This dacument was created by me but that daesn't mean that I own this content, sa l'm just sharing it like anyone else would do, good luck - Sa'eed Awad

Database Testbank

Quiz

Circle the best answer. (1 point each)

1. One drawback of old file systems is failure to leave database in a consistent state when partial updates carried out. This process is called
A. Atomicity of updates
B. Concurrency access
C.
Security problem
D. Data isolation
E. Data redundancy
2. A given relation is known to be in third normal form. Select the statement which can be inferred from this:
A. All attributes contribute to the primary key

C. Each non-key attribute is determined by the primary key

B. Every determinant is a candidate key
D. Each non-key attribute determines the primary key
E. The relation is not in fourth normal form
3. There are two relations X and Y. Relation X has 1 column (a) and 2 tuples, relation Y has 3 columns (b, c, d) and 4 tuples. How many records will be produced by the SQL statement:

SELECT a FROM X, Y.
A. 4
B. 6
C. 8
D. information is not complete
E. None of these
4. A lack of normalization can lead to which one of the following problems
A. Lost Updates
B. Deletion of data
C. Insertion problems
D. Deferred updates
E. Deadlock
5. To transform a relation from first normal form to second normal form we must remove which one of the following?
A. All partial-key dependencies
B. All inverse partial-key dependencies
C. All repeating groups
D. All transitive dependencies
E. None of these
6. To transform a relation from second normal form to third normal form we must remove which one of the following?
A. All partial-key dependencies
B. All inverse partial-key dependencies
C. All repeating groups
D. All transitive dependencies
E.

None of these
7. Each of the following is an argument which might be used to support the use of relations which are not fully normalized. Select the weakest argument.
A. A fully normalized database may perform too slowly
B. Full normalization may compromise existing applications/systems
C. A fully normalized database may have too many tables
D. Full normalization may make some queries too complicated
E. A fully normalized database may result in tables which are too large
8. Consider the relational schema $R(\underline{A}, \underline{B}, C, D, E)$ with non-key functional dependencies $C, D \rightarrow E$ and $B \rightarrow C$. Select the strongest statement that can be made about the schema R
A. R is in first normal form
B. R is in second normal form
C. R is in third normal form
D. R is not normalized yet
E. None of the above
9. A publishing company produces academic books on various subjects. Books are written by authors who specialize in one or more particular subject. The company employs a number of editors who do not have particular specializations but who take sole responsibility for editing one or more publications. A publication covers a single subject area but may be written by one or more author - the contribution of each author is recorded as a percentage for the purposes of calculating royalties.

The following ER diagram is intended to represent the above specification:

Indicate the relation which has an incorrect cardinality shown:
A. specializes in
B. makes
C. is about
D. to
E. None of these
10. The mapping of the E-R Diagram on the right is:
A. Bird(Species, ...)
B. Bird (Species, Color)
C. BirdColors (Species, Color)
D. Bird (Species, Color) and BirdColors (Species, Color)
E. None of the above

11. All ternary relationship can always be reduced to two or three binary relationships.
(A) True
(B) False
12. Given the relations: $X(\underline{a}, b, c)$ and $Y(\underline{c}, d)$. Which of the following is a valid SQL statement?
A. SELECT a, b, c, d from X, Y Where X.c = Y.c
B. SELECT * from X, Y Where X.a = Y.a
C. SELECT X.a, X.b, X.c, Y.c, Y.d from X, Y Where X.c = Y.c
D. SELECT a, b, c, d from X H, Y L Where H.c = L.c
E. None of the above OR more than one of the above
13. Entity sets are weak when all their key attributes come from other classes to which they are related.
(A) True
(B) False
14. Foreign keys can be null. (A) True \quad (B) False
15. SQL stands for Structured Query Language. (A) True \quad (B) False
16. Assume a student entity set consists of StID, Name, Age, and Major attributes. If StID can uniquely identify one student entity and so does Name, then (StID, Name, Age) is certainly a super key.
(A) True
(B) False

mapping of the shown entity sets will be:
t

A. person $=\{$ Person_id, name, street, city $\}$ customer $=\{$ Person_id, name, street, city, credit_rating $\}$ employee $=\{$ Person_id, name, street, city, salary $\}$	C. person $=\{$ Person_id, name, street, city $\}$ customer $=\{$ Person_id, credit_rating $\}$ employee $=\{$ Person_id, salary $\}$
B. customer $=\{$ Person_id, name, street, city, credit_rating $\}$ employee $=\{$ Person_id, name, street, city, salary $\}$	D. person $=\{$ Person_id, name, street, city $\}$ customer $=\{$ Person_id, credit_rating $\}$ employee $=\{$ Person_id, Person_id, salary $\}$
E. None of these	

Exam 01-2012 Form 1

Bebinturnicx if Siedas
Kintu Alat in h if saha if in isenalime Telheokion?

1 vogy31 Dathlase Marsacriter Sighemen

\qquad

1- (5pts) State the cardinality of each of the following relations:
a) Worksin (Vany to Man)
b) Consistsof: many to one
2. (10pts) Map the ERM into relational schema (just the schemes).
employ y eu (emp IP y emp_Name,
a diminstrative (emp[p rank) doctor (emp I Do spa ciaity)
nkerse (emp ID, hoursqur ked Fy? Pay Perborour)
hospital 1 (HIP), H address s budget)
report mont (Did oH ID (Ak), add res)
worksin (emp [D, HID Start date)
3. (10 pts) Write the full SQL statements to create the tables (Worksin, Nurse.

Department) resulting from the ERM. Make sure to write the full statements including all integrity constraints (primary and foreign keys).
-reat table works In (empID $\operatorname{vavachav(10)}$ HID $\operatorname{Varchav}(10)$) sturtante
 forignkey HID (hospital)) $g^{?}$? primary key (em pId, IID)
eat Table nurse (empID varchar(0) forentegn keg. cemployean) housswrked int, payperhour int? Primary key (empID)) $\frac{1}{2}$
eat tabk depart (D/ id varchar (10) stimatiken , HID vaichr (10) forgnkenghos, 9 address varchar(0));
S. of the pationt in the

Wothina) fiby stoily the fallowinn form for manintaining the record of she pawion whele

Beckat tithith
Ryhontio.
fatent Natm
hivhlitipl
Atmisime Staif intoe mation

13 Hyet on fhis forio, build the database by starting from a plain table and normalach and clarify platit fable info the $I^{\text {ne }}, 2^{\text {ni }}$, ind $3^{\text {nd }}$ nnemal forms. Shew all tables in each step.

1 (I) wis) Step in. Hain Tahle with primarv kev.
 Doctor $1 D$, Nurs $1 D$, Doctor-Nithe poct. .unt Visit I P, vistate: P-tem P, P _ $B B_{\text {notes }}$

vist D, visite Date P- tone, P - D Bondry

 4site ID, visute Dute, P-tame D.-PBonate)

$$
-2
$$

NO Partal

1902321-0atibase matiasementsyatems
Q3 (20 pta) Answer
Q3 $(20 \mathrm{pts})$: Answer this question ba
resulting from this ERM/ model ('Owner, 'owns', and 'car' tables).

model

1. (5 pts) Write SQL statement to insert a new record in the ear table with the following data:
(CI D='101', Model='Honda', MSRP=15449.50)

$$
\begin{gathered}
\text { insect into cav(CID, model, MSRP) } \\
\text { Values ('1ol' 'fond', } 15449.50 \text {) } \%
\end{gathered}
$$

2. $(5 \mathrm{pts})$ Write SQL statement to retrieve OID, OName, CID, Bay Date
for each owner and his/her car.
Selecte.OLP,O.OWame, C.CLD, OS. whirs Buypate from owner as O, C ar as C,buns
as os)

3. (5 ply) Write SOL statement to retries
(ID), mantel, BICeP
for each car model starts with an 'A' [Hints model should always start with an 'A'\%.
\qquad
4. (5 pts) Write SQ1, statement to Alter the table Car by adding a new attribute call it Color
Alter table cur add color ravchar (10);

5. (10 phs) Upon thix BRM, is if allineed for two complayees to shave the same offce? Justify your anwer by specifying the cavilialiay.

 Change the FKM in farce every depactueat ta offor at teast oue degrve. Draw onty the rxiel pemton of the fith

Exam 02-2012 Form 2

The University of Jordan
Departitent int Schist for Information Technology
lowery
Duration 60 Mips
1002:121 Database Management Systems
Spring, 2012
Instritetois: Dr. Faway Zaghoul, Dr. Omar Adwan (coordinator), and Dr. Loui Nimer

Instructions: Maximum Grade is 100 Points. Answer all FOUR questions within the provided space. SHOW your work for each question. Closed book and notes!
QI: $(25 p(s)$ Examine the following ERM and answer the following questions:

1- (5pts) State the cardinality of each of the following relations:
a) Worksin many to many
b) Consistsaf one to many (total)

employect(empld iempiancl)
addeinstrative (empld, cepename, rank)
Dator (empld, e-prame, specatly)
norse (empld, empromene hours worked)
Hospital (HID, Haddress, buelgct)
Department (DID, Daddress. $\left.\mathrm{H}^{(K}\right)$
worksim(EmpID, HiD shart date)
consish of (DID, HID, Drat)
3. (10pte) Wrike the foll set , statements $p \mathrm{c}$ create the ishles (Workafor, Nurm. Department) vesultient fress the ERM1, Malue mure so write the fall statemests heludi

coets workslu: creat lable worksln (
EmpID varchar(10), foreing kegrdere
employee (Empld),
HID varchar (10) fareigu key raternce to adminol
startdate date,

Se: creat table nurse (empld varcher (10) primaryky empname varchar (20), hours warked integar)
mint: creal table departmint (DID varchar(10) pir
 $\nVdash D$
ifn marchar (10) forigen key reterece $r o$ Ho

pitrablolookinote)

 r-pID, usirID, poitint remp, partiat bloost, note) $\int_{0} 1$
irip,
vissitedate)
No

risit (DIP, visib, paitint tamD, putb ent blookl.nate)
dochor (dectortd, dochorename)
murse (nurselel, nursinuine)
hiat infol PID, panme, BD, Doctor Id, wherseld)

 sollowime datas:

2. (5 pht) Wrife 80I: stationeal is verieve

Oib, ONams, CID. Buy Date
for each owner and hin tier can

CID, model, MSRF

 Csilar

Exam 03-2011/2012

- 2012 امتحـان ال 2011 أللب الاهتحان ضع دائرة .. و آخر شيء سؤال حل *اول مجمو عة من الدو ائر :فيها جدول مقسم حسب ال وnormaization الآسئلة عنها مقسمة بين فهم و على sql عليها أسئلة مكتوب المطلوب كلاما .. و الاو ائر هي جمل ERD الرسم المجم بتحقق الجمل في الأسئلة و في بعض الخيارات فيها أكثر من جواب أو أنه الجمل و لا وحدة صحيحة الججمو عة الثالثة : رسمة ERD المكتوب هنا الجمل .. و الدو ائر هي تفسير الجمل في السؤال . . و في كتير دقة في الكلمات .. و البعض بنكون جملة ال ERl الاطئة أصلا *المجمو عة الأخيرة من الدوائر .. بتحكي بشكل عام عن ال grant و ال extract وrevoke يعني معلومات عامة بدون رسمة ** السؤ ال الأخير كتابة مكون من 5 فروع .. الأربعة الأولى منها بيذكر مطلوب معين و لازم نكتبه باستخدام ال وalgebric وبين أقو اس مكتوب ايش اللي لازم نستخدمه بس احنا نكثب الجملة الفرع الأخير مكتوب جملة algebric و المطلوب نكتب معناها .. الامتحان بشكل عام دقيق و بدو تركيز

Exam 04-2009

VI
The University of Jordan
King Abdallah II School for In formation Technology Department of Computer Information Systems (CIS

First Semester-2009/2010

Course: Database Management Systems (1902321)

Model this schema as an ERD determining the involved entity sets), relationship sets), related attributes and the cardinalities.

VI
Q2) Map the following ERD to equivalent relations (Schema) (9 Marks):

Answer: employee

Deport went

ex tensions

2
Faculty $50 B$ LOD L Level salary

HeAl th Record

STAFF $50 B$

VI

Q3) Specify whether each of the following attribute combinations is a Super Key (SK), Candidate Key (CK), both (B), or neither nor (NN) a 'student' entity set. The student entity sect consists of StD, Name, Age, and Major attributes. Note that Still can uniquely identify one student entity and so does Name (3 Marks).

Seq.	Attribute (s)	Type
1	Name	B
2	Age	MN
3	StD, Name, Age	SK
4	StD	B
5	StD, Name	Sk
6	StD, Age	SK

Q4) Answer the subsequent Multiple Choice Questions and fill your answer (A, B, C, D, or E) in CAPITAL in the following table. Note that only the table will be marked (10 Marks).

1) To transform a relation from first normal form to second normal form we must remove which one of the following?
(a.) All partial-key dependencies
5. All inverse partial-key dependencies
c. All repeating groups

6. All transitive dependencies
e. None of the above
2) A lack of normalization can lead to which one of the following problems
a. Lost Updates
b. Deletion of data
(c) Insertion problems
(6.) Deferred updates

e. Deadlock
3) A given relation is known to be in third normal form. Select the statement which can be inferred
from this:
A. All attributes contribute to the primary key
B. Avery determinant is a candidate key
C. Each monkey attribute is determined by the primary key
D. Each non-key attribute determines the

(E) The relation is not in fourth normal form

Consider the following relation to answer the subsequent 2 questions
 Vehicles

4. The above Vehicles table is in
a) 1 NF
b) 2 NF
c) 3 NF
(d) Not normalized
c) None of the above
5) In the above Vehicles table all af the following dependencies exist EXCEPT
a) Yid \rightarrow vtype
b) owner_ id \rightarrow owtier_name
c) Suspect id \rightarrow Suspect Name

(e) Yid, owner_id \rightarrow Suspect_Name-
6) A relation is in second normal form if ah its non-key attributes are.
a. Dependent on part of the key
(5.) Dependent or all of the key)
c. Independent of the key
d. Independent of each other
c. Independent of any other relation

7) A relation having only one candidate key is third normal form if it is 2 NF and \qquad \cdots
9. po monkey attribute is determined by only part of the key
b. no monkey atriibute is dependent on another nonkey attribute
c. no part of the key is dependent on another parr of the key
(d.) there are no partial functional dependencies
e. None of the above
out v+yep.
8) If X and Y are sets of attributes of relation (B) we say that (Y) is functionally dependent on $(X) Y$
\qquad -
(a.) For end X value there is only one Y value

b. for each Y value there is only one X value

c. no two X values have the same Y value
d. when two rows have the same Y value they also have the same X value
e. None of the above

V1
9) What is the highest normal form level satisfied by the following table desiga?

a. Not in $1^{* 2}$ Normal form
b. INF
c. 2 NF
(d.) 3 NH
e. None of the above

10) There are two relations X and Y. Relation X has 1 column (a) and 2 tuples, relation Y has 3 columas (b, c, d) and 4 tuples. How many records will be produced by the SQL statement:

SELECT a FROMX, Y.
a. 4
B. 6

c. 8
d. information is not complete
e. None of these
11. A serics of actions that must be completed as a unit or not at all is known as a(a):
a. Horizontal fragenent
b. image
c. Lock
(C) Transaction
c. Vertical Fragment
12. When an attribute can be calculated from other attributes without the need to store it physieally, it is called:
a. Multi-value
b. Composite
(c. Derived
d. Single-Velued
e. Simple Atribute
13) To have Oracle display the structare of a table named Empluyee, write
a) SELECl * FROM EMPLO YEE;
b) SHOW Employer;
c. DISPLAY Employee;
d) DESC Employee;
e) None of the above
(1) To eliminate duplicates in the results of a SQL query, use the option \qquad -
a) Unique
(6) Distinct
c) No Repeats
d) Order by
e) None of the above
vi
15) If, in order to exist, every entity must participate in the relationship, thea participation of the entity set in that relationship set is \qquad participation.
a) minimum
b) integral
(d) partial
(d) Total
e) None of the above
$19 / \mathrm{A}$ \qquad constrsint means that an entity of the superclass canoot be a member of more than one csubcless of the specialization.
a Completeness
b. Total
c. Disjointness
d. Participation
e. Uniqueness
17) Each of the following is an argument which might be used to support the use of relations which are not fully normalized. Select the weakest argument.
a. A fully normalized database may perform too slowly
b. Full normalization may compromise existiog applications/systems t-
(c.) A fully normalized database may have too macy tables
c. Full nomalization may make some queries too complicated α
e. A fully normalized database may result in tables which are too largo it

18 Which of the following types of attributes can be represented directiy as a column in a reational model?
(a.) single-valued, non-composite
b. multiple-valued, non-conmposite
c. derived, single-valued $<$
d. composite, single-valued α
e. None of the above
19) Which of the following is generally a benefit of normalization?
(a. Performance is improved
b. Insertion anomalies are avoided
c. Selection anomalies are svoided
d. Number of tables is reducod ix
e. None of the above.
20) Normalization is a process for assigning \qquad to entities.
a. data

1
b. files
c. attributes ${ }^{2}$
d. relations >
e. None of the above

Exam 05-2008

The University of Jordan
King Abdullah II School for Information Technology
Department of Computer Information Systems (CIS)

First Semester-2008/2009

Course: Database Management Systems (1902321)
Mid-Term Exam 12/11/2008

إسم المدرس:

Q1) Select the best option in each of the following (10 Points)

1) All of the following are examples of DBMS except
a. Oracle
b. SQL server
c. Banking system
d. MS ACCESS
e. None of the Above
2) Which one of the following E-R diagrams does NOT have an error?

3) All of the following are drawbacks of file system to store data EXCEPT:
a. Data Isolation
b. More expensive than DBMS
c. Difficulty in accessing data
d. Data Redundancy and Inconsistency
e. Concurrent Access by multiple Users
4) One of these statements is correct
a. Every super key in a relation is necessarily a candidate key.
b. Every super key in a relation is necessarily a possible primary key.
c. If we have two super keys, the one with minimum attributes should be chosen as the primary key
d. Every candidate key is a super key.
e. When some attributes of a super key is also a super key, the larger super key should be chosen as a primary key.
5) When creating a view, columns from the original table can be \qquad .
a. Renamed, but not reordered
b. Reordered, but not renamed
c. Neither renamed nor reordered
d. Both renamed and reordered
e. All of the above

Consider the following table and then answer questions 6-7:

ClassNo	FirstName	Address
1	Raed	Amman
1	Ahmad	Aqaba
2	Raed	Zarqa
2	Naser	Amman
2	Faisal	Amman

6) The following is an example of a super key:
a. ClassNo
b. FirstName
c. FirstName, Address
d. ClassNo, FirstName, Address
e. C+D
7) The following is an example of a candidate key:
a. ClassNo
b. FirstName
c. FirstName, Address
d. ClassNo, FirstName, Address
e. $C+D$
8) To erase records in a table without modifying its structure, we use the following command:
a. Drop
b. Delete
c. Update
d. Alter
e. All of the above
9) All of these terms are equivalent to an Entity except
a. Object
b. Concept
c. Thing
d. Attribute
e. Item
10) People who act as users of one of the permanent database application programs that have been written previously without knowing the structure of the database:
a. Application programmers.
b. Sophisticated users.
c. Specialized users.
d. Naïve users.
e. None of the above
11) When an attribute can be calculated from other attributes without the need to store it physically, it is called:
a. Multi-value
b. Composite
c. Derived
d. Single-Valued
e. Simple Attribute
12) A binary relationship between the two entities, SALESPERSON and VEHICLE, where (a) each salesperson entity can be related to many vehicle entities (up to n), and (b) each vehicle entity is related to at most one salesperson entity may have a cardinality constraint of \qquad :
a. Binary
b. 1:N
c. $\mathrm{N}: 1$
d. $1: 1$
e. $\mathrm{M}: \mathrm{N}$
13) To eliminate duplicates in the results of a SQL query, use the option \qquad .
a. Unique
b. Distinct
c. Order by
d. Rename the field
e. None of the above
14) If, in order to exist, every entity must participate in the relationship, then participation of the entity set in that relationship set is \qquad participation.
a. Minimum
b. Integral
c. Partial
d. Total
e. Disjoint
15) A weak entity is defined to be \qquad
a. An entity that has enough attributes to construct a primary key.
b. Exist independently
c. Has a Primary key
d. Has no Discrimination
e. None of the above
16) A \qquad constraint means that an entity of the superclass can not be a member of more than one subclass of the specialization.
a. Completeness
b. Total
c. Disjointness
d. Participation
e. Uniqueness
17) In a relationship, when a primary key from one table is also defined in a second table, the field is referred to as a \qquad in the second table.
a. Combined key
b. Redundant field
c. Primary key
d. Foreign key
e. None of the above
18) A special operator used to check whether an attribute value matches a value contained within a subset of listed values is \qquad .
a. Between
b. Is Null
c. Like
d. IN
e. None of the above
19) Data consistency means \qquad .
a. All data is shared
b. Users are allowed to see exactly the same data
c. There is no redundancy of data
d. All occurrences of the same data item agree
e. None of the above
20) The data about data such as the name and size of data items is described as \qquad .
a. Metadata
b. Data instances
c. The miniworld
d. Enterprise data
e. None of the above

Q2) Consider the following tables then answer the subsequent questions (20 Points)

Doctors			
doc no	Name	sala ry	Dept_ no
1	Ahma d	850	2
2	Hashe m	120 0	3
3	Anas	145 0	1

Department	
Dept n \underline{o}	Name
1	Pediatric
2	Nerves
3	Dentistry
4	Pharmac y

6.2. |Draw the ERD the best describes the above tables (5 Points)

6.3. |Write an SQL statement to create the Attendance table with all its fields and constraints (3 Points).

```
Create table attendance
(Course_no int,
    Doc_no int,
    Part_date date,
    Constraint pk1 primary key (course_no, doc_no),
    Constraint fk1 foreign key (course_no) references courses(course_no),
    Constraint fk2 foreign key (doc_no) references doctors(doc_no)
)
```

6.4. Write an SQL statement to add a new attribute called phone_num of type char(10), to the patient table (1 Point).

Alter table patient add phone_num char(10)
6.5. Write an SQL statement to retrieve the name of all patients with their department name sorted by patients city (3 Marks).

Select patients.name, department.name
from patients,department
Where patients.dept_no= department.dept_no
Order by patient.city.
6.6. Write an SQL statement to produce doctors working in department 3 or 4 and has salary greater than 1000 as follows (3 Points):

Dept_name	Name	salary
Dentistry	Hashem	1200

Select department.name as dept_name, doctors.name, doctors.salary
from department, doctors
where department.dept_no = doctors.dept_no
and (department.dept_no=3 or department.dept_no=4)
and doctors.salary>1000
6.7. Consider the following SQL statements and find the Number of records and fields (5 Points):

1) Select name from Doctors where salary >1000

Union
Select name from Doctors where dept_no>1
2) Select * from Patients where city like '\% a \%'
3) Select distinct city from patients where city like '\% a \%'
4) Select distinct pat_no ,city from patients
where dept_no between 2 and 3
5) Select salary from doctors, attendance, courses

Where doctors.doc_no=attendance.doc_no
And attendance.course_no=courses.course.no
And topic='Bio-assay'

Answer:

Query \#	Number of Records	Number of Fields
1	4	1
2	6	4
3	4	1
4	4	2
5	2	1

Final

Exam 01 － 2011 Form 1

King Abdullah II School for Information Technology
Department of Computer Information Systems
1902321：Database Management Systems．

Spring， 2011
Final Exam

Instructors：Dr．Raja Alomari（coordinator），Dr．Omar Adwan，and Ms Walaa Qutechat．

ニニニ
＝＝＝＝ニ＝＝
Name（Print CLEARLY）：
StID： \qquad
Q1：（15 pts）Study the following form for a trading company that sells wholesale grocery items．Based on this form，create a database in the $3^{\text {rd }}$ normal form by following the normalization rules step－by－ step．［Hint，consider the SaleID as your primary key］．

SALE FORM				
Sale ID：	786540－02027			
Purchase Date：	1／2／1973			
Buyer Information			Clerk information	
Buyer ID：	54298		Clerk ID：	5729
Buyer Name：	Ahmad Hamdan		Clerk Name：	Salem Saleem
Items information				
Item ID	Item Description	Unit Price	No of boxes	Sub－ total
0301	Coffee	20	9	180
0012	Tea	30	10	300
0032	liquid Milk	2	30	60
Total				$\begin{aligned} & \hline \text { JD } \\ & 1080 \end{aligned}$

Step 0: Plain Table with primary key
SaleID, PurchaseDate, BuyerID, BuyerName, clerkID, clearkName, ItemID, ItemDescription, UnitPrice, NoBoxes

(5 pts) Step1: $1^{\text {st }}$ Normal Form: Show all tables (Hint: Remove repeating groups if exist)

Table 1: SaleID, PurchaseDate, BuyerID, BuyerName, clerkID, clearkName,

Table 2: SaleID, ItemID, ItemDescription, UnitPrice, NoBoxes

(5 pts) Step 2: $2^{\text {nd }}$ Normal Form: Show all tables (Hint: Remove partial dependencies if exist).

Table 1: SaleID, PurchaseDate, BuyerID, BuyerName, clerkID, clearkName,
Table 2: SaleID, ItemID, UnitPrice, NoBoxes FK(ItemID)

Table 3: ItemID, ItemDescription

(5 pts) Step 3: $3^{\text {rd }}$ Normal Form: Show all tables (Hint: Remove transitive dependencies if exist).

Table 1: SaleID, PurchaseDate, BuyerID, clerkID, FK(BuyerID), FK(clerkID)
Table 2: SaleID, ItemID, UnitPrice, NoBoxes
Table 3: ItemID, ItemDescription
Table 4: BuyerID, BuyerName
Table 5: clerkID, clerkName,

Q2: (5 pts) Draw the ERM that represents the database of Q2.

Q3: (10 pts) Study the following ERM and answer questions below (2pnts each)

1. The SQL statement that retrieves all customer names (without duplication) who had a loan is:
a. select distinct custName from customer, borrow;
b. select distinct custName from customer where LID in (select LID from loan);
C. select distinct custName from customer where CID in (select CID from borrow);
d. $a+c$
2. The SQL statement that retrieves all customer names with accounts having an amount over JD50000 (without duplication) is:
a. select distinct custName from customer, account where AAmount > 50000;
(b) select distinct custName from customer where CID in (select CID from has, account where has.AID = account.AID and AAmount > 50000);
c. select distinct custName from customer, has where AAmount >50000;
d. $\mathrm{b}+\mathrm{c}$
3. The SQL statement that retrieves the summation of all borrowed loans is:
a. select LAmount from loan where LID in (select LID from borrow);
b. select sum, LAmount from loan, borrow where loan.LID = borrow.LID;
c. select sum, LAmount from loan where LID in (select LID from borrow);
(d.) None of the above.
4. The SQL statement that retrieves all loan transactions occurred on April ${ }^{\text {st }}, 2009$:
a. select * from loan where date $1=$ '01-April-2009';
b. select L.LID, L.LAmount, B.date1 from loan L, borrow B where L.LID = B.LID and B.date1 = '01-April-2009';
c. select L.LID, L.LAmount from loan as L where LID in (select LID from borrow where date1 = '01-April-2009');
(d.) $b+c$
5. The SQL statement that retrieves customer IDs, average loan amounts grouped by the CIDs: a. select CID, CName from customer C , loan L, borrow B where C.CID = B.CID and B.LID $=$ L.LID and L.LAmount $=\operatorname{avg}($ L.LAmount $)$;
b. select B.CID, avg(L.LAmount) from loan L, borrow B where B.LID=L.LID group by B.CID;
c. select CID, CName from customer C where CID in (select CID, avg(L.LAmount) from borrow B, loan L where B.LID = L.LID group by B.CID;
d. None of the above

Q4: (10 pnts) Given this ERM, Answer the following (1 pnt each):

1. The SQL statement " select P.PName, Ph.PhNo from Patient P, PatientPhones Ph where P.PID = Ph.PID;" retrieves:
a. All patient information and their phone numbers;
b. Patient names and and only one phone number.
c. All Patient names and all phone numbers.
d. This statement is wrong.
2. The SQL statement " (select P.PID from Patient P) union (select T.PID from treats T);" retrieves:
(a.) All patient IDs regardless of receiving a treatment or not.
b. All patients who have been treated by a doctor.
c. Some of the patients who have been treated by a doctor.
d. None of the above.
3. The SQL statement " select P.PName from Patient \mathbf{P} where P.PID in (select U.PID from Uses U) intersect (select T.PID from treats T);" retrieves:
a. All patient names who received treatment and used a bed.
b. All patient names who used a bed but did not receive a treatment.
c. All patient names who received a treatment but did not use a bed.
d. None of the above.
4. To create the table uses:
a. Create table uses (PID varchar2(20), BID varchar2(20), primary key(BID, PID));
b. Create table uses (PName varchar2(20), BID varchar2(20), primary key(BID));
c. Create table uses (PID varchar2(20), BID varchar2(20), primary key(PID,BID), foreign key(PID) references (PID), foreign key(BID) references (BID));
(d.) None is correct.
5. To create the table doctor:
a. Create table doctor (DID varchar2(20), Dname varchar2(50), primary key(DID));
b. Create table doctor (DID varchar2(20), Dname varchar2(50) not null, primary key(DID), foreign key (DID) references treats(DID));
c. Create table doctor (DID varchar2(20), Dname varchar2(50) not null, primary key(DID));
(d.) $\mathrm{a}+\mathrm{c}$ are both correct.
6. The statement "update bed set size $=$ 'queen' " will
a. Add an attribute size to the table bed and set the default value to 'queen'.
b. Set the default value for any new inserted bed record to 'queen'
c. Set all the size values for each record in the table bed to 'queen'
d. $\mathrm{b}+\mathrm{c}$ are both correct
7. The statement "insert into patient(PID, Address, PName) values ('0001','Amman',
'Ahmad') " will
a. Add three attributes to the table patient.
b. Add one record to the table patient with an ID = '0001' but leaves both the address and PName empty because they are not in order.
(c.) Add one record to the table patient with an ID = '0001', address = 'Amman', Name = 'Ahmad'
d. Either b or c might happen depending on the SQL version you are using.
8. The statement "drop table bed where BID = '0001' " will:
a. Drop all the record with $\mathrm{ID}={ }^{\prime} 0001$ '
b. Drop all the database
c. Drop the tables bed and uses because they depend on each other.
(d.) This statement is wrong in syntax.
9. The statement " update bed set $\mathbf{B C o u n t}=$ case when size='queen' then $\mathbf{B C o u n t}+\mathbf{2 0}$ when size='king' then BCount+5 else BCount + 17 end; " will:
a. Nothing will happen because this statement is wrong in syntax.
b. The BCount value will change by adding 17 to each record because of the else clause.
c. The BCount value will add 20 for all queen bed size, 5 for all king size and 17 for the other sizes.
d. The BCount value will add 20 for all queen bed size, $(20+5)$ for all king size and $(20+5+17)$ for the other sizes.
10. Given that this databases is created correctly in the database with all foreign keys and primary keys, which of the following will execute correctly:
a. Delete table patient;
(b) Drop table treats;
c. Remove table doctor;
d. All of the above will execute and the tables will no longer be in the database.

Q5: (10 pnts) Study this ERM and answer the following based on your relational algebra knowledge:

Question (2pnts each)	Your Answer
Write a relational algebra statement to find the loan numbers (loan_number) for the loan having an amount less than 500. [Hint: use both projection (I) and selection (σ) operators].	$\Pi_{\text {loan_number (}} \sigma_{\text {amount }}$ 500 (loan) $)$
Write a relational algebra statement to find the sum of loan amounts in the loan relation. [Hint: use the aggregate function (g) operator].	g sum(amount) (loan)
Write the outcome of this expression Customer_city 9 count(customer_id) (Customer)	Number of customers grouped by their cities.
Write a relational algebra statement to find all customer names, their loan IDs, and the amounts. [Hint: use projection (II) and product (x) operators].	Пcustomer_name,loan_number,amount((customer x borrower) x loan)
Write a relational algebra statement to find the intersection between Customer IDs in both Customer and borrow relations. [Hint: use projection (I) and intersection (\cap) operators].	Пcustomer_id(borrower) \cap Пcustomer_id(customer) Пcustomer_id(borrower $\cap c u s t o m e r) ~$

Exam 02-2011 Form 2

The University of Jordan
King Abdullah II School for Information Technology
Department of Computer Information Systems
1902321: Database Management Systems.

Duration 2hrs
Spring, 2011
Final Exam

Instructors：Dr．Raja Alomari（coordinator），Dr．Omar Adwan，and Ms Walaa Qutechat．

 ＝ニニーニ＝

Name（Print CLEARLY）： StID：

Q1：（15 pts）Study the following form for a trading company that sells wholesale grocery items．Based on this form，create a database in the $3^{\text {rd }}$ normal form by following the normalization rules step－by－ step．［Hint，consider the SaleID as your primary key］．

SALE FORM				
Sale ID：	6590－JHGZX－54F			
Sale Date：\quad March 6 ${ }^{\text {th }}$ ， 2008				
Buyer Information			Clerk information	
Buyer ID：	BYT－6598		Clerk ID：	$\begin{aligned} & \text { CLK- } \\ & 7658 \end{aligned}$
Buyer Name：	Emad hamid		Clerk Name：	Ameen Khalid
Items information				
Item ID	Item Description	Unit Price	No of boxes	$\begin{aligned} & \text { Sub- } \\ & \text { total } \end{aligned}$
TM－76543	A4 paper	3.0	50	150
TM－53679	Paper Towels	2.5	100	250
TM－56788	Paper clips	0.5	150	75
Total				$\begin{aligned} & \hline \text { JD } \\ & 1150 \end{aligned}$

Step 0：Plain Table with primary key
SaleID，SaleDate，BuyerID，BuyerName，clerkID，clearkName，ItemID，ItemDescription，UnitPrice，NoBoxes
$(5 \mathrm{pts})$ Step1： $1^{\text {st }}$ Normal Form：Show all tables（Hint：Remove repeating groups if exist）
(5 pts) Step 2: $2^{\text {nd }}$ Normal Form: Show all tables (Hint: Remove partial dependencies if exist).
(5 pts) Step 3: $3^{\text {rd }}$ Normal Form: Show all tables (Hint: Remove transitive dependencies if exist).

Q3: (10 pts) Study the following ERM and answer questions below (2pnts each)

6. The SQL statement that retrieves all customer names (without duplication) who had a loan is:
e. select distinct custName from customer, borrow;
f. select distinct custName from customer where LID in (select LID from loan);
g. select distinct custName from customer where CID in (select CID from borrow);
h. $a+c$
7. The SQL statement that retrieves all customer names with accounts having an amount over JD50000 (without duplication) is:
e. select distinct custName from customer, account where AAmount > 50000;
f. select distinct custName from customer where CID in (select CID from has, account where has.LID = account.LID and AAmount > 50000);
g. select distinct custName from customer, has where AAmount >50000;
h. b + c
8. The SQL statement that retrieves the summation of all borrowed loans is:
e. select LAmount from loan where LID in (select LID from borrow);
f. select sum, LAmount from loan, borrow where loan.LID = borrow.LID;
g. select sum, LAmount from loan where LID in (select LID from borrow);
h. None of the above.
9. The SQL statement that retrieves all loan transactions occurred on April ${ }^{\text {st }}, 2009$:
e. select * from loan where date1 = '01-April-2009';
f. select L.LID, L.LAmount, B.date1 from loan L, borrow B where L.LID = B.LID and B.date1 = '01-April-2009';
g. select L.LID, L.LAmount from loan as L where LID in (select LID from borrow where date1 = '01-April-2009');
h. b+c
10. The SQL statement that retrieves customer IDs, average loan amounts grouped by the CIDs:
e. select CID, CName from customer C , loan L, borrow B where C.CID = B.CID and B.LID $=$ L.LID and L.LAmount $=\operatorname{avg}($ L.LAmount $)$;
f. select B.CID, avg(L.LAmount) from loan L, borrow B where B.LID=L.LID group by B.CID;
g. select CID, CName from customer C where CID in (select CID, avg(L.LAmount) from borrow B, loan L where B.LID = L.LID group by B.CID;
h. None of the above

Proceed to
Page 4
Q4: (10 pnts) Given this ERM, Answer the following (1 pnt each):

11. The SQL statement " select P.PName, Ph.PhNo from Patient P, PatientPhones Ph where P.PID = Ph.PID;" retrieves:
e. All patient information and their phone numbers;
f. Patient names and and only one phone number.
g. All Patient names and all phone numbers.
h. This statement is wrong.
12. The SQL statement " (select P.PID from Patient P) union (select T.PID from treats T);" retrieves:
e. All patient IDs regardless of receiving a treatment or not.
f. All patients who have been treated by a doctor.
g. Some of the patients who have been treated by a doctor.
h. None of the above.
13. The SQL statement " select P.PName from Patient \mathbf{P} where P.PID in (select U.PID from Uses U) intersect (select T.PID from treats T);" retrieves:
e. All patient names who received treatment and used a bed.
f. All patient names who used a bed but did not receive a treatment.
g. All patient names who received a treatment but did not use a bed.
h. None of the above.
14. To create the table uses:
e. Create table uses (PID varchar2(20), BID varchar2(20), primary key(BID, PID));
f. Create table uses (PName varchar2(20), BID varchar2(20), primary key(BID));
g. Create table uses (PID varchar2(20), BID varchar2(20), primary key(PID,BID), foreign key(PID) references (PID), foreign key(BID) references (BID));
h. None is correct.
15. To create the table doctor:
e. Create table doctor (DID varchar2(20), Dname varchar2(50), primary key(DID));
f. Create table doctor (DID varchar2(20), Dname varchar2(50) not null, primary key(DID), foreign key (DID) references treats(DID));
g. Create table doctor (DID varchar2(20), Dname varchar2(50) not null, primary key(DID));
h. $\mathrm{a}+\mathrm{c}$ are both correct.

Proceed to Page 5
16. The statement "update bed set size $=$ 'queen' " will
e. Add an attribute size to the table bed and set the default value to 'queen'.
f. Set the default value for any new inserted bed record to 'queen'
g. Set all the values for each record in the table bed to 'queen'
h. b + c are both correct
17. The statement "insert into patient(PID, Address, PName) values ('0001','Amman', 'Ahmad') " will
e. Add three attributes to the table patient.
f. Add one record to the table patient with an ID = '0001' but leaves both the address and PName empty because they are not in order.
g. Add one record to the table patient with an ID = '0001', address = 'Amman', Name = 'Ahmad'
h. Either b or c might happen depending on the SQL version you are using.
18. The statement "drop table bed where BID = '0001' " will:
e. Drop all the record with $\mathrm{ID}={ }^{\prime} 0001$ '
f. Drop all the database
g. Drop the tables bed and uses because they depend on each other.
h. This statement is wrong in syntax.
19. The statement " update bed set BCount = case when size='queen' then BCount $\mathbf{+} \mathbf{2 0}$ when size='king' then BCount +5 else BCount +17 ; " will:
e. Nothing will happen because this statement is wrong in syntax.
f. The BCount value will change by adding 17 to each record because of the else clause.
g. The BCount value will add 20 for all queen bed size, 5 for all king size and 17 for the other sizes.
h. The BCount value will add 20 for all queen bed size, $(20+5)$ for all king size and $(20+5+17)$ for the other sizes.
20. Given that this databases is created correctly in the database with all foreign keys and primary keys, which of the following will execute correctly:
e. Delete table patient;
f. Drop table treats;
g. Remove table doctor;
h. All of the above will execute and the tables will no longer be in the database.
$* *$
Q5: (10 pnts) Study this ERM and answer the following based on your relational algebra knowledge:

Question (2pnts each)	Your Answer
Write a relational algebra statement to find the loan numbers (loan_number) for the loan having an amount less than 500. [Hint: use both projection (II) and selection (б) operators].	
Write a relational algebra statement to find the sum of loan amounts in the loan relation. [Hint: use the aggregate function (9) operator].	
Write the outcome of this expression	
Customer_city $\boldsymbol{\vartheta}$ count(customer_id) (Customer)	
Write a relational algebra statement to find all customer names, their loan IDs, and the amounts. [Hint: use projection (II) and product (x) operators].	
Write a relational algebra statement to find the intersection between Customer IDs in both Customer and borrow relations. [Hint: use projection (II) and intersection (\cap) operators].	

