* Digital signal processing. (DSP)
- Discrete Time signals:
$x(t)$: continuous signal
$x[n]$: Discrete time signal

Descritized signal

Discrete
By Nature
G

* Descritized signal :

$$
\left.x(t)\right|_{t=n T}=x(n T)=x[n]
$$

T: The sampling period
$T=\frac{1}{F_{s}}$ where F_{s} : The sampling Freq
(ex) Sampling Freq $=10 \mathrm{~Hz}$ (sample /sec)
G

$$
T=\frac{1}{10}=0.1 \mathrm{sec}
$$

* Discrete by Nature:
ex: Taking reads in the lab.
* Representaticer of Discrete -Time signals:
(1) Functional Representation

$$
\begin{aligned}
& x[n]=\cos \left(\underline{\omega}_{n}\right) \text { for all } n \text {. } \\
& w \text { discrete freq } \rightarrow x(t)=\cos (\Omega(t) \\
& \text { (rad/sample) } \\
& \rightarrow \text { continuous freq. } \\
& \text { (rad/sec) }
\end{aligned}
$$

(2) Tabular method

n	0	1	2	3	4		
$x[n]$	1.5	3.6	2.7	-1.5	3	\quad	corresponding
:---:							
value							

(3). Sequence method:

$$
\begin{aligned}
& x[n]=\{\cdots, 1.5,3.6,2.7,-2.3,4, \ldots\} \\
& \text { infinite } n=-1 \quad \prod_{n=0} n=1 \quad n=2 \quad \text { infinite from } \\
& \text { the right side } \\
& \text { the left side }
\end{aligned}
$$

* There should be an extra informaticen about the Zero location \rightarrow we 是 use vertical arrow

$$
\begin{aligned}
& x[-2]=1.5 \\
& x[-1]=3.6 \\
& x[0]=2.7
\end{aligned}
$$

(ex) $x_{i}[n]=\{11234\}$ length

If there isn't any info about the zero, the default is the first - element \rightarrow (offline Data)

No Arrow \rightarrow means that the first element is index zero
(4) length sequence
$\rightarrow *$ of elements inside

$$
\hat{x_{1}[n] \neq x_{2}[n]} \begin{aligned}
& \text { order is important }
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}[n]=\left\{\begin{array}{llll}
2 & 1 & 3 & 4
\end{array}\right\} \rightarrow x[0]=2 \\
& x_{3}[n]=\left\{\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right\} \\
& N_{1}=-1
\end{aligned}
$$

L He first index
\rightarrow the last index with non-zero with non-zero value value
$N:$ The length of the sequence $\rightarrow N=N_{2}-N_{1}+1$

$$
\begin{aligned}
& X_{1}[n]=\{1.5,1.6,2.7,-2.3,4, \ldots\} \rightarrow \text { infinite sequence } \\
& \begin{array}{ll}
N_{1}=-2 \\
x[n]=0
\end{array} \quad \text { (Right-sided sequence) } \\
& n<-2 \quad\left(N_{1}\right) \\
& x_{2}[n]=\{\cdots, 1.5,1.6,2.7,-2.3,4\} \rightarrow \text { left-sided sequence } \\
& x[n]=0 \quad N_{2} \quad n>2 \\
& x[n]=\left\{\begin{array}{llll}
1 & 1.5 & 2.6 & -3
\end{array}\right\} \quad-2 \leqslant n \leqslant 1 \\
& x[-2]=1 \\
& x[0]=2.6
\end{aligned}
$$

4 Matrix Representation:

$$
\begin{aligned}
& \underline{x}=\left[\begin{array}{c}
x[0] \\
x[1] \\
x[2] \\
\vdots \\
x[N]]
\end{array}\right] \\
& \underline{x}=[x[0] \cdot x[1] \quad x[2] \cdots x[n-1]]^{T} \\
& T \leadsto T: \text { Transpose } \\
& \text { operation } \\
& \longrightarrow \text { column vector NXI }
\end{aligned}
$$

* Elemantiry operations on frequencies:
(1) Addition.

$$
w_{1}[n]=x[n]+y[n]
$$

Example

$$
\begin{aligned}
& x[n]=\left\{\begin{array}{llll}
1 & 2 & 3 & 1
\end{array}\right\} \\
& y[n]=\left\{\begin{array}{lll}
1 & 1 & 2
\end{array}\right\}
\end{aligned}
$$

$$
\text { Cs } \begin{array}{ccccc}
1 & 2 & 3 & 1 & 0 \\
0 & 1 & 1 & 2 & 2 \\
\omega_{1}[n]=\left\{\begin{array}{lllll}
1 & 3 & 4 & 3 & 2
\end{array}\right\}
\end{array}
$$

\qquad
(2) Multiplication.

* It's very important to fix

$$
w_{2}[n]=x[n] y[n]
$$ the indicies.

* for th same previous example

$$
\begin{aligned}
& \text { * for the same previous example } \\
& w_{2}[n]=\left\{\begin{array}{lllll}
0 & 2 & 3 & 2 & 0
\end{array}\right\} \equiv\left\{\begin{array}{lll}
2 & 3 & 2 \\
\uparrow
\end{array}\right\} \leftarrow \begin{array}{l}
\text { equiulat } \\
\text { sequences. }
\end{array}
\end{aligned}
$$

in matlab:

$$
w_{2}=x \cdot * y
$$

element by element
(3) Multiplication by a constant.
$w_{3}[n]=A \times[n] \quad A:$ constant (Real number)

$$
x[n] \quad w_{3}[n]=A \times[n]
$$

$A=-1$
$x=\{12\} \rightarrow$ which means 180° phase -$\omega_{3}=\left\{\begin{array}{ll}-1 & -2\end{array}\right\} \quad$ shift.
(4) Tine - Delay

$$
\begin{aligned}
& w_{3}[n]=x[n-1] \\
& x[n]=\left\{\begin{array}{cccc}
1 & 2 & 3 & 1 \\
-2 & -1 & i_{n=0} & n=1
\end{array}\right. \\
& w_{3}[-2]=x[-2-1]=x[-3]=0 \\
& w_{3}[-1]=x[-1-1]=x[-2]=1 \\
& w_{3}[0]=x[0-1]=x[-1]=2 \\
& w_{3}[1]=x[1-1]=x[0]=3 \\
& w_{3}[2]=x[2-1]=x[1]=1
\end{aligned}
$$

$$
\left\{\begin{array}{l}
w_{3}[n]=\left\{\left.\begin{array}{ccc}
1 & 2 & 3
\end{array} \right\rvert\,\right. \\
1
\end{array}\right\}
$$

(G)

V-
1-single time delay
 Cascaded system.
(5) Tine-advance

$$
\begin{aligned}
& w_{s}[n]=x[n+1] \quad\binom{n o n-\text { causal }}{\text { signal }} \\
& \xrightarrow{x[n]} z^{1} \xrightarrow{w_{s}[n]}=x[n+1]
\end{aligned}
$$

(6) Pick-off point (

Example:

$$
\begin{aligned}
& y[n]-a_{1} y[n-1]-a_{2} y[n-2]=b_{0} x[n]+b_{1} x[n-1]+b_{2} x[n-2] \\
& G y[n]=a_{1} y[n-1]+a_{2} y[n-2]+b_{0} x[n]+b_{1} \bar{x}[n-1]+b_{2} x[n-2]
\end{aligned}
$$

-schematic of ter differance equation

- Classification of sequences:

Based on symmetry
A sequence $x[n]$ is called conjigate symmetric sequence if

$$
\underset{\text { conighte }}{x[(5)} \underset{C_{5}}{x[n]}=X^{*}[-n]
$$

$$
(x+j y)^{*}=x-j y
$$

if x 保is real

$$
\mathrm{Cs}
$$

A sequence $x[n]$ is called conjigate anti-symmetric sequence if $X_{a}[n]=-X_{a}^{*}[n]$
if $x[n]$ is real then,

$$
X_{o d}[n]=-X_{o d}[-n]
$$

(odd symmetry)

In general: any sequence $x[n]$ has two parts

$$
x[n]=x_{c s}[n]+X_{c a}[n]
$$

where:

$$
\begin{aligned}
& \text { where: } \\
& x_{c s}[n]=\frac{x[n]+x^{*}[-n]}{2} \\
& x_{c a}[n]=\frac{x[n]-x^{*}[-n]}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{x}_{c_{s}}^{x}[n]=\frac{x[n]+x^{*}[-n]}{2} \\
& {\underset{c A}{x}[n]=\frac{x[n]-x^{*}[-n]}{2}}_{l}^{2}
\end{aligned}
$$

Example)

$$
\begin{aligned}
& x[n]=\left\{\begin{array}{cccc}
1-j & 2+j 4 & 3-j 6 & 5
\end{array}\right\} \\
& x^{*}[-n]
\end{aligned}=\left\{\begin{array}{ccccc}
5 & \begin{array}{c}
3+j 6 \\
\uparrow
\end{array} & 2-j 4 & 1+j
\end{array}\right\}
$$

$$
x_{[A}[n] \rightarrow \quad 1-j \quad 2+j 4 \quad 3-j 6 \quad 50
$$

(20) $\frac{0}{0} \frac{5}{1-j}$| $-3+j 4$ | $-j 12$ | $3+j 4$ | $-1-j$ |
| :---: | :---: | :---: | :---: |
| | \uparrow | | $2-j 4$ |

divide by (2)

$$
X_{c A}[n]=\left\{\begin{array}{ccccc}
0.5-j 0.5 & -1.5+j 2-j 6 & -1.5+j 2-0.5-j 0.5
\end{array}\right\}
$$

* Periodic and Aperiodic Sequences:

A sequence $x[n]$ is periodic if $x[n]=x[n+K N]$
for all $n \quad(-\infty<n<\infty)$
k : an integer
N: positive integer (the period of the periodical sequence)
N_{f}

$$
x[n]=x[n+3]
$$

Weaner period sip fundemutal period
$\rightarrow N_{f}:$ The least N that satisfies the periodicity condition.

* The Additive of two or more periodical sequences is also periodic.

$$
\begin{aligned}
& \tilde{x}_{c}[N]=\tilde{x}_{a}[n]+\tilde{x}_{b}[n] \\
& \left.N_{c}=\frac{\text { LCM }}{L \rightarrow \text { Least common multiplier. }} N_{a}, N_{b}\right) \\
& \operatorname{LCM}\left(N_{a}, N_{b}\right)=\frac{N_{a} N_{b}}{\operatorname{GCD}\left(N_{a}, N_{b}\right)}
\end{aligned}
$$

Example $\quad N_{a}=3 \quad N_{b}=4$

$$
\begin{aligned}
& N_{c}=\operatorname{LC\mu }(3,4)=\frac{3 \times 4}{1}=12 \\
& N_{a}=6 \quad N_{b}=4 \\
& N_{c}=\frac{2 \times 3 \times 2 \times 2}{2}=12
\end{aligned}
$$

* The same Rule applies for multiplications of sequences.
* Energy and Power sequences:

The total amount of energy in a sequence is defined by:

$$
\begin{aligned}
& \Sigma_{x}=\sum_{n=-\infty}^{\infty}|x[n]|^{2} \\
& |x+j y|^{2}=x^{2}+y^{2} \neq(x+j y)^{2} \\
& (x+j y)(x-j y)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example } \\
& x[n]=\left\{\begin{array}{lll}
\frac{1}{n}, & n>1 & x_{2}[n]= \begin{cases}\frac{1}{\sqrt{n}} & n \geqslant 1 \\
0 & n<1\end{cases} \\
\Sigma_{r_{1}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} & \Sigma_{x}=\sum_{n=1}^{\infty} \frac{1}{n} & \text { (diverges) }
\end{array}\right. \begin{array}{ll}
\text { finite se }
\end{array} \\
& \equiv \text { energy sequence }
\end{aligned}
$$

finite Sequence \rightarrow Energy

* The Average power in a sequence $x[n]$ is defined as:

$$
P_{x}=\lim _{k \rightarrow \infty} \frac{1}{2 k+1} \sum_{p=-k}^{k}|x[n]|^{2}
$$

Example $x[n]=\left\{\begin{array}{cl}3(-1)^{n} & , n \geqslant 0 \\ 0 & , n<0\end{array}\right.$ find P_{x} :

$$
\begin{aligned}
P_{x} & =\lim _{k \rightarrow \infty} \frac{1}{2 k+1} \sum_{n=0}^{k}\left(3(-1)^{n}\right)^{2} \\
P_{x} & =\lim _{k \rightarrow \infty} \frac{1}{2 k+1} \sum_{n=\infty}^{k} 9 \\
& =\lim _{k \rightarrow \infty} \frac{1}{2 k+1} 9(k+1)=\lim _{k \rightarrow \infty} \frac{9 k+9}{2 k+1} \\
& =\frac{9}{2}=4.5 \text { (watt) }
\end{aligned}
$$

* for Periodic sequences:

$$
\begin{aligned}
P_{x} & =\frac{1}{N} \sum_{n=0}^{N=1}|\tilde{x}[n]|^{2} \\
& =\frac{1}{3} \sum_{n=0}^{2}|\tilde{x}[n]|^{2} \\
& =\frac{1}{3} \times\left[1^{2}+2^{2}+3^{2}\right]=\frac{14}{3} \text { (watt) }
\end{aligned}
$$

* other types of classifications:
(*) Bounded Sequence

$$
|x[n]| \leqslant B_{x}<\infty
$$

(*) Absolutely summable sequence:

$$
\sum_{n=-\infty}^{\infty}|x[n]|<\infty
$$

(*) Sequence summable (Energy sequence)

$$
\sum_{n=-\infty}^{\infty}|x[n]|^{2}<\infty=\sum x
$$

* Typical frequences sequence Representation :-
(1) Unit sample Function (Unit Impulse)

$$
\begin{aligned}
& \frac{n=k q^{\prime}}{n^{-k}} \\
& \sum_{n=2}^{s} 5 \delta[n-2]
\end{aligned}
$$

(2) Unit step sequence

$$
\begin{aligned}
& \ln [n]= \begin{cases}1 & n \geqslant 0 \\
0 & n<0\end{cases} \\
& x[n] \underset{H A}{A_{x}[n]} \rightarrow \mu_{n=0}^{-9191} \rightarrow \mu_{n}=\sum_{n=0}^{\infty} \delta[n-m] \\
& 5 \mu[n-2] \rightarrow \frac{q q_{n=2}^{5} 9 q}{q} \\
& \left.\mu_{[n}\right]=\delta[n]+\delta[n-1]+\delta[n-2]+\cdots \\
& \mu[0]=\delta[0]+\delta[-1]+\delta[-2]+\cdots \\
& \left.M_{n}\right]=\sum_{k=-\infty}^{n} \delta[k]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example } \\
& \mu_{[-10]}=\sum_{k=-\infty}^{-10} \delta(k)=0 \\
& \delta[-\infty]+\ldots \delta[-1]+\delta[-10]=0 \\
& \mu[0]=\sum_{k=-\infty}^{0} \delta(k) \\
& \delta[-\infty]+\cdots \delta[-1]+\delta[0]=1 \\
& \left.\mu[s]=\sum_{k=-\infty}^{s} \delta[k]-1\right\} \\
& \delta o l \rightarrow \frac{\delta[-\infty]+\cdots+\delta[-1]}{\text { zero }}+\frac{\delta[0]}{1}+\frac{\delta[1]+\cdots-\delta[s]}{\text { zero }} \\
& {\underset{n}{n}=0}^{9999} \\
& \frac{1111-}{n=1}
\end{aligned}
$$

* Sinusoidal Sequences :-

$$
\begin{aligned}
& x[n]=A \cos \left(\omega_{n}+\phi\right) \\
& x[n]= x[n+N] \\
& x[n+N]=A \cos (\omega(n+N)+\phi) \\
&=A \cos \left(\omega_{n}+\phi+\omega N\right) \\
&= A\left[\cos \left(\omega_{n}+\phi\right) \cos \left(\omega_{N}\right)-\sin \left(\omega_{n}+\phi\right) \sin (\omega N)\right] \\
& \longrightarrow \cos (\omega N)=1 \\
& \sin (\omega N)=0 \\
& \omega N=2 \pi r
\end{aligned}
$$

$$
* E y:-\quad x[n]=A \cos (0.15 \pi n)
$$

$$
\begin{aligned}
& w=0.15 \pi \\
& \frac{2 \pi}{w} \sim \frac{2 \pi}{0.15 \pi}=\frac{2}{0.15}=\frac{200}{15}=\frac{40}{3} \text { (rational number) }
\end{aligned}
$$

$$
w=0.15 \pi
$$

$$
3 \text { sinusoidals }
$$

$$
\frac{\text { 年 }}{70}
$$

$$
E x \rightarrow \quad x[n]=A \cos (0.15 n)
$$

$$
\begin{aligned}
& \rightarrow \quad x[n]=A \cos (0,13 \pi) \\
& \frac{2 \pi}{0.15}=\frac{200 \pi}{15}=\frac{40 \pi}{3} \quad \text { (irrational number) }
\end{aligned}
$$

(Ex)

$$
x[n]=\left\{\begin{array}{llllll}
1.5 & -2.0 & 3.1 & 5.6 & 8.9 & -11.5
\end{array}\right\}
$$

$$
\begin{aligned}
x[n]= & 1.5 \delta[n+2]-2 \delta[n+1]+3,11 \delta[n]+5.6 \delta[n-1] \\
& +8.9 \delta[n-2]-11.3 \delta[n-3] \\
x[n] & =\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
\end{aligned}
$$

* The Sampling process:

$$
\begin{aligned}
& \left.X_{a}(t)\right|_{t=n T}=X_{a}(n T)=X[n] \\
& X_{a}^{x}(t)=\left.A \cos (\Omega t)\right|_{t=n T} \\
& \begin{array}{l}
\left.x_{a}(t)\right|_{t=n T}=A \cos (\Omega n T)=x[n] \\
\cos \left(\omega_{n}\right)
\end{array}
\end{aligned}
$$

$$
x_{a}(t)=A \cos (\Omega t)
$$

 ounerp $\quad x[n]=A \cos (0.1 n, \Omega) \quad T=\frac{1}{10} \rightarrow f=10 \mathrm{~Hz}$ $\begin{aligned} & A \cos 0.1-2 n \\ n & =[0: 1: 10]\end{aligned}$ Ning

$$
\begin{aligned}
& \text { (2) } t=\left[0: \frac{0.01}{T}: 1\right] \\
& \\
& \\
& \\
& n=[0: 1: 100]
\end{aligned}
$$

$\rightarrow 101$ points
(2)

Example

Sampled at 10 thz (10samples/sec)

$$
\begin{aligned}
& T=0.1 \mathrm{sec} \\
& w^{w=\Omega T} \quad \begin{array}{l}
n=[0: 1: 10] \\
t=[0: 0.1: 10]
\end{array} \\
& x_{1}[\pi]=\cos (0.6 \pi n) \\
& x_{2}[n]=\cos (1.4 \pi n) \rightarrow \cos \left((2-0.6) \pi_{n}\right. \\
& =\cos (2 \pi n-0.6 \pi n) \\
& \cos (2 \pi n)=\cos (0.6 \pi n)+\sin (2 \pi n) \sin (606 n) \\
& =\cos (0.6 \pi n)=x_{1}[n]
\end{aligned}
$$

$$
\Omega=2 \pi f
$$

$$
\Omega=\frac{2 \pi}{T}
$$

$$
\begin{aligned}
x_{3}[n] & =\cos (2.6 \pi n) \\
& =\cos (2 \pi n+0.6 \pi n) \\
& =\cos (0.6 \pi n)=x_{1}[n]
\end{aligned}
$$

\downarrow

 "op', 'op"

freq - 1600 . Time domain of, veto

Sampling \rightarrow Repeat the signal (spectrum) around th sample freq (f_{5};

Reliever J_{1} ie
\longrightarrow Train of deltas.

$$
\longrightarrow \quad \omega=f_{\delta}-\omega
$$

- $\operatorname{Cos}(6 \pi t)$

$$
\longrightarrow \cos (46 \pi t) \cos (23 \times 2 \pi t)
$$

$\longrightarrow \cos (4.6 \pi n)$
$\cos (4 \pi \pi n) \cos (0.6 \pi n)-\sin (4 \pi n) \sin (0.6 \pi n)$

* Discrete Time Systems:

Classification of Discrete-time systems:
[1] linear systems:-

$$
\begin{aligned}
& \alpha x_{1}[n]+\beta x_{2}[n] \xrightarrow{T[0]} \alpha y_{1}[n]+\beta y_{2}[n] \\
& T\left[\alpha_{x_{1}}[n]+\beta x_{2}[n]\right]=\alpha T\left[x_{1}[n]\right]+\beta T\left[x_{2}[n]\right] \\
&=\alpha y_{1}[n]+\beta y_{2}[n]
\end{aligned}
$$

Ex: 1) $y[n]=n x[n]$

$$
\text { 2) } \begin{aligned}
y[n] & =x^{2}[n] \\
\text { 3) } y[n] & =A x[n]+B
\end{aligned}
$$

1)

$$
\begin{aligned}
& x_{1}[n] \xrightarrow{T[0]} n x_{1}[n]=y_{1}[n] \\
& x_{2}[n]\xrightarrow[{T[\cdot}]]{ } n x_{2}[n]=y_{2}[n] \\
& x[n]=\alpha x_{1}[n]+\beta x_{2}[n] \\
& x[n]=\alpha x_{1}[n]+\beta x_{2}[n] \xrightarrow{T[-]} n x_{[n]} \\
& n x[n]=n\left[\alpha x_{1}[n]+\beta x_{2}[n]\right] \\
&=\alpha n x_{1}[n]+\beta n x_{2}[n] \\
&=\alpha y_{1}[n]+B y_{2}[n] \quad \text { linear system }
\end{aligned}
$$

2)

$$
\begin{aligned}
& x_{1}[n] \xrightarrow{T[0]} x_{1}^{2}[n]=y_{1}[n] \\
& x_{2}[n] \xrightarrow{T[0]} x_{2}^{2}[n]= y_{2}[n] \\
& \alpha x_{1}[n]+\beta x_{2}[n] \xrightarrow{T[-]}\left(\alpha x_{1}[n]+\beta x_{2}[n)^{2}\right. \\
& \alpha^{2} x_{1}^{2}[n]+2 \alpha \beta x_{1}[n] x_{2}[n] \\
&+\beta^{2} x_{2}^{2}[n] \neq \alpha y_{1}[n]+\beta y_{2}[n]
\end{aligned}
$$

non-linear gystem
(2) Time Invarient (Shift Invainert) System:

$$
\begin{array}{ll}
x[n] \xrightarrow{T[\cdot]} y[n] \\
x[n-k] \xrightarrow{T[\cdot]} y[n-R]
\end{array}
$$

* Check for invariance:-

1- Apply $x[n] \xrightarrow{T[-]} y[n]$
2 -Apply $x_{1}[n]=x[n-k] \xrightarrow{T[0]} y_{1}[n]$
3-shift $y[n]$ in (1) by k if

$$
\begin{aligned}
& {[n] \text { in (1) by } K \text { it }} \\
& y[n-k]=y,[n]
\end{aligned} \longrightarrow \text { Time Invariait System. }
$$

Example 1) $y[n]=x[n]-x[n-1]$

$$
\text { 2) } y[n]=n x[n]
$$

1) (1) $y[n]=x[n]-x[n-1]$

$$
\begin{aligned}
\text { (2) } x_{1}[n] & =x[n-k] \\
y_{1}[n] & =x[n-k]-x[n-k-1] \\
\text { (3) } y[n-k] & =x[n-k]-x[n-k-1]
\end{aligned}
$$

\rightarrow So, Tine Invariat system.
2) (1) $y[n]=n x[n]$
(2) $x_{1}[n]=x[n-k]$
$y_{1}[n]=n x_{1}[n]=n x[n-k] \neq$
(3) $y[n-k]=(n-k) x[n-k]$
(3) Canal System:-

$$
=\begin{aligned}
& x[n-k]+n \\
& y_{1}[n]=x[n]+n \\
& y[n-k]=x[n-k]+(n-k)
\end{aligned}
$$

$$
y[n]=T[x[n], x[n-1], x[n-2], \ldots]
$$

Ex:

1) $y[n]=x[n]+0.5 x[n-1] \rightarrow$ causal
2) $y[n]=x[-n] \rightarrow N i n-$ Causal
$\rightarrow \times[-10] \mathrm{dd}_{0} 10$ opsitis $x[10]$ intr - 10 if git hor. Y. future value

141 Stable System:-
A D'srefe time is stable if for every bounded input, the output is also bounded (BIBO)
(BIBO) Stable System \longrightarrow Bonnded-input, Bounded_output
Bounded means:
$|x[n]|<\beta_{x}<\infty$ for all n : them $|y[n]|<B_{y}<\infty$

Example (1) $y[n]=e^{x[n]}$
sol: $|y[n]|=\left|e^{x[n]}\right| \leqslant e^{x[n]} \leqslant e^{\beta x}$
$|y[n]| \leqslant e^{\beta_{x}} B_{y} \longrightarrow$ BIBO stable system
501. (2) $|y[n]|=\left|\sum_{k=0}^{n} x[k]\right|$.

$$
|y[n]|=\left|\sum_{k=0}^{n} x[k]\right| \leqslant \sum_{k=0}^{n}|x[k]| \leqslant \sum_{k=0}^{n} \beta_{x}
$$

$$
|y[n]| \leqslant \sum_{k=0}^{n} B_{x}=(n+1)\left(B_{x}\right)
$$

\longrightarrow Actable system (Non-Stable)
(5) Static and Dynamic systems (Memorgless)

$$
\begin{array}{ll}
y[n]=\frac{1}{2} x[n] & \text { (static) } \\
y[n]=x[n]-\frac{1}{2} x[n-1]
\end{array} \quad \text { (Dynamic) }
$$

- Passive and lossless systems:-

A discrete-tine system is said to be passive if for every finite energy input Sequence $x[n]$, the output $y[n]$ will have at most the same energy.

$$
\sum_{n=-\infty}^{\infty}|x[n]|^{2} \geqq \sum_{n=-\infty}^{\infty}|y[n]|^{2} \Sigma_{y}
$$

loin es System $\dot{\sim}$ 오 $=\Sigma i s$

Ex: $y[n]=5 x[n]$

$$
\sum_{n=-\infty}^{\infty}|y[n]|^{2}=\sum_{n=-\infty}^{\infty}\left(\left.5 x[n]\right|^{2}\right.
$$

$$
\Sigma_{y}=25 \sum_{n=-\infty}^{\infty}|x[n]|^{2}=2 s \sum_{x} \quad \text { (Active system) }
$$

Ex:

$$
\begin{aligned}
& y[n]=\frac{1}{2} \times[n] \\
& \Sigma_{y}=\frac{1}{4} \Sigma x
\end{aligned} \quad \rightarrow \text { passive loss }
$$

$E_{x}: \quad y[n]=x[n-1]$
$\Sigma_{y}=2 x \quad \longrightarrow$ passive and lossless.

Impulse and step Responses:-

$$
\begin{aligned}
& h[n]=T[\delta[n]] \\
& \delta[n]=T[\mu[n]]
\end{aligned}
$$

$$
E x: y[n]=a_{0} x[n]+a_{1} x[n-1]+a_{2} x[n-2]+a_{3} x[n-3]
$$

Find: $h[n-$
Sol: $h[n]=a_{0} \delta[n]+a_{1} \delta[n-1]+a_{2} \delta[n-2]+a_{3} \delta[n-3]$

$$
\begin{aligned}
& h[0]=a_{0} \delta[0]+a_{1} \delta[-1]+a_{2} \delta[-2]+a_{3} \delta[-3] \\
& h[0]=a_{0} \gamma \\
& h[1]=a_{0} \delta[1]+a_{1} \delta[0]+a_{2} \delta[-1]+a_{3} \delta[-2] \\
& \left.h[1]=a_{1}\right] \\
& h[2]=a_{2} \\
& h[3]=a_{3} \\
& h[4]=0
\end{aligned}
$$

$C \delta_{0}, h[n]=\left\{\begin{array}{llll}a_{i} & a_{1} & a_{2} & a_{3}\end{array}\right\} \rightarrow$ finite sequence FIR system \rightarrow Finite Impulse Response System.

Ex: $y[n]=x[n]+\frac{1}{2} y[n-1]$
find $h[n]$. (causal) k

$$
\begin{aligned}
& h[n]=\delta[n]+\frac{1}{2} h[n-1] \\
& h[0]=\delta[0]+\frac{1}{2} h[-1]
\end{aligned}
$$

$$
h[0]=1
$$

$$
\begin{aligned}
h[1]=\delta[0]+\frac{1}{2} & h[0] \\
= & 1
\end{aligned}
$$

$$
h[1]=\frac{1}{2} * 1=\frac{1}{2}
$$

$$
\begin{aligned}
& h[2]=\delta[2]+\frac{1}{2} h[1] \\
& h[2]=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} \\
& h[3]=\frac{1}{8}
\end{aligned}
$$

$\delta_{0,} h[n]=\left\{\begin{array}{ll}\left(\frac{1}{2}\right)^{n} & n \geqslant 0 \\ 0 & n<0\end{array} \equiv h[n]=\left(\frac{1}{2}\right)^{n} \mu[n]\right.$
IIR \rightarrow Infinite Impulse Response System

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$

linear cob lo low os *

$$
y[n]=T\left[\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]\right]
$$

If the system is linear $\rightarrow y[n]=\sum_{k=-\infty}^{\infty} x[k] T[\delta[n-k]]$

For a time－Invariant（shift－Invariant）system．

$$
\underset{n-k=m}{k][n-k]} \underset{k^{2}}{\rightarrow} \underset{\text { shift } \rightarrow \text { multiply } \rightarrow \text { syskem }}{ }
$$

LTI סystem：linear time－lnvariant system

$$
\begin{aligned}
& y[n]=x[n] * h[n] \\
& y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]
\end{aligned}
$$

$y[n]=h[n] * \times[n]:$ commulative

Ex：

$$
\left.\begin{array}{l}
x[n]=\{\overrightarrow{(1)} 2 \\
h[n]=\left\{\begin{array}{lll}
1 & 0 & 1
\end{array}\right\} \\
h
\end{array} \quad 2 \begin{array}{lll}
1 & 1
\end{array}\right\}
$$

Find $y[n]=x[n] * n[n]$

$$
\text { Jol: } \begin{aligned}
y[n] & =\sum_{k=0}^{3} x[k] h[n-k] \\
y[0] & =\sum_{k=0}^{3} x[k] h[-k] \\
& =y_{0}[0] h[0]+x[1] h[-1]+x[2] h[-2]+x[3] h[-3] \\
y[0] & =(1)(1)=1 \\
y[1] & =\sum_{k=0}^{3} x[k] h[1-k] \\
& =x[0] h[1]+x[1] h[0]+x[2] h[-1]+x[3] h[-2] \\
& =(1)(1)+(2)(1)+0 \\
& =3
\end{aligned}
$$

$$
\begin{gather*}
d d p \% \text { y }[2] \\
y(6) \\
n b(6, s+x b 6 \\
1-
\end{gather*}
$$

LTI system: linear time-Invarient system

$$
\begin{aligned}
& y[n]=x[n] * h[n] \\
& y[n]=\sum_{k=-\infty}^{\infty} h[k] \times[n-k]
\end{aligned}
$$

$y[n]=h[n] * x[n] \quad$:commutative

Ex:

$$
\begin{aligned}
& x[n]=\left\{\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 1 & 2 & 3
\end{array}, \quad \text { find } y[n]=x[n] \notin h[n]\right. \\
& h[n]=\left\{\begin{array}{lll}
1 & 1 & 2 \\
0 & 2 & 2 \\
0
\end{array}\right\} \\
& y[n]=\sum_{k=0}^{3} x[k] h[n-k] \\
& y[0]=\sum_{k=0}^{3} x[k] h[-k] \\
& y[n]=x[0] h[n]+x[1] h[-1]+x[2] h[-2]+x[3] h[-3] \\
& y[0]=(1)(1)=1 \\
& y[1]=x[0] h[1]+x[1] h[0]+x[2] h[-1]+x[3] h[-2] \\
& y=(1)(1)+(2)(1)=3
\end{aligned}
$$

$$
y[n]=\{1343512\}
$$

Ex:- $x[n]=\left\{\begin{array}{llll}1 & 2 & 1\end{array}\right\}$

$$
\begin{aligned}
& z[k]=h[-1-k] \\
& z[-4]=h[-1+4]=h[3] \\
& z[-3]=h[-1+3]=h[2] \\
& \int_{-4} \int_{-3} \mid
\end{aligned}
$$

$$
\begin{aligned}
& y[-1]= \\
& x[k] \\
& q_{k=0}^{1} \underbrace{2}_{2} 0 q^{2} \\
& \left.h[-1-k] q_{-n}^{2} \int_{-3-2}^{2} 1_{-1}^{1}\right|_{-1} ^{1} \\
& y[0]=1 \\
& y[0]= \\
& h[0-k] \sum_{-3}^{2} \sum_{-2}^{2} \sum_{-1}^{1} j_{0}^{1} \\
& y[1]= \\
& h[1-k] \int_{-2}^{2}{\underset{0}{2}}_{1}^{1} q_{1}^{1} \\
& y[1]=1+2=3 \\
& y[2]{ }^{2}{ }^{2}, \quad y[2]=4
\end{aligned}
$$

* another way for solutions-

Tabular method:

$$
\begin{aligned}
& \text { Ex: } x[n]=\left\{\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right\} \\
& h[n]=\left\{\begin{array}{lll}
1 & 2 & 2
\end{array}\right\} \\
& N(\text { length })=N_{1}+N_{2}-1 \\
& \underset{\substack{\text { starting } \\
\text { index }}}{\text { starting }}+\underset{\text { index } 2}{\text { starting index }}=\underset{\text { for th output }}{ }
\end{aligned}
$$

Start of midterm material

Discrete - Time Fourier Transform (DTFT)

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega_{n}}
$$

Ex: $\quad x[n]=\left\{\begin{array}{llll}1 & 2 & -3 & 1\end{array}\right\}$

$$
\begin{aligned}
& x\left(e^{j \omega}\right)=1 e^{j \omega}+2 e^{j \omega(0)}-3 e^{-j \omega}+1 e^{-j 2 \omega} \\
& x\left(e^{j \omega}\right)=e^{j \omega}+2-3 e^{-j \omega}+e^{-j 2 \omega} \\
& X\left(e^{j \frac{\pi}{3}}\right)=e^{j \frac{\pi}{3}}+2-3 e^{-j\left(\frac{\pi}{3}\right)}+e^{-j 2\left(\frac{\pi}{3}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { au } \\
& e^{j \omega}=1 b \omega \\
& =\cos \omega+j \sin \omega \\
& =\sqrt{\cos ^{2} \omega+\sin ^{2} \omega} \frac{\tan ^{-1}\left(\frac{\sin \alpha}{\cos \alpha}\right)}{1} \\
& 6_{1} \equiv
\end{aligned}
$$

Ex: $\quad x[n]=\delta[n]$
find $\Delta\left(e^{j \omega}\right) \rightarrow=\sum_{n=-\infty}^{\infty} \delta[n] e^{-j \omega n}=e^{j \omega(0)}=1$ $\underset{\substack{\text { sifting } \\ \text { proputy }}}{\rightarrow} \rightarrow \underset{n=0}{\delta[0]_{n}} \uparrow$

Geometric Series:-

$$
\begin{aligned}
& \text { Geometric Series:- } \\
& \delta_{N}=\sum_{n=0}^{N} \alpha^{n}=1+\alpha+\alpha^{2}+\alpha^{3}+\cdots \alpha^{N-1}+\alpha^{N} \\
& \delta_{N+1}=\sum_{n=0}^{N} \alpha^{n}=1+\alpha+\alpha^{2}+\alpha^{3}+\cdots \alpha^{N}+\alpha^{+1} \\
& \delta_{0}, \quad \delta_{N+1}=S_{N}+\alpha^{N+1} \\
& \delta_{N+1}=1+\alpha \delta_{N} \\
& \delta_{N}+\alpha^{N+1}=1+\alpha \delta_{N} \\
& \delta_{N}(1-\alpha)=1-\alpha^{N+1} \\
& \delta_{N}=\frac{1-\alpha^{N+1}}{1-\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=0}^{5}(2)^{n}=\frac{1-2^{6}}{1-2}=\frac{-63}{-1}=63 \\
& (1)+214+8+16+32=63 \\
& \sum_{n=1}^{5}(2)^{n}=\sum_{n=0}^{5}(2)^{n}-1 \\
& \sum_{n=0}^{5}\left(\frac{1}{2}\right)^{n}=\frac{1-\left(\frac{1}{2}\right)^{6}}{1-\frac{1}{2}}=?
\end{aligned}
$$

For $|\alpha|<1$ and $N \longrightarrow \infty$

$$
\delta_{\infty}=\frac{1}{1-\alpha}
$$

Ex:- $x[n]=\left(\frac{1}{2}\right)^{n} \mu[n]$, find $x\left(e^{j \omega}\right)$
Sol: $\left.x\left(e^{j \omega}\right)=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} e^{-j \omega_{n}}\left|\frac{1}{2}\right| e^{-j \omega}\right)<1$

$$
\begin{aligned}
& \begin{aligned}
& =\sum_{n=0}^{\infty}\left(\frac{1}{2} e^{-j \omega}\right)^{n} \\
(j \omega) & =\frac{1}{1-\frac{1}{2} e^{-j \omega}}
\end{aligned} \\
& x\left(e^{j \omega}\right)=\frac{1}{1-\frac{1}{2} e^{-j \omega}}
\end{aligned}
$$

Ex: $x\left(e^{j \omega}\right)=e^{j \omega}+2-3 e^{-j \omega}+e^{-j 2 \omega} \quad$ while $x[n]=\left\{\begin{array}{ll}1 & 2-31\end{array}\right\}$
$x[n] \xrightarrow{\text { DTFT }} x\left(e^{j \omega}\right)$

$$
x\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega_{n}}
$$

* Two properties for th DTFT

1. Continuous function in $\omega \rightarrow$ while $x[n]$ isulissorete function.

2- $x\left(e^{j \omega}\right)$ is periodic with a period of 2π

$$
\cos \left(\frac{1}{(}(\pi n)+j \sin ^{0}(\langle\pi n)\right.
$$

$$
\begin{array}{rlrl}
x\left(e^{j(\omega+2 \pi)}\right) & =x\left(e^{j \omega}\right) \\
x\left(e^{j(\omega+2 \pi)}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j(\omega+2 \pi) n}=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} e^{-j 2 \pi n} & =1 & =\sum x[n] e^{j n} \\
& =x\left(e^{j \omega}\right) \\
e^{-j \pi n} & =(-1)^{n}
\end{array}
$$

$$
\begin{aligned}
& x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x\left(e^{j w}\right) e^{j w n} \cdot d w \\
& x[n] \stackrel{\text { DTFT }}{\longleftrightarrow} x\left(e^{j w}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x\left(e^{j \omega}\right) e^{j \omega n} \cdot d \omega \\
& x\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega_{n}}
\end{aligned}
$$

Example The ideal low pass Filter

$$
H_{l P}\left(e^{j \omega}\right)
$$

$H_{L P}\left(e^{j \omega}\right)$; The transfer functicen

$$
\begin{aligned}
& H_{L P}\left(e^{j \omega}\right)=\frac{Y\left(e^{j \omega}\right)}{x\left(e^{j \omega}\right)} \\
& H_{L P}\left(e^{j \omega}\right)= \begin{cases}1 & 0 \leqslant|\omega| \leqslant \omega_{c} \\
0 & \omega_{c} \leqslant|\omega| \leqslant \pi\end{cases}
\end{aligned}
$$

* Find $H_{L P}[n]$.

$$
\begin{aligned}
H_{L p}[n] & =\frac{1}{2 \pi} \int_{-\omega_{c}}^{\omega_{c}}(1) e^{j \omega n} \cdot d \omega \\
& \left.=\frac{1}{2 \pi} \frac{e^{j \omega n}}{j n}\right]_{-\omega c}^{\omega c} \\
H_{L p}[n] & =\frac{e^{j \omega_{c} n}-e^{-j \omega c n}}{2 \pi j n}=\frac{\sin \left(\omega_{c} n\right)}{\pi n} \quad \text { for all } n
\end{aligned}
$$

For $n=0$

$$
\begin{aligned}
& \left.h_{L p}[0]=\frac{1}{2 \pi} \int_{-w c}^{w c} 1 \cdot e^{j 0} d w \quad \frac{w}{2 \pi}\right]_{-w_{c}}^{w}=\frac{2 w c}{2 \pi}=\frac{w c}{\pi} \\
& h_{L p}[n]= \begin{cases}\frac{w c}{\pi} \quad n=0 & \text { for all } n .\end{cases}
\end{aligned}
$$

* Theorem of the DTFT:-

$$
\begin{aligned}
& x_{1}[n] \stackrel{\text { DTFT }}{\longleftrightarrow} x_{1}\left(e^{j \omega}\right) \\
& x_{2}[n] \stackrel{\text { DTFT }}{\longleftrightarrow} x_{2}\left(e^{j \omega}\right)
\end{aligned}
$$

(1) linearity:-

$$
\alpha x_{1}[n]+\beta x_{2}[n] \stackrel{\text { DTFT }}{\longleftrightarrow} \alpha x_{1}\left(e^{j \omega}\right)+\beta x_{2}\left(e^{j \omega}\right)
$$

(2) Time Reversal:
(3) Tine-shifting Theorem:-

$$
\begin{aligned}
& n=-\infty \\
& \text { let } m=n-n_{0}
\end{aligned}
$$

$$
\text { c } n=m+n_{0}
$$

$$
\sum_{m=-\infty}^{\infty} x_{1}[m] e^{-j \omega\left(m+n_{1}\right)}
$$

$$
e^{-j u n \cdot} \sum_{m=-\infty}^{\infty} x_{1}[m] e^{-j w m}
$$

$$
\begin{aligned}
& x_{1}\left[n-n_{0}\right] \stackrel{\text { DTFT }}{\longleftrightarrow} e^{-j \omega n 0} x_{1}\left(e^{j \omega}\right) \\
& \sum_{n=-\infty}^{\infty} x_{1}\left[n_{-n_{0}}\right] e^{-j w_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}[-n] \stackrel{\text { DTFT }}{\longleftrightarrow} x_{1}\left(e^{-j \omega}\right) \\
& x[n]=\left\{\begin{array}{llll}
1 & 2 & -3 & 1
\end{array}\right\} \\
& x\left(e^{j \omega}\right)=e^{j \omega}+2-3 e^{-j \omega}+e^{-j 2 \omega} \rightarrow x\left(e^{j \omega \nu}\right)=e^{-j \omega}+2-3 e^{j \omega}+e^{j 2 \omega} \\
& =x\left(e^{-j \omega}\right) \\
& g[n]=x[-n]=\left\{\begin{array}{llll}
1 & -3 & 2 & 1
\end{array}\right\} \\
& G\left(e^{j \omega}\right)=e^{j 2 \omega}-3 e^{j \omega}+2+e^{-j \omega}
\end{aligned}
$$

Ex:- $y[n]=\left\{\begin{array}{lll}\alpha^{n} & 0 \leqslant n \leqslant M-1 & |\alpha|<1 \\ 0 & \text { otherwise } & |\alpha|<1\end{array}\right.$

$$
\begin{aligned}
& y[n]=\alpha^{n}\left[\mu_{[n]}-\mu[n-M]\right]
\end{aligned}
$$

$$
\begin{aligned}
& n=\mu \\
& C \\
& y[n]=\alpha^{n} \mu[n]-\alpha^{n} \mu[n-M] \\
& =\alpha^{n} \mu[n]-\alpha^{n} \cdot \alpha^{n-\mu} \mu[n-\mu] \\
& Y\left(e^{j \omega}\right)=\frac{1}{1-\alpha e^{-j \omega}}-\frac{\alpha^{M} \cdot e^{-j \omega M}}{1-\alpha e^{-j \omega}} \\
& Y\left(e^{j u}\right)=\frac{1-\left(\alpha e^{j w}\right)^{M}}{1-\alpha e^{-j w}}
\end{aligned}
$$

Note:

$$
\begin{aligned}
y\left(e^{j \omega}\right) & =\sum_{n=0}^{M-1} \alpha^{n} e^{-j \omega n} \\
& =\sum_{n=0}^{M-1}\left(\alpha e^{-j \omega}\right)^{n}=\frac{1-\left(\alpha e^{-j \omega}\right)}{1-\alpha e^{-j \omega}}
\end{aligned}
$$

$$
\sum_{n=0}^{N} r^{n}=\frac{1-r^{N-1}}{1-r}
$$

Example: do $V[n]+d_{1} v[n-1]+d_{2} V[n-2]=P_{0} \delta[n]+P_{1} \delta[n-1]$

$$
+P_{2} \delta[n-2]
$$

Find $V\left(e^{j \omega}\right):-$

Differential equation.

$$
\begin{gather*}
d_{0} V\left(e^{j \omega}\right)+d_{1} e^{-j \omega} V\left(e^{j \omega}\right)+d_{2} e^{-j 2 \omega} V\left(e^{j \omega}\right)= \\
P_{0}(1)+P_{1}\left(e^{-j \omega}\right)(1)+P_{2} e^{-j 2 \omega}(1) \tag{1}
\end{gather*}
$$

So, $V\left(e^{j \omega}\right)=\frac{P_{0}+P_{1} e^{-j \omega}+P_{2} e^{-j \tau \omega}}{d_{0}+d_{1} e^{-j \omega}+d_{2} e^{-j 2 \omega}}$
Example: $a_{0} y[n]+a_{1} y[n-1]+a_{2} y[n-2]=$

$$
\text { b. } x[n]+b_{1} x[n-1]+b_{2} x[n-2]
$$

Find $H\left(e^{j \omega}\right)=\frac{Y\left(e^{j \omega}\right)}{X\left(e^{j \omega}\right)}$; The transfer function (the ratio of the output over the) input in the frequency domain

$$
\begin{aligned}
& x[n]=\delta[n] \\
& x\left(e^{j \omega}\right)=\Delta\left(e^{j \omega}\right)=1 \\
& a_{0} y\left(e^{j \omega}\right)+a_{1} e^{-j \omega} y\left(e^{j \omega}\right)+a_{2} e^{-j \omega \omega} y\left(e^{j \omega}\right)= \\
& b_{0} \gamma\left(e^{j \omega}\right)+b_{1} e^{-j \omega} x\left(e^{j \omega}\right)+b_{2} e^{-j 2 \omega} x\left(e^{j \omega}\right) \\
& H\left(e^{j \omega}\right)=\frac{y\left(e^{j \omega}\right)}{x\left(e^{j \omega}\right)}=\frac{b_{0}+b_{1} e^{-j \omega}+b_{2} e^{-j 2 \omega}}{a_{0}+a_{1} e^{-j \omega}+a_{2} e^{-j 2 \omega}}
\end{aligned}
$$

Frequency shifting:-

$$
e^{j w_{n}} \times[n] \stackrel{\text { OFT }}{\longleftrightarrow} \times\left(e^{j\left(w-\omega_{0}\right)}\right)
$$

Ex: $y[n]=(-1)^{n} \alpha^{n} \mu[n],|\alpha|<1$, find $y\left(e^{j \omega}\right)$

$$
\begin{array}{ll}
{[n]=(-1) \alpha} & \\
y[n] & =e^{j \pi n} \alpha^{n} \mu[n] \\
x[n] & =\alpha^{n} \mu[n], \\
|\alpha|<1 \rightarrow 1
\end{array}
$$

$$
\begin{aligned}
x[n] & =\alpha^{n} \mu[n] 1 \\
x\left(e^{j \omega}\right) & =\frac{1}{1-\alpha e^{-j(-\pi+w)}}=\frac{1}{1-\alpha e^{-j \omega}} e^{j \pi}
\end{aligned}
$$

$$
=\frac{1}{1+\alpha e^{-j \omega}}
$$

* Alternative Solution:

$$
\begin{aligned}
y[n] & =(-1)^{n} \alpha^{n} \mu[n] \\
& =(-\alpha)^{n} \mu[n],|\alpha|<1 \\
y\left(e^{j \omega}\right) & =\frac{1}{1--\alpha e^{-j \omega}}=\frac{1}{1+\alpha e^{-j \omega}}
\end{aligned}
$$

* Differentiation in frequency:

$$
\begin{aligned}
& n x[n] \stackrel{\text { DTFT }}{\longleftrightarrow} \frac{j x\left(e^{j w}\right)}{\partial w} \\
& \frac{d}{d \omega}\left[x\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}\right] \\
& {\left[\frac{d x\left(e^{j \omega}\right)}{d \omega}=\sum_{n=-\infty}^{\infty} x[n](-j n) e^{-j n \omega}\right] x j} \\
& \frac{j \partial x\left(e^{j \omega}\right)}{d w}=\sum_{-\infty}^{\infty} n x[n] e^{-j \omega n}
\end{aligned}
$$

$$
E x:-y[n]=(n+1) \alpha^{n} \mu[n], \quad|\alpha|<1
$$

Find $y\left(e^{j \omega}\right)$

$$
\begin{aligned}
y[n] & =n \alpha^{n} \mu[n]+\alpha^{n} \mu[n] \\
& =n x[n]+x[n] \\
\text { where } & =\frac{1}{1-\alpha e^{-j \omega}}
\end{aligned}
$$

Note:

$$
\begin{aligned}
& e^{-\lambda t}=e^{-\lambda T_{n}} \\
& t=n T \\
& \alpha=e^{-2 T}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
\left.\frac{\partial x\left(e^{j \omega}\right)}{d \omega}=\frac{-1\left(\alpha j e^{-j \omega}\right)}{\left(1-\alpha e^{-j \omega}\right)^{2}}\right) x j \\
=\frac{\alpha e^{-j \omega}}{\left(1-\alpha e^{-j \omega}\right)^{2}} \\
y\left(e^{j \omega}\right)=\frac{\alpha e^{-j \omega}}{\left(1-\alpha e^{-j \omega}\right)^{2}}+\frac{1}{1-\alpha e^{-j \omega}} \\
y\left(e^{j \omega}\right)=\frac{\alpha e^{-j \omega}+1-\alpha e^{-j \omega}}{\left(1-\alpha e^{-j \omega}\right)^{2}} \\
=\frac{1}{\left(1-\alpha e^{-j \omega}\right)^{2}}
\end{array} .\right.
\end{aligned}
$$

* Convolution Theorem:-
$x[n] * h[n] \stackrel{D T F T}{\longleftrightarrow} x\left(e^{j \omega}\right) \cdot H\left(e^{j \omega}\right)$

Ex:- $\quad x[n]=\left\{\begin{array}{llll}1 & 2 & 0 & 1\end{array}\right\}$

$$
\begin{array}{lll}
x[n]=\left\{\begin{array}{llll}
1 & 1 & & \text { find: } \\
h[n]=\{1 & 1 & 2
\end{array}\right\},
\end{array}
$$

$y[n]=x[n] * h[n]$ using th F.T

$$
\begin{aligned}
x\left(e^{j \omega}\right)= & 1+2 e^{-j \omega}+0 e^{-j 2 \omega}+e^{-j 3 \omega} \\
H\left(e^{j \omega}\right)= & 1+e^{-j \omega}+2 e^{-j 2 \omega}+2 e^{-j \omega} \\
= & 1+2 e^{-j \omega}+0 e^{-2 j \omega}+e^{-j 3 \omega} \\
& -\quad+e^{-j \omega}+2 e^{-j 2 \omega}+0 e^{-j 3 \omega}+e^{-j 4 \omega} \\
& -+2+2 e^{-j \omega \omega}+4 e^{-j 3 \omega}+0 e^{-j 4 \omega}+2 e^{-j \omega \omega} \\
& +2 e^{-j \omega 3}+4 e^{-j 4 \omega}+0 e^{-j j \omega}+2 e^{-j 6 \omega} \\
Y\left(e^{j \omega}\right)= & x\left(e^{j \omega}\right) \cdot H(\omega) \\
= & 1+3 e^{-j \omega}+4 e^{-j 2 \omega}+7 e^{-j \omega \omega}+5 e^{-j \omega \omega} \\
& +2 e^{-j \omega \omega}+2 e^{-j \sigma \omega}
\end{aligned}
$$

$$
\begin{aligned}
& y\left(e^{j \omega}\right)=x\left(e^{j w}\right) \cdot H(u) \\
& =1+3 e^{-j \omega}+4 e^{-j 2 \omega}+7 e^{-j 3 w}+5 e^{-j u w} \\
& +2 e^{-j \omega w}+2 e^{-j 6 \omega} \\
& y[n]=\left\{\begin{array}{lllll}
1 & 3 & 4 & 2
\end{array}\right\}
\end{aligned}
$$

Example] $x[n]=\alpha^{n} \mu[n], \quad|\alpha|<1$

$$
x[n]=\alpha \quad,|B|<1
$$

Find $y[n]=x[n] * h[n]$ using F.T:-

$$
\begin{aligned}
& x\left(e^{j \omega}\right)=\frac{1}{1-\alpha e^{-j \omega}}, H\left(e^{j \omega}=\frac{1}{1-\beta e^{-j \omega}}\right. \\
& y\left(e^{j \omega}\right)=\frac{1}{\left(1-\alpha e^{-j \omega}\right)\left(1-\beta e^{-j \omega}\right)} \quad \begin{array}{l}
\text { Partial } \\
\text { Fraction }
\end{array} \\
& =\frac{A_{1}}{1-\alpha e^{-j \omega}+\frac{A_{2}}{1-\beta e^{-j \omega}}} \\
& =\frac{A_{1}-A_{1} \beta e^{-j \omega}+A_{2}-A_{2} \alpha e^{-j \omega}}{\left(1-\alpha e^{-j \omega}\right)\left(1-\beta e^{-j \omega}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}+A_{2}=1 \\
& A_{1} \beta+A_{2} \alpha=0 \cdots \text { (2) } \\
& \beta A_{2}-A_{2} \alpha=\beta \\
& A_{2}=\frac{\beta}{\beta-\alpha} \\
& \alpha A_{1}-B A_{1}=\alpha \\
& A_{1}=\frac{\alpha}{\alpha-\beta} \\
& x\left(e^{j \omega}\right)=\frac{\frac{\alpha}{\alpha-\beta}}{1-\alpha e^{-j \omega}}+\frac{\beta}{1-\beta-\alpha e^{-j \omega}} \\
& y[n]=\frac{\alpha}{\alpha-\beta}(\alpha)^{n} \mu[n]+\frac{\beta}{\beta-\alpha}(\beta)^{n} \mu[n]
\end{aligned}
$$

* Darsevals Relatice:-

$$
\begin{aligned}
& \sum_{-\infty}^{\infty} x_{1}[n] \cdot x_{2}^{x}[n]= \\
& \frac{1}{2 \pi} \int_{-\pi}^{\pi} x_{1}\left(e^{j u}\right) \cdot x^{x}\left(e^{j w}\right) d w \\
& \rightarrow \text { if } x_{1}[n]=x_{2}[n] \\
& \sum_{-\infty}^{\infty} \underbrace{\left|x_{1}[n]\right|^{2}}_{2 x}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|x_{1}\left(e^{j w}\right)\right|^{2} d w
\end{aligned}
$$

Example:-

$$
\begin{aligned}
& x[n]=\left\{\begin{array}{ll}
120 & 1
\end{array}\right\} \\
& \sum x=1^{2}+2^{2}+1^{2}=6 \\
& x\left(e^{j \omega}\right)=1+2 e^{-j \omega}+e^{-j 3 \omega} \\
& x\left(e^{j \omega}\right)=1+2 e^{-j \omega}+e^{-j 3 \omega} \\
& \left|x\left(e^{j \omega}\right)\right|=\left(1+2 e^{-j \omega}+e^{-j 3 \omega}\right)\left(1+2 e^{j \omega}+e^{j 3 \omega}\right) \\
& =1+e^{j 2 \omega}+e^{j 3 \omega}+2 e^{-j \omega}+4+2 e^{j \omega \omega}+e^{-j 3 \omega}+2 e^{-j 2 \omega}+1 \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} 1+4+1 d \omega=\frac{6(2 \pi)}{2 \pi}=6
\end{aligned}
$$

* Parsecals Relation :-

$$
\sum_{-\infty}^{\infty}|x[n]|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\left.x\left(e^{j \omega}\right)\right|^{2} d \omega\right.
$$

Ex:

$$
\begin{array}{ll}
h\left[p[n]=\frac{\sin w_{c} n}{\pi n} \quad-\infty<n<\infty\right. \\
\sum_{-\infty}^{\infty} \left\lvert\, h\left[\left.p[n]\right|^{2}=\frac{1}{2 \pi} \int_{-w c}^{w_{c}} 1 \cdot d w=\frac{2 w_{c}}{2 \pi}=\frac{w_{c}}{\pi}\right.\right.
\end{array}
$$

* Frequency Domain Analysis of LTI system:

$y\left(e^{j \omega}\right)=\frac{x\left(e^{j \omega}\right)}{x\left(e^{j \omega}\right)} \rightarrow$ The Transfer function.

$$
\begin{aligned}
& 1=\frac{y\left(e^{j w_{0}}\right)}{x\left(e^{j \omega_{0}}\right)} \rightarrow y\left(e^{j w_{0}}\right)=x\left(e^{j \omega_{0}}\right) \\
& 0=\frac{y\left(e^{j w_{1}}\right)}{x\left(e^{j w_{1}}\right)} \rightarrow y\left(e^{j \omega_{1}}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& x[n]=A_{0} \cos \left(\omega_{0} n+\varphi_{0}\right) \\
& \left.Y[n]=A_{0}\left|H\left(e^{j \omega_{0}}\right)\right| \cos \left(\omega_{0} n+\phi+L e^{j_{\omega_{0}}}\right)\right)
\end{aligned}
$$

* For general input:-

$$
x[n]=\sum_{i=1}^{L} A_{i} \cos \left(w_{i} n+\phi_{i}\right)
$$

\rightarrow The output of the system.

$$
\left.y[n]=\sum_{i=1}^{l} A_{i}\left|H\left(e^{j \omega_{i}}\right)\right| \cos \left(\omega_{i n}\right)+H \mid e^{\left(j \omega_{i}\right)}+\phi_{i}\right)
$$

Find the output of the system with the input Response $h[n]=\left(\frac{1}{2}\right)^{n} \mu[n]$ and an input $x[n]=10-5 \sin \left(\frac{\pi}{2} n\right)+20 \cos (\pi n)$

$$
\begin{aligned}
& H\left(e^{j \omega}\right)=\frac{1}{1-\frac{1}{2} e^{-j \omega}} \\
& \omega_{1}=0 \\
& H\left(e^{j 0}\right)=\frac{1}{1-\frac{1}{2}}=20^{\circ} \\
& \omega=\frac{\pi / 2}{1-\frac{1}{2} e^{-j / 2}}=\frac{1}{1+\frac{1}{2} j}=\frac{2}{\sqrt{5}} e^{-j 26.6^{\circ}}=\frac{2}{\sqrt{5}} L-26.6^{\circ} \\
& H\left(e^{j \frac{\pi}{2}}\right)=\frac{1}{1-\frac{1}{2} e^{-j \pi}}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3} \\
& \omega=\pi \\
& H\left(e^{j \pi}\right)=\frac{0^{\circ}}{1} \\
& y[n]=20-5 \cdot \frac{2}{\sqrt{5}} \sin \left(\frac{\pi}{2} n-26.6\right)+20 \cdot \frac{2}{3} \cos (\pi n) \\
& y[n]=20-\frac{10}{\sqrt{5}} \sin \left(\frac{\pi}{2} n\right.
\end{aligned}
$$

for $(-\infty<n<\infty)$
DFT : Discrete fourier Transform

* Finite length discrete Transforms:-
- all sequences we of finite length (N)
- $x[n]$ starts from $n=0$ up to $n=N-1$
* Orthogonal Transforms:-
\longrightarrow forward direction.

$$
\begin{aligned}
& \begin{aligned}
\text { Tuanlysi) } \\
\text { ex. }
\end{aligned} \\
& x[k]=\sum_{n=0}^{N-1} x[n] \psi^{*}[k, n] \quad, 0 \leqslant k \leqslant N-1 \\
& x[0]=\sum_{n=0}^{N-1} x[n] \psi^{*}[0, n] \\
& x[1]=\sum_{n=0}^{N-1} x[n] \psi^{*}[1, n] \\
& \vdots \\
& x[N-1]=\sum_{n=0}^{N-1} x[n] \psi^{\alpha}[N-1, n]
\end{aligned}
$$

$X[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] \Psi[k, n] \longrightarrow$ Reverse direction
$\psi[k, n]$ are called the basis sequences

$$
\frac{1}{N} \sum_{n=0}^{N-1} \Psi[k, n] \Psi^{*}[1, n]=\left\{\begin{array}{ll}
1 & , k=1 \rightarrow \text { orthogonal } \\
0 & , k \neq 1
\end{array} \rightarrow\right.
$$

* The Discrete Fourier Transform (DFT):-

$$
\begin{gathered}
x[k]=\sum_{n=0}^{N-1} x[n] e^{\frac{-j 2 \pi k_{n}}{N}} \\
\text { where } \frac{\Psi}{\downarrow}[k, n]=e^{\frac{j 2 \pi k_{n}}{N}} \\
{ }_{\text {epsi }}
\end{gathered}
$$

$$
\begin{array}{ll}
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} x[k] e^{\frac{j 2 \pi k_{n}}{N}} & 0 \leqslant n \leqslant N-1 \\
\frac{1}{N} \sum_{n=0}^{N-1} e^{\frac{j 2 \pi k n}{N}} \cdot e^{-\frac{j 2 \pi L n}{N}}=\frac{1}{N} \sum_{n=0}^{N-1} e^{\frac{j 2 \pi(L-k) n}{N}} \\
\rightarrow \text { for } k=L & \frac{1}{N} \sum_{n=0}^{N-1} 1=\frac{N}{N}=1
\end{array}
$$

\rightarrow for $k \neq L \quad \frac{1}{N} \sum_{n=0}^{N-1}\left(e^{\frac{j 2 \pi(k-l)}{N}}\right)^{n}$

$$
=\frac{1}{N} \cdot \frac{1-e^{\frac{j 2 \pi(k-l)}{y}} \cdot y}{1-e^{\frac{j 2 \pi(k-l)}{N}}}
$$

$$
x[k]=\sum_{n=0}^{N-1} x[n] e^{\frac{-j 2 \pi k_{n}}{N}} \quad 0 \leqslant K \leqslant N-1
$$

$$
x[n]=\frac{1}{N} \sum_{n=0}^{N-1} x[K] e^{\frac{j 2 \pi k_{n}}{N}} \quad 0 \leqslant n \leqslant N-1
$$

let $W_{N}=e^{-j \frac{2 \pi}{N}}$

$$
\begin{aligned}
w_{2} & =e^{-j \frac{2 \pi}{2}} \\
w_{4} & =e^{-\frac{j 2 \pi}{4}} \\
w_{100} & =e^{-j \frac{2 \pi}{100}}
\end{aligned}
$$

$\times(1)$

$$
\begin{array}{rlr}
w_{100}=e^{N-1} x\left[w_{N}^{k_{n}}\right. & 0 \leq k \leq N-1 \\
x[k] & \sum_{n=0}^{N} x[n] & =\frac{1}{N} \sum_{k=0}^{N-1} x[k] w_{N}^{-k_{n}}
\end{array}
$$

(*)

$$
\begin{aligned}
& x[0]=\sum_{n=0}^{N-1} x[n] w_{N}^{(0)(n)}=x[0]+x[1]+\cdots w_{N}^{(1)(n)}=x[0]+x[1] w_{N}^{1}+x[2] w_{N}^{2}+\cdots+x[N-1] \\
& x[1]=\sum_{n=0}^{N-1} x[n] w_{N}^{N-1} \\
& x[2]=\sum_{n=0}^{N-1} x[n] w_{N}^{2 n}=x[0]+x[1] w_{N}^{2}+x[2] w_{N}^{4}+\cdots x[N-1] w_{N}^{2(N-1)} \\
& \vdots \\
& x[N-1]=\sum_{n=0}^{N-1} x[n] w_{N}^{(N-1)(n)}=x[0]+x[1] w_{N}^{(N-1)}+x[2] w_{N}^{2(N-1)}+\cdots+x[N-1] w_{N}^{(N-1)(N-1)}
\end{aligned}
$$

$N \times 1$ NAN NI

$$
\begin{aligned}
& D_{N}: D_{\text {Matrix }}
\end{aligned}
$$

G

$$
\begin{aligned}
& \underline{x}=D_{N} x \\
& C_{N=2}^{D_{2}} \quad w_{2}=e^{-\frac{j 2 \pi}{2}}=e_{N}^{-\pi j} \\
& D_{2}=\left[\begin{array}{ll}
1 & 1 \\
1 & w_{N}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & e^{-j}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
& D_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & w_{4}^{1} & w_{4}^{2} & w_{4}^{3} \\
1 & w_{4}^{2} & w_{4}^{4} & w_{4}^{6} \\
1 & w_{4}^{3} & w_{4}^{6} & w_{4}^{4}
\end{array}\right] \quad w_{4}=e^{-\frac{j 2 \pi}{4}}=e^{-\frac{j}{2}} \\
& D_{4} \\
& =\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right] \\
& \\
& e^{-\frac{j 3 \pi}{3}}=\cos \\
& \hline
\end{aligned}
$$

* Circular shift of a sequence :-

$$
\begin{aligned}
& x[n]=\left\{\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right\} \\
& y[n]=x[n-1] \\
& y[0]=x[-1]=1 \\
& y[1]=x[0]=2 \\
& y[2]=x[1]=0 \\
& y[3]=x[2]=1 \\
& y[n]=x[n-1]=\left\{\begin{array}{llll}
1 & 2
\end{array}\right.
\end{aligned}
$$

\rightarrow two circular steps

$$
\left\{\begin{array}{llll}
0 & 1 & 1 & 2
\end{array}\right\}
$$

linear shift:

$$
\left.1201|1201| \begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 1 & 2 & 3
\end{array} \right\rvert\, 12011
$$

* The modulo operation:

$$
\begin{aligned}
& r=\langle m\rangle_{N} \\
& r=m+L N
\end{aligned}
$$

$$
\begin{aligned}
& \bmod (m, N) \rightarrow \text { modulo } \\
& \operatorname{rem}(m, N) \rightarrow
\end{aligned}
$$

where l : choosen such tent the $r=m+l N$ is anumber between O and N-I

$$
\begin{aligned}
&\langle 50\rangle_{7}= 50 \operatorname{modulo} 7 \\
&= 50+(L)(7)=1 \\
&-\frac{L}{-7} \\
&\langle-50\rangle_{7}=-50+L(7)=6 \\
& 8 \quad \bmod (-50,7)=6 \\
& \operatorname{rem}(-50,7)=-1 \quad \bmod (50,7)=1
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\text { [aumple } x[n]=\left\{\begin{array}{ll}
1 & 2
\end{array}\right\}\right.} \\
& y[n]=x[<n-2\rangle 4] \\
& y[0]=x[<-2>4]=x[2]=0 \\
& y[1]=x[<-1>4]=x[3]=1 \\
& y[2]=x[<0>4]=x[0]=1 \\
& y[3]=x[<1>4]=x[1]=2 \\
& y[n]=\{0,1
\end{aligned}
$$

* The circular convolufion:-
($2 N-1$) pants

$$
\begin{aligned}
& y[n]=x[n] \circledast h[n] \\
& y_{L}[n]=\sum_{k=0}^{N-1} x[k] h[n-k]
\end{aligned}
$$

older conv.

$$
\downarrow
$$

new circular conv.

$$
\begin{aligned}
y_{c}[n] & =\sum_{k=0}^{N-1} x[k] h\left[\langle n-k\rangle_{N}\right] \\
y_{c}[n] & =x[n] \text { (N) } h[n] \\
& =h[n] \text { (N) } x[n]
\end{aligned}
$$

circules conv. Npoints

$$
0 \leqslant n \leqslant N-1
$$

Example: $x[n]=\left\{\begin{array}{llll}1 & 2 & 0 & 1\end{array}\right\}$

$$
h[n]=\left\{\begin{array}{llll}
1 & 1 & 2 & 2
\end{array}\right\}
$$

find $y_{c}[n]$
$\left.y_{c}[0]=\sum_{k=0}^{3} x[k] h[<-k]_{4}\right]$
$=x[0] h\left[\langle 0\rangle_{4}\right]+x[1] h[\langle-1\rangle 4]$ $+x[2] h\left[\langle-2\rangle_{4}\right]+x[3] h[\langle-3\rangle 4]$
$=x[0] h[0]+x[1] h[3]+x[2] h[2]+x[3] h[1]$
$=(1)(1)+(2)(2)+(0)(2)+(1)(1)=6$

$$
y_{0}[1]=\sum_{k=0}^{3} x[k] \quad h\left[\langle 1-k\rangle_{4}\right]
$$

$$
\begin{aligned}
& =x[0] h[<1>4]+x[1] h[<0\rangle 4]+ \\
& =x[3] h[<-274]
\end{aligned}
$$

$$
x[0] h[\langle 1\rangle 4]+x[1]
$$

$$
\begin{aligned}
& x[2] h[\langle 1\rangle 4]+x \\
= & x[0] h[1]+x[1] h[0]+x[2] h[3]+x[3] h[2] \\
& x(2)(1)+(0)(2)+(1)(2)=5
\end{aligned}
$$

$$
\begin{aligned}
& x[0] h[1]+x[1] h[0]+x2=5 \\
= & (1)(1)+(2)(1)+(0)(2)+(1)(2)=
\end{aligned}
$$

Tabular method for circular conv,

	0	1	2	3	$\langle 4\rangle_{4}$	$\langle 5\rangle_{4}$	$\langle 6\rangle_{4}$
$x[n]$	1	2	0	1			
$y[n]$	1	2	2				
1	2	0	1				
1	1	2	0	$(1$			
0	2	2	4				
0	2						
4	0	2	2	(2)			

$y_{c}[n]=\left\{\begin{array}{llll}6 & 5 & 6 & 7\end{array}\right\}$
$y_{c}[2]=$
$y_{c}[B]=$

$$
\begin{aligned}
& \{1201\} \rightarrow\{41-j-21+i\} \\
& \text { DeFT } \rightarrow \begin{array}{c}
7 \text { points } \\
G_{\text {linear }} \text { cons. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x[n] \stackrel{\text { OFT }}{\longleftrightarrow} \times[k] \\
& g[n] \stackrel{D F T}{\longleftrightarrow} G[k]
\end{aligned}
$$

(1) linearity Theorem:

$$
\alpha X[n]+\beta g[n] \stackrel{\text { DFT }}{\longrightarrow} \alpha X[k]+\beta G[k]
$$

(2) Circular Tine shifting Theorem:

$$
x\left[\left\langle n-n_{0}\right\rangle_{N}\right] \stackrel{D F T}{\longleftrightarrow}{\underset{N}{k}}_{k_{n_{0}}}^{\longleftrightarrow} \times[k]
$$

(3) Circular frequency shifting Theorem:

$$
W_{N}^{-k_{0} n} \times[n] \stackrel{D F T}{\longleftrightarrow} \times\left[\left\langle k-k_{0}\right\rangle_{N}\right]
$$

(4) Duality Theorem:

$$
\left.G[n] \stackrel{D F T}{\longleftrightarrow} N_{g}[<-k]_{N}\right] .
$$

$$
\begin{aligned}
g[n] & =\left\{\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right\} \\
G[k] & =\left\{\begin{array}{llll}
4 & 1-j & -2 & 1+j
\end{array}\right\} \\
x[n]=G[n] & =\left\{\begin{array}{llll}
4 & 1-j & -2 & 1+j
\end{array}\right\}
\end{aligned}
$$

Find $X[k]:-$

* Alternative Solution:-

$$
\left.\begin{array}{l}
* \text { Alternative Solution:- } \\
4\left[\begin{array}{lll}
g[00\rangle_{4}^{*} & g\left[\langle-1\rangle_{4}\right] & g\left[\langle-2\rangle_{4}\right]
\end{array} g\left[\langle-3\rangle_{4}\right]\right.
\end{array}\right]
$$

$$
=4\left[\begin{array}{llll}
1 & 1 & 0 & 2
\end{array}\right]=\left[\begin{array}{llll}
4 & 4 & 0 & 8
\end{array}\right]
$$

(5) circular convolution Theorem:-

$$
X[n](N) g[n] \stackrel{D F T}{\longleftrightarrow} X[K] G[K]
$$

Example:

$$
\begin{aligned}
& x[n]=\left\{\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right\} \\
& g[n]=\{ \\
& x[k]=\left[\begin{array}{c}
4 \\
1-j \\
-2 \\
1+j
\end{array}\right] \quad G[k]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{c}
1+1+2+2 \\
1-j-2+2 j \\
1-1+2-2 \\
1+j-2-2 j
\end{array}\right]=\left[\begin{array}{c}
6 \\
-1+j \\
0 \\
-1-j
\end{array}\right]
\end{aligned}
$$

\rightarrow print by point multiplication.

$$
\begin{aligned}
& x[k] \cdot * G[k] \\
& =\left[\begin{array}{c}
4 \\
1-j \\
-2 \\
1+j
\end{array}\right]\left[\begin{array}{c}
6 \\
-1+j \\
0 \\
-1-j
\end{array}\right]=\left[\begin{array}{c}
24 \\
-x+j+j b x \\
0-j-j * 1
\end{array}\right]=\left[\begin{array}{c}
24 \\
2 j \\
0 \\
-2 j
\end{array}\right]
\end{aligned}
$$

$$
y[n]=\frac{1}{4}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & j
\end{array}\right]\left[\begin{array}{c}
24 \\
2 j \\
0 \\
-2 j
\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}
26 \\
24-2-2 \\
24-2 j+0+2 j \\
24+2+0+2
\end{array}\right]=\left[\begin{array}{l}
6 \\
5 \\
6 \\
7
\end{array}\right]
$$

-

$y[n]=$ ifft (fft $(x) . * f f t(g))$; (using Matlab)
(6) Modulatic. Theorem:-

$$
\begin{gathered}
\text { 6) Modulatich Theorem } \\
X[n] g[n] \stackrel{O f T}{\longleftrightarrow} \frac{\frac{1}{N} \sum_{l=0}^{N-1} x[l] G[<k-l]}{\leftrightarrows} y[k] \\
G y[0] \\
y[1] \\
y[2] \\
y[3]
\end{gathered}
$$

(7) Parseval's Relatices:-

$$
\begin{aligned}
E_{x}= & \sum_{n=0}^{N-1}|x[n]|^{2}=\frac{1}{N} \sum_{k=0}^{N-1}|x[k]|^{2} \\
& \sum_{n=0}^{N-1} x[n] g^{*}[n]=\frac{1}{N} \sum_{k=0}^{N-1} x[k] G^{*}[k]
\end{aligned}
$$

Example

$$
\left.\begin{array}{ll}
\text { Example } & x[n]=\left\{\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right\} \\
& x[k]=\left\{\begin{array}{lll}
4 & 1-j & -2 \\
\hline
\end{array}\right\} \\
& \sum_{n=0}^{3}|x[n]|^{2}=1^{2}+2^{2}+1
\end{array}\right\}=6 .(\underbrace{2}_{\text {magnitude }} \sum_{x}=\frac{1}{N} \sum_{k=0}^{3} x[k]^{2}=\frac{1}{4}\left(4^{2}+(-2)^{2}+\left(1^{2}+1\right)^{2}\right)=\frac{24}{4}=
$$

$$
(1-j)(1+j)=1-j+j+1=2
$$

compux conilgate \mathcal{J}
part

$$
\begin{aligned}
& x[n]=\left\{\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right\} \\
& g[n]=\{1
\end{aligned} 1
$$

Find $y_{L}[n]=x[n] * g[n]$
$\left.\begin{array}{l|lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 0 & 1 & & & \\ 1 & 1 & 2 & 2 & & & \\ 1 & 2 & 0 & 1 & & & \\ -1 & 1 & 2 & 0 & 1 & & \\ y_{L}[n]=\left\lvert\, \begin{array}{llllllll}- & 2 & 4 & 0 & 2 \\ -1 & - & - & 2 & 4 & 0 & 2\end{array}\right. \\ \hline & 3 & 4 & 7 & 5 & 2 & 2\end{array}\right\}$

$$
g_{e}[n] \stackrel{\text { DFT }}{\longleftrightarrow} X_{c}[k] G_{e}[k]
$$

- Ii near convolution
- linear

End of midterm material

$$
\begin{aligned}
& x(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \\
& x(z)=\sum_{n=-\infty}^{\infty} x[n]\left(r e^{j u}\right)^{-n} \\
& x(z)=\sum_{n=-\infty}^{\infty}
\end{aligned}
$$

Example:- $x[n]=2^{n} \mu[n]$

$$
\begin{aligned}
& x\left(e^{j \omega}\right)=\sum_{n=6}^{\infty} 2^{n} e^{-j \omega n} \\
& =\sum_{n=6}^{\infty}\left(2 e^{-j \omega}\right) \text { diuvgm }
\end{aligned}
$$

$x\left(e^{j \omega}\right)$ does not exist.

Example: - $\quad x[n]=a^{n} \mu[n]$
Find $x[z]$

$$
\begin{aligned}
x(z) & =\sum_{n=0}^{\infty} a^{n} z^{-n} \\
& =\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n} \xrightarrow{\text { sketch }} \\
& =\frac{1}{1-a z^{-1}} \frac{\left|a z^{-1}\right|<1}{|a|<|z|}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& x[n]=-a^{n} \mu[-n-1] \\
& x(z)=\sum_{n=-\infty}^{-1}-a^{n} z^{-n}
\end{aligned}
$$

$$
\mu_{[-n-1]}
$$

let

$$
m=-n
$$

$\frac{a z^{-1}}{a z^{-1}}$

$$
\operatorname{ROC}^{C} \quad|z|<|a|
$$

left-sided seq \rightarrow fran (a) and inside
Right-sided seq \longrightarrow (a) and outside.
(ex)

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(2 z^{-1}\right)^{n} \\
& \rightarrow \begin{array}{l}
\rightarrow \begin{array}{l}
\left(\frac{2}{3}\right)^{n} \\
\left(\frac{2}{1}\right)^{n}
\end{array} \rightarrow \begin{array}{c}
j \rightarrow 1 \\
(\text { converge) }
\end{array} \\
\begin{array}{c}
\text { (diverge) }
\end{array} \\
\text { (xvi }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x(z)=-\sum_{n=1}^{\infty} a^{-m} z^{m} \\
& =-\sum_{m=1}^{\infty}\left(a^{-1} z\right)^{m} \\
& =\frac{-a^{-1} z}{1-a^{-1} z}\left|a^{-1} z\right|<1> \\
& \sum_{n=1}^{\infty} r^{n}=\frac{r}{1-r} \\
& =r+r^{2}+r^{3}+\cdots \cdot \\
& =r\left(1+r+r^{2}+r^{3}+\cdots\right) \\
& =r\left(\frac{1}{1-r}\right)
\end{aligned}
$$

Example:

$$
\begin{aligned}
& x[n]=\left\{\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right\} \\
& x(z) \\
&
\end{aligned}=1 \cdot z^{1}+2 \cdot z^{0}+0 \cdot z^{-1}+1 \cdot z^{-2}\left(\frac{\left.\sum_{n=-\infty}^{\infty} x[n] z^{-n}\right)}{\text { Definition }}\right.
$$

$$
=z+2+z^{-2}
$$

(1) ∞ batu.
\longrightarrow compinations of +re and -le pars.
So, th ROC: π_{e} entice z-plane except $z=0$ and $z=\infty$

Example:- $x[n]=\left\{\begin{array}{llll}1 & 2 & 0 & 1\end{array}\right\}$

$$
x(z)=1+2 z^{-1}+z^{-3}
$$

So, ROC: the entire z-place except $z=0$

Example :-

$$
y[n]=\left\{\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right\}
$$

$$
z(x)=z^{2}+2 z^{2}+1 \quad \text { p only the pours. } \longrightarrow \text { on }
$$

So, $Z O C$: the entire z-place except $z=\infty$

Gomple:-x[n]$=\delta[n]$

$$
x(z)=\sum_{n=-\infty}^{\infty} \delta[n] z^{-n}=z^{-(0)}=1
$$

ROC: tu entire z-plane.
Example:- $\quad x[n]=\delta[n-1]$

$$
\begin{aligned}
x(z)= & \sum_{n=\infty}^{\infty} \delta[n-1] z^{-n} \\
& =z^{-1}
\end{aligned}
$$

ROC: The entire z-plane except at $z=0$

Example :- $\gamma[n]=\delta[n+1]$

$$
\begin{aligned}
x(z) & =\sum_{n=\infty}^{\infty} \delta[n+1] z^{-n} \\
& =z^{1}
\end{aligned}
$$

ROC: the entire z-place except ()

Example :-

$$
\begin{aligned}
x[n] & =\underbrace{\left(\frac{1}{2}\right)^{n} \mu[n]}_{x_{1}(n)}+\underbrace{\left(\frac{-1}{3}\right)^{n} \mu[n]}_{x_{2}(n)} \\
x(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \\
& =\sum_{n=0}^{\infty}\left[\left(\frac{1}{2}\right)^{n}+\left(\frac{-1}{3}\right)^{n}\right] z^{-n} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} z^{-n}+\sum_{n=0}^{\left(\frac{-1}{3}\right)^{n} z^{-n}} \\
x(z) & =\sum_{n=0}^{\infty}\left(\frac{1}{2} z^{-1}\right)^{n}+\sum_{n=0}^{\infty}\left(\frac{-1}{3} z^{-1}\right)^{n}
\end{aligned}
$$

Both must be converge

(th intersection between the 2 ROC)

$$
\left(\frac{1}{3}\right)^{n} \mu[n]
$$

if $|z|>\frac{1}{3}$

$$
\left(-\frac{1}{3}\right)^{n} \mu[-m-n]
$$

$$
\begin{aligned}
& 1+\frac{1}{3} z^{-1}+1-\frac{1}{3} z^{-1} \\
& =2-\left(\frac{1}{6} z^{-1}\right) \\
& 2\left(1-\frac{1}{12} z^{-1}\right) \\
& \\
& \frac{1}{12} \text { zero }
\end{aligned}
$$

O circle un uric is the final Roc.

$$
\frac{1}{1-\frac{1}{3} z^{-1} \rightarrow|z|>\frac{1}{3}, ~}
$$

$x(z)$ il divergence beef

Region of convergence $)^{-}$

$$
\infty=\sqrt{m} \times(z)
$$

$$
\frac{1}{1-\frac{1}{2} z^{-1}}+\frac{1}{1+\frac{1}{3} z^{-1}}
$$

$R_{1}:\left|\frac{1}{2} z^{-1}\right|<1$

$$
R_{2}:\left|\frac{-1}{3} z^{-1}\right|<1
$$

$$
|z|>\left|\frac{1}{2}\right|
$$

$$
\left|\frac{-1}{3}\right|<|z|
$$

Pole -zero pattern or pole-zero constellation-place
$x(z)=\frac{(z+2)}{(z+1)(z+3)}$

