(f) POWER UNIT-JU

AN
& http : // POWER UNIT-JU.COM

Scanned by CamScanner

Logic and Computer Design Fundamentals

Chapter 1 — Digital Systems
and Information

Charles Kime & Thomas Kaminski

© 2008 Pearson Education, Inc.
(Hyperlinks are active in View Show mode)

Scanned by CamScanner

E Overview

|
|
||
|
|
|
]
|

Logic
PowerPoint® Siides

Digital Systems, Computers, and Beyond
Information Representation

Number Systems [binary, octal and hexadecimal]
Base Conversion

Decimal Codes [BCD (binary coded decimal)]
Alphanumeric Codes

Parity Bit

Gray Codes

.- and Camper Design Fundamentals, 42 Chapter 1 3

© 2008 Pearsan Education, Inc.

DIGITAL & COMPUTER SYSTEMS - Digital

System
——

Takes a set of discrete information inputs and discrete internal
information (system state) and generates a set of discrete information

outputs.
Digits (Latin word for fingers) : Discrete numeric elements

Logic : Circuits that operate on a set of two elements with values 0
(False), 1 (True)

Computers are digital logic circuits

Discrete Discrete
Information _
Inputs =—» .
= Processing » Discrete
System Outputs

I

System Stateg

Scanned by CamScanner

Types of Digital Systems

“

" No state present
® Combinational Logic System
® Output = Function(Input)

= State present

® Synchronous Sequential System: State updated at
discrete times

* Asynchronous Sequential System: State updated at any
time

® State = Function (State, Input)

® Output = Function (State) or Function (State, Input)

/

Moore Mealy

Logic and C i
e a ‘crsnﬁr:;l:r Design Fundamentals, 4a
©:2008 Pearson Education, inc, Chapter 1

Digital System Example
\

A Digital Counter (e. g., odometer):

Count Up —

Reset —| 0 0] 1| 3| 5| 6/ 4

Inputs: Count Up, Reset
Outputs: Visual Display
State: "Value" of stored digits

Synchronous or Asynchronous?

Scanned by CamScanner

Digital Computer Example
e —

Memory
\
\
SR Control |
C.PU it Datapath
Z
\
Inputs: keyboard, Outputs: LCD
mouse, wireless, Input/Output screen, wireless,
microphone speakers
Synchronous or
Asynchronous?
Logic and Computer Design Fundamenials, 4
PauafoRe She Chapter 1 7

gggmpwsmEanﬁmh:

And Beyond — Embedded Systems

e —————————————————————
» Computers as integral parts of other products
= Examples of embedded computers
® Microcomputers
® Microcontrollers
* Digital signal processors

= Examples of embedded systems applications

Cell phones , Dishwashers
| ElafPandTVs

Vldeo games Global Pos1t10nmg Systems

Scanned by CamScanner

INFORMATION REPRESENTATION - Signals |

- —

» Information variables represented by physical quantities.

= For digital systems, the variables take on discrete values.
» Two level, or binary values are the most prevalent values

in digital systems.
* Binary systems have higher immunity to noise.

= Binary values are represented abstractly by:
® digitsOand1
* words (symbols) False (F) and True (T)
* words (symbols) Low (L) and High (H)
* and words On and Off.
= Binary values are represented b
of physical quantities.

y values or ranges of values

Chapter1 9

Logic and Computer Design Fundamentials, 42
PowerPoint® Slides
© 2008 Pearson Education, Inc.

Signal Examples Over Time

Time |1 I
—\ Continuous
Analog in value &
_/ \ ~ / _/ time
Digital Discrete in
value &
Asynchronous confinUoUs
in time
Synchronous Discrete In
- value & timé

10
Scanned by CamScanner

l signal Example — Physical Quantity: Voltage

Voltage (Volts)

OUTPUT INPUT 1.0
06 x 0.0

— 04— A (b) Time-dependent Voltage
7 : _
0.1 — LOW
LWy 99X
Volt
o \Threshold

Region 0 Time

(2) Example voltage ranges (c) Binary model of time-dependent voltage

Logic and Computar Dasign Fundamentals, 4a
PowerPoirt® Slides
€ 2008 Pearson Education. Inc.

Chapter 1 11

Binary Values: Other Physical Quantities

“

" What are other physical quantities represent
0and 1?

* CPU - Voltage

* Disk - Magnetic Field Direction
® CD - Surface Pits/Light

* Dynamic RAM -> Electrical Charge
stored in capacitors

Scanned by CamScanner

ion
NUMBER SYSTEMS — Representat

3,8 S
= Positive radix, positional number system ine of i
* A number with radix r is represented by a string of digits:

An-lAn_2 cee AIAO' A_IA-Z"' 14-m+1/1_m

in which 0 <A, <rand.is the r adix point
irepresents the position of the coefficient o o
1 represents the weight by which the coefficient1s multiplied

A, is the most significant digit (MSD) and A, is the least
significant digit (LSD)

The string of digits represents the power Series:

n-1 -1
(Number)r= AiTi + Z A]'TJ
i=0 j:—m

Integer Portion Fraction Portion Chapter 1

Number Systems — Examples

-

General Decimal B
Radix (Base) r m\\w
Digits 0=>r-1 W*
o g B SIS
1 r! 10 1
) r’ 100 2
3 r’ 1000 4
Powers of 4 r 10,000 8
Radix 5 rs 100,000 16
-1 r- 0.1 32
-2 r 0.01 0.5
-3 r- 0.001 0.25
-4 r- 0.0001 0.125
-5 r-s 0.00001 0.0625
e i D s o \003&
© 2008 Prarson Education, inc,

Scanned by CamScanner

- Example

. (403); = 4x52+0x 5" +3x5%=(103)

" (103)10=1X102+0x101+3X100=103

oot o Chapter 1 15

> 2008 Pearson Education, Inc

BASE CONVERSION - Positive Powers of 2

’

» Useful for Base Conversion

Exponent| Value Exponent | Value
0 1 11 2,048
1 2 12 4,096
2 4 13 8,192
3 8 14 16,384
4 16 15 32,768
5 32 16 65,536
6 64 17 131,072
7 128 18 262,144
8 256 19 524,288
9 512 20 1,048,576
10 1024 21 2,097,152

i
§

f
|

Chapter 1 16

Scanned by CamScanner

Special Powers of 2

%

= 210 (1024) is Kilo, denoted "K'

= 220(1,048,576) is Mega, denoted "M"

= 230(1,073, 741,824)is Giga, denoted ""G"

= 240 (1,099,511,627,776) is Tera, denoted

"T"

Logic and Compestar Design Fundamentals, 48

PowerPoint® Sides

© 2008 Fearson Education. Inc

Chapter 1

Commonly Occurring Bases

ﬁ

Radix

| Digits

oy €1 Bin

3

S 0, 1

01234567

0123456785

Hexadecimal

16

= The six letters A, B, C, D, E, and F represent the d
values 10, 11, 12, 13, 14, 15 (giVen in d
respectively, in hexadecimal. Alternatively a, b,

can be used.

0’1’2539495)697,8993A B C DEF
e |

igits for
€cimal),
C, d, e, f

Scanned by CamScanner

- ginary System
M
s =2 |
" DlgltS = {O, 1}
» Every binary digit is called a bit

» When a bit is equal to zero, it does not contribute to the
value of the number

= Example:
® (10011.101),= (1Xx2*+0x23+0x22+1x 21 +1x2%)
+(1x2714+0x2724+1x273)

¢ (10011.101);= (16 +2 + 1) + (5 +3) = (19:625)10

_ogic and Computer Design Fundamentals, 42

owerPoint® Siides Chapter 1 19

S 2008 Pearson Education, Inc.

Octal System

"r=24§
* Digits= {0, 1,2,3,4,5,6,7}
* Every digit is represented by 3-bits 2 More compact than
binary
" Example:
® (127.4)g= (1x82+2x8'+7x8%)+ (4x871)

* (127.4)5= (64 +16+7) +(3) = (87.5)10

Scanned by CamScanner

Hexadecimal System

m

= r=16
Dlglts—{O123456789ABCDEF}

Every digit is represented by 4-bits

Example:
® (B65F);s= (11 x 163 + 6 X 16° +5 X 161 + 15 x 16°)

® (B65F)1= (46687)10

m ;_ad mc*as"uM" Design Fundamentals, 4
des
©2
008 Pearson Education, inc. Chapter 1

Numbers in Different Bases

\

® Good idea to memorize!

Decimal Binary Octal :
(Base 10) (Base 2) | (Base 8) H‘I;xaas(:elc émal
00 00000 00 “‘L“aa‘—)-—-
01 00001 01 01
02 00010 02 | o
03 00011 03 03
04 00100 04 04
05 00101 05 05
06 00110 06 06
07 00111 07 07
08 01000 10 08
09 01001 11 09
10 01010 12 0A
11 01011 13 0B
12 01100 4 | “oc—
13 01101 15 0D
14 01110 16 OE
15 01111 17 | O0F
16 10000 20 10

Scanned by CamScanner

-converting from any Base (r) to Decimal

n—1 —1
(Number),.= E ATt |+ E AT
=0 j=—m
Integer Portion Fraction Portion

= Example: Convert 11010, to Nyo:

ic and Computer Design Fundamentals, 4
fPoiet* Sides
008 Pearson Education, nc. Chapter 1 23

Conversion from Decimal to Base (r)

f
= Convert the Integer Part

» Convert the Fraction Part

» Join the two results with a radix point

Scanned by CamScanner

Conversion Details

M

» To Convert the Integral Part:
* Repeatedly divide the number by the new radix and save the remainders
until the quotient is zero _
® The digits for the new radix are the remainders in reverse order of their
computation

® If the new radix is > 10, then convert all remainders > 10 to digits A, B,

» To Convert the Fractional Part:

* Repeatedly multiply the fraction by the new radix and save the i'nte.ger
digits of the results until the ffaction is zero or your reached the required
number of fractional dieits

* The digits for the new radix are the integer digits in order of their
computation

* Ifthe new radix is > 10, then convert all integers > 10 to digits A, B, ...

Logic and Computer Design Fundamentals, 48
PowerPoint® Siides

© 2008 Pearson Education, Inc Chapter 1 25

Example: Convert 46.6875,, To Base 2

. Division Quotient Remaingd
= Convert 46 to Base 2: = T\TH%— 3
2312 T“*“r-——
— 1172 T B
(46),,=(101110), ” ‘z‘*‘\“:‘\
I e A]
12 _‘H“\f‘_
= Convert 0.6875 to Base 2: — | MSD
Multiplication |~ ,—— |
NSwer
068752 | oo—— ‘
" 375 *
(0.6875),, = (0.1011), 0.375%2 075 MSD
0.75%2
15
0.5*2
1.0

LSD
= Join the results together with the radix point: ‘

(46.6875),, = (101110.1011),

Scanned by CamScanner

gexample: Convert 153.513,, To Base 8

—_____————_——__——-_-_

L COnvert 153 to Base 8: Division Quotient Remainder
153/8 19 1 4 |LSD
_ 19/8 2 3
(153),0 = (231)4 o > 2 MSD

« Convert 0.513 to Base 8: (Up to 3 digits)

® Truncate: Multiplication Answer
(0.513) 10= (0'406)8 0.513*8 4.104 MSD
e Round: 0.104*8 0.832
0.832*8 6.656
(0.513),, = (0.407)g 0.656+8 5248 ¢ |LSD

« Join the results together with the radix point:
(153.513),, = (231.407)3

Comput Design Fundamentals, 42
o Chapter 1 27
sarson Education, inc.

Example: Convert 423,, To Base 16

Division | Quotient Remainder
423/16 26 7 1 |LsD
26/16 1 10
1/16 0 1 MSD

(423),0= (1AT)

Scanned by CamScanner

Converting Decimal t0 Binary-

Alternative Method e —

= Subtract the largest power of 2 that

and record the power

= Repeat, subtracting from the prior I

the power, until the remainder is zero

= Place 1’s in the positions in th y
to the powers recorded; in all other positio

Logic and Comp
PowerPoint® Slides
© 2008 Prarson Education, Inc.

%+ Example: Convert 46.6875,, To Base 2
Using Alternative Method

g1l -
xl‘lﬂ’

+.
Y 2w

U = Convert 46 to Base 2:

(46),, = (101110),
= Convert 0.6875 to Base 2:

(0.6875),, = (0.1011),

gives a positive remainder
emainder and recording

e binary result corresponding
ns place 0’s

= Join the results together with the radix point:
(46.6875),5 = (101110.1011),

= Easier way to do it:

Power | 6 | 5 4 3

Logic and Comp Deasign F dals, 40
PoworPoint® Siides
© 2008 Pearson Education, Inc

Chapter 1 29
Subtract | Remainder Power
46-32 14 5
14-8 6 3
6-4 2
2-2 0 1
Subtract Remainder Power
0.6875-0.5 0.1875 1
0.1875-0.125 0.0625 3
0.0625-0.0625 0 4
S
IEN Iy
3| -
tlo] . [q] 4
Lo 1T
Chapter 1 30

Scanned by CamScanner

Additional Issue - Fractional Part

» Note that in this conversion, the fractional part can become
0 as a result of the repeated multiplications

« In general, it may take many bits to get this to happen or it
may never happen

= Example Problem: Convert 0.65,, to N,
® 0.65=0.1010011001001 ...

® The fractional part begins repeating every 4 steps yielding
repeating 1001 forever!

= Solution: Specify number of bits to right of radix point
and round or fruncate to this number

Computer Design Fundamentais, 42
::.-E’? Wm) Chapter 1 31

Checking the Conversion

* To convert back, sum the digits times their respective
powers of r

* From the prior conversion of 46.6875,,

101110, =1-32+0-16 +1-8 +1-4+ 1-2 +0-1

= 32+8+4+2
= 46
0.1011, =1/2+1/8+1/16
= 0.5000 + 0.1250 + 0.0625
e, = 0.6875

Scanned by CémScanﬂr;er

Octal (Hexadecimal) to Binary and
Back: Method1

« Octal (Hexadecimal) to Binary: |
1. Convert octal (hexadecimal) to decimal (Slide 23)

2. Covert decimal to binary (Slide 24 or Slide 29)

= Binary to Octal (Hexadecimal):
1. Convert binary to decimal (Slide 23)
2. Covert decimal to octal (hexadecimal) (Slide 24)

e LAl el sl e 4
wais el Wl d wis g v

Lojcr;r:d%unmner Design Fundamentals, 4a
FowerPoint® Slides
© 2008 Pearson Education. Inc. Chapter 1

Octal (Hexadecimal) to Binary and

Back: Method2 (Easier)
e e e~y

» (Qctal (Hexadecimal) to Binary:

® Restate the octal (hexadecimal) as three (four) b; =
starting at the radix point and going both ways() binary digits

= Binary to Octal (Hexadecimal):

o . o e s _
Group the binary digits into three (four) bit groy -
radix point and going both ways, padding withgzer}O): :;aril:(% (zitt the
e

® Convert each group of three (four) bits to an octg] (hexadecima]
€cimal)

digit
Octal | © 1 2 |3 4|5] >
Binary | 000 [001 | 010 | 011 | 100 [101 | 144 »
1
Hexadecimal | 0 1 2 3 4 "S\{T[\
Binary | 0000 [0001 | 0010 [0011 | 0100 mm¢
e | 0
. — 01
Hexadecimal | 8 9 A B C D T A
L = ¥
Binary 1000 | 1001 [1010 | 1011 | 1100 | {0 T
1 [
—L " o | gy,

| nrie and Competer Design Fundamentals, 4
Scanned by CamScanner

gxamples

;
« (673.12)3=(110111 011 . 001 010),

. (3A6.C);s= (0011 1010 0110 . 1100),
. (10110001101011.1111000001),=(? s
(10/110/001/101/011.111/100/000/1), = (26153.7404)g

« (10110001101011.1111000001), = (?)6

(10/1100/0110/1011.1111/0000/01), = (2C6B.F04),

d Gomputer Design Fundamentals, 42
Pearscn Education, inc. Chapter 1 35

Octal to Hexadecimal via Binary

f

» Convert octal to binary |
= Use groups of four bits and convert to hexadecimal digits

* Example: Octal to Binary to Hexadecimal
(635.177)s

(110 011 101. 001 111 111),

(1/1001/1101 . 0011/1111/1),

(19D.3F8),4

Scanned by CamScanner

One last Conversion Example

" Given that (365)1' — (194)10, ComPUte the

value of 7

3Xr2+6><r1+5><T0:"194

32 4+ 6r +5 =194
372+ 6r—189 =0
r24+2r—63=0
r—7@+9)=0

r=7

Logic and Computer Design Fundamentals, 42
PowerPoind® Slides
© 2008 Pearson Education; Inc. Chapter 1

Binary Numbers and Binary Coding

m
= Flexibility of representation
* Within constraints below, can assign any

(called a code word) to any data as |
encoded

binary combination
ong as data is uniquely

= Information Types

* Numeric
= Must represent range of data needed

= Very desirable to represent da
computation for common arithm

= Tight relation to binary numberg

ta such that

etic operatiop Simple, straightforward

S permitted

* Non-numeric
= Greater flexibility since arithmeti operat;
= Not tied to binary numbers atons not applied

Scanned by CamScanner

Non-numeric Binary Codes

~
« Given 1 binary digits (called bits), a binary code is a mapping

from a set of represented elements to a subset of the 27 binary
numbers.

« Example: A binary code for the seven colors of the rainbow
« Code 100 is not used

G\ o \
Color Binary Number PN (AT
Red 000 1o
e - .
T ez
Orange 001 s L
Yellow 010
Green 011
Blue 101
Indigo 110
Violet 111 J
:gﬁw;iﬁfm;mmms“ Chapter 1 39 |
08 Pearson Education, ' ﬂ"JL; (b\' 3\\. S\

Ex. 2L —5 2less © Liks

. . ? = 5@ 325 S
Number of Bits Required . .., . * o oy sz

x Base()er ()ae = M) o=
f

= Given M elements to be represented by a binary code, the
minimum number of bits, n, needed, satisfies the following

relationships:
2" > M > 2nt
n = [logz M], where [x] is called
the ceiling function, is the integer greater than or equal to x.
L enem

* Example: How many bits are required to represent decimal

digits with a binary code?

M =10
n = [log,10] = [3.33] = 4

9ic and Com,
WorPoiet® g DO Fundamentais, 4o

£008 Peanon Edcaion, ing Chapter 1 40

Scanned by CamScanner

Number of Elements Represented

. D . 7 distinct
= Given n digits in radix r, there are r# distin

elements that can be represented. \

n
* But, you can represent m elements, 22 =T |

= Examples:

® You can represent 4 elements in radix r=
digits: (00, 01, 10, 11).

2 with n =2

® You can represent 4 elements in radix r=2 with n=4
digits: (0001, 0010, 0100, 1000).

® This second code is called a "one hot" code.
Ex. o ool
| colo
2 ¢ | oo
Logic and Competer Design Fundamentals, 42) jo oo Chapter 1 41 \

PowerPoirt® Siides
G, () WD SL X s BiY by Yme

© 2008 Pearson Education, Inc.
: 0)—" ’JS' Qﬁ_")—a"

DECIMAL CODES - Binary Codes for
Decimal Digits
-9

= There are over 8,000 ways that you can chose 10 elements
from the 16 binary numbers of 4 bits. A few are useful:

Decimal | 84,21 | Excess3 | 8,4,2,-1 | Gray P
0 0000 0011 0000 0000 | =
1 0001 0100 0111 wor | %
2 0010 0101 0110 0011
3 0011 0110 0101 0010
4 0100 0111 0100 0110
5 0101 1000 1011 o111
6 0110 1001 1010 0101
7 0111 1010 1001 0100
8 1000 1011 1000 1100
— o | 1001 1100 1111 1101

Scanned by CamScanner

Binary Coded Decimal (BCD)
I ——

s Numeric code Eq. (1230

= The BCD code is the 8,4,2, 1 code lowo) oo ='=!) znad

S| 2% Ry

» 8,4,2,and 1 are weights > BCD is a weighted code

o S,

E;n'\(j L»a_n

a Thi§ code. i§ the simplest, most intuitive binary code for
decimal digits and uses the same powers of 2 as a binary
number, éilt only encodes the first ten values from 0 to 9

= Example: 1001 (9) = 1000 (8) + 0001 (1) -

» How many “invalid” code words are there?
® Answer: 6

= What are the “invalid” code words? — =~ PJ—C
e Answer: 1010, 1011, 1100, 1101, 1110, 1111 252

d Computer Dasign Fundamentals, 4e . =ty
iirt* Sides \ . Chapter 1 43
3sarson Education, Inc

Warning: Conversion or Coding?
f

» Do NOT mix up conversion of a decimal number to a
binary number with coding a decimal number with a

BINARY CODE.

=

-

» 13,,= 1101, (This 1s conversion)

* 13 < 0001|0011 (This is coding)

Scanned by CamScanner

Excess 3 Code and 8, 4, -2, "1»C°de

T ———

i s
= What interesting property 1S common to these tWoO codes

* Answer: Both codes have the property that the codes for 0 and 9,,1
h other by replacing the 0’s

and 8, etc. can be obtained from €ac : . called
with the 1’s and vice-versa. Such a code 1S sometimes ca a
1329 com iy
| - :pslement code. [Decimal_| Excess 3 8,4,-2,-1
Ex: “29)\’_0‘_’:5*9:8 0 0011 0000
A
1 0100 o111
(oloe olol looe) —— | o1 0110
. . Eoreess 2 ———‘;_‘——'_——_0—1_1_9—_—_ 0101
Ex o 4 ot | 0100
T 5 1000 1011
(1150 [olll olie L) 6 1001 1010
2 £ B B 7 1010 1001
{ 2 >
8 1011 1000
) _ 9 1100 1111
lﬁxﬁ"“;ﬁ%ﬂ?m Fundamentals, 42
© 2008 Pearson Education, Inc. ()Ec D'*)()g 'p()EKC'ch _5()'D (3 2 9()Bc OChapterl 4
94 &=— \lo U< Coonp Voo Excuss o 3 2 e b le LV Vg
Ve ¥} dsn oo T T

=

ALPHANUMERIC CODES - ASCIl Character

Codes

F
= Non-numeric code

= ASCII stands for American Standa
. rd Code for
Information Interchange (Refer t -
text) o Table 1-5 in the

= This code is a popular code
: : us
1r_1forrpat10n sent as character-basedegatto represent
bits (i.e. 128 characters) to represent: a. It uses 7-

® 94 Graphic printing characters
* 34 Non-printing characters -) o o

2O S ¢y

Logic and Comput
PowerPoint® Sides
— sann Peeann Edication. inc.

= AR
Scanned by CamScanner

ASCIl Code Table

m

Caprbal €27 U 5N ¥

pip 5 s Spal By
Eﬁés)e’e (s\oo coo1) Le€astSignificant w Pt €15
(016~ 2 (03“0 ;oo’;ASCII Code Chart 2 =129
J— 6 ;7 ,8,9
sonls A(B,;C,D
9:’: =2 og ET" EOT | ENQ |AcK |BEL| BS [HT [LF [vT | FF | CR :o st
== C31DC4 |NAK | SYN |ETB | caN | €M [suB [Esc| Fs | 65 [Rs [us
Eﬁo]") # 5 % & ' (] - + ' - /
03 2 3 4 5 b 7 8 9 . . < _ > 7
: f 2 i C{D|E|F|G|H|[I|J|K[L|IM|[N]O
G~ Talb S Tjulviwlixjvjiziljv]I]e
R cldle|f |9 nli]i k] in]|n]o
s|tjulv | w|x|ylz]{] I]}]|~]|DE
Ny e o Sepdme &
MSD Lsh
%Eigxminrwmmmiw (S 5 BE B
ation, In — t) Bansd Chapter 1 47
<J =il Ex ! w— (5 -

ol 2 B8 & (olole W

ASCII Character Codes
-

» Graphic printing characters
= 26 upper case letters (A-Z)
= 26 lower case letters (a-2)

= 10 numerals (0-9)
» 32 special characters (e.g. %, @, $)

» Non-printing characters
» Format effectors: used for text form

carriage return)
» Information separators: used to separate the data into paragraphs

and pages (e.g- RS = record separator, FS = file separator)
= Communication control characters (e.g. STX and ETX start and

end text areas).

at (e.g. BS = Backspace, CR =

Chapter 1 48
Scanned by CamScanner

Ascll Properties

—_—

= ASCII has some interesting properties: |
' Digits 0 to 9 span Hexadecimal values 30,4 tO 396

® Upper case A-Z span 41,4t0 5A

® Lower case a-z span 61,5 t0 7A

* Lower to upper case translation (and vice versa) occurs by flipping
bit 6

Logic and Compxrier Design Fundamentals, 4
FowerPoint® Slides
© 2008 Pearson Education, Inc. Chapter 1

UNICODE

» UNICODE extends ASCII to 65,536 univ
codes:
® Non-numeric

ersal characters

® For encoding characters in world languages

® Available in many modern applications

® 2 byte (16-bit) code words

Scanned by CamScanner

PARITY BiT Error-Detection Codes
€20 b s foge I Ganl O \as

/_———-_—_'-,'___-——
M e [ﬂj

, Non-numeric- .-

[o\o]
RYR PP I Il 1 B)i. (_j
" Redundancy (e.g. extra information), in the form of extra

bits, can be incorporated into binary code words to detect
and Correctuer'r(‘)r_s)‘ T N pority bit (Dgpesslen &)
o ‘h‘ “— _—’) 2

% fP../L.')l;f ("Lf'.:; 71 ry @\:@ N

« A simple form of redundancy is parity, an extra bit
appended onto the code word to make the number of 1’s
odd or even. Parity can detect all single-bit errors and some

multiple-bit errors
Y Y o O e
« A code word has even parity if the number of 1’s in the
code wordiseven
Lo S O e
« A code word has odd parity if the number of 1’s in the
codewordisodd — —

ca oy a1 Design Fundamentals, 42 :
g L N 58 Chapter 1 51
even

108 Pearson Education, Inc.

ng
4-Bit Parity Code Example

/
« Fill in the even and odd parity bits:

Even Parity Message Odd Parity Message
0000 2 Far'Fy Br 0001
0011 0010
0101 0100
0110 0111
1001 1000
1010 1011
1100 1101
1111 1110

" The code word "1111" has even parity and the code word
"1110" has odd parity. Both can be used to represent the
same 3-bit data

Logic and ¢ .
mw?{;ﬁ:’ Desigh Fundamentals, 4e
52

Chapter 1
Scanned by CamScanner

GRAY CODE (1)

mﬂw

Decimal LA ——.
0000 000g |/

= Non-numeric code | T o

gh 2P ‘1): /’0_1—_’_____0_0_1_0___ 0017)

02
——#——_—_\
—— | o011 0019

* Copy the leftmost bit as it is 3 | =

= For original binary codes (0 throu

.] th the o1 | 0100 0110
® Replace each of the remaining bits W1 e ___,0_5,_._——3;0—1———\0]11
even parity of the bit of the number an TT—\M”‘
bit to its left — | om | oo
o 1000 100 |
. — > | 1001 1101 |
= What special property does the Gray s - - —
. . . 0 101
code have in relation to adjacent . i] TR
decimal digits? 2 1100 1010 |
* As we “counts” up or down in decimal, the 5 1101 1011
code word for the Gray code changes in only ” 1110 1001
one bit position including 15 to 0. 15 111 1000
Powarboir® Sides. e Chapter 1 53
© 2008 Pearson Education, Inc.

Qi Wwsjlom plan=u b d

o b s) U e e B

GRAY CODE (2) (BiF) hzs sois 3,2

“

= For a counting sequence of n binary code words (2 must
be even)

® Replace each of the first n/2 numbers with Deci
a code consisting of 0 followed by the even “imal | BCD | Gray |

parity of each bit of the binary code word 0000 | 0000 |

and the bit to its left 0001 0001
* Copy the sequence of numbers formed ang | 0010 o011

copy it in reverse order with the leftmost oo 0@’:

bit replaced by 1. 0100 0110

0101 | 1110 |

0110 | 1010
\

01 | 101
—

1000 | 1001
——
1001 | 1000 |

3y OV Sanl coom,

T

ogic ard Computer Dasigh Fundamenials, 4e
. AP eBda

Scanned by CamScanner

Foh)
Logic and Computer Design Fundamentals

Chapter 2 — Combinational
Logic Circuits

Part 1 — Gate Circuits and Boolean Equations

Charles Kime & Thomas Kaminski
© 2008 Pearson Education, Inc.

(Hyperlinks are active in View Show mode)

Scanned by CamScanner

al LogicCircuits

Combination
' components
= Digital (logic) circults are harflv;/lare p
that manipulate binary informat101.
' and
= Integrated circuits: trans1stors
interconnections.

. Basic circuits is referred to as logic gzte&r —
« The outputs of gates are applied to the inputs O

gates to form a digital circuit

» Combinational? Later...

L@a@c?rl‘;fmmm"“ Chapter 2 -Part 1
© 2008 Pearson Education, Inc.

Overview

ﬁ
= Part 1 — Gate Circuits and Boolean Equations

 Binary Logic and Gates
« Boolean Algebra
» Standard Forms

= Part 2 — Circuit Optimization
« Two-Level Optimization
¢ Map Manipulation
* Practical Optimization (Espresso)
« Multi-Level Circuit Optimization

» Part 3 — Additional Gates and Circuits
* Other Gate Types
» Exclusive-OR Operator and Gates
* High-Impedance Outputs

Scanned by CamScanner

~ ginary Logic and Gates

. Binary variables take on one of two values
R P

[. N -
. Logical operators operate on binary values and binary " "~ .
yariables

. Basic logical operators are the logic functions AND,

ORand NOT
« Logic gates implement logic functions

eful mathematical system for
¢ functions

«We study Boolean algebra as a foundation for
designing and analyzing digital systems!

« Boolean Algebra: a us
specifying and transforming logi

Chapter 2 - Part 1 5

| Computer Design Fundamentals, 48

o
sarson Education, Inc.

Binary Variables - =

« Recall that the two binary values have different

names:
. Trl‘le/feﬂse
+ On/Off
. \L’és/ﬁo
« 1/0
» We use 1 and 0 to denote the two values

* Variable identifier examples:
* A, B,y, z, or X, for now
« RESET, START IT, or ADDI later

Scanned by CamScanner

Logical Operations ___

' jons are:
« The three basic logical operations

« AND
« OR
. NOT iz

= AND is denoted by a dot () Og ﬂ "
= OR is denoted by a plus (+) or (V)

« NOT is denoted by an over-bar ()? a single
quote mark (') after, or (~) before the variable

Fug A WA i =
Logic and Computer Design Fundamentals, 4e

PowerPoint® Sides Chapter 2 - Part 1

© 2008 Pearson Education, Inc.

Notation Examples

NIRER LAV IPRA VR sy@ s 1y
= Examples: X ey i)l B,
o 7=X-Y= Y=X/\Y:isread“ZisequaltoXANDY”

» Z=1ifandonly if X=1and Y = 1; otherwise, Z =
EACTTER VA PN
o Z=X+Y =XVY :isread “Zis equal to X OR y»

s Z=1if(only X=1)orif (only Y=1)orif (X =1 andY=1)

. Z=X=X'= ~X :isread “Z is equal to NOT X»
= 7Z=1if X=0; otherwise, Z=0

» Notice the difference between arithmetic addi;
logical OR: °n ang
¢ The statement:
us\e e~ 1+1=2(read “one plus one equals two”)
) is not the same as

lodie «— 1+1=1 (read “1 or 1 equals 17)

Scanned by CamScanner

i Operator Definitions

. Operations are defined on the values "0" and "1" for each

operator:
AND OR NOT
0.0=0 0+0=0 0=1
0.1=0 0+1=1 1=0
1.0=0 1+40=1
1.1=1 1+1=1
il e Chapter 2 - Part 1 9

1008 Pearson Education, Inc

Truth Tables

f
« Truth table - a tabular listing of the values of a function
for all possible combinations of values on its arguments

» Example: Truth tables for the basic logic operations:

AND OR NOT
Inputs | Output Inputs Output Inputs | Output
X|Y|Z=X.Y X| Y |Z=X+Y X Z=X
010 0 0| 0 0 0 1
0] 1 0 0|1 1 1 0
110 0 1] 0 1
1] 1 1 1|1 1

ic a ’
D and Computer Design Fundamentals, 48

Chapter 2 - Part 1
Scanned by CamScanner

Logic Function Implementation

G315
Switches in parallel => Oy

" Using Switches
—o” o—
* For inputs: —
* Jogic 1 is switch closed —_-r'- —o/o— |

* logic 0 is switch open
o
* For outputs: Switches in series => AN]

* logic 1 is light on r—o‘ O—O/O'%

" logic 0 is light off

[l
|

* NOT uses a switch such that:
" logic 1 is switch open Normally-closed switch => N

" logic 0 is switch closed C @
i

Logic a ler am
PoperPal® S Do Fundetmartst, 4o Chapter 2 - Part 1 1

© 2008 Pearson Education, Inc.

Logic Function Implementation (Continued)

= Example: Logic Using Switches

) _} c ’_a\};nq-g Variable
_J_E_O/O_ O/c _@_
T D

= Lightis
ON(L=1)forL (4,B,C,D) = A.(BC + D) = ABC + AD
and OFF (L = 0), otherwise.

= Useful modpl for relay circuits and for CMOS gate circuits,
the foundation of current digital logic technology

Logic and Compuler Design Fundamentals, 4¢
ot Pearn £ Chapter 2 - Part 1

© 2008 Pearson Education. Inc

12

Scanned by CamScanner

Logic Gates

. In the earliest computers, switches were opened
and closed by magnetic fields produced by
energizing coils in relays. The switches in turn
opened and closed the current paths

« Later, vacuum tubes that open and close current
paths electronically replaced relays

« Today, transistors are used as electronic switches
that open and close current paths

» Optional: Chapter 6 — Part 1: The Design Space

pramicmpmpnrasm e Chapter2-Part1 13

Logic Gate Symbols and Behavior
e

= Logic gates have special symbols:

X X _
jj"‘l:X-Y Y312=X+Y X——DQ—‘Z=X

OR gate NOT gate or

AND gate
inverter

(a Grap.hic sxmbols
= And waveform behavior in time as follows:

-
(AND) XY 0 0 0 1
]
(OR) X+Y| 0 1 1 1
wom) ¥ | 1 11 0 0
| Foviron® o Dsson Frdamaris, 4o (b) Timing diagram Chapter 2 - Part 1 7

£ 2008 Pearson Education, inc,

Scanned by CamScanner

Gate Delay . o=-w
-

= In actual physical gates, if one or more input changeg
causes the output to change, the output change does not

occur instantaneously

= The delay between an input change(s) and the resulting
output change is the gate delay denoted by £g:

1
_ Input = |
Q‘\}'\)HE““:’“‘?@\ltGI g | t; =0.3 ns
Output1 '
0
0 05 1 1.5 Time (ns)
PowerPoin® Shge o urdamerial, 4o Chapter 2 - Part 1 -

© 2008 Pearson Education, Inc.

Logic Gates: Inputs and Outputs

CStp)
= NOT (inverter)

« Always one input and one output

= AND and OR gates

« Always one output bl e o g
.32 Two or more Inputs L0y e
| ks A S g s
e, =
sl L lg . A
=049 X=A+B+C+D+E B —]
- X = ABC

C—_ |

(o +ortp

- 3 ;
E 5 iapyb of D07 20pul o, Goyke

Scanned by CamScanner

Boolean Algebra

« -An algebra dealing with binary variables and logic
operations
« Variables are designated by letters of the alphabet
« Basic logic operations: AND, OR, and NOT

«» A Boolean expression is an algebraic expression formed
by using binary variables, constants 0 and 1, the logic
operation symbols, and parentheses

+ Eg:X.1,A+B+C,(A+B)(C+D)

» A Boolean function consists of a binary variable

identifying the function followed by equals sign and a
Boolean expression

« Eg:F=A+B+C,L(D,X,A)=DX+ A

ind Compader Design Fundamentals, 42
2oint* Shides

, Chapter 2 - Part 1 17
3 Pearson Education, Inc.

Logic Diagrams and Expressions

1. Equation: F =X+YZ

2. Logic Diagram: Y_DOJ—

3. Truth Table:

T_

X|Y|Z|F| caLyv
0ojojololy,
* Boolean equations, truth tables and olol1]1]|@ ,(M
logic diagrams describe the same o100 |Bar
function! o110 ® ¢
" Truth tables are unigue; expressions 110]0]1
and logic diagrams are not. Thisgives | 11911 }1
flexibility in implementing functions. |1t |1 10 |1
1 1 1 1

Scanned by CamScanner

Example

= Draw the logic diagram and the truth ’[able;7 of the following
Boolean function: F(W,X,Y) = XY + W

» Logic Diagram: Yl | :
" Truth Table: [w T

Aol ¢ °’“7'<C"L‘)

Cenagcled

Qb ds) ,}, ff'—
i i

" This example represents a Single Output Function

Logic and i
< CmpxmbmgnFuwmum. 4o

= S| S| == ||~
— S| = ||~ o |~]|~
m =S =|=|lo|lo|le|m

© 2008 Paarson Education, inc. Chapter 2 -Part 1
Example
" Draw the logic diagram and the truth table of the followin
Boolean functions: FW.X)=WX+w, CW,X) =y + 7 &
" Logic Diagram: Wy
* Truth Table: X g
w X F G
0 1 1
0 1 0 0
1 0 1 1 :
1 1 1 1
ar

" This example represents {Mu[tiplé' Output F, e,

\J
- WS
x ,
Logic and Compuer Deasign Fundamentals, 44
PoworPoin® Shdes
©2008 Paarson Education, fnc Chapter 24

Scanned by CamScanner

Example:

. Given the following “logic diagram, Wwrite the

corresponding Boolean equation:

w.X

G=W.X)+((W+Y).2)

z>ﬂ_‘ ji—>i—>~F=7.—z

= Logic circuits of this type are called combinational logic
circuits since the variables are combined by logical
operations

el Chapter 2 - Part 1 21
2008 Pearson Education, Inc.

Basic Identities of Boolean Algebra
A D) b

T (YrT) >

£

L+ (9:;1\;‘);}”‘ o Desn organs \nt ﬁ “o,;i:L" Bl
1L X+0=X 2 Xx.1=X Existence of 0 and 1
3 X+1=1 ' 4 X.0=0
5 X+X=X ‘ 6. X.X=X ' Idempotence
7 X+X=1 8 X.X=0 Existence of complement
9. X=x Involution
10X+Y=Y+X 11.XY =YX Commutative Laws
22X+ +Z=X+Y+2) |13XV)Z=X(¥YZ) _ Associative Laws
14.X(Y +2) = XY + XZ 15X+YZ=(X+Y)(X+2)|| Dismibutive Laws
|16 X+Y=X.7 17XY=X+Y { DeMorgan’s Laws
(%+9) (X4 il 4 =
R R .— +
% @ A 3 XY+ 72)(5
mx;W“ ¥ (1 +e o Chap:‘,\r‘:Par)'(tl 22

XAyye = X ¥/ 2

—

Scanned by CamScanner

Some Properties of Identities & the Algebra

#A

= If the meaning is unambiguous, W€ leave out the symbyg;

%,

= The identities above are organized into pairs

« The dual of an algebraic expression is obtained by interchanging
(+) and (*) and interchanging 0’s and 1’s

* The identities appear in dual pairs. When there is only one lde_ntity
on a line the identity is sel/f-dual, i. e., the dual expression = the
original expression.

dual2 @ Al
D) —> A
e B

l— o

Logic and Computer Design Fundamentals, 42 oO—>> ,
PowerPoint® Siides

© 2008 Pearson Education, Inc.

sl Chapter 2 - Part 1 -

+—=
(2 w3

Some Properties of Identities & the Algebra (Continued)

= Unless it happens to be self.

. dual, the dual of an
expression does not equal the

CXpression itse]f
* Examples: Gl Ex ((65’).0”
e F=((A+0). B)+0 (m._c;nm.g
"DualF=(A.C)+B.1=A.C+p
s G=XY+ (W +2)
-DualG=(X+Y).W_Z=(X+Y).(W+Z)
e H=AB + AC + BC

"DualH=(A+B)(A+C)(B+0C) = (4 +
= AB +AC + BC BOB + ¢y

" Are any of these functions self-dug|o .

. Ripckiand e Vs)
* Yes, His self-dual@f ciatns 5 e

Logic and Computer Design Fur . da
PovorPoint® Slides = Hww .
©2008 Prarson Education, nc Se)L Cham

Scanned by CamScanner

Boolean Operator Precedence

m

= The order of evaluation in a Boolean expression is: < obd S|
1. Parentheses

2. NOT
3. AND
4. OR

» Consequence: Parentheses appear around OR expressions

= Examples: o

(=4 —
* F=AB+OC+D) b
e F=~AB = AB

s F=AB+C
e F=AB+0)
D O
%:c:nﬁ;ﬂ;mm'” Chapter 2 - Part 1 25

Useful Boolean Theorems

Croef? x/('j{ p_,o(,‘cg y(X’f")()
%L | *|‘ 7) Y. s
A v R J f
/ Theorem / Dual Name
{ Xy+%y =Yy x+y)xXx+y) =y Minimization
' x +x.y=x x.(x+y)=x Absorption
x+xXxy=x+y x.(Xx+y)=xy Simplification
x.y+xz+yz=xy+x z_ 'z'\ w;, Consensus
x+YE+2)(y+2)=x+y)(x+2) :

o (x+%) (XF)) sl

(X +9) p;@cdmmm*d |
Er: X+ RYT - (7)) [X4y2
mc?l;:'b"meMwn.u 2 X +Y‘Z ”ChaplerZ-Pan] 26
2(!!,:..,‘"“%" AB

+ B AdBx - AB+ X < Aigx E.
Scanned by CamScanner

Example 1: Boolean Algebraic Proof

m

= A+AB=A (Absorption

A+AB

=A-1+A-B X=X'1

AL (i +B) Distributive Law
=A: I 1+X=1

=A X 1=X

* Our primary reason for doing proofs is to learn:
» Careful and efficient use of the identities and theorems of Boolean
algebra
* How to choose the appropriate identity or theorem to apply to
make forward progress, irrespective of the application

»gic and Computer Design Fundamentals, 42
merPaint® Sides Chapter 2 - Part 1

2008 Pearson Education, Inc.

Example 2: Boolean Algebraic Proofs
_—'__

» AB+AC+ BC =AB + AC (Consensus Theorem)

— AB +AC+1.BC 1.X= x

ZAB+AC+A+A).BC X4 X=1 e
=AB+AC+ABC+ABC D’S’flbutzveL‘.,W' e
=AB+ABC+AC+ABC Commutative [

_AB 1+ AB.C + AC. 1+ACB X'lzx””dcomm,,',;. .
= AB(1 + C) + AC (1 + B) . Distributive Law e Caw,
- AB.1+4C.1 | .1+x»—1g
A R X1=X

Scanned by CamScanner

Proof of Simplification

h
« A+A.B=A+B (Simplification Theorem)

A+AB

=(A+A)(A+B) Distributive Law
=1.(A+ B) X+X=1
=A+B X.1=X

» A.(A+B)=AB (Simplification Theorem)

A.(A+B)

=(A.4) + (A.B) Distributive Law
=0+A4B XX=0

= AB X+0=X

and Computer Design Fundamentals, de

Point® Sides | Chapter 2 - Part 1 29

)8 Pearson Education, Inc.

Proof of Minimization

» AB+AB =B (Minimization Theorem)
REETE T
=B(A+A) Dlstnbutlve Law
e X+X=1 |
=B X1=X

e o'_,g; A
* (A+B)(A+B) =B (Minimization Theorem)”~ <=V «ssl

—_ 2

(@+B)A+B)

=B+ (A A) D15tr1but1ve Law
LE%0 T xx=0

=B | X+0=X

Scanned by CamScanner

Proof of DeMorgan’s Laws (1) \
————————————————————————————— L —

= X+Y =X.Y (DeMorgan’s Law) 3 |
. We will show that, X.7, satisfies the definition of the complement o

(X +Y), defined as X + ¥ by DeMorgan’s La"v. A0
« To show this, we need to show that A +A, =,1—)?r_lf_ 5 A =0 wit
A=X+YandA' = X'.Y'. This proves that X". 1" = :

" Partl:ShowX+Y+X.Y' =1

X+Y)+X.Y
=X +Y+XYX+Y+Y') Distributive Law

=0+NE+1) X+X=1
=;1'1,,,, | | X+1=1
Sie . aiy
ek X +:;i,)‘(‘(’:5> ﬁ §rxrx 4 Ch
08 Echucation, inc v+ X e apter 2 - Part |

X+y +yx FOU
X+yrro | +:0 {aj

Proof of DeMorgan’s Laws (2)

* Part2: Show (X +Y).X.Y' =0

=(X.X"Y)+(Y.X'.Y') Distributive Law
HOBARTedO s .
=040 X020 0t A

* Based on the above two parts, X'.Y' =X + Y
® The second DeMorgans’ law is proved by duality

" Note that DeMorgan’s law, given as an identity is not an aXign. -
sense that it can be proved using the other identities. M in the

Scanned by CamScanner

gxample 3: Boolean Algebraic Proofs

. (x’mz+x?=7(x+2)

=XY'Z+XY' DeMorgan’s law
SYX'Z+X) Distributive law

=Y (X+X'Z) Commutatzve law E
=Y(X+2) SImp11f' jcation Tbeorem

ic and Computer Design Fundamentals, 42
rerPoint® Slides
008 Pearson Education, inc.

Chapter 2 - Part 1 33

Boolean Function Evaluq.tion‘

» L =xyz
"h=x+Yyz x|y|z|F|F|F|F|
s Fy=iyz+gyz+ay (olol0lojolilol
o olol1lolt]ol1
" f=xy Xz o|1{ofoflololo
0o|l1|1jojo|1]1
1{ofolol1]1]1
1{ol1fof1{1]1
1{1{of1]{1o0]o0
1{1{1{o|1{0]0

Scanned by CamScanner

Expression Simplification

s Ul &)59
= An application of Boolean algebra r
= Simplify to contain the smallest number of literals (complemented and
uncomplemented variables)
= Example: Simplify the following Boolean expression
« AB+A'CD+A'BD+A'CD' + ABCD

AB +A'CD + A'BD + A'CD' + ABCD

= AB + ABCD + A'CD + A'CD' + A'BD Commutative law
‘=AB(1+CD)+A'C(D+D') + A'BD Distributive law
=AB.1+ A'C.1+ A'BD 1+X=1land X+X' =1
SABtAciaey T X1=X
=AB+A'BD + A'C Commutative law
‘—B(A+AD)+A' : , - 3 " Distributive law
=B(A+D)+A'C -) 5 therals Simplification Theorem
R soes ,- V Chapter 2 - Part 1
NeTos.y v

_ Complementing Functions

= b—x-—»!(,w&x CYRLEY [}

* Use DeMorgan's Theorem to complement a function:
1. Interchange AND and OR operators
2. Complement each constant value and literal

" Example: Complement F = x'yz' + xy'7’

Clo yezsl) uy
— o

({:’#)Q_F 0l s F’=(X+Y'+Z)(x'+y+z)

Example: Complement G = (@ +bc)d +e

G'=(a(d' +c") +d).e

Scanned by CamScanner

Example

. = X 'Y(Z +2') + XZ Dlstnbutwe Iaw
v "‘XY1+XZ it x+X"= ;
— A
z £ =X'Y +XZ X1=X
—
| X | Y |z | XYZ+Xx'YZ +XZ X'Y+XZ
010 fo 0 0
0101 0 0
X 01 1o 1 1
Y 0 1 1 1 1
Z F 1 0 0 0 0
.
Lo 1 1
1 1 0 0 0
1 1 1 1 1
3 terms and 8 literals | 2 terms and 4 literals |
Logic and Computer Design Fundamentals, 4e
oo Pomran S, e o\ Ly ol - Chapter 2 - Part 1 37)
= Yo\ B | 6_‘:\ E/V\H\ +'\“\".)L

* Showthat F =x"y' +xy' +x'y +xy =1
* Solutionl: Truth Table

x |y
0|0
0| 1
1| o
1|1

it | = | = | — | T

* Solution2: Boolean Algebra

xy +xy' +xy+xy
-jﬂx+ﬂ+ﬂx+@ mewth :

Sy T S
= y + y X.1=X

L :
m.ﬁ"."m Design Fundamantaie 4.

Scanned by CamScanner

. Show that ABC +A'C'F AC' =

Examples
AB+C ' using Boolean algebra.

ABC + A'C’ + AC'
_ ABC +C'(A'+4) Distributive 1aW
; — ABC+C'.1 x+Xx' =1
\"L'\:"l:»))‘3:“1;‘ -) & =ABC + CI X.1 == X
pecrd 9B = @BHC)CH ¢ty Distributive 2%
6 OB =(AB+C').1 X—l—X'::l
pr‘C— .__._AB+CI X.1=X

« TFind the dual and the complement of f=wxt y'z.0+wWZ

. Dual(f)=w+x)Q¢' +2z+ D(w' +2)

. f w2 D) |
Chapter 2 - Part 1

Logic and Computer Design Fundamentals, 42
PowerPoint® Sides
© 2008 Pearson Education, Inc

Overview — Canonical Forms

-

= What are Canonical Forms?

= Minterms and Maxterms
,&7 (' Index Representation of Minterms and Maxtern

uf "5 L= Sum-of-Minterm (SOM) Representations
(¢ = Product-of-Maxterm (POM) Representations
» Representation of Complements of Functions

= Conversions between Representations

Scanned by CamScanner

[L.

| Boolean Representation Forms

—

Forms
Non_Standard Forms Standard Forms
n Product terms (SOP) W
Canonical Non- Canonical Non.- 1
(SOM) Canonical (POM) Canonica
mmwwwm“ Chapter 2 - Part 1 41

008 Pearson Edcation, inc.

Canonical Forms

’

=]t is useful to specify Boolean functions in a
form that:

» Allows comparison for equality
* Has a correspondence to the truth tables
* Facilitates simplification |

® Canonical Forms in common usage:
* Sum of Minterms (SOM)
* Product of Maxterms (POM)

Scanned by CamScanner

Minterms .

" Minterms are (ANDSterms with every variable present iy
either true or complemented form

" Given that each binary variable may appear normal (e.g.,

X) or complemented (e.g., %), there are 27 minterms for 5

Variables Qﬂu\)\:ﬁ\\}% U.‘,M&’QJ’I DS o

" Example: Two variables (X and Y) produce 22 = 4
combinations:
XY (both normal)
Xy (X normal, Y complemented)
Xy (X complemented, Y normal)
Xy (both complemented)

" Thus there are four minterms of two variables

Logic and Computer Design Fundamenta
PowerPoint* Sjdeg il

©2008 Pearson Education, inc

Chapter 2 - Part |

Maxterms
e ————

" Maxterms are (OR] terms with every variable in
true or complemented form

" Given that each binary variable may appear
normal (e.g., x) or complemented (e.g., X), there

are 2" maxterms for p variables \
AV REN) k_ﬂ-‘Q’JA? Vagishes IV 538 o €

" Example: Two variables (X and Y) produce 22 =4

combinations:
X+Y (both normal)
X+Y

X (X normal, Y complemented)
X+Y

LT (X complemented, Y normal)
.. mmfm:fy (both complemented)

PowerPoint? Slides

Scanned by CamScanner

~ Maxterms and Minterms

. ExampleS Three varlagle (XY Sy , Z) mm’c/e?ms and maxterms
V,-.N:w 5|7 “Index Minterm (m) Maxterm (M)
ooV 0 XYZ X+Y+Z
g | 1 Xvz X+Y+2Z
B B 2 XyZ X+7+2Z
o 1l 3 Xyz X+7V+Z
L oo 4 XYZ X+v+2Z
Vo S XYz X+v+Z
Vo 6 XYZ X+Y+2Z
i 7 XYZ X+Y+Z

« The index above is important for describing which variables in the
terms are true and which are complemented

1and Computer Design Fundamentals, 48

Point* Sides Chapter 2 - Part 1 45
8 Pearson Education, It

Standard Order

» Minterms and maxterms are designated with a subscript
* The subscript is a number, corresponding to a binary pattern

» The bits in the pattern represent the complemented or normal
state of each variable listed in a standard order

= All variables will be present in a minterm or maxterm and will
be listed in the same order (usually alphabetically)

* Example: For varlables a, b, c: —
* Maxterms: (a +b+ C) (a +b + C)

* Terms: (b+a+c), acb, and (c+ b + a) are NOT in
standard order. Ol ye Gire

* Minterms: abc, abc, abc

* Terms: (a+c), bc, and (@+b) do not contain all
variables

Scanned by CamScanner

Purpose of the Index

= The index for the minterm Of maxterm, eXpresseq|
as a binary number, is used to determine Whethe,

the variable is shown in the true form g
complemented form

= For Mint

erms.

() B 2 o €0 means the variable is “Complemented”
' el o 41 means the variable is “Not Complemented”

" For Maxterms:
2=« “0” means the variable is “Not Complemented”

P e €1 means the variable is “Complemented”

Logic and Compxter Dasign Fundamentals, 42
PowerPoint® Sides
© 2008 Pearson Education, Inc.

Chapter 2 - Part 1

Index Example: Three Variables

\

Index Index (Binary)
(Decimal) | n=3Variables | “lmterm(m) | Maxterm (M)
¢ 000 my=XVZ |M,=X+v4+z
1 001 M =XYZ |M,=X+Y+]
2 010 My =XYZ |M,=X+7+2
j ;)(1)(1) M3 =XYZ | My=X+T7+1
5 101 A LS S 6/
P T m5=XYZ_ M5=X+yﬂ
=X (M =X+T+L
My =XYZ M, =X+V+L

Scanned by CamScanher

Index Example: Four Variables

Qar YU 11 D\ uSe

—

r/f - ; mi =M
1 mna = =
i (Decimal) n=fIVari:1ylzles m e Z\ZSE;-‘T*S_TM
| __— — .3
- 0000 abc a+b+c+d
b 0001 abéd a+b+c+d
/37 0011 abcd a+b+c+d
5 0101 abéd a+b+c+d
7 0111 abcd a+b+c+d
10 1010 abcd a+b+c+d
13 1101 abéd a+b+c+d
L 1111 abcd a+b+c+d
ﬁgﬁp{{::;wmm) . o Chapter 2 - Part 1 49

Minterm and Maxterm Relationship

» Review: DeMorgan's Theorem
e X.y=X+yVandx+y=x.y

* Two-variable example:
e M=X+yandm, =x.y
* Using DeMorgan’s Theorem > X +y = X.y = x.j
+ Using DeMorgan’s Theorem 2> x.y =X+ y = X.y
* Thus, M, is the complement of m, and vice-versa

" Since DeMorgan's Theorem holds for n variables, the
above holds for terms of 1 variables:

Mi =W,;andmi =ﬁi

" Thus, M; is the complement of m; and vice-versa

i and Compper Des;
vorPrinst enar ™! D8N Fundamentals, 4a

Scanned by CamScanner

rBOtlzl-— Ty Xy

. fO Xy
Function Tables o 5
o [mo [mo | s [my
' iables: o0 | W[0] 010
= Minterms of 2 varia (00 | W1 — 4
01| 0] o 0
0] 0|0]T]0]
nlo]0 0 |
| A
- —T 1
= Maxterms of 2 variables: (xy | Mo | My | Mz | M
| xy | Mol
0|01] 111
(o[1 |
o1 |01 t1
o|1 |1]0o]1
— | 1 | 1|0
m|1]1 i

ion table is the

» Each column in the maxterm funct . |
rm function table

complement of the column in the minte

since M; is the complement of m;.
Chapter 2 - Part |

Logic and Competter Dasign Fundamentals, 4e
PowerPoint® Slides
© 2008 Pearsan Education, Inc.

Observations
#

= |n the function tables:
o Each minterm has one and only one 1 present in the 27 terms (a
minimum of 1s). All other entries are 0.

« Each maxterm has one and only one 0 present in the 27 terms All
other entries are 1 (a maximum of 1s).

» We can implement any function by

« "ORing" the minterms corresponding to "1" ies i :
entries in the fu n
table. These are called the minterms of the function et

« "ANDing" the maxterms corres ; :
) pondm to "Q" .
function table. These are called the maxtegnns of the Eﬁleg(s)nm N

» This gives us two canoni :
fno ical forms for stating any Boolean

o Sum of Minterms (SOM)
» Product of Maxterms (POM)

Scanned by CamScanner

Minterm Function Example

F
m Example: Find F1 =mq +Mmy +my

« Fi =xy'z+xy'z' +xyz

xyz | Index my+my+m;=F
000 0 0+0+0=0

001 1 1+40+0=1] ™
010 2 0+0+0=0

011 3 0+0+0=0

100 4 0+1+0=] ™y
101 5 0+0+0=0

110 6 0+0+0=0

111 7 0+0+1=1] ™7

|Compre Desin Funcamackan 4s Chapter 2 - Part 1

parson Education, frc

Minterm Function Example

* F(A4,B,C,D,E) = m, + mg + mqy7 + my3

L 90 o | VY e \ o o

* F(A,B;C,D,E)=A'B'C'DE' + A'BC'D'E
+AB'C'D'E+AB'CDE

o o 9 a 4 N A

\oo' \c\)\

a o o1

\ NBCPE v ARCOE + ADCDE .+ ABCDE

Scanned by CamScanner

Maxterm Function Example

- B

= Example: Implement F1 in maxterms:

" F]_:M().Mz. M3. M5. M6
» F=@+y+2).(x+y' +2).(x+y +2).x"+y+2).x"+y +2)

xyz | Index My. M, . M;. M;. Mg =F;
000 0 0.1.1.1.1=/0
001 1 1.1.1.1.1=1
010 | 2 1.0.1.1.1=/0
011 3 1.1.0.1.1=\0
100 4 1.1.1.1.1=1
101 5 1.1.1.0.1=(0
110 6 1.1.1.1.0=0
111 7 1.1.1.1.1=1

Logic and Compttar Design Fundamentals, 4e
PowerPoint™ Slides p
oM

© 2008 Pparson Education, Inc.

Chapter 2 - Part |

Maxterm Function Example

- F(A,.B,C,D) - M3 'M8 'Mll .M14

- F(A,Q.B,(,;,D)\ \ \ .)
= (A+B+C' + D). (A" + B+C+D).
(A"+B+C"+D"). (A'+B" +¢€'+ D)
(AeBrced) | PrB v c D) (e Ry cvp)
(A+DB e

Scanned by CamScanner

Canonical Sum of Minterms

= Any Boolean function can be expressed as a Sum
of Minterms (SOM):

» For the function table, the minterms used are the terms
corresponding to the 1's

« For expressions, expand all terms first to explicitly list

all minterms. Do this by “ANDing” any term missing a
variable v with a term (v + ¥)

= Example: Implement f = x + Xy as a SOM?
1. Expand terms = f = x(y + y) + Xy
2. Distributive law <> f = xy + xy + Xy
3. Express as SOM = f =my +my, + mg =mg + my +my

{(x M)

N) o _

x [149) (ad) ¥ 9 LTI
R 3, aFiengeeiye on XIE
ign F de R ki
ﬁ@&f:""’?’“ . Ay & BeN S0 " \ Chapter 2 - Part 1 57
‘earson Educalion, Inc. 3 4 5

Another SOM Example

» Example: F = A+ BC

» There are three variables: A, B, and C which we take to be
the standard order

= Expanding the terms with missing variables:
« F=AB+B)(C+C)+(A+4)BC

» Distributive law: -
« F=ABC+ABC+ ABC + ABC + ABC + ABC I IR

= Collect terms (removing all but one of duplicate terms):
« F=ABC+ABC +ABC + ABC + ABC

IR \\ o \ ol \ 6 ¢ 0 o \

* Express as SOM:
e F=m;+mg+mg+my +my
s F=m;+my+mg+mgt+my

and Computer Design Fundamental
Point® Sides i

% Pearson Education o Chapter 2 - Part 1 58
Scanned by CamScanner

rm

Shorthand soM Fo

i e
« From the previous exampleé,
. F=A+BC

= We ended up with:
. F=my+my+ms + Mg + my

ed in the formal shorthand.

= This can be denot
« F(A,B,C) = y..(1,4,5,6,7)
itly show the standard

= Note that we explic the “m”

variables in order and drop

designators. i+ Pt =
Fz Mo+t o # mto‘\
XY ' o
i M M PC‘ v
Logic and Ct Design Fi is, 42 ool F— Mrels : ' Chapter2 - Part 1

PowerPoint® Slides WL
© 2008 Pearson Education, Inc. Q

L exiiliie
{4 e

Canonical Product of Maxterms

= Any Boolean Function can be expressed as a
Product of Maxterms (POM):

e swwv ¢ o For the function table. the maxt
v . , erms u
x +%9 corresponding to the ('s >ec are tho tams

X +9 +V ® 1 |
For an expression, expand all termsg first to explicitly |

i i R list all maxte :
a B < rms. Do this by first i
- 1 1 1 173 . a
Cog st AISUDUIVG law , “ORing>”terms 5‘?3535 Vaioble
riable

S with (v.7) and then applyin

™ Example: Convert f (x y
. I(;Etributive law > f = (;C +%).(
. . Ve law X +7y) = y
O 1n.g w.1th MISsIng varigb|e (z)> S
E1str1but1velaw-9f = (x+}7+)f A
. xpressasPOS‘>f R
. = M2 M
3

g the distributive law again

Z) =X+ %J to POM?

Logic and Computer Design Fi
int% Slides

Scanned by CamScanner

~ Another POM Example

= Convert f(4,B,C) = AC' + BC + A’B’ toPOM?

= Usex+yz=(x+1y).(x + 2), assuming
x=AC"+BCandy =A"andz = B’
* f(A,B,C) = (AC' +BC+ A"). (AC' + BC + B')

= Use Simplification theorem to get:
* f(4,B,C)=(BC+A"+C). (AC' +B' +C)

= Use Slmphﬁcatlon theorem agam to get
e f(A4,B,C) = (A’+B+C’) (A+B’+C) = M; .M,
e f(A,B,C) =M, .Ms =[1,,(2,5)|> Shorthand POM

form e = 0 oS Z_M(c,,lsu(aﬂ\

XY £
(] -
Fope emrmn e s ed D) ple g,'=Wn(°\\'3f“"5“)Chapter2-Part1 61
arson Education, inc ool & {ﬂ.l\ | ‘:l{
::T ‘ PO’”’)
l::’ “,‘ \\)SOM\E\”D

Function Complements

» The complement of a function expressed as a sum of
minterms is constructed by selecting the minterms missing

in the sum-of-minterms canonical forms.

= Alternatively, the complement of a function expressed by a
sum of minterms form is simply the Product of Maxterms

with the same indices.
(ot ©
* Example: Given F(x,y,2) = ¥%,(1,3,57)7, find
complement F as SOM and POM‘? o
SR E 1))

o F(x,v,2z) = %n(0,2,4,6) = ‘: Fc . Foplad)

° F(X;}’;Z) = 1—11‘4(1;315’7)SJ‘-:)“E-'c FMIBK'): ¢ (W)
> Am {0|'Sl"‘p5i6/7)

f = f, (0|“5,U\,5,6,"T)

;?MF " Chapter 2 - Part 1 62
on Education, inc $
Scanned by CamScanner

Betwee ,

Conversion
of-minterms and product-of-maXt%

= To convert between sum- .
e steps- _
form (or vice-versa) we follow 1€ the list with tern,

ing terms in
« Find the function complement by swapping

not in the list. - ersa
« Change from products to sums, or vice Verse: .
— 1;31)
» Example:Given F as before: F (X, Y z) Y
« Form the Complement:
F(x,y,2) = Lm(0,246) |
oy) Zm(me indices — this formg

th the sa

her form of the original function:

« Then use the other form Wi
complement again, giving the ot

F(x' Y, Z) = HM(O,2,4,6)

Lcﬁcm#@gammqumu C-hapter 2 - Part 1 {
© 2008 Pearson Education, Inc.

[mportant Properties of Minterms
F
= Maxterms are seldom used directly to express Boolet
functions |

» Minterms properties:
* For n Boolean variables, there are 2" minterms (0 to 2" -1)

Any Boolean function can be re :
minterms (SOM) presented as a logical sum*

The complement of a functi
s nction ¢ : . 0
included in the original function utatns those minters

A function that include all the 9n

minterms is equal to 1
Scanned by CamScanner

‘o

O —+ C—)v A b Vs N K Sl

M berm Afc Miskersd

Flle \) Relatisa e roea Eesrm vs ()

Standard FOrmS logr mateds NGo)
Y

= Standard Sum-of-Products (SOP) form: equations
are written as an OR of AND terms

= Standard Product-of-Sums (P{»(‘)aS) form: equations
are written as an AND of OR terms t =AY
= Examples: (Sot)
« SOP: ABC + ABC + B
* POS:(A+B).(A+B+0).cC
= These “mixed” forms are neither SOP nor POS
* (AB+C0)(A+0)
+ ABC + AC(A+ B)

omputer Dasign Fundamentals, 4e @ = @ ‘@ (Pes)
' Siides

rson Education, Inc (Com) uy ol \¢ vl Chapter 2 - Part 1 65

] SoPB Pos e

Standard Sum-of-Products (SOP)

\
" A sum of minterms form for n variables can

be written down directly from a truth table

" Implementation of this form is a two-level
network of gates such that:

* The first level consists of m-input AND gates,
and |

* The second level is a single OR gate (with
fewer than 27 inputs)

" This form often can be simplified so that the
corresponding circuit is simpler

Scanned by CamScanner

W AE—

Standard Sum-of-Products (SQ

« A Simplification Example: F(4, B, C) = Xm(1,4,5,6,7)

= Writing the minterm expression:
e« F(A,B,C)=AB'C+AB'C' +AB'C +ABC' + ABC
» Simplifying using boolean Algebra:

g I— S "
1 |

(&) A'B'C +AB'C' + AB'C + ABC' + ABC
= AfB’C +AB'(C' +C)+ AB(C' + 0) Distributive law
= A'B'C + AB' + AB . XX =
=A'B'C+A(B' +B) Distributive law
= AIBIC +A 3
B 5P . -4t
Y o s>)
Verid\y

 Simplification Theoremn :

" Simplified F contains 3 literals compared to 15 in minterm F

Logic and Computer Desi
P o = Design Fundamentals, 42
© 2008 Pearson Education, Inc.

Chapter 2 - Part |

AND/OR Two-level Im i
plementati
of SOP Expression 1

" The two implementations for F are
below — it is qui . .
o quite apparent which

#H F—
C_

A—

B—

C—

A—

B—

C_

Ay

B —

C—

A—

B —

Logic and Compxiar Design F 4a 1

C —
Scanned by CamScanner

ShOWn
S simpey!

ﬁDF

b

O o >»

e

Two-level Implementation

. Draw the logic diagram of the following boolean function:

. f=AB+C(D+E -
f 4B
-

= Represent the function using two-level implementation:
. f=AB+CD+CE > SOP

+and Gomputer Design Fundamertals, 42 Chapter 2 - Part 1 69

wPoint® Slides
A Pearson Education, Inc

SOP and POS Observations
I

= The previous examples show that:

« Canonical Forms (Sum-of-minterms, Product-of-
Maxterms), or other standard forms (SOP, POS)

differ in complexity
. Boolean algebra can be used to manipulate
equations into simpler forms.

- Simpler equations lead to simpler two-level
implementations
" Questions:
. How can we attain a “simplest” expression?
« Ts there only one minimum cost circuit?
« The next part will deal with these issues.

avld M . -
ALt TV 1

Scanned by CamScanner

——————

Logic and Computer Design Fundamentals
Chapter 2 — Combinational
Logic Circuits

Part 2 — Circuit Optimization

Charles Kime & Thomas Kaminski
© 2008 Pearson Education, Inc.

(Hyperlinks are active in View Show mode)

Scanned by CamScanner

{5 overview

. Part 1 — Gate Circuits and Boolean Equations

. Binary Logic and Gates
. Boolean Algebra
. Standard Forms

« Part 2 — Circuit Optimization
« Two-Level Optimization
« Map Manipulation

« Part 3 — Additional Gates and Circuits

« Other Gate Types
« Exclusive-OR Operator and Gates

- High-Impedance Outputs

¢ and Computer Design Fundamentals, 4e Chapter 2 - Part 2 3

arPoind® Slides
108 Pearson Education, Inc.

Circuit Optimization
/
= Goal: To obtain the simplest

implementation for a given function

» Optimization is a more formal approach to
simplification that is performed using a
specific procedure or algorithm

= Optimization requires a cost criterion to
measure the simplicity of a circuit

» Distinct cost criteria we will use:

* Literal cost (L)
* Gate input cost (G)
* Gate input cost with NOTs (GN)

¥
.....Sd Compuler Design Fundamentale 4a

Scanned by CamScanner

1JALCI Al UI®

m

“~\u [jteral: a variable or 1ts com |
ihe number of litery)

- 2L W] y L : .
) Literal cost .() Boolean expressiop

a
appearances 1N 0 "
' ' 1t l1agram
corresponding to the 10g1C circu g
= Examples:
» F=BD +A4B'C+AC'D .
= L = 8 (Minimum cost > Best solution)
» F=BD+AB'C + AB'D' + ABC
n L =£_
* F=(A+B)(A+D)(B+C+D)B + (" +D)
u L =_:_l_(_)_
Logic and Computer Design Fundamentais, de (5 <« e l_{,)q]) (A TL:-DS U}‘.(_\ﬁﬁ (B— e FD)
B — — St Chapter 2 - Part 2
L=1
g =il +5

Gate Input Cost
T Cate et oot (G e mr T ——

ate input cost (G): the number of i
puts to the gates i
in the

implementation corresponding exactly t i
Y 1o the givepn €quation or

equations. (G: inverters not counted, GN- invertey
- . S coy
= For SOP and POS equations, it can be foypq N nted)

. V) s
finding the sum of: Goe [& ‘IrP the Cquation(s) by
« Allliteral appearances - 9 C"'/\; e eCrs
« The number of terms excluffisl:g single liter;l te:’f‘ LIV
. optionally, the number of distinct comple 5(G) and
1 . Q5| kelrn JS o M 4 m:eDnted Single l_
» Examples; -, = 5, ~ N3 Merals (G,
6= 8> e F=BD+AB'G+ACLD ED——}'\
= (Y « G=11,GN = llgr (Minimu_rp cost > Begt SoTD- Gn -
= T e, p N % Utlon) & Hf“S‘:Iq
. F=BD+AB'C+ABD +A4BC
G =\ A “ 5 GN =18 Cw . |
B A A T LSO "By e
' . F=@+BA+DIELCEDIE + ¢y o
G? "—"gg . G=14,GN=17 G Ao (44 -

Scanned by CamScanner

- Cost Criteria (continued) -

.Exam.ple;.;. ;_; %§§S}+2=9A
s F=AT + 2
F=A+BC+BC G=L+2=7 »

monm
I
]

« L (literal count) counts the AND inputs and the single
literal OR input.
« G (gate input count) adds the remaining OR gate inputs

» GN(gate input count with NOTs) adds the inverter inputs

i and Computer Design Fundamentals, 4 -
o Pearion Educatin, . ‘ Chapter 2 - Part 2 7

Cost Criteria (continued)

» Example 2: T e . ‘:‘f
- F=(A4,B,C,D) = (ABC+D).C"[= ™%
eL=5 B ‘é@_ ~,
«eG=5+2=7 . ==
«GN=7+2=9 iiéﬁ\ﬂ
D ———] 0l

mcmﬂm Design Fundamentals, 48 Chapter 2 - Part 2 8

Scanned by CamScanner

Cost Criteria (continued)

. Example 3: o Br)
« F=ABC+ABC™—L

WY) — = N = 11

P] L = 6, G 89 G LDG*)

Y e F=(A+ OB+ O(A+ BN
Cos\-)‘p\ F (A+ C)(_,,,___;) - —D)——-
-L=6,G=99GN=12 .

= Same function and same
literal cost

= But first circuit has better [\ D‘F
gate input count and better 'D°" |

gate input count with NOTs

S
Y

QW

— —F

. R
= Select it! . Ty — D ;
Gx. (A rBcYOH ELCHD Du
FowedPort® Sides i — = Chapter2 -Part2 9 |
© 2008 Pearson Educabon, Inc. TS ‘
L- 7
G757 12

Gu=122\ = :

Boolean Function Optimization

= Minimizing the gate input (or literal) cost of a (a set
of) Boolean equation(s) reduces circuit cost

= We choose gate input cost

= Boolean Algebra and graphical techniques are tools to
minimize cost criteria values

= Some important questions:

)

* When do we stop trying to reduce the cost?
* Do we know when we have a minimum cost?

* Treat optimum or near-optimum cost functions
for two-level (SOP and POS) circuits

Introduce a graphical technique using Karnaugh maps
(K-maps, for short)

Logie and Comp Design Fund
PowerPoint® Siides

© 2004 Pearson Education. Inc. Chapter 2 - Part 2
Scanned by CamScanner

10

Karnaugh Maps (K-map)

. A K-map is a collection of squares
e Graphical representation of the truth table

e Each square represents a minterm, or a maxterm, or a row
in the truth table

e For n-variable, there are 2" squares

e The collection of squares is a graphical representation of a
Boolean function

e Adjacent squares differ in the value of one variable

e Alternative algebraic expressions for the same function are
derived by recognizing patterns of squares

snd Computar Design Ft le, de
Poirt® Siides
3 Pearson Education, Inc.

Chapter 2 - Part 2 11

Some Uses of K-Maps

* Finding optimum or near optimum
« SOP and POS standard forms, and

« two-level AND/OR and OR/AND circuit
implementations

for functions with small numbers of variables

* Visualizing concepts related to
manipulating Boolean expressions, and

* Demonstrating concepts used by computer-

aided design programs to simplify large
circuits

Ogic and Comem tar Pnto ~. .. . ma. =

Scanned by CamScanner

- ey GO
Two Variable Maps i/ -L=l2 /
f

= A 2-variable Karnaugh Map: |

- pee=3) o Note that minterm m, and y=0

- minterm m, are “adjacent” _X=0 | ™Mo =Xy
and differ in the value of the
variable y

* Similarly, minterm m, and N
minterm m, differ in the X variable ‘

* Also, m, and m, differ in the x variable as well

* Finally, m, and m, differ in the value of the
variable y

x=1|m; =xy

Logic and Computer Design Fundamentals, 4 o

o Chapter2-Part2 3 %
g

© 2008 Pearson Educalion, Inc,

K-Map and Truth Tables |

“ -
= The K-Map is just a different form of the truth table .
= Example: Two variable function
* We choose a,b,c and d from the set {0,1} to implement
a particular function, F(x, y)
Input Values F(x,y)
x,)
00 2 \
T
—_— y=20 y=1
10 :
— X = 0 a b
11 d
I X=1 c d
Truth Table
Logic and m;;:y Design Furdamentals, 4e K-Map
© 2000 Pearson Educalion, ino, / : 4 \
Chapter2-Part2 \x

Scanned by CamScanner

’ K-Map Function Representation

~
« Example: F(x,y) = x

™ | F Flx,y)=x | y=0 | y=1
f'o N x=0 0 0
0 ! e

£y By R x=1 g,/})

. ¥
= For function F(x,), the two adjacent cells
containing 1’s can be combined using the

Minimization Theorem:
F(x,y) = xy + xy =(X]

M s
Y ADAR) A

Jc and Computar Design Fundamentals, 4e
o poaron Eocabon, i Chapter 2 - Part 2 15

Boebs o\ agnl L e

K-Map Function Representation

» Example: G(x,y) =x+y

Xy b alysn

" F
Yi ' Ky + X Gx,y)=x+y | y=0|y=1
2171 Gy x=0 0

to |)

ST R R x=1' Q

C-Xyv Xy - XY
» For G(x,y), two pairs of adjacent cells
containing 1’s can be combined using the

Minimization Theorem:
G(x,y) = (xy + xy) + (Xy + xy)
G(x,y) =x+y

Scanned by CamScanner

Three Variable Maps

_______——__—_—"

)T 2=\ s pz Mz 652 O e

= A three-variable K-map: P
;ZZ,\ yz:OO yz=01 yz=11 Yz =10
o] : ! % 5 = 0 mO (a) mlfb) - m3(3-) mz(CT
o)A =1 m.,® e © | m,W| m®
oo e
Jol ¥
::T 12 = Where each minterm corresponds to the product terms:
yz = 00 yz=01 yz=11|yz =10
x=0| xyz xyz xXyz Xyz
x=1| xyz xXyz xXyz XyZ
= Note that if the binary value for an index differs in one
bit position, the minterms are adjacent on the K-Map
%?%m:’:;““m"“ Chapter 2 - Part 2

Logic and Computer Design Fundamenials, 4

Alternative Map Labeling

= Map use largely involves:
« Entering values into the map, and
« Reading off product terms frorﬁ the map
» Alternate labelings are useful:
Jae Y=

% Y yz| -~ |t

00 o0 1 10

0 0 1 3 2

N
N
NI

X{14576

T4o

2) z 1%®
1 ——s~e _ Part 2
Scanned by CamScanner

il |

S S Ca e
Example Functions ..[|

g

—

G
N | O

e A

» By convention, we represent the minterms of F by a "1" in
the map and leave the minterms of F blank

- Xy #Xy
« Example: 7 Y F/
e F(x,y,2) = 2,3,45) —|o |1 |3 |2
x4 |5 |7 |¢ b b
le: Alv|e]e SN ENE
» Example: = P ol o m ,
e G(a,b,¢) =Y (3,467)

a

. (;_";bCH\B*C\IG

= Learn the locations of the 8 indices based on the
variable order shown (X, most significant and Z,
least significant) on the map boundaries

AR

jic and Computer Design Fundamentals, 4e
verPoint® Slides

1008 Pearson Education, Inc. Chapter 2 -Part2 19

Steps for using K-Maps to Simplify Boolean
Functions

* Enter the function on the K-Map

* Function can be given in truth table, shorthand notation, SOP,.. .etc
* Example:

F(x,
* F(x,y) =X +xy z y () Y
« Fxy) = $,,(013) |—1 2 1 1 ALY [
g oy T 0o | 1| 1 Surivi
X 1| o 0 x| 2 \J
. 1|1 1

" Combining squares for simplification

* Rectangles that include power of 2 squares {1, 2, 4, 8, ...}

* Goal: Fewest rectangles that cover all 1°s = as large as possible
" Determine if any rectangle is not needed
* Read-off the SOP terms

&f_ﬂd Computar et = .

Scanned by CamScanner

| Combining Squares

» By combining squares, we reduce number of litera in,g
product term, reducing the literal cost, thereby reduc ing g,

* other two cost criteria

" On a 2-variable K-Map:

« One square represents a minterm |
+ Two adjacent squares represent a product term with one variable

. Four “adjacent” terms is the function of all ones (no variables) =

with two variables

® On a 3-variable K-Map:
- One square represents a minterm with three variables
- Two adjacent squares represent a product term with two variables
« Four “adjacent” terms represent a product term with one variable
« Eight “adjacent” terms is the function of all ones (no variables) = 1.

Logic and Computer Design Fundamentals, 4e
PowerfPoint™ Slides

© 2008 Pearsan Education, Inc. Chapter 2 -Part2)

Example: Combining Squares

1
= Example: F(4,B) = Zm(O,l,Z)

= Using Distributive law

. F(AB)=A+AB

« Using simplification theorep,
« F(AB)=A+EB

. Thus, every two adjacent termg
rectangle correspond to 5

at fo
Pro m 3
one variable uce 2x1

e s
'™ wit
Scanned by CamScanner

Example: Combining Squares

~

n Examplei F(x; Y, Z) - Zm(213:6;7)

s F(x,y,2) = XyZ+ Xyz + xyZ + xyz — }’2
iln
= Using Distributive law ML tl 3
o F(x,y,z) =Xy +xy .

= Using Distributive law again

¢ F(x,y,Z) =@J}

» Thus, the four adjacent terms that form a 2x2
square correspond to the term "'y"

gic and Computer Design Fundamentals, de

2058 Pearon Education, Chapter 2 - Part 2 23

Three-Variable Maps

" Reduced literal product terms for SOP standard
forms correspond to rectangles on K-maps
containing cell counts that are powers of 2

" Rectangles of 2 cells represent 2 adjacent minterms

" Rectangles of 4 cells represent 4 minterms that form
a “pairwise adjacent” ring

" Rectangles can contain non-adjacent cells as
lllustrated by the “pairwise adjacent” ring above

Lok an .
WSM'%n Fundamentals, 4e Chapter 2 -Part2 24

"on Edication, g,

Scanned by CamScanner

Three-Variable Maps

= Example shapes of 2-ce
VI

i
T 4| 5[] 7| ¢
X -
Z
= Read-off the product terms for the rectangles
shown:

e Rect(0,1) = XY
o Rect(0,2) = XZ
o Rect7) =YZ

Shdes
© 2008 Pearson Education, Inc.

Chapter 2 - Part 2

Three-Variable Maps

* Example shapes of 4-cell Rectangles:

£x MY T y
7 Y .

4/ B

" Read off the product termg for ﬁle redlcangles

shown:

e Rect(1,3,57) = Z
* Rect(0,2,4,6) =7
* Rect(4,5,6,7) =X

€ and Computer Fund
erPoint® Siides Design lamentals, 4¢ Part 2
Nlnntar D -

108 Psarson Education, Inc,
Scanned by CamScanner

Three Variable Maps

~
« K-maps can be used to simplify Boolean functions

by systematic methods. Terms are selected to
cover the “1s”in the map.

« Example: Simplify F(x,y,z) = ¥.,,,(1,2,3,5,7)

i oy vt Rt e vl Chapter 2 - Part 2 27
32008 Pearsan Educafion, Inc. PO o
Sl A [
TR Pr > | EB
=

-0

Three-Variable Map Simplification

* Use a K-map to find an optimum SOP equation
for F(X,Y,Z) = }»,,(0,1,2,4,6,7)

—_—— Y pr——
o i 3 2
1 1> 1
X 4 5 7 -l g“
1 < j ¥
I Z

Sop ¥

FIX,Y,Z)=Z+ XV +Xy ¢

:;&"‘::_‘»sm‘ Petlon Fundamentats, 4s

—~

Scanned by CamScanner

Four Variable Maps

= Map and location of minterms

F(W,X,Y,Z): =
! " T 4 la
@0
0 1 3 2
" 5
\,) ‘ 4 5 7 6 -
0ol 12 13 15 14 X
W 8 9 11 10 _
© A
= Z <
Logi and Compter Design Furdamertals, de . ,
© 2008 Fearson Education, Inc. A ’ ChﬂptCI‘Z-P&I’tZ

Four Variable Terms

—_—

= Four wvariable maps cgn have
corresponding to: rectangles
» A single 1: 4 variables (i.e. Minterm)
e Two 1’s: 3 variables
o« Four 1’s: 2 variables
. Eight 1’s: 1 variable

Gixteen 1’s:

Zero variableg (funCtion ofag
Al oneg)

Scanned by CamScanner

Four-Variable Maps

« Example shapes of 4-cell rectangles:

Y

2

3
4 6
5 r_-Lw
»J
11

12 13 5 14 J X

10

Z

g T s Chapter 2 - Part 2 31

sarson Educabion, Inc.

Four-Variable Maps

* Example shapes of 8-cell rectangles:

Y

--‘9:::1__\(— _____ —\iﬂ

00 r?__h\

Vi e o o o e o o o o e o o e e o

13 15 14
W q 11 L10
[N) S
) r__ H
: 7 i
Fc_"'mu..n__.) ~A

Scanned b3“/ sz;mScanner

Four-Variable Map Simplification I

= FW,X,Y,Z) = ¥..(0,2,4,5,6,7,810,13,15)

Y
I N
4 } 5 7 6 T
1
L] 1) 1,
12 1 15 14
1 |1

I'V--a--.l 9 11 1p-=-=t

1 1

Z

FW,X,Y,2)=XZ+X7+WXx <=

Logic and Computer Design Fundamentals, 4e
PowerPoint® Siides '

© 2008 Pearson Education. inc, Chapter 2 - Part 2 3

Four-Variable Map Simplification

= FW,X,Y,Z) = ¥ (3,4,5,7,9,13,14,15)

ESS!(\\"“‘\
T
1
o\ 4 S Z -6\\
é‘)’)en A [1 i ?
nt| L-
2[4 |15 [[a X
1 1
W =% 1 1 EsSanﬂ"\\
8 9 i U
1
7 —
rZ\ E)SM‘“’@l t
et 3 XZ

FOW,X,Y,Z) = WYZ+ WXV + 1y, Wiy

Scanned by CamScanner

Systematic Simplification

— PN s> 53 S

R

Sy Wb is a product term obtainefl by
~ combining the maximum possible number of adjacent
squares in the map into a rectangle with the number of

squares a power of 2
.SJ?_;)\ 9\9 »\ b)\f_‘x‘)) ado : ,»u*':’r*»
« A prime implicant is called an Essen

if it is the only prime implicant that cove
or more minterms

rs (includes) one

« Prime Implicants and Essential Prime Implicants can be
determined by inspection of a K-Map

= A set of prime implicants “covers all minterms " if, for. each
minterm of the function, at least one prime implicant 1n the

set of prime implicants includes the minterm
e e e e 2 Chapter 2 - Part 2 35

werPoirt® Shides
2008 Pearson Educalion, Inc.

Example of Prime Implicants

* Find ALL Prime Implicants

__ e G0 ESSENTIAL Prime Implicants
BD\Y /AN M "I I TR "BD_ C
| | I I i N t ,
BD — TEATR e M— s BD — CED o=
1|1 1 _u
ok L Ade—AL L
sl Al [W
j |
D D
@&M%M AD ﬁ C @® Minterms covered by single prime implicant
gy, S —— (hanter 2 - Part 2 36

Scanned by CamScanner

WA S T

» Find all prime implicants s 51314
’10’11,1)) ;15)
F(A’ B’ C’ D) — 2(0,2;3;819 € g5 eakin\ ® G
m c frc __,
———] =31 _
_ . . ~ ﬁr— E.;.-..ii.l__-..," D
= Prime Implicants: A k=2t —T 5]
4
o A e Ssential
[— B
R eSfentin | 13 13 14 —
® §€ S.x 4*‘\ o 121 1 1 1
* BD esroren G A P BT
1 1 1 1
T EiT
.--—5 b /‘5

Chapter 2-Part2 3y

ic and Computer Design Fundamentals, de
rerPoint® Slides
508 Pearson Education, Inc.

Another Example

= Find all prime implicants for:

G(4,B,C,D) =) (02347,12,13,14,15)
m
= Hint: There are seven prime implicants!
= Prime Implicants: & C
° + ?9 Seakia) @ =
ol) iR wr.r 1 3 40y
e BCD . (Il 7 [l
L BC-D- 5 7 6
e ACD)| g
e ACD 13 15
. ABC Wl 1 (1D
. ABD 9 1 —Di
AT | Db | P |
L

Scanned by CamScaf;ner

Optimization Algorithm

] . 1 1 _;_a\ 3 C’,SS(M-M.!_)}
(. Find all prime implicants 2 £

7. Include all essential prime implicants in the
- solution

3, Select a set of non-essential

prime implicants to cover all minterms not yet
covered

. Selection Rule: Minimize the overlap among prime
implicants as much as possible. In particular, in the
final solution, make sure that each prime implicant
selected includes at least one minterm not included n
any other prime implicant selected

1 Computar Design Fundamentals, de

o Sides ' : Chapter 2 - Part 2 39

‘marson Education, Inc.

Selection Rule Example

= Simplify F(A, B, C, D) given on the K-map

Selected Non-
essential Prime E tial Pri
C Implicants C ssential Frime
o . 3 5 Implicants
: r; '1"'1 o |1 3 — 2
t-4L A 5 1] 1 r/7
|4 5 7 6 o 2> y 4
T1Y K| 1 (® s e
— i B 1 1 1 1
12 13 15 14 B
] 12 \ 13 15 14
Al-t}L‘ - i i A 8 \9 1 11 10
I 1 l e e S e
Al 1 o
D D
F- ACPHARFACE <D

Prime Implicants Essential and Selected Non-essential
Prime Implicants

ang
Nncl“;ﬂ“' Deslon Fundamantate s-

Scanned by CamScanner

Product of Sums Example .
—__—-m

» Find the optimum POS solution for: | Jg 205
12,13,14,15) [oo |o] o
F(AB,C,D) = 2(1,3,9,11, ,
(— /D/ ofo _GJ

= Solution:
» Find optimized SOP for
« Complement F to obtain optimized POS for £

F by combining 0’s in K-Map of F .

-

b
w

0
- - = 01 1 1 10
. F(A,B,C:D)=AB+BD ool s Ty | | 7 s T
imphean?t ¥ ([0/] 0 [0 [Lo]
2
1

= Using Demorgan’s Law: ;

F(A,B,C,D)=(A+B)B+D) Ar=T1, Ta [aoF

s 9fosp [6—y Sop(F) J
Chapter2-Part2 4

R et I g 08 s Sep() L
g s |
o ' AT srEa®
ol !
Example . E g
T ’

= Find the optimum POS and SOP solution for:

0 Il g

F(A,B,C,D) = ﬂ(o, 2,4,5,6,7) x
M :

= POS solution (Red):

* Find optimized SOP for F by combining 0’s in K-Map of F
* Complement F tgo\btz_lin optimized POS for F.

F(A,B,C,D) = 4B +_/TB L
F(A,B,C,D) = (4+B)(A + D) 0
. 4
= SOP soh'ltlon (Blue): al
. Comblning I’s in K-Map of F] 2.4
F(AIB:C,D)=A+BD A si 9 11
W a1yl
R "p !

Scanned by CamScanner

pon't Cares in K-Maps

«» [ncompletely specified functions: Sometimes a function table or
map contains entries for which it is known:

. the input values for the minterm will never occur, or
. The output value for the minterm is not used
. In these cases, the output value is defined as a “don't care”
« By placing “don't cares” (an “x” entry) in the function table or
map, the cost of the logic circuit may be lowered

« Example: A logic function having the binary codes for the
BCD digits as its inputs. Only the codes for 0 through 9 are
used. The six codes, 1010 through 1111 never occur, SO the
output values for these codes are “x” to represent “don’t cares”

« “Don’t care” minternis cannot be replaced with 1 s or 0’s
pecause that would require the function to be always 1 or 0
for the associated input combination

s ComuterDesign Fundameriats, 4o Chapter 2 - Part 2 43
12 Paarson Education, Inc.

Example: BCD “5 or More”

* The map below gives a function F (w, x, v, z) which is defined as "5 or more" over
BCD inputs. With the don't cares used for the 6 non-BCD combinations:

Lg 7
* Ifdon’t cares are treated as 1’s (Red): Y
: 0 1 3 2
" Fw,x,y,z) =w+xy +x2
« G=7 4 i = = oy
. L 1
If don’t cares are treated as 0’s (Blue): 12 13 15 14 N
_ X | & | K J| X)
* F(w,x, y,z) = Wxz + wxy + wxy f(:——--g—-"\ 1 10
. _ 1
b1 N L s L
".’&D\b}s\\d))@\ﬁ \3\%(,\",}-_& ‘)«:m}(um.-)5 VA

i PRU (‘,.:-\n.:r\ oy ey ,
For this particular function, cost G for the POS solution for FW, X, Y, z) is
ot changed by using the don't cares

Choose the one less inverters (i.e. less GNN)

Scanned by CamScanner

Selection Rule Exam

« Simplify F(A, B, C, D) 8

Comblal @

ple with Don't Carg, V

iven on the K-map,

Essential
- c Selected ¢
c l :
1 | X] 1 ’d
Tx (1)
x/| x
wl xx [& B N
A X cjf‘gk\fbﬂ(_‘\ X
1 1 X / 1 _;)
" l
D | D

Logic and Computar Design Fundamentals, 4e

PowerFoint® Slides

© 2008 Pearson Education, Inc.

Product of Sums with Don’t Care
Example

v/ Minterms covered by essential prime implicants

F :5(5 ¥§C* 95;(’

Chapter 2-Part2 4

= Find the optimum POS solution for:

F(A,B,C,D) =) (39111213,
m

14,15) + > (1,4,6)

Don) Cate 4 3

Cc
L bl edad C
_l-rl ﬁ 3 {’/- -.-F-~ " ey
T 1 0 i 3
- -ﬁ X Ll I‘__ —\ = -‘l_o_l X 1 ! 0
0 M= ._EGSSQ/J""‘\\ Z
X | o
12 13 15 14 a 0 X B
1 1 1 1 Ul 15 o
A —;——T-—_ 11 'lﬂ—— =T é ?\ 1 1
1 T)-ll - ___——-———‘_1 —"‘_'_I 0 . T]‘I ‘ i 1 .m—- =
— 5 | mac o ::—;J# 10
T D L----

F(4,B,C,D)=(A+B)p 4 p,

Scanned by CamScanner

Cesign Furdarentals, 4¢ Z

cations, e,

Scanned by CamScanner

- Buffer

S — |

= A bufferis a gate with the function F = X

F

X F X% ~
—0- X3
0 0 ra

* In terms of Boolean function, a buffer is the same
as a connection!

= So why use it?
* A buffer is an electronic amplifier used to improve
circuit voltage levels and increase the speed of circuit

operation

» Protection and isolation between circuits

Logic and Computer Dasign Fundamentals, 48
PowerPoint® Sides
£ 2008 Pearson Education, inc.

NAND Gate

Chapter 2 - Part 3 5

= The NAND gate has the following symbol and truth table:

X —
xH F=XY
y L, Vo B
Ond rvee
N F
S =Xvz
7 — X +5+

= NAND :
a NOT app.lle
The small circle

represents NOT-AND, i, the
d. The symbol shoy
1 (“bubble”) répresents ¢

AND function with

iS an

il

Scanned by CamScanner

NAND Gates (continued)

« Applying DeMorgan's Law gives Invert-OR (NAND)

X
Y F
Vi

Il
><|
+
~l
+
Ny

A2 = K+J +T
» This NAND symbol is called Invert-OR, since inputs are
inverted and then ORed together

« AND-Invert and Invert-OR both represent the NAND
gate. Having both makes visualization of circuit function

easier

sy Do - Chapter 2 - Part 3 A

3 2008 Pearson Education, inc,

NAND Gates (continued)

« Universal gate: a gate type that can implement any Boolean
function. The NAND gate is a universal gate:

G e\ e b e D N

X — | b- F=XX=X

/ Y-l? =X

o — ~ Inverter using NAND
X N\ XY ¥y
)’J— F=XY
Y s
AND using NAND

X M
. -F=XY=X+Y
N - s
i

Rt pee” D9SN Functamental, de OR using NAND Chapter 2 - Part 3 8

Il
>
~l
I

Scanned by CamScanner

NOR Gate - '
W

= The NOR gate ha ~T7v]r
) SR s o
- 0| 1
7 g Y oR adet XY 11 o] o
1| 1] 0
X / .
z $.9 6 v—o| |
Z_,»O

= NOR represents NOT-OR, ie., the OR function with a
NOT applied. The symbol shown is an OR-Ianart. The
small circle (“bubble”) represents the invert function

Logic and Computer Design Fundamentals, 42
e Sl Chapter 2 - Part3 9

NOR Gates (continued)
c

= Applying DeMorgan's Law gives Invert-ANp (NOR)

x —C
y —O
z O F

Ii
<
~i
N

= This NOR symbol is called Inyey¢. |
inverted and then ANDed tOgms since inputs are

[nvert and Invert-AND bot, repr
g both makes visualization o cir§3§m the NOR gate.
function eggier

= OR-
Havin

ST RS

Scanned by CanScéfnner

NOR Gates (continued)

. The NOR gate is a universal gate:

X =
— Inverter using NOR
X XTIy sing
y FEX+7)
OR using NOR

ic and Computer Design Fundamentals, 42 1
Poverbortt Sides AND using NOR Chapter 2 - Part 3 11

& 2008 Pearson Education, In<.

Hi-Impedance Outputs
W/
» Logic gates introduced thus far

. have 1 and 0 output values,
. cannot have their outputs connected together, and
L oo

» transmit signals on connections in only one direction =
Ml Zotes 13

« Three-state logic adds a third logic value, Hi-Impedance
(Hi-Z), giving three states: 0, 1, and Hi-Z on the outputs.

» Hi-Z can be also denoted 3sé orz)

" The presence of a HI-Z state _makes a gate output as

described above behave quite differently:
. <] and 0” become “1, 0, and Hi-Z”
. “cannot” becomes “can,” and

* “only one” becomes “two”

Logic and Cremrac-om. . _

Chapter 2 - Part 3 12
Scanned by CamScanner

Hi-Impedance Qutputs (CONtNueg)

——.__me?—A ‘
« What is a Hi-Z pen circuit ,

. as an o
The Hi-Z value behaves . .
g back mto the circuit, the Outy,

This means that, Jookin
appears to be disconnected |
It is as if a switch between the 1nte

output has been opened

rnal circuitry and

« Hi-Z may appear on the output of any gate, but we
restrict gates to 3-state bufler

o ‘,]4\’—%

Pt Siaes - Chapter2-Part3 3

© 2008 Fearson Education; inc.

Tri-State Buffer (3-State Buffer)

* For the symbol and truth table, IN
is the data input, and EN is the Symbol

control input
IN

OouT
* For EN = 0, regardless of the EN
value on IN (denoted by X), the
output value is Hi-Z

Truth Tap)e
* For EN = 1, the output value) v Our |
follows the input value 0| X Hiz
MJ]«....AL'\Q\AY_')‘E 1 0 0
1 1 7
— |

Scanned by CamScanner

Tri-State Buffer Variations

= By adding “bubbles” to signals:
« Data input, IN, can be inverted
« Control input, EN, can be inverted

IN out IN our IN ouT
EN EN EN
EN | IN | oUT EN | IN | oUT EN | IN | oUT
Hi-Z 0 0 0 0 0 1
0 1 1 1 1 0
19 1 | X |Hiz 1 | x | Bz
ot s e Chapter2 - Part3 15

108 Pearson Education, Inc.

Resolving 3-State Values on a Connection

= Connection of two tri-state buffer outputs, B, and B, to a
wire, OL (Output Line) = Multiplexed Output

EN, | EN, | IN, | IN, B, B, OL
0 0 X X | Hi-Z | Hi-Z | Hi-Z
0 1 X 0 | Hi-Z| 0 0 N B
0 1 X 1 | Hz| 1 1 0
1 0 0 X 0 Hi-Z 0 EN, L OL
1 0 1 X 1 Hi-Z | 1 IN B
, —
EN,
a9l 3 Ly
Gep) olis
| L' Qv s
naw(:‘.,..mwr s, 4o o=
5 P :"m Chapter 2 - Part 3 16

Scanned by CamScanner

Resolving 3-State Values on a Connectig,,

" Resulting Rule: At least one buffer output value Myg

be Hi-Z. Why? K
* Because any data combinations including (0,1) and (1,0) can
occur. If one of these combinations occurs, and no buffers are Hi.

Z, then high currents can occur, destroying or damaging the circuit

" How many valid buffer output combinations exist?
* 5 valid output combination

" What is the rule for “n” tri-state buffers connected to
wire, OL?
* Atleast “n-1” buffer outputs must be Hi-Z

* How many valid buffer output combinations exist ?
* Each of the n-buffers can have a 0 or 1

output with all others at Hi-Z.
Also all buffers can be Hj-Z. So there areon +1 [vah'd combinations.

Logic and Cormpeter Design Fmdam‘eruas, 42
PowerPoint® Slides
© 2008 Pearson Education, inc,

Chapter 2 - Part3 |

Tri-State Logic Circuit

Data Selection Function: If s = ¢ o[, = INy, else OL = N 1
" Performing data selection with tri-state buffers:

S| EN, | EN, | IN, | IN, | oL
.
o o 1 X 0 0
o| o 1 X 1 1
1] 1 0 0 X 0
Vo 0 1 X 1

= Since ENy = 5 and EN4 = s, one of the two buffer outpy¢s
is always Hi-Z. “

Scanned by CamScanner

Logic Functions using Tri-State Buffers

~
« Implement AND gate using 3-State buffers and inverters

F(X,Y)=X.Y X| Y| F
= Use Xas control input: P (5 3 010
» WhenX =0, F = 0 regardless of the value of Y \0,1 LN
. WhenX=1,F=Y g L(Z)] o]0
1 1 1
0
X - F
Y |
gﬁmsnip;n:m::n:mm&“ Chapter 2 - Part 3 19

Logic Functions using Tri-State Buffers

» Implement the following function using 3-State buffers

: . =wx+wy+x
and inverters: F(w, X,y) y+xy 9 I
» Use was control input: olololo
e« Whenw=0,F=x regardless of the value of Y ololi1lo
¢« Whenw =1 @ o\ 1| 0| 1
» fx=0,F=Yy ol 1|11
s fx=1F=1 SFINE
a 0 g 'z7]lael|1]o0
N | _
1 p : NN
11| 1|1
Xﬁ — — F
y x;l— E)>J
0 0 Camputer Dacin Furngamantats, ;":’ LN Chapter 2 - Part 3 20

Scanned by CamScanner

Logic Functions using Tri-State Buffey

= Write the Boolean expression of F(4,B,C) giyey .,

diagram below: 0

2.8
F(A,B,C) = ABC + ABC

Logic and Computer Design Fundamentals, 4a
PowerPoint® Sides
© 2008 Pearson Education, inc,

Chapter 2 - Part 3

Exclusive QOR/ Exclusive NOR

.
* The eXclusive OR (XOR) function is an important

Boolean function used extensively in logic circuitg
" The XOR function may be:

* implemented directly ag an electronic circuit (truly 5 gate) or

* implemented by interconnecting other gate types (used g5 a
convenient representation)

" The eXclusive NOR (XNOR) function

— 1S the
complement of the XOR Function

" By our definition, XOR and XNOR gates are comp oy
gates

Scanned by CamScanner

’ Exclusive OR/ Exclusive NOR

= Uses for the XOR and XNORs gate include:
* Adders/subtractors/multipliers
» Counters/incrementers/decrementers

. @) | RO
* Parity generators/checkers :{T\'}:”}\‘

or [

» Definitions he

4
* The XOR functionis: X ® ¥ = XY + XY
« The XNOR functionis: X Q Y = wl—/

— Cn

= Strictly speaking, XOR and XNOR gates do no
exist for more than two inputs. Instead, they are
replaced by odd and even functions

———

2\, + ')(‘; = .7; ‘f. \ X_\-,
ind Computer Design Fundamentals, 4 — -
5 2N)
sk (X+9)-1 j ¥ Chapter 2 - Part 3 23
(2 +7).-(xF)

'ﬂ X% k+ 77
Proof: XNOR is the complement of XOR

— — L —_—
*XPY = XY +XY- ro

*XPY =XY.XY
"XQY=X+1X+Y)
*XPY=XX+XY+XY+YY
" XQOY=X®PY =XY+XY

p e ST
- w ,_:}~ > Q_D_,,\—:.‘D-b"j o

" o -CD'\:jbﬁv =
1 D =

Scanned by CamScanner

Symbols For XOR and XNOR

= XOR symbol: jD-

= XNOR symbol:

= Shaped symbols exist only for two inputs

!
R\
LT aDjD

PowerPoi® Sides
© 2008 Pearson Education, Inc. L : Chapter 2 - Part 3 2

Truth Tables for XOR/XNOR

X
Y [Xov | X Y G@Y(XEY)
0 0 0 0 0 1
0 1 1
0 1
— 0
1 Gﬁ 1 1 0 O\T

* The XOR function means: X OR Y, butNOTBOTH

" Why is the XNOR function also kn :
function, denoted by the operator E‘_;) Wi as the equs Valence

* Because the function equals 1 if and onlyif X =¥

Scanned by CamScanner

XOR Implementations

= The simple SOP implementation uses the
following structure:

'S
i =N

= A NAND only implementation is:
=T L
T Drxev
y— >

X®Y

d Computer Design Fi de
int® Slides
Smarson Education, Inc.

Chapter 2 - Part 3 27
r®y = Y v Xv

XOR e

M tnss U Do se

C - T W
* The XOR identities: AP 752 » Fyi e K57 r%vZ
Xpo=X X®1=X '\'Wl YOYD2
X@x=0 xex=1___ ||
XQ7=X0Y XOY=XDY s |
XOY=vYoX ol L
XOVNDI=XOW DL =XDYDZ ol

* The XOR function can be extended to 3 or more variables.

For more than 2 variables, it is called an edd function or
modulo 2 sum (Mod 2 sum), not an XOR:

X®OYDZ=XVYZ+XYZ+XYZ+XYZ(0dd# of 1’s)

Scanned by CamScanner

T s 1
 VoR — eucn-”)co

XNOR O |
e —— N

« The XNOR identities:
xQ0=X

xox=1
B xoY=Y0oX

AV
(XQY)OZ=XO(YOZ)=XOYOZ

1 be extended to 3 or more
les, it is called an (evep)

= The XNOR function ca |
variables. For more than 2 variab

function, not an XNOR:
XQYQZ=XYZ+XVZ+XVZ+XVZ (Even# of I's)
« The even function is the complement of the odd

function

Logic and Computer Dasign Fundamentals, 4e
PowerPoint® Slides
© 2008 Pearson Eaucation, Inc

Chapter 2 - Part 3

Odd and Even Functions

. = The Is of an odd function correspond ¢
. . L e . . 0
to minterms having an index with an : 1 ’ : |
odd number of 1s. y 4 s 7 p
o (1 |3 |2 1 1
1 1 12 13 15 14 B
x[4 |s |7 s A 1 1
1 1 8 9 11 10
11 1
z —
D

' = The s of an even function correspond
to minterms having an index with an
even number of Is.

ﬁﬁmﬁngme 4w .
Scanned by CamScanner

Example: Odd Function Implementation

. D.esign a 3-input odd function F=X®YDZ
with 2-input XOR gates

» Factoring, F=(XQY)®Z
« The circuit:

D,

Computer Dasign Fundamentals, 42
1 Sides Chapter 2 - Part 3 31

arson Education, Inc.

Example: Even Function Implementation

» Design 4-input even function F=WOXQOYDZ
with 2-input XOR and XNOR gates

» Factoring, F= (WOX)D(YDZ)

= The circuit:

am IS
;f:D:)D

Scanned by CamScanner

Combinational Circuits

« A combinational lo
+ A set of m Boolean inputs,
. A set of n Boolean outputs, and

1 m
. 1 switching functions, each mapping the 27 g, o

curre
combinations to an output snfch thatlthi \”Muf%
depends only on the current input value.

= A block diagram:

| —
—> Combinatorial . 5
‘ Logic .
' Circuit
o []
I —

m Boolean Inputs

ogic and Computer Design Fundamentals, de
‘owerPoint® Stides

Chapter 3 - Part] 4
>2wePuM|EmulSn'n.|n:.

nBoolean Outputs

Design Procedure

1. Specification

* Write a specification for the circuit if '
: one | t
already available. Wpa¢ e

e cZoes the cireyjt do?
names or sympols for ;
et nputs and

2. Formulation

* Derive a truth table or
that define the required
inputs and outputs, if not i

3. Optimization

Initjal Boolean , .
relationships Juations

betw
n the Specificatiop Rl
Apply 2-level optimization using K

Draw a logic diagram for the resulting ciper:
; cu .
ANDs, ORs, and inverters i Using

Logic and Computer Design Fundamentals, 4¢
PowerfPoint® Siides

-maps

Scanned by CamScanner

PDesign Procedure

M
4. Technology Mapping

 Map the logic diagram to the implementation
technology selected

5. Verification

+ Vernfy the correctness of the final design
manually or using simulation

hic and Computer Design Fundamentals, 4e

2008 Pearson Ectcation. . Chapter 3 - Part 1 6

Design Examplel

\
* Specification: Design a combinational circuit that has 3
inputs (X, Y, Z) and one output F, such that F = 1 when
the number of 1’s in the input is greater than the number of
0’s (i.e. number of 1’s > 2)

* This is called majority function (i.e. majority of inputs must be 1
for the function to be 1)

. © ® | X Y z F
" Formulation: 6¢ 3 0 0 0 0
‘< 0 0 1 0
i B 0 1 0 0
L 1 1 1
K 1 0 0 0
> 1 0 1 1
1 1 0 1
| Sty ot e

gcahnéd“by CamScanner

Design Examplel LOTE:

« Qptimization: Y
0 1 3L
F(X,Y,Z) =XY +XZ + YZ 1
EI e
1 lﬁ]
Z

» Technology Mapping:

+ Mapping with a library containin
OR
x._.
1 -
X —
Y —
- 1 -
Lt and Comy Fe 48 7z —
T Chapter 3 - Part 1 8

© 2008 Pearson Education, Inc.

g inverters, 2-input AND, 2-inpyt

Design Example2

. . . L. ¢ =16 W\ [Grsp i O
" Specification: Design a combinational - e \ J/D
circuit that compares 2-bit Binary number A | BB | 00,00
(4, B) and produce two outputs (i 0,, 0y, = = .
such that: = L N
00 10 01
0100 =00 | When A = B and Both are even 00 11 01
0:00=01 |WhenA<B 01 00 10
0,00=10 | Whend > B ol 01
0,00=11 | W o ;
100 = hen A = B and Both are odd T*' 01
11
01
10 00 l. 0_
* Formulation: = = 10
10 10 o0
Al j’ - 10 1 - 00
fo - : l
. \S &) | 11 00 Y
ﬁ‘3|- ~ I o | o
] 11 0 [T
1]
I

Logic and Computer Desian Fund

Scanned by CamScanner

pesign Example2 Cont.

M
. optimization and Technology Mapping: O B

—_— —— 1
0, = BiBo + A1B1 + A1B, " T

1 l
31_4 4 S{J 7 6
Bo— —l-J
2 |13 14 14 Ao
‘ “ 1
‘ R
A A ¢ 44 3 9 1 10
B, Crarh 7]
én‘)t ' . ==

O, B,
01 = AlAO + AoB—l. + AlB—l ’ l

A AT |

Ay —

l—-

Bo—1

12 13 15 14

B, ' A

A; —

Pc;{m;ﬁ';numﬁwf‘““ A;—
® Sides
2008 Pesreon Etcaton. . Chapter3-Part1 10

Design Example3

1. Specification
« BCD to Excess-3 code converter

» Transforms BCD code for the decimal digits to Excess-3
code for the decimal digits

» BCD code words for digits 0 through 9: 4-bit patterns 0000
to 1001, respectively

* Excess-3 code words for digits 0 through 9: 4-bit patterns
consisting of 3 (binary 0011) added to each BCD code
word

p &+ % W)
* BCD input is labeled A, B, C, D ?;{:E & ;‘
Daw® — B2
* Excess-3 output is labeled W, X, Y, Z

#r Design Fundamenials, 4a

Chapter 3 - Part 1 11
Scanned by CamScanner

Design Exam

ple3 Cont.

.__mm

o

2. Formulation B /:f;;p 0011

0001 0100

0010 0101

0011 0110

0100 omi

0101 1000

0110 1001

0111 1010

1000 1011

1001 1100

' _ 1010 XXXX
V(;c\;)b e 1011 XXXX Pl
1100 XXXX Core

1101 XXXX

1110 XXXX

111 XXXX |

Design Example3 Cont.

c -IC

Chapter3-Part1 [|

3. Optimization W
R N N X P
2 1
W =A+BC +BD ; 6 N
] 1 1] 41 5 ; 6
_ _ _ l2x 13 15 14 B 12] B
X=BD+BC+BCD A4 AT
J ’ | “x mx 8 y 'h ik
_ — I ixJ xt
Y=CD+ (D b b]
Y c
_ Pl 3 2 Z-T Cc
Z=D 4; 1 1IN ERE
5 7 6 . . 1
T 1= B]
15
A SL X | x ”X IJX 1s < B
9 1 10 " X X
R Xl x “
= X
D

Logic and Computer Design Fundamenals, 4e

Scanned by CamScanner

Design Example3 Cont.
4. Technology Mapping

» Mapping with a library containing inverters, 2-input AND,
2-input OR
‘2

B — A
D —

Computer Design Fundamentals, 48 .
¥ Siides
arson Education, Inc.

Chapter 3 - Part 1 14

Homework: BCD to 7-Segment

“

" Specification: a

* Inputs: (4, B, C, D)BCD code from 0000-to-1001 | i
* Outputs: (g, f, e, d, c, b, a) f | g | b
——
ABCD gfedcha | 1
" Formulation: 0000 0111111 ¢ :
0001 0000110 d
" Optimization: 2
* How many /
K-maps? 1001 1100111
1010 0000000
/
/
/
/
/
1111 0000000
%%&"M Funduensene. ..

Scanned by CamScanner

Technology Mapping .
m
= Mapping Procedures |
+ To NAND gates
« To NOR gates

D> D

e t A [: 6 D\ . —
[) .
(N meon
P o8
m gwl?gsn‘;;u« Design Fundamentals, 48
empam;umxm Chapter 3 = Part l

Mapping to NAND gates
—_—

" Assumptions:
* Gate loading and delay are ignored
* Cell library contains an inverter g

nd z-in
gates, n=12,3, ... Put NAND
* An AND, OR, inverter schematic for the cirenis :
available cireuit is

" The mapping is accomplished by:
* Replacing AND and OR symbols,

* Pushing inverters through circuit fan-oy

t points
and ’

* Canceling inverter pairs

Scanned by CamScanner

NAND Mapping Algorithm

1. Replace ANDs and ORs:

- —

}‘D~—>

L e

—

: :))_

2. Repeat the followmg pair of actions until there
is at most one inverter between :
a. A circuit input or driving NAND gate output, and
b. The attached NAND gate inputs

- o

Chapter 3 - Part 1 18

NAND Mapping Example

(c)

(d)
Scanned by CamScanner

Mapping to NOR gates ‘ h

- = Assumptions:
* Gate loading and delay are ignored
* Celllibrary contains an inverter and z-inpy¢ NO

R
gates, n=2,3,.
* An AND, OR, inverter schematic for the circyj ; is
available

" The mapping is accomplished by:
* Replacing AND and OR symbols,

* Pushing inverters through circuit fan-out points,
and

* Canceling inverter pairs

Logic and Ccmputer Design Fundamentals, 48
PowerPaint® Siides

© 2008 Pearson Education, Inc, -

Chapter 3 - Part | 2

NOR Mapping Algorithm

Replace ANDs and ORs:

Do- = 3@““*" }D- i:bk
o

2. Repeat the following pair of actions y
is at most one inverter between :

a. A circuit input or driving NAND gate output, apg
b. The attached NAND gate inputs.

oo — e f— ~»{E

Scanned by CamScanner

ntil there

4 NOR Mapping Example

ind Comnputer Design Fundamentals, de
Point® Siides

 Pearson Education, Inc. Chapter 3 - Part 1 22

Scanned by CamScanner

@verview

« Part 2 — Combinational LOgI¢
» Functions and functional blocks
* Rudimentary logic functions

* Decoding using Decoders

" Implementing Combinational ~ Functions with
Decoders

* Encoding using Encoders

* Selecting using Multiplexers

" Implementing Combinational Functions — with
Multiplexers

yc and Computer Design Fundamentais, 42
werPoint® Slides
2008 Pearson Education, Inc.

Chapter3 3

Functions and Functiong] Blocks

= The functions considered are thoge found to be very
useful in design

= Corresponding 10 each of the functions s 4
combinational circuit Implementatjon called g2
functional block

. mﬂStz fumtlo(lllal blocks were Packaged gq
Small-SC811‘3'“2“3‘('51%1te d 1 (SSI)’ medium-scale
integrated (MSI), an arge-scale-int

“grated (DSI)
circuits .

_ ed within
D circuit 2

Scanned by CamScanner

X
. ol variable ;
» Functions of a single Functions of One Variable
u

= Can be used on the P r;’:rp'—'xﬁ
inputs to functional /X/,F/j/] 0 1
blocks to implement 0 ./O/ 1 1 0
other than the block’s j/—q-/l —
intended function

" Value fixing : a, b

" Transferring:c vccg[r;‘ili/ =1 X Fey

“ Inverting : d — F=1 ()

n - . 1 F= 0 =
Enabling : next slide) F=0 f" X—{>o— F=3

@ ®) @

© 2008 Pearsan Egucation, Inc. '

Enabling Function

"« Enabling permits an input signal to Pass through
to an output
» Disabling blocks an TP Signal f;

. m :
throu oh to an output, replacmg it with sa;mng
1Xe

value he output when it j
[ue on the 0 S disg
=« The va for three-state buffers and tr;)le Can be

. 7 (as X NSmie . |
Hi s) O,Orl / ENiDmismn I

(I
{ outptt T X :

« Whet disabled’ EN \Dé%\ i
F

(b)
Scanned by CamScanner

* Decoding: the conversion of an n

mi'b(;t output code with n < m < 2" such that each
valid code word produces a uniq

-bit input code to an

ue output code
» Circuits that perform decoding are called decoders

" Functional blocks for decoding are

* called n-to-m line decoders, where m < 2", and

* gencrate 2" (or fewer) minterms for the n input variables

¢ and Computer Design Fundamentais, 4a
eFoint® Slides

%8 Pearson Education, Inc. Chapter3 7

1-to-2 Line Decoder

e

= When the decimal value of A equals the subscript of D;,
that D; will be 1 and all others will be 0’s

* Only one output is active ata time O - Ao
D= Ae
A4 Do Dy Dom A g b2 [
X ‘ — . Decoder D,
1101 a |
" (c)
[.
Qq:xs\'\ Ml ¢\ 20

" Decoders are used to control multiple circuits by enabling

only one of them at a time

Scanned by CamScanner

" No more optimization is possible

" Note that the 2-to-4 line decoder is madM]
to-2- line decoders and 4 AND gates

Logee and Computer Design Fundamentars, aa
PowePoint® Siides
O“mPumEm Inc.

-— 5 Chapter3 4
: X
Os

X == D

Decoder Expansion

* General procedure given in book for any decoder with n
(7t D B e mputs and 2" outputs
o g

D2hH)Ae -
= Thls

> -, %, 2us procedure builds a decoder backward from the outputs
/ b lVl\SH'B YR YO SR V.
nﬁb/ \A he 1 Letk n LELE

Aihe
=8 B e
1 \-to’l. deed¥’ 1

2. We need 2k 2-input A

" If K is even, N, drive the g
" If k is odg

———=2 00d, drive ¢
decoder anq ¢

ND gates driven as follows:

ates using tywg k/2-to-2k2 decoders
¢ gates g (k1)
" (1)/2-tg 0t o one (et)2-to-2

€r
3. For each dec Ode

wmu;ummruum«

e S, > Use 1-to-2 decoder

Scanned by CamScanner

Decoder Expansion - Example 1

e ——————————
s 3-t0-8-line decoder
ok=n=3
. We need 23(8) 2-input AND gates driven as follows:
e k is odd, so split to:
= 2-to-4-line decoder
»]-to-2-line decoder
e 2-to-4-line decoder > k =n =2
= We need 2 (4) 2-input AND gates driven as follows:

* k is even, so split to:

* Two 1-to-2-line decoder

s See next slide for result

Logic and Computer Design Fundamentals, 42
PowerPoinf® Slides
© 2008 Pearson Education, Inc.

Chapter3 11

Decoder Expansion - Example 1

=

2 ~zanfaky o b HAYES i -
§ ~19fa 4 2-input ANDs 8 2-input ANDs

" GN=8x2+4%x2+3
- GN=Z7 PRV AN ‘jm;\]

0

: A
" Straight forward design \ R
s\

[d

has the same GN cost

Ay [k

A
2-to-4-Line
decoder 1
Az X |

Ho-2-Line decogers 17

:D&h“ D,

Scanned by CamScanner

.3:t0-8 Line decoder

e

O ———————————EEE N
= 6-to-64-line decoder .
ck=n=6
+ We need 2°(64) 2-input AND gate

o k is even, so split to:
» Two 3-to-8-line decoders

* Each 3-to-8-line decoder 1S designed as shown in Example 1
6“ A0 quh 6 \29

M 3

\\ and ot 3/ ® (32])
Y - / \\ / \, 71 1t ()
7 4 'lE

s driven as follows

5 75
W \be 1 /
| \ \ \
?mﬁmm;h -
2008 Pearson Educabon, inc .
gg e LS VY ST RAN ~u Chaptel‘3 13

4 |\ ke 1

Decoder Expansion - Example 2

*= GN=64x2+16%x2+8%x2+6
= GN =182

= Straight forward design has
GN cost of 390

/
Eyub + b

—_—— ———

—

-
Dsz = A54,4,4,4%

and C - /4
Wﬂ‘?umm’ g = D =A5A4A3A2A1Ao :

| s

ik

Scanned by CamScanner

pecoder Lxpansion - Example 3

s 7-t0-128-line decoder
e k=n=7

» We need 27(128) 2-input AND gates driven as follows
» k is odd, so split to:

» 4-t0-16-line decoder
* 3-t0-8-line decoder
+ 4-to-16-line decoder
"k=n=4
= We need 24(16) 2-input AND gates driven as follows:
* kis even, so split to:

* Two 2-to-4-line decoders

» Complete using known 3-8 and 2-to-4 line decoders
" GN=128X2+16%x2+8%x2+12%x2+7 =335
* Compare to straight forward design with GN cost of 903

logic and Computer Design Fundamentals, 42
Siides
B 2008 Pearson Education. Inc.

Chapter3 15

Building Larger Decoders

* Method_1: Decoder Expansion
* Method_2: Using Small(Decoders with Enable inpu

* Example: 1-to-2 line decoder with enable
» In general, attach m-enabling circuits to the outputs
* See truth table below for function
» Note use of X’s to denote both 0 and 1

- , . —
» Combination containing two X’s represent two binary combinations

" Alternatively, can be viewed as distributing value of signal EN to 1 of 2

outputs | |
* In this case, it is called a Demultiplexer - EIN
E EN
NA|Dp,p Y
— 1-to-2
P S Q) DO " .
(1) X i 0 0> 3'““:\)‘ } ~ Y Decoder | b,
0 1 o
D
@ C
B a) (b)
M&g&&?ﬁ::: F"S‘"?Wﬂls de

Chapter3 16

Scanned by CamScanner

9-to-4 Line Decoder with Enable
______/__\

= Attach 4-enabling circuits to the outputs
= See truth table below for function

- ’ our bi
- Combination containing two X’s repr esent f

. o =t 1 a
= Alternatively, can be viewed as distributing v
outputs

» In this case, it is called a Demultiplexer gy

A1'——'*-‘[>°’—
—>0—

nary combinations
lue of signal EN to | 4

T DD
[L)
— —D L
4o 2-to-4 _DO EN A, Ag | D, D, D, D3 DD,
1 1
4— Decoder —— D, 0 X X|0 00 0
1 — D
Dy 1 0 0|1 000 2
1 01]/0 100 -
EN 1 1 0[0 0 10 D,
1 11100 0 1
© '
(a) (b)
m%‘wm%ms“xummm:.u |
©2008 Pearson Edcation.inc. g Chapter3 17 |

c\nbjo\\(s B L.t.)} r’)yl) Cos}))V_.JJ; \.)\

2-to-4 Decoder using 1-to-2 Decoders and Inverters

Moy N 3 S T T R
o e @ Ao, i Do Dy D, D, |
s SO .0 1 0 0 0 i
\,\m» 0 LI' : b ' 0
o 1 A ¢ ! 0 !
"""""" ' 18t 1-to-2 Decoder 2nd 1t°2Decd §
Oder
Do— Do & B

Dy
EN

Do

D1———D3

EN

Chapter o
Scanned by CamScanner

-+ Pacian Fundamentals, 42

A A - : o Di Dy by |p, Ds Ds D,
L G pl 0 0 oo o 0
o {0 B0 T o0 ollo o o Do— Do
0 1 0 O 0 1 ollo o o o Ao—1Ao D:———D:L
¢ 11 O 0 0 1lte o o g D,—D2
L L S T S EN
Pt L0 0 0 oflo o o qf
Ist 2‘t04 DCCOder 2nd 2-to4 Decoder A DO — D4
AO 0 —‘Ds
o _ : —De
i —:
No
A g,'g" L
[\"—‘ ' A=
L
ﬁ;if@u;%.::r .‘ Fundame',r 5. e F 19
2008 Pearson Education, Inc. gl‘TJ-——J
| 0 — A\
4-to-16 Decoder using Only 2-to-4 Decoders gz
>
Doho
AO AO Dl | D: AO — AO DO - D4
D,— D, Ds
AL—A D2 D2 D,—Dg
Dy :] e e L
o
A,— Ao Di— wﬂ}l\
D]
A;— A1 D5 Ao— A, Do—p, [
L,,EL\L—— D;—p Ag— A D, Di,
Dz"\D DI—\D
A, —IA b 10 D 13
1 3D A A 2Dy,
EN ! 1 D3\D15
-

3-t0-8 Decoder using 2-tg

-4 Decoders and Inverters

Scanned by CamScanner

- Decoder and OR Gate - |
’ 1 variables with:

* Implement sz functions of
» Sum-of-minterms expressions
* One n-to-2"-line decoder
» m OR gates, one for each funct
* For each function, the OR gate has
of minterms in the function

jon L inputs where k is the numbey
- ln ’

" AQQI’O&Ch 1: Desd¥) { byapar NesS 2P
" et VA PRT)) 2 {ONS
* Find the truth table for the functio OR from the

. ondil’lg .
* Make a connection to the cOIESP] appears. In the truth

corresponding decoder output wherever & © BProe
table F(p,8)= g]1'}
" Approach 2 b Db <l
* Fi i . : n _P OB\ 0e -4 ;
ind the minterms for each output function . e AE- H@P

1053 é\Ab:pp

* OR the minterms together
Chapter3 2]

Logic and Compastar Design Fur
PowerPoint® Shides. STRNESSr
© 2003 Pearson EMQm Inc.

Examplel

= Implement function f using decoder and QR gate:
f(x,y,2) =xz + %y '

= n = 3 variables 2 3-fo-8 decoder

= One function 2 One OR gate

» Solution: Convert f to@fommt

of = xZ(y + V) + EY(Z +2) = 297 4 x5 L o

! v Flo ff’f+xyz+fyz
of(x, Y, Z) = Zm(2,3,4,6) 94—][)5,31- ORE;‘?I*EOD“ a1,

NDL
« Decoder is a Minterni 2 —a, gg i
Generator v —a g;
X —p 34
2 D: ~—— f
= Mnmwwrawm.“ - 07\
Scanned by CamScanner

w
f(’x’y' z) = 2(0;4; 81 11; 121 14’ 15)

— s m
" n = 4 variables 4-to-16 decoder
= One function with 7 Mminterms > One 7-input OR gate

= Ifn umber of minterms is greater
th;m —, then design for

complemem‘F (F) and use NOR

gate Instead of OR to generate F

RAIVMCB = L UoitlidMg ,0) . W;

and Comprster Design Fundamentais, 4a

P eron Educaon, e i Ak Chapter 3 23
| }'47_~/‘4-7
“(1.‘7)
. A mg+mi
Example3 D e

_____-________

= Implement functions € and S using decoder and OR gates:

= 11 = 3 variables > 3-fo-8 decoder x|y |z |C|S
ololof|o]oO

= Two function > Two OR gates |
= Solution: o |l 1lo]o]1
o C = Zm(3,5,6,7) > 4-input OR gate 0 | 1 1 0

11 o]l o] o1

« $=Y..(1,247) > 4-input OR gate T 5
1|10 1]o0

1111 |1

Chapter3 24
Scanned by CamScanner

rxampiec4

04
)

von (A A A A

| | ity functions
0o m Implement the following set of odd par ity tu of

| - 0 P
BzBcbshy P1=A7®A5®A4 i“_ 1 '_[F:'F | . l
o)) Py=A,0A @A, i 2L
6 °o | o P3 = A7®A6®A5 A6 4 1-_— P
' = - <" Finding sum of 7 : 2
'+ 1 minterms expressions ;
o Pi=X 2568111215 2 p
o P=IL(346810,315 u |
Dza6 A, _ 12
o o :\] P3 - zm(23394959839914915) 13 [
6 <! * Find circuit s
v U Y m IS this a good idea?

Logie ang Compxttar Desi
PowerPoint® Sides Fundamentais, 4a

© 2008 Pearson Education, Ine.

ExampleS

Chapter3 5

e

" Implement function F using 3-to-8 decoder, AND gate and

inverters: F(4,B,C) = 2m(1,3,5,7) o i,
: : : . 5
= Solution with 5 inverters: . o s
D, —
—Ja, D
B Al Di — .
D5
A=A, pg|
D,
—
= Solution with 4 1n(\;e;t:r65). —
.F(A;B’C)_HM = C Ao D:\
D,
B NA1 D3 —
D, .
Ds (—
A—a, p
—

— o Eondamentals, 42

Scanned by CamScanner

r kel Eacdes Fo |
Encoding

; Encodfng: the opposite of decoding - the conversion of
an m-bit Input code to g p-bit output code with n< m <

27 such that each valid code word produces a unique
output code

« Circuits that perform encoding are called encoders

* An encoder has 27 (o fewer) input lines and n output

lines which generate the binary code corresponding to
the input values

* Typically, an encoder converts a code containing exactly

one l?it that is 1 to a binary code corresponding to the
position in which the 1 appears i B

Logk and Computar Design Fundamentals, da
PowerPoint® Siides
©2008 Pearson Education, Inc.

Chapter3 27

2-to-1 Encoder & 4-to-2 Encoder

D,

Do——{>‘—

Lo

@ (b)

D3 |D; Dy (Do A1 |A0| o, —_—
0lojlo|1]0]|0 D; o D
ad ! 0—
0 011 —_

oj1jo]f =, A 4to2 [Ao
011]0 0|1 | V| 27| Encoder
(ololofilt] A=bitn, 2 — 4

Duls) \— A1 =D; + D, —

(’d)%)b,L PRPARAE (b) (c)

Scanned by CamScanner

8-to-3 Encoder (OCtAI== =

.

D; [Dg (Ds |D, |D; | D, Dy——
O]Jofo]o]o]oO D;—
olofo]o]o]o Dy— T4
olololololi D;—1 8-to-3
0 (0] olol1Tlo Ds— Encoder | 4
OJojo|l1]o]o gS: 4
OJof1f{oflo]o D:__
Of1{o0]loflo]o _

L L{oJo]lolo]o
() i (S
Ag =Dy + D3 + D5 + D7 7 o= 50
Ay =D, + D3+ Dg+ D7 % 4
Ay =Dy + Ds+ Dg + Dy
e (b)

© 2002 Pearson Education_ Ine. '

Chapter3 29 !

I

Decimal-to-BCD Encoder
_—

\- = Inputs: 10 bits corresponding to decimg] digits 0

=othrough 9, (D, ..., Do)
[Tov” Bs: bv+ b

= Qutputs: 4 bits with BCD codes (A3 Ay A, A)
’ il EI e V)
= Function: If input bit-D; is a 1, thep th :
the BCD code for 1 © Output is

= The truth table could be formed, but gy
the equations for each of the four ouy,

obtained directly

emaﬁVely’

Scanned by CamScanner

Decimal-to-BCD Encoder Cont.

= Input D;is a term in equation A4 ;if bit A;is 1 in the binary value
for i

» Equations:
A;=D; +D,
Ay =D, +Ds+ Dy + D,
A;=D,+D;+D;+D,
Ag=D; +D;+D; +D,+D,

= What happens if two inputs are high simultaneously?

* For example if D; and Dy are high, then the output is 0111 which
indicates that only D, is high ???

* Solution: Establish input priority

———

and Computes Design Fur da

Point® Sides Chapter 3 31

& Pearson Education, Inc.

Priority Encoder

" If more than one input value is 1, then the encoder just designed does
not work

® One encoder that can accept all possible combinations of input values
and produce a meaningful result is a priority encoder

lij\s
: . . . 1 4
" Among the 1s that appear, it selects the most significant input position j 0,
(or the least significant input position) containing a 1 and responds with '~%: 4.
the corresponding binary code for that position e
B,

-

\
“2ui" * High priority encoder: gives priority for the input whose value is 1 and | 4w kol
Ve * ¥ has the highest subscript- =

VY

i low priority encoder: gives priority for the input whose value is 1 and has
—— the lowest subscript

" Ifall inputs are 0’s, what happens?

* Define an output (V) to encode whether the input is valid or not

* When all inputs are 0’s, V is set to 0 indicating that the input is invalid,
g otherwise V is set to 1

I iy S4gn Fundamentass, 40
Education, ine

Scanned b-y CamsScanner

4-to-2 Low Priority Encoder

o &% Lk h

: D- |D 0
X 248 #_Of_II{V([)I‘I;tSCUHS/ 3 2 AO —_— DO(Dl + D3D2 D)
) o Ay = DO(D1 + D3D2)
2 1 — Ag = D1D0 + D3D2 5
8 XX — 3
2 x| 1 Ay = Dy Dy(D; + D3Dy)
& 1 1|0 Ay = D1 Do(D; + Dy)
5.5 —f— Ay = Dp D1 Dy + D3 Dy D,
QD\ D'L o
N int V = D3 + D2 + D1 + DO
(b)
& Do— 4-to-2 Ao i
(D@"_A\ Ve Lot J,L-,J o\, Y Dy, — L:W =D b °+D3D| s
.. A
. - ° Ao o D,— Priority 1 ey Y.Fr) T X
J;“? ,Jb;\w ~ 1 A) D;— Encoder v
Gle Dyoe B

S iy
© 2008 Pearson Education, Inc. (C) Chapter 3 33

\ 550\ ha/* &

 "4to- 2 ngh Priority Encoder

of Minterms/ |D5 |D — I
~ Rows s v Ao = D5 + D3_D2D1
Ay=D3 + DD,
1 00 0
1 0fo0 1 A; = D3 +D;D,
2 0o) Ay =D3; +D, |
4 011 1
V=D3+D
\ 8 1 X 1 3 2 + D]_ + DO
(b)
(a)
Do— 4-t0-2 4o
Dy;— High
D;— Priority [4
D;— Encoder v

(e

Logic and Computer Dasign Fundamentals, 48

Scanned byE:amScanner

« Priority encoder with 5 inputs (D4, D3, D,, Dy, Dy) - highest priority to most
significant 1 present - Code outputs A,, A, A, and V where V indicates at

least one 1 present W Qn

No. of Min- Inputs Outputs

termsRow | o, [D, [D, [D, [Dy | A, | &, | &, | V
1 0 0 0 0 0 X X X 0
1 0 0 0 0 1 0 0 0 1
2 0 0 0 1 X 0 0 1 1
4 0 0 1 X | X 0 1 0 1
8 0 1 X | X | X 0 1 1 1
16 1 X | X[X | X 1 0 0 1

= X’s in input part of table represent 0 or 1; thus table entries correspond to
product terms instead of minterms. The column on the left shows that all 32
minterms are present in the product terms in the table

and Iiun;x.nec Design Furdamentals, 4a
B Puarson Eciction, nc. Chapter3 35

S-input Priority Encoder Cont.

= Could use a K-map to get equations, but can be read
directly from table and manually optimized if careful:

A, =D,

A =]_)4 D;+ —D-4T)-3D2 = T)4(D3 +D,)
A,=DpD;+ DD,

A,=D,D,+ D,D;D,D, = D (D, + D,DI)
A,=D,D,+ D,D,D,

#M:“ugsxwlemu:s:uD4 + D3 + D2+ Dl + DO

—— mawatinn Inc.

Scanned by CamScanner

= Selecting of data or information is a Clitioy
function in digital systems and computers |

= Circuits that perform selecting have:
* A set of information inputs from which the selectiq, i
made
* A single output
* A set of control lines for making the selection
" Logic circuits that perform selecting are called
multiplexers

" Selecting can also be done by three-state logic

Logic and Computar Design Fundamentai
PowerPoint® Slides = e
© 2008 Pearson Edication, Inc.

Chapter3 37

Multiplexers (MUX) (Data Selectors)

" A multiplexer selects information from ap input line and
directs the information to an output line

= A typical multiplexer has z control inputs (S So)
called selection inputs, 2" information inputsnzj1 ,n... ’
2 —1s ==

Iy), and one output Y

* A multiplexer can be designed to have p information
inputs with m < 2" as well as z selection inputs

= Multiplexers allow sharing of resources and reduce the cost

by reducing the number of wires
S

Scanned by CamScanner

2-to-1-Line MUx

. Since 2 = 21, n= 1 ??TT.%
. The single selection 0 TT—T\ 4
I yariable S has two TT 1 : S|Y
~ yalues: o | 1 T Y =1, 0| I,
« S=0selects input Iy | o | 1 1 1|1
« S=1selectsinputl, | , 0 ;
« The equation: \f‘f;j Lo 1 0 Iy
- 0 O Y=1I 0 |1_43~|2
Y = SI:() + SL_]_ 1) 0 l 1 1 i b
« The circuit: IR slv 15 [1le |~ "k
Dec:oderj Vm 11 r
Circuits Iy

H Y
) D> MUX

loge and Computar Design Fundamentais, 4a

ad : O
D208 g&?wm Inc. To A ; 1o Chapter3 39
-~ P S s i
L= =" Ay os

We=§ oxd = Bes ss o s

2-to-1-Line MUX Cont.

R

lo }_L fo 2-to-1
g i)

—
-_

= Note the regions of the multiplexer circuit

shown: ‘
« 1-to-2-line Decoder -
. 2 Enabling circuits =
. 2-input OR gate glo)

2’7) ko)

= In general, for an 2n_to-1-line multiplexer:

% « n-to-2"-liné decoder 5 Lo @ Decode
v o 20 2-fnput AND gate g 7 MM‘ (‘1 AQ b& .
» « One 2°-inplt OR gate ofic. & 0Pl

Scanned by CamScanner

4_t0_1 -Lille IVM1U

51 0 Y
 Sinced=24n=2 | 0 | o | o
= There are two selection — 1 .
variables (S15o) and . B 0 5
they have four values: : : %
¢ §,5, = 00 selects input I
¢ $,50 = 01 selects input I, . _
* §15 = 10 selects input I, < Ip—>
* §15¢ = 11 selects input I, I, —> 4-to-]
" The equation: L— MUX [
Y =51 Solo+ 57 Sol; + 515 I + 15013 I;—>
S S,
N
W‘;TTMW Chapter3 4

4-to-1-line MUX Cont,

" 2-to-4-line decoder
" 4 2-input AND gates
" 4-input OR gate

———_ 2-to4 Decoder
; \\
ST 4 2-input AND gates
4-input OR gate
—_— ST 1T—>0— ‘
So DO ‘
— Io
D,
2"0'4]’
DecoderD2 r Y
Sy lz“D
S —;)

e St Do s

Scanned by CamScanner

- HOomMEwWoOIrk

» Implement 8-to~1-Line MUX and 64-to-1
MUX: | ©tel
 How many select lines are needed? &
» Decoder size? ¢{ (o 44

« How many 2-input AND gates are needed? 5"

« What is the size of the OR gate? ("

D"i\‘
Fol i']:bo

'Ll‘. / [\Q

el mux

1" Q .
Chapter3 43 ¢

Multiplexer Width Expansion

= Select “vectors of bits” instead of “bits” ID[%
= Example: 4-to-1-line quad multiplexer -
Y[0]
5[0
DO
4 . D Ih[1
10_/? - 2 0 0[
- L1
T o g, | o an
uad />y)
12—12) MUX DecoderD2 13.[1
L—7> S,
T 1 F L= i
| D, :
S; So 7 bt Dan\ ko) MW | LB
ubib g““)' SHE Sl 11[3::3%}
Y[3]
< L[3
| ' L

Scanned by CamScanner

exer Width Expansion Cong,

Multipl
—/f-—\

= Can be thought 4l0] —{ 4-t0-] > (0]
of as four 4-to-1 L[0] = MUX
MUXes: K001 =

[0[1] —9’-’,—’1_
I,[1] = 4-to-
RN
L[] = TTJ
Iy[3] %r_—l__
I,[3] = 4-to-1 :
B3] —{ Mux [~ Y]
;3[3] —f
Logic and Computar Design Fundamentals, 4e 51 1\
R 5o Chapter3 4

Other Selection Implementations

i
I3
s
Iy —
5) \
Do
R ke >
Emmmsmmmm. K T
L

Scanned by CamScanner

Building Large MUXes from Smaller Ones

9\ SNo
o

= 4-to-1 MUX using W01 | T S -
\] 1 Y .
three 2-to-1 MUXes L X G 7)%
S £ il lo
2-to-1 0 ! \J] I
MUX Y : 1
= t)Z-to-l 15 1 :: .(%\ I~
1—' MUX (3) L [i\1) I,
\T —q\.u.‘.:lo)i oo T
SO (JJ..::.«,\
SZ 51 So Y
. I i
= 6-to-1 MUX using ,°: g 0 J:0 0 Iy
1 =-10- H]
two 4-to-1 MUXes I,—s| MUX [0 [:0 1 1L
and one 2-to-1 MUX 1] 0 |il 0 | L
I | — 2-to-1 0 |1 1 I !
— MUX L :i —
1,—> T ! 5 0 0 " :
= ot || 1 [l [1 [
N ' T
1 i1 i
i I ; 1 X
10 S f\ il
mpxtar Design Fundamentals, 42 : 0 Se de
Shides
on Education, Inc. ‘ . a Chapter 3 47

Homework

= Build an 8-to-1 MUX using:
« Two 4-to-1 MUX and one 2-to-1 MUX

e One 4-to-1 MUX and multiple 2-to-1 MUXes

 Only 2-to-1 MUXes (How many MUXes are
need?)

S

Scanned by CamScanner

T’ QY RARAAR VS AAARTE T

- Multiplexer App
‘1 functions of 2V2a

roach 1

riables with:

» Implement .
« Sum-of-minterms expressions
1-line multiplexer

 An m-wide 27-to-
= Design: |
. Find the truth table for the functions

+ In the order they appear in the truth tablef
= Apply the function input variables to the multiplexer select

inputs S, _ ;s ... 2 Sy .
» Label the outputs of the multiplexer with the output
variables

- Value-fix the information inputs to the multiplexer

using the values from the truth table (for don’t
cares, apply either Oor 1) " i WYY

(o log\qr‘* GS% + G S|§: +13154e
\ " Chapter3 49

Logic and Computer Design Fundamentals, 42
© 2008 Pea: sm?dmhmm
: ron i [t o -

oy + T, %y 4 Xy Ay

-t Q -
c

Examplel

* Implement the following function using a single MUX
- based on Approachl : F(x,y,z) = },,,(0,5,7)
= Solution:

. . x y z F
« Single function > m =1 o[o] o |1
* 3 variables 2 n=3 = 8-to-1 MUX 0 0 1 0
* Fill the truth table of F 0 1 0 0
B 0 1 1 0
=z 1—> 1 0 0 0
o 0—> 1 0 1 1
0—> B
= 0—>| 8-to-1 I 0 0
—> F D ——
0— MUX Ll]|
z 1—> 2le T
: " 0—> ’ M ‘\‘?"_}J;
A e |
be 0§ = 1) T T T N 'D_
| W bD \ (O A 74 Y
—_— Xy Zz

Computer Design Fundamentals, 42
i e e

Scanned by CamScanner

| s .
- gxample2: Gray to Binary ¢, do

[| .
: Gray Code W
convert a 3-bit Gray ABC xrxy(zode
1 000
code to a binary code T#
» The formulation giveg o | o
|
the truth table on the o1 011
: 110 100
right C =
101 110
y = 100 11
\\ :j_ —) XY =

:and Computer Desigh Fundamentals, 4a
sPoint® Slides
108 Pearson Educatien, Inc.

Chapter3 51

Gray to Binary Code Cont.

tble 1w,
* Rearrange the table so that the input— “\Gray Code | Binary Code
combinations are in counting order ABC XYZ
* Itis obvious from this table that X = A. 000 000
However, Y and Z are more complex 001 001
* Two functions (Y and Z) > m =2 010 011
» 3 variables (A, B, and C) >n=3 011 010
* Functions Y and Z can be infplemented 100 111
using a dual 8-to-1-line multiplexer by: 101 —
. connecting A, B, and C to the 110 100
multiplexer select inputs = =
. placing Y and Z on the two multiplexer

outputs

. connecting their respective truth table
values to the inputs

Scanned by CamScanner

- G -0

[T

40/3 >L)(>(><

g‘ (A ,R)= i'fﬁ

il

0,0
0,1
}’(1) Dual
1 8-to-1 — Y,Z
1,0 MUX
0,0
0,1
SZ Sl SO
A B C
| X
ﬁ%ﬁ%ﬁ::ﬂmm . ' Chapter3 53

Combinational Logic Implementation
- Multiplexer Approach 2

= Implement any mi functions of 7 variables by using:
- An m-wide 2("-V-to-1-line multiplexer
: A single inverter if needed

= Design:

g » Find the truth table for the functions

« Based on the values of the most significant (m-1)

. i variables,
separate the truth table rows into pairs

» For each pair and output, define a rudimentary function of the
least significant variable (0, 1, X, X)

« Connect the most significant (z7-1) variables to the select lines of
the MUX, value-fix the information inputs to the multiplexer
with the corresponding rudimentary functions

« Use the inverter to generate the rudimentary function X

Scanned by CamScanner

- gxamplel

implement the following functiop, using TT?\\

’ ; | D | F
q single MUX and an Inverter (if HCEded) 0T T : TTE i
pased on Approach?2 : 0.1 0 [o] Feo
= R
A B C; D) Z (1r 3 4‘ 10, 13 O e 0 0
F() = m » 5) 14‘; 15) '__0___ -_D_“"-_]-E 1 1 1 F=D
s Solution: 0T o [T——
» Single function » m = | Ot o1 o] F=D
» 4variables > n=4 > 8.y.1 MUX {0 T o [0
! = : F=0
+ Fill the truth table of F Ll)i | 1 o
> 1076 [o [o
> - T T
D 1NN EREEEE s
0—>| 8-to-1 o Ll]o] "7
o= Mux [F 71770 o | o b
: 0 INEEE AN EY
A S
1— S
BRI EEE
and Computer Design Fundamentais, 4a T ,l\ =
i Eceion, ABC Chapter3 55

Example2: Gray to Binary Code

) Rudimentary | Rudimentary
Gray Code Bma;g’{g °de | Functions of C | Functions of C
ABC forY for Z
000 099 Y=0 Z=¢
L 001 001
{010 otl Y =1 Z=C
011 g
111 =
BEmil. Y=1 Z=C
L1 110
—riio 100
BEREY Y=0 Z=c¢
L,__Ekhl 101

Scanned by CamScanner

e et R A o S o

. Assign the variables and functions to the niultip_le'

. X
Inputs: !
1,€
_ Dual
4 4-to-1 Y.z
0,C MUX
S, S,
; A B
D o B0, by D asdy
" Nofe that Approach? reduces ; e cost by almost hajr
- compared to Approachl
R S D P, '
©2008 Peatxon Education, ine. Chapter3 57

Demultiplexer (DMUX)

" Opposite of multiplexer
" Receives one input and directs it to one from 2n

based on n-select lines 2+ = outputs
= Example: I-to-2 DMUX ! * T S I 1o, | @
0 J o] oo
< 0

| 102 [G Qo = 51 [L] o
DMUX — ¢, Q1 = SI Lo o | o
i Ll oo]

S I

)

Qi
Scanned by CamScanner

» DMUX = Decoder with Enable q

‘ Q3 81\"%
s s, Do |
l .;’:D‘}:D‘ Qo
o -)M D
0 2-to-4 | O
g—| Decoder —8; L_D_\iD_Qz
: — 0, .

S

oge and Computar Design Fundamentats, 4
overPoint® Slides I
2008 Pearson Ecication, Inc.

D ?\/‘f“\— J))Dl' (L‘,\ DLC""B"’/ h) DMU’ YJ ‘!53’, e

Terms of Use % |

. Qo ' \Sé
5 & Sl .
g\ Q?t‘ = | Si So
t|{— = —
[« b} @) ! S\ S
Qz= 1 Si 5o
Sv Se

Scanned by CamScanner

n 1teratlve Allay

Block Diagram of 2

" Example: n=32
* Number of inputs =32*2 + 1 + 1 =66
* Truth table rows = 266
* Equations with up to 66 input variables

* Equations with huge number of terms
* Design impractical!

" Iterative array takes advantage of the regularity to make design feasible

Logic and Computer Design Fundamentals, de
PowerPoint® Slides
© 2008 Pearson Education, Inc.

Chapter4 5

Functional Blocks: Addition

* Binary addition used frequently

» Addition Development:

> * Half-Adder (HA): a2 o N
Ba ‘) e d -1n ut _
—L_Jo e functional block put bit-wise addition

* Full-Adder (F4q); 4 3.; L N
functional block "put bit-wise addition

5
s

Scanned by CamScanner

ctional DIVLR. Ilall-Adder

| o

7 2-input, 1-bit width binary adder that performs the following
’ computations:
X 0 0 1 1
tY h\9 +1 +(0 +1
- — 5 s
CS 00 ey
Q ® 01 01 &b 10
L NS
. A half adder adds two bits to produce a two-bit stm -
« The sum is expressed as a XyYylc s
sum bit (§) and a carry bit (C) 0 0| 0 O
» The half adder can be specified 0 10 1
as a truth table for Sand C = 1 00 1
1 1] 1 0
i Chapter4 7

Mgmoirﬁ Slides
£2008 Pearson Education, Inc.

Logic Simplification and Implementation:

Half-Adder | |
f
= The K-Map for S, Cis: S Y C v

Dk 5 o pdxse X 0sS W

= S —
S=X-Y+X - Y=XOY

011 0 1

'X123x213

CcC=X-Y

= The most common half adder implementation is:

X S N

" HA (s

l

Sign F@mﬁﬁds. 4o C

Logic and Gompier D2

Scanned by CamScanner

-Aqact
Functional Block: Full Ad
__/__\

e E . a carry-in bit fropy)
* A full adder is similar to a half addc?ra bl;:l lrlll(t:clel;dzssum bit (S) and a\i
lower stages. Like the half-adder, it cOMP f ‘

= i

carry bit (C) e :
7 0 \ 0 0 A 0

* For a carry-in (Z) of X 0 0 1 1
0, it is the same as +y +0 +1 +0 *1
the half-adder: cs 00 01 01 g4

* For a carry- in Z 1 1 1 1
(Z) of 1: X 0 0 1 1
+Yy +0 +1 +0 +;

cs 01 10 10 11

Logic and Computer Design Fundamentals, 4s
PowerPoint® Slides

© 2008 Pearson Education, Inc.

= Full-Adder Truth Table:

XY Z| C S
= Full-Adder K-Map: Y
S Y c Y 0 1 00 1
, p 01 1} 1 0
0 1 3 2 0 1 1 2 : g (1] 2 :’
X 14 5 1 I X s 1]{1 3 1 101 0
7 7 1 1 1|1 1
S=XYZ+XYZ+XVZ+Xyz - XZ+XY+yz
= The S function is the three-bit XOR functi
nction ion):
R (Odd Function):
@21 »s = The Carry bit C is 1 if by, X and : :
AT is1anda carry-in (Z) oceyrs, Thuﬁs[(in’e 1 l()the iy 2. orifthe sam
. C= XY+ Xor)yz €an be re-written as:
o ety s B,
© 2008 Pearson Education, Inc: © e Xy) s 4 10
B 065555 Ber g1k 5 Chapter

Scanned by CamScanner

¢ and Computer Dasign Fundamentals, 4e

oPoint® Slides
08 Pearson Education, Inc.

Binary Adders

« To add multiple operands, we “bundle
together into vectors and use functional

on the vectors

» Example: 4-bit ripple carry
adder adds input vectors
A(3:0) and B(3:0) to get
a sum vector S(3:0)

= Note: carry-out of cell i
becomes carry-in of cell i + 1

” logical signals

blocks that operate

Description | Subscript | Name
3210

Carry In 0110 C,
Augend 1011 | A
Addend 0011 B,
Sum 1110 S;
Carry out 0011 Ciiy

G GO Ce

ARA A,

B3Ql-‘3l .@o
S5%.% Se

Scanned by CamScanner

4-bit Ripple-Carry Binary Adder

= A four-bit Ripple Carry Adder made from four 1-bit gy,
Adders:

C C Cq
FFA<3FA<2FA< FA«\@

)
Cs4 S; Sy So M-m) il
Logic r:;d m%’asnl'm{ Design Fundamentals, 48
Powel des
© 2008 Pearson Education, Inc. ’ Chapter4 |

Homework

“
= Design a 4-bit rlpple-carljy adder using
HA’s only? -

Scanned by CamScanner

X 00 10 0 01
—Y 0 -1 -0
BD 00 11 o1 gg

» Algorithm:

« Subtract the subtrahend (N) from the minuend (M)

If no WS, then M > N and the result is a non-negative
number and correct

 If an end w then N > M and the difference (M — N + 27) is
subtracted from 2", and a minus sign is appended to the result

-
)

s and Computer Design Fundamentals, 4e

werPoint® Slides

2008 Pearson Educalion, Inc.

Chapter4 15

Unsigned Subtraction
r

= Examples:

0 - 1 1 0 1
1001 0100 10011 10010110 01100100
potm _o11i ~-11110 —01100100 10010110
i «-(1101) 10101 00110010 11001110
Lo 10000 100000 100000000
ﬂ _1101 —10101 —~ 11001110
(<) 0011 (-) 01011 (<) 00110010

Scanned by CamScanner

Unsigned Subtraction (continued)

_'D fs taking the 2’s complement of |

« The subtraction, 2" . |
dition and unsigned subtractiop

« To do both unsigned ad
requires:

« Addition and Subtraction are A 8
performed in parallel and
Subtract/Addchooses Wir——i 11y
between them ' — Borrow Binary subtractor
* Quite complex!
" Goal: Shared simpler 11y
. o0 Selecti
logic for both addition Soriamant] 2 complementer |
and subtraction | ﬁl__l
= Introduce complements __ Io' —
Subtract/Add s Quadruple 2-to-1
as an approach @J_—’.; multiplexer
| | @
m r:r;l n?acrsnlsier Design Fundamentals, 4e lRisi '}
2008 Pearson Ecication; . S Chapter4 17 -
gze
R T TS —
Complements (.., -ws -
9

(£ 0D w1) 20\ an o (F7) - (43)g

= For a number system with radix (r), there are two complements:

* Diminished Radix Complement 2 18 Camp
(r?-1)~% = Famously known as (r - 1)’s complement o A5 Comp
(jo -1 - 65 = Examples: S 3 2s Come
(6 155 Comp

q9 ~65- 34 * I’s complement for radix 2
AR ’ ;
> 1) _qw * 9’s complement for radix 10
((T-1) <0y F :
or a number (N) with n-di | .
il = T (N) e gits, the diminished radix complement is defined as:
\‘\\31—\\5\)1' ole m =
* Radix Complement °""
= Famously known as r’s complement for radix r
= Examples:

* 2’s complement in binary
* 10’s complement in decimal

* For a number (N) with n-digits, r’s complement is defined as:
*r"—N, when N#0

a M) wwrhanee AT — N

Scanned by CamScanner

¢ s pumber of n-digits with radix (r), then -
c r-1's complement of N=(r-1)(r-1)(r-1)..(r-1)
J
n-dfgits
1)’s complement can be computed by subtracting each digit from (r - 1)

. The(r—
le: Find 1’s complement of (1011),
. ¢=2,n=4 Lo - VD) (\oWY)

answer is (24 = 1)~ (1011), = (0100), WA = oWy 2lee

. Notice that (1011), + (0100), = (1111),whichis (2-1) (2~ HER-1)E2-1)
L _J

nd9’s complement of (45), 4-digits

, Fxample: Fi
an . 43 2 2

. r=10,n=2
. Answeris (102=1) = (43); = (5%)10
. Notice that (45)0 + (54)y0 = (99),oWhich is (10 - 1)1(10 - 1)
. Example: Find 7°s complement of (671)g Z-diglts
. r=8,n=3
. Answeris (83— 1)—(671)= (106)g
. Notice that (671)g +(106)s = (777)s

whichis(8—=1)(8-1@-1

3-digits _
Chapter4 19 ‘

1% and Computef Design Fundamentals, 4e
@ Slides

02008 Pearson Educalion, Inc.

Binary 1's Complement

110011,,n=38 (8 digits):

u Forrz‘_z,N:Ol
255, or 11111111,

; (o~ 1)=256-1"
. e 1's complement of 01110011, is ther:
11111111
_ 01110011 Jﬁu&it
10001100
. Since the 2°— 1 factor consists of all 1's and since
1—-0=1 and 1 — 1 = 0, the one's complement is

obtained by complementing each individual bit
(bitwise NOT) |
‘/“/\/-\/\’

Scanned by CamScanner

Radix Complement

igi ix (r): .
= Fornumber N with n-digit and radix N() ~
— gl
« IFN#0, s complement of N=r "
« s complement = (I- 1)'s complemen

. IfN=0, r’s complement of N=0

= Example: Find 10’s complement of (92)10
. r=10,n=g__;';-:b |
» Answer is 102—(92),y = (&)1
- Notice that 9’s complement of (92)19 is (1o

6. F F F \ &
({0’ complenient =9’ complement + 1] b9 ¢
b
= Example: Find 16’s complement of (3AET) 6 YSCIW
* r=16,n=4

&Q,Q A -\\

« “Answer is 16* — (3AE7),, = (10000), — (BAE7);6 = (C519)16
* 15’s complement = (C518),,~> 16’s complement = (C518)16+ 1 =(C519),,

_»’__",—",_\

Logic and Compuier Design Fundamentals, 4e
PowerPoint™ Slides

© 2008 Pearson Education, Inc. Chapter4 21

Binary 2's Complement

e e —
= Forr=2,N=0111001 12, n=3_§ (8 digitS), we have:
- (r")=256,, or 100000000,

= The 2's complement of 01110011 is then:

Ao 00 YR et e 100000000 \ o\l 0o
v WV, O 01110011 olelco
g 43 VY e A 10001101

= Nofe the result is the 1's complement plus 1, a fact that cap be used
in designing hardware

» Remember the 2’s complement of (000..00), is (000..00),
= Complement of a complement restores the number o j , riginal

value:)
« The Complement of complement N =2"— (2" - N) =N

Scanned by CamScanner

, B . . . T ——N
@n n—blt binary number, beginning at the least
s jnificant bit and proceeding upward:

. Copy all least significant 0’s
. Copy the first 1

. Complement all bits thereafter

. 2’s Complement Example:

10010100
. Copy underlined bits:
100
« and complement bits to the left:
01101100
Jomuse Dasi Furamoritas, 4o g:e MON

‘,‘l Sldes : / c - |
warwn [Aucabion, ine M _ N \
’ -
My s w B -
(- 0

" %
(=) '3«‘5&\0-;;;
N (A

%ubtl‘actigﬁﬁﬁh 2’s Complement ‘

'M_Nq

_ » For n-digit, unsigned numbers M and N, find M — N in

Chapter4 23

S_’S\.\-)’; E&'I
. M v

M=)
base 2: & g} .
. Add the 2's complement of the subtrahend N to the — |
minuend M: on e
« M—N mmmmp M+(2"-N)=M-N+2"
| Com,‘/'* o I

» [fM > N, the sum produces end carry 2" which is discarded;

and from above, M — N remains S -3554(-Y

547
« fM <N, the sum does not produce end carry, and from -0
above, iS equal to 2" — (N — M) which is the 2's complement

= To obtain the result — (N — M) , take the 2's complement of
the sum and place a “— to its left

Scanned by CamScanner

« Find 01010100, — 01000011,

“ oto10100 (101010100
— 01000011 2’s'coni+ 10111101
00010001

® The carry of 1 indicates that no correction of
the result is required

Logic and Computer Design Fundamentals, 4e
PowerPoint™ Slides

@ 2008 Pgarson Education, Inc.

Chapter 4 25

Unsigned 2’s Compl'ement Subtraction Example:
(M<N)

* Find 01000011, - 01010100,

|
701000011 %)1000011

— 01010100 5., .y, f10101100

[le] —
- a 11101111 2 comp
L) PR, 000100

* The carry of 0 indicates that g ¢
the result is required

OIrection of

= Result =— (00010001)

Scanned by CamScanner

on ¢l pe done by addition of ﬂIIQ 2's Complement) kR
b c plement each bit (1's Complement) gz Bad
0

'L 4d 110 the result A+ %Sﬂﬂ
g rcuit shown computes A +B and A - B: p+ B+l
C —
' Thle)tract(S’ I;A-B=A+(Q"-B)=A+B+1
U

' : lement of B is formed by using XOR
, T CZSCOmp . Y g s to form the 1’s co
2dding the 1 applied to Co mplement and

IfCs= 1Az B): correct result
, 1fC=0 (A <B): result =2"— (B —A)

« Use2’s complement logicOR B, A,

« Use Adder/Subtractor again with: \2 ‘ 1 ! fp Ao
N
. B=2-(B-A)
. Add(SsO):A+B
. B is passed through unchanged
A Y A Y Y Y Y
A S r = Fa & [Fa Co

”'“nde\Pﬂe’ Design Fundamentals, 48 C, S; S, 511 Slg

' Slides
:Wa::n Education, Inc. Chapter 4 27

Signed Integers

-

. Positive numbers and zero cai be represented by
unsigned n-digit, radix r numbers. We need 2
representation for negative numbers

» To represent a sign (+ or —) we need exactly one more bit
of information (1 binary digit gives 21 = 2 elements which
is exactly what is needed).

= Since computers use binary numbers, by convention, the
most significant bit is interpreted as a sign bit.
S an__2 oo e azalao
where:
s = 0 for Positive numbers

s =1 for Negative numbers
and a, = 0 or 1 represent the magnitude in some form

Scanned by CamSCanner

