter 17: Recursion

Sections 17.1-17.2

1

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University
of Jordan for the Course: Computer Skills for Engineers (0907101)

1

Outline

• Introduction
• Example: Factorials

2

2

1/29/20

2

Motivations
• Recursion is a technique that leads to elegant

solutions to problems that are difficult to
program using simple loops.

• A recursive function is one that invokes itself.
• Suppose you want to find all the files under a

directory that contains a particular word. How
do you solve this problem? There are several
ways to solve this problem. An intuitive solution
is to use recursion by searching the files in the
subdirectories recursively.

3

3

Outline

• Introduction
• Example: Factorials

4

4

1/29/20

3

Computing Factorial
n! = n × (n - 1) × (n - 2) × ... × 2 × 1

0! = 1;
n! = n × (n - 1)!; n > 0

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

5

RunComputeFactorial

5

ComputeFactorial.cpp
#include <iostream>
using namespace std;

// Return the factorial for a specified index
long long factorial(int n)
{

if (n == 0) // Base case
return 1;

else
return n * factorial(n - 1); // Recursive call

}

int main()
{

// Prompt the user to enter an integer
cout << "Please enter a non-negative integer: ";
int n;
cin >> n;

// Display factorial
cout << "Factorial of " << n << " is " << factorial(n);

return 0;
} 6

Factorial of 4 is 24

6

1/29/20

4

Computing Factorial

factorial(4)

7

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

7

Computing Factorial

factorial(4) = 4 * factorial(3)

8

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

8

1/29/20

5

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)

9

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

9

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))

10

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

10

1/29/20

6

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * (2 * (1 * factorial(0)))

11

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

11

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * (2 * (1 * factorial(0)))
= 4 * 3 * (2 * (1 * 1)))

12

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

12

1/29/20

7

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * (2 * (1 * factorial(0)))
= 4 * 3 * (2 * (1 * 1)))
= 4 * 3 * (2 * 1)

13

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

13

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * (2 * (1 * factorial(0)))
= 4 * 3 * (2 * (1 * 1)))
= 4 * 3 * (2 * 1)
= 4 * 3 * 2

14

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

14

1/29/20

8

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * (2 * (1 * factorial(0)))
= 4 * 3 * (2 * (1 * 1)))
= 4 * 3 * (2 * 1)
= 4 * 3 * 2
= 4 * 6

15

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

15

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * (2 * (1 * factorial(0)))
= 4 * 3 * (2 * (1 * 1)))
= 4 * 3 * (2 * 1)
= 4 * 3 * 2
= 4 * 6
= 24

16

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

16

1/29/20

9

Trace Recursive factorial

17

animation

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Executes factorial(4)

Main function

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5
Stack

17

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Trace Recursive factorial

Main function

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Stack

18

animation

Executes factorial(3)

18

1/29/20

10

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Trace Recursive factorial

Main function

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Stack

19

animation

Executes factorial(2)

19

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Trace Recursive factorial

20

animation

Executes factorial(1)

Main function

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Stack

20

1/29/20

11

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Trace Recursive factorial

21

animation

Executes factorial(0)

Main function

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(0)

Stack

21

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Trace Recursive factorial

Main function

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(0)

Stack

22

animation

returns 1

22

1/29/20

12

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Trace Recursive factorial

23

animation

returns factorial(0)

Main function

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(0)

Stack

23

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Trace Recursive factorial

24

animation

returns factorial(1)

Main function

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Stack

24

1/29/20

13

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Trace Recursive factorial

25

animation

returns factorial(2)

Main function

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Stack

25

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Trace Recursive factorial

26

animation

returns factorial(3)

Main function

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Stack

26

1/29/20

14

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Trace Recursive factorial

27

animation

returns factorial(4)

Main function

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5
Stack

27

factorial(4) Stack Trace

28

28

1/29/20

15

Outline

• Introduction
• Example: Factorials

29

29

Chapter 9: Objects and Classes

Sections 9.1-9.6, 9.9

1

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University
of Jordan for the Course: Computer Skills for Engineers (0907101)

1

Outline

• Introduction
• Defining Classes for Objects
• Example: Defining Classes and Creating Objects
• Constructors
• Constructing and Using Objects
• Separating Class Definition from Implementation
• Data Field Encapsulation

2

2

Introduction

3

• Object-oriented programming (OOP) involves
programming using objects.

• An object represents an entity in the real world that
can be distinctly identified. For example, a student, a
desk, a circle, a button, and even a loan can all be
viewed as objects.

• An object has a unique identity, state, and behaviors.

• The state of an object consists of a set of data fields
(also known as properties) with their current values.

• The behavior of an object is defined by a set of
functions.

3

Outline

• Introduction
• Defining Classes for Objects
• Example: Defining Classes and Creating Objects
• Constructors
• Constructing and Using Objects
• Separating Class Definition from Implementation
• Data Field Encapsulation

4

4

Classes and Objects

5

A class defines the properties and behaviors for
objects..

5

Classes

6

• Classes are constructs that define objects of the
same type.

• A class uses variables to define data fields and
functions to define behaviors.

• Additionally, a class provides a special type of
functions, known as constructors, which are
invoked to construct objects from the class.

6

Example of the class for Circle objects

7

7

UML Class Diagram

8

8

class Replaces struct
• The C language has the struct type for representing

records.
• For example, you may define a struct type for

representing students as shown in (a).
• C++ class allows functions in addition to data fields.
class replaces struct, as in (b)

9

struct Student

{
 int id;

 char firstName[30];

 char mi;

 char lastName[30];

};

(a)

class Student

{
public:

 int id;

 char firstName[30];

 char mi;

 char lastName[30];

};

(b)

9

Outline

• Introduction
• Defining Classes for Objects
• Example: Defining Classes and Creating Objects
• Constructors
• Constructing and Using Objects
• Separating Class Definition from Implementation
• Data Field Encapsulation

10

10

A Simple Circle Class

• Objective: Demonstrate creating
objects, accessing data, and using
functions.

11

TestCircle Run

11

TestCircle.cpp 1/2
#include <iostream>
using namespace std;

class Circle
{
public:

// The radius of this circle
double radius;

// Construct a default object
Circle()
{

radius = 1;
}

// Construct a circle object
Circle(double newRadius)
{

radius = newRadius;
}

// Return the area of this circle
double getArea()
{

return radius * radius * 3.14159;
}

// Return the perimeter of this circle
double getPermeter()
{

return 2 * radius * 3.14159;
}

// Set new radius for this circle
void setRadius(double newRadius)
{

radius = newRadius;
}

}; // Must place a semicolon here
12

12

TestCircle.cpp 2/2
int main()
{

Circle circle1(1.0);
Circle circle2(25);
Circle circle3(125);

cout << "The area of the circle of radius "
<< circle1.radius << " is " << circle1.getArea() << endl;

cout << "The area of the circle of radius "
<< circle2.radius << " is " << circle2.getArea() << endl;

cout << "The area of the circle of radius "
<< circle3.radius << " is " << circle3.getArea() << endl;

// Modify circle radius
circle2.radius = 100;
cout << "The area of the circle of radius "

<< circle2.radius << " is " << circle2.getArea() << endl;

return 0;
}

13

The area of the circle of radius 1 is 3.14159
The area of the circle of radius 25 is 1963.49
The area of the circle of radius 125 is 49087.3
The area of the circle of radius 100 is 31415.9

13

Example: The TV class models TV sets

14

TV Run

14

TV.cpp 1/4
#include <iostream>
using namespace std;

class TV
{
public:

int channel;
int volumeLevel; // Default volume level is 1
bool on; // By default TV is off

TV()
{

channel = 1; // Default channel is 1
volumeLevel = 1; // Default volume level is 1
on = false; // By default TV is off

}

void turnOn()
{

on = true;
} 15

15

TV.cpp 2/4
void turnOff()
{

on = false;
}

void setChannel(int newChannel)
{

if (on && newChannel >= 1 && newChannel <= 120)
channel = newChannel;

}

void setVolume(int newVolumeLevel)
{

if (on && newVolumeLevel >= 1 && newVolumeLevel <= 7)
volumeLevel = newVolumeLevel;

}

void channelUp()
{

if (on && channel < 120)
channel++;

} 16

16

TV.cpp 3/4
void channelDown()
{

if (on && channel > 1)
channel--;

}

void volumeUp()
{

if (on && volumeLevel < 7)
volumeLevel++;

}

void volumeDown()
{

if (on && volumeLevel > 1)
volumeLevel--;

}
};

17

17

TV.cpp 4/4
int main()
{

TV tv1;
tv1.turnOn();
tv1.setChannel(30);
tv1.setVolume(3);

TV tv2;
tv2.turnOn();
tv2.channelUp();
tv2.channelUp();
tv2.volumeUp();

cout << "tv1's channel is " << tv1.channel
<< " and volume level is " << tv1.volumeLevel << endl;

cout << "tv2's channel is " << tv2.channel
<< " and volume level is " << tv2.volumeLevel << endl;

return 0;
}

18

18

Outline

• Introduction
• Defining Classes for Objects
• Example: Defining Classes and Creating Objects
• Constructors
• Constructing and Using Objects
• Separating Class Definition from Implementation
• Data Field Encapsulation

19

19

Constructors

20

• The constructor has exactly the same name as the defining
class.

• Constructors can be overloaded (i.e., multiple constructors
with the same name but different signatures).

• A class normally provides a constructor without arguments
(e.g., Circle()). Such constructor is called a no-arg or no-
argument constructor.

• A class may be declared without constructors. In this case, a
no-arg constructor with an empty body is implicitly declared
in the class. This constructor is called a default constructor.

20

Constructors Features

21

• Constructors must have the same name as the
class itself.

• Constructors do not have a return type—not
even void.

• Constructors play the role of initializing objects.

21

Initializer Lists

22

• Data fields may be initialized in the constructor using
an initializer list in the following syntax:

• Example:

22

Outline

• Introduction
• Defining Classes for Objects
• Example: Defining Classes and Creating Objects
• Constructors
• Constructing and Using Objects
• Separating Class Definition from Implementation
• Data Field Encapsulation

23

23

Object Names
• You can assign a name when creating an object.
• A constructor is invoked when an object is created.
• The syntax to create an object using the no-arg

constructor is:
ClassName objectName;

• For example,
Circle circle1;

• The size of and object depends on its data fields
only.

cout << sizeof(circle1) << endl;;
8

24

24

Constructing with Arguments

25

• The syntax to declare an object using a constructor
with arguments is:

ClassName objectName(arguments);

• For example, the following declaration creates an
object named circle2 by invoking the Circle
class’s constructor with a specified radius 5.5.

Circle circle2(5.5);

25

Access Operator

• After an object is created, its data can be
accessed and its functions invoked using the dot
operator (.), also known as the object member
access operator:

• objectName.dataField references a data
field in the object.

• objectName.function(arguments)
invokes a function on the object.

26

26

Naming Objects and Classes

• When you declare a custom class, capitalize the
first letter of each word in a class name; for
example, the class names Circle,
Rectangle, and Desk.

• The class names in the C++ library are named
in lowercase.

• The objects are named like variables.

27

27

Class is a Type

• You can use primitive data types, like int,
to declare variables.

• You can also use class names to declare
object names.

• In this sense, a class is also a data type.

28

28

Memberwise Copy
• You can also use the assignment operator = to copy the

contents from one object to the other.
• By default, each data field of one object is copied to its

counterpart in the other object. For example,

circle2 = circle1;

• Copies the radius in circle1 to circle2.
• After the copy, circle1 and circle2 are still two

different objects, but with the same radius.

29

29

Constant Object Name

• Object names are like array names. Once an
object name is declared, it represents an object.

• It cannot be reassigned to represent another
object.

• In this sense, an object name is a constant,
though the contents of the object may change.

30

30

Anonymous Object
• Most of the time, you create a named object and later

access the members of the object through its name.
• Occasionally, you may create an object and use it only

once. In this case, you don’t have to name the object.
Such objects are called anonymous objects.

• The syntax to create an anonymous object is
ClassName() or ClassName(arguements)

• You can create an anonymous object just for finding the
area by:
cout << "Area:" << Circle(5).getArea() << endl;

31

31

Outline

• Introduction
• Defining Classes for Objects
• Example: Defining Classes and Creating Objects
• Constructors
• Constructing and Using Objects
• Separating Class Definition from Implementation
• Data Field Encapsulation

32

32

Separating Definition from
Implementation

• C++ allows you to separate class definition from
implementation.

• The class definition describes the contract of the class and
the class implementation implements the contract.

• The class declaration simply lists all the data fields,
constructor prototypes, and the function prototypes.

• The class implementation implements the constructors and
functions.

• The class declaration and implementation are in two
separate files. Both files should have the same name, but
with different extension names. The class declaration file
has an extension name .h and the class implementation file
has an extension name .cpp.

33

Circle.h TestCircleWithHeader.cppCircle.cpp Run

33

Circle.h
#ifndef CIRCLE_H
#define CIRCLE_H
class Circle
{
public:

// The radius of this circle
double radius;

// Construct a default circle object
Circle();

// Construct a circle object
Circle(double);

// Return the area of this circle
double getArea();

};
#endif 34

Used to prevent a header file from
being included multiple times.

34

Circle.cpp
#include "Circle.h"

// Construct a default circle object
Circle::Circle()
{

radius = 1;
}

// Construct a circle object
Circle::Circle(double newRadius)
{

radius = newRadius;
}

// Return the area of this circle
double Circle::getArea()
{

return radius * radius * 3.14159;
} 35

The :: symbol is the binary scope
resolution operator

35

TestCircleWithHeader.cpp
#include <iostream>
#include "Circle.h"
using namespace std;

int main()
{

Circle circle1;
Circle circle2(5.0);

cout << "The area of the circle of radius "
<< circle1.radius << " is " << circle1.getArea() << endl;

cout << "The area of the circle of radius "
<< circle2.radius << " is " << circle2.getArea() << endl;

// Modify circle radius
circle2.radius = 100;
cout << "The area of the circle of radius "

<< circle2.radius << " is " << circle2.getArea() << endl;

return 0;
} 36

The area of the circle of radius 1 is 3.14159
The area of the circle of radius 5 is 78.5397
The area of the circle of radius 100 is 31415.9

36

Outline

• Introduction
• Defining Classes for Objects
• Example: Defining Classes and Creating Objects
• Constructors
• Constructing and Using Objects
• Separating Class Definition from Implementation
• Data Field Encapsulation

37

37

Data Field Encapsulation
The data fields radius in the Circle class can be
modified directly (e.g., circle1.radius = 5).
This is not a good practice for two reasons:

38

1. Data may be tampered.
2. Second, it makes the class difficult to maintain and

vulnerable to bugs. Suppose you want to modify the
Circle class to ensure that the radius is non-negative
after other programs have already used the class. You
have to change not only the Circle class, but also
the programs (clients) that use the Circle class. This
is because the clients may have modified the radius
directly (e.g., myCircle.radius = -5).

38

Accessor and Mutator
• A get function is referred to as a getter (or accessor).
• A get function has the following signature:

returnType getPropertyName()

• If the returnType is bool, the get function should be defined
as follows by convention:
bool isPropertyName()

• A set function is referred to as a setter (or mutator).
• A set function has the following signature:

public void setPropertyName(dataType propertyValue)

39

39

Example: The Circle Class with
Encapsulation

40

CircleWithPrivateDataFields.h

Run

CircleWithPrivateDataFields.cpp

TestCircleWithPrivateDataFields

40

CircleWithPrivateDataFields.h
#ifndef CIRCLE_H
#define CIRCLE_H

class Circle
{
public:

Circle();
Circle(double);
double getArea();
double getRadius();
void setRadius(double);

private:
double radius;

};

#endif
41

41

CircleWithPrivateDataFields.cpp
#include "CircleWithPrivateDataFields.h"

// Construct a default circle object
Circle::Circle()
{

radius = 1;
}

// Construct a circle object
Circle::Circle(double newRadius)
{

radius = newRadius;
}

// Return the area of this circle
double Circle::getArea()
{

return radius * radius * 3.14159;
}

// Return the radius of this
circle
double Circle::getRadius()
{

return radius;
}

// Set a new radius
void Circle::setRadius(double
newRadius)
{

radius = (newRadius >= 0)
? newRadius : 0;

}

42

42

TestCircleWithPrivateDataFields.cpp
#include <iostream>
#include "CircleWithPrivateDataFields.h"
using namespace std;

int main()
{

Circle circle1;
Circle circle2(5.0);

cout << "The area of the circle of radius "
<< circle1.getRadius() << " is " << circle1.getArea() << endl;

cout << "The area of the circle of radius "
<< circle2.getRadius() << " is " << circle2.getArea() << endl;

// Modify circle radius
circle2.setRadius(100);
cout << "The area of the circle of radius "

<< circle2.getRadius() << " is " << circle2.getArea() << endl;

return 0;
} 43

The area of the circle of radius 1 is 3.14159
The area of the circle of radius 5 is 78.5397
The area of the circle of radius 100 is 31415.9

43

Outline

• Introduction
• Defining Classes for Objects
• Example: Defining Classes and Creating Objects
• Constructors
• Constructing and Using Objects
• Separating Class Definition from Implementation
• Data Field Encapsulation

44

44

Chapter 11: Pointers and Dynamic
Memory Management

Sections 11.1-11.2, 11.5-11.7

1

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University
of Jordan for the Course: Computer Skills for Engineers (0907101)

1

Outline

• Introduction
• Pointer Basics
• Arrays and Pointers
• Passing Pointer Arguments in a Function Call
• Returning a Pointer from Functions

2

2

Introduction

3

• Pointer variables, simply called pointers, are designed
to hold memory addresses as their values.

• Normally, a variable contains a specific value, e.g., an
integer, a floating-point value, and a character.

• However, a pointer contains the memory address of a
variable that in turn contains a specific value.

3

Outline

• Introduction
• Pointer Basics
• Arrays and Pointers
• Passing Pointer Arguments in a Function Call
• Returning a Pointer from Functions

4

4

Pointer Basics

5

5

Declare a Pointer

6

• Like any other variables, pointers must be declared before they
can be used. To declare a pointer, use the following syntax:
dataType* pVarName;

• Each variable being declared as a pointer must be preceded by
an asterisk (*). For example, the following statement declares a
pointer variable named pCount that can point to an int
variable.
int* pCount;

Address of
pCount

Address of variable count Address of variable count

5

pCount count

RunTestPointer

6

TestPointer.cpp
#include <iostream>
using namespace std;

int main()
{

int count = 5;
int* pCount = &count;

cout << "The value of count is " << count << endl;
cout << "The address of count is " << &count << endl;
cout << "The address of count is " << pCount << endl;
cout << "The value of count is " << *pCount << endl;

return 0;
}

7

The value of count is 5
The address of count is 00AFF980
The address of count is 00AFF980
The value of count is 5

7

Dereferencing

8

• Referencing a value through a pointer is called
indirection. The syntax for referencing a value from a
pointer is:
*pointer

• For example, you can increase count using:
count++; // direct reference

or
(*pCount)++; // indirect reference

• The asterisk (*) is the indirection operator or
dereference operator.

8

(a) pY is assigned to pX; (b) *pY is assigned to *pX.

9

9

Pointer Type

10

• A pointer variable is declared with a type such as int,
double, etc.

• You have to assign the address of the variable of the
same type.

• It is a syntax error if the type of the variable does not
match the type of the pointer. For example, the
following code is wrong.

int area = 1;
double* pArea = &area; // Wrong

10

Initializing Pointer

11

• Like a local variable, a local pointer is assigned an
arbitrary value if you don’t initialize it.

• A pointer may be initialized to 0, which is a special
value for a pointer to indicate that the pointer points
to nothing.

• You should always initialize pointers to prevent errors.

• Dereferencing a pointer that is not initialized could
cause fatal runtime error or it could accidentally
modify important data.

11

Caution

12

• You can declare two variables on the same line. For
example, the following line declares two int variables:
int i= 0, j = 1;

• Can you declare two pointer variables on the same line
as follows?
int* pl, pj;

• No, the right way is:
int *pl, *pj;

12

Outline

• Introduction
• Pointer Basics
• Arrays and Pointers
• Passing Pointer Arguments in a Function Call
• Returning a Pointer from Functions

13

13

Arrays and Pointers

14

• An array variable without a bracket and a subscript actually
represents the starting address of the array.

• The array variable is essentially a pointer. Suppose you declare
an array of int value as follows:

int list[6] = { 11, 12, 13, 14, 15, 16 };

14

Array Pointer

• *(list + 1) is different from *list + 1. The
dereference operator (*) has precedence over +.

• So, *list + 1 adds 1 to the value of the first
element in the array, while *(list + 1)
dereference the element at address (list + 1)
in the array.

15

RunPointerWithIndex

RunArrayPointer

15

ArrayPointer.cpp
#include <iostream>
using namespace std;

int main()
{

int list[6] = { 11, 12, 13, 14, 15, 16 };

for (int i = 0; i < 6; i++)
cout << "address: " << (list + i) <<
" value: " << *(list + i) << " " <<
" value: " << list[i] << endl;

return 0;
}

16

16

PointerWithIndex.cpp
#include <iostream>
using namespace std;

int main()
{

int list[6] = { 11, 12, 13, 14, 15, 16 };
int* p = list;

for (int i = 0; i < 6; i++)
cout << "address: " << (list + i) <<
" value: " << *(list + i) << " " <<
" value: " << list[i] << " " <<
" value: " << *(p + i) << " " <<
" value: " << p[i] << endl;

return 0;
}

17

17

Outline

• Introduction
• Pointer Basics
• Arrays and Pointers
• Passing Pointer Arguments in a Function Call
• Returning a Pointer from Functions

18

18

Passing Pointer Arguments
• A pointer argument can be passed by value or by reference. For

example, you can define a function as follows:
void f(int* p1, int*& p2);

• which is equivalently to
typedef int* intPointer;
void f(intPointer p1, intPointer & p2);

• Here p1 is pass-by-value and p2 is pass-by-reference.

19

RunTestPointerArgument

19

TestPointerArgument.cpp 1/5
#include <iostream>
using namespace std;

// Function definitions are here

int main()
{

// Declare and initialize variables
int num1 = 1;
int num2 = 2;

cout << "Before invoking the swap function, num1 is "
<< num1 << " and num2 is " << num2 << endl;

20

20

TestPointerArgument.cpp 2/5

// Invoke the swap function to attempt to swap two variables
swap1(num1, num2);
cout << "After invoking the swap function, num1 is “

<< num1 << " and num2 is " << num2 << endl;

21

// Swap two variables using pass-by-value
void swap1(int n1, int n2)
{

int temp = n1;
n1 = n2;
n2 = temp;

}

21

TestPointerArgument.cpp 3/5

cout << "Before invoking the swap function, num1 is "
<< num1 << " and num2 is " << num2 << endl;

// Invoke the swap function to attempt to swap two variables
swap2(num1, num2);
cout << "After invoking the swap function, num1 is " << num1

<< " and num2 is " << num2 << endl;

22

// Swap two variables using pass-by-reference
void swap2(int& n1, int& n2)
{

int temp = n1;
n1 = n2;
n2 = temp;

}

22

TestPointerArgument.cpp 4/5

cout << "Before invoking the swap function, num1 is "
<< num1 << " and num2 is " << num2 << endl;

// Invoke the swap function to attempt to swap two variables
swap3(&num1, &num2);
cout << "After invoking the swap function, num1 is " << num1

<< " and num2 is " << num2 << endl;

23

// Pass two pointers by value
void swap3(int* p1, int* p2)
{

int temp = *p1;
*p1 = *p2;
*p2 = temp;

}

23

TestPointerArgument.cpp 5/5

int* p1 = &num1;
int* p2 = &num2;
cout << "Before invoking the swap function, p1 is "

<< p1 << " and p2 is " << p2 << endl;
// Invoke the swap function to attempt to swap two variables
swap4(p1, p2);
cout << "After invoking the swap function, p1 is " << p1 <<

" and p2 is " << p2 << endl;

return 0;
}

24

// Pass two pointers by reference
void swap4(int*& p1, int*& p2)
{

int* temp = p1;
p1 = p2;
p2 = temp;

}

24

Array Parameter or Pointer
Parameter

25

• An array parameter in a function can always be
replaced using a pointer parameter.

25

const Parameter

If an object value does not change, you should declare it
const to prevent it from being modified accidentally.

26

RunConstParameter

26

ConstParameter.cpp
#include <iostream>
using namespace std;

void printArray(const int*, const int);

int main()
{

int list[6] = { 11, 12, 13, 14, 15, 16 };
printArray(list, 6);

return 0;
}

void printArray(const int* list, const int size)
{

for (int i = 0; i < size; i++)
cout << list[i] << " ";

} 27

11 12 13 14 15 16

27

Outline

• Introduction
• Pointer Basics
• Arrays and Pointers
• Passing Pointer Arguments in a Function Call
• Returning a Pointer from Functions

28

28

Returning a Pointer from Functions

• You can use pointers as parameters in a
function.

• A C++ function may return a pointer as well.

29

RunReverseArrayUsingPointer

29

ReverseArrayUsingPointer.cpp 1/2
#include <iostream>
using namespace std;

int* reverse(int* list, int size)
{

for (int i = 0, j = size - 1; i < j; i++, j--)
{

// Swap list[i] with list[j]
int temp = list[j];
list[j] = list[i];
list[i] = temp;

}

return list;
}

30

30

ReverseArrayUsingPointer.cpp 2/2
void printArray(const int* list, int size)
{

for (int i = 0; i < size; i++)
cout << list[i] << " ";

}

int main()
{

int list[] = { 1, 2, 3, 4, 5, 6 };
int* p = reverse(list, 6);
printArray(p, 6);

return 0;
}

31

6 5 4 3 2 1

31

Outline

• Introduction
• Pointer Basics
• Arrays and Pointers
• Passing Pointer Arguments in a Function Call
• Returning a Pointer from Functions

32

32

