&\\ﬂlz

Chapter 1: Introduction to
Computers, Programs, and C++

Sections 1.1-1.3, 1.6-1.9

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University 1
of Jordan for the Course: Computer Skills for Engineers (0907101)

Outline

Introduction and Computers (§§1.1-1.2)
Programming languages (§§1.3)

A simple C++ program for console output (§1.6)
C++ program-development cycle (§1.7)
Programming style and documentation (§1.8)
Programming errors (§1.9)

1/29/20

What is a Computer?

A computer consists of a CPU, memory, hard disk,
monitor, and communication devices.

Bus
A A
y A X
Storage , Communication Input Output
Devices Memory CPU Devices Devices Devices
e.g., Disk, CD, e.g., Modem, e.g., Keyboard, e.g., Monitor,
and Tape and NIC Mouse Printer

CPU

The central processing unit (CPU) is the brain of a
computer. It retrieves instructions from memory and
executes them. The CPU speed is measured in megahertz
(MHz), with 1 megahertz equaling 1 million pulses per
second. The speed of the CPU has been improved
continuously. If you buy a PC now, you can get an Intel
Core i7 Processor at 3 gigahertz (1 gigahertz is 1000
megahertz).

Bus
N A A A A A
y y
Storage Communication Input Output
Devices Memory CPU Devices Devices Devices
e.g., Disk, CD, e.g., Modem, e.g., Keyboard, e.g., Monitor,
and Tape and NIC Mouse Printer

4

1/29/20

Memory

Memory is to store data and program instructions for CPU
to execute. A memory unit is an ordered sequence of
bytes, each holds eight bits. A program and its data must
be brought to memory before they can be executed. A
memory byte is never empty, but its initial content may be
meaningless to your program. The current content of a
memory byte is lost whenever new information is placed
init.

Bus
N A A A A
y 4
Storage Communication Input Output
Devices Wilgmmery CPU Devices Devices Devices
e.g., Disk, CD, e.g., Modem, e.g., Keyboard, e.g., Monitor,
and Tape and NIC Mouse Printer

5

How Data is Stored?

Data of various kinds are

encoded as a series of bits (zeros
and ones).

The encoding scheme varies. For
example, character J' is
represented by 01001010 in one

Memory address Memory content

byte' 2000 |01000011 | Encoding for character ‘C’
2001 |01110010 | Encoding for character ‘r’

A small number such as 3 can be ocne orenneer T
. A 2002 [01100101 | Encoding for character ‘e

Stored Ina Slngle byte 2003 | 01110111 | Encoding for character ‘w’

2004 | 00000011 | Encoding for number 3

If computer needs to store a
large number that cannot fit into
a single byte, it uses a number of
adjacent bytes.

A byte is the minimum storage
unit.

1/29/20

Storage Devices

Memory is volatile, because information is lost when the
power is off. Programs and data are permanently stored
on storage devices and are moved to memory when the
computer actually uses them. There are four main types
of storage devices: Disk drives (hard disks), Solid-state
devices (SSD, Flash), CD drives (CD-R and CD-RW), and

Tape drives.
Bus
N A 4 A A
y
Storage Communication Input Output
Devices Memory CPU Devices Devices Devices
e.g., Disk, CD, e.g., Modem, e.g., Keyboard, e.g., Monitor,
and Tape and NIC Mouse Printer
7
Outline

* Programming languages (§§1.3)

* Programming errors (§1.9)

A simple C++ program for console output (§1.6)
C++ program-development cycle (§1.7)
Programming style and documentation (§1.8)

1/29/20

Programs

Computer programs, known as software, are instructions
to the computer.

You tell a computer what to do through programs. Without
programs, a computer is an empty machine. Computers do
not understand human languages, so you need to use
computer languages to communicate with them.

Programs are written using programming languages.

Programming Languages

Machine Language Assembly Language High-Level Language

Machine language is a set of primitive instructions built
into every computer. The instructions are in the form of
binary code, so you have to enter binary codes for various
instructions. Program with native machine language is a
tedious process. Moreover the programs are highly
difficult to read and modify. For example, to add two
numbers, you might write an instruction in binary like this:

1101101010011010

10

1/29/20

Programming Languages

Machine Language Assembly Language High-Level Language

Assembly languages were developed to make
programming easy. Since the computer cannot understand
assembly language, however, a program called assembler
is used to convert assembly language programs into
machine code. For example, to add two numbers, you
might write an instruction in assembly code like this:

add 2, 3, result
Assembly Source File Machine-Code File
1101101010011010

add 2, .3.,. result

11

11

Programming Languages

Machine Language Assembly Language High-Level Language

The high-level languages are English-like and easy to learn
and program. For example, the following is a high-level
language statement that computes the area of a circle with
radius 5:

area = 5 * 5 * 3.1416;

12

1/29/20

Popular High-Level Languages

* COBOL (COmmon Business Oriented Language)

* FORTRAN (FORmula TRANslation)

* BASIC (Beginner All-purpose Symbolic Instructional Code)
* Pascal (named for Blaise Pascal)

* Ada (named for Ada Lovelace)

* C (whose developer designed B first)

* Visual Basic (Basic-like visual language developed by Microsoft)
* Delphi (Pascal-like visual language developed by Borland)
* C++ (an object-oriented language, based on C)

* Java (a popular object-oriented language, similar to C++)
* C# (aJava-like developed my Microsoft)

13

Compiling Source Code

A program written in a high-level language is called a
source program. Since a computer cannot understand a
source program. Program called a compiler is used to
translate the source program into a machine language
program called an object program. The object program is
often then linked with other supporting library code
before the object can be executed on the machine.

> Ty >

14

1/29/20

Compiling versus Interpretation

* Some programming languages like Python have
interpreters that translate and execute a program one
statement at a time (a).

* C++ needs a compiler that translates the entire source
program into a machine-language file for execution (b).

High-Level Source File
N | Output
Machine-Code File

ae Output
0101100011011100 -
1111100011000100 -

15

(a)

High-Level Source File

(b)

15

Outline

A simple C++ program for console output (§1.6)
* C++ program-development cycle (§1.7)

* Programming style and documentation (§1.8)

* Programming errors (§1.9)

16

1/29/20

A Simple C++ Program

Let us begin with a simple C++ program that displays the
message “Welcome to C++!” on the console.

#include <iostream>

using namespace std;

int main()

{
// Display Welcome to C++ to the console
cout << "Welcome to C++!" << endl;
return 0;

} Note: Clicking the green button displays the source code with
interactive animation and live run. Internet connection is needed for
this button

Welcome

17
Special Characters in C++
Character Name Description
Pound sign Used in #incTlude to denote a
preprocessor directive.
<> Opening and closing angle brackets Encloses a library name when used with
#include.
O Opening and closing parentheses Used with functions such as main ().
{3 Opening and closing braces Denotes a block to enclose statements.
// Double slashes Precedes a comment line.
<< Stream insertion operator Outputs to the console.
" Opening and closing quotation marks Wraps a string (i.e., sequence of
characters).
H Semicolon Marks the end of a statement.
18
18

1/29/20

http://PowerPoint2010.doc

Comments in C++

// This application program prints Welcome to C++!
/* This application program prints Welcome to C++! */
/% This application program

prints Welcome to C++! */

19

Extending the Simple C++ Program

Once you understand the program, it is easy to extend it to
display more messages. For example, you can rewrite the
program to display three messages.

#include <iostream>

using namespace std;
int main()

{
cout << "Programming is fun!" << endl;

cout << "Fundamentals First" << endl;

cout << "Problem Driven" << endl;
return O;

WelcomeWithThreeMessages -

20

20

1/29/20

10

Computing with Numbers

Further, you can perform mathematical computations and
displays the result to the console. Listing 1.3 gives such an

example.

#include <iostream>
using namespace std;
int main()

{
cout << "(10.5 + 2 * 3) / (45 - 3.5) = ";

cout << (10.5 + 2 * 3) / (45 - 3.5) << endl;

return O;

} ComputeExpression -

21

21

Outline

* C++ program-development cycle (§1.7)
* Programming style and documentation (§1.8)

* Programming errors (§1.9)

22

22

1/29/20

11

1. Creating and Compiling

§ ; N]
Source code (developed by the programmer) I CHEIURILTED Soes O3 |

#include <iostream>
using namespace std;

int mainQ

{

Saved on the disk

// Display Welcome to C++ to the console 4—@
P

cout << "Welcome to C++!" << endl;

return 0;

Preprocessor

Stored on the disk

e
Modified Source
Code

If compilation errors
Stored on the disk

23

2. Linking and Running Programs

An object file (e.g., Welcome.obj) is created Machine Code Library Code

@ker

Stored on the disk

An executable file (e.g., Welcome.exe) is created | Byecutable Code

Run Executable Code
e.g., Welcome

Result

If runtime errors or incorrect result

24

1/29/20

12

C++ IDE Tutorial

You can develop a C++ program from a command window
or from an IDE. An IDE is software that provides an
integrated development environment (IDE) for rapidly
developing C++ programs. Editing, compiling, building,
debugging, and online help are integrated in one graphical
user interface. Just enter source code or open an existing
file in a window, then click a button, menu item, or
function key to compile and run the program. Examples of
popular IDEs are Microsoft Visual Studio, Dev-C++, Eclipse,
and NetBeans. All these IDEs can be downloaded free.

25

25

Outline

* Programming style and documentation (§1.8)
* Programming errors (§1.9)

26

26

1/29/20

13

Programming Style and Documentation

* Appropriate Comments

* Proper Indentation and Spacing Lines
* Block Styles

#include <iostream>
using namespace std;
int main()

{
cout << "(10.5 + 2 * 3) / (45 - 3.5) = ";

cout << (10.5 + 2 * 3) / (45 - 3.5) << endl;

return O;

27

2

7

Outline

* Programming errors (§1.9)

28

28

1/29/20

14

Programming Errors

1. Syntax Errors
2. Runtime Errors
3. Logic Errors

29

29
Syntax Errors

1 #include <iostream>

2 using namespace std

3

4 1int mainQ)

5 {

6 cout << "Programming 1is fun << endl;

7

8 return 0;

9 }

ShowSyntaxErrors
30

30

1/29/20

15

Runtime Errors

1 #include <iostream>
2 using namespace std;
3

4 dint main()

5 {

6 int i = 4;

7 int j = 0;

8 cout << i / j << endl;
9
10 return 0;
11 3}

ShowRuntimeErrors

31

31
Logic Errors
1 #include <iostream>
2 using namespace std;
3
4 Hint main(Q)
5 {
6 cout << "Celsius 35 is Fahrenheit degree " << endl;
7 cout << (9 / 5) * 35 + 32 << endl;
8
9 return 0;
10 }
ShowLogicErrors -
32
32

1/29/20

16

P w NP

Common Errors

Missing Braces

Missing Semicolons
Missing Quotation Marks
Misspelling Names

int man(Q)
{

cout << "Programming is fun!" << endl;
cout << "Fundamentals First" << endl;
cout << "Problem Driven << endl

33

33

Outline

Introduction and Computers (§§1.1-1.2)
Programming languages (§§1.3)

A simple C++ program for console output (§1.6)
C++ program-development cycle (§1.7)
Programming style and documentation (§1.8)
Programming errors (§1.9)

34

34

1/29/20

17

&\\ﬂlz

Chapter 2: Elementary
Programming

Sections 2.1-2.13, 2.15, 2.16

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition

© Copyright 2016 by Pearson Education

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University 1

, Inc. All Rights Reserved.

of Jordan for the Course: Computer Skills for Engineers (0907101)

Outline

Writing a Simple Program .

Reading Input from the

Keyboard .
Identifiers
Variables *

Assignment Statements and
Assignment Expressions

Named Constants *

Numeric Data Types and
Operations

Evaluating Expressions and
Operator Precedence

Case Study: Displaying the
Current Time

Augmented Assignment
Operators

Increment and Decrement
Operators

Numeric Type Conversions

Case Study: Counting
Monetary Units

Common Errors

1/29/20

Writing a Simple Program

A program that computes the area of the circle.

Note: Clicking the green button displays the source code
with interactive animation. You can also run the code in
a browser. Internet connection is needed for this
button.

ComputeArea

Trace the Program Execution

#include <iostream>
using namespace std;

int main() { radius
| double radius;
double area;

no value

// Step 1: Read in radius
radius = 20;

// Step 2: Compute area
area = radius * radius * 3.14159;

// Step 3: Display the area
cout << "The area is ";
cout << area << endl;

1/29/20

http://www.cs.armstrong.edu/liang/javaslidenote.doc

Trace the Program Execution

#include <iostream> memory

using namespace std;

radios []
int main() {

area

double radius;
| double area;

// Step 1: Read in radius
radius = 20;

// Step 2: Compute area
area = radius * radius * 3.14159;

// Step 3: Display the area
cout << "The area is ";
cout << area << std::endl;

Trace the Program Execution

#include <iostream>
using namespace std;

it main() { radius
double radius; area [::::::::::]

double area;

// Step 1: Read in radius
[radius = 20;

// Step 2: Compute area
area = radius * radius * 3.14159;

// Step 3: Display the area
cout << "The area is ";
cout << area << std::endl;

1/29/20

Trace the Program Execution

#include <iostream>

. memory
using namespace std;

int main() {

double radius; area
double area;

// Step 1: Read in radius
radius = 20;

// Step 2: Compute area
| area = radius * radius * 3.14159;

// Step 3: Display the area

"

cout << "The area is ";
cout << area << std::endl;

Trace the Program Execution

#include <iostream>
using namespace std;

double area;

memory

// Step 1: Read in radius
radius = 20;

// Step 2: Compute area
area = radius * radius * 3.14159;

// Step 3: Display the area
cout << "The area is ";
cout << area << std::endl;

\ <% Command Prompt

C:\example>computefArea
The area is 1256.64

C:\example>
4

1/29/20

Outline
* Case Study: Displaying the

* Reading Input from the Current Time

Keyboard * Augmented Assignment
* ldentifiers Operators
e Variables * Increment and Decrement
* Assignment Statements and Operat?rs .

Assignment Expressions * Numeric Type Conversions
* Named Constants * Case Study: Counting

* Numeric Data Types and Monetary Units

Operations * Common Errors

* Evaluating Expressions and
Operator Precedence

Reading Input from the Keyboard
You can use the cin object to read input from the
keyboard.

cin >> radius;

ComputeAreaWithConsolelnput -

10

1/29/20

{

Reading Multiple Input in One
Statement

#include <iostream>
using namespace std;

int main()

// Prompt the user to enter three numbers
double numberl, number2, number3;

cout << "Enter three numbers: ";

cin >> numberl >> number2 >> number3;

// Compute average
double average = (numberl + number2 + number3) / 3;

// Display result

cout << "The average of " << numberl << " " << number2
<< " " << number3 << " is " << average << endl;
return O;
} ComputeAverage -
11
11
Outline
* Case Study: Displaying the
Current Time
* Augmented Assignment

* |dentifiers Operators
¢ Variables * Increment and Decrement
* Assignment Statements and Operat?rs .

Assignment Expressions * Numeric Type Conversions
* Named Constants * Case Study: Counting
* Numeric Data Types and Monetary Units

Operations * Common Errors
* Evaluating Expressions and

Operator Precedence

12

1/29/20

cannot start with a digit.

Identifiers

Identifiers are the names that identify elements such as
variables and functions in a program.

* Anidentifier is a sequence of characters that consists of
letters, digits, and underscores (_).

* An identifier must start with a letter or an underscore. It

* An identifier cannot be a reserved word. (See Appendix
A, “C++ Keywords,” for a list of reserved words.)

* Anidentifier can be of any length, but your C++
compiler may impose some restriction. Use identifiers of
31 characters or fewer to ensure portability.

miles, Test, a++, ——a, 4#R, $4, #44, apps
main, double, int, x, y, radius

Which of the following identifiers are valid? Which are C++ keywords?

13
Outline
Case Study: Displaying the
Current Time
Augmented Assignment
Operators
e Variables Increment and Decrement
* Assignment Statements and Operat?rs _
Assignment Expressions Numeric Type Conversions
e Named Constants Case Study: Counting
* Numeric Data Types and Monetary Units
Operations Common Errors
* Evaluating Expressions and
Operator Precedence .
14

1/29/20

Variables

Variables are used to represent values that may be
changed in the program.

// Compute the first area

radius = 1.0;

area = radius * radius * 3.14159;
cout << area;

// Compute the second area
radius = 2.0;

area = radius * radius * 3.14159;
cout << area;

15

Declaring Variables

datatype variablel, variable2,..., variablen;

int x; // Declare x to be an
// integer variable;

double radius; // Declare radius to
// be a double variable;

char a; // Declare a to be a
// character wvariable;

16

1/29/20

Declaring Variables

int i, j, k; // Declare three integers
int i = 10; // Declare and initialize

int i(1), j(2); // Is equivalent to
int i =1, j = 2;

17
Outline
* Case Study: Displaying the
Current Time
* Augmented Assignment
Operators
* Increment and Decrement
* Assignment Statements and Operat?rs _
Assignment Expressions * Numeric Type Conversions
e Named Constants * Case Study: Counting
* Numeric Data Types and Monetary Units
Operations * Common Errors
* Evaluating Expressions and
Operator Precedence .
18

1/29/20

Assignment Statements

An assignment statement designates a value for a variable. An
assignment statement can be used as an expression in C++.

x =1; // Assign 1 to x;

y=x+ 1; // Assign 2 to y;
radius = 1.0; // Assign 1.0 to radius;

a="'A'; // Assign 'A' to a;

19

Assignment Statements

An assignment statement designates a value for a variable.

i=3j=%k=1; // Assigns 1 to the three

// variables

cout << x = 1; // Assigns 1 to x and
// outputs 1

20

20

1/29/20

10

1/29/20

Outline

* Case Study: Displaying the
Current Time

* Augmented Assignment
Operators

* Increment and Decrement
Operators

* Numeric Type Conversions

* Named Constants * Case Study: Counting

* Numeric Data Types and Monetary Units

Operations * Common Errors

* Evaluating Expressions and
Operator Precedence

21

Named Constants

A named constant is an identifier that represents a
permanent value.

const datatype CONSTANTNAME = VALUE;

const double PI = 3.14159;

ComputeAreaConstant -

22

22

11

Outline

* Case Study: Displaying the
Current Time

* Augmented Assignment
Operators

* Increment and Decrement
Operators
* Numeric Type Conversions

* Case Study: Counting

* Numeric Data Types and Monetary Units

Operations * Common Errors

* Evaluating Expressions and
Operator Precedence

23
Numerical Data Types
* Signed integers
— 16 bits: short -3
— 32 bits: int 100000
— 64 bits: long long -2147483648
* Unsigned integers
— 16 bits: unsigned short 4
— 32 bits: unsigned
— 64 bits: unsigned long long
24

1/29/20

12

Synonymous Types

short int issynonymous to short. For example,
short int i = 2;

is same as
short i = 2;

unsigned short
unsigned

unsigned short int
unsigned int

long int
unsigned long int

long
unsigned long

25

25

Numerical Data Types

* Floating-point numbers
— 32 bits: £float 1.5
— 64 bits: double -1.23456E+2
— 80 bits: long double 9.1le-1000

* When a number such as 50.534 is converted into
scientific notation such as 5.0534e+1, its decimal
point is moved (i.e., floated) to a new position.

26

1/29/20

13

double vs. £float

The double type values are more accurate than the float
type values. For example,

cout << "1.0 / 3.0 is " << 1.0 / 3.0 << endl;

1.0 / 3.0 is 0.33333333333333331
- g

~—

16 digits

cout << "1.0F / 3.0F is " << 1.0F / 3.0F << endl

1.0F / 3.0F is 0.3333333432674408
____Y____J

7 digits
27
27
Numerical Data Types

Name Synonymy Range Storage Size
short short int 7215 to 21571 (-32,768 to 32,767) 16-bit signed
unsigned short unsigned short int 0 to 216-1 (65535) 16-bit unsigned
int signed —231 o 231-1 (-2147483648 to 2147483647) 32-bit
unsigned unsigned int 0 to 23271 (4294967295) 32-bit unsigned
long long int —231 (-2147483648) to 231-1 (2147483647) 32-bit signed
unsigned long unsigned long int 0 to 23271 (4294967295) 32-bit unsigned
long long —23 (-9223372036854775808) to

263-1 (9223372036854775807) 64-bit signed
float Negative range: 32-bit IEEE 754

-3.4028235E+38 to -1.4E-45
Positive range:
1.4E-45 to 3.4028235E+38

double Negative range: 64-bit IEEE 754
-1.7976931348623157E+308 to -4.9E-324
Positive range:
4.9E-324 to 1.7976931348623157E+308

long double Negative range: 80-bit
-1.18E+4932 to -3.37E-4932
Positive range:
3.37E-4932 to 1.18E+4932
Significant decimal digits: 19

28

28

1/29/20

14

sizeof Function

You can use the sizeof function to find the size of a type.
For example, the following statement displays the size of
int, long, and double on your machine.

cout << sizeof (int) <K " "
sizeof (long) << " " << sizeof (double) ;
4 4 8

double area = 5.4;

cout << "Size of area: " << sizeof (area)
<< " bytes" << endl;

Size of area: 8 bytes
29

29

Numeric Literals

A literal is a constant value that appears directly in a
program. For example, 34, 1000000, and 5.0 are literals in
the following statements:

int 1 = 34;
long k = 1000000;
double d = 5.0;

30

30

1/29/20

15

octal and hex literals

By default, an integer literal is a decimal number.

To denote a binary integer literal, use a leading
Ob or OB (zero b).

To denote an octal integer literal, use a leading 0
(zero)

To denote a hexadecimal integer literal, use a
leading 0x or 0x (zero x).

cout << 10 << " " K< 0bl0 << " " k< 010
<L " "KL 0x10;
10 2 8 16
31
31
Outline
* Case Study: Displaying the
Current Time
* Augmented Assignment
Operators
* Increment and Decrement
Operators
* Numeric Type Conversions
* Case Study: Counting
Monetary Units
Operations * Common Errors
* Evaluating Expressions and
Operator Precedence
32

1/29/20

16

Numeric Operators

Operator ~ Name Example Result

+ Addition 34 + 1 35

- Subtraction 340 — 0.1 339
Multiplication 300 * 30 9000

/ Division 1.0/2.0 0.5

% Modulus 20 % 3 2

33

33
Integer Division
5/ 3 yields an integer 1.
5.0 / 2 yields a double value 2.5
5 % 2 yields 1 (the remainder of the division)
34

1/29/20

17

whether a number is even or odd.

Saturday is the 6th day in a week

(6 + 10) % 7 is 2

After 10 days

Remainder Operator

Suppose today is Saturday and you and your friends are
going to meet in 10 days. What day is in 10 days? You can
find that day is Tuesday using the following expression:

Remainder is very useful in programming. For example, an
even number % 2 is always 0 and an odd number % 2 is
always 1. So you can use this property to determine

SMTWTF
012345

S
6

/A week has 7 days

\The 2nd day in a week is Tuesday

35

35

1 #include <iostream>

Example: Displaying Time

A program that obtains minutes from seconds.

2 using namespace std;

3

4 Hnt main(Q)

5 {

6 // Prompt the user for 1input

7 int seconds;

8 cout << "Enter an integer for seconds: ";

9 cin >> seconds;
10 int minutes = seconds / 60;
11 int remainingSeconds = seconds % 60;

12 cout << seconds << " seconds is " << minutes <<

13 " minutes and " << remainingSeconds << " seconds " << endl;
14

15 return 0;

16 } DisplayTime -

36
36

1/29/20

18

Exponent Operations

pow(a, b) =a°

cout << pow (2.0, 3) << endl;

cout << pow(4.0, 0.5) << endl;

cout << pow (2.5, 2) << endl;

6.25

cout << pow (2.5, -2) << endl;

0.16

37

37

Overflow

When a variable is assigned a value that is
too large to be stored, it causes overflow.

For example, executing the following
statement causes overflow, because the
largest value that can be stored in a variable
of the short typeis 32767. 32768 is too

large.

short wvalue

32767 + 1;

38

38

1/29/20

19

1/29/20

Outline

* Case Study: Displaying the
Current Time

* Augmented Assignment
Operators

* Increment and Decrement
Operators

* Numeric Type Conversions

* Case Study: Counting
Monetary Units

¢ Common Errors

* Evaluating Expressions and
Operator Precedence

39

Arithmetic Expressions

34+ 4x 10(y—S)a + b+ ¢ ((4 9 + .\->
B X

x y

1s translated to

(3+4*x) /5 — 10* (y-5) * (a+b+c) /x + 9*(4/x +
(9+x) /y)

40

40

20

1/29/20

Precedence

() Operators contained within pairs of
parentheses are evaluated first.
* / % Multiplication, division, and remainder
operators are applied next.

+ - Addition and subtraction operators are
applied last.
— If an expression contains several similar

operators, they are applied from left to right.

41

41
Precedence Example
3+ 4 4 + 5 4+ 3 -1
f (1) inside parentheses first
3+ 4 4 + 5 7 -1
(2) multiplication
3+ 16 45 * 7 -1
* (3) multiplication
3+ 16 + 35 - 1
(4) addition
19 + 35 - 1
A (5) addition
54 - 1
¢ (6) subtraction
53
42
42

21

Example: Converting
Temperatures

Write a program that converts a Fahrenheit degree
to Celsius using the formula:

celsius = (3)(fahrenheit —32)

double celsius = (5.0 / 9) * (fahrenheit - 32);

FahrenheitToCelsius -
43
43
Outline
* Case Study: Displaying the
Current Time
* Augmented Assignment
Operators
* Increment and Decrement
Operators
* Numeric Type Conversions
* Case Study: Counting
Monetary Units
* Common Errors
44
44

1/29/20

22

Displaying the Current Time

Write a program that displays current time in GMT in the
format hour:minute:second such as 1:45:19.

The time (0) function in the ctime header file returns
the current time in seconds elapsed since the time
00:00:00 on January 1, 1970 GMT, as shown in Figure 2.1.
This time is known as the Unix epoch because 1970 was
the year when the Unix operating system was formally
introduced.

Elapsed
| € time N
» Time

Unix Epoch Current Time

01-01-1970 time (0) ;
00:00:00 GMT ShowCurrentTime -

45

45

ShowCurrentTime.cpp

#include <iostream>
#include <ctime>
using namespace std;
int main() {
// Obtain the total seconds since the midnight, Jan 1, 1970
int totalSeconds = time(0);
// Compute the current second in the minute in the hour
int currentSecond = totalSeconds % 60;
// Obtain the total minutes
int totalMinutes = totalSeconds / 60;
// Compute the current minute in the hour
int currentMinute = totalMinutes % 60;
// Obtain the total hours
long totalHours = totalMinutes / 60;
// Compute the current hour
int currentHour = (int)(totalHours % 24);
// Display results
cout << "Current time is " << currentHour <<
<< currentMinute << ":" << currentSecond << " GMT" << endl;
return 0;

} 46

46

1/29/20

23

Outline

Augmented Assignment
Operators

Increment and Decrement
Operators

Numeric Type Conversions

Case Study: Counting

Monetary Units
Common Errors

47
Augmented Assignment Operators
Operator Name Example Equivalent
+= Addition assignment i+=38 i=1+8
-= Subtraction assignment i-=8 i=1-38
*= Multiplication assignment i *= 8 i=1%38
/= Division assignment i/=38 i=1/8
%= Modulus assignment i %= 8 i=1%38
48
48

1/29/20

24

Outline

* Increment and Decrement
Operators

* Numeric Type Conversions

* Case Study: Counting
Monetary Units

¢ Common Errors

49

49

Increment and Decrement Operators

opersor | Name | oerion

++var

var++

—-var

var—--

pre-
increment

post-
increment

pre-
decrement

post-
decrement

Increments var by 1 and evaluates to the new
value in var after the increment.

Evaluates to the original value in var and
increments var by 1.

Decrements var by 1 and evaluates to the new
value in var after the decrement.

Evaluates to the original value in var and
decrements var by 1.

50

50

1/29/20

25

Increment and
Decrement Operators, cont.

What is the output of the following two sequences?

int i = 10; -

jnt newNum = 10 * f++: Same effectas int newNum = 10 * i:

cout << "i is " << i i=1+ 1;
<< ", newNum is " << newNum;

int i = 10; N

int newNum = 10 * (4++i); Same effect as > |1i=1+1;

cout << "1 is " << i int newNum = 10 * 1i;
<< ", newNum is " << newNum;

51

51

Increment and
Decrement Operators, cont.
Using increment and decrement operators makes
expressions short, but it also makes them complex
and difficult to read. Avoid using these operators in

expressions that modify multiple variables, or the
same variable for multiple times such as this:

int k = ++i + i; // Avoid!

52

52

1/29/20

26

Outline

* Numeric Type Conversions

* Case Study: Counting
Monetary Units

¢ Common Errors

53

Numeric Type Conversion

Consider the following statements:

short i = 100;
long k =1 * 3 + 4;
double d =i * 3.1 + k / 2;

int i = 34.7; // 1 becomes 34
double f // T is now 34

double ¢ // 9 becomes 34.3
int j = g; // j is now 34

o
W =
Do
w

54

54

1/29/20

27

Type Casting

Implicit casting
double d = 3; // type widening

Explicit casting
int i = static_cast<int>(3.0);
// type narrowing
int i = (int)3.9; // C-style casting
// Fraction part is truncated

55

55

NOTE

Casting does not change the variable being cast.
For example, d is not changed after casting in
the following code:

double d = 4.5;

int i = static_cast<int>(d);
// d is not changed

56

56

1/29/20

28

NOTE

The GNU and Visual C++ compilers will give a
warning when you narrow a type unless you use
static_cast to make the conversion explicit.

57

57

Example: Keeping Two Digits
after Decimal Points

Write a program that displays the 6%-sales tax with
two digits after the decimal point.

cout << "Sales tax is " <<
static_cast<int>(tax * 100) / 100.0;

SalesTax -

58

58

1/29/20

29

Outline

* Case Study: Counting
Monetary Units

¢ Common Errors

59

Case Study: Counting Monetary Units

This program lets the user enter the amount in decimal
representing dollars and cents and output a report
listing the monetary equivalent in single dollars,
guarters, dimes, nickels, and pennies.

Dollar = 100 cents
Quarters = 25 cents
Dime =10 cents

Nickel = 5 cents ComputeChange Run |

60

60

1/29/20

30

Trace ComputeChange

|int remainingAmount™= (int) (amount * 100)|; remainingAmount

// Find the number of one dollars
int numberOfOneDollars = remainingAmount / 100;
remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining
amount

int numberOfQuarters = remainingAmount / 25;
remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount
int numberOfDimes = remainingAmount / 10;
remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining
amount

int numberOfNickels = remainingAmount / 5;
remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining
amount

int numberOfPennies = remainingAmount;

61

61

-~ Trace ComputeChange

int remainingAmount™= (int) (amount * 100) ; remainingAmount [:::::]

int numberOfOneDollars = remainingAmount / 109fnmeKMOneD0Ham
remainingAmount = remainingAmount % 100,

// Find the number of quarters in the remaining
amount

int numberOfQuarters = remainingAmount / 25;
remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount
int numberOfDimes = remainingAmount / 10;
remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining
amount

int numberOfNickels = remainingAmount / 5;
remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining
amount

int numberOfPennies = remainingAmount;

62

62

1/29/20

31

-~ Trace ComputeChange

int remainingAmount™= (int) (amount * 100); remainingAmount

// Find the number of one dollars
int numberOfOneDollars = remainingAmount / 100
| remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining
amount

int numberOfQuarters = remainingAmount / 25;
remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount
int numberOfDimes = remainingAmount / 10;
remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining
amount

int numberOfNickels = remainingAmount / 5;
remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining
amount

int numberOfPennies = remainingAmount;

mberOfOneDollars I:I

63

63

-~ Trace ComputeChange

int remainingAmount~= (int) (amount * 100); remainingAmount

// Find the number of one dollars

int numberOfOneDollars = remainingAmount / 10QiiberOfOneDollars
remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining
amount

| int numberOfQuarters = remainingAmount / 254 numberOfOneQuarters
remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount
int numberOfDimes = remainingAmount / 10;
remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining
amount

int numberOfNickels = remainingAmount / 5;
remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining
amount

int numberOfPennies = remainingAmount;

[]
[]

64

64

1/29/20

32

-~ Trace ComputeChange

int remainingAmount™= (int) (amount * 100); remainingAmount

// Find the number of one dollars
int numberOfOneDollars = remainingAmount / 10Q;iimberOfOngP
remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining
amount

int numberOfQuarters = remainingAmount / 257

— —= numberOfQuarters
| remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining am
int numberOfDimes = remainingAmount / 10;
remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining
amount

int numberOfNickels = remainingAmount / 5;
remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining
amount

int numberOfPennies = remainingAmount;

L]

65

65

Outline

e Common Errors

66

66

1/29/20

33

Common Errors

1. Undeclared or Uninitialized Variables

double interestRate = 0.05;
double interest = interestrate * 45;

2. Integer Overflow

short value = 32767 + 1; // is -32768

3. Round-off Errors

float a = 1000.43;
float b = 1000.0;
cout << a - b << endl;
displays 0.429993,not 0.43

67

67
Common Errors
4. Unintended Integer Division
int numberl = 1; int numberl = 1;
int number2 = 2; int number2 = 2;
double average = (numberl + number2) / 2; double average = (numberl + number2) / 2.0;
cout << average << endl; cout << average << endl;
(a) (b)
(a) displays 1, (b) displays 1.5
5. Forgetting Header Files
#include <cmath> // needed for pow ()
#include <ctime> // needed for time|()
68
68

1/29/20

34

Outline

Writing a Simple Program
Reading Input from the
Keyboard

Identifiers

Variables

Assignment Statements and
Assignment Expressions

Named Constants

Numeric Data Types and
Operations

Evaluating Expressions and
Operator Precedence

Case Study: Displaying the
Current Time

Augmented Assignment
Operators

Increment and Decrement
Operators

Numeric Type Conversions

Case Study: Counting
Monetary Units

Common Errors

69

1/29/20

35

&\\ﬂlz

Chapter 3: Selections

Sections 3.1-3.16

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University 1

of Jordan for the Course: Computer Skills for Engineers (0907101)

Outline

Introduction

The bool Data Type

if Statements

Two-Way if-else Statements

Nested if and Multi-Way if-
else Statements

Common Errors and Pitfalls

Case Study: Computing
Body Mass Index

Case Study: Computing
Taxes

Generating Random
Numbers

Logical Operators

Case Study: Determining
Leap Year

Case Study: Lottery
switch Statements
Conditional Expressions

Operator Precedence and
Associativity

Debugging

1/29/20

Introduction

If you assigned a negative value for radius in

Listing 2.1, ComputeArea.cpp, the program would
print an invalid result. If the radius is negative, you
don't want the program to compute the area. How

can you deal with this situation?

Outline

* The bool Data Type
 if Statements
* Two-Way if-else Statements

* Nested if and Multi-Way if-
else Statements

¢ Common Errors and Pitfalls

* Case Study: Computing
Body Mass Index

* Case Study: Computing
Taxes

Generating Random
Numbers

Logical Operators

Case Study: Determining
Leap Year

Case Study: Lottery
switch Statements
Conditional Expressions

Operator Precedence and
Associativity

Debugging

1/29/20

The bool Type and Operators

Often in a program you need to compare two values,
such as whether i is greater than j. C++ provides six
relational operators (also known as comparison
operators):

Operator Mathematics Symbol ~ Name Example (radius is 5) Result

< < less than radius < 0 false

<= < less than or equal to radius <= 0 false

s > greater than radius > 0 true
>

greater than or equal to ~ radius >= 0

equal to radius == 0

not equal to radius !=

true
false

true

5

The bool Type and Operators

A variable that holds a Boolean value is known as a
Boolean variable, which holds true or false.

bool 1lightsOn = true;

cout << lightsOn; // Displays 1
cout << (4 < 5); // Displays 1
cout << (4 > 5); // Displays 0

Any nonzero value evaluates to true and zero value
evaluates to false.

bool bl = -1.5; //
bool b2 = 0; //
bool b3 =1.5; //

bool bl
bool b2
bool b3 = true;

true;

false;

1/29/20

Outline

if Statements
Two-Way if-else Statements

Nested if and Multi-Way if-
else Statements

Common Errors and Pitfalls

Case Study: Computing
Body Mass Index

Case Study: Computing
Taxes

Generating Random
Numbers

Logical Operators

Case Study: Determining
Leap Year

Case Study: Lottery
switch Statements
Conditional Expressions

Operator Precedence and
Associativity

Debugging

if (booleanExpression)

{
}

One-way if Statements

statement (s) ;

if (radius >= 0)

{

. false
wxprcssmn

true

Statement(s) |

(@)

area = radius * radius * PI;

cout << "The area for the circle of " <<

" radius " << radius << " is " << area;

1/29/20

Notes
* The boolean-expression must be enclosed in
parentheses.
if i >0 if (> 0)
{ {

cout << "1 is positive” << endl;

}

cout << "i is positive" << endl;

}

(a) Wrong

(b) Correct

* The braces can be omitted if they enclose a single

statement.

if (3 > 0)
{
cout << "1 is positive" << endl;

3

(a)

Equivalent

if (> 0)

cout << "i 1is positive" << endl;

(b) B

Simple if Demo

A program that prompts the user to enter an integer. If the number
is a multiple of 5, displays HiFive. If the number is even, displays

HiEven.

#include <iostream>
using namespace std;

int main(Q)

{

int number;

OO NV WN =

cin >> number;

11 if (number % 5 == 0)
12 cout << "HiFive" << endl;

14 if (number % 2 == 0)
15 cout << "HiEven" << endl;

17 return 0;

cout << "Enter an integer: "

// Prompt the user to enter an integer

SimplelfDemo -

10

1/29/20

Outline

else Statements

¢ Common Errors and Pitfalls
* Case Study: Computing

Body Mass Index

* Case Study: Computing

Taxes

Two-Way if-else Statements
* Nested if and Multi-Way if-

Generating Random
Numbers

Logical Operators

Case Study: Determining
Leap Year

Case Study: Lottery
switch Statements
Conditional Expressions

Operator Precedence and
Associativity

Debugging

11
Two-Way 1 f-else Statement
if (booleanExpression)
{
statement (s) -for-the-true-case;
}
else
{
statement (s) -for-the-false-case;
}
Statement(s) for the true case | Statement(s) for the false case
l 12
12

1/29/20

Examples

if (radius >= 0)
{

area = radius * radius *

cout << "The area for the circle of radius " <<

radius <<

}

else

{

cout << "Negative radius";

}

is " << area;

if (number % 2
cout << number << "

else

cout << number << "

== 0)
is even.";

is odd.";

13
Outline
Generating Random
Numbers
Logical Operators
Case Study: Determining
* Nested if and Multi-Way if- Leap Year
else Statements Case Study: Lottery
e Common Errors and Pitfalls switch Statements
* Case Study: Computing Conditional Expressions
Body Mass Index Operator Precedence and
* Case Study: Computing Associativity
Taxes Debugging
14
14

1/29/20

if (i > k)
{
if (3 > k)

}

else

You can nest multiple 1 £ statements

Nested if Statements

cout << "i and j are greater than k";

cout << "i is less than or equal to k";

15

if (score >= 90.0)
cout << "Grade 1is A";
else
if (score >= 80.0)
cout << "Grade 1is B";
else
if (score >= 70.0)
cout << "Grade 1is C";
else
if (score >= 60.0)
cout << "Grade is D";
else
cout << "Grade 1is F'";

(a)

Equivalent

This is better

Multiple Alternative if Statements

if (score >= 90.0)
cout << "Grade is A";
else if (score >= 80.0)
cout << "Grade 1is B";
else if (score >= 70.0)
cout << "Grade 1is C";
else if (score >= 60.0)
cout << "Grade is D";
else
cout << "Grade 1is F";

(b)

16

race if-else statement

_ =

|if (score >= 90.0)|
cout << "Grade is A";
else if (score >= 80.0)
cout << "Grade is B";
else if (score >= 70.0)
cout << "Grade is C";
else if (score >= 60.0)
cout << "Grade is D";
else
cout << "Grade is F'";

17

race if-else statement

if (score >= 90.0
cout << "Gradepis A";
lelse if (score >= 80.0)
cout << "Grade is B";
else if (score >= 70.0)
cout << "Grade is C";
else if (score >= 60.0)
cout << "Grade is D";
else
cout << "Grade is F";

18

1/29/20

race if-else statement

if (score >= 90.0
cout << "Grade A";
else if (score >5/80.0)
cout << "Gradeyis B";
|else if (score >= 70.0)
cout << "Grade is C";
else if (score >= 60.0)
cout << "Grade is D";
else
cout << "Grade is F'";

19

race if-else statement

if (score >= 90.0
cout << "Grade

cout << "Grad
else if (score
| cout << "Grade is C";|
else if (score >= 60.0)

cout << "Grade is D";
else

cout << "Grade is F";

20

20

1/29/20

10

race if-else statement

if (score >= 90.0
cout << "Grade
else if (score
cout << '"Gra is B";
else if (score
cout << "Gr
else if (sco
cout << "Gfjade is D";
else
cout <<

21

21
The else clause matches the most recent 1 £ clause in
the same block.
inti =1, j =2, k =3; int i =1, j =2, k =3;

Equivalent
if (3> 3) if (3 > J)
if (3 > k) if (3 > k)
cout << "A"; This is better cout << "A";
else X else
cout << "B"; with correct = cout << "B";
indentation
(a) (b)
22
22

1/29/20

11

1/29/20

Note, cont.

Nothing is printed from the Statement (a) above. To force
the else clause to match the first 1 £ clause, you must
add a pair of braces:

inti=1, §j=2, k = 3;
if (i > 9)
{
if (i > k)
cout << "A";
}

else
cout << "B";

This statement prints B.

23

23

if (number % 2 == 0) Equivalent bool even
even = true; = number % 2 == 0;
else
even = false; This is better
(a) (b)
24
24

12

¢ Common Errors and Pitfalls

Outline

* Case Study: Computing
Body Mass Index

* Case Study: Computing

Taxes

Generating Random
Numbers

Logical Operators

Case Study: Determining
Leap Year

Case Study: Lottery
switch Statements
Conditional Expressions

Operator Precedence and
Associativity

Debugging

25

Common Errors

1: Forgetting Necessary Braces

if (radius >= 0)

area = radius *

radius *

cout << "The area "
<< " 1is " << area;

PI;

if (radius >= 0)
{

area = radius * radius * PI;

cout << "The area "
<< " s " << area;

(a) Wrong

(b) Correct

26

26

1/29/20

13

Common Errors

2: Wrong Semicolon at the if Line

Logic error

/

Empty body

if (radius >= 0);/ if (radius >= 0) {/};
{ . . Equivalent { . .
area = radius * radius * PI; — area = radius * radius * PI;
cout << "The area " cout << "The area "
<< " dis " << area; << " s " << area;
} }
(a) (b)
27
27

Common Errors
3: Mistakenly Using = for ==

if (count = 1)

cout << "count is zero" << endl;
else

cout << "count is not zero" << endl;

28

28

1/29/20

14

Common Errors

4: Redundant Testing of Boolean Values

if (even == true)

Equivalent

if (even)

cout << "It is even.'";

(a)

cout << "It is even.'";

This is better (b)

29

29

Outline

* Case Study: Computing
Body Mass Index

* Case Study: Computing
Taxes

Generating Random
Numbers

Logical Operators

Case Study: Determining
Leap Year

Case Study: Lottery
switch Statements
Conditional Expressions

Operator Precedence and
Associativity

Debugging

30

1/29/20

15

Case Study: Body Mass Index

The Body Mass Index (BMI) is a measure of health on

weight. It can be calculated by taking your weight in

kilograms and dividing by the square of your height in
meters (BMI = ™/, ,). The interpretation of BMI for

people 16 years or older is as follows:

BMI Interpretation
BMI < 18.5 Underweight
18.5 = BMI < 25.0 Normal

25.0 = BMI < 30.0
30.0 = BMI

Overweight
Obese

ComputeBMI

31

31

Case Study: Body Mass Index

double bmi

= weightInKilograms /

(heightInMeters * heightInMeters);

/ Display result
cout << "BMI 1is " << bmi << endl;
if (bmi < 18.5)

cout <<

"Underweight” << endl;

else if (bmi < 25)

cout << "Normal" << endl;
else if (bmi < 30)

cout << "Overweight" << endl;

else

cout << "Obese" << endl;

32

1/29/20

16

Outline

* Case Study: Computing
Taxes

Generating Random
Numbers

Logical Operators

Case Study: Determining
Leap Year

Case Study: Lottery
switch Statements
Conditional Expressions

Operator Precedence and
Associativity

Debugging

33

Case Study: Computing Taxes

The US federal personal income tax is calculated based on
the filing status and taxable income. There are four filing
statuses: single filers, married filing jointly, married filing
separately, and head of household. The tax rates for 2002
are shown below.

T single filers Married filing joint.ly or qualifying Married filing o) 6 G et
widow/widower separately
10% Up to $6,000 Up@ Up to $6,000 Up to $10,000
P b $12,000 P : P :
15% $6,001 - $27,950 $12,001 - $46,700 $6,001 - $23,350 $10,001 - $37,450
27% $27,951 - $67,700 $46,701 - $112,850 $23,351 - $56,425 $37,451 - $96,700
30% $67,701 - $141,250 $112,851 - $171,950 $56,426 - $85,975 | $96,701 - $156,600
35% $141,251- $307,050 $171,951 - $307,050 $85,976 - $153,525 | $156,601 - $307,050
38.6% $307,051 $307,051 $153,526 $307,051
or more or more or more or more
34

34

1/29/20

17

Computing Taxes: Skeleton Code

if (status == 0)

{

}

// Compute tax for single filers

else

{

}

//

else

{

}

//

else

{

}

//

else

{
}

//

if (status == 1)

Compute tax for married file jointly
if (status == 2)

Compute tax for married file separately
if (status == 3)

Compute tax for head of household

ComputeTax -

Display wrong status

35

35

Computing Taxes: First Case Details

if (status == 0)

{

}

// Compute tax for single filers
if (income <= 6000)
tax = income * 0.10;
else if (income <= 27950)
tax = 6000 * 0.10 + (income - 6000) * 0.15;
else if (income <= 67700)
tax = 6000 * 0.10 + (27950 - 6000) * 0.15 +
(income - 27950) * 0.27;
else if (income <= 141250)

else if (status == 1)

36

1/29/20

18

Outline

* Generating Random
Numbers

* Logical Operators

* Case Study: Determining
Leap Year

* Case Study: Lottery
* switch Statements
* Conditional Expressions

* Operator Precedence and
Associativity

* Debugging

37

Generating Random Numbers

You can use the rand () function to obtain a
random integer.

This function returns a random integer between 0
and RAND_MAX (32,767 in Visual C++).

To start with a different seed at each execution,
use

srand (time (0)) ;
To obtain a random integer between 0 and 9, use
rand() % 10

38

1/29/20

19

Example: A Simple Math Learning Tool

This example creates a program for a first grader to
practice subtractions.

The program randomly generates two single-digit
integers numberl and number2 with numberl
>= number2 and displays a question such as
“What is 9 — 2?” to the student.

After the student types the answer, the program
displays a message to indicate whether the answer is
correct.

SubtractionQuiz -

39

39

SubtractQuiz.cpp 1/2

#include <iostream>

#include <ctime> // for time function

#include <cstdlib> // for rand and srand functions
using namespace std;

int main()

{

// 1. Generate two random single-digit integers
srand(time(9));

int numberl = rand() % 10;

int number2 = rand() % 10;

// 2. If numberl < number2, swap numberl with number2
if (numberl < number2)

{
int temp = numberl;
numberl = number2;
number2 = temp;

}

40

40

1/29/20

20

SubtractQuiz.cpp 2/2

// 3. Ask the student “what is numberl - number2?”

cout << "What is " << numberl << " - " << number2 << "? ";

int answer;
cin >> answer;

// 4. Grade the answer and display the result

if (numberl - number2 == answer)
cout << "You are correct!";
else

cout << "Your answer is wrong.\n“
<< numberl << " - “ << number2
<< " should be " << (numberl - number2) << endl;

return 0;

41

3

41

Outline

* Logical Operators

* Case Study: Determining
Leap Year

* Case Study: Lottery
* switch Statements
* Conditional Expressions

* Operator Precedence and
Associativity

* Debugging

42

1/29/20

21

Logical Operators

* The logical operators !, &&, and | | can be used to
create a compound Boolean expression.

TaBLE 3.3 Boolean Operators

Operator Name Description

: not logical negation
&& and logical conjunction
| | or logical disjunction

43
43
TABLE 3.4 Truth Table for Operator !
p Ip Example (assume age = 24, weight = 140)
true false I(age > 18) is false, because (age > 18) is true.
false true I(weight == 150) is true, because (weight == 150)
is false.
TaABLE 3.5 Truth Table for Operator &&
pl p2 pl && p2 Example (assume age = 24, weight = 140)
false false false (age > 18) & (weight <= 140) is true, because
false true false (age > 18) and (weight <= 140) are both true.
true false false (age > 18) && (weight > 140) is false, because
true true true (weight > 140) is false.
TABLE 3.6 Truth Table for Operator | |
pl p2 pl || p2 Example (assume age = 24, weight = 140)
false false false (age > 34) || (weight <= 140) is true, because
false true true (weight <= 140) is true.
true false true (age > 34) || (weight >= 150) is false, because
true true true (age > 34) and (weight >= 150) are both false.
44
44

1/29/20

22

Examples

A program that checks whether a number is

divisible by 2 and 3, whether a number is divisible
by 2 or 3, and whether a number is divisible by 2

or 3 but not both:

TestBooleanOperators -

45

45

TestBooleanOperators.cpp

#include <iostream>
using namespace std;

int main()

{

int number;
cout << "Enter an integer: ";
cin >> number;

if (number % 2 == O && number % 3 == 0)
cout << number << " is divisible by 2 and 3." << endl;
if (number % 2 == © || number % 3 == Q)
cout << number << " is divisible by 2 or 3." << endl;
if ((number % 2 == 0 || number % 3 == 0) &&
I'(number % 2 == © && number % 3 == 0))

cout << number << " divisible by 2 or 3, but not both."™ << endl;

return(9);

46

46

1/29/20

23

Short-Circuit Operator

* When evaluating pl && p2, C++ first evaluates pl
and then evaluates p2ifplis true;ifplis false,
it does not evaluate p2.

* When evaluating pl || p2, C++ first evaluates pl
and then evaluates p2 if pl is false; if plis true,
it does not evaluate p2.

* Therefore, && is referred to as the conditional or
short-circuit AND operator, and | | is referred to as the
conditional or short-circuit OR operator.

47

47

Outline

* Case Study: Determining
Leap Year

* Case Study: Lottery
* switch Statements
* Conditional Expressions

* Operator Precedence and
Associativity

* Debugging

48

1/29/20

24

Case Study: Determining Leap Year

A program that lets the user enter a year and checks
whether it is a leap year.

A yearis a leap year if it is divisible by 4 but not by 100 or
if it is divisible by 400. So you can use the following
Boolean expression to check whether a year is a leap
year:

(year $ 4 == 0 && year % 100 !'= 0) ||
(year $ 400 == 0)
LeapYear -

49

49

Outline

* Case Study: Lottery
* switch Statements
* Conditional Expressions

* Operator Precedence and
Associativity

* Debugging

50

1/29/20

25

Case Study: Lottery

Randomly generates a lottery of a two-digit number,
prompts the user to enter a two-digit number, and
determines whether the user wins according to the
following rule:

e If the user input matches the lottery in exact order,
the award is $10,000.

e If the user input matches the lottery, the award is
$3,000.

e If one digit in the user input matches a digit in the
lottery, the award is $1,000.

Lottery -

51
Lottery.cpp 1/2
#include <iostream>
#include <ctime> // for time function
#include <cstdlib> // for rand and srand functions
using namespace std;
int main()
{
// Generate a lottery
srand(time(9));
int lottery = rand() % 100;
// Prompt the user to enter a guess
cout << "Enter your lottery pick (two digits): ";
int guess;
cin >> guess;
52

1/29/20

26

Lottery.cpp 1/2

// Check the guess
if (guess == lottery)
cout << "Exact match: you win $10,000" << endl;
else if (guess % 10 == lottery / 10
&& guess / 10 == lottery % 10)
cout << "Match all digits: you win $3,000" << endl;
else if (guess % 10 == lottery / 10
|| guess % 10 == lottery % 10
|| guess / 10 == lottery / 10
|| guess / 10 == lottery % 10)
cout << "Match one digit: you win $1,000" << endl;
else
cout << "Sorry, no match" << endl;

return 0;

53

Outline

* switch Statements
* Conditional Expressions

* Operator Precedence and
Associativity

* Debugging

54

1/29/20

27

switch Statements

switch (status)

{

case 0: compute

break;
case 1: compute

break;
case 2: compute

break;

case 3: compute
break;
default: cout <<

taxes for single filers;

taxes for married file jointly;

taxes for married file separately;

taxes for head of household;

"Errors: invalid status" << endl;

}
55
55
Q
status is 0 X . .
> Compute tax for single filers '—»ﬁl—»
statusis 1 Compute tax for married jointly or break
qualifying widow(er) rea |
status is 2
Compute tax for married filing separalely|-> break |—>
status is 3
& Compute tax for head of household |—> break |—>
default A . 1
Default actions [
é 56
56

1/29/20

28

switch Statement Rules

The switch-expression

must yield a integral value
and must always be

{

enclosed in parentheses.

The case values must be
integral constant expressions,

}

meaning that they cannot
contain variables in the

expression, such as

1 +x.

case valuel:

cagé value2:

case valueN:

default:

switch™ (switch-expression)

statement(s)1;
break;
statement(s)2;
break;

statement(s)N;

break;
statement(s)-for-default;

57

57

switch Statement Rules

The break is optional, but it

should be used at the end of {

each case in order to
terminate the remaind
the switch statement.

The default
case, which is optional,
can be used to perform
actions when none of
the specified cases is
executed.

er of

7

case valuel:

default:

switch (switch-expression)

statement(s)1;
break;

: statement(s)2;

break;

: statement(s)N;

break;
statement(s)-for-default;

When the value in a case statement matches the
value of the switch-expression, the statements
starting from this case are executed until either
a break statement or the end of the switch
statement is reached.

58

58

1/29/20

29

{

switch

case
case
case
case
case
case
case

| avimation_|

Trace switch statement

: // Fall to through to the next case
: // Fall to through to the next case
: // Fall to through to the next case
: // Fall to through to the next case
: cout << "Weekday"; break;

: // Fall to through to the next case
: cout << "Weekend";

59

59

Trace switch statement

switch

{
case 19 // Fall to through to the next case
case 2:1// Fall to through to the next case
|case 3: // Fall to through to the next casd
case 4: // Fall to through to the next case
case 5: cout << "Weekday"; break;
case 0: // Fall to through to the next case
case 6: cout << "Weekend";

60

60

1/29/20

30

| avimation_|

switch

Trace switch statement

case // Fall to through to the next case
case 2% // Fall to through to the next case
case 3:\// Fall to through to the next case
|case 4: // Fall to through to the next casd
case 5: cout << "Weekday"; break;

case 0: // Fall to through to the next case
case 6: cout << "Weekend";

61

61

Trace switch statement

y)

// Fall to through to the next case

case

case // Fall to through to the next case
case 3% // Fall to through to the next case
case 4:\ // Fall to through to the next case
|case 5: cout << "Weekday"; break;|

case 0: // Fall to through to the next case
case 6: cout << "Weekend";

62

62

1/29/20

31

Trace switch statement

swit ay)

: // Fall to through to the next case
: // Fall to through to the next case
: // Fall to through to the next case
: // Fall to through to the next case
: cout << "Weekday"; break;

: // Fall to through to the next case
: cout << "Weekend";

63

63

Example: Chinese Zodiac

displays the animal for the year.

rooster

year % 12 = <

monkey rabbit

snake : ;
ChineseZodiac -

ZEPR AR S e 4

A program that prompts the user to enter a year and

: monkey
:rooster

dog
pig
rat
oxX
tiger

: rabbit
: dragon
9:

snake

10: horse

_ 11:sheep

64

64

1/29/20

32

ChineseZodiac.cpp

8 cin >> year;
9
10 switch (year % 12)
11 {
12 case 0: cout << "monkey" << endl; break;
13 case 1: cout << "rooster" << endl; break;
14 case 2: cout << "dog" << endl; break;
15 case 3: cout << "pig" << endl; break;
16 case 4: cout << "rat" << endl; break;
17 case 5: cout << "ox" << endl; break;
18 case 6: cout << "tiger" << endl; break;
19 case 7: cout << "rabbit" << endl; break;
20 case 8: cout << "dragon" << endl; break;
21 case 9: cout << "snake" << endl; break;
22 case 10: cout << "horse" << endl; break;
23 case 11: cout << "sheep" << endl; break;
24 }
65
65
Outline
* Conditional Expressions
* Operator Precedence and
Associativity
* Debugging
66
66

1/29/20

33

Conditional Expressions

on a condition.

Syntax:

expression2.

A conditional expression evaluates an expression based

(booleanExpression) ? expressionl : expression2

The result of this conditional expression is expressionl if
boolean-expression is true; otherwise, the result is

67

67

Examples
* Equivalent statements:
if (x > 0)
y = 1;
else = y=x>07?11:-1;
y = -1;

* Finding the max:
max = numl > num2 ? numl : num2;

* 0Odd of even:

cout << (num % 2 == 0 ? "num is even" : "num 1is odd") << endl;

68

68

1/29/20

34

Outline

* Operator Precedence and
Associativity

* Debugging

69
Operator Precedence and
Associativity

Operator precedence and associativity determine the

order in which operators are evaluated.

How to evaluate 3+4*4 > 5*(4+3)-1?

false?

3+4*4>5*(4+3)-1&&(4-3>5)?

false?

70

70

1/29/20

35

Operator Precedence

Precedence Operator

var++ and var-- (Postfix)

+, = (Unary plus and minus), ++var and --var (Prefix)
static_cast<type>(v), (type) (Casting)

I (Not)

*./,% (Multiplication, division, and remainder)

+, - (Binary addition and subtraction)

<, <=, >, >= (Relational)

==, I= (Equality)
&& (AND)
|| (OR)
Al =, +=, -=, ¥=, /=, %= (Assignment operator) .
71
Operator Associativity
* All binary operators except assignment
operators are left associative.
* Assignment operators are right associative.
is equivalent to
a-b+c-4d (a@a-b) +c) -d
is equivalent to
a=b+=c=25 a=(b += (c =5))
72
72

1/29/20

36

Outline

* Debugging

73

Debugging

* Debugging is the process of finding and fixing
errors in a program.
* Visual Studio supports debugging:
— Executing a single statement at a time
— Tracing into or stepping over a function
— Setting breakpoints
— Displaying variables
— Displaying call stacks
— Modifying variables
e Show demo on Visual Studio 2019.

74

1/29/20

37

Outline

Introduction

The bool Data Type

if Statements

Two-Way if-else Statements

Nested if and Multi-Way if-
else Statements

Common Errors and Pitfalls

Case Study: Computing
Body Mass Index

Case Study: Computing
Taxes

Generating Random
Numbers

Logical Operators

Case Study: Determining
Leap Year

Case Study: Lottery
switch Statements
Conditional Expressions

Operator Precedence and
Associativity

Debugging

75

1/29/20

38

W

[

Chapter 4: Mathematical
Functions, Characters, and Strings

Sections 4.1-4.11

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University 1
of Jordan for the Course: Computer Skills for Engineers (0907101)

Outline

Introduction

Mathematical Functions

Character Data Type and Operations

Case Study: Generating Random Characters
Case Study: Guessing Birthdays

Character Functions

Case Study: Converting Hexadecimal Decimal
The string Type

Case Study: Revising the Lottery Program Using Strings
Formatting Console Output

Simple File Input and Output

1/29/20

Introduction

Suppose you need to estimate the area enclosed by four
cities, given the GPS locations (latitude and longitude) of
these cities, as shown in the following diagram. How
would you write a program to solve this problem? You will
be able to write such a program after completing this
chapter.

Charlotte (35.2270869, —80.8431267)

Atlanta

33.7489954. _84 387982 ‘)
(33.7489954, —84.3879824) Savannah (32.0835407, -81.0998342)

Orlando (28.5383355, —-81.3792365)

Outline

* Mathematical Functions

* Character Data Type and Operations

* Case Study: Generating Random Characters

* Case Study: Guessing Birthdays

* Character Functions

* Case Study: Converting Hexadecimal Decimal

* The string Type

* Case Study: Revising the Lottery Program Using Strings
* Formatting Console Output

* Simple File Input and Output

1/29/20

Mathematical Functions

C++ provides many useful functions in the cmath
header for performing common mathematical

functions.

1. Trigonometric functions
2. Exponent functions
3. Service functions

To use them, you need to include:
#include <cmath>

Trigonometric Functions

Function

Description

sin(radians)
cos(radians)
tan(radians)
asin(a)
acos(a)

atan(a)

sin(0) returns 0.0

sin(PI / 2) returns 1.0

cos(0) returns 1.0

atan(1.0) returns 0.785398 (same as n/4)

Returns the trigonometric sine of an angle in radians.
Returns the trigonometric cosine of an angle in radians
Returns the trigonometric tangent of an angle in radians.
Returns the angle in radians for the inverse of sine.

Returns the angle in radians for the inverse of cosine.

Returns the angle in radians for the inverse of tangent.

SIN(x) weererens
COS(X) e

1/29/20

Exponent Functions

Function

Description

exp(x)
Tog ()
Togl0(x)
pow(a, b)
sqrt(x)

Returns e raised to power of x (e¥).
Returns the natural logarithm of x (In(x) = log.(x)).
Returns the base 10 logarithm of x (log;y(x)).
Returns a raised to the power of b ().
Returns the square root of x (\/;) for x >=0.
exp(1.0) returns 2.71828
Tog(E) returns 1.0
10g10(10.0) returns 1.0
pow(2.0, 3) returns 8.0

sqrt(4.0) returns 2.0
sqrt(10.5) returns 3.24

Service Functions

“runcion | pescrption | ___bample___|

x is rounded up to its nearest ceil(2.1) returns 3.0

ceil (x)

floor (x)

min(x, y)

max(x, y)

abs (x)

integer. This integer is

ceil(-2.1) returns -2.0

returned as a double value.

x is rounded down to its floor(2.1) returns 2.0
nearest integer. This integer floor(-2.1) returns -3.0
is returned as a double value.

Returns the minimum of x max(2, 3) returns 3
andy.

Returns the maximum of x min(2.5, 4.6) returns
andy. 2.5

Returns the absolute value of abs(-2.1) returns 2.1

X.

1/29/20

Case Study: Computing Angles
of a Triangle

A =acos((a*a-b=*hb C o)/ (-2 *b c))
B =acos((b *b -a*a-c c) / (-2 *a*)
C=acos((c *c-b*b a a) / (-2 * a * b))

A
x1, yl

A program that prompts the user to enter the x-
and y-coordinates of the three corner pointsin a
triangle and then displays the triangle’s angles.

ComputeAngles -

ComputeAngles.cpp 1/2

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
// Prompt the user to enter three points
cout << "Enter three points: ";
double x1, y1, x2, y2, x3, y3;
cin >> x1 >> yl1 >> x2 >> y2 >> x3 >> y3;

// Compute three sides

double a = sqrt((x2 - x3) * (x2 - x3) + (y2 - y3) * (y2 - y3));
double b = sqrt((x1 - x3) * (x1 - x3) + (y1 - y3) * (y1 - y3));
double ¢ = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));

10

10

1/29/20

ComputeAngles.cpp 2/2

// Obtain three angles in radians

double A = acos((a *a -b *b -c*c)/ (-2 *b *c));
double B = acos((b * b - a*a-c*c)/ (-2 *a*c));
double C = acos((c * c - b *b -a *a) / (-2 *a * b));

// Display the angles in degress

const double PI = 3.14159;

cout << "The three angles are ™ << A * 180 / PI << " "
<< B * 180 / PI << " " << C * 180 / PI << endl;

return 0;

11

Outline

Character Data Type and Operations

Case Study: Generating Random Characters

Case Study: Guessing Birthdays

Character Functions

Case Study: Converting Hexadecimal Decimal

The string Type

Case Study: Revising the Lottery Program Using Strings
Formatting Console Output

Simple File Input and Output

12

1/29/20

Character Data Type

* A character data type represents a single character.
char letter = 'A'; (ASCII)
char numChar = '4'; (ASCII)

* The increment and decrement operators can also be
used on char variables to get the next or preceding
character. For example, the following statements
display character b.
char ch = 'a';
cout << ++ch;

* The characters are encoded into numbers using the
ASCII code.

13

Appendix B: ASCII Character Set
ASCII Character Set is a subset of the Unicode from \u0000 to \uOO7f

) Decimal Representation
I o 1 2/ 3/4 5 6/7 8 9

0 nul ack bell tab |

10 \n

20

30 (sp) ! #1s$|%|&|"’

0 (|) | *|+|,|=|.]|/7]0]1

50 2 3.14 |5 6| 7|8 9 3

60 <|=|>|?|@|A|B|C|D|E

70 F |G |H| I |J|K|L| M|N|O

80 P |Q|R|S|T|U |V | W |X|Y

90 Z [[|\ [] | 7%]..| " |la|b]|ec
100 d |e |£|g|h|di|F|k|1|m

110 n (o |p|g|r|s |t |u|v|w
1120 x |y [z | { [1]} |~ |del

14

1/29/20

ASCII Character Set in the Hexadecimal Index

o0 NUL 70 DLE 20 SP 30 0 9 @ 50 P 60

00 SOH 11 DC1 21 | 31 1 41 A 51 Q 61 a
02 STX 12 DC2 22 " 32 2 2 B 52 R 62 b
03 ETX 13 DC3 23 # 33 3 43 C 53 'S 63 C
04 EOT 14 DC4 24 9 34 4 4 D 54 T 64 d
05 ENQ 15 NAK 25 % 35 5 45 E 5 U 65 e
6 ACK 16 SYN 26 & % 6 46 F 56 V 66 f
o7 BEL 17 ETB 27 ' 37 7 a7 G 51 W 67 g
8 BS 18 CAN 28 (38 8 48 H 58 X 68 h
09 HT 19 EM 29) 39 9 49 | 59 Y 69 |
oA LF 1A SUB 2a * 3A : A J 5A Z 6A]
o VT 1B ESC 28 + 3B 8 K 58 [68 Kk
oc FF |1¢c FS |2¢ |, 3 < 4 L 5¢ |\ 6C |
oo CR 1 GS 20 - 3D = 4D M 50] 60 m
oE SO 1E RS 2 . 3E |> 4 N g ||& 6E n
oF Sl F US 2r / 3F? 4/ O 5F 6F 0

70

4l

72

73

74

75

76

77

78

79

A

7B

7C

7D

7E

7F

- Q

—~ »w

!~ — "~ N < X 5 < C

DEL

15

Read Characters

To read a character from the keyboard, use

cout << "Enter a character: ";
char ch;
cin >> ch; // Read a character

16

1/29/20

Escape Sequences

C++ uses a special notation to represent special character.

Escape Sequence Name ASCII Code
\b Backspace 8
\t Tab 9
\n Linefeed 10
\f Formfeed 12
\r Carriage Return 13
\\ Backslash 92
\" Double Quote 34

cout << "He said \"Hi\".\n";
The outputis: He said "Hi". -

17

Casting between char and
Numeric Types

* A char can be cast into any numeric type, and vice
versa.

* When an integer is cast into a char, only its lower 8 bits
of data are used; the other part is ignored.

int i = 'a';

// Same as int i = static_cast<int>('a');

char ¢ = 97;

// Same as char c = static_cast<char>(97); 1

18

1/29/20

Numeric Operators on Characters

The char type is treated as if it is an integer of the byte
size. All numeric operators can be applied to char

operands.
// The ASCII code for '2' is 50 and for '3' 1is 51
int i = "2" + '3";
cout << "1 is " << 1 << endl; // 1 is now 101
int j =2 + 'a'; // The ASCII code for 'a' 1is 97

"

cout << "j 1s << j << endT;
cout << J << is the ASCII code for character " <<
static_cast<char>(j) << endl;

Display

i is 101
j is 99
99 1is the ASCII code for character c

19

Example: Converting a Lowercase to
Uppercase

A program that prompts the user to enter a
lowercase letter and finds its corresponding
uppercase letter.

char uppercaseletter =
static_cast<char>('A' + (lowercaseletter - 'a'));

ToUppercase -

20

20

1/29/20

10

Comparing and Testing Characters

* The ASCII for lowercase letters are consecutive integers
starting from the code for 'a’, then for 'b’, 'c', ..., and 'z'. The
same is true for the uppercase letters.

* The lower case of a letter is larger than its upper case by 32.

* Two characters can be compared using the comparison
operators just like comparing two numbers.

° 'a' < 'b' istrue because the ASCll code for "a' (97)is
less than the ASCII code for 'b' (98).

e 'a' < 'A' jsfalse.

e '1'" < '8'" istrue.

21

21

Outline

* Case Study: Generating Random Characters

* Case Study: Guessing Birthdays

* Character Functions

* Case Study: Converting Hexadecimal Decimal

* The string Type

* Case Study: Revising the Lottery Program Using Strings
* Formatting Console Output

* Simple File Input and Output

22

1/29/20

11

Case Study: Generating Random
Characters

The rand () function returns a random integer. You can
use it to write a simple expression to generate random
numbers in any range.

Returns a random integer

% 10 _
randQ % between 0 and 9.

Returns a random integer

% _
50 + randQ) % 50 between 50 and 99.

In general,

Returns a random number

% _— .
a + randQ) % b between a and a + b, excluding a + b.

23

23

Case Study: Generating Random
Characters, cont.

Every character has a unique ASCII code between 0 and 127. To
generate a random character is to generate a random integer
between 0 and 127. The srand (seed) function is used to set a
seed.

// Get a random character

srand(time(9));

char randomChar = static_cast<char>(startChar + rand() %
(endChar - startChar + 1));

" "

cout << "The random character between << startChar << and "

<< endChar << is << randomChar << endl;

DisplayRandomCharacter -
24

24

1/29/20

12

1/29/20

Outline

Case Study: Guessing Birthdays

Character Functions

Case Study: Converting Hexadecimal Decimal

* The string Type

* Case Study: Revising the Lottery Program Using Strings
* Formatting Console Output

* Simple File Input and Output

25

Case Study: Guessing Birthdays

* The program can find your birth date. The program
prompts you to answer whether your birth date is in
the following five sets of numbers:

|£35736

=19

2 7 4 5 6 7 8 9 10 11 [16] 17 18 19
9 11 13 15 10 11 14 15 12 13 14 15 12 13 14 15 20 21 22 23
17 19 21 23 18 19 22 23 20 21 22 23 24 25 26 27 24 25 26 27
25 27 29 31 26 27 30 31 28 29 30 31 28 29 30 31 28 29 30 31

Setl Set2 Set3 Set4 Set5

GuessBirthday -

26
26

13

Case Study: Guessing Birthdays

// Prompt the user for Setl

cout <<
cout <<

cout <<

"Is your birthday in Setl?" << endl;
"1 3 5 7\n" <<

"9 11 13 15\n" <<

"17 19 21 23\n" <<

"25 27 29 31" << endl;

"Enter N/n for No and Y/y for Yes: ";

cin >> answer;

if (answer == "Y' || answer == 'y')
day += 1;

27

27

Outline

Character Functions

Case Study: Converting Hexadecimal Decimal

The string Type

Case Study: Revising the Lottery Program Using Strings
Formatting Console Output

Simple File Input and Output

28

1/29/20

14

Character Functions

C++ contains functions for working with characters.

Function Description
isdigit(ch) Returns true if the specified character is a digit.
isalpha(ch) Returns true if the specified character is a letter.
isalnum(ch) Returns true if the specified character is a letter or digit.
islower(ch) Returns true if the specified character is a lowercase letter.
isupper(ch) Returns true if the specified character is an uppercase letter.
isspace(ch) Returns true if the specified character is a whitespace character.
tolower(ch) Returns the lowercase of the specified character.
toupper(ch) Returns the uppercase of the specified character.
29
29
if (islower(ch))
{
cout << "It is a lowercase letter " << endl;
cout << "Its equivalent uppercase letter is " <«
static_cast<char>(toupper(ch)) << endl;
}
CharacterFunctions -
30

30

1/29/20

15

Character Functions

* You can use isupper (), islower () and
isdigit () in the code below.

if (ch >= "A" && ch <= "Z")

cout << ch << " 1is an uppercase letter" << endl;
else if (ch >= "a' & ch <= 'z")

cout << ch << " is a lowercase letter" << endl;
else if (ch >= "0" & ch <= '9")

cout << ch << " 1is a numeric character" << endl;

31

31
Outline
* Case Study: Converting Hexadecimal Decimal
* The string Type
* Case Study: Revising the Lottery Program Using Strings
* Formatting Console Output
* Simple File Input and Output
32

1/29/20

16

Case Study: Converting a Hexadecimal
Digit to a Decimal Value

A program that converts a hexadecimal digit to decimal.

DECIMAL HEX BINARY
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

1010 .
1011 HexDigit2Dec -
1100

1101
1110
1111 33

OoOoNOUIAWMN RO

MMOOmT>OO0N®ULDSWN - O

33

HexDigit2Dec.cpp

hexDigit = toupper(hexDigit);
if (hexDigit <= 'F' && hexDigit >= 'A")
{
int value = 10 + hexDigit - 'A’;
cout << "The decimal value for hex digit "

<< hexDigit << " is " << value << endl;

}
else if (isdigit(hexDigit))
{
cout << "The decimal value for hex digit

<< hexDigit <« is << hexDigit << endl;

34

1/29/20

17

Outline

The string Type

Case Study: Revising the Lottery Program Using Strings
* Formatting Console Output

Simple File Input and Output

35
The string Type
A string is a sequence of characters.
#include <string>
string s;
string message = "Programming is fun'";
Function Description
Tength() Returns the number of characters in this string.
size() Same as length().
at(index) Returns the character at the specified index from this string.
36
36

1/29/20

18

String Subscript Operator

C++ provides the subscript operator for accessing the
character at a specified index in a string using the
syntax stringName [index].

string s = "welcome to C++";
s.at(0) = "W';
cout << s.length() << s[0] << endl;
14w Indices 0 1 2 3 4 5 6 7 8 9 1011 12 13
message |Wle |l |c|]o|m|e t]o Cl+]+
T !
message.at(0) message.length is 14 message.at(13)

37

37

Concatenating Strings

C++ provides the + operator for concatenating two strings.
string s3 = sl + s2;

string m = "Good";
m += " morning";
m+= '1";

cout << m << endl;

Good morning!

38

38

1/29/20

19

Comparing Strings

You can use the relational operators ==, I=, <, <=, >, >=to
compare two strings. This is done by comparing their
corresponding characters on by one from left to right.
For example,

string sl = "ABC";

string s2 = "ABE";

cout << (sl == s2) << endl; // Displays 0 (means false)
cout << (sl != s2) << endl; // Displays 1 (means true)
cout << (sl > s2) << endl; // Displays 0 (means false)
cout << (sl >= s2) << endl; // Displays 0 (means false)
cout << (sl < s2) << endl; // Displays 1 (means true)
cout << (sl <= s2) << endl; // Displays 1 (means true)

39

39

Reading Strings

Reading a word:
1 string city;

2 cout << "Enter a city: ";
3 cin >> city; // Read to string city
4

cout << "You entered " << city << endl;

Reading aline using getline(cin, s, delimitCharacter).

1 string city;

2 cout << "Enter a city: ";
3 getline(cin, city, '\n'); // Same as getline(cin, city)
4 cout << "You entered " << city << endl;

40

40

1/29/20

20

Example: Order Two Cities

A program that prompts the user to enter two

cities and displays them in alphabetical order.

OrderTwoCities

41

41

OrderTwoCities.cpp

#include <iostream>
#include <string>
using namespace std;

int main() {
string cityl, city2;
cout << "Enter the first city: ";
getline(cin, cityl);
cout << "Enter the second city: ";
getline(cin, city2);

cout << "The cities in alphabetical order are ";

if (cityl < city2)

cout << cityl << " " << city2 << endl;
else

cout << city2 << " " << cityl << endl;

return 0;

3

42

1/29/20

21

Outline

* Case Study: Revising the Lottery Program Using Strings
* Formatting Console Output
* Simple File Input and Output

43

Case Study: Revising the Lottery
Program Using Strings

A problem can be solved using many different approaches.
This section rewrites the lottery program in Listing 3.7 using
strings. Using strings simplifies this program.

// Check the guess

if (guess == lottery)
cout << "Exact match: you win $10,000" << endl;

else if (guess[1l] == lottery[©@] && guess[0] == lottery[1])
cout << "Match all digits: you win $3,000" << endl;

else if (guess[@] == lottery[0] || guess[@] == lottery[1]

|| guess[1] == lottery[@] || guess[1] == lottery[1])

cout << "Match one digit: you win $1,000" << endl;

else
cout << "Sorry, no match" << endl;

LotteryUsingStrings - 44

44

1/29/20

22

1/29/20

Outline

* Formatting Console Output
* Simple File Input and Output

45

45

Formatting Console Output

You can use the stream manipulators to display formatted
output on the console.

Operator Description
setprecision(n) sets the precision of a floating-point number
fixed displays floating-point numbers in fixed-point notation
showpoint causes a floating-point number to be displayed with a decimal point
with trailing zeros even if it has no fractional part
setw(width) specifies the width of a print field
Teft justifies the output to the left
right justifies the output to the right
46
46

23

setprecision (n) Manipulator

#include <iomanip>

double number = 12.34567;

cout << setprecision(3) << number <<
<< setprecision(4) << number <<
<< setprecision(5) << number <<
<< setprecision(6) << number << endl;

displays
12.3 12.35 12.346 12.3457

47

47

fixed Manipulator

cout << 232123434.357;
displays
2.32123e+08

cout << fixed << 232123434.357;
displays
232123434.357000

cout << fixed << setprecision(2)
<< 232123434.357;

displays

232123434.36

48

48

1/29/20

24

showpoint Manipulator

cout << setprecision(6) ;

cout << 1.23 << endl;

cout << showpoint << 1.23 << endl;
cout << showpoint << 123.0 << endl;
displays

1.23

1.23000

123.000

49

49

setw (width) Manipulator

cout << setw(8) << "C++" << setw(6) << 101 << endl;
cout << setw(8) << "Java" << setw(6) << 101 << endl;
cout << setw(8) << "HTML" << setw(6) << 101 << endl;

displays |<—8—>|<—6—>|

C++ 101 O C++0m101
Java 101 rmJavadm1l01
HTML 101 IOHTMLOTO 101

cout << setw(8) << "Programming” << "#" << setw(2) << 101;

Prgramming#101

50

50

1/29/20

25

left and right Manipulators

cout << right;
cout << setw(8) << 1.23 << endl;
cout << setw(8) << 351.34 << endl;

displays

[IT1T111.23
[11351.34

51

51

left and right Manipulators

cout << left;
cout << setw(8) << 1.23;
cout << setw(8) << 351.34 << endl;

displays
1.2301 1713351 . 3417

52

52

1/29/20

26

Outline

* Simple File Input and Output

53

Simple File Output

To write data to a file, first declare a variable of the ofstream
type:
#include <fstream>
ofstream output;

To ?pecify a file, invoke the open function from output object as
ollows:

output.open ("numbers. txt") ;

Optionally, you can create a file output object and open the file in
one statement like this:

ofstream output ("numbers. txt") ;

To write data, use the stream insertion operator (<<) in the same
way that you send data to the cout object. For example,

output << 95 << " " << 56 << " " << 34 << endl;
Finally:
output.close() ; SimpleFileOutput -

54

54

1/29/20

27

Simple File Input

To read data from a file, first declare a variable of the i fstream
type:
#include <fstream>
ifstream input;

To specify a file, invoke the open function from input as follows:

input.open ("numbers. txt") ;
Or:
ifstream input ("numbers. txt") ;

To read data, use the stream extraction operator (>>) in the same
way that you read data from the cin object. For example,

input >> scorel >> score2 >> score3;

Finally: : !
input.close () ; SimpleFileInput -
55
55
Outline

* Introduction

* Mathematical Functions

* Character Data Type and Operations

* Case Study: Generating Random Characters

* Case Study: Guessing Birthdays

* Character Functions

* Case Study: Converting Hexadecimal Decimal

* The string Type

* Case Study: Revising the Lottery Program Using Strings

* Formatting Console Output

* Simple File Input and Output
56

1/29/20

28

W

Chapter 5: Loops

Sections 5.1-5.6, 5.9

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University 1
of Jordan for the Course: Computer Skills for Engineers (0907101)

Outline

Introduction

Thewhile Loop

The do-while Loop

The for Loop

Which Loop to Use?

Nested Loops

Keywords break and continue

1/29/20

Introduction

Suppose that you need to print a string (e.g.,
"Welcome to C++!") a hundred times. It would be

tedious to have to write the following statement a
hundred times:

cout << "Welcome to C++!" << endl;

Introduction

/’cout << "Welcome to Java!" << endl;
cout << "Welcome to Java!" << endl;
cout << "Welcome to Java!" << endl;
cout << "Welcome to Java!" << endl;
cout << "Welcome to Java!" << endl;

100
times <

cout << "Welcome to Java!" << endl;
cout << "Welcome to Java!" << endl;
cout << "Welcome to Java!" << endl;
cout << "Welcome to Java!" << endl;
\‘cout << "Welcome to Java!" << endl;

So, how do you solve this problem?

1/29/20

1/29/20

Outline

Thewhile Loop

The do-while Loop

The for Loop

Which Loop to Use?
Nested Loops

Keywords break and continue

Introducing while Loops

A while loop executes statements repeatedly while the
condition is true.

int count = 0;

while (count < 100)

{
cout << "Welcome to C++!\n";
count++;

}

while Loop Flow Chart

while (loop-continuation-condition)

{
// Loop body

Statement(s); "

}

Loop-
continuation-
condition?

false

Statement(s)
(loop body)

Y

@) 7

| avimation_| _
Trace while Loop

Tnt comt = o —— NI

while (count < 2)

{
cout << "Welcome to C++!";

count++;

1/29/20

Trace while Loop, cont.

int count = O; ’

while (count < 2) |
{

cout << "Welcome to C++!";

count++;

Trace while Loop, cont.

int count = 0;
while (count < 2)

{
| cout << "Welcome to C++!";

count++;

10

1/29/20

Trace while Loop, cont.

int count = 0;
while (count < 2)
{

cout << "Welcome

CH++!";

| count++; |

}

11

11

Trace while Loop, cont.
int count = 0;

while (count < 2) -

{
cout << "Welcome to C++!'";

count++;

12

1/29/20

Trace while Loop, cont.

int count = 0;
while (count < 2)

{
| cout << "Welcome to C++!";

count++;

13

13

Trace while Loop, cont.

int count = 0;
while (count < 2)

{

cout << "Welcome C++!";

| count++; |

14

1/29/20

Trace while Loop, cont.

int count = 0; P
while (count < 2)
{

cout << "Welcome to C++!'";

count++;

15

[avimation_] _
Trace while Loop

int count = 0;
while (count < 2)
{

cout << "Welcome to

count++;

16

1/29/20

Case Study: Guessing Numbers

Write a program that randomly generates an
integer between 0 and 100, inclusive. The
program prompts the user to enter a number
continuously until the number matches the
randomly generated number. For each user input,
the program tells the user whether the input is
too low or too high, so the user can choose the
next input intelligently. Here is a sample run:

GuessNumberOneTime -

GuessNumber -

17

GuessNumber.cpp 1/2

#include <iostream>

#include <cstdlib>

#include <ctime> // Needed for the time function
using namespace std;

int main()

{
// Generate a random number to be guessed
srand(time(9));
int number = rand() % 101;

cout << "Guess a magic number between © and 100";

18

1/29/20

GuessNumber.cpp 1/2

int guess = -1;
while (guess != number)

{

// Prompt the user to guess the number

cout << "\nEnter your guess: ";
cin >> guess;

if (guess == number)

cout << "Yes, the number is
else if (guess > number)

cout << "Your guess is too high" << endl;

<< number << endl;

else
cout << "Your guess is too low" << endl;
} // End of loop

return 0;

19

Loop Design Strategy

Step 1: Identify the statements that need to be repeated.

Step 2: Wrap these statements in a loop as follows:

while (true)

{
}

Statements;

Step 3: Code the loop-continuation-condition and add appropriate statements for controlling
the loop.

while (Toop-continuation-condition)
{
Statements;
Additional statements for controlling the Tloop;

}

20

1/29/20

10

Case Study: Multiple Subtraction Quiz

Take the subtraction quiz 5 times.

Report number of correct answers and the quiz
time.

SubtractionQuiz -

21

21

SubtractionQuizLoop.cpp 1/3

#include <iostream>
#include <ctime> // Needed for time function
#include <cstdlib> // Needed for the srand and rand functions
using namespace std;
int main()
{
int correctCount = @; // Count the number of correct answers
int count = @; // Count the number of questions
long startTime = time(0);
const int NUMBER_OF_QUESTIONS = 5;
srand(time(©)); // Set a random seed
while (count < NUMBER_OF_QUESTIONS)
{ See next slides }
long endTime = time(0);
long testTime = endTime - startTime;
cout << "Correct count is " << correctCount << "\nTest time is
<< testTime << " seconds\n";
return 0;

22

1/29/20

11

SubtractionQuizLoop.cpp 2/3

while (count < NUMBER_OF_QUESTIONS)

{
// 1. Generate two random single-digit integers
int numberl = rand() % 10;
int number2 = rand() % 10;
// 2. If numberl < number2, swap numberl with number2
if (numberl < number2)
{
int temp = numberl;
numberl = number2;
number2 = temp;
}
23
. .
SubtractionQuizLoop.cpp 3/3
// 3. Prompt the student to answer “what is numl - num2?”
cout << "What is " << numberl << " - " << number2 << "? ";
int answer;
cin >> answer;
// 4. Grade the answer and display the result
if (numberl - number2 == answer)
{
cout << "You are correct!\n";
correctCount++;
}
else
cout << "Your answer is wrong.\n" << numberl << " "ok«
number2 << " should be " << (numberl - number2) << endl;
// Increase the count
count++;
} 24
24

1/29/20

12

Controlling a Loop with User

Confirmation
char continueloop = 'Y';
while (continuelLoop == 'Y")

{

/ Execute the Tloop body once

// Prompt the user for confirmation
cout << "Enter Y to continue and N to quit: ";
cin >> continueloop;

}

25

25

Controlling a Loop with a Sentinel Value

You may use an input value to signify the end of the loop.
Such a value is known as a sentinel value.

A program that reads and calculates the sum of an
unspecified number of integers. The input 0 signifies the
end of the input.

SentinelValue -

26

26

1/29/20

13

SentinelValue.cpp

int data;
cin >> data;

// Keep reading data until the input is @
int sum = 9;
while (data != 9)

{
sum += data;
// Read the next data
cout << "Enter an integer (the input ends " <<
"if it is @): ";
cin >> data;
}

cout << "The sum is " << sum << endl;

27

Input and Output Redirections

* If you have a large number of data to enter, it would be
cumbersome to type from the keyboard.

* You may store the data separated by whitespaces in a
text file, say input. txt, and run the program and
redirecting input to the file.

* You can also redirect program output to a text file, say
outpu. txt.

SentinelValue.exe < input.txt > output.txt

28

28

1/29/20

14

Reading Data from a File

* If you have many numbers to read from a file,

you need to write a loop to read all these
numbers.

* You can invoke the eof () function on the input

object to detect the end of file.

e A program that reads all numbers from the file

numbers. txt.

ReadAllData

29

29

ReadAllData.cpp

#include <iostream>
#include <fstream>
using namespace std;
int main()
{
// Open a file
ifstream input("numbers.txt");

double sum = O;

double number;
while (!input.eof()) // Read data to the end of file

{
input >> number; // Read data
cout << number << " "; // Display data
sum += number;

}

input.close();
cout << "\nTotal is " << sum << endl;
return 0;

30

1/29/20

15

Caution

Don’t use floating-point values for equality checking in a
loop control expression; they are approximations, using
them can result in inaccurate results.

The following loop does not stop.

double item = 1;
double sum = 0;
while (item != @) // No guarantee it will be ©
{
sum += item;
item -= 0.1;

31

31

Outline

* Thedo-while Loop
* The for Loop
* Which Loop to Use?

* Nested Loops
* Keywords break and continue

32

1/29/20

16

do-while Loop

O
A do-while loop is the same as
a while loop except th.at it Statement(s)
executes the loop body first and (loop body)
then checks the loop
continuation condition.
Loop-

do LS continuation-

{ condition?

} while (Toop-continuation-cond

// Loop body;
Statement(s);

TestDoWhile -

33

33

TestDoWhile.cpp

// Initialize data and sum
int data = 0;
int sum = 9;

do
{

sum += data;

// Read the next data
cout << "Enter an integer (the input ends " <<
"if it is @): ";
cin >> data; // Keep reading until the input is @
} while (data != 9);

cout << "The sum is " << sum << endl;

34

1/29/20

17

1/29/20

Outline

The for Loop
Which Loop to Use?
Nested Loops

Keywords break and continue

35
for Loops
for (initial-action; loop-continuation-condition;
action-after-each-iteration)
{
// Loop body; T
Statement(s); Initial-action
3
L= false
A for loop has a continuation-
condition?
concise syntax for
writing loops.
Statement(s)
(loop body)
—— Action-after-each-iteration I
Y
e}
36

18

| avimotion |
Trace for Loop

—
lint i; |
for (i = 0; i < 2; i++)
{

cout << "Welcome to C++!";
}

37

37

Trace for Loop, cont.

int i;
for (EI=10; i < 2; i++)
{

cout << "Welcome to C++!";
}

38

38

1/29/20

19

Trace for Loop, cont.

int i;
for (i = 0;
{

cout << "Welcome to C++!";
}

; it++)

39

39

Trace for Loop, cont.

int i;
for (i = 0; 1 < 2; i++)
{

|cout << "Welcome to C++!";

}

40

40

1/29/20

20

|_animation |
Trace for Loop, cont.

int i; ,J!!I

for (i = 0; i < Z;IEII)
{
cout << "Welcome to C++!";

}

41

41

|_animation |
Trace for Loop, cont.

int i; ,——‘!!

for (i = 0;|1i < 2); i++)
{

cout << "Welcome to C++!";
}

42

42

1/29/20

21

|_animation |
Trace for Loop, cont.

int i;
for (i = 0; 1 < 2; i++)
{

|cout << '"Welcome to C++!";
}

43

43

|_animation |
Trace for Loop, cont.

int 1i; .J!!

for (i = 0; 1 < 2; |i++4)
{

cout << "Welcome to C++!";
}

44

44

1/29/20

22

{

}

|_awimation_|
Trace for Loop, cont.
int i;
for (i = 0;

cout << "Welcome to C++!'";

45

45

| avimation_|

int i;
for (i
{

cout

}

Trace for Loop, cont.

= 0; 1 < 2; i++)

<< '"Welcome t ++1";

46

46

1/29/20

23

Note

The initial-actionin a for loop can be a list of zero
or more comma-separated expressions.

for (Aint i =0, j =0; i+ 3j < 10; i++, j++)

{

// Do something

}

The action-after-each-iterationin a for loop
can be a list of zero or more comma-separated
statements.

for (inti =1; i <100; cout << i << endl, i++);

47

47

Note

If the loop-continuation-condition in a for loop
is omitted, it is implicitly true. Thus the for statement
given below, which is an infinite loop, is correct.

It is better to use the equivalent while loop to avoid
confusion:

{

}

for (; ;) while (true)

Equivalent {

// Do something // Do something

- e }
This is better

48

48

1/29/20

24

Outline

* Which Loop to Use?
* Nested Loops

* Keywords break and continue

49

49

Which Loop to Use?

* The loop statements, while, do-while, and for, are

expressively equivalent; that is, you can write a loop in any of
these three forms.

* The while loop can always be converted into the £or loop.

while (Toop-continuation-condition) . for (; Toop-continuation-condition;)
Equivalent
{ " |{
Loop body Loop body
} }

(a) (b)

* The for loop can generally be converted into the while loop.

for (initial-action; initial-action;
loop-continuation-condition; Equivalent while (loop-continuation-condition)
action-after-each-iteration) : {
{ - Loop body;
ody; action-after-each-iteration;
} }
(a) (b)

50

50

1/29/20

25

Which Loop to Use?

Use the one that is most intuitive and comfortable for
you.

In general, a for loop may be used if the number of
repetitions is counter-controlled, as, for example,
when you need to print a message 100 times.

A while loop may be used if the number of
repetitions is sentinel-controlled, as in the case of
reading the numbers until the input is 0.

A do-while loop can be used to replace a while loop

if the loop body has to be executed before testing the

continuation condition.
51

51

Outline

* Nested Loops
* Keywords break and continue

52

1/29/20

26

Nested Loops

A loop can be nested inside another loop.

Example: A program that uses nested for loops to print a
multiplication table.

Multiplication Table
| 1 2 3 4 5 6 7 8 9

12 16 20 24 28 32 36 MultiplicationTable

© N VA WN R
O 00 NO VA W N =
=
S}
=
v
N
S}

N
v
w
S
w
v
S
o
S
v

53

53

MultiplicationTable.cpp 1/2

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{

cout << " Multiplication Table\n";

// Display the number title

cout << " | "3

for (int j = 1; j <= 9; j++)
cout << setw(3) << j;

cout << "\n";

COUt << M-mmmmmmmmmee e eeeeeeeeeeeeeeeee \n";

54

1/29/20

27

MultiplicationTable.cpp 2/2

// Display table body
for (int 1 = 1; i <= 9; i++)

{
cout << i << " | "3
for (int j = 1; j <= 9; j++)
{
// Display the product and align properly
cout << setw(3) << i * j;
}
cout << "\n";
}
return 0;

55

Outline

* Keywords break and continue

56

1/29/20

28

Using break and continue

Use break in a loop to immediately terminate the
loop.

Example: adding integers from 1 to 20 until sum is
greater than or equal to 100.

while (number < 20)

{
number++;
sum += number;
if (sum >= 100)
break; TestBreak -
}
57
57
Using break and continue
Use continue in aloop to proceed to the next
iteration.
Example: adding integers from 1 to 20 except 10 and 11.
while (number < 20)
{
number++;
if (number == 10 || number == 11)
continue;
sum += number;
} TestContinue -
58
58

1/29/20

29

Outline

Introduction

Thewhile Loop

The do-while Loop

The for Loop

Which Loop to Use?

Nested Loops

Keywords break and continue

59

1/29/20

30

W

Chapter 6: Functions

Sections 6.1-6.13

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University 1
of Jordan for the Course: Computer Skills for Engineers (0907101)

Outline

Introduction

Defining a Function

Calling a Function

void Functions

Passing Arguments by Value
Modularizing Code

Overloading Functions

Function Prototypes

Default Arguments

Inline Functions

Local, Global, and Static Local Variables
Passing Arguments by Reference
Constant Reference Parameters

1/29/20

1/29/20

Introduction

Find the sum of integers from 1 to 10, from 20 to 37,
and from 35 to 49, respectively.

Introduction

int sum = 0; Write 3 loops

for (int i = 1; i1 <= 10; i++)
sum += i;

cout << "Sum from 1 to 10 is " << sum << endl;

sum = 0;
for (int i = 20; i <= 37; i++)
sum += i;
cout << "Sum from 20 to 37 is " << sum << endl;

sum = 0;
for (int i = 35; i <= 49; i++)
sum += i;
cout << "Sum from 35 to 49 is " << sum << endl;

4

1/29/20

Introduction
int sum = 0; Very similar 3
for (int i = 1; i <= 10; i++) loops
sum += i;

cout << "Sum from 1 to 10 is " << sum << endl;

um = 0;

or (int i = 20; i <= 37; i++)
sum += i;

cout << "Sum from 20 to 37 is " << sum << endl;

um = 0;

or (int i = 35; i <= 49; i++)
sum += i;

cout << "Sum from 35 to 49 is " << sum << endl;

5

Introduction
Functions can be used to define reusable code and
organize and simplify code.

int sum(int i1, int i2)
{

int sum = 9;

for (int i = i1l; i <= 12; i++)

sum += i;

return sum;
}
int main()
{

cout << "Sum from 1 to 10 is " << << endl;

cout << "Sum from 20 to 37 is " << [sum(20, 37)] << endl;

cout << "Sum from 35 to 49 is " << << endl;

return 0;
} 6

Outline

* Defining a Function

* Calling a Function

* void Functions

* Passing Arguments by Value
* Modularizing Code

* Overloading Functions

* Function Prototypes

* Default Arguments

* Inline Functions

* Local, Global, and Static Local Variables
* Passing Arguments by Reference
* Constant Reference Parameters

Defining a Function

A function is a collection of statements that are

grouped together to perform an operation.

A function definition consists of its function name,

parameters, return value type, and body.

Define a function

Invoke a function

return value type function name formal parameters

1unclmn—>1nt’max(lmt numl, int num2l)
1 T

header

{

function ——~|

body

int result: parameter list

if (numl > num2)
result numl; function

else signature
result = num2;

return result;<—return value

int z = max(x, y);

actual parameters
(arguments)

1/29/20

Defining Functions, cont.

Function signature is the combination of the
function name and the parameter list.

The variables defined in the function header
are known as formal parameters.

When a function is invoked, you pass a value to
the parameter. This value is referred to as
actual parameter or argument.

Defining Functions, cont.

A Function may return a value.

The return value type is the data type of the
value the function returns.

If the function does not return a value, the
return value type is the keyword void.

10

1/29/20

Outline

* Calling a Function

* void Functions

* Passing Arguments by Value

* Modularizing Code

* Overloading Functions

* Function Prototypes

* Default Arguments

* Inline Functions

* Local, Global, and Static Local Variables
* Passing Arguments by Reference
* Constant Reference Parameters

11

Calling a Function

This program demonstrates calling a Function
max to return the largest of the int values

TestMax -

12

1/29/20

| auimation_|]]
Trace Function Invocation

Pass the value 1

Pass the value | 1
[e 1
¥

N
int max(int numl, 1int ndmZ)

1

i
i
int i 9 : int result;
'intj= ’ 1
int k = i j)'\

int main()

max (i, ; if (numl > num2)
result = numl;
cout << "The maximum between™\ else
<< i << "and "+ j o+ " s " ‘\\\\\ result = num2;
<< k;
return 0; return result;

} 3

13

| auimation_|]]
Trace Function Invocation

Pass the value 1

Pass the value | 1
i e e .
¥

N
int max(int numl, 1int ndmZ)

o 11
int i

i
I
I
; : int result;
i
int max (i, j)"*~.\\\\\‘\\\\ if (numl > num2)

int main()

result = numl;
cout << "The maximum between™\ else
<< i << "and "+ j o+ " s " ‘\\\\\ result = num2;
<< k;
return 0; return result;
h }

14

1/29/20

| avimation_|

Trace Function Invocation

Pass the value 1

int main()

<< k;

<< i << "and "+ j o+ " s "

return 0O;

N
int max(int ndml, int ndmZ)

{

int result;

if (numl > num2)
result numl;
else

\\\\\\ result = num2;

N return result;

}

"The maximum between™~

15

| avimation_|

Trace Function Invocation

Pass the value 1

:. Pass the valu
| pommmmmm e
int main() 1o int [max(int ndml, int ndmZ]
[
)) [,/”/’ i
int i = 5; : : int result;
int j =25 1
int k = max(i, j); if (numl > num2)
result = numl;
cout << "The maximum between™\ else
<< i << "and "+ j o+ " s " \\\\\\ result = num2;
<< k;
return 0; return result;
h }

16

1/29/20

| avimation_|

Trace Function Invocation

Pass the value 1

[emm e ———————————————
1
ittt | A — 3
int main(Q) [i x(int nu'ml, int nu'mZ)
int =5y 1|
int j = 2; : : /
int k = max(i, j); if (numl > num2)
result = numl;
cout << "The maximum between™\ else
<< i << "and "+ j o+ " s " \ result = num2;
<< k;
return 0; return result;
h }

17

| avimation_|

Trace Function Invocation

Pass the value 1

=== === mmmmm—m—m—————= "= =
1 Pass the va 1
1 I e e e e e 1
1 1 L' 2 N
int main() 1o i int numl, int nu'mZ)
[!
)) 1o /{
int i = 5; : : int resyIt;
int j =25 1
int k = max(i, j); |1f (huml > num2) |
result = numl;
cout << "The maximum between™\ else
<< i << "and "+ j o+ " s " \ result = num2;
<< k;
return 0; return result;
h }

18

| avimation_|

Trace Function Invocation

Pass the value 1

f Pass the va
it W — 3
int main() 1 i , int ndmZ)
int i =5; 1 1 i
int j = 2; : : /
int k = max(i, j); num2)
[result = numl;
cout << "The maximum between™\ else
<< i << "and "+ j o+ " s " \\\\\\ result = num2;
<< k;
return 0; return result;
h }
19
19

| avimation_|

Trace Function Invocation

Pass the value

] P
ittt A — 3
int main(Q) o i x(int ndml, int ndmZ)
: : 4’/’/’ {
int i =5; 1 1 i esult;
int j = 2; : : "’,,////////
int k = max(i, j); i > num2)
= nhuml;
cout << "The maximum between™\
<< i << "and "+ j o+ " s " \\\\\\ = num2;
<< k;
return 0; \ﬁreturn result;
h }
20
20

1/29/20

10

| avimation_|

Trace Function Invocation

Pass the value 1

Pass the value |

int main()

int max(int nu'ml,

1

1
1
1
1
1
1
]

1

int i = § : int result;

int § =7;

fint k = max(G, j); if (numl > num2)
result = numl;

cout << "The maximum between™\ else

<< i << "and "+ j o+ " s " result = num2;
<< k;

return 0; Nreturn result;

}

¥
int num2)

21

21

| avimation_|

Trace Function Invocation

Pass the value 1

:. Pass the value | q
A e .
int main(Q) ; int max(int nLle int nJmZ)
int i = 5; 1 int result;
int j = 2; :
int k = max(i,/3); if (numl > num2)
result = numl;
cout << "The maximum betweeN\ else
<< i << "and "+ 3+ " is " \ result = num2;
<< k;
return 0; return result;
}

22

22

1/29/20

11

Activation record for Activation record for
the main function the main function

Call Stacks

Each time a function is invoked, the system
creates an activation record.

The activation record is placed in an area of
memory known as a call stack.

Activation record for
the max function
resu]t: G o o e o e e e e e
num2: 2 <€
numl: 5 [<€kq

1 |Activation record for
the main function
k:

(|

Stack is empty

RNV

1
1

) N 1)

;.|:2 3:2- 1 3t

i: 5 i 5 i

value is sent to k.

(a) The main function (b) The max (c) The max function is (d) The main function
is invoked. function is invoked. finished and the return is finished.

23

23

Outline

void Functions

Passing Arguments by Value
Modularizing Code

Overloading Functions

Function Prototypes

Default Arguments

Inline Functions

Local, Global, and Static Local Variables
Passing Arguments by Reference
Constant Reference Parameters

24

1/29/20

12

void Functions

A void function does not return a value.

Want to print the grade for a given score.

Two solutions:
1. printGrade prints the grade
2. getGrade prints the grade

TestVoidFunction -

TestReturnGradeFunction -

25
25
void Functions
void printGrade(double score) char getGrade(double score)
{ {
if (score >= 90.0) if (score >= 90.0)
cout << 'A' << endl; return 'A';
else if (score >= 80.0) else if (score >= 80.0)
cout << 'B' << endl; return 'B';
else if (score >= 70.0) else if (score >= 70.0)
cout << 'C' << endl; return 'C';
else if (score >= 60.0) else if (score >= 60.0)
cout << 'D' << endl; return 'D';
else else
cout << 'F' << endl; return 'F';
} }
int main() int main()
{ {
cout << "Enter a score: "; cout << "Enter a score: ";
double score; double score;
cin >> score; cin >> score;
cout << "The grade is "; cout << "The grade is ";
printGrade(score); cout << getGrade(score) << endl;
return 0; return 0; 2%
¥ }
26

1/29/20

13

Terminating a Program

You can terminate a
program at abnormal
conditions by calling
exit(n).

Select the integer n to
specify the error type.

void printGrade(double score)

if (score < @ || score > 100)
{
cout << "Invalid score" << endl;
exit(1);
}
if (score >= 90.0)
cout << 'A";
else if (score >= 80.0)
cout << 'B';
else if (score >= 70.0)
cout << 'C';
else if (score >= 60.0)
cout << 'D';
else
cout << 'F';

27

Outline

Passing Arguments by Value

Modularizing Code
Overloading Functions
Function Prototypes
Default Arguments
Inline Functions

Local, Global, and Static Local Variables
Passing Arguments by Reference
Constant Reference Parameters

28

1/29/20

14

Passing Arguments by Value

* By default, the arguments
are passed by value to
parameters when

invoking a.funCtlon‘ . void nPrint(char ch, int n)
* When calling a function, {

you need to provide

arguments, which must cout << ch;
be given in the same }

order as their respective

parameters in the nPrint('a', 3);

function signature.

* The shown code printsa aaa
character 3 times.

for (int i = 0; i < n; i++)

29

29

Outline

* Modularizing Code

* Overloading Functions

* Function Prototypes

* Default Arguments

* Inline Functions

* Local, Global, and Static Local Variables
* Passing Arguments by Reference

* Constant Reference Parameters

30

1/29/20

15

* Modularizing makes the code easy to maintain and
debug and enables the code to be reused.

* These two examples use functions to reduce

Modularizing Code

complexity.

GreatestCommonDivisorFunction -

PrimeNumberFunction

31

GreatestCommonDivisorFunction.cpp

int

gcd(int n1, int n2)

int ged = 1; // Initial gcd is 1
int k = 2; // Possible gcd

while (k <= nl1 & k <= n2)
{
if (n1 % k == 0 & n2 % k == @)
ged = k; // Update gcd
K++;

}
return gcd; // Return gcd

main()

cout << "The greatest common divisor for " << nl1 <<
"and " << n2 << " is " << gecd(nl, n2) << endl;

return 0;

32

1/29/20

16

PrimeNumberFunction.cpp 1/3

#include <iostream>
#include <iomanip>
using namespace std;

// Check whether number is prime
bool isPrime(int number)

{
for (int divisor = 2; divisor <= number / 2; divisor++)
{
if (number % divisor == @)
{
// If true, number is not prime
return false; // number is not a prime
}
}
return true; // number is prime
}
33
o [
PrimeNumberFunction.cpp 2/3
void printPrimeNumbers(int numberOfPrimes)
{
int count = @; // Count the number of prime numbers
int number = 2; // A number to be tested for primeness
// Repeatedly find prime numbers
while (count < numberOfPrimes)
{
// Print the prime number and increase the count
if (isPrime(number))
{
count++; // Increase the count
if (count % 10 == @) // 10 numbers per line
{
// Print the number and advance to the new line
cout << setw(4) << number << endl;
}
else
cout << setw(4) << number;
}
number++; // Check if the next number is prime
} 34
¥
34

1/29/20

17

PrimeNumberFunction.cpp 3/3

int main()

{

cout << "The first 50 prime numbers are \n";
printPrimeNumbers(50);

return 0;

35

Outline

Overloading Functions

Function Prototypes

Default Arguments

Inline Functions

Local, Global, and Static Local Variables
Passing Arguments by Reference
Constant Reference Parameters

36

1/29/20

18

Overloading Functions

Overloading functions enables you to define
functions with the same name as long as their
signatures are different.

* The max function that was used earlier works only with
the int data type.

* We can define and use other max functions that
accept different parameter counts and types.

TestFunctionOverloading -

37

37

TestFunctionOverloading.cpp 1/2

#include <iostream>
using namespace std;

// Return the max between two int values
int max(int numl, int num2)

{

if (numl > num2)
return numil;
else
return num2;

}

// Find the max between two double values
double max(double numl, double num2)

if (numl > num2)
return numil;
else
return num2;

38

1/29/20

19

TestFunctionOverloading.cpp 2/2

// Return the max among three double values
double max(double numl, double num2, double num3)

{
}

return max(max(numl, num2), num3);

int main()
{
// Invoke the max function with int parameters
cout << "The max between 3 and 4 is " << max(3, 4) << endl;

// Invoke the max function with the double parameters
cout << "The maximum between 3.0 and 5.4 is "
<< max(3.0, 5.4) << endl;

// Invoke the max function with three double parameters
cout << "The maximum between 3.0, 5.4, and 10.14 is "
<< max(3.0, 5.4, 10.14) << endl;

return 0;

39

Ambiguous Invocation

Sometimes there may be two or more possible
matches for an invocation of a function, but the
compiler cannot determine the most specific
match. This is referred to as ambiguous
invocation. Ambiguous invocation is a
compilation error.

40

40

1/29/20

20

Ambiguous Invocation

#include <iostream>
using namespace std;
int maxNumber(int numl, double num2)

{

if (numl > num2)
return numil;
else
return num2;

maxNumber (1.0, 2)
And

maxNumber(1, 2.0)
Are OK

// Compilation error

}
double maxNumber(double numl, int num2)
{
if (numl > num2)
return numil;
else
return num2;
}
int main()
{
cout << maxNumber(l, 2) << endl;
return 0;
}

41

41

Outline

Function Prototypes
Default Arguments
Inline Functions

Local, Global, and Static Local Variables

Passing Arguments by Reference
Constant Reference Parameters

42

1/29/20

21

Function Prototypes

Before a function is called, it must be declared first.

One way to ensure it is to place the declaration before all
function calls.

Another way to approach it is to declare a function
prototype before the function is called.

A function prototype is a function declaration without
implementation.

The implementation can be given later in the program.

TestFunctionPrototype -

43

43
o
TestFunctionPrototype.cpp
#include <iostream>
using namespace std;
// Function prototype
int max(int numl, int num2);
double max(double numl, double num2);
double max(double numl, double num2, double num3);
int main()
{
// Invoke the max function with int parameters
cout << "The maximum between 3 and 4 is " <<
max(3, 4) << endl;
}
// Return the max between two int values
int max(int numl, int num2)
{ Or simply:
if (numl > num2) int max(int, int);
return numi; double max(double, double);
else double max(double, double, double);
return num2;
}
oo 44
44

1/29/20

22

Outline

* Default Arguments

* Inline Functions

* Local, Global, and Static Local Variables
* Passing Arguments by Reference

* Constant Reference Parameters

45

Default Arguments

You can define default values for parameters in a
function.

The default values are passed to the parameters

DefaultArgumentDemo -

46

when a function is invoked without the arguments.

46

1/29/20

23

DefaultArgumentDemo.cpp

#include <iostream>
using namespace std;

// Display area of a circle
void printArea(double radius = 1)

{
double area = radius * radius * 3.14159;
cout << "area is " << area << endl;
}
int main()
{
printArea();
printArea(4);
return 0;
}

47

Default Arguments

* When a function contains a mixture of parameters
with and without default values, those with default
values must be declared last.

void tl(int x, int y = 0, int z); // Illegal

void t3(int x, int y = 0, int z = 0); // Legal

* When an argument is left out of a function, all
arguments that come after it must be left out as well.

t3(1, , 20); // Illegal

t3(1); // Parameters y and z are assigned a default value

48

1/29/20

24

Outline

* Inline Functions

Local, Global, and Static Local Variables
* Passing Arguments by Reference

* Constant Reference Parameters

49

49

Inline Functions

short functions.

invocation.

declaration with the inline keyword.

for long ones.

InlineDemo

InlineExpandedDemo

* Inline functions are not called; rather, the compiler
copies the function code in line at the point of each

* To specify an inline function, precede the function

C++ provides inline functions for improving performance for

* |Inline functions are desirable for short functions but not

50

50

1/29/20

25

InlineDemo.cpp

#include <iostream>
using namespace std;

. Equivalent to:
inline void f(int month, int year) quivaientto
#include <iostream>

{ using namespace std;

cout << "month is " << month << endl; int main0

cout << "year is " << year << endl; o

int month = 10, year = 2008;

} cout << "month is " << month << endl;

cout << "year is " << year << endl;
cout << "month is " << 9 << endl;

int main() cout << "year is " << 2010 << endl;

return 0;

}

int month = 10, year = 2008;
f(month, year); // Invoke inline function
f(9, 2010); // Invoke inline function

return 0;

5

51

Outline

* Local, Global, and Static Local Variables
* Passing Arguments by Reference
* Constant Reference Parameters

52

1/29/20

26

Scope of Variables

* Scope: the part of the program where the
variable can be referenced.

* The scope of a variable starts from its
declaration and continues to the end of the
block that contains the variable.

* A variable can be declared as a /local, a global,
or a static local.

* A local variable: a variable defined inside a
function.

* You can declare a local variable with the same
name in different blocks.

53

53

Scope of Local Variables

* Avariable declared in the initial action part of a for loop
has its scope in the entire loop.

* Avariable declared inside a £or loop body has its scope
limited the rest of the loop body.

void functionl() {

— for (int i = 1; i < 10; 1i++)

{

i|: %ntj;
}.

}

The scope of 1 —>

The scope of |

54

54

1/29/20

27

Scope of Local Variables, cont.

It is acceptable to declare a local variable with the same
name in different non-nesting blocks.

Avoid using same variable name in nesting blocks to
minimize making mistakes.

It is fine to declare i in two It is not a good practice to

nonnesting blocks declare i in two nesting blocks
void functionl() void function2()
int x = 1; rint i = 1;
int y = 1; int sum = 0;
for (int i = 1; i < 10; i++) for (int i = 1; i < 10; i++)
-|: {) ' {{ } ;
Yo } o
for (int i = 1; i < 10; i++4) cout << i << endl;
1: { . L cout << sum << endl;
y +=1;
}
}
55
55
Global Variables
* Global variables are declared outside all
functions and are accessible to all functions in
their scope.
* Local variables do not have default values, but
global variables are defaulted to zero.
VariableScopeDemo -
56
56

1/29/20

28

VariableScopeDemo.cpp

#include <iostream>
using namespace std;

void t1(); // Function prototype
void t2(); // Function prototype

int main()

{
t1();
t2();
return 0;

}

int y; // Global variable
// default to ©

I

void t1()
t .
int x =

cout <<
cout <<

}
void t2()
{ int x =

cout <<
cout <<

1;
"X is " << X <<
"y is " <<y <«
1;
"X is " << X <<
"y is " <<y <«
X is 1
y is 0
X is 1
y is 1

endl;
endl;

endl;
endl;

57

Unary Scope Resolution

If a local variable name is the same as a global variable
name, you can access the global variable using

: :globalVariable. The : : operator is known as the
unary scope resolution.

#include <iostream>
using namespace std;
int vl = 10;

int main()

{

int vl1 = 5;

cout << "local variable vl is
cout << "global variable vl is

return 0;

<< vl << endl;
<< ::v1l << endl;

local variable vl is 5

global variable v1 is 10

58

58

1/29/20

29

Static Local Variables

After a function completes its execution, all its local

variables are destroyed.

To retain the value stored in local variables so that they

can be used in the next call, use static local variables.

Static local variables are permanently allocated in the
memory for the lifetime of the program.

To declare a static variable, use the keyword static.

StaticVariableDemo

59

59

StaticVariableDemo.cpp

#include <iostream>
using namespace std;

void t1(); // Function prototype

int main()

{
t1();
t1();
return 0;

}

void t1()
{
static int x = 1; // Static local
inty =1; // Local, not static
X++;
y++;
cout << "x is
cout << "y is

<< X << endl;
<< y << endl;

< X K X

is
is
is
is

N W NN

60

1/29/20

30

Outline

* Passing Arguments by Reference
* Constant Reference Parameters

61

Pass by Value

* When you invoke a function with a
parameter, the value of the argument is
passed to the parameter. This is referred to
as pass-by-value.

* The variable is not affected, regardless of the
changes made to the parameter inside the
function.

Increment -

62

62

1/29/20

31

Increment.cpp

#include <iostream>
using namespace std;

void increment(int n)

{
n++;
cout << "\tn inside the function is " << n << endl;
}
int main()
{
int x = 1;
cout << "Before the call, x is " << x << endl;
increment(x);
cout << "after the call, x is " << x << endl;
} return 0; Before the call, x is 1

n inside the function is 2
after the call, x is 1 63

63

Reference Variables

A reference variable can be used as a function parameter to
reference the original variable.

A reference variable is an alias for another variable.

Any changes made through the reference variable are
actually performed on the original variable.

To declare a reference variable, place the ampersand (&) in
front of the name.

TestReferenceVariable -

64

64

1/29/20

32

TestReferenceVariable

#include <iostream>
using namespace std;

int main()

{
int count = 1;
int& r = count;
cout << "count is

<< count << endl;

.cpp

cout << "r is " << r << endl;

r++;
cout << "count is
cout << "p is "

<< count << endl;
<< r << endl;

count = 10;

count is 1
ris 1
count is 2
ris 2
count 1is 10
r is 10

cout << "count is << count << endl;
cout << "r is " << r << endl;

return 0;

65

65

Pass By Reference

Parameters can be passed by reference, which makes
the formal parameter an alias of the actual argument.

Thus, changes made to the parameters inside the
function also made to the arguments.

SwapByReference

Inside the swap function
Before swapping nl is 1 n2 is 2
After swapping nl is 2 n2 is 1

Before invoking the swap function, numl is 1 and num2 is 2

After invoking the swap function, numl is 2 and num2 is 1

66

66

1/29/20

33

SwapByReference.cpp 1/2

#include <iostream>
using namespace std;

// Swap two variables
void swap(int& nl, int& n2)

cout << "\tInside the swap function" << endl;
cout << "\tBefore swapping nl is " << nl <<
"'n2 is " << n2 << endl;
// Swap nl with n2

int temp = ni;

nl = n2;

n2 = temp;

cout << "\tAfter swapping nl is " << nl <«
" n2 is << n2 << endl;

67

SwapByReference.cpp 2/2

int main()

// Declare and initialize variables
int num1i = 1;
int num2 = 2;

cout << "Before invoking the swap function, numl is "
<< numl << " and num2 is << num2 << endl;

// Invoke the swap function to attempt to swap two variables
swap(numl, num2);

cout << "After invoking the swap function, numl is " << numl
<< " and num2 is << num2 << endl;

return 0;

68

1/29/20

34

Pass-by-Value vs. Pass-by-
Reference

In pass-by-value, the actual parameter and its formal
parameter are independent variables.

In pass-by-reference, the actual parameter and its
formal parameter refer to the same variable.
Pass-by-reference is more efficient than pass-by-value.
However, the difference is negligible for parameters of
primitive types such as int and double.

So, if a primitive data type parameter is not changed
in the function, you should declare it as pass-by-value
parameter.

69

69

Outline

* Constant Reference Parameters

70

1/29/20

35

Constant Reference Parameters

You can specify a constant reference parameter to
prevent its value from being changed by accident.

// Return the max between two numbers
int max(const int& numl, const int& num2)

{
int result;
if (numl > num2)
result = numi;
else
result = num2;
return result;
}
71
71

Outline

Introduction

Defining a Function

Calling a Function

void Functions

Passing Arguments by Value
Modularizing Code

Overloading Functions

Function Prototypes

Default Arguments

Inline Functions

Local, Global, and Static Local Variables
Passing Arguments by Reference
Constant Reference Parameters

72

1/29/20

36

W

[

Chapter 7: Single-Dimensional
Arrays and C-Strings

Sections 7.1-7.7, 7.11

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University 1
of Jordan for the Course: Computer Skills for Engineers (0907101)

Outline

Introduction

Array Basics

Problem: Lotto Numbers
Problem: Deck of Cards
Passing Arrays to Functions

Preventing Changes of Array Arguments in
Functions

Returning Arrays from Functions
C-Strings

Introduction

How to read one
hundred numbers and
compute their average?

UseAl,A2,..,A100?

Or use a single array
that stores all the
numbers?

#include <iostream>
using namespace std;

int main()

{
double numbers[100];

double sum = 0;

for (int i = @0; i < 100; i++)
{

cout << "Enter a number: "
cin >> numbers[i];

sum += numbers[i];

}

double average =

cout << "Average is "
<< endl;

return 0;

sum / 100;

Introduction

Array is a data structure that represents a collection of the
same types of data.

double myList[10]:

myList[0]
myList[1]
myList[2]

myList[3]

myList[4]

Anﬂyck?@nlm myList[3]
index 5 E

myList[6]

myList[7]

myList[§]

myList[9]

5.6

4.5

21
3.0

32

4.0

34.33 = Element value

34.0

45.45

99.993

111.23

<< average

Outline

* Array Basics

* Problem: Lotto Numbers

* Problem: Deck of Cards

* Passing Arrays to Functions

* Preventing Changes of Array Arguments in
Functions

* Returning Arrays from Functions
* (C-Strings

Declaring Array Variables

datatype arrayRefVar[arraySize];

Example:
double myList[10];

C++ requires that the array size used to declare an array must be a
constant expression. For example, the following code is illegal:

int size = 10;
double myList[size]; // Wrong

But it would be OK, if size is a constant as follow:
const int size = 10;
double myList[size], list2[5]; // Correct

Arbitrary Initial Values

When an array is created, its elements are assigned
with arbitrary values.

They are not initialized.

Accessing Array Elements

* The array elements are accessed through the index.
Array indices are 0-based; that is, they start from 0 to
arraySize-1.

* Each element in the array is represented using the
following syntax, known as an indexed variable:

arrayName[index];

* For example, myList[9] represents the last element in
the array myList.

Using Indexed Variables

* After an array is created, an indexed variable can be

used in the same way as a regular variable.

Examples:

myList[2] = myList[0@] + myList[1];

myList[3]++;

cout << max(myList[@], myList[1]) << endl;

C++ does not check array’s boundary. So, accessing array
elements using subscripts beyond the boundary (e.g.,

myList[-1] and myList[11]) does not cause syntax
errors, but the operating system might report a memory
access violation.

Array Initializers

Declaring, creating, initializing in one step:

dataType arrayName[arraySize] = {value@, valuel,
.., valuek};

Examples:

double myList[4] = {1.9, 2.9, 3.4, 3.5};
double myList[] = {1.9, 2.9, 3.4, 3.5};
double myList[4] = {1.9, 2.9};

10

Trace Program with Arrays

int main()

{

After the array is created

[int values[5] = { @, 6, 6, 6, 0 };|
for (int i = 1; i < 5; i++) \

0 0
{
values[i] = i + values[i - 1]; 1 0
} 2 | o
values[@] = values[1] + values[4]; 3 0
}
4 0

11

11

Trace Program with Arrays

int main()

{

After the array is created
int values[5)’= { 0, 0, 0, 0, O };

for (int i = 4; i < 5; i++)

0 0
{
values[i] = i + values[i - 1]; 1 0
} 2 | o
values[@] = values[1] + values[4]; 3 0
}
4 0

12

Trace Program with Arrays

int main()

{

After the array is created
int values[5] = { 0, 9, 0, 0 };

for (int i = 1;[i < 5] i++)

0 0
{
values[i] = i + values[i - 1]; 1 0
} 2 | o
values[@] = values[1] + values[4]; 3 0
}
4 0

13

int main()

{

After the array is created
int values[5] =

for (int i = 1;

0, 0, 0, 0 };
< 5; i++)

0 0
{
[values[i] = i + values[i - 1]; ———>|! 1
} 2 |0
values[@] = values[1] + values[4]; 3 0
}
4 0

14

Trace Program with Arrays

int main()

{

After the array is created
int values[5] = { 0, 0, © , 0 };

for (int i = 1; i < 5;)

0 0
{
values[i] = i + values[i - 1]; 1 1
} 2 | o
values[@] = values[1] + values[4]; 3 0
}
4 0

15

int main()

{

After the array is created
int values[5] = { o, , 0, 90 };

for (int i = 1;[i < 5j i++)

0 0
{
values[i] = i + values[i - 1]; 1 1
} 2 | o
values[@] = values[1] + values[4]; 3 0
}
4 0

16

Trace Program with Arrays

int main()
{ After the array is created
int values[5] =

for (int i = 1;

0, 0, 0, 0 };
< 5; i++)

0 0

{
[values[i] = i + values[i - 1];] 1

values[@] = values[1] + values[4];

17

int main()

{

After the array is created
int values[5] = { 0, 0, , 0, O };

for (int i = 1; i < 5; [i++)

0 0
{
values[i] = i + values[i - 1]; 1 1
} 2 |3
values[@] = values[1] + values[4]; 3 0
}
4 0

18

Trace Program with Arrays

int main()

{

After the array is created
int values[5] = { 040, 0, 0, O };

for (int i = 1; i++)

0 0
{
values[i] = i + values[i - 1]; 1 1
} 2 |3
values[@] = values[1] + values[4]; 3 0
}
4 0

19

int main()

{

After the array is created
int values[5] = { o,

for (int i =1; i

{
[values[i] = i + values[i - 1]; | !
} 2 | 3
values[@] = values[1] + values[4]; 3 6
}
4 0

20

20

Trace Program with Arrays

int main()

{

After the array is created
int values[5] = { 0, @, ©

for (int i = 1; i < 5;[i+4)

> 0 };

0 0
{
values[i] = i + values[i - 1]; 1 1
} 2 |3
values[@] = values[1] + values[4]; 3 B
}
4 0

21

21

Trace Program with Arrays

int main()

{

After the array is created
int values[5] = { 0,49, 0, 0, O };

for (int i = 1;[i < 5; i++)

0 0
{
values[i] = i + values[i - 1]; 1 1
} 2 |3
values[@] = values[1] + values[4]; 3 B
}
4 0

22

22

Trace Program with Arrays

int main()

{

After the array is created

int values[5] = » @0, 0, 0, 0 };

for (int i = 1; /< 5; i++)
0 0
{
[values[i] = i + values[i - 1]; | 1 1
} 2 |3
values[@] = values[1] + values[4]; 3 6
}
4 10

23

23

int main()

{

After the array is created
int values[5] = { 0, @, 00, O };

for (int i = 1; i < 5; [ixd)

0 0
{
values[i] = i + values[i - 1]; 1 1
} 2 |3
values[@] = values[1] + values[4]; 3 B
}
4 10

24

24

| awimation_|
Trace Program with Arrays

int main()

{

After the array is created

int values[5] = { 0, 0, 0, 0 };

for (int i = 1;[i < 5; i++)
0 0
{
values[i] = i + values[i - 1]; 1 1
} 2 |3
values[@] = values[1] + values[4]; 3 B
}
4 10

25

25
Trace Program with Arrays
int main()
{ After the array is created
int values[5] , 0, 9, 0, 0 };
for (int i = < 55 i++)
{ 0 11
values[if/= i + values[i - 1]; 1 1
} 2 | 3
[values[@] = values[1] + values[4];] s e
} 4 10
26

26

Processing Arrays

* The following loop initializes the array myList with random
values between @ and 99:
const int ARRAY_SIZE = 10;
double myList[ARRAY SIZE];
for (int i = @; i < ARRAY_SIZE; i++)
{

}

* Summing all elements:
double total = o;
for (int i = @; i < ARRAY_SIZE; i++)
{

}

myList[i] = rand() % 100;

total += myList[i];

27

27

Printing Arrays

To print an array, you have to print each element in the
array using a loop like the following:

for (int i = @; i < ARRAY_SIZE; i++)
{

cout << myList[i] << " ";

28

28

Copying Arrays

Can you copy array using a syntax like this?
list = myList; // Does not work

This is not allowed in C++. You have to copy individual
elements from one array to the other as follows:

for (int i = @; i < ARRAY_SIZE; i++)

{
list[i] = myList[i];

}

29

29

Finding the Largest Element

* Use a variable named max to store the largest element.
Initially max is myList[@].

* To find the largest element in the array myList,
compare each element in myList with max, update max
if the element is greater than max.

double max = myList[O];
for (int i = 1; i < ARRAY_SIZE; i++)
{

if (myList[i] > max)
max = myList[i];

30

30

Finding the Smallest Index of
the Largest Element

double max = myList[O];
int indexOfMax = O;
for (int i = 1; i < ARRAY_SIZE; i++)
{
if (myList[i] > max)
{
max = myList[i];
indexOfMax = 1i;

31

31

Shifting/Rotating Elements

double temp = myList[@]; // Save the first
// Shift elements up
for (int i = 1; i < ARRAY_SIZE; i++)
{
myList[i - 1]

myList[i];
}

// First element to last position
myList[ARRAY_SIZE - 1] = temp;

32

32

C++11: Foreach loops
are defined in C++11

Foreach Loops

double myList[] = { @, 1.5, 2.1 };
for (double e : myList) {
cout << e << endl;

NER O
= U

33

33

Outline

* Problem: Lotto Numbers
* Problem: Deck of Cards
* Passing Arrays to Functions

* Preventing Changes of Array Arguments in
Functions

* Returning Arrays from Functions
* C-Strings

34

IR Problem: Lotto Numbers

The problem is to write a program that checks if all the
input numbers cover 1 to 99

isCovered isCovered isCovered isCovered isCovered
[0] false [0] true [0] true [0] true [0] true
[1] false [1] false [1] true [1] true [1] true
[2] false 2] false [2] false [2] true [2] true
[3] false [3] false [3] false [3] false [3] false
[97] false [97] false [97] false [97] false [97] false
[98] false [98] false [98] false [98] false [98] true
(a) () © @ (@)

FiIGure 7.2 If number i appears in a lotto ticket, isCovered[i-1] is set to true.

LottoNumbers - 35

35

LottoNumbers.cpp 1/2

#include <iostream>
using namespace std;

int main()
{
bool isCovered[99];
int number; // number read from a file

// Initialize the array
for (int 1 = 9; i < 99; i++)
isCovered[i] = false;

// Read each number and mark its corresponding element
cin >> number;
while (number !=)

{

isCovered[number - 1] = true;
cin >> number;

36

LottoNumbers.cpp 2/2

// Check if all covered
bool allCovered = true; // Assume all covered initially
for (int i = @; i < 99; i++)

if (!isCovered[i])

allCovered = false; // Find one number not covered
break;

}

// Display result
if (allCovered)
cout << "The tickets cover all numbers" << endl;
else
cout << "The tickets don't cover all numbers" << endl;

return 0;

37

Outline

Problem: Deck of Cards
Passing Arrays to Functions

Preventing Changes of Array Arguments in
Functions

Returning Arrays from Functions
C-Strings

38

Problem: Deck of Cards

The problem is to write a program that picks four cards randomly
from a deck of 52 cards.

All the cards can be represented using an array named deck, filled
with initial values @ to 52, as follows:

const int NUMBER_OF_CARDS = 52;
int deck[NUMBER_OF_CARDS];

// Initialize cards

for (int i = @; i < NUMBER_OF_CARDS;
deck[i] = i;

i++)

39
39
L]
Problem: Deck of Cards, cont.
deck deck

0 [o1] 0 [0]| 6 | Card number 6 is the

: - [1]]48 7(6 % 13 =6) of Spades (6 / 13 = 0)

. 13 Spades (a) X . 21| 11 |

. . . 3] 24

12 [12]] 12 m . Card number 48 is the

13 [1},] 13 5] 10 (48 % 13 = 9) of Clubs (48 /13 =3)

: 13 Hearts (v) ’ Card number 11 is the
25 [25]] 25 Random shuffle [25] . Queen (11 % 13 = 11) of Spades (11 /13 =0)
26 [26]] 26 [26]| .

. 13 Diamonds ())) Card number 24 is the

. . . X . Queen (24 % 13 =11) of Hearts (24/13=1)
38 [38]] 38 38]] .
39 [39]| 39 [39] .

} 13 Clubs (%) e .

51 [51]] 51 [51]) .

DeckOfCards

40

40

DeckOfCards.cpp

#include <iostream>
#include <ctime>
#include <cstdlib> 0 = Spades

#include <string>
using namespace std;

1 —> Hearts
cardNumber /13 =
2 —> Diamonds

3 = Clubs

int main()

{

const int NUMBER_OF_CARDS = 52;
int deck[NUMBER_OF_CARDS];

1/2

cardNumber % 13 =<

10 = Jack

11 —> Queen

12 == King

string suits[] = { "Spades", "Hearts", "Diamonds", "Clubs" };
string ranks[] = { "Ace", "2", "3", "4", "5", ", "zn, ngn ngw,

"10", "Jack", "Queen", "King" };

// Initialize cards
for (int i = @; i < NUMBER_OF_CARDS; i++)
deck[i] = i;

41

41

DeckOfCards.cpp

// Shuffle the cards
srand(time(0));
for (int i = @; i < NUMBER_OF_CARDS; i++)
{
// Generate an index randomly
int index = rand() % NUMBER_OF_CARDS;
int temp = deck[i];
deck[i] = deck[index];
deck[index] = temp;

}

// Display the first four cards
for (int i = @; i < 4; i++)

{
string suit = suits[deck[i] / 13];
string rank = ranks[deck[i] % 13];
cout << "Card number " << deck[i] << ": "
<< rank << " of " << suit << endl;
}
return 0;

2/2

42

Outline

Passing Arrays to Functions

Preventing Changes of Array Arguments in
Functions

Returning Arrays from Functions
C-Strings

43

Passing Arrays to Functions

* You can pass an entire array to a function.
* You need also to pass the size of the array.

* This program gives an example to demonstrate
how to declare and invoke this type of
functions.

PassArrayDemo -

44

44

PassArrayDemo.cpp

#include <iostream>
using namespace std;

void printArray(int list[], int arraySize); // Prototype

int main()

{
int numbers[6] = { 1, 4, 3, 6, 8, 9 };
printArray(numbers, 6); // Invoke the function

return 0;
}
void printArray(int list[], int arraySize)
{

for (int 1 = @; i < arraySize; i++)

{

cout << list[i] << " "; 143689

}

} i
45
45
Pass-by-Value

e Passing an array variable means that the starting
address of the array is passed to the formal
parameter by value.

* The parameter inside the function references to
the same array that is passed to the function. No
new arrays are created.

EffectOfPassArrayDemo -

46

46

EffectOfPassArrayDemo.cpp

#include <iostream>
using namespace std;

void m(int, int[]);
int main()
{
int x = 1; // x represents an int value

int y[18] = { @ }; // y represents an array of int values

m(x, y); // Invoke m with arguments x and y

cout << "x is " << x << endl;

cout << "y[@] is " << y[@] << endl; x 1s 1

y[0] is 5555

return 0;
}
void m(int number, int numbers[])
{
number = 1001; // Assign a new value to number
numbers[@] = 5555; // Assign a new value to numbers[0]
}

47

Outline

* Preventing Changes of Array Arguments in
Functions

* Returning Arrays from Functions
* C-Strings

48

Preventing Changes of Array
Arguments in Functions

Passing arrays by reference makes sense for
performance reasons. If an array is passed by value, all
its elements must be copied into a new array.

However, passing arrays by its reference value could lead
to errors if your function changes the array accidentally.

To prevent it from happening, you can put the const to
tell the compiler that the array cannot be changed.

The compiler will report errors if the code in the
function attempts to modify the array.

ConstArrayDemo Compile error

49

49

ConstArrayDemo.cpp

#include <iostream>
using namespace std;

void p(int const list[], int arraySize)

{

// Modify array accidentally
list[@] = 100; // Compile error!

} 1>C:\ConstArrayDemo.cpp(7,18): error C3892: 'list': you cannot assign to a
variable that is const
1>Done building project "Testing.vcxproj" -- FAILED.

int maln() ========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped =========

{
int numbers[5] = {1, 4, 3, 6, 8};
p(numbers, 5);

return 0;

}

50

Outline

* Returning Arrays from Functions
* (C-Strings

51

Returning Arrays from Functions

* How to return an array from a function?

* You may attempt to declare a function that returns a new
array that is a reversal of an array as follows:

// Return the reversal of list
int[] reverse(const int list[], int size);

e This is not allowed in C++.

52

52

Returning Arrays from Functions,
cont.

* However, you can pass two array arguments in the
function, as follows:
// newList is the reversal of list
void reverse(const int list[], int newList[],
int size);

list [T, [1]

newList [| | Ih‘

ReverseArray -

53

53

ReverseArray.cpp 1/2

#include <iostream>
using namespace std;

// newList is the reversal of list
void reverse(const int list[], int newList[], int size)

{

for (int 1 = @, j = size - 1; i < size; i++, j--)

{
newList[j] = list[i];

}
}
void printArray(const int list[], int size)
{
for (int 1 = @; 1 < size; i++)
cout << list[i] << " ";
} s

54

ReverseArray.cpp 1/2
int main()
{
const int SIZE = 6;
int list[] = {1, 2, 3, 4, 5, 6 };
int newlList[SIZE];

reverse(list, newList, SIZE);
cout << "The original array: ";
printArray(list, SIZE);

cout << endl;

cout << "The reversed array: ";
printArray(newList, SIZE);
cout << endl;

return 0;

55

Trace the reverse Function

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{

for (int i = @, j = size - 1; i < size; i++, j--)

{
newList[j] = list[i];
}
}
list 112 3| 4 5 6
newList olojo|o]| ofo

56

56

void reverse(const int list

Trace the reverse function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

wList[], int size)

{
for (int i = @, j = size - 1; i < size; i++, j--)
{
newList[j] = list[i];
}
}
list 12(3[4]5]|6
newList ofofoflo] oo
57
57

{

void reverse(const int 1list[], int new

Trace the reverse function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

[1, int size)

for (int i = @, j = size - 1; [i < sizd; i+, j--)

{
}

newList[j] = list[i];

list 1121345 6

newlList olojlolo|lol]o

58

58

Trace the reverse function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{

for (int i = 0, j = size - 1; i < size; i++, j--)

{
[newList[j] = list[i];
}
}
list 1|23]4]5]6
newList ofofojo] 0|1

59

59

Trace the reverse function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{
for (int i = @, j = size - 1; i < size;
{
newList[j] = list[i];
}
}
list 123456
newlList olojlolo] o]l

60

60

Trace the reverse function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };

reverse(list, newList, SIZE);
void reverse(const int list[], int neWI’
{

for (int i = @0, j = size - 1; i++, j--)

{
newList[j] = list[i];
}
}
list 112 3| 4 5 6
newList olojlo]o]| of1
61
61

Trace the reverse function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{

for (int i = 0, j = size - 1; i < size; i++, j--)

{
[newList[j] = list[i]; |
}
}
list 112 3| 4 5 6
newlList 010]0|0]2]1

62

62

Trace the reverse function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{
for (int i = 0, j = size - 1; i < size;)
{
newList[j] = list[i];
}
}
list 112 3| 4 5 6
newList olojlolol|2]1
63
63

Trace the reverse function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{
for\ (j_nt i = e’ j = SiZe - 1_;; i++: j--)
{
newList[j] = list[i];
}
}
list 112 3| 4 5 6
newList olojo|o]| 2|1

64

64

Trace the reverse function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{

for (int i = 0, j = size - 1; i < size; i++, j--)

{
[newList[j] = list[i]; |
}
}
list L M I N
newlList ololo]|3]| 211

65

Trace the reverse function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{
for (int i = @, j = size - 1; i < size;[it+, j--)

{
newList[j] = list[i];
}
}
list 112 3| 4 5 6
newList ololo]|3]|2]1

66

Trace the reverse function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{

for (int i = @, j = size - 1;|i < sizq; i++, j--)

{
newList[j] = list[i];
}
}
list 112 3| 4 5 6
newList ololo]|3]| 211
67
67

Trace the reverse function, cont.

int list[] = { 1, 2, 3, 4, 5, 6 };

reverse(list, newList, SIZE);
void reverse(const int list[], int newList[], int size)
{

for (int i = 0, j = size - 1; i < size; i++, j--)

{
[newList[j] = list[i]; |
} T e |
}

list 23

N
Wi
(=)}

newlList olofl4a|3]|2]1

68

68

Trace the reverse function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{
for (int i = @, j = size - 15 i < size;
{
newList[j] = list[i];
}
}
list 112 3| 4 5 6
newlList olol4a|3]|2]1
69
69

Trace the reverse Function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{

for (int i = @0, j = size - 1;

{
newList[j] = list[i];
}
}
list 112 3| 4 5 6
newList olol4a|3]|2]1

70

70

Trace the reverse Function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{

for (int i = 0, j = size - 1; i < size; i++, j--)

{
[newList[j] = list[i];]
}
}
list 1]2]3)45 |6
newlList 0| 5|4 |3]2]1

71

71

Trace the reverse Function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{
for (int i = @, j = size - 15 i < size;[T#+, j=1
{
newList[j] = list[i];
}
}
list 1203456
newlList ofs|a|3] 2|1

72

72

Trace the reverse Function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{

for (int i = @0, j = size - 1;

{
newList[j] = list[i];
}
}
list 112 3| 4 5 6
newList ol s|4al|3]2]1
73
73

Trace the reverse Function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{

for (int i = 0, j = size - 1; i < size; i++, j--)

{

}
}

list 1121345 6

newlList 6| sl4a|3|2]1

74

74

Trace the reverse Function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{
For (int 4 = 6, § = size - 1 1 < size;[FAIE
{
newList[j] = list[i];
}
}
list 112 3| 4 5 6
newList 65|43 211
75
75

Trace the reverse function, cont.

int list[] ={ 1, 2, 3, 4, 5, 6 };
reverse(list, newList, SIZE);

void reverse(const int list[], int newList[], int size)

{
for (int i = @, j = size - 1;|i < size]
{
newList[j] = list[i];
}
}
list 123|456
newList 6|54 |3]2]1

76

76

Outline

* (C-Strings

77

C-Strings
* You studied the string type in Chapter 4.
* Example:
string s = "welcome to C++";

s.at(@) = "W';
cout << s.length() << s[@] << endl;
14W

* Here we study the older C-strings because of
their popularity.

78

Initializing Character Arrays

* You can define arrays of characters.

char city[] = { 'D', 'a', '1', '1', 'a', 's' };
* C-strings are defined as follows:

char city[] = "Dallas";

* |n this case, C++ adds the character '\0', called the null
terminator, to indicate the end of the string. /

IDI lal l]l |'|l laV ISI I\Ol
city[0] city[1] city[2] city[3] city[4] city[5] city[6]
79
79
Reading C-Strings

You can read a string from the keyboard using the
cin object. For example, see the following code:

char city[10];
cout << "Enter a city: ";
cin >> city; // read to array city

cout << "You entered " << city << endl;

80

80

Printing Character Array

For a character array, it can be printed using one print
statement. For example, the following code displays Dallas:

char city[] = "Dallas";
cout << city;

81

81

Reading C-Strings Using getline

* C++ provides the cin.getline function in the iostream
header file, which reads a string into an array:

cin.getline(char array[], int size, char delimitChar);

* The function stops reading characters when the
delimiter character is encountered or when the size -
1 number of characters are read.

* The last character in the array is reserved for the null
terminator (*\0"').

* If the delimiter is encountered, it is read, but not stored
in the array.

* The third argument delimitChar has a default value
("\n").

82

82

Working with C-Strings

string:

* The following function finds the length of a C-

unsigned int strlen(char s[])

{
for (int i

3
return i;

}

@; s[i] !'= '\@'; i++)

* The cstring and cstdlib headers provide

many useful C-strings functions.

83

C-String Functions

Function

Description

size_t strlen(char s[])

strcpy(char s1[], const char
s2[D

strncpy(char s1[], const char
s2[], size_t n)

strcat(char sl1l[], const char
s2[D

strncat(char s1[], const char
s2[], size_t n)

int strcmp(char sl1[], const
char s2[1)

int strncmp(char s1[], const
char s2[], size_t n)

int atoi(char s[]1)
double atof(char s[])
Tong atol(char s[])

void itoa(int value, char
s[1, int radix)

Returns the length of the string, i.e., the number of the
characters before the null terminator.

Copies string s2 to string s1.

Copies the first n characters from string s2 to string s1.

Appends string s2 to sl.

Appends the first n characters from string s2 to s1.

Returns a value greater than 0, 0, or less than 0 if s1 is
greater than, equal to, or less than s2 based on the numeric
code of the characters.

Same as strcmp, but compares up to n number of characters
in s1 with those in s2.

Returns an int value for the string.
Returns a double value for the string.
Returns a long value for the string.

Obtains an integer value to a string based on specified
radix.

84

C-String Examples

CopyString

CombineString -
CompareString -
StringConversion -

85

85

CopyString.CPP

#include <iostream>
#include <cstring>

using namespace std;

int main()

{

char s1[20];
char s2[20] = "Dallas, Texas";
char s3[20] = "AAAAAAAAAA";

strcpy(sl, s2);
strncpy(s3, s2, 6);

The
The
The
The

string in s1 is Dallas, Texas
string in s2 is Dallas, Texas
string in s3 is Dallas

length of string s3 is 6

s3[6] = '\@'; // Insert null

cout << "The
cout << "The
cout << "The
cout << "The
return 0;

string in
string in
string in
length of

sl is
s2 is
s3 is

terminator
" << sl << endl;
<< s2 << endl;
<< s3 << endl;

string s3 is " <<|strlen(s3)| << endl;

86

86

CombineString.cpp

sl is Dallas, Texas, USA
s2 is Texas, USA

s3 is Dallas, Texas
string s1 is 18

string s3 is 13

#include <iostream> The string
#include <cstring> The string
using namespace std; The string
. . The length
;nt main() The length
char s1[20] = "Dallas";
char s2[20] = "Texas, USA";
char s3[20] = "Dallas";

strcat(strcat(s1, ", "), s2);
strncat(strcat(s3, ", "), s2,

5);

cout << "The string in s1 is "
cout << "The string in s2 is "
cout << "The string in s3 is "
cout << "The length of

cout << "The length of

return 0;

<< sl << endl;
<< s2 << endl;
<< s3 << endl;

string sl is
string s3 is

<< strlen(sl) << endl;
<< strlen(s3) << endl;

87

CompareString.cpp

#include <iostream>
#include <cstring>

using namespace std;

int main()

{
char s1[] = "abcdefg";
char s2[] = "abcdg";
char s3[] = "abcdg";
cout << "strcmp(sl, s2) is " <
cout << "strcmp(s2, sl1) is " <
cout << "strcmp(s2, s3) is " <
cout << "strncmp(sl, s2, 3) is

<< endl;

return 0;

}

<
<
<

strcmp(sl,
strcmp(s2, s1) is 1
strcmp(s2, s3) is ©
strncmp(sl, s2, 3) is ©

s2) is -1

strcmp(sl, s2) << endl;
strcmp(s2, sl1) << endl;
strcmp(s2, s3) << endl;
<< strncmp(sl, s2, 3)

88

88

StringConversion.cpp

#include <iostream>

#include <cstring>
using namespace std;

10
int main() 52
{ 42

cout <<|atoi("4") + atoi("5") << |endl; 2a

cout <<|atof("4.5") + atof("5.5") << endl;

char s[10];
itoa(42, s, 8);
cout << s << endl;

itoa(42, s, 10);
cout << s << endl;

itoa(42, s, 16);
cout << s << endl;

return 0;

} 89

89

Converting Numbers to Strings

* Note that the to_string function is useful to convert numbers to string
type.
#include <iostream>
#include <string>
using namespace std; C++11: the to_string function
is defined in C++11

int main()

{
int x = 15;
double y = 1.32;
long long int z = 10935;
string s = "Three numbers: " + to_string(x) + ", " +
to_string(y) + ", and " + to_string(z);
cout << s << endl;
return 0;
}

|Three numbers: 15, 1.320000, and 10935 %

90

Outline

Introduction

Array Basics

Problem: Lotto Numbers
Problem: Deck of Cards
Passing Arrays to Functions

Preventing Changes of Array Arguments in
Functions

Returning Arrays from Functions
C-Strings

91

W

[

Chapter 8: Multidimensional
Arrays

Sections 8.1-8.5, 8.8

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University 1
of Jordan for the Course: Computer Skills for Engineers (0907101)

Outline

Introduction

Declaring Two-Dimensional Arrays
Processing Two-Dimensional Arrays

Passing Two-Dimensional Arrays to Functions
Problem: Grading a Multiple-Choice Test
Multidimensional Arrays

Introduction

Data in a table or a matrix can be represented

using a two-dimensional array.

Distance Table (in miles)

Chicago Boston New York Atlanta Miami Dallas

Houston

Chicago 0 983 787 714 1375 967 1087
Boston 983 0 214 1102 1763 1723 1842
New York 787 214 0 888 1549 1548 1627
Atlanta 714 1102 888 0 661 781 810
Miami 1375 1763 1549 661 0 1426 1187
Dallas 967 1723 1548 781 1426 0 239
Houston 1087 1842 1627 810 1187 239 0
Outline
°

Declaring Two-Dimensional Arrays
* Processing Two-Dimensional Arrays

Problem: Grading a Multiple-Choice Test

Multidimensional Arrays

Passing Two-Dimensional Arrays to Functions

Declaring Two-Dimensional
Arrays

elementType arrayName[ROW_SIZE][COLUMN_SIZE];

* Example
int distances[7][7];

* An element in a two-dimensional array is
accessed through a row and column index.

int bostonToDalas = distances[1][5];

Two-Dimensional Array lllustration

(0] [1] [2] [3] [4] (0] [1] [2] [3] [4] [0] 1] [2]
[0] [0] of1|2]3

[
1] (1] [
[
[

14]5]6

2] 2] 7

(3] [3]

[4] [4] int m[41[3] =
int matrix[5][5]; matrix[2]1[1] = 7; {HZ é: 2%:
{7, 8, 9},
{10, 11, 12}
3

(a) (b) (c)

21789
3

31[10]11]12

Outline

* Processing Two-Dimensional Arrays

Passing Two-Dimensional Arrays to Functions

Problem: Grading a Multiple-Choice Test

Multidimensional Arrays

Initializing Arrays with Random
Values

* Nested for loops are often used to process a two-
dimensional array.

* The following loop initializes the array with random
values between @ and 99:

for (int row = 9; row < rowSize; row++)

{

for (int column = @; column < columnSize; column++)

{

matrix[row][column] = rand() % 100;

}
}

Printing Arrays

* To print a two-dimensional array, you have to print each
element in the array using a loop like the following:

for (int row = @; row < rowSize; row++)

{
for (int column = @; column < columnSize; column++)
{
cout << matrix[row][column] << " ";
}
cout << endl;
}

Summing All Elements

e To sum all elements of a two-dimensional array:

int total = 0;
for (int row = @; row < ROW_SIZE; row++)

{ for (int column = @; column < COLUMN_SIZE; column++)
{
total += matrix[row][column];
}
}

10

Summing Elements by Column

* For each column, use a variable named total to store
its sum. Add each element in the column to total
using a loop like this:

for (int column = @; column < columnSize; column++)
{
int total = 0;
for (int row = @; row < rowSize; row++)
total += matrix[row][column];
cout << "Sum for column " << column <<
<< total << endl;

n ({3

is

11

11

Which row has the largest sum?

* Use variables maxRow and index0fMaxRow to track the largest sum and index
of the row. For each row, compute its sum and update maxRow and
indexOfMaxRow if the new sum is greater.

int maxRow = 0;
int indexOfMaxRow = 0;
// Get sum of the first row in maxRow
for (int column = @; column < COLUMN_SIZE; column++)
maxRow += matrix[@][column];
for (int row = 1; row < ROW_SIZE; row++)
{
int totalOfThisRow = 0;
for (int column = ©; column < COLUMN_SIZE; column++)
totalOofThisRow += matrix[row][column];
if (totalOfThisRow > maxRow)
{
maxRow = totalOfThisRow;
index0OfMaxRow = row;
}
}
cout << "Row " << indexOfMaxRow
<< " has the maximum sum of " << maxRow << endl; 12

12

Outline

* Passing Two-Dimensional Arrays to Functions
* Problem: Grading a Multiple-Choice Test
* Multidimensional Arrays

13

Passing Two-Dimensional Arrays
to Functions

* You can pass a two-dimensional array to a function.

* The column size to be specified in the function
declaration.

* A program that for a function that returns the sum
of all the elements in a matrix.

PassTwoDimensional Array -

14

PassTwoDimensionalArray.cpp 1/2

#include <iostream>
using namespace std;

const int COLUMN_SIZE = 4;

int sum(const int a[]J[COLUMN_SIZE], int rowSize)

{
int total = 0;
for (int row = @; row < rowSize; row++)
for (int column = @; column < COLUMN_SIZE; column++)
{
total += a[row][column];
}
}
return total;
}

15

PassTwoDimensionalArray.cpp 2/2

int main()
{
const int ROW_SIZE = 3;
int m[ROW_SIZE][COLUMN_SIZE];

cout << "Enter " << ROW_SIZE << " rows and "
<< COLUMN_SIZE << " columns: " << endl;
for (int i = @; i < ROW_SIZE; i++)
for (int j = ©; j < COLUMN_SIZE; j++)
cin >> m[i][]j];
cout << "\nSum of all elements is "
<< endl;

<< sum(m, ROW_SIZE)

return 0;

16

Outline

* Problem: Grading a Multiple-Choice Test

* Multidimensional Arrays

17

Student
Student
Student
Student
Student
Student
Student

Student

key

Problem: Grading Multiple-Choice Test

Key to the Questions:

012 3 45 6 7 89

b B DCOCDAEAD

Students' Answers to the Questions:

01 2 3 45 6 7 8 9
A B ACCDTETEATD
DBABC CATETEA AD
EDDATCTGBTETEA ATD
CBAEDTCETEHAD
ABDCCDTETESAD
B BECCDETEA AD
B BACCODTETEAD GradeExam -
EBECCDETEAD .

18

GradeExam.cpp 1/2

#include <iostream>
using namespace std;

int main()

{
const int NUMBER_OF_STUDENTS = 8;
const int NUMBER_OF_QUESTIONS = 10;

// Students' answers to the questions
char answers[NUMBER_OF_STUDENTS][NUMBER_OF_QUESTIONS] =
{

{IAI, IBIJ IAIJ Icl, lcl, 'D', IEIJ IE', IAI, IDI},
{IDI, IBIJ IAIJ lBl, lcl, 'A', IEIJ IE', IAI, IDI},
{IEI, IDIJ IDIJ lAl, lcl, 'B', IEIJ IE', IAI, IDI},
{Icl, IBIJ IAIJ lEl, IDI, lcl, IEIJ IE', IAI, IDI},
{IAI, IBIJ IDIJ Icl, lcl, 'D', IEIJ IE', IAI, IDI},
{IBI, IBIJ IEIJ Icl lcl, 'D', IEIJ IE', IAI, IDI},
{IBI, IBIJ IAIJ Icl, lcl, 'D', IEIJ IE', IAI, IDI},
{IEI, IBIJ IEIJ Icl, lcl, 'D', IEIJ IE', IAI, IDI}
}s 19
19
GradeExam.cpp 2/2
// Key to the questions
char keys[] = { 'DI, IBI, |D|J |c|, |c|, lDI, lAl, 'EI, IAI, 'D' };
// Grade all answers
for (int i = @; i < NUMBER_OF_STUDENTS; i++)
{
// Grade one student
int correctCount = 0;
for (int j = ©; j < NUMBER_OF_QUESTIONS; j++)
{
if (answers[i][j] == keys[j])
correctCount++;
}
cout << "Student " << i << "'s correct count is " <<
correctCount << endl; Student 0's correct count is 7
} Student 1's correct count is 6
Student 2's correct count is 5
Student 3's correct count is 4
Student 4's correct count is 8
return 0; S:udenz 5's correcz counz is 7
} Student 6's correct count is 7 20
- 2

Student 7's correct count is

20

Outline

* Multidimensional Arrays

21

Multidimensional Arrays

You can create n-dimensional arrays for any integer n.

For example, you may use a three-dimensional array to store exam
scores for a class of 6 students with 5 exams and each exam has 2
parts (multiple-choice and essay).

double scores[6][5][2];

lll

scores[11 [J1T[k]
With initialization:
double scores[6][5][2] = {

{{7.5, 20.5}, {9.0, 22.5}, {15, 33.5}, {13, 21.5}, {15, 2.5}},
{{4.5, 21.5}, {9.0, 22.5}, {15, 34.5}, {12, 20.5}, {14, 9.5}},
{{6.5, 30.5}, {9.4, 10.5}, {11, 33.5}, {11, 23.5}, {10, 2.5}},
{{6.5, 23.5}, {9.4, 32.5}, {13, 34.5}, {11, 20.5}, {16, 7.5}},
{{8.5, 26.5}, {9.4, 52.5}, {13, 36.5}, {13, 24.5}, {16, 2.5}},
{{9.5, 20.5}, {9.4, 42.5}, {13, 31.5}, {12, 20.5}, {16, 6.5}} };22

Which student Which exam Multiple-choice or essay

22

Problem: Daily Temperature and
Humidity

* Suppose a meteorology station records the temperature
and humidity at each hour of every day and stores the
data for the past ten days in a text file named
weather.txt.

* Each line of the file consists of four numbers that
indicates the day, hour, temperature, and humidity.

1 1 76.4 0.92
1 2 77.7 0.93

| Weather.exe < Weather.txt |

10 23 97.7 0.71
10 24 98.7 0.74

A program that calculates the average

daily temperature and humidity for the 10 Weather -
days. 23
23

Weather.cpp 1/2

#include <iostream>
using namespace std;

int main()
{
const int NUMBER_OF_DAYS = 10;
const int NUMBER_OF_HOURS = 24;
double data[NUMBER_OF_DAYS][NUMBER_OF_HOURS][2];

// Read input using input redirection from a file

int day, hour;

double temperature, humidity;

for (int k = @; k < NUMBER_OF_DAYS * NUMBER_OF_HOURS; k++)

{
cin >> day >> hour >> temperature >> humidity;
data[day - 1][hour - 1][@] = temperature;
data[day - 1][hour - 1][1] = humidity;
} 2

24

Weather.cpp 2/2

// Find the average daily temperature and humidity

for (int i = @; i < NUMBER_OF_DAYS; i++)

{
double dailyTemperatureTotal = @, dailyHumidityTotal = ©;
for (int j = ©; j < NUMBER_OF_HOURS; j++)
{

dailyTemperatureTotal += data[i][j][@];
dailyHumidityTotal += data[i][j][1];

}

// Display result
cout << "Day " << i << "'s average temperature is "
<< dailyTemperatureTotal / NUMBER_OF_HOURS << endl;
cout << "Day " << i << "'s average humidity is "
<< dailyHumidityTotal / NUMBER_OF_HOURS << endl;
} Day 0's average temperature is 77.7708
Day 0's average humidity is 0.929583
return 0; Day 1's average temperature is 77.3125
} Day 1's average humidity is 0.929583

25

Problem: Guessing Birthday

* Listing 4.4, GuessBirthday.cpp, gives a
program that guesses a birthday.

* The program can be simplified by storing the
numbers in five sets in a three-dimensional
array, and it prompts the user for the answers
using a loop.

GuessBirthdayUsingArray -

26

26

GuessBirthdayUsingArray.cpp 1/2

int dates[5][4][4] = {
{{1, 3, 5, 7},
#include <iostream> {2 1,13, %5,

sinclude <i . {17, 19, 21, 23},
include <l1iomanip> {25, 27, 29’ 31}},

using namespace std; 42, 3, 6 7},

{10, 11, 14, 15},
int main() {18, 19, 22, 23},
{ {26, 27, 30, 31}},

int day = @; // Day to be determined {t 4 5, 6 7k
{12, 13, 14, 15},

char answer; {20, 21, 22, 23},
{28, 29, 30, 31}},
{{ 8, 9, 10, 11},
{12, 13, 14, 15},
{24, 25, 26, 27},
{28, 29, 30, 31}},
{{16, 17, 18, 19},
{20, 21, 22, 23},
{24, 25, 26, 27},
{28, 29, 30, 31}} };

27

GuessBirthdayUsingArray.cpp 1/2

for (int i = 0; i < 5; i++)

{
cout << "Is your birthday in Set" << (i + 1) << "?" << endl;
for (int j = 0; j < 4; j++)
{
for (int k = 0; k < 4; k++)
cout << setw(3) << dates[i][j]l[k] << " ";
cout << endl;
}
cout << "\nEnter N/n for No and Y/y for Yes: ";
cin >> answer;
if (answer == 'Y' || answer == 'y')
day += dates[i][@][0];
}

cout << "Your birthday is " << day << endl;

return 0;

28

Outline

Introduction

Declaring Two-Dimensional Arrays
Processing Two-Dimensional Arrays

Passing Two-Dimensional Arrays to Functions
Problem: Grading a Multiple-Choice Test
Multidimensional Arrays

29

W

Chapter 17: Recursion

Sections 17.1-17.2

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University 1
of Jordan for the Course: Computer Skills for Engineers (0907101)

Outline

* Introduction
* Example: Factorials

1/29/20

Motivations

* Recursion is a technique that leads to elegant
solutions to problems that are difficult to
program using simple loops.

* A recursive function is one that invokes itself.

* Suppose you want to find all the files under a
directory that contains a particular word. How
do you solve this problem? There are several
ways to solve this problem. An intuitive solution
is to use recursion by searching the files in the
subdirectories recursively.

Outline

* Example: Factorials

1/29/20

1/29/20

Computing Factorial

n! =nx(n-1) x (n - 2) x ... x 2 x 1
o! = 1;

n! =nx(n-1)!; n>0

factorial(@) = 1;

factorial(n) = n*factorial(n-1);

ComputeFactorial -

e
ComputeFactorial.cpp

#include <iostream>
using namespace std;
// Return the factorial for a specified index
long long factorial(int n)
{

if (n == @) // Base case

return 1;
else
return n * factorial(n - 1);| // Recursive call

}
int main()
{

// Prompt the user to enter an integer

cout << "Please enter a non-negative integer: ";

int n;

cin >> n;

// Display factorial

cout << "Factorial of " << n << " is " << _factorial(n);
N return @; Factorial of 4 is 24

6

1/29/20

[animation_]
Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4)

[animation_]
Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)

Computing Factorial

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)

Computing Factorial

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)
=4 * 3 * (2 * factorial(1))

10

1/29/20

| awimation_|
Computing Factorial
factorial(0) = 1;
factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)
=4 * 3 * (2 * factorial(1))
=4 *3*(2*(1*factorial(0)))

11

factorial(n) = n*factorial(n-1);

11
|_awimation_|
Computing Factorial
factorial(0) = 1;
factorial(4) = 4 * factorial(3) factorial(n) = n*factorial(n-1);

=4 * 3 * factorial(2)

=4 * 3 * (2 * factorial(1))

=4 *3*(2*(1* factorial(0)))

=4%3*(2*(1*1))

2

12

1/29/20

| awimation_|
Computing Factorial
factorial(0) = 1;
factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)
=4 * 3 * (2 * factorial(1))
=4 *3*(2*(1*factorial(0)))
=4*3*%(2*%(1*1)))
=4%3%(2%1)

factorial(n) = n*factorial(n-1);

13
| awimation_|
Computing Factorial
factorial(0) = 1;
_ _ factorial(n) = n*factorial(n-1);
factorial(4) = 4 * factorial(3)

=4 * 3 * factorial(2)

=4 * 3 * (2 * factorial(1))

=4 *3*(2*(1*factorial(0)))

=4*3%(2%(1*1)

=4%3%(2%1)

=4%3%2

14

14

1/29/20

| _animation_|
Computing Factorial
factorial(0) = 1;
factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)
=4 * 3 * (2 * factorial(1))
=4 *3*(2*(1*factorial(0)))
=4*3%(2%(1*1)
=4%3%(2%1)
=4%3%2
=4%6

factorial(n) = n*factorial(n-1);

15

| awimation_|
Computing Factorial
factorial(0) = 1;
factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)
=4 * 3 * (2 * factorial(1))
=4 *3*(2*(1*factorial(0)))
=4*3%(2%(1*1)
=4*3*%(2*%1)
=4*3%2
=4*6
=24

factorial(n) = n*factorial(n-1);

16

1/29/20

|_animation_|

Trace Recursive factorial

factorial(4)

Space Required
for factorial(4)

Main function

17

|_animation_|

Trace Recursive factorial

factorial(4)

Step 0: executes factorial(4)
—Lm Ao eaeshoone)

18

1/29/20

[awimation_]
Trace Recursive factorial

factorial(4)
Step 0: executes factorial(4)

return 4 * factorial(3)

“return 3 * factorial(2)

19

[awimation_]
Trace Recursive factorial

_factorial(4)
Step 0: executes factorial(4)

return 4 * factorial(3)

Step 1: executes factorial

“return 3 * factorial(2)

Stack

return 2 * factorial(1)

Space Required
for factorial(1)

Space Required
for factorial(2)

quired

Space
for factorial(3)

B
for factorial(4)

Main function

20

20

1/29/20

10

|_animation_]

Trace Recursive factorial

factorial(4)

Step 0: executes factorial(4)

‘return 4 * factorial(3)

Step 1: executes factorial(3)

B return 3 * factorial(2)
~

Step 2: executes fay

turn 2 * factorial(1)

cutes factorial(1)

return 1 * factoyial(0)

Stack

Space Required
for factorial(0)

Space Required
for factorial(1)

Space Required
for factorial(2)

Space Required
for factorial(3)

Space Required
for factorial(4)

Main function

21

21

|_animation_]

Trace Recursive factorial

factorial(4)

| Step 0: executes factorial(4)

return 4 * factorial(3)

j |Step 1: executes factorial(3)

return 3 * factorial(2)

| Step 2: executes facto]

return 2 * factorial(1)

| Step 3: exec

"return 1 * factorial(0)

’ | Step/4: executes factorial(0)

return 1

Stack

Space Required
for factorial(0)

Space Required
for factorial(1)

Space Required
for factorial(2)

Space Required
for factorial(3)

Space Required
for factorial(4)

Main function

22

22

1/29/20

11

[awimation_]
Trace Recursive factorial

factorial(4)
Step 0: executes factorial(4)

return 4 * factorial(3)

Step 1: executes factorial

return 3 * factorial(2)

return 2 * factori;
tep 3: executes factorial(1)

1 * factorial(0)

Step 5: return 1 Step 4: executes factorial(0)

return 1

Stack

Space Required
for factorial(0)

Space Required
for factorial(1)

Space Required
for factorial(2)

Space Required
for factorial(3)

Space Required
for factorial(4)

Main function

23

23

[awimation_]
Trace Recursive factorial

factorial(4)
Step 0: executes factorial(4)

return 4 * factorial(3)

Step 1: executes fag

return 3 * factorial(2)

: executes factorial(2)

2 * factorial(1)

Step 6: return 1 Step 3: executes factorial(1)

return 1 * factorial(0)

Step 5: return 1 Step 4: executes factorial(0)

return 1

Stack

Space Required
for factorial(1)

Space Required
for factorial(2)

Space Required
for factorial(3)

Space Required
for factorial(4)

Main function

24

24

1/29/20

12

1/29/20

[aimation]
Trace Recursive factorial

factorial(4)

Step 0: executes factorial(4)

return 4 * factorial(3)

Step 2: executes factorial(2)
Step 7: return 2 Stack

return 2 * factorial(1)

Step 6: return 1 Step 3: executes factorial(1)

Space Required
for factorial(2)

return 1 * factorial(0)

Space Required

Step 4: executes factorial(0) for factorial(9)

Step 5: return 1 Space Required
for factorial(4)

return 1 Main function

25

25

[aimation]
Trace Recursive factorial

factorial(4)

Step 0: executes factorial(4

Step 8: return 6 Step 1: executes factorial(3)

return 3 * factorial(2)

Step 2: executes factorial(2)
Step 7: return 2 Stack

return 2 * factorial(1)

Step 6: return 1 Step 3: executes factorial(1)

return 1 * factorial(0)

Space Required

Step 4: executes factorial(0) for factorial(9)

Step 5: return 1 Space Required
for factorial(4)

return 1 Main function

26

26

13

|_animation_|

Trace Recursive factorial

Step 0: executes factorial(4)
Step 9: return 24

return 4 * factorial(3)

Step 8: return 6 Step 1: executes factorial(3)

return 3 * factorial(2)

Step 2: executes factorial(2)
Step 7: return 2 Stack

return 2 * factorial(1)

Step 6: return 1 Step 3: executes factorial(1)

return 1 * factorial(0)

Step 4: tes factorial(0
Step 5: return 1 ep 4: executes factorial(0) Space Required

for factorial(4)

return 1 Main function

27

27

factorial(4) Stack Trace

Activation Record
for factorial(0)
n: 0
Activation Record Activation Record
for factorial(1) for factorial(1)
n: 1 n:
3 | Activation Record Activation Record Activation Record
for factorial(2) for factorial(2) for factorial(2)
n: 2 n: 2 n: 2
Activation Record Activation Record Activation Record Activation Record
for factorial(3) for factorial(3) for factorial(3) for factorial(3)
n: 3 n: 3 n: 3 n: 3
1| Activation Record Activation Record Activation Record Activation Record Activation Record
for factorial(4) for factorial(4) for factorial(4) for factorial(4) for factorial(4)
n: 4 n: 4 n: 4 n: 4 n:
Activation Record
for factorial(1)
n:
Activation Record Activation Record
for factorial(2) for factorial(2)
n 2 n:
Activation Record Activation Record | | 8 | Activation Record
for factorial(3) for factorial(3) for factorial(3)
n 3 n 3 n 3
Activation Record Activation Record Activation Record 9 | Activation Record
for factorial(4) for factorial(4) for factorial(4) for factorial(4)
n: 4 n: 4 n: 4 n: 4 28

28

1/29/20

14

* Introduction

Outline

* Example: Factorials

29

1/29/20

15

W

[

Chapter 9: Objects and Classes

Sections 9.1-9.6, 9.9

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University 1
of Jordan for the Course: Computer Skills for Engineers (0907101)

Outline

Introduction

Defining Classes for Objects

Example: Defining Classes and Creating Objects
Constructors

Constructing and Using Objects

Separating Class Definition from Implementation

Data Field Encapsulation

Introduction

Object-oriented programming (OOP) involves
programming using objects.

An object represents an entity in the real world that
can be distinctly identified. For example, a student, a
desk, a circle, a button, and even a loan can all be
viewed as objects.

An object has a unique identity, state, and behaviors.

The state of an object consists of a set of data fields
(also known as properties) with their current values.

The behavior of an object is defined by a set of
functions.

Outline

Introduction

Defining Classes for Objects

Example: Defining Classes and Creating Objects
Constructors

Constructing and Using Objects

Separating Class Definition from Implementation

Data Field Encapsulation

Classes and Objects

A class defines the properties and behaviors for
objects..

Class Name: Circle | <—— A class template

Data Fields:
radius is
Functions:
getArea
Circle Object 1 Circle Object 2 Circle Object 3 | <——— Three objects of
the Circle class
Data Fields: Data Fields: Data Fields:
radius is 1.0 radius is 25 radius is 125
5

* C(lasses are constructs that define objects of the
same type.

e A class uses variables to define data fields and
functions to define behaviors.

* Additionally, a class provides a special type of
functions, known as constructors, which are
invoked to construct objects from the class.

Example of the class for Circle objects

class Circle
public:

double radius;

// The radius of this circle

CircleO
{

radius = 1;

?oub"l e getArea()

// Construct a circle object
Circle(double newRadius)

radius = newRadius;

// Construct a circle object

// Return the area of this circle

-]

return radius * radius * 3.14159;

Data field

Function

Constructors

UML Class Diagram

UML Class Diagram

Circle

+radius: double

The + symbol means public ——>+Circle()

+Circle(newRadius: double)

+getArea(): double

circlel: Circle

circle2: Circle

circle3: Circle

-~

radius = 1.0

radius = 25

radius = 125

<— Class name

~<— Data fields

Constructors and
functions

UML notation
for objects

class Replaces struct

* The Clanguage has the struct type for representing
records.

* For example, you may define a struct type for
representing students as shown in (a).

e C++ class allows functions in addition to data fields.
class replaces struct, asin (b)

struct Student class Student
{ {
int id; public:
char firstName[30]; int id;
char mi; char firstName[30];
char lastName[30]; char mi;
}; char lastName[30];
}i
(a) (b) 9
9
Outline

* Introduction

* Defining Classes for Objects

* Example: Defining Classes and Creating Objects

* Constructors

e Constructing and Using Objects

* Separating Class Definition from Implementation

* Data Field Encapsulation

10

functions.

A Simple Circle Class

* Objective: Demonstrate creating
objects, accessing data, and using

TestCircle -

11

11

#include <iostream>
using namespace std;

class Circle

{

public:
// The radius of this circle
double radius;

// Construct a default object
Circle()

radius = 1;
}
// Construct a circle object
Circle(double newRadius)

{
}

radius = newRadius;

TestCircle.cpp 1/2

// Return the area of this circle
double getArea()

{
}

return radius * radius * 3.14159;

// Return the perimeter of this circle
double getPermeter()
{

return 2 * radius * 3.14159;

}

// Set new radius for this circle
void setRadius(double newRadius)

{
}

[}; // Must place a semicolon here |

radius = newRadius;

12

TestCircle.cpp 2/2

int main()

{

Circle circlel(1.0);
Circle circle2(25);
Circle circle3(125);

cout << "The area of the circle of radius

<< circlel.radius << " is " << circlel.getArea() << endl;
cout << "The area of the circle of radius "

<< circle2.radius << " is " << circle2.getArea() << endl;
cout << "The area of the circle of radius "

<< circle3.radius << " is " << circle3.getArea() << endl;

// Modify circle radius

circle2.radius = 100;

cout << "The area of the circle of radius
<< circle2.radius << " is " << circle2.getArea() << endl;

The area of the circle of radius 1 is 3.14159

The area of the circle of radius 25 is 1963.49
} The area of the circle of radius 125 is 49087.3
The area of the circle of radius 100 is 31415.9 13

return 0;

13

Example: The TV class models TV sets

TV
channel: int The current channel (1 to 120) of this TV.
volumelLevel: 1int The current volume level (1 to 7) of this TV.
on: boolean Indicates whether this TV is on/off
+TVO Constructs a default TV object.
+turnOn(): void Turns on this TV.
+turnOff(): void Turns off this TV.
+setChannel (newChannel: int): void Sets a new channel for this TV.
+setVolume(newVolumelLevel: int): void Sets a new volume level for this TV.
+channelUp(): void Increases the channel number by 1.
+channelDown(): void Decreases the channel number by 1.
+volumeUp(): void Increases the volume level by 1
+volumeDown(): void Decreases the volume level by 1

v

14

TV.cpp 1/4

#include <iostream>
using namespace std;

class TV
{
public:
int channel;

int volumeLevel; // Default volume level is 1
bool on; // By default TV is off

V()

{
channel = 1; // Default channel is 1
volumeLevel = 1; // Default volume level is 1
on = false; // By default TV is off

}

void turnOn()

on = true;

15

TV.cpp 2/4

void turnoff()
{

on = false;

}
void setChannel(int newChannel)
{
if (on && newChannel >= 1 && newChannel <= 120)
channel = newChannel;
}

void setVolume(int newVolumelevel)

if (on && newVolumelLevel >= 1 && newVolumelLevel <= 7)
volumelLevel = newVolumelLevel;

}
void channelUp()
{
if (on && channel < 120)
channel++;
} 16

16

TV.cpp 3/4

void channelDown()

{
if (on && channel > 1)
channel--;
}
void volumeUp()
{
if (on && volumeLevel < 7)
volumeLevel++;
}
void volumeDown()
{
if (on &% volumeLevel > 1)
volumeLevel--;
}
}s
-
17
TV.cpp 4/4
int main()
{
TV tvl;
tvi.turnOn();
tvl.setChannel(30);
tvl.setVolume(3);
TV tv2;
tv2.turnon();
tv2.channelUp();
tv2.channelUp();
tv2.volumeUp();
cout << "tvl's channel is " << tvl.channel
<< " and volume level is " << tvil.volumeLevel << endl;
cout << "tv2's channel is " << tv2.channel
<< " and volume level is " << tv2.volumeLevel << endl;
return 0;
} tvl's channel is 30 and volume Tevel is 3

tv2's channel is 3 and volume Tevel is 2

18

Outline

Introduction

Defining Classes for Objects

Example: Defining Classes and Creating Objects
Constructors

Constructing and Using Objects

Separating Class Definition from Implementation
Data Field Encapsulation

19

Constructors

The constructor has exactly the same name as the defining
class.

Constructors can be overloaded (i.e., multiple constructors
with the same name but different signatures).

A class normally provides a constructor without arguments
(e.g., Circle()). Such constructor is called a no-arg or no-
argument constructor.

A class may be declared without constructors. In this case, a
no-arg constructor with an empty body is implicitly declared
in the class. This constructor is called a default constructor.

20

20

Constructors Features
Constructors must have the same name as the
class itself.

Constructors do not have a return type—not
even void.

Constructors play the role of initializing objects.

21

21

Initializer Lists

Data fields may be initialized in the constructor using
an initializer list in the following syntax:

ClassName(parameterList)

{
}

: datafieldl(valuel), datafield2(value2) // Initializer list

Additional statements if needec
Example:
Circle::Circle() Circle::Circle()
: radius(l) same as {
{ > radius = 1;
} }

22

22

Outline

Introduction

Defining Classes for Objects

Example: Defining Classes and Creating Objects
Constructors

Constructing and Using Objects

Separating Class Definition from Implementation
Data Field Encapsulation

23

Object Names

You can assign a name when creating an object.
A constructor is invoked when an object is created.

The syntax to create an object using the no-arg
constructor is:

ClassName objectName;

For example,
Circle circlel;
The size of and object depends on its data fields
only.
cout << sizeof(circlel) << endl;;
8

24

24

Constructing with Arguments

* The syntax to declare an object using a constructor
with arguments is:

ClassName objectName(arguments);
* For example, the following declaration creates an
object named circle2 by invoking the Circle

class’s constructor with a specified radius 5. 5.

Circle circle2(5.5);

25

25

Access Operator

* After an object is created, its data can be
accessed and its functions invoked using the dot

operator (.), also known as the object member
access operator:

» objectName.dataField references a data
field in the object.

» objectName.function(arguments)
invokes a function on the object.

26

26

Naming Objects and Classes

* When you declare a custom class, capitalize the
first letter of each word in a class name; for
example, the class names Circle,
Rectangle, and Desk.

* The class names in the C++ library are named
in lowercase.

* The objects are named like variables.

27

27

Class is a Type

* You can use primitive data types, like int,
to declare variables.

* You can also use class names to declare
object names.

* In this sense, a class is also a data type.

28

28

Memberwise Copy

You can also use the assignment operator = to copy the
contents from one object to the other.

By default, each data field of one object is copied to its
counterpart in the other object. For example,

circle2 = circlel;

Copies the radius in circlel to circle2.

After the copy, circlel and circle2 are still two
different objects, but with the same radius.

29

29

Constant Object Name

Object names are like array names. Once an
object name is declared, it represents an object.

It cannot be reassigned to represent another
object.

In this sense, an object name is a constant,
though the contents of the object may change.

30

30

Anonymous Object

Most of the time, you create a named object and later
access the members of the object through its name.
Occasionally, you may create an object and use it only
once. In this case, you don’t have to name the object.
Such objects are called anonymous objects.
The syntax to create an anonymous object is
ClassName() or ClassName(arguements)

You can create an anonymous object just for finding the
area by:

cout << "Area:" << Circle(5).getArea() << endl;

31

31

Outline

Introduction

Defining Classes for Objects

Example: Defining Classes and Creating Objects
Constructors

Constructing and Using Objects

Separating Class Definition from Implementation

Data Field Encapsulation

32

Separating Definition from
Implementation

C++ allows you to separate class definition from
implementation.

The class definition describes the contract of the class and
the class implementation implements the contract.

The class declaration simply lists all the data fields,
constructor prototypes, and the function prototypes.

The class implementation implements the constructors and
functions.

The class declaration and implementation are in two
separate files. Both files should have the same name, but
with different extension names. The class declaration file
has an extension name .h and the class implementation file
has an extension name .cpp.

Circle.h Circle.cpp TestCircleWithHeader.cpp -

33

33

Circle.h

#ifndef CIRCLE_H

fidefine CIRCLEH \ Used to prevent a header file from

class Circle L . .
{ being included multiple times.

public:
// The radius of this circle
double radius;

// Construct a default circle object
Circle();

// Construct a circle object
Circle(double);

// Return the area of this circle
double getArea();

}s

#tendif

34

Circle.cpp

#include "Circle.h"

// Construct a default circle object
Circle::Circle()

{
radius = 1; - -
} The :: symbol is the binary scope

resolution operator

// Construct a circle object
Circle::Circle(double newRadius)

{
}

radius = newRadius;
// Return the area of this circle
double Circle::getArea()

{
return radius * radius * 3.14159;

} 35

35

TestCircleWithHeader.cpp

#include <iostream>
#include "Circle.h"
using namespace std;

The area of the circle of radius 1 is 3.14159
int main() The area of the circle of radius 5 is 78.5397
{ The area of the circle of radius 100 is 31415.9

Circle circlel;
Circle circle2(5.0);
cout << "The area of the circle of radius "
<< circlel.radius << " is " << circlel.getArea() << endl;
cout << "The area of the circle of radius "
<< circle2.radius << " is " << circle2.getArea() << endl;
// Modify circle radius
circle2.radius = 100;
cout << "The area of the circle of radius
<< circle2.radius << " is " << circle2.getArea() << endl;

return 0;

36

Outline

Introduction

Defining Classes for Objects

Example: Defining Classes and Creating Objects
Constructors

Constructing and Using Objects

Separating Class Definition from Implementation
Data Field Encapsulation

37

Data Field Encapsulation

The data fields radius in the Circle class can be
modified directly (e.g., circlel.radius = 5).
This is not a good practice for two reasons:

1.
2.

Data may be tampered.

Second, it makes the class difficult to maintain and
vulnerable to bugs. Suppose you want to modify the
Circle class to ensure that the radius is non-negative
after other programs have already used the class. You
have to change not only the Circle class, but also
the programs (clients) that use the Circle class. This
is because the clients may have modified the radius
directly (e.g., myCircle.radius = -5).

38

38

Accessor and Mutator

* Aget function is referred to as a getter (or accessor).
* A get function has the following signature:

returnType getPropertyName()

* Ifthe returnType is bool, the get function should be defined

as follows by convention:
bool isPropertyName()

* A set function is referred to as a setter (or mutator).
* A set function has the following signature:

public void setPropertyName(dataType propertyValue)

39
39
le: The Circle CI ith
Example: The Circle Class wit
Encapsulation
Circle
gl}:fg‘zl;ﬂ,?(;gs:gfms -radius: double The radius of this circle (default: 1.0).
+CircleQ Constructs a default circle object.
+Circle(radius: double) Constructs a circle object with the specified radius.
+getRadius(): double Returns the radius of this circle.
+setRadius(radius: double): void Sets a new radius for this circle.
+getArea(): double Returns the area of this circle.
CircleWithPrivateDataFields.h
CircleWithPrivateDataFields.cpp
TestCircleWithPrivateDataFields -
40

40

CircleWithPrivateDataFields.h

#ifndef CIRCLE_H
#define CIRCLE_H

class Circle

{

public:
Circle();
Circle(double);
double getArea();
double getRadius();
void setRadius(double);

private:
double radius;

};

#endif

41

41

CircleWithPrivateDataFields.cpp

#include "CircleWithPrivateDataFields.h"
// Construct a default circle object
Circle::Circle()

{
}

radius = 1;

// Construct a circle object
Circle::Circle(double newRadius)

{
}

radius = newRadius;

// Return the area of this circle
double Circle::getArea()
{

}

return radius * radius * 3.14159;

// Return the radius of this
circle
double Circle::getRadius()

{
}

return radius;

// Set a new radius
void Circle::setRadius(double
newRadius)

{

radius = (newRadius >= 0)
? newRadius : 0;

42

TestCircleWithPrivateDataFields.cpp

#include <iostream>
#include "CircleWithPrivateDataFields.h"
using namespace std;

int main()

{

The area of the circle of radius 1 is 3.14159
The area of the circle of radius 5 is 78.5397
Circle circlel; The area of the circle of radius 100 is 31415.9

Circle circle2(5.0);

cout << "The area of the circle of radius "
<< circlel.getRadius() << " is " << circlel.getArea() << endl;
cout << "The area of the circle of radius "

<< circle2.getRadius() << " is " << circle2.getArea() << endl;

// Modify circle radius

3
cout << "The area of the circle of radius "
<< circle2.getRadius() << " is " << circle2.getArea() << endl;

return 0;
}
43
Outline
* Introduction
* Defining Classes for Objects
* Example: Defining Classes and Creating Objects
* Constructors
e Constructing and Using Objects
* Separating Class Definition from Implementation

Data Field Encapsulation

44

44

W

[

Chapter 11: Pointers and Dynamic
Memory Management

Sections 11.1-11.2, 11.5-11.7

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University 1
of Jordan for the Course: Computer Skills for Engineers (0907101)

Outline

Introduction

Pointer Basics

Arrays and Pointers

Passing Pointer Arguments in a Function Call
Returning a Pointer from Functions

Introduction

Pointer variables, simply called pointers, are designed
to hold memory addresses as their values.

Normally, a variable contains a specific value, e.g., an
integer, a floating-point value, and a character.

However, a pointer contains the memory address of a
variable that in turn contains a specific value.

Outline

Pointer Basics

Arrays and Pointers

Passing Pointer Arguments in a Function Call
Returning a Pointer from Functions

0013FF60
0013FF61
0013FF62
0013FF63
0013FF64
0013FF65
0013FF66
0013FF67

pCount:

Pointer Basics

int count = 5;
short status = 2;

char letter = 'A";

string s = "ABC";

count (int type, 4 bytes) .
int* pCount = &count;

05

" } status (short type, 2 bytes)

55 } letter (char type, 1 byte)

Contents for a &count means the address of count

string objects.

*pCount means the value pointed by pCount is
assigned to v.

00

13 pCount is 0013FF60

FF

60

Declare a Pointer

* Like any other variables, pointers must be declared before they
can be used. To declare a pointer, use the following syntax:
dataType* pVarName;

* Each variable being declared as a pointer must be preceded by
an asterisk (*). For example, the following statement declares a
pointer variable named pCount that can point to an int
variable.
int* pCount;

pCount

pCount count

Address of | Address of{wof variable count

TestPointer -

TestPointer.cpp

#include <iostream>
using namespace std;

int main()

{

int count = 5;

int* pCount = &count;

cout << "The value of count is << count << endl;
cout << "The address of count is " << &count << endl;
cout << "The address of count is " << pCount << endl;
cout << "The value of count is " << *pCount << endl;

return 0; The value of count is 5
} The address of count is @OAFF980
The address of count is ©OAFF980
The value of count is 5

Dereferencing

* Referencing a value through a pointer is called
indirection. The syntax for referencing a value from a
pointer is:

*pointer

* For example, you can increase count using:
count++; // direct reference
or

(*pCount)++; // indirect reference

* The asterisk (*) is the indirection operator or
dereference operator.

(a) pY is assigned to pX; (b) *pY is assigned to *pX.
ﬂ

Address of x Address of x

pY

Address of y | Address of y | 6 |

pX = *pY;

X X
Address of x | 5 | Address of x Address of x 6 |
<l

pY Y
Address of y | Address of y | 6 | Address of y Address of y

(a) (b)

pX
Address of x

/{

I
I

Pointer Type

* A pointer variable is declared with a type such as int,
double, etc.

* You have to assign the address of the variable of the
same type.

* |tis a syntax error if the type of the variable does not
match the type of the pointer. For example, the
following code is wrong.

int area = 1;
double* pArea = &area; // Wrong

10

Initializing Pointer
Like a local variable, a local pointer is assigned an
arbitrary value if you don’t initialize it.

A pointer may be initialized to @, which is a special
value for a pointer to indicate that the pointer points
to nothing.

You should always initialize pointers to prevent errors.

Dereferencing a pointer that is not initialized could
cause fatal runtime error or it could accidentally
modify important data.

11

11

Caution

* You can declare two variables on the same line. For

example, the following line declares two int variables:
int i= 9, j = 1;

Can you declare two pointer variables on the same line
as follows?
int* pl, p3j;

No, the right way is:
int *pl, *pj;

12

Outline

* Arrays and Pointers

* Passing Pointer Arguments in a Function Call
e Returning a Pointer from Functions

13

Arrays and Pointers

An array variable without a bracket and a subscript actually
represents the starting address of the array.

The array variable is essentially a pointer. Suppose you declare
an array of int value as follows:

int list[6] = { 11, 12, 13, 14, 15, 16 };

lis({0] list[1] list2] list[3] list[4] list[3]

IENEEREEE R
list list+1 list+2 list+3 list+4 list+5
no | e |]| 5] s
Hlist - F(list+1) *(list+2)*(list+3) *(list+4) *(list+5) 14

14

Array Pointer

 ¥(list + 1) isdifferent from *1ist + 1.The
dereference operator (*) has precedence over +.

* So, ¥1ist + 1 adds 1 to the value of the first
element in the array, while ¥*(1list + 1)
dereference the element at address (1list + 1)
in the array.

ArrayPointer -
PointerWithIndex -

15

ArrayPointer.cpp

#include <iostream>
using namespace std;

int main()

lint list[6] = { 11, 12, 13, 14, 15, 16 };|

for (int 1 = 0; 1 < 6; i++)
cout << "address: " << (list + i) <«

" value: " << *(list + i) << " " <«

" value: " << list[i] << endl;

address: 0013FF4C value: 11 value: 11

return @; address: 0013FF50 value: 12 value: 12
} address: 0013FF54 value: 13 value: 13
address: 0013FF58 value: 14 value: 14
address: 0013FF5C value: 15 value: 15
address: 0013FF60 value: 16 value: 16 16

16

#include <iostream>

int main()

{

|int* p = 1ist;|

value:
value:

value:

using namespace std;

value: " <<

for (int 1 = 0; i < 6; i++)

cout << "address: " << (list + i) <«
<< *(list + i) << " " <«
<< list[i] << " " <«
*(p + i) <<

" << p[i] << endl;

n <<

PointerWithindex.cpp

int list[6] = { 11, 12, 13, 14, 15, 16 };

return 0;

address:
address:
} address:
address:
address:
address:

0013FF4C
0013FF50
0013FF54
0013FF58
0013FF5C
0013FF60

value:
value:
value:
value:
value:
value:

11
12
13
14
15
16

value:
value:
value:
value:
value:
value:

11
12
13
14
15
16

value:
value:
value:
value:
value:
value:

11
12
13
14
15
16

value:
value:
value:
value:
value:
value:

11
12
13
14
15
16

17

Outline

* Returning a Pointer from Functions

* Passing Pointer Arguments in a Function Call

18

Passing Pointer Arguments

* A pointer argument can be passed by value or by reference. For
example, you can define a function as follows:

void f(int* p1, int*& p2);

* which is equivalently to
typedef int* intPointer;
void f(intPointer pl, intPointer & p2);

* Here pl is pass-by-value and p2 is pass-by-reference.

TestPointerArgument -

19

TestPointerArgument.cpp 1/5

#include <iostream>
using namespace std;

// Function definitions are here

int main()

{
// Declare and initialize variables
int num1i = 1;
int num2 = 2;

cout << "Before invoking the swap function, numl is "
<< numl << " and num2 is << num2 << endl;

IBefore invoking the swap function, numl is 1 and num2 is 2

20

TestPointerArgument.cpp 2/5

// Swap two variables using pass-by-value
void swapl(int nl, int n2)
{
int temp = ni;
nl = n2;
n2 = temp;
}

// #hvoke the swap function to attempt to swap two variables

swapl(numl, num2);

cout << "After invoking the swap function, numl is
<< numl << and num2 is " << num2 << endl;

({3

After invoking the swap function, numl is 1 and num2 is 2|

21

TestPointerArgument.cpp 3/5

// Swap two variables using pass-by-reference

void swap2(int& nl, int& n2)

{
int temp = ni;
nl n2;
n2 temp;

Before invoking the swap function, numl is
and num2 is " << num2 << endl;

cout <<
<</numl << "
// JXnvoke the swap function to attempt to swap two variables

swap2(numl, num2);
cout << "After invoking the swap function, numl is
<< and num2 is " << num2 << endl;

<< numl

Before invoking the swap function, numl is 1 and num2 is 2
After invoking the swap function, numl is 2 and num2 is 1

22

22

TestPointerArgument.cpp 4/5

// Pass two pointers by value
void swap3(int* pl, int* p2)
{

int temp = *pi;

*pl = *p2;

*p2 = temp;
}

cout << /Before invoking the swap function, numl is

numl << " and num2 is << num2 << endl;

// JfAvoke the swap function to attempt to swap two variables

swap3(&numl, &num2);

cout << "After invoking the swap function, numl is
<< " and num2 is " << num2 << endl;

<< numl

Before invoking the swap function, numl is 2 and num2 is 1
After invoking the swap function, numl is 1 and num2 is 2

23

TestPointerArgument.cpp 5/5

// Pass two pointers by reference
void swap4(int*& pl, int*& p2)
{

int* temp = pi;

Pl = p2;
2 = temp;
int* p1 = &numi; } P Ps
int* p2 = &nu
cout << "Befbre invoking the swap function, pl is "

<< << " and p2 is " << p2 << endl;
// Ipdoke the swap function to attempt to swap two variables
swap4(pl, p2);
cout << "After invoking the swap function, p1l is
" and p2 is " << p2 << endl;

<< pl <<

return 0;

Before invoking the swap function, pl is 0028FB84 and p2 is 0028FB78
After invoking the swap function, pl is 0028FB78 and p2 is 0028FB84 24

24

Array Parameter or Pointer
Parameter

* An array parameter in a function can always be
replaced using a pointer parameter.

‘void m(int 1ist[], int size)

can be replaced by

void m(int* Tist, int size) I

’void m(char c_string[])

can be replaced by

void m(char* c_string) ‘

25

25

const Parameter

If an object value does not change, you should declare it
const to prevent it from being modified accidentally.

ConstParameter -

26

26

ConstParameter.cpp

#include <iostream>
using namespace std;

void printArray(const int*, const int);

int main()

{
int list[6] = { 11, 12, 13, 14, 15, 16 };
printArray(list, 6);

return 0;

}

void printArray(const int* list, const int size)

for (int 1 = 9; i < size; i++)

cout << list[i] << " "; |11 12 13 14 15 16

27

Outline

* Returning a Pointer from Functions

28

Returning a Pointer from Functions

* You can use pointers as parametersin a
function.

* A C++ function may return a pointer as well.

ReverseArrayUsingPointer -

29

29

ReverseArrayUsingPointer.cpp 1/2

#include <iostream>
using namespace std;

int* reverse(int* list, int size)

{
for (int 1 = 0, j = size - 1; i < j; i++, j--)
{
// Swap list[i] with 1list[j]
int temp = list[j];
list[j] = 1list[i];
list[i] = temp;
}
|return list; |
}

30

ReverseArrayUsingPointer.cpp 2/2

void printArray(const int* list, int size)

{
for (int 1 = @; 1 < size; i++)
cout << list[i] << " ";
}
int main()
{
int list[] ={ 1, 2, 3, 4, 5, 6 };
int* p = reverse(list, 6);
printArray(p, 6);
return 0;
}
654321
Outline

Introduction

Pointer Basics

Arrays and Pointers

Passing Pointer Arguments in a Function Call

Returning a Pointer from Functions

