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Compiler Structure
Spring 2018/2019

Instructor: Dr. Fahed Jubair
Computer Engineering Department
University of Jordan

The Topic of Thi

* Describe the compilation process in high-level

 Qur goal is to see the big picture first before we dive
into the details

« A lot of terminology will be introduced so make sure
to keep up

© Al Righus Raserved
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Compiler Structure

« The goal of the compilation process is to translate a
source program into a target program

» To do so, the compiler naturally needs to:
@ Understand the input program and ensure no €rrors
@ Map the input program into an equivalent and

optimized target program
« The first task is done by the front-end of a compiler
+ The second task is done by the back-end of 2

compiler
© All Rights Reserved.
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Phase 1: Scanner

* Also called\lexer

——

* A scanner reads the input program text character by
character and transforms these characters into tokens

* A token defines a minimal syntactic unit in

programming languages
* Similar to a word in the English language

© All Rights Rescrved
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Tokens (onfle)

» Example: Consider the following C code
if(X>=0)thenY=X:elseY=—-X;
The tokens are:
2 U W s D R T L A

€.y & 5% WK W) e ks
LR ] EISL E) \’ ] 5 3

» Scanner will also detect all “illegal” substrings that
do not form any token
* But how can scanners recognize substrings that are

tokens and substrings that are not?
© All Bughns Roserved
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Regular Expression
'________———-'-__—-‘

« A regular expression expresses a set of rules for
describing valid tokens in a language can be formed

tokens for an input program text, as well as identify
erroneous tokens

» We refer to a language that can be fully expressed by
regular expressions as a regular language
= Modemn programming languages are regular languages

© All Rights Reserved.

» Using regular expressions, a scanner can recognize all
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Phase 2. Parser

- A parser reads the string of tokens returned by a
llowing two tasks:
scanner and performs tlhe fc.)f_w ing }fgns _
1. Confirm whether this string has a vaci Structure 10
the programming language or not

2. Generate a tree representation, called the M
of the input code structure
vakgh  fles

« The parser returns a syniax crror if the code structure of
the input program is invalid for the given programming
language

£ All Rughts Reserved
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Syntactic Structure

* A string qf tokeis is legal if it has a valid syntactic
structure in the programming language

* But how can a parser validate the code structure of an

mput program?
® For a human language such English or Arabic. it i ]
check the grammar : B
* Compilers do the same! They check the grammar of the
programming language

@ All Rights Reserved,

Grammar

* Set of production or derivation rules that describe
how to form strings in a language

The English language has a grammar: a set of rules

that describe how a sentence, 1.€, a set of fvords) can
ST ——
be structured ~—

A programming language has a grammar: a set of
rules that describe how a code sgafement, i.e., a set of

can be structured

© Al Rights Reserved
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A Sentence in English

« In English, we have the following production rules
» A“SENTENCE” can have the structure “SUBJECT VERB OBJECT”
s A“SUBJECT" can have the structure “PRONOQUN"
« A“VERD" can have the structure “AUXILIARY”
& An“OBIECT” can have the structure “ADJECTIVE”
» A“PRONOUN"is“he|she|it]...”
s An“AUXILIARY™ is “is| was | has|...”
s An“ADJECTIVE" is“ big | small|...”

» Exercise: use the above rules to validate the structure of
the sentence “He is late”

© All Rights Reserved.

An Assignment Statement inC

(2]
. In C, we have the following production rules A
s A“STATMENT" can have the structure “ASSIGN _STATMPNTC
. A“ASSIGN_STATMENT” can have the structure “IDENTIFIER
EQUAL EXPRESSION SCOLON”
s An“IDENTIFIER ™ is any scquence of {a-z] characters
s An“EQUAL™ is“="
+ An“EXPRESSION” is “IDENTIFIER OPERATOR IDENTIFIER”
e An“OPERATOR”is*“+{=|*|..”7
An“SCOLON™ is*”

« Exercise: use the above rules to validate the structure of
the sentence “x =X +Vy;"

& All Rights Roserved

ATIRY I
parse tee

~—

1/20/19

%26 }s'}
Rules S

wl G ¥

SR o e Tt i Al o .J‘
e r e A e

Scanned with CamScanner



Parse Tree

* Th
pmme; ;lxlr.odu_ces a parse tree for a valid input
] lch- IS a tree representation of the Syntactic
structure in the nput code

. p .
arse trees are really intuitjve — see the below example:

So Far: Scanner and Parser

» Both scanning and parsing analyze the program text
for syntax errors, i.., they check the “structure”
» The term syntax analysis is used to refer to both steps:
scanning and parsing
» However, they do not check the “meaning”

’/:E’xa—;m is syntactically correct but

M 9\'@ L meaningless if Y is a string and X is an integer
5 T ! - Therefore, the third and last step of the front-end
) /C\PU{“P compiler is to check the semantics, i.e, the “meaning”
\J\ O'J _ - \;\ of the input program
ik “co To TR
o
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Phase 3: Semantic Analysis

« The purpose of semantic analysis is to

{'1) Check for semantic errors
b \ i\
@Build a data structure for storing declared,variables, S en
called the symbol table \ 30. o g I
CS9 gw [ nes

@ Convert the parse tree into another data structure,
called thi intermediate representation (IR) 1

© Al Righta Resarved.
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Examples on Semantic Errors

1. Multiple declaration of the same variable within the
" .

same scope
2. A variable is not declared before it is used ——>
3. A function call with the incorrect number or type of

arguments
4. An algebraic expression performing operations with
invalid types

3 All Rights Kesernved
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‘Symbol Table

e A da.lta structure maintaine
storfng information ab
the input program

d by the compiler for
out declared identifiers in

* Examples of stored information in symbol tables:
® Each variable’s type and scope

® Each function’s return type and number and type of its
arguments

* Each class’s name and relationships
" etc

D All Rights Reserved.

Infermediate Representation |(IR)

A Fese Sl |

A popularly used term for describing the internal

representation of the input program by the compiler
» The IR preserves the meaning of the input program
» Some compilers may use the parse tree as an IR

» Other IR formats are also available
= For flexibility

= The selection of the IR format significantly affects the
design and implementation of the back-end compiler

' All Rights Reserved
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IR Example:
Three-Address Code

» A popular IR in compilers is the three-address code
= Each instruction can take at most three operands
= Easy to map into machine (i.e., assembly) code

* Three-address code Example ma owr) d.BJ

Label L1

Adda,b=T C\§€m\9\j \Gnauﬂe_
SW T=>c

Add i, 1>i

BEQi, 10, L1 G

© AllRights Raserved ngem b\q‘ {y cCh?ﬂ '4 bn& qqé-z

— @qCK _end
Phase 4: Optimizer

. Trlzig_u_lzgs_c;of this phase is to improve the translated

program in some discernable way
* Minimize execution time
= Minimize memory footprint

» Minimize power consumption

= eic
: optimization must preserve coirectness, L£ ‘]‘h—’
i.e., the meaning of the input program

* An optimization technique must guarantee that any V. S
changes this technique performs on the IR preserve Y L; -‘PJ -

correctness ; Al Righin Reverved
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Optimization Example:
Dead Code Elimination

* Dead code is a code segment whose execution result does
not affect the result of the program

* Example: in the below code example, the statements

“b=a;"and*“d=c+...” are dead because they do not
affect the final result

void main (H{ Write an optiinized code
SO s B, TG, 1 for function main
; =13 Assuming that you want to
“a : : :
o = e B e e TEE B develop a compiler analysis that
d=c+cCcw»c+ 100 ; eliminates dead code, in your
noRMER Y 2 opinion, how can this analysis
3} guarantee correctness?
© All Rights Resenved
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Optimizations are
Challenging

» Optimizing programs correctly and el‘fic%emly reqpire
compiler analyses to prove whether certain properties hold
or not in the compiled programs

« This is challenging for many reasons, some of which are:

= Compilers do the translation gfffine, where the knowledge about
runtime behavior is incomplete

s Some optimizations can be machine-sensitive, i.e., different
machines may have different performances for the same program

= Some oplimizations can also be application-sensitive, different
programs may have different performance for the same machine

} © All Rights Reserved
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But Doing Optimizations 53
is What Gets You Paid /ff\

« Compilers that are “smart” will always be in demand mwole
- For example, consider the following issue: \
s New architectures with new performance considerations are 1110) ‘
coming out everyday L

y-» Therefore, old codes may become slow and obsolete
4= Hiring programmers to rewrite old codes is expensive and fime

consuming s §J
= Cheaper solution: perform compiler optimizations on old codes .
to make them run faster! OPH(‘I\ /\/\9
© All Rights Reserved. ‘ 4 & } 9\9’4\ u‘
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Phase 5: Qode Generator

« The code generator maps the IR code into the
target machine code

» E.g., MIPS or x86 assembly code
. . s
« Main ftasks‘of code generation Z){) J,_;:)J
i Instruction sclection: which machine instructions to use —
o GRjEE ; \od) € AS
3 Instruction scheduling: which order of machine ’Q“ %6
instructions to use
Register allocations: map variables to physical registers «—]
o Input programs (as well as front-end compilers) assume e 3\ ‘5 Sb

s

unlimited memory, for simplicity W
o Back-end compilers deal with reality: machines have finite '(68 ; )}
resources €1 All Righte Reacrved
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* The back-end (optimizer + machine code generator)
optimizes and maps the intermediate representation into
an egquivalent machine code

% * The selection of the IR affects the back-end design
1

« We can build multiple front-ends for a particular back-end
\ « We can build multiple back-ends for a particular front-end

© All Righiz Reserved. = "
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Scanners / Lew@(s
Spring 2018/2019

Instructor: Dr. Fahed Jubair
Computer Engineering Department
University of Jordan

Program
Text

{

I

characters into a string of tokens

4 cﬁnc the minimal syntactic unit ip a program

* Atoken has a type and a value:
* E.g, 5" is an integer with value §
* E.g., ‘X’ is an identifier with value x
* E.g., ‘=" is an operator with value =

© All Rights Reserved

« Scanner (or lexer) role is to convert the input stream of
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Basic Questions For Scanners

1. How tokens are defined?
T—> Regular Expressions C‘SQX, OQ @‘4 [eS ) .

2. How tokens are recognized for a stream of

h ter? .
TRNERT T some C{lﬂo( tHmg

3. How scanners are coded?
C+t/C [ s Tl gep

€ All Rights Reserved
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Regular Expressions

A regular expression ¢ describes the rules of which all
string patterns for a language L with an alphabet
can be formed | |

= This language is said to be a regular language and is

denoted by /{#) ‘

= An alphabet ¥ defines a finite set of characters that all
strings in a language may contain
» Eg integershave 2={0,1,2,3,4,5,6,7, 8,9}

2 All Rights Resenved
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Basic Regular Languages

« If a single character x € %, then x is a regular
expression denoting the regular language {“x”}

« The empty string ¢ =" is a regular expression and
{e} is a regular language with one member: €

« The empty set ¢ is the regular language that contains
no string members

© All Rightx Reserved

Basic Operations For Building
Regular Expressions

o (old)

« If s and r are regular expressions, then
» The concatenation ( s7 ) is also a regular expression
» The alternation (sit)isalsoa regular expression
= The kleene closure s* is also a regular expression,
where s*=¢]s]ss|sss|ssss]|...
oi.c., s* denotes Zero O MOTE GCCUTTENCES of s

» The positive closure s~ is also a regular expression,
where s*=s|ss|sss|ssss|...

oie., s* denotes one Of MOTE OCCUTTENCES of s
o Note that st =5 s*

© Al Rights Reserved. .
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Precedence Rule

@ Parenthesis ( )
@ Kleene Closure *( . v

@ - Concatenation
@ Altemation

Fom Iej}ll.b. reqht |

£ All Rights Reserved.

5 ol 78 4
Regular Expressions Examples| [ = f/ 0
§R 1=
We can use aigebraic notations to describe regular expressions < ,

S - B S
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Tokens and Regular Expressions {

following tokens:

« We will now describe the regular expressions of the

-Punctuations-,’ c)~<_.

© All Rights Resenved

o Literals L2 - - =

= Identifiers variabls |

*= Comments ' Often found in \
» Reserved words programming languages
= Operators

_E_X Literals

E be a real number

follows:

o9 g =D 0T
_— E=D*D"*=[0-9]" [0-9]"

I 4
. R &1l + ‘Exercise: write a regular expression that describes
integers with no leading 0s, i.e., numbers such as 01 and

6 Jvé 001 are pot allowed, but numbers such as 0, 10, and 201

are allowed

© All Rights anud

« let D be a single digit integer, / be an integer number, and

D=(0]1]2]3]4]516[7]8|8)=[0-9]

» We can describe the regular cxpre'ssidns D,1andEas b, L{D\}S !

~
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_EL Identifiers / &) ﬁ

,_.__.,Let IDEN be any s g that has any ot the following
characters: a-z, A-

Jow TDEN=([a=7) A~ 21091y,

.4 Exercise: rewrite the regular expression of IDEN so
that the first character in the identifier string can only
be a capital letter
.Q « Exercise: rewrite the regular expression of IDEN so
| that it must have the substring *00°
2 » Exercise: rewrite the regular expression of IDEN so
that it must end with the character ‘0’

© All Rights Reserved. J

Comments

» Different programming languages have different format

for comments
« As an example, Assume that a comment must start and M;&- H#-
end with ## HH —i
» The character “#” may appear 1n51de the comment X’
» For a given alphabet X, if x € X, then we define Not(x) i ?\_ 6"\ oYU
to be the set of all characters in X except x é> - S
» The following regular expression describes comments: I - L \0
COMMENT =
3 All Rights Resorved C\J ‘U__C—\_a U"‘f“ ¥*

U o=
. wdy O 8

*- NOl'-—-)Siv\g\f Char
Nok (##) Gk, G
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Reserved Words, Operators
and Punctuations

- Generally, reserved words, punctuations and
operators have unique strings

=) Their regular expressions are straightforward

= RPARN=(")") characters
\ © All Rights Reserved.

+ Examples
s JF =(if)
= GT=(>)
» GEQ=(>=)
e We add * * to distinguish an
= LPARN=(‘C) input character from meta-

AN 7

(
Qo 7 Exercises

+ For each of the following regular Wy

1/20/19
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Exercises o

 Write a regular expression that defines a C-like, fixed-
decimal literal with no superfluous leading or trailing
zeros. That is, 0.0, 123.01, and 123005.0 are legal, but
00.0, 001.000, and 002345.1000 are illegal.

» Write a regular expression that describes all strings of 0°s
and 1’s with at least two 0’s. For example, 0100, 01110,
and 00 are legal but 1, 10, and 1011 are not.

» Write a regular expression that describes all strings of 0°s

and 1’s such that two consecutive 0’s are not allowed. For
example, 0, 1, 0110, and 1010 are legal bui 00, 0010 and

101001 are not.

I—

2 All Rightz Reserved

\&S_’k

Basic Questions For Scanners

th

1. How tokens are s‘%u‘m

ey Regular Expressmns

2. How tokens are recoghized for a stream of
character?

> Finite Automata —F_ A

————————— 2 ;
1. How scanners are coded?

© All Rights Resenved.
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Finite Automata (FA)

* Assume you are given a strmg S and a regular
expression R that expresses a token class T

» A finite automaton (FA) is a@
that accepts S if S € L(R), and the token class of S
would be T. Otherwise, S is rejected |

By building proper finite automata, a scanner can

recognize tokens for a stream of characters, as
well as identify erroneous tokens

© All Rights Reserved.

Finite State Machines

- First, let us review finite state - @
machines (FSMs) S N
« A FSM consists of sets and

triggered
= In scanners, an event occurs

1 5 { 81 j= { 82
transitions that are event ( “/é :

when a new input character is A transition from state
~ consumed S1 to S2 occurs when
« FMSs memorize previous event A is triggered

events (how?)

5 All Rights Reaerved.
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Finite Automata (FA)

« A FA consists of
1. Afinite set of states S
A start state n C?n'iﬁ O.P <a “@3
A finite alEhab.et b " gl
A set of accepting states G, where GE S

A set of transitions 5,2, 5;, where a€Z, s, S;E §
Do Condilfons bte slares
» Basically, a transition occurs in the FA when a new
input character is consumed
« If the input character does not correspond to any

End

“oh W

transition, then the F‘:\ advances to the error state

Al Rights Resery

4“-( >

An FA Example

stk O G #
AP ¢
Fror shate
Yo v U

« The below FA is generated for the regular expression:
E=[0-9]".[0-9]"
= Specify S, n, £, G and all transitions in the FA
» Does the FA accept or reject the following inputs (show
your answer) ?
0090.011

o 10.
3 -0
P it

NI SN ]
‘ {52} 53 e 4 )
v \""""f

—H 81 ;

7’/ © All Rights Reverved
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Another FA Example

« The below FA is generated for the regular expression:
E=(A|B)$

* Specify S, n, Z, G and all transitions in the FA

* Docs the FA accept or reject the following inputs (show

your answer) 7 ; -
oA$ ¢ g ' A‘e
o} o~ : A|B
o ABABS ¢~ /—~ Ale
e ASBDS g T
rd ey Nt
q hkew ABB$sE 3t @

© All Rights Rexcived.
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e (ADoSky B Gl

) ’: z Finite Auto '

-évotypesofFA:' S G\ ¥
/Deterministic Finite Automata (DFAy——"

@ Eﬂglémmmm Fipite Automata (NFA) o _ é \@'/5

. ‘In order to explain each type, we first need to
infroduce the concept of e~Transitions

\\/ = ,
Unconals Hom@.
Mo e

% All Rights Rescrved.
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e~Transitions

The s-transition s—£»w allows moving from state s to
state w without reading any alphabet input
» i.e., e-transition is unconditional move

e-transitions allow states in a FA to have multiples
moves for the same input

S o o (oo

/“vo/"@ F st AP

—

~a sl }
e

OO
ﬂmtmghuﬂc;’c}w;{_g) fS‘ ‘ ‘b\.’Dt}J {'ldf
il b A s T
DFA and NFA

A deterministic finite automata (DFA) is aFA

where all transition are wnique, ie., if s$>w and
s-£.,2z,thenw =2
DFAs do not have g-transitions

A FA where states can have multiple moves for
the same input is called a non-deterministic finite

automata (NFA)
Unlike DFAs, NFAs can have c-transitions

Note that NFA is a generalization of DFA, i.e.,
every DFA is also an NFA .,

1/20/19
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Finite Automata Construction

1/20/19

@ Thompson’s construction /( O«( }

® An algorithm that generates an NFA for a regular
expression

@Subset construction
® An algorithm that converts an NFA into a DFA

© All Rights Reserved

Thompson’s Construction

Key idea 1s simple
* Draw NFA pattern for each symbol & each operator Con(a

» Join them with € moves in precedence order

NFA for ab
< e S ——

NFA fora
(: ) e
e B
10220 N 7040 occudan@
NFAforal|b Neaionn:
: 4 e —

© All Rights Resanved
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Thompson's Construction

Example
Letstry:a(blc)
By OO0

—

© All Rights Reserved. é

ik (blc) f

Thompson’s Construction
Ex_a_mple _(cont’)

Con G Hoﬂﬂpf mk

& All Rights Rezeeved

wwe <an O(P{—?mi% i\ by r(’rmufng
* \poth colubfons o 1007 (TQ_\A-\

;&
d‘Pjﬂ‘O"’. D?J,ymn AP & Lt -

G
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» Use Thompso_n’s construction to determine the NFA
for the following regular expressions

= (a]|b)*abb

] r[o._g]-i-

= (a|(bo)*d)

© All Rights Reserved

— /I
i Subset Constructzonl

= Txansforms an NFA N into an equivalent DFA D

« The algorithm associates each state of D with a set of

states of N

» The algorithm uses tWo key functions:

'* g~Closure{ X JL returns the set of states reachable from x by €

$
E\A(\JPOY\ ot \' Move( A. @ { { returns the set of states reachable from X by 4,
where a€> and X is a set of states

' < Al Rights Reserved

\

16
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s-Closure Function

» The e-closure function detcrmmes for a state x, all e e
states that can be reached via -transitions in the NFA

» Example: » K@/N-‘-‘ S S

8-010811!@‘& S] 32 S4 S7 Ss b
e-closure (S;)=1{S;, 84,5, 5, S4 S-, Ss }
e-closure (S4)={ S84}

€ All Rights Reserved.

& -Closure($a) = S

Move (X, a) Function

» The Move( X, a) function determines, for a set of
states X, all states that can be reached via “a- % é Sj :
transitions” , Q 0

3
N
_g
R

Move ( {S3,85,51,52,8:,57,8},b)={S:} _&D
MOVC({S3,SG,81,Sz,S.;,S-;,Ss c) \"5] S}'c\\-e )‘ 4 g j

Move ({55, 56, S1. 82,5+, 7,85}, 2)={ Sy \ols ¢,

£ Al Rights Reserved. t

?mﬂj Q5‘§'37 §o\s

Poas o igd ey §5748 g clede ol
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<odo de to tenskb 4o DBL

‘Subset Construction Algorithm§

Input: NFAN
Output: DFAD

dp « e-closure({N.start_stote)) .
D.states «{ dy}

WorkList «{dp}
while ( WorkList # @ )
select and remove s from W
foreacha eT < |
t « eclosure(Move(s, o)) «—
" add s —2» t to D.transitions
if ( t & D.states ) then

Note that N and D will
have the same X

——= Compute d,: the start state of D

— For each character in alphabet

| Associate a set of statesin N

with asetin D

odd t to D.states 1 Iterate till no more states are added
add t to WorkList
—— ot el
Subset Construction

Example |

* Let us try the following NFA

oKkt = do

© Al Righis Roerved

do= B-losue ()

DFA | NFA

Do

So

18
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OF A | NFA
do Se 1/20/19
, S.,Szﬁs,sq,ga,%

Subset Consfruction
Example {(cont.)

maue (CJO/O\\: S\

2. Compute d; < -closur Move(dy, a i
p bi e(_..?_e(_ﬁ'__l) . mo Jgé (do, b) - ¢

add do-—-——bd]
{ move Cdc (C-) = @

add d, to WorkList

@ : @
i

St —é’—?ﬁf <, S2r S3, S/ % SEds

© All Righta Reserved.

Subset Construction
Exampie (_c:ont,)

3. Compute d, « g-closure( Move(d; . b))
b e
add d — d 2
dy « e-closure( Move(d, . c))
add d I -C—rdg
add d,, d3 to WorkList

4y ={5, 82, 53,
Sy, Se, 8o}

| - 22 All Rights Roserved H— é‘ Q.- e
™ow Cdc pQ) - (D A S S I)
é_.C\OSL"E 2 S‘E; Ssl §7{ 2, 2Y 6

MOUECdI 9\:33 S6 "
OV Qdi,c).— o7 LS4 38, Se, D25 563
&

ket = 96,88 da,ds
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Im ove (dQ,C\S - SO

Yhove (dl{ \9) =

move (do, €Y = Sy

d
,?\)9_

Subset Construction
Example (cont.)

4. Compute d, « &-closure( Move(d,, b})
but d2= d.g, add dz-é_) dz

ds « s-closure( Move(d;, c))
but d3=d5, add dz-c—; d;s

s ={87, 83, 55,
84, 8. 8o}

& All Rights Reserved

CorK o= o, da

Subset Construction
Example (cont.)

5. Compute d  &-closure( Move(ds, b))
but d2= dg, add d3—[!_—>d2

d; « e-closure( Move(d;, c))
but d3=d7, add d3—£—+ d_;

2 ={Ss, Sg, 55,

A\ S+ 6, So}
b

© Al Rights Resenved

mow (da,a) - ,
MOoNe (dg, bx e
\MOVP ( d%f CS =

20
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Subset Construction
Example (cont.)

6. WorkList is empty, terminate the algorithm

©All nghu Reserved.

)Sﬁ %W‘i <,_g<'c,— fa,@\_/d "oh)b Jafa(ﬁm
Wumen 5

Exercises

» Construct a DFA for the following regular
€Xpressions:

= (ab]ac)’
= (al(bc) d)

" ab*clabc’

K3 Al Rughts Resened

£ OST L UIsw g2 ow
Jsod B3

1/20/19

‘q\s?i «®

21
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Bonus: DFA Minimization

* DFAs generated with the Subset construction
are not necessarily optimal

* As one example, the DFA we obtained in
slide 42 is not optimal (why?)

. Sectiqn 2.4.4 introduce the Hopcroft's
Algorithm: a minimization algorithm to
transform a DFA into an equivalent but
optimal DFA

© Al Rights Reserved

Basic Questions For Scanners

B e SV T o) e L]
i. How fokens are defined?

> Regular Expressions

~ Y 73

& FIOW LOKENS 8l recagized for a stream of
:
i

characier:
> Finile Automata
@ How scanners are coded?

Table-driven implementation
Automatic scanner generators

U All Righis Reserved (X
X

Ji &E’ Aﬁ@é C;:Se))

régq lar Xp (eSS0 S

—
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Scanner Generation Cycle

- Subset -
Constructiolq

Thompson’s
Construction

Regular
Expressions

Table-driven
Implementation

© All Rights Reserved

Eoding The DFAE

« Multiple methods have been used to implement
Scanners -

-+ We will consider the table-driven form, the more
~ common method for building scanners

» Table-driven scanners take advantage of
transition diagrams: a tabular representation of

FA

1 All Rights Reserved

Scanned with CamScanner

1/2C



Transition Table

* A transition table T is a 2D array indexed by a FA
state 5 and an alphabet symbol ¢
* Each entry T[s,c] in the transition table is
computed as follows:
® If the transition s—%» w exists, then T[s,c] = w
® Otherwise, Ts,c] contains an error flag

2 All Rights Reserved.

vble 3 0)yo\ 5 dhafe e

Trarzséﬁon Table Example

By default, blank
entries have error flags

_

G b :
() d\

dz d3

Stat ; d exl
{ g d, d, d;
dz d3

5 o B e P

ere state e— Oup B

e
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Table—Driven lmplementatton

 Direct and sunple mterpretatlon of aFA’s
transition Table T

[ ) Assume CurrentChar contains the firstcharacter to bs scanned  #/ A

State « StariState

while-true do ' 1 5@\ jﬂ
NextState « T{State, CurreniChar] I

if NexiState = error
then break s & J &
State «— NexiState 2tnu CJ y :
CurrentChaer « rean()
if Stale € AcceptingStates
then /% Return or process the valid token */
else /x Signal a lexical error x/

© Al Rights Reserved.

Automatic Scanner Generators

Regular o e Scanner
Expressions } Code

» Software tools that automatically generates scanners’ codes

* Ags an input, programmers only need to specify regular
expressions (usually written inside a text file )
» Internally, these tools will do the transformations we did
mannally before:
Regular Expressions = NFA -» DFA = scanner code
opular scan ;

« ex: codes are generated in C/C-++
= ANTLR: codes are gcnented in Java

£ AL Rights Reserved
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=

od W(C"W s
pee=es .C e 3 { Frammee Ruleg O“P&g_hgl\o EU\]J\GCQ' //acce(ﬂ

J

ANTLR )
ol 58\ == _pello # K
hitp://www antlrorg/
‘Very popular parser and scanner generator tool .S,Cc(nn,e g J

As an input, ANTLR reads a text file that contains the
language grammar, as well as the regular expressions of
the ]anguag;:e tokens ® . PO (SQ'(‘
= We will describe grammars when we study parsers
* ANTLR has two key components:
I. ANTLR tcol: converts the grammar into a scanner and a parser
2 ANTLR sustime: set of classes and methods needed when
compiling and running the scanner and parser codes
»  We will use éNTLR v4 for our course project

€ AR Koght Revrved

S dils s
gf hello ¥

ENTLR Input Example)

Vu
/i Define a grammar in a file called Hell
—————

grammar Hello;
r:'helle’ ID ;  // match keyword hello followed by an identifier
1D :[a-z]+;  //match lower-case identifiers

WS : [\tr\n}+ > skip;  #/skip spaces, tabs, newlines
—

meén‘\'_s

LA
e :? \o

)
¥

\5Kk€

© ATl Kaphr Roverved

y .
Laﬂ“ﬂ 26
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(ANTLR Tool Output]

* Let us run the ANTLR tool on the grammar example

iB java—jar antlr—4.5.3-comp1etcjaq Hello.g4 3

o thp

* The ANTLR tool generates the following outputs:

Semncrcade o WaBH Purse’

L- HelloLexer java j 0 HelloParser.java \

1 Hello.tokens * HelloListener java
“71_+ HelloLe b
1 elloLexer.tokens * HelloBaseListener java

e

* Read more from the ANTLR v4 Book

https://pragprog.com/book/tpantlr2/the-definitive-antir-4-
reference

© All Rights Reserved

ey
o &
1

'\)C&r

B

umma

* Scanning (or lexical analysis) is the first step in the
compilation process

* Scanners convert the input program text into a string
of tokens

* Tokens define the minimum syntactical unit in
programming languages

* Scanners take advantage of the concepts of regular
expressions and finite automata in its implementation

* Automatic software tools for generating source codes
of scanners are available

v All Rights Reserved
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its — o, 1,9

:"‘—9 \lngf"{

)
0
ql ﬂ'labil
— ] . '/-\ <
2 ‘
O " ) Shales
O X \.__,‘,/
Which of the following strings is accepted by the above DFA
« 0202
« 01010 \
. 0102012 b
- 020102

y

© All Rights Reserved.

Exercise
» Specify the transition tables for the following DFAs
[0—9]Il [0_911 =5 Fa—"1
_,m,_,r”\ A ol y Glaley
\-..
N © =t
© Al Bights Reserved (O(ollnn ——b \ \
(o—a) +
io+ [, = ¥
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Introduction To Parsing
Spring 2018/2019

Instructor: Dr. Fahed Jubair
Computer Engineering Department
University of Jordan

Ste

'n

Program
Text

/ * The garscrrole s to

Determine whether or not a string of tokens is a
syntactically valid sentence in a programming language
Build the parse tree, a tree representation that describes
the code structure of the input program

CAllRights Resenved
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/

1 eak O\Y)P\g ity * Prencun—s {}erh%objcd-

m is Parsfng?&

OFor a given language L that has a ;

grammar G, a string

of tokens N is a yalid sentence in]

production rules of G

L if there is a

sequence of derivation steps that derives N using the

@ Parsing is essentially the process of discovering a

derivation for some sentence in a

© ANl Rights Reserved.

lanaua_g_%

1/25/19

AR
Ae’ro\\lc&%o\’\

<)

s

Parser B\ (-‘E}\-P—D

Roadmap

we will studyfcontext-
mathematical model for describi

programming languages

ars) a
ng syntax in

we will study top-down parsing: an

_algorithm for testing the membership of sentences in
a language using the rules of a context-free grammar

= We will also cover how to write the code of top-down

parsers

2 Al Rughts Reserved

cﬁ;
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Jlonoun

L avkiliary wdfocliy
He | O\L \(’ oo
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Context-Free Grammar (CFG)

* Aset of production rules that abstractly describes
how strings are derived in a language

* For example, the following grammar describes how

strings of brackets can be formed \ ;’7\ '\97,
Nonterminal symbols \A‘ =
———— B )’9‘1
Production ) J "R

rules

(
(5
G{‘E Terminal symbols pe e)

© All Rights Reserved AItcrnau on

Deriving Sentences with A CFG

is called the start symbol
because its where the
derivation starts

+ Let us try deriving the string

S
B-———.—'————D

M ) B e

Py oy -
[ U:wa

T N

AEEE

S =B
= [B]
= [[B]]
= [[O]]

Start with rule 1
Use rule 3

Use rule 3 =3

Use rule 4 v\' Sj 6 WUQJL‘b
© Al Rights Reserved i

s C TC ‘_(]) e ®

| AT
i
@ \ - 1
P
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Components of ACFG

» Formally, a context-free grammar G is a quadruple
(T, NT, S, P) where:
is the set of terminals

o Terminals are basically the syntactic categories returned
by the scanner

E s the set of nonterminals

o Nonterminals are syntactic variables introduced to provide
abstraction and structure in the productions

is the non-terminal designated as the start symbol
is the set of productionsin G

o Each rule in P has the form NT — (T U NT)+; that is, it
replaces a single nonterminal with a string of one or more

grammar symbols
€ All Rights Reserved.

CFG Examples

Specify the terminals and the nonterminals for Mar

1. E ~——— numOp num Etail ; 3 ch —

2. Etail =+ Op num Etail ? #Yelmin [

% | e : mire
¥

4, Op ——fy mn l-?/{

5. | =

1. S — ( Arg_list)

2. Arg_list =~ idArg_Tail

3. Arg_Tail —— |, IdArg_Tail

4. | €

\ © Al Rights Reveryod

‘fuﬁ -—b(')(/ Y, ?)
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-2+ % o

Q

——_‘;.rlu‘m num EJra]S.

@ D,

\ F— wum op num

&

Num — now OP num Ec $
. -l _
num ~ num—?— hum E)rt/ﬁ\ §>
B e

hum - AUM + hum $
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p P}ﬁ;( o deasaken) Pl x

Derivation Process

. A derivation consists of a series of rewrite steps
e e o)
S=>2h=2L=>..2%,=>1, (}y{(‘\ﬁ\

1. The derivation always starts with the start symbol S
2. To gc‘t Y; from Y,,,, expand some nonterminal A€Y;
by using production rule A > « %

3. Repeat (2) until there are no terminals
The derivation terminates with N: a valid sentence in the

language L(G)

© All Rights Reserved

Terminology for Derivation

I form is a string of terminal & nonterminal
me derivation

A sententia
symbols that is a valid step in so

denotes the start symbol S
steps

The derivation S
derives the sentence N in zero or more

The derivation S -—-@denotcs the start symbol S
derives the sentence N in one or more steps

o All Rights Resenved
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Parse Tree

o Parse tree: a directed graph that ig

A B LR

(Pleset.

© All Rights Reservi

/¢ presen ,lwﬁloc

Parse Tree Properties

» A parse tree
= The start symbol at thé root -[,

» Terminals at thejleaves

= Nonterminals at the Interior nodes
_F_-
A post-order traversal of the le

input string
The parse tree shows which operands as

"f% which operations

J?)))c
£ All Rights Resenved

aves yields the original

sociate with

\
il

Lo,

PS

[ e e
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Parse Tree

. Parse trec: a directed graph that Ig

s='1[O1]

© All Rights Reserves

Tabular (epesd, ¢~

1 ®lee

re Cpiesen laﬂloo h

Parse Tree Properties

» A parse tree has
» The start symbol at thé root L

which operations

i

£ Al Rughty Resen ed

£\

5 .
» Tenminals at thet leaves | h? U%’S
» Nonterminals at the(interior nodes }

@ A post-order traversal of the leaves yields the original
input string

% The parse tree shows which operands associate with
1%
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\___ Derivation Types /

Leftmost derivation: replace, at each derivation step,
the leftmost nonterminal

@ Rightmest derivation: replace, at each derivation
step, the rightmost nonterminal

» Of course, replacing nonterminals can occur in any
order but the above two orders are the most
commonly used

@ All Rights Reserved.

A Derivation Example

We will use the below grammar to
show a leftmost derivation and a
rightmost derivation for the string

“Xx+8*y” * The terminals are
described by the
following regular

é. % rrmm——— E B EXpressions:
- -‘-———* . 1
4 | o id  ([az]| [A-Z] )+
4. | num num: [0-9]+
5. Op —— plus plus: ¥
6. | mud L
mul.

© All Rights Reserved
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Nnuim

g Leftmost Derivation

VNPV

<ddx>+EOp E %

<idx> +<numB> Op £ e @ o
<idx> +<num8> * £ l 1

L <idx> +<num 8> *<idy> e

A post-order tree walk of r.hésu parse tree evaluatesasx + (8 *y)

Another Leftmost Derivation

| <idx> +<umB> Op E
L cid> +enumB> Y E
L <dxo +<num B> *<idy>

A post-order tree walk of this parse tree evaluatesas (x + 8 ) * y \Aﬁ—- / -A,P
VA Rights Resepved

}\ \Qé\) C‘”’ber{QS

lommew’
(59228 IZ Jou

‘;Sj\ ,'\{-Qﬁ
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Rightmost Derivation

(2]
E Op £ *<idy>
. £ Op<num 8> *<idly> 9 @ e * y
= £ +<num,8> *<ialy> l j

A post-order tree walk of this parse tree evaluates as (x + 8 ) * y

<rax> +<num8> * q'df'y)

[t trntas aatinsngnn

f;nother Rightmost Derivation (
/\/—W

T, N
=

ECp £ Op<idy>
6 FOpF*<dys
| EOp<num,B> *<idy>

<idx> +<num8 * <idy>

u post-order tree walk of this parse tree evaluatesas x +{ 8 * y)

© AllRughts Reserved

1, 6)1(3‘6 Yoo SS da’gix’
> nlem
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__Ambiguiity -

* A context-free grammar G is ambiguous if it has
multiple leftmost (or multiple rightmost) derivations for
some string in L(G)

« Equivalently, a context-free grammar G is ambiguous if
there is multiple parse trees for some string in I{(G)

Therefore, a context-free grammar G is not ambiguous
if all strings in L(G) have unique parse trees
* Ambiguity is bad in a programming language because it
can Ic e compiler to interpret different meanings for
the same program

- Com{)ﬂef dodpeiines o dolHoll |

Eliminating Ambiguity

» To disambiguate an ambiguous grammar, rewrite it by
hand

.$ —E E——b ¥
1.’S ==———=FE 2. E = E plusE
2 E — EOpE 3. | B N
3. | id 4. E > id mul B E s _j__‘
4. | num 5 | num mul B , -
5. Op = plus 6. | id T
6. | mud 7. | num % Q J*:‘J
Ambiguous Grammar Rewritten Gramunar: we gave
g multiplication precedence

——

OVer sunmnation
5 All Raghts ReterS

£ S
PN R T L =
Wiy h priof ity
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e
Let us Try Leftmost Derivation

M, e

-~ <jdx> +<num,8> *<idy>

Leftmost derivation of S ="x+8*y is unique

& All Rights Reserved.

Let us Try Rightmost Derivation

|

X

S =9-X+8 *y is unlque

parse trec

Rightmost derivation of ¥y - 14 he same
N thot loftmost and rightmost derivations ¥ield 1 %

11
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Adding Precedence to Grammars

@Adding precedence to grammars removes ambiguity

* General guidelines to adding precedence:
= Create a nonterminal for each level of precedence
= Isolate the corresponding part of the grammar

= Force the parser to recognize high precedence
subexpressions first ‘

© All Rights Reserved.

Example:

Algebraic Expression Grammar

Straightforward grammar is ambiguous

Expr
( Expr)
ExprOp Expr —p (e f—\cxg

number

N QQH 4y ;\“L Sicke e‘(}‘“\)

1Y LY

~ F

Exercise: show that parsing the string “ (x +1)/y -2 ” is ambiguous

c)
() e & lr 12
(’J},;:J\ u;kPizsm %\
/,\__. 9 %\ L
e ———
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\'»9%\\ THY as non-lermina| ¥ SHE

=

Adqing Precedence to
Algebraic Expression Grammar

Addition and
subtraction, last

S

Multiplicationand | [
. division, next

T Parentheses have

Expr

Expr+ Term
Expr- Term
Term

Term™ Factor
Term/ Factor
Factor
{ Expr)
number
id

\ highest precedence

)/y-2q

M'ct
'y ™

© All Rights Reserved.

Exercise: show the parse tree for the string E( x+1

.

“y

NO(A

If-then-else Problem

. Another classic ambiguity example
« Consider the following straightforward grammar:
/———ﬁv /\‘

1. STMT —=.if EXPR then STMT

2 | if EXPR then STMT else STMT
5. | ... other statemenis ...

« Let us inspect whether leftmost derivation for the

following string is unique:

"
“ if expr, then if expr, then stmt, else stmt;

M

o

\ Y
Y

/

13

4__-‘
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Leftmost Derivations

STMT =" if expr, then if expr, then stmt, else stmt,

expry stmty stmt; B ) i
. expry stmty
™ <8 \ Solq
0 parse trees -l::afmg is _z::_n_lglg_p_g_u_s_
. - . 0&9‘1 j\
« Rewrite grammar to remove ambiguity by matching .{2
each “else” to innermost unmatched “if” A\
: A\
if EXPR then STMT e Q\\\
if EXPR then STMT* else STMT K_‘(;“'/
Other Statements
if EXPR then STMT* else STMT
Other Statements
Intuition: once into STMT*, we cannot generate an unmatched else
£ All Rights Reserved

14
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Wi Pafsj/ Tree
ith Rewriften Grammar
Parse tree is now unique
& All Rights Reserved
Is There An Algorithm To Do it? § &
- , \ P No
« There are no known algorithms 10 disambiguate
ambiguous context-free grammars
« In fact, the problem of deciding if a context-free R
grammar G is ambiguous or 00t is undecidable _,-——-—-———--——F‘? ha<
(DTo deal with ambiguous grammars, compiler Writers: nhog enerc
1. Modify context-frec gramrnars‘iw_n_‘,j_a d-eqsure @t o
their unambiguity /

2. Or, allow compilers to accept ambiguous context-

yrn > that tell the
iler wri i de pidelines” that 1€ Ay
= Compiler wrilers inclu 5} e il ultiple trees

compiler which parse tree
. geW

15
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Associativity
i ——i

* We already saw examples on how parse trees
determine the evaluation order

* We use the term grammar associativiry to describe the
evaluation order direction in parse trees

* Example: compare the evaluation order when parsing
the string “10 — 2 + 3” in the following grammars

Left-associative grammar Right-associative grammar

© All Rights Reserved

we 05‘”’“_[}

ool (OH'

[A;;;act Syntax Tree (AST

» Abstract syntax trees are parse tress but may ignore

some details . _
AST: some interior nonterminal
nodes are removed

16

I
=
]
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Summary

« Context-free grammars are powerful mathematical
model of syntax in programming languages
» For a given contexi-free grammar G with a start
symbol S, the language L(G) is all strings N such that:
= N contains only terminal symbols, i.e., legal tokens in the
language
» S='N, i.e, there is a derivation of N in L(G) using the
production rules of G
» A Parse tree is a directed graph that re presents the
derivation of a string in L(G)

 Ambiguity in context-free grammars is undesirable

© All Rights Réserved.

Exercise
- A$
- 04
| 8
5 —|> 18
a N
97

1 A6

* Specify the terminals and the nonterminals of this grammar

Write a regular expression that can generate the langnage
described by this grammar

* Using leftmost derivation, draw the parse tree for the string 1S Hn\-")

(13

& v

o)\ %
N p c'vIS/cj )
b E j e ig’c(/)gx
k <
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ap

Exercise

\G Write a context-free grammar that describes the same
language as the regular expression 0"/

N
\G) Write a context-free grammar that describes the same
language as the regular expression 0 I*

€ Write a context-free grammar that describes the same
language as the regular expression 0*7 | 0 I

e GA\.\O .\B

€ All Rights Reserved

B

| ¢

Exercise

« Is the following grammar ambiguous? Justify your
answer

45 All Rights Reserved

B S\rr‘mé that hove S PaSe e
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Top-Down Parsing
Spring 2018/2019

Instructor: Dr. Fahed Jubair
Computer Engineering Department
University of Jordan

@ The parser processes all fokens returned fron} the scanner
and produces a parse free that represents the input program

structure (or a syntax error if an invalid structure is found)

* In this lecture, we will studﬁop»dowu parsingl a cgm
algoﬁthm that builds the pars%r tree using the derivation
rules of a context-free grammar

tring of
tokens

* There is also ottom-up parsiggbut it will not be covered
by this course

(7]

Al Rights Reserved ST

e U

e ——
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_Parse Tree Propertzes

A parse tree has

® The start symbol at the root

* Nonterminals at the interior nodes
® Terminals at the leaves

* A derivation is discovered if a post-order traversal of
the leaves (j.c., terminal nodes) match the tokens
returned by the scanner

hon--\afmm&&“ﬂ \eaQ \S»L 0 leo %

€ All Rights Reserved. 9

Top-Down Parsing

» A basic top-down parsing algorithm:

1. Construct the root node of the parse tree

2. Repeat until lower fringe of the parse tree matches the
string of tokens

i.  Atanode labeled A, select a production with A on its lhs and,
for each symbol on its rhs, construct the appropnate child

ii. When a terminal symbol is added to the fringe and it doesn’t
match the fringe, backtrack

iii. Find the next node to be expanded

8 All Rights Reserved K]
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Recall The Algebraic Expression
Grammar

B )&( qoi

Expr+ Term

- Term ' W=
o / { el

-
I
|

— Term?* Factor
l
|

-
|
I

Term/ Factor
Factor

( Expr)
number

id

Letus try deriving S =°* x -2 *y
using the basic ‘GP;Q.?,,};{,{} Rggging algorithm

S="x-2"%y

Input Stream {the arrow points to the
next input token):

The root is the start symbol

Pickrule 1

Pick rule 2
Pick rule 4

Pick rule 7

Pick rule 10
“x” matches “id” type -> advance arrow to the next input token . ) l

© All Rights Roserved
Ll
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S = X—-Z*y

Input Stream (the amrow points to the

next mput token): =
"% +‘l1 does “Ot match “-“ m
The algorithm backtracks

and try a different rule
while reversing focus arrow

© All Rights Reserved.

S="x-2%y

Input Stream (the arrow points to the

next input token):
Pick rule 3
Pick rule 4
Pickrule 7 i)
Pick rule 10 o <

“id” input token
“¢” matches “id” type - adyance to, the next inp

— g A

L}

Sul /e
M"x&SMq‘rdf\
sy e QN

-
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S=>"x-2*y

*""—-——\‘_______’:

Input Stream (the arrow points to the =
next mput token):

wn matches m w

advance to the next input token

© All Rights Rescrved

S="x-2*y

Input Stream (the arrow points to the
fiext nput token):

Pick rule 7
Pickrule §

<id,x>

“2” matches “number” type -> advance to the next input token

© All Rights Reserved
M &
——
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S="x-2%y

=),
WL
| 97 | Lo
i
e LR N 2

© All Rights Reserved. 1

Input Stream (the arrow points to the
next mput token):

No nonterminals left to expand

input stream is not fully consumed yet

S="x-2%y

Input Stream (the arrow points to the
next input token);

Pickrule5 > @ Gomp
Pick rule 7 &
Pick rule 9 2::93

“2" matches “number” typg - %.ddyance to the next input token

1

4hss Ss \)sz) 1&ecl

%I’ Joﬂfpofh’)an@ JJ 6
(me?HcQ.g;;‘o/ S
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r i

|
_(Dﬂ_efgg,_s*,_il_al_e_ Bad Scenario

Consider the following scenario
when deriving S =" x -2 * y

Pick rule 3

D o

Because rule 3 m top-down parsing

has the possibility g{ljgfgpitgngxecution

1
N

The Left Recursion Problem

S - Expr Recursive use of rules 2,

Expr  — Expr+ Term 3,5 and 6 leads to an : .%
| Expr- Term infinite sequence of [
| Term expansions <

- * Eactor Non-termination 1§

oy . W definitely a bad property
| 7erm/ Factor .
| Factor for compilers

Factor - (Expr) We refer to this problem as
| number the left recursion problem
| id

 All Rights Reserved

)y
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Eliminating Left Recursion

R

» Solution: rewritec grammars so that they are right-recursive
* By hand
= Using an automatic tool

i 1/25/19

3 Consider the following simple left recursive ar:
B
| B '
\— ? _'3 V‘ih') “ J

*__We (or an automatic tool) can rewrite the erammar as follows:

A = BA = ; -
ity wopil he new grammar
right-recursive .

\ © AD Rages Roeuad 1=

@eneraﬁze\

A general lefi-recursive A = Aa: |Aasl...lAa;
R e —

grammar I BilB2lolBa

The equivalent nght-— A - B A | B2 4! v | Bm A
TECUFSIVE grammar A = qAlaAl.|la. Al
m

© AR Roghts Rosered >

10
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Eliminating Left Recursion
in the Expression G_famma_r

The expression grammar

1 -
contain the following left : ‘:{;{’gﬂg thi Ipnstoenzsten
recursion cases '

»~ 1 -
A Expr > Term E
Expr  — Expr+ Term " £ i & T
| Expr- Term e
| Term > | - TermE
1 | €
A ;S\ E
{A 7erm - Term™ Factor t  Term — Factor 7
| Term/ Factor } T — * Factor T
l Fadarﬁ ; | / Factor T
1 ] £

© All Rights Reserved. 3 n

plot iy N P\ L p

The Right-Recursive Algebraic

Expression Grammar
- Expr
— Term £
- +TermE + A top-down parser will
| -Termé& always terminate when
| ¢ using this grammar
- Factor T
- * Factor T l
| 7/ Factor T « Exercise: show the parse
| ¢ tree of S =" x—-2*yusing
the basic top~-down parsing
- ( Expr) :
Igorithm
| number e
| id
w All Rights Recerved
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=
——

\ How tm

- Top-Down Parsers?

O Multiple approaches have been introduced in the
literature to implement top-down parsers

@ A popular implementation is the recursive-descendent
parser
e

O A recursive-descendent parser comprises a set of
mutually recursive routines that cooperate to parse a
string of tokens

® Each routine typically corresponds to a single production
rule

€ All Rights Reserved. 23

A Basic Function For
The Recursive-Descendent Parser

* Let next be a pointer that points to the next token to be
consumed in the input stream

* Define a boolean function that checks for a match ofa
token with the next input token:

bool MATCH (Token ¢) {
if (t = *next)

’ IsEqual = #rue ;
>Q 4/ clse

IsEqual = false ;
next ++;
return IsEqual,

} © All Righty Reserved n

o ﬂ\\f’/ —p i

nelt  boken ho 8
ConsumeCﬁ

e

) Ll;\?’
X a‘\*\ ’
+ b — Yoken
12
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Top-Down Parser Code
For A Simple Grammar
Rule § —
bool S () { retum B() && C() &&.A() 3
N Rule 4
LAT () { return §( ) ;}
- return frye ;3
7 %> e bool A () { <
- Token *save = pext:
>i ff) ret ! EAI();)/-'"— M try Al rule fust > (S\'?,i’\
next=save,A2(),); //thentry A2 rule T 2
BN 2 N e YL
y ries rule A2if Al fails DAL ponter » C. \» f)\
: \ \
(N M 750 PPN e VD $ f
N \ C AN
Top-Down Parser Code i P
For A Simple Grammar A Lt
S — BCA t?’ =
A - S '
Rule 2 | ¢ 4
|- bool B () { return MATCH(€ ) ;} 8 =€ M \{l}&
< )V | bool B2 () { return MATCH(E) ;} : =
. " c
/‘{ ()\ bool B3 () { return rrue ;} s :r,-umber i
xed® v bool B () { |81 I
' Token *save = next;
< d // try B1 rule first
\é«\ return  (BI1();) : B2 rule
b (next=save; B20)) Y then try b= |
H ( next = save; B3(); ) I then try B3 ruie
} Al Rights Reserved -

13

Scanned with CamScanner



Top-Down Parser Code
For A Simple Grammar

4140/ 1

Rule £

bool C1 () { return MATCH( number ) :}
bool C2 () { return MATCH( id ) :}

bool C () {
Token *save = next;
retam  (CI();)
I (next=save;, C2(););
}

© All Rights Rescrved.

/l try C1 rule first
// then try C2 rule

o
b

i

mber

-y ——4 =14
[~

a;ai"rb‘”im »®

Exercise

W

» Write the code of a
recursive-descendent
parser for the
€Xpression grammar

Expr
Term £ B
+ Term !::
-TermE
&

Factor T
* Factor T
! Factor T
£

( Expr)
number

id

i ey § ——ET

8 All Rights Reserved
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Invoking A Recursive-Descendent
- pmm—
Parser

@ To start a recursive-descendent parser:
= Initialize next to point to the first token

= Invoke the start sﬁﬁymbmmutinc
(® Easy to implement by hand
« Similar to scanners, there are software tools that
generate the code of parsers automatically

+ Example]ANTLR \

Input Grammar
by user \

| —

Java codes for a
scanner and a parser

© All Rights Rescrved 29

1/25/19

Summary

(9 Top-down parsers find a derivation for a stﬁng of
tokens by building a parse tree

® The parser starts at the root and then extends the tree
downward (hence the name top-down parsing)

= The parser terminates when the leaves matches the tokens
returned by the scanner

®» Leftmost derivation is used
() Backtracking is needed when a “bad” pick of a
production rule is used
« Top-down parsers cannot handle left recursive
grammars

= Solution: rewrite grammars to be right recursive
© All Rights Keserved

0

Pm’@l’( «

15

Scanned with CamScanner



1/25/19

Summary (cont.)

e —

e

* Recursive-descendent parsers are popular
implementation for top-down parsers

- = However, a major source of inefficiency is the need to
backtrack

. ily. there are algorithms for backtrack-free top-
down parsing @ Wiy

* The topic of our next lecture

© All Rights Reserved.

Exercise

—> (A)x(B)
—> T num
— T ptm +

| €
—s B+ num

| num

w A w»

N

« Rewrite the above grammar into a right-recursive grammar
« Using your new grammar, show the parse tree for the
following strings:
" (1+2+3)x(2)
o (2)x(1+2+3)

1 All Rights Reser

Dol dsfb%%
MJ@M

—
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Predictive Parsing
Spring 2018/2019

Instructor: Dr. Fahed Jubair
Computer Engineering Department
University of Jordan

Review: The Problem
of Backtracking

* Backtracking makes top-down parsers really slow and
inefficient

* This inefficiency arises from the parser’s lack of
knowledge of which production role is the correct one

» Therefore, it tries all rules till finding the correct one

* This lecture introduces LL parsing: a computer
algorithm for performing backtrack-free top-down

[ parsing

© All Raghts Rescrved
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Key Idea: Lodking Ahead Helps
Expr
Term £
+ Term €
- Term Ee
£
Factor T
* Factor T
/ Factor T
1 3
( Expr ) A smart parser would lookahead at
.number the next input token “x and
id conclude that the rule Factor — id is
the correct rule to choose

—— | pck Seee
Y vmmalV oV Q“'(L A ds G lavmmens

> Backirack-Free Parsers

* Given A - o | B, a backtrack-free top-down parser should
be able to choose between o & B without the need to
backtrack

* The key idea is to tlook alzeaaﬂ at the next input token
when selecting the production rule

® Let us call this token the lookahead foken

* We refer to such parsers as predictive parsers becanse

they predict the “correct” rule to use

* Predictive top-down parsers are also called LL parsers

* They read the input stream from left to right (hence the first Bl
and they use leftmost derivation (hence the second 1.7

£ All Rights Reserved 3

parse e Jdpd dp & 15
syl ool = SARTERY Glo 1919
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* A grammar for which a top-down parser that reads
the input from left to right and uses lefimost
derivation needs a lookaheud of at most one token to
always predict the correct rule

Using LL(1) grammars, a top-down parser can always

predict the correct rule every time it expands a

nonterminal

© All Rights Reserved %

Predictive Top-Down Parsing

Consider a top-down parser that uses an LL(D)
grammar

Let the next nonterminal node to be expanded by a
the parser be 4

Let the lookahead token befr |

When expanding A, the LL(1) grammar has the
property that there is 4 unique production rule 4 — o
such that « =" ¢, i.e., there is only one rule that can
derive token ¢ in the first position

Therefore, LL(1) grammars enable top-down parsers
to be predictive

© Al Rights Reserved ¢

A"'—‘bto(.———a L _IJ";YL'J'J"?
| o,
0( g
o
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LL(1) Grammar Example
Expr
Term i
+ TermE
- TermE
£
Factor T
* Factor T
/ Factor T
€
'(‘f:gg r) Lookahead tchn isx
h Factor — id is the only rule that
id derives x in the first position
© All Rights Reserved 7

Prediction Criteria

~

* A production rule 4 = o can derive a terminal ¢ in the S ‘?
first position under one of the following tions: KOS
irst position under one of the following two conditions: NO

o

2. £ € FIRST(o) and ¢ € FOLLOW(a)

FIRST(w), OR
tE a Q\)&_ﬁ. Ia\hj

Let us define FIRST
and FOLLOW sets

& All Rights Reserved
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FIRST Sets

* LetA4 — « be a production rule in an LL(1) grammar
* FIRST(a) is the set of all terminals that appear as the
first token in some string that derives from
FIRST(a) = { all terminal tokens ¢ such that =>'r[;s !

* FIRST sets have the following properties:

FIRST(t)={t}, wheretisa terminal
© €EFIRST a) if any of the following holds:

ca—g, OR
ca—=+X)X;... X, and X; — ¢ for all j: I1<i<n
FIRSI{&)QFIRSTI&)

fpaX X, ... XnaandXiﬁsforalli: 1<i<n

S All Rights Rexerved

Example 1

S - Expr

Expr - Term €

£ — + Term f_'f
| - Term €
| ¢

Term — Factor T

a - * Factor T

FIRST (+)={ +
FIRST ()= { -}
FIRST (*)={*)
FIRST(/)={/}

FIRST ( Factor) = {(, number, id }
FIRST (* Factor T) = { *

FIRST(T)={* 7 ¢} | 7 Factor T
FIRST (Term) = { (, number, id } | &
FIRST(E)={+,-,¢} ! Factor - (-Expr)
FIRST (Expr )= { (,number,id ) |41 | number
FIRST (8 )= { (, number, id } 12, | id *

© Al Rights Kesenved

* 4
¥—

Vo (Qado“—* Cerg)) = i d

Rule (© ] E,\mb@rj

' \
cle 07 1 e

1/25/19

Rackor
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« Terminals are €, £, humber, id
= Nonterminalsare 4, B,C, S

number

—l——i=4

a

FIRST (€)= { number, id }
FIRST(B) = {€,. £ ,¢}
FIRST (S) = { € £ , number, id } @

FIRST(A)={€,£ . number, id

© All Rights Reserved 1

1/25/19

Rest ()=

€5 £,%)

TR
%/hs\gb
Ad

FOLLOW Se

« Let A be nonterminal in an LL(1) grammar that has -
start symbol S ‘

« FOLLOW(A) is the sct of all terminals that follow 4 in
some sentential form
FOLLOW{A)Y = {all terminals 7 such that S=>"a AP}

. FOLLOW sets have the following properties:

$ & FOLLOW(S), where $ isa special end-of-input token

Ignore € when computing FOLLOW sets '

If 4 —» @ [, then FIRST (B ) € FOLLOW (a)

If A — o B, then FOLLOW (4) & FOLLOW (B)

W~

IfA — « pandp ="¢, then Fi OLLOW(A) € FOLLOW(®)
12

5 All Rights Keserved
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G @\ s

—
Example 1

FOLLOW () € FOLLOW (Expr) P
FOLLOW (Expr) € FOLLOW (&) -
FOLLOW (Expr) € FOLLOW ( Term) ~ + Term€
FIRST(&) € FOLLOW ( Tersm) | - Term & d&u U‘J P\ W 2
FOLLOW(&) € FOLLOW ( Term) ! & Ul 7 r\ ‘
FIRST( Term) S FOLLOW (4 .
FIRST( 7erm) S FOLLOW () - f"""" T - 0 ?’ 9://"
FOLLOW ( 7erm) < FOLLOW (7 - * Factor T{|[00 S aP
FOLLOW ( Term) € FOLLOW (Factor) | < | 7 Factor T
FIRST(7) € FOLLOW (Factor) | ¢
FOLLOW( 7) € FOLLOW (Factor) Factor — ( Expr)
FIRST{Factor) € FOLLOW (*) | number
FIRST(Factor) € FOLLOW (/) | id

FIRST(Expr) € FOLLOW ( (")

© All Rights Reserved

Example 1 (cont.)

FOLLOW (S ={$}
FOLLOW (Expri={$,)}
FOLLOW(E)={$%$.)}
FOLLOW(Term)=1{%,).+, -
FOLLOW (73=1{%.),+ -} :
FOLLOW (Factor)=1{$,).+.-.* /)|
FOLLOW (+) = {number , id , ( } :
FOLLOW (-) = {number , id , ( }
FOLLOW (*) = {number ,id , (}
FOLLOW (/) = {number , id , ()
FOLLOW ( (") = {number ,id , (}
FOLLOW () )={%.).+.-.*./} :
FOLLOW (number) = {$, ). +,-.* ./ }[12.

Factor — ( Expr)

Expr
Term £
+ Term E:
-Term €

£
Factor T
* fFactor T
| / Factor T
| ¢

=
-
-
I
|
-
-

| number
| id

FOLLOW(id)={$,).+.-.% .7}

& All Rights Reserved
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L[> ¢
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¢ Terminals are €, €, number, id
« Nonterminalsare A, B, C, S

FOLLOW (S5)=FOLLOW (4) (why?) |
FOLLOW (5) € FOLLOW (¢) e
FIRST (¢) < FOLLOW (8)
FIRST (A4) € FOLLOW (€)

IO hMne “®

[

mber

o eyl

R

FOLLOW (S)={$}

FOLLOW (A ={$}

FOLLOW (8 = { number, id }

FOLLOW (€)=1{$,€,£ , number,id}
FOLLOW (£) =FOLLOW (£) = { number, id }

FOLLOW (number) =FOLLOW (id)={ $, €, £ , number, id }

© All Rights Resarved. 15

- Ef’fs(— 6%\(0%

PREDICT Sets

» We now merge FIRST and FOLLOW sets into a
single set, called the PREDICT set

» For each production rule 4 — o in the LL(1)
grammar, we define PREDICT{(a) as the set of all
terminals that appear as the first token in some string
that derives from o

« PREDICT(a) is computed as follows:

Predict (a) =FIRST (@)—{ £}
if (£ € FIRST (&) )
Predict (o) = Predict (¢) U FOLLOW(at)

£ All Rights Reserved 15
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1€ E 1
= | [ | [
A 2 W0 > 2
&E \y 5 £ ¢
< Nowt oricr T 8

CYYox

CYYovr 1/
Criov

PREDICT(S) = { number, id , ( }
PREDICT(Expr) = ¢ number, id , (}
PREDICT(E)={+,- ), $
PREDICT( Term) = { number, id , (}
PREDICTY( ={%=,% 7.3.%)
PREDICT(Factor) = { number, id , ( }

S Term - Factor T

- * Factor T
| 7 Factor 1

number
| id

© All Righte Reserved

|
|

Example 2

* Temminals are €, £, number, id
* Nonterminalsare 4, 8,C, S

h"mf’hn(‘n%

<

tmber

.

—l =11y

a

* PREDICT(C) = { number, id }
PREDICT(B) = { €, £ , number, id }
PREDICT(S) = { €, £ , number, id }
PREDICT(A)={¥€,£ , number,id , $ }

© All Rights Resenved
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B :
Letus Redo S =" x-2*y
Final parse tree D
(Expn
(Ferm £
Gp D o
<id, x> €
Eact) ()
<number,2> \q‘D
<idy> :

nol Gl L coame

Recursive-Descendent LL(1)
| Parsers

* In previous lecture, we studied recursive-descendent

parsers: a popular implementation for top-down
parsers

N * We introduced:
\.

Z_zaua pointer that points to the next token to be consumed
in the input stream

* MATCFH(Token t ): a function that checks if a token ¢
matches the next token to be consumed in the input stream

* We now introduce one more function:

@ PEEK () as the function that peeks at the input stream and
returns the lookahead token

\9 Pk = e

13
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A Non-LL(1) Grammar
Example

=12 Function — id

| id(Arglist)
= | id[Arglist ]
Arglist  — id MoreArgs
MoreArgs — ,id MoreArgs
£

* Rules 1, 2 and 3 can all derive token /¢ in the
first position from nonterminal Function

+ Can we rewrite this non-LL(1) grammar so
that it is LL(1) grammar?

# All Rights Reserved

Left Factoring

* Consider the following non-LL{ 1) gr
A= af|aB,|ap]... [of, |y

*

© Al Raghts Reserved

- \e'
a’f‘y ‘Py ?’ﬂ 6@/ 9

* The problem is that token ¢ is a common prefix My ‘>~ ﬁ
Solution: let us factor token o out

Therefore, we can obtain the equivalent LL(1) : %
version of G by introducing a new nonterminal 4: (‘@\\

A-—fofly
A—’ﬁilﬁzlﬁﬂlﬁn

17
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Left Factoring Example

_ - idX
25 Function -  id - (Arglist)
| id(ArgList) | [Arglist]
| idfArglist] | ¢
rglist - id MoreArgs — id MoreArgs
MoreArgs - ,id MoreArgs MoreArgs — ,id MoreArgs
| ¢ | ¢ 3
Non-LL(1) LL(1)
Grammar Grammar
© Al Rights Reserved. 3
Left Factoring
Doesn’t Always Work

LN - S

» Even with left factoring, some grammars still cannot

B M\

1/25/19

be converted into an LL(1) gr.
* Possible solution: use LL(mced
top-down parsing thal uses & lookahead characters

another algorithm for parsing that covers a bigger
class of grammars than top-down parsing

X5 All Rughts Resened 38

18
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Summary

Predictive top-down parsing is an efficient parsing
technique that does not require backtracking

» To use predictive top-down parsing, context-free
grammars must be rewritten as LL grammars

= This can be done by hand or by an automatic software tool
« Predictive top-down parsers can be implemented as
recursive-descendent parsers
» Most programming languages can be parsed using LL(1)
parsers

© All Rights Reserved

37

Exercise

- AR§

i. The above grammar is not LL{1). Explain why.
@ Use left factoring to rewrite the grammar into an LL(1)
grammar '
iii. Show the LL(1) parsing table for your grammar in pa
(I Using the parsing table, show the deri
xxyxwz$

it il

© All Rights Reserved

vation steps for the string

> @'ﬁ

.
<
38
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Exercise
« Construct the LL(1) - -£
parsing table for the shown Vo A€
LL(1) grammar | VEtail
= idVtail
* Using the parsing table, -+ (&)
show the derivation steps | e
for the string - =-£
id — id (( id)) | e
QVA." Rights Reserved »
\ Lo ) il $4
W
[~
\/3«» \
L tes|
20
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Semanti'c Actions
Spring 2018/2019

Instructor: Dr. Fahed Jubair
Computer Engineering Department

University of Jordan

Semantic Actions’ Role

Parse

P r
rogram

Tokens!:
Text s

* The role of semantic actions (or semantic analysis) is to
analyze the parse tree in order to

1. Build the symbol table
2. Check for semantic errors

|| 3. Generate the intermediate representation (IR)

L @ Al Rights Reserved.
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Semantic Errors

« Some errors are beyond syntax analysis
« For example, what is wrong with the following C code?

float foo {(int n, int m){
int & ¢ !

}

void main {){
int 3, b :
flcat cl(4];

char =*pj

ci8]l =1 ;

d 5

p
b

nnn

2 »
fooib):
p +d; |

} @ Al Rights Reserved.

Semantic Actions

« Semantics actions are routines that are invoked
while traversing the parse tree to examine the
meaning of the program

* These routines check the meaning by applying a
verity of correctness checks

« In the end of the semantic analysis, the parse tree is
traversed in order to construct the IR

@ All Rights Reserved.
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The Visitor Pattern
e Visi 2

I

s = de I
We will define Avisitoz pattern that “o
traverses all the nodes of a parse tree
Each node recursively visits its e Y
children
Default behavior: do nothing
For example, consider the shown o o e
parse tree example

Visit Y () {
Visit S () { Visit X () { visit (B) ;
visit (X) ; visit (4); visit (C') ;
visit (¥); } visit (D)
} }
d‘:\\(ﬂeg‘ u.Q S @ All Rights Reserved.
Parse Tress With

| The Same Children Type

In parse trees, multiple instances of the same node may
appear in the same level (e.g., see the parse tree below)
To distinguish between these nodes, the visitor pattern uses

an array

L{Q w2, have

Visit X () { @ B 9 A
s o) 4 l
visit (B ) ; PCA(SE( J

visit (_{JE] ) :
| Faévw

@ All Rights Reserved.

Scanned with CamScanner



2/21/19

|
| Integrating Semantic Actions
; With The Visitor Pattern

* Compiler writers override the o
visitor pattern functions to insert

semantic actions (o) )

Visit () {
#actionl €——_____ Insert code here to perform
visit(B); actions before visiting the
visit (C); children nodes
visit (D) ;
Faction2 «——____  Insert code here to perform
} actions after visiting the

children nodes

@ All Rights Reserved.

Example 1

The below grammar describes a list of identifier,
which is often needed in programming languages

Write semantic actions to count the number of IDs
* E.g., when traversing the parse tree of ([X, y, Z), the count

of IDs is@)
B8 s - (id list) L}
| id _list - id list_tail g hwﬂ
I '3  [list_tail =, idlist_tail
I | ’ = e &
e | Rule — Y ol

@ All Rights Reserved.
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/l\\sh-x?l-ﬂ-%

> ¥z Example 1 (cont.)

The Visitor pattern: default routines

Visit Rulel () {
visit (¢1d_list);

Wl Jeste <
" kel

?uk ):)‘ (Cu‘? Gw

1d s

NIt s (,“\
q__
vesth (i’cl_\{’ﬂ:‘

Vsit (_J )

return ;

}

Visit Rule3 () {
visit ( /id) ;

return ;
}

visit (/ist_tail);

Visit Rule2 () {

visit (id) ;
visit ( fist_tail) ;
return ;
) 4
list_tail has two rules que, X
Which one is invoked ? o\
—Visit Ruled () { y Vo7
return ; .
) ' \@3&7

Visit Rulel () {

count=0; %
L— visit (id_list);
return ;

}

Visit Rule3 () {
count++; —n -‘Z:
visit (fist_tail);
return ;

}

_int count;  // global variable (\(C€SS

3 A0
S
@ AN Rights Reserved. ) \/ £ WmW‘O '
nol ~
Example 1 (cont.)
We write semantic action pass that overrides
e_\the\routines of the Visitor pattern \’ﬁ‘(‘.& _\,’,_9 -,

\

od e very where

2
Visit Rule2 () { W) ? o)
> Vistegd] -
visit ( fist_tail); il . o x .
. \
return ; \\ o

}

Note that count is passed
down from parents to
children while traversing

Visit Ruled () { the parse tree

return ;

}

@ ANl Rights Reserved.

ﬁSQmankc, qH—(‘x\ou]w‘?———_»,s Coun b C\Q ;CQ
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[ Example 2 |

» The grammar describes an algebraic expression of
integers that are added to each other

» Write semantic actions to evaluate the exi ression

= E.g., when traversing the parse tree of | the
expression evaluates to 18

= Assume GetValue(Token t) is a function that returns the
integer value of t, where ¢ is a token with the type INT

— —_— \ﬁ-(m'in&l\
| jExpr -  Expr_prefix INT

% 2. Expr wprefix —  Expr_prefix INT +

£33 | e

@ All Rights Reserved.

2/21/19

EXp

A

Pretts

pedd. en\

/N

o, T

\ 5

356G e W x, Wae) o cithibddes Glo

Example 2 (cont.)

Visit Rulel () {

int sum = visit (Expr_prefix) ;

sum = sum + GetValue(INT) ;

print sum ;
} o Aok 9 7y

W\)‘-

Note that sum is passed up
from children to parents while
traversing the parse tree

Visit Rule2 () {
int sum = visit (Expr_prefix);

sum = sum + GetValue(INT) ;

return sum ;

}

Visit Rule3 () {
return 0 ;
}

@ Al Rights Reserved.

£

£ _L_§50\6\ 39[

it Rude V O
<( veaeh (pred.)
vatk (INT)

vtk Qule 20)
1 sk (ped)
Vit (inU
Vistk (+)

bo'H'Oﬂ’\ UP

g

visik Rade 30)

1

7 ans -
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Vistt P\;lz Ai O
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3 4

tstt Rule 20)

E Sl = S +3elu<ul»&(mt’)
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Semantic Attributes

« Semantics attributes are information that describe
some meaning of a terminal or a non-terminal in the

parse tree
+ Information passed from children nodes to parent
nodes are called synthesized attributes

» Information passed from parent nodes to children
nodes are called inherited attributes

@ All Rights Reserved.

Semantic Action Passes

P

e The number and functionality of semantic action
passes vary from a compiler to a compiler

* In this course, we will consider the following
traditional semantic action passes:

—ep 3 —(® First Pass: building the symbol Tab
% Q@SQC)r (® Second Pass: performing type checking

/@ Third Pass: generating the IR
C‘/ @ All Rights Reserved,
ep 4
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Building

* A data structure that the compiler uses to store
information about declared identifiers

* Information in symbol tables are typically obtained
by processingm
T T T

= Function declarations

= Variable (scalars, arrays, pointers, etc) declarations
» (Class declarations

* Building symbol tables is typically the first pass in
the semantic action passes

@ All Rights Reserved. I

‘ Scope g ¥~ Jowe

* Each identifier in the symbol table corresponds to a
scope

* An identifier’s scope is the portion of the program where
this identifier is visible

. WS: variables that are visible to all scopes

* Local variables: variables that are declared by a
particular scope, i.e, only visible within this scope

* Note that scopes can be nested within each other

* Are variables visible across nested scopes? The answer
depends on the programming language specification

@ All Rights Reserved,
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A C Code Example

#include “stdio.h"

int %, y3 Global Scope
Y —s [ IDName | ID Type
float foo {int n, string m){ X int
T}?at oL y int
' A Aable S\p

void main (){

q,lobai scopes

int x, w ;

int z;

1w

@ All Rights Reserved.

A C Code Example

#include “"stdio.h"

it X VS

p ’ _ foo Scope < the hb(j‘
loat foo (int n, string m){
float s ; ID Name ID Type. > o—f
— - n int / @lo lﬁq l(
} . -
‘ ! m string Q_&beg
void main (){ . s float
int x, v ; G\\SO G\\JQ.?\,L\\OKL
,'{ ik In C, variables in the global scope are Qg( fCO
int z; also visible to foo scope
5 S0t
L s s

@ All Rights Reserved.
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A C Code Example

Zinclude “stdio.h”
int X, ¥

fleat foo (int n, string m){

float s
N aiie
main Scope
void main (){ ; —jiiﬁlﬂﬁgj ID‘Type
1 ._—.—-———_* .
int x, w 3} > X int
’.{.. | w int
int z3
i wes
_}; -

@ Al Rights Reserved.

A C Code Example

‘#include "stdio.h”

;int X, ¥Yi | O‘N\‘Qf

float foo (int n, string m){;
. float s 3 i ‘ OM \Q\"
, - | ", 95\

ivoid main (){

int X, W} | Block 1

i ID Name | ID Type
j_{;t z3 / Z int

e

} Note that variables in global scope and

i} —_— main scope are also visible to Blockl scope
)i @ fAfsoringto € specification)}

S

g dble Ssw) e ¥
SCOPLtL}st , Hpe 5 Blame g 2=\
T

2/21/19
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Clases /m@Mst/ j-c)e”h‘&e/’ T

A C Code Example

#include‘:'std io.h"

int x, v;

fleat foo (int n, string m){

fleat s ;

}  Special symbol table for

void main (){ fﬂogng function information
int . Function | Function Function
=0 e BT Name | Return Type | Arguments
{ foo float int, string

int z; main void --
l @ All Rights Keserved. (D\\ :Eunc“ ‘D

A C Code Example

#include "stdio.h"
int x, y;

float foo (int n, string m){

float s ; : 1 .
e ' Relationship between scopes
} Outer
: Global j 13COPES
void main (){ !
1
int x, w ; : Variables
st 1 Visibility
1
{ 1
. 1
im.t 3 Blockl + Inner
. . scopes

v

@ AN Rights Reserved.

11
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Symbol Table Organization

* An individual table for each scopel
/
B ¥ g

® Advantage: simpler design and more memory-efficient

\/ tﬁ\ )3 @ D\igg\v_q_n@ge: may need to search in multiple tables‘
>4 . . - . . ] t -
J'x \}5 N\ © pousspiin
0 * Or alternatively, one symbol table for all scopes
6( Yy ym
\57} *X = Advantage: faster search time

Disadvantage: more complex to design and manage

@ All Rights Reserved.

afay -\ _ e WL symbol - MY GS y
b rm?P - Raassld b,

Symbol Table Implementation

(1) Linked List
®» Straightforward implementation

® Impractical for big programs (due to O(n) search time)
= i, I S
Binary Search Tree

* More practical for large programs: O(log n) search and
insertion time for the average case

wo&\
CoSe

* Can still be slow with the worse case scenario: O(r) time

@ Hash Table

= Best solufion

* Most common implementation

@ ANl Rights Reserved.
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Symbol Table Interface

Opens a new scope in the symbol table. New
Opesicope () symbols are entered in the resulting scope.

Closes the most recently opened scope in the
CloseScope () symbol table. Symbol references subsequently
revert to outer scopes.

EnterSymbol ( Name s, Type £) ::[S);:;tsvél;:l?[l]? ::c\;;::se data type is ¢ in the symbol

Returns the symbol table’s currently valid
RetrieveSymbol ( Name s ) information for variable s. If no such entry exists,

then a null pointer is returned.

LDeclaredLocail v ( Name s) Tests whether variable s is present in the symbol

table's current scope.

* This is one way of designing the interface of symbol tables
* Other ways to design symbol tables are also possible
- @ All Rights Reserved.

Implementationm

* Use the visitor pattern to write semantic routines that
insert declared variables in the symbol table while
traversing the parse tree of the following grammar

17 var_dec! — var_type id list;
2 var_fype — INT

i3 | FLOAT

L4 id list —  idid_tail

"5l id tail - ,idid_tail

L6 £

@ All Rights Reserved.

rony e hos a \fsf
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kettonn (1O sd.
X

Gt Implementation Example
Type - N W ex
Vlsii-t Rulel () { V‘[m;() { e
Type p = visit (var_type); String var = getTokenName id);
ot twing [] vars = visit ?J",Z_II'S?‘) : Biing [] vars = visit (7_tail) ; + ryle Y
onl ‘Y\ a— foreach ( String var : vars ) ‘}\( vars.add(var) ; 1 (_‘ Cb
aléy EnterSymbol (var, p); 313’.’ return vars ; \Q S,\ _\)\S\+ Qag \)
04> } ' } o5 st
s\““(@% M\ Y e
B Visit Rule2 () { Visit Rule5 () { ;;P" E
,Lu)l‘g : \ l‘etumw; // same code as Rule4
-~ ! ) } } 6
NVt 5
\oS .
Vol i A Visit Rule3 () { Visit Rule6 () { &
{ule return Type FLOAT ; reun[];  // empty array o
(- | )
Q{u_w @ All Rights Reserved.
/2
0

Second Pass:
Performing Type Checking

* The purpose of this pass is to check for semantic errors

* Type checking implementation depends on the
programming language type:

= Strong typed programming languages: languages that require the

arguments of an operation to be of a type that is consistent with
what the operation is defined for

o E.g., Java

* Weakly typed programming languages: languages that requires

no guarantees that operations are performed with arguments that
make sense for the operation

o E.g., Assembly

L

@ All Rights Reserved.
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Symantec Routines
For Type Checking

[} m
oo o
5 Symbol s = RetrieveSymbol(id) il .
- if s == null then semantic_error ST CQ' g o
C‘

Typetl = visit (Expr[0])
Expr + Expr Type t2 = visit (Expr{1])

if t1 #12 then semantic_error i | \

~ o\

Typetl = visit (id) \beta
id=Expr Type t2 = visit (Expr) expf

if tl #12 then semantic_error

Jope > 52

@ All Rights Reserved.

Symantec Routines
For Type Checking

et Type t = visit (cond) A o (Gng
THEN stmt_ist 1t: t‘:ﬁ Type.l?OOLEAN then semantic_error & K
ELSE stmt_list s (paay, ListE]) Lo §/
- visit (stmt_list[1]) N
WHILE ( cond ) Type t = visit (cond) 0 n
stmt_list ; if t#Type.BOOLEAN then semantic_error w‘)\eo
ENDWHILE visit (stmt_list)

FOR (id = Expr ; cond ; id = Expr)
stmt_list ;
ENDFOR

@ All Rights Reserved.
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Type Checking is Not Trivial

* Due to the fundamental limitammpilers, some
type checking requires complex compiler analyses

* In come cases, dynamic type checking is more
efficient

* In general, type checking can be classified as
[= Static}done at compile-time
o.No runtime overhead but limited to compile-time knowledge
F Dynamic done at runtime N
o No knowledge limitation but runtime overhead occurs

. only use dynamic analysis for the portion that

Tequires runtime knowledge, otherwise, use static analysis
@ All Rights Reserved.

o

Implementation Example

* Use the yisitor paftern to write semantic routines that
check if operands have consistent types while

traversing the parse tree of the following expression
grammar

TR Expr o> Term I3
(:q\gzﬂj' E £ > +TermE
£ 3 | ¢ -
o we b | Term - INTLITERAL 2P €7
P 154 | FLOATLITERAL (¢S %,
ex? £6r | id >

7

@ All Rights Reserved.

2/21/19
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Implementation Example
\ _E_ISII Rulel g i ; l Qisit Rule3i !,{ ;
Type t] =visit(Term); return aull ; %
Type 12 = visit (£) ;
if (12 1= null & 11 1=12)
&L return fail; 03 m
de =% SQWS("(O = return Type.INT';
return success ; !
. (Visit Rules 4
/@ Vlsirﬁﬁe;ype.nmr;
A ype (I =visit (Term) ; }
V"\s\\' (_ 1') Type 2 = visit (£);
- if (2= null‘& ] 1=12) _ﬁ;i—s?_ﬁu—ie‘z@ {
\f'\5\\' C \fl ) ! return fail; Teturn etrieveSymbol(id).type() ;
vestt CE\ ) T }
r&r L 9 = = ™ } @ All Rights Reserved.
™ =
/} L)
ﬂ' (b‘ ’\f \9
(ehul Third Pass:
dse e Generating The IR
w
{E}U * The Intermediate Representation (IR): a data structure
that encodes the compiler’s knowledge about the
input program

* The IR is expected to be
ﬂ( Ve k,/apressive, i.e., contains sufficient information about the

OQ nQo' input program
\ oks ! (;A . Amenable to performing optimization — algw | gu
&, n Easy to transla te to machine code \_d)
o\ OPhn AL gl

og(cfs(@'“ #pesele  meanfog \

@ AN Rights Reserved,

+ Some Compllers Ya ke Hhe pacse Trce o<
IR — n? the ree (€ fesen lation
s Poe & easy o
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IRFropeifies

* An IR has three basic properties:

Ej Structure: can be a graph, linked list, etc
= Affects ease of gene-r;t})%(_’_\‘ Jows Vevell
= Affects ease of manipulation Wigh  level
L2 { Level of abstraction: vary from near-source
representation to low-level representation
= Affects optimization applicability
» Affects ease of translation into machine code

[ 3.2 Naming scheme: how values are represented in the IR
= Affects optimization applicability

@ All Rights Reserved.

IR.Classification
n‘H’ﬂ’bU(&S OJQF%

,/@Qmphical-[—RS—CﬂmPh)
W / * Graphical representation ~€X&~ tree

WA

\Q\l*}‘ » Common example: parse trees, control flow graphs
/@ LinearIRs. ( \{st)

= Pseudo-code for an abstract machine

\)&v » Usually low-level abstraction

¢ = Common examples: 3-address code, stack machine code

@ Hybrid IRs

» Combination of graphs and linear code both bt pue

@ All Rights Reserved.

= Usually near-source level of abstraction

10
\

18
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Graphical IR Example:
Control Flow Graph (CFG

@ graph that models the transfer of control in the
program
. Each[noag in the graph corresponds tc{ a basic block 5

= A basic block is a maximal-length of sequential code that is
free of labels (except at the beginning) and branches
(except at the end)
(@ Each @c in the graph corresponds to a possible
[ control transfe} between basic blocks in the program

* See the example in the next slide

@ All Rights Reserved.

CFG Example
Basic block X =fool () ’_c(’ %\ Uﬂg
X=fo61.{) T |Y=feo2() =
PIRVE e—£Y=foozo A=)
A L-if(x
o1 T e ] o e it
e B=2
f'ﬁw im AT A=3
g et B=2 B=4
B=4
endif
C=A*B
Q—IQ @ All Rights Reserved.
e S gl A
ek ' slalements

giaoh & 975 A PR Vo RN R ©
Nabeiidt gat oy
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Linear IR Example:
Stack-Machine Code

* Designed for an abstract stack-based machine

| = A stack is used for implementing registers
= QOperations pop their operands from the top stack entries, and
then push their result back to the stack top entry

* Example
push X
push 2
X-2*Y = pushY );V }*
multiply X

g\’wﬁ\( < 39 & subtract

@® Stack-machine code greatest merit is its compactness
p——— .
& Bytecode is a common,stackzmachine code example

s-\c*d( mackin TS

2%

=

Linear IR Example:

* Properties:
= Resembles assembly code
= Introduces a new set of names (i.e., temporaries)
= Weakly typed
= Reasonably compact

@ All Rights Reserved,

[ Three-Address Code \
» In general, 3-address code has the form: Ex
opcode, operandl, operand?, result ///"
» Example
muliply 2, Y, $T1
Z=X-2*Y = subtract X, $T1, $T2
store  $T2, Z

/l
s s | g‘m 0/2
Sinple to

7

20

Scanned with CamScanner



FA‘CCL
‘__‘_’__—f'__:‘— "

82 ddress
parse *feegTﬂP“{" e "@ 36{&

. C\J \9./ 2/21/19

IR Code Generation
P e T e R

« While traversing the parse tree, semantic actions
process each node and generate the IR data structure

« In the course project, we will use the three-address
code as the intermediate representation

« Therefore, I will discuss code generation for three-
address code in the next couple of slides

« However, the same concepts can be applied if a
different IR is used

@ All Rights Reserved.

Three-Address Code
Expressions

Three-Address Code = .

vl STORE 1 $T1
a=1; STORE $TI a

s STORE 0 $T2
b=0; STORE $T2 b

e ADD a b $T3
a=abh; STORE $T3 a

DIV 1 a $T4

B _ MULT b 2 $T5
b:=1/a-b*2; SUB $T4 $T5 $T6
STORE $T6 b

Micro VCode"

@ All Rights Reserved.
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Three-Address Code
IF-ELSE Control | & ‘
Micro Code Three-Address Code C’S
-~ reb i |
s SUBI b a $T1 1 c&fﬂ'“
: > STOREI $T1 ¢
R LABEL L1 ‘ a
GE abLl—> 15
IF (a<b) SUBI b a $T1 <69
c=b-a; STOREI $T1 ¢ ;JJ
ELSE | JUMP L2
ci=a-b; LABEL LI elsel
ENDIF SUBI a b ST2
STOREI $T2 ¢
F || L aBer 12
L_—-
@ All Rights Reserved.

Three-Address Code
WHILE Loops

Micro Code Three-Address Code

LABEL L1
wacls :

ro L
WHILE (i!=10) v .10 52

; READI p
READ (p); ADDI i p $T1
STOREI $TI i
JUMP L1 o |

i=itp;
LABEL L2

ENDWHILE

@ All Rights Reserved.

22
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Three-Address Code
FOR Loops

Three-Address Code

corrr— R EU

Micro Code

FOR (i=0; i<n;i:=i+1) MUL t i $T1
t=t*i; STORE $T1 t
ENDFOR mi 1 $712
2| STORE $12 i ‘l—

'Eo( exi

Rl I — L

@ All Rights Reserved.

N STEP 4

Three-Address Code
Semantic Action Pass
« Do a post-order walk of the parse tree
« A node generates code for its children before
generating code for itself
45\“’/
q‘jq\'f\ Visit E () §
44 O (£) data_object Icode = visit (L) ;
1 data_object rcode =visit (R ) ; . 9,'. P—' J
____,,-—\/\;'j @ o emit_code (lcode , mofile Y5 - &
[e AN :9 } ‘ 9 k 5 §
il
5’\/ « Data objects can contain code or any other Objé”Cﬂ
—= : b il
mformation 8 )
@ AN Rights Reserved.
qamurs L g
e run andlr &7 — J
new istbor u=d -v a2
<

IR Fown vk g -
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Example:

e

IF-ELSE Control

L
‘ nei Exprl, Expr2, else_path
.. stmt_list] code ...
jump exit_path

label else_path
... stmt_list2 code ...

label exit_path

TF @ @ ELSE (gm.is)

visit if_stmt () {
exit_path=new Label ();

else_path =new Label ();
visit (cond ) ;

visit ( stmt_list[0] ) 5
emit_code ( jump, exit  path);
emit_code ( label, else_path ) ;
visit ( stmt_list[1]) 3

emit_code (1abel, exif  path ) ;

} . 3 g}
Visitcond (). e
™ Expression el = visit (Exprl); ‘;ﬁfj

Expression 2 = visit ( Expr2) ; Qo\ C::\\J

emit_code (neq, €1, e2, else_path);

}

@ All Rights Rescrved.

f P —
) 14
Example: WHILE Lé8p
e e o
@ Visit while_stmt () {
loop_entry = new Label () ;
loop_exit =new Label () ;
} emit_code (label, loop_entry ) ;
WHILE (ond) Gome_ti) ENDWHILE _icit (cond ) ;
visit ( stmt_list ) ;
e @ emit_code (jump, loop_entry ) ;
emit_code ( label, loop_exit ) ;
’
I oﬁ &\ | label loop_entry Visit cond () {
a ef neq Exprl, Expr2, loop_exit Expression opl = visit (Exprl ) ;
en \_j .. stmt_list code ... Expression op2 = visit ( Expr2) ;
jump loop_entry emit_code ( neq, opl, op2, loop_exit );
label loop_exit }
L @ All Rights Reserved.
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Additional Code Structures

e —

« Refer to the text books to learn more about IR code
generation for
Switch and Case statements i
= Arrays qQ
op Joon

Functions

Classes
(€aQ

= etc

.

@ Al Rights Reserved.

Summary

-

. Semantic actions are routines that the compiler
invokes while traversing the parse tree nodes to:

(® Generate the symbol table
(® Perform type checks
Generate the intermediate representation

« Semantic actions discover the semantic errors in the
program being compiled and report them to the user

. However, semantic actions cannot always discover all

semantic errors in the program
» It is the user responsibility to find any “uncaught” errors by
the compiler

@ Al Rights Reserved.

25

Scanned with CamScanner



2/21/19

Exercise 1

* The below grammar describe strings of integers that are d j\ <:JJ J%
added to each other. Use the visitor pattern to write
semantic routines that determine the sum while traversing

the parse tree of the below grammar.
g the parse free of the

* For example, the sum computed by traversin
string 11+4+40+0 is 55 o b
» Assume GetValue(Token t) is a function that returns the integer (PC\ Y
value of 7, where ¢ is a token with the type INT (Se =
= You may declare any global variables you want, if necessary. : =
& g, ALS

1T Expr — INT Expr_tail lg(l#ﬁm 9] P

' 2 1Expr'_faf7 — + INT Expr_tail

£l [ & 0(7%?9@:»\

@ All Rights Reserved.

\p j?f} p :
\3? ' Exercise 1 Solution
=
am
"U\f // global variables declaration
int sum ;

Visit Rulel ()
sum = Getvalue (INT) ;
return visit (Expr_tafl) ;

<R

i

o

>

o

N
B‘i‘

Visit Rule2 ()| d
sum = sum + GetValue (INT) ;—_/,5 @ufé\l )

return visit (Expr_tail) ;

Visit Rule3|( ) {
teturn 0;
} @ All Rights Reserved.

i
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e

Exercise 2

* The below grammar describes all strings in the regular
cxpression (aa | bab)*. Use the visitor pattern to write
semantic routines that counts how many time @ has
occurred while traversing the parse tree of the below
grammar.

= For example, @ occurred 5 times in the string aababbabbab
* You may declare any global variables you want, if necessary.

FIRE - aa £ |

2 | babE A%
B30 | aa . T
‘4 | bab | w
g @ All Rights Reserved. |

Exercise 3
M

« Use the visitor pattern to write semantic routines that counts
how many floats have been declared while traversing the parse

tree of the below grammar.
= For example, 3 floats were declared for the string

INTab; FLOATb: FLOAT c.d INT e,fg:

= You may declare any global variables you want, if necessary.

— INT id list. V

_ | FLOAT /idlist: V
3 | e

id_list — idid_tail

5 |‘ id_tail = ,idid_tail

A
) :"4
=

S Wi

o

P

£
@ All Rights Reserved.

J£ \o yY lo

_ T T e
Gapl g o
ﬁJ o A IS ot
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Introduction to
Code Optimization
Spring 2018/2019

Instructor: Dr. Fahed Jubair
Computer Engineering Department

University of Jordan

Review:
The Front-End Compiler

(:) The front-end compiler analyzes the input program to
understand 1is meaning é:@gcneratcs a representation of

this program, called the Tntermediate representation (IR)

Source

A |

Intermediate
Representation

e—

2 / " © Al Rights Resenved,
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Review: \
The Intermediate Representation

* )Preserve the meaning of the input program
+/ Can be either graphical, linear, or hybrid of both
*_’Assume an abstract machine
=) Assume unlimited registers
8 Amenable for performing optimizations

© All Rights Resanvesd,

The Back-End Compiler

e

Machine
Code

Intermediate
Representation

80ptimizer: generates an improved IR

Code Generator: converts the IR into machine cede

This lecture will discuss code optimization

3 All Rights Rescrved.
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Code Optimizer
o O e bt

: ! ] = Improved
{:term'edlﬂff' -H-J@ 000 !’ g| i~ Intermediate
e L‘\:J.&I* A A J Representation
L 3

Namoredvacest RE VRS Seposs)

Analyze the IR and transform (i.e., rewrite) it into an
.r‘mgroved IR version

(7 Structured into multiple passes

o~ _Jolden pule: new improved code must preserve

! ¢ . 3 - . -
4/ correctness (i.., applied optinuzations st be saje)

o P
\. - \5 7 © Al Rights antd.-

General Optimizer Framework|

( J Analvze, at compile-time, the IR fo discover
information about the runtime behavior of the
program
Use this information to apply safe transformations
that improve the IR

@ Tmprovements can be one or many of the followings:

Lesser execution time
Lesser memory footprint

Lesser energy consumption
Higher parallelism utilization

etc

© AliRaghts Reserved,
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Scope of Optimization

1. Local optimizations are performed within a basic
block

2. Intra-procedural or Global optimizations are
performed across multiple basic blocks within a
procedure

3. Inter-procedural or whole-program optimizations
are performed across multiple procedures within a

program
e S ————

© All Rights Rescrved.

Code Optimization’s Literature

+» Code optimization has a very rich literature
+ Remember Moore’s law: the continuous appearance
of new architectures naturally motivated rescarchers
to make compilers “smarter”
» Given this course limited time:
» We can only study few basic optimization techniques

» But this is sufficient to understand the general challenges of
petforming antomatic code optimization at compile-time

& Al Rights Reserved.
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Lecture Roadmap

Study some traditional optimization techniques and

understand how to apply them by hand

Study data flow analvsis: a very common compiler

framework used by optimizing compilers

. Iftime permits, come back later and study
dependence analysis: another common compiler

analysis used by optimizing compilers

|29

For simplicity, we will assume high-level
IR codes in aur discussion

@ Al Rights Reserved,

— Constant Propagation

O Constant propagation (or folding) is a compiler
technique that recogn

chnique that recognizes and evaluates cxpressignjs
with constant values

—

*\ Advantages of constant propagation:

» Simplify expressions, reducing execution time and code
_size in the process

» Enable other optimizations

—

€ AN Baghts Reserved,

3/12/.
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Constant Propagation

Examples

X=]2 X=12
YAX*2+Z By Y = Z
retu Y retum{12)+ Y
a: ='* a:=3

= b:=4
c —b‘ -l-ﬂ c:=12
if (cond) ’ if (cond)

c=c=-2 c:=10
endif endif

reunc/2+1

remrnc\12+l_/

© Al Rights RserveaWhat about this ¢ 77

2\/}\/_ E/S\/\p

C ‘
Dead Code Elimination

@cad code is a code that does not affect the outcome
of the program

» )Dead code includes:
s Code that affects dead variables (written to, but never read

again) b
s Code that can never be executed (aka unreachable code)

» Advantages of dead code elimination:
» Reduce code size

» In the case of dead variables, reduce execution time

4 All Rights Reserved.

olmcﬂ_._-as\r\n- T Wl &
nevr  rad.
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Dead Code Elimination

CEampes™
\________,—-""_

Dead variables

Constant " Dead code
2‘{,:'- 1)2( o propagation 2} = 1225 elimmatiyn
2= 2+%+y T FT=Z2Fw v

Z:=Z+37
return Z
retumn Z n return Z 2

e 5*““’“

© All Rightx Reserved.

Dead Code Elimination

_Examples
a=3 a:=3 .
b=4 — b=4 Evaluates false ' \é\ )\Q
c=b*a propagalion c=12 / Unreachable code ‘?’ ﬁ
if(c<8) if(12<8 =
¢c=c-2 _ __..» \0
endif n endif
retumc/2+1 returnc/2+1 ‘9)/\)
/
o Constant Dead code
gf’;‘fﬂ‘;‘f:n g '.= 34 propagation 3 elimination

WO

a:
c:=12 D

4
retum 7 (D
2 returpe/ 2+ 1 3 retuxLz'] 4 y C,JGQ

o All Rights Reserved,
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Common Subexpression
Elimination [CSE)

» CSE is a compiler technique that identifies and
removes redundant (i.e., duplicate) expressions

» Advantages of CSE:
= Reduce execution time
® Reduce code size
= Reduce number of needed temporaries or registers

© Al Rights Reserved.

CSE Example (1)

Redundant expressions

T1:JA+B| TI:=A+B
d\ é T2:=TI 127 T2:=T1/2

LA Y

L W4

T3 :=‘~iA+BE 3=T1 |
L~ C=T3*T2 C=T3*T2
(O
Incurs two loads instructions Single registerto-register

when translated to machine code  move instruction

A2 AN Rughts Reserved

'/}gf &oubr\
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CSE Example (2)

A

/_\Redundant expressions

N t =A*B

;i:glﬂ ) TI=t+X

T2 =t+Y

if ( c]?nd ) Ff{ = Ad*)B
=A*R+X if { con

eise -ﬁa T=t+X

T=A*B+Y elseT v

=t+

2 All Rights Reserved,

Loop Optimizations

e

@ Commaon case scenario: loops are where programs

often spend most of their execution time
* Naturally, researchers have intensively studied how to
* Reduce their code size
s Reduce their computation —=
* Next slides will introduce some loop optimization
techniques

optimize loops
ox P
» Optimize their cache behavior

© Al Richts Resenved,

3/12/1¢
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Loop-invariant Code Motion

») Loop-invariant code contains expressions whose
evaluation never changes inside the loop

O‘hc idea is to move this code outside the loop

B Advantages: remove redundant computation

© Al Rights Reserved. N

Loop-ivariant Code Motion
Example 1

x=z+y;
e t=x%*x 3

\x=z+y}
- T1=2%i for (i=1;i<n;i++
0),.35&,_ AGI=2*i{x"x] (HLluhg

for (i=1;1i<n; i++)

*

"y
é (ﬁ) for (i=1;1<n;i++) for (1=1;i <n; i++)
D t=i%i;

P for (j=1;j <n; j++
=5 F B (ilf] =W)‘j|+j*j; for (j=1;j <m; j++)
) \ / BiJli}=t+j*j;

Invariant with respect
to j-loop

© All Rights Rosenved.

&P
6). ..A«ﬂv_- X% net g lunc. C-\P

o = thn X twlient w
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Loop-invariant Code Motion

Example 2

/ﬂ:lqit;g__:_‘a;
for (J=1; j<n; j++)

Original loop
for (i=1;i<n; i++)
for (j=1;j <n; j++)
for (k=1;k <n; k++)
X[k+j*n+i*n*n]=a[k

&

Invanant with respect

Optimized loop
to k-loop

for (i=lii<n; 1++) Invariant with respect

to k-laop and j-Joop

2=j*n+tl;
for(k=1; k< n; k++)
B3=k+12;
X [ t3 ] =a [ Gbllikighu Reserved,

Strength Reduction Lo
= j)J‘)J v
* Definition: a variable inside a loop is called an i
induction variuble if it is incremented or decremented N VD )
by a fixed amount in each iteration of the loop oc &
TN
+ Strength reduction is a compiler technigue that takes B
advantage of induction variables’ property to replace { 006 i
expensive operations with simpler operations
® E.g, replace division or multiplication operations by
addition operations
© Al Faghts Resoned,
11
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Strength Reduction
Example
for (i=1;i<n; i++) j=0
j=a*i for(.i=1'; 1<n;it+t)
aljl=.... J-‘[-,!;'a
alj)=....
for (i=1;i <n;i++) t1=0
tdeityty for (i=1;i <mn; i++)
for (j=I;j <mn; j++) gj:{ +a *i
t2=j * ﬂ+t1 Fesmerhy = : . P
for (k=1; k <n; k++) for (t;lg:n;.lﬁ)
B=k =Q2+n
113 +=t2 for (k=1; k <n; k++)
xjBl=alo] B=k+12
x[t3]=a[13]
£ All Rights Resamved

CE

¢ =
Induction Variable Substitution|{

» This technique performs the opposite transformation of d@fé/f)g d—i":,

strength reduction, i.e, rewrite induction variables so that
they are functions of the loop index

i=Jo

for (i=1;1<n;i++) S B (.'il;;(.:n.‘. H3)
= BB j=a*i+j,
A . alil=...
alij=...

= This technique obviously introduces more expensive
operations

» Nevertheless, this technique is substantially useful for
many machines (can you give an example?)

23 Al Raghts Roseryed,

o

Lj =

J+C\ — LT:QYF 4-3
é \L 12
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“Loop Unrolling

—

* Replicate body of the loop for (i=1; i <n; i++)
by a factor of n ali]=....
M l_] Unroll by a
u Increase code size —3p qncreas : factor of 4
o _Advant . memm’j -
i EO@"'P({Hf’for(: 1; i <n; i=i+4)
* Reduce number of ali ] _
branches afi+1 ]_ -
® Increase the opportunity of a[i+2]=....
" instruction scheduling ali+3]=...

——

© ANl Rightx Reserved,

une)o;.

vy ef!

L

5/\,{,‘:\ &1

Cache Behavior

+ Many loop optimizations ta.rget cache pcrtormqnce by
attempting ’{OE mprove fempum! focali ef} or spatial
locality

Temporal locality: reuse of recently accessed data
Spatial locality: access of nearby data

« Exercise: identify which array accesses have spatial
or temporal locality in the following nested loop
(assume row-major order)

for (i=1; i <n; it++)
for (J=1; j <m; j++)
X[i]1=A[i][j]+x[i]

Al Reghts Raverved,

% o e s Q spperale i

oo Pes s Fristor

3/12/19
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@p Fusion x

- A compiler technique that combines two or more
loops into a single loop

Example:

for (1=1;1 < 10000; i++) for (i=1; i < 10000; i++)

afi]l=x .
2 & i SRR a [ 1 ] = ¥
=1: 000; - :
forgllili!.,:‘(;([)i};?d‘.) b[i]=ali]*5
» The above transformation improves the cache
behavior (how?)
» The above transformation also reduces number of
branches

£ Al Rights Reserved.

s ) <=

_Loop Fission

———

» Also knotvn as loop distribution

* A compiler technique that breaks a single loop into
multiple loops

= Opposite technique of loop fusion

* Example:
for (i=1; i < 10000; i++) o e i v iy
alil=alil*s == e I
b[il=b[i]*6 for (i=1;1 < 10000; i++)

bli]=b[i]*6

The above transformation improve the cache behavior
(howh

However, it increases the number of branches

[ e - ' "
S O 51 Loop (B

2

ONe  Qy (C\L\ 1

j —
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3/12/19
Cashe 2477
| SS
¥ad V. c»-f ﬁ"ss‘io N Which One is Better:
Loop Fusion or Loop Fission
(-4
b Dj = A [( “ \__\ * Both techniques affect loops’ cache behavior
* Therefore, profitability depends on the data access pattern
c\ [("_& - C E?} of loops and on the ability of compilers to predict cache
[ - behavior
» Compilers usnally rely on heuristics and hardware
a [ Q] - & l:?:,j information (if available) to make profitability decisions
* Exercise: argue if applying loop fusion for the following
code is profitable or not (assume row-majored order)
Py || BrEmicionmin i< 000, 100
_ for (iml; i< 10000, 44y = blil=ali+1]
Cifaj a[i}=c[i] © All Rights Reserved, a[I] C[I]
V5 i 57 |
4 o r—"/
g o Xy
o/ o L“‘) !
- Loop Interchange
d, ,
» A compiler technique that exchanges inner loops with
] &£ d}l.J outer loops in loop nests
- + Loop interchange does not reduce computation but
I OOOd UV"'}- changes the order of accessing array elements
= » Example:
/) G2 <
for (j=1;j <n;)+t) for (i=1;i<n;it)
w o for (i=1;i<n; i++) D for(j=1;j <m j++)
G ylillil=x[il[j]1*2 ylillil=x[i)[j]*2
é/ * Explain how would the above transformation be useful?
‘ ) © Al Hights Kamenne
//’7 ’;5 Il Highaa K d
15
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Do Not Forget

The Golden Rule

= Optimizations change the code and therefore their
changes must be safe

» To apply an optimization by a compiler, a static analysis
is needed to ensure safety

» Such compiler analyses are not trivial (remember the
fundamental limitation of compilers)

© All Rights Reserved.

Correctness Examples

S1: x=1
S2: x=y*y
S3; y=%x*X == x# 1 because most recent definition of x is obtained

from 82
Applying constant propagation is NOT safe

Sl: t=x*v*z
52: z=w*2

83:  g=x*y*z — s#tbecause z was re-defined by 52

Applying common subexpression

elimination is NOT safe
35 AlL Rights Reserved

16
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Terminology

S,

* Astatement has a definition of variable X if it writes X
* A statement has a irs¢ of variable X if it reads X

* Let S1 and S2 be two statements where S2 follows S1 in
execution, we say there is a flow dependency S1->S2 if

there is a definition in S1 that produces a value that is
consumed by a use in S2

Si: X=._. /! S1 has a defintion of X
\‘SI and §2 heve a dataflow dependency
52 ..=X+... //S2hasauseof X

© Al Rightx Reserved,

Offfm.JJ (_D éj’;

_Data Flow Analysis

» Ensuring safety of optimizations such as constant
propagation and common subexpression elimination
requires a compiler analysis that gathers information about
the runtime flow of values from statements with variable
definitions to statements with variable uses

* This analysis is referred to as the data flow analysis (DFA)

DFA has been intensively used in the literature for enabling

and applying many compiler optimizations

We will study dataflow analysis in the next lecture

C AN Rights Raserved,

'3/12/19
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More Correctness Examples

Is applying loop fusion safe?

ol ::[li; ;:tl)()[()i;liﬂ) for (i=1;1< 100; i++)
e ) E==p ali]=bl[i]
for (1=1;1<100; i++) b[i]=al[i+1]+2

b[i]=ali+1]+2

Optimized code viclates
the dependencies exist in
the original code

U

Applving loop fusion is
NOT safe

Reserved.

Dependence Analysis

« Ensuring safety of optimizations such as loop fission and
loop fusion requires a compiler analysis that gathers
runtime information about the execution-order constraints
between statements

« This analysis is referred to as the dependence analysis

« Similar to DFA, the dependence analysis has also been a
hot topic among researchers for enabling and applying
many compiler optimizations

« Ifthe course time permits, we will come back later and
study dependence analysis in more details

Al Rights Rosen od.
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Summary

« We studied some of the widely-known compiler
optimization techniques and how they can be
performed by hand

The next question is how to make these techniques
automatic, i.e., what are the compiler analyses
needed to perform these optimizations?

In the next lecture, we will study data flow
analysis: a widely-used compiler analysis for

performing compiler optimization /

2 Al Rights Reserved,

Exercise
for (i=1;1<n; i+t)
.’ 3 A s 3
bli]l=a[i+1]*5 ssume row-majored order
Assume n is in the order of millions
for (i=1;1<n;i+t)
ali]=b[i]

» Write the code obtained by applying loop fusion to the above code
« Explain why applying loop fusion is safe

* Discuss weather applying loop fusion for the above code is likely to
be profitable or not

© All Bights Raserved,
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Data Flow Analysis
Spring 2018/2019

Instructor: Dr. Fahed Jubair
Computer Engincering Department

University of Jordan

~What is Data Flow Analysis?

A compiler analysis that collects, for each program
statement, a set of valid runtime data properties

+ This is done by reasoning about the runtime flow of
data properties across program statements

+ To investigate thc flow of data across different
execution paths, DFA requires the control flow graph
(CFG) representation of the IR

O All Rights Resorved
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The Data Flow Problem of
Constant Propagation

» To perform constant propagation, the compiler nceds

1 1o collect information about which variables have
constant valugs at each statement in the program

* Let S be a statement and x is a variable that is visible
to this statement in a program, the compiler needs to
determine one of the following properties about S

* S has the property {x= c! where ¢ is some constant

pewy
sam * Shas the property {x =T }, which means that x is not a
constant
————
€ All Raghts Resened 5
) print (x) ; For simplicity, let us
x:= 3 assume single-statement
print (x); CFG basic blocks
if(y=1) ey =
x:=4 m ty=1) l
endil
y =X *x ’ X = 4
=g e
© Al Riphts Rosen od .
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Example 1: S
Constant Values Properties
IX7T) rmmeemmancinnnn., * Start by assuming x is unknown
|x =3 L - Th ' -
Tx=3} is node generates the property {x=3}

Whichever path is taken, the property {x=3}
- will sull hold. Therefore, both paths will

have the property {x=3)
{x=3)

............. » This node kills the property {x=3} and
generates the properly {a=4)

* Merging the (wo properties {x=3) and (=4} will
yield {x=T} (why?)
© AN Rights Reseived

7

Example 1:
Applying Constant Propagation
{x=T)
| x=3 |
fx=3)
{x=3} The compiler knows that a=3 is true for all
2 .=+ possible execution path (o this statement
print (x) ;| -
tx=3} Xx:=3
{x=3) print(3);
[y =) i)
LH=g) endif
Y =X * X ; // no changes are made here
Ge=1 The compiler cannot prove slatically
y=xtx;| e " thal xz g hig statpment

ll—  ah T wrik
(sten —s sth L fénﬂ/ﬂ 4
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Example 2:
Applying Constant Propagation

The compiler knows that a=3 is true for all possible
----- o RaReRton paths leading to this statement

Observations

We cah observe the following concepts from the constant
propagation data flow problem:

O‘When transferring knowledge through a node in the CFG, some properties
are mayEe killed and some new properties are maybe generated

A merge operation is needed when multiple paths are joined
* Inthe case of constant

propagation. this merge operation is an intersection operation
(i.e, atnodee,

x=c il and only if x=c holds for all paths leading to e in the CFG)
* The constant propagation data flow problem is forward, i.e., data

properties flow from top to bottom through the CFG edges
* Backward data flow problems also exit

O AN Riehts Resarved

- hranstev souk (9n  gem <P 0
.- C\/q&_o\ Blow 0\.2\

6
2- nmerge Punc.
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Pata Flow Analysis Algorithm

* The compiler framework for DFA comprises the
,i.. following threc main components:

Control Flow Graph (CFG): models the control flow in
the program .
ata Flow Sets: collect the properties of interest @QM ,l( ?l I /? h/

e Data Flow Equations: compute the dataflow sets ‘ o) Al
iteratively by traversing the C
merge , byuy]

To understand how the algorithm works, we will study Liveness analysis
However, the same concepts still apply with other DFA problems

4

82,

€ All Rughts Rerenved 172

_sth Twik ®
/ * (eaQO.

Live Variables

* Definition: a variable x is live at a program statement S
if there is a usg of x in a future statement
» This is the opposite definition of dead variables

Sl x:=3
$2 has the property {x /s live}
2. y:=3 mb

because a future statement (83) uses x
S3: z=y*x;

SL: x=3

S2 has the property {x 15 dead} because there
S2. y=3 @ is no use of x in future statements
S3: z=y*y,;

O Al Rights Resers od "

¥ LPueness analysk —p (S &=
LPwe oF dead V3| &6s

7

);,boH'OMUP O%J — s we Qe CkbouR-
Pubure

Scanned with CamScanner



3/12/19
Data Flow Equations
Liveay(e)= U IN(x)
. XEsuce (e)
Liven(e)= GEN(e) U (Lives(e)-KILL(e))
// assume CFG has N blocks —
// numbered 0 to N-]
for f « 0 to N-1
LiveOUT( 1) «— 1
changed «— true
SIEIS TERENEd fl'he gompiler uses this
Foammd s 5 s iterative algorithm for
i f iy t:’::} solving the equations
recompute LiveOut( | )
" s O ]
-]
Solving The Equations
1.) Build the CFG
For each node e in the CFG, determine GEN and KILL
sets
3. Perform the data flow equations using the iterative
algorithm in the previous slide
4. Terminate when the data flow sets reach a fixpoin, ie,
data flow sets do not change even if re-computed
© All Rights Reserved IIJ
o
Kq ” —_— CL:QJ Uw -
o |
9

A 7t s

5941—-—»
o L P _

Yar s’f" 4
e e e A
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b:=jfo0()
if(b<3)
a=>b+3
else
a=b+4
endif
c=a*a

© All Rights Reserved 1o

Example 1
GEN and KILL Sets

10

)
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Example 1
Live;, and Liveyy Sets -

b:=foo()]|¢!

!

if(b<3)|e

a=b+3 a=b+4|¢

PN e e
7 b o O =
fu;fﬂuwfwﬁwiﬁ*mwﬁw

N

c=a*a|e

© All Rights Reserved ki |

b:=foo()
if (b<3)
a=b+4
endif
c:=a*a

A Al Raphts Resery «d

11
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od oc - gﬂ
In eS = (@- ()L fa)z (o
O“J" eU[:: I(AC&Q’J: iq’a

Lo ed= (1a3-1af)ub= (b

Qu\‘@%)lﬂeg"——D L!V’é

onk e2- TIn [e—s\UIm(CM)‘: b}
T (ed) = (3 -9 VLY = [b]

s Bl Lk e2 =16
s Bl = (o-12) Y w:ﬂ

5‘&5‘1914()70;] s ,JC\J)\% GJQ]JY?J &
<> Lije 0 = Leve ok

o F o0 2 g butttomap et S 19

-

Scanned with CamScanner




fo
@u.j' Q‘*f-' gﬂ
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ok @ Tn 4=\
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In ea- C[q/lf)——Cﬂ)Ub = lq/bj

OUJL@/{ = O\/}Qj

T el Qq/bg b)0¢ = {C\j
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Example 3
b:=foo()]|e!
b:=foo () while (b < 100) |
while (b < 100)
b:=b+1
endwhile
c=b*b i

c:=b*b

© All Rights Rescrved

s

Example 3
GEN and KILL Sets

=

while (& < 100)

e2

e3

s

IR A RS

e il

@ Al Rights Resened

13
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od Ced) = @
InCed = (oo 1) 0 thy= 1 b}
ouk (g5) - InCed = @ T gl
Lo Cesy = (oo ¢ q)u (5 = b3

oud (€)= Tnlex)U I Ceu) = Kbk
Tnled= (b-@)uib)= b

ol Ce) = b5
In(e)= (g {bﬁ)u P=@

Sm'fs"?n} o5t sop

Py ‘)79,1 P POV B AN

ls s (oop CE AR

/2055 5,4 478

T
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Example 3
Live;, and Live,, Sets

el !ﬂl L LPJ, JHHHT. I ’EIHHTLMM

| e2
Eu il wﬂﬂl lLb Ilhﬂ' MTFWWW
‘ c

© All Rights Reserved F

Example 4 ( E\;
el

while (b < 100)
t:=b*b t'=bh*b|e

if(1%2=0) : +
s sletid] lprml(s),e

else
s=s-1 =
endif
b=b+1 esls —s+1'
endwhile
RAIREERS =

© Al Riphts Rovarved x

14
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_Edample
O“-ﬂ (E;) = @

In (e7) = (9-@)uis, 15
Gk Ceé) = In Cel) = ¢

o001 pass

\ NRYS

Inles) = (P- )0 163= (b]

ib/sz,l

ok (a) = Tnleg)= TbY —

{ b/s]

Ir(esy = (GGri-ish)Uig= {bs)

O“‘J' C@L]J: T (eé) 2 I’)’ﬁ

93 beﬁ

In(eq): 1 his )
ouk (e2)-Th (ec)U In(ey) = {bsS]
In(€3) ‘-‘(lb,s}—-cﬂ)() (3= Ubrs/t]

oul (e2) = L brs, EY
@ Tu(es) =(Tust3— 13 UTbY= s

O'-J' CQ(): i.bls?l
2 ca) = (s3I b5 = bS5

ﬁ lbzsﬂ
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1€9 Dead variable stores elimination

Why The Knowledge of
Live Variables is Useful

Live variable information enables many compi]ﬁ‘r (Jses l

transformation, such as:

- (® Uninitialized variables detection
Register allocation (we will elaborate on this in the
next lecture)

la, 10

© Al Rughts Resetved

How To Design A Data Flow

~ Analysis In General

« Same concepts we learned in Liveness analysis can be
gencralized to design a compiler analysis for any data flow

problem
« Basically, a DFA can be designed by answering four questions:
1. What are GEN sets?

2. What are KILL sets?

@ What is the analysis direction? (this question determines whether we
= use the forward or the backward dataflow problem)

What is the merge operation? (needed when multiple paths are joined)

© AN Riphts Reterved x

3/12/19
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General Data Flow Equations

™ IN(e)=V OUT(x) :
1. Forward " xepred ()
\jDFA | ouT(e)= GEN(e) U (IN(e)- KILL(e))

- ouT(e)=V IN(x)

Backward {_] xEsucc (¢)

22 1| Iv(e)= GEN(e) U (ouT(e)-KiLL(e))

the merge operation V can be either
aunion or an intersection operation,

depending on the. QEA problem s

s\ _Example

Design a DFA that determines, for each node in a CF G, the set of
variables with constant values?

* As mentioned before, we need to specify four factors:

* For each node e in the CFG, we specify GEN and KILL sets to be
the following:
= GEN: set of variables that are assigned to a constant by e
* KILL: set of variables that are defined bye
* DFA direction is forward

* Merge operation is an intersection operation

* This is because, at a node e in the CFG, x=c holds if and only if x=c holds for
all paths leading to e in the CFG have

© ARl RieMs Rusaryed -

deata €‘0‘~0 c;nq(.J dé‘s‘fjh Qﬁ’J

G—— <ol

3/12/19
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lec (O

Code Generation
Spring 2018/2019

Instructor: Dr. Fahed Jubair
Computer Engineering Department
University of Jordan

Code Generator

Machine

IR 2 . : Code

« Final phase of the compilation process

» Converts the IR into machine code

*» Code generation is split into the following three
asses:
= Instruction Selector

S e » Instruction Scheduler

3 » Register Allocator
g 0 r COJ i@ All rights rescrved
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¥ Instruction Selector

» Maps IR instructions into {arget machine (assembly)
instructions

« Instruction selection is a pattern-matching problem:
identify a correct and efficient sequence of machine
instructions for each IR instruction

* Two commonly-used approaches for instruction

&election: y

, U {me
@Tree-pattem matching —jp 6'{'\— Pq{—w i Lﬁ; ¥ ‘Pd;
@ String matching

@ All nights rescrved

Tree-pattern Matching
B i e

Y i, WY o

S L s
* Typically used with tree-oriented IRs

+ We partly covered this scheme in lecture 6

* Do a post-order walk of the IR tree and map each
. pattern to a sequence of target-machine instructions

@@ AN gl resen ed
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ste P b «— String Matching

* Typically used with linear IRs

* Instruction selector converts the IR code into machine
code, as follows:
- E

xpands each instruction in the IR into an equivalent
o sequence of machine instructions, in isolation

ol /-@ Perform peephole optimization
€

g\&:ﬁ’/mly-&@—”.ﬁﬁ i S o

% Al rights rescrved
=

O(P#m?zajfon 2 _é‘n.gw Quo ¥

Example T
Three-Address Code to Assembly &7

* Assume two-address assembly code
» similar to tiny assembly code in the course project

[ MOV AT
MOV B.72
ADD ABC—""" 1 ADD TL. T2

1
ULCAD MOV T2, C

| MOV 2L Vilue fn memery
4 MUL 4T3 PO"«‘%.
1 MOV T3,D

s

Each IR instruction is translated separately

Note that T1-T3 are temporaries that will eventually be
replaced by physical registers by the.tegisier.allocator

Moy Ta,c — CLT2S
Mov €, To —"rlac W) 3

oplfm?iaﬂfwd é“iﬁ G 4
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i @?@,}gx 0 2%

The Fundamental Problem
of Instruction Selection

¢ Most modern machines have multiple ways to express
the same code

* Example: all the following instructions have the same
oufcome
<
= MOV r1,12
« ADD 110,12 [ Sme  {Esu 4
* MUL r1, 1,12
* Therefore, a group of IR instructions can have
multiple machine code versions!
* Need to examine all machine code versions to find
the best solution = can,take.exponential time!

uess ©on . .
86&’P£ﬁﬂn&9‘- dEC\ Ston S g (}3 |

Heuristics Help

« Compilers approximate: use heuristics to decide
which machine instructions to use

MOV A, Ti
ﬁ MUL 4, T1
MOV T2,C
=, This version is more
2

MOV A, Tl likely to be faster
SHL 2, Ti o '
Mov e 3SRl = gy

Wt Al nghts rescrved
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‘(wxﬁg ;73 \/p

{
The Redunﬂgﬂcy Problem

* Translating each IR instruction in isolation often
causes the generated machine code to have redundant
work that may hurt performance

The caode we want to

MOV A Ti be generatsd

MOV B, T2 T
ADD TI1,T2 MOV B T2
MOV T2, C | wasteful ADD Ti T
MOV _C, T3] work S
abb 4T MOV T2,D

MOV T3,D

Solution: peephole op) imizati%l}\n rights reserved

YA 3P W
,O\Sj?.@tf“dws =P paop 0\ QY

ﬁps}{u 7 9

‘9 : ~Peephole Optimizations
” 6\9 3% . \’ k\\é @La \ :
0 * Simple optimizations that are performed by pattern p \ W §
matching to remove work redundancy —————— | L‘g—’ -

* Essentially, the compiler looks “through a peephole”
to a short sequence of assembly code and checks if it
matches a pattern that can be replaced with better code

* Remember the Golden (ule: correctness must be
preserved

I~

i All rights rorervod
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Common Peephole
Optimizations

6 )Constant propagation

@ Al nahs reserved

244 g e~

MOV 4, Ti P e #
ADD T, T2 =) ADD 4,12 AtmP

@ Strength reduction
MUL 4, TI 5> SHL 2,TI
DIV 4TI &> SHR 2,TI

3.) Null sequence

MOV 0, T2 -
ADD TI, T2 HIOY-1l.. 12

Common Peephole
Optimizations

( 4\’, Combine operations
JEQ L1
N JNE L2
i}\ﬁp k2 B Vi

@ Removing redundant operations

MOV 4, TIl |:>

MOV T1,T2

6) Address mode operations C@)

MOV A, Tl e .
ApD Ti.2 5P ADD @A).T2
@ Allnghts feserved

MOV 4, T2

13 el o) B A &

&

o
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Review: Superscalars

* Superscalars are processors that can issue and execute
several operations per cycle
» Accomplished by exploiting instruction-level parallelism and the
fact that superscalars have multiple functional units
= Most modern processors are supersealars
» Exccution time is order-dependent: the order at which
the instructions are issued dictates performance
« The compiler helps: attempt to reorder assembly
instructions to maximize instruction-level parallelism,
i.e., maximize the number of operations that can be issued
in the same cycle

@ AW rights rescrved

— 5 3lp dlah slo#

Jd

A

[S_econd Pas j /

Instruction Scheduler

ssembly Reordered
Code Code

» Instruction scheduling is the process whereby a compiler
reorders the instructions in the compiled code to
decreases its running time

» Opportunities for scheduling:

Old:nnfy independent operations: operations that can be issued in
parallel

O Insert non-blocking operations between dependent eperations to
hide their waiting time

@ All righty reserved.

a(\f

(up? \

Ca\fl .)
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F
/

!
| « Let S and S2 be two statements where S2 executes after S1

» There are three types of dependencies:
Flow dependency
®  Also known as read-after-write !E.—\Widependency
* Occurs when a use in S2 depends on a definition in S1

Anti-dependency
*  Also known as write-after-read f WAR Adependency

* QOccurs when a definition in S2 overrides a variable that is used by §1

@ Cuipui dependency
= Also known as write-after-write] (WAW) dependency

» QOccurs when a definition in S2 overrides a varable that is also defined

by S1
== depende @
Dependence Analysis a(qph
Fiz.w
= A compiler analysis that discovers data dependencies X‘] &}S v
between operations and produces a dependence graph to PY\S W
models these dependencies
» The dependence graph is a directed graph that has a node
for eaclr.x ‘operanon, where an edge connects two nodes e/ \ OC,Q V4
and e2 if 2 depends on e/

(&\\E el K=A¥B . & 2 ;i:c':ﬂ;iﬁ:muet @C{ ¢ 9 \55 -
6)0\ (—- e2: Y=D*C ;________/ \ / because they have
C3 @

e3: Z=X+Y no connecting edge

@ Al nghts resrved C] t‘FCP (_’ {-” Q.

Wfa//ﬂ// “— €C(]3a {Qﬁgb &l =
o o g 18 Gp 0P B OB
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Instruction Scheduling Algorithm (¢

* The currently dominant technique for static
instruction scheduling is a greedy heuristic called list

_——scheduling -
g d/ ( O List schedulers take advantage of the dependence
quﬁ" g graph to reorder a set of operations
é U Cj"{ » Each operation is given a rank to indicate their
W on priority (higher-priority operation is chosen when two
3 (\éﬁ operations are ready for scheduling)
& = A popular priority scheme is to use operations latencies
{ &ﬂ k ﬂ £ All rights reserved.
2

List Scheduling __

The algorithm of list scheduling comprises the
following four steps:

Use register renaming to eliminate anti- and output
dependencies
(2> Build the dependence graph-

(3) Compute the priority for each node in the
dependence graph

y, Schedule operations while reflecting dependencies
and priorities

Scanned with CamScanner
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A WAR , WAW &S supt

Register Renaming

—

« In contrast to flow dependency, anti- and output
dependencies are only name dependency, i.c., occurred
because the same temporary (of register) variable is used

« Solution: rename registers so that dependent instructions
use different registers = which eliminates the dependency

« Remember that the instruction scheduler uses temporary
(i.e., virtual registers), which are infinite!

* Register allocator will eventually fix everything by mapping
virtnal registers to physical registers

@ Al rights reserved

SWD'B

- We will show how list scheduling algorithm will :)\/0 B}M
reorder the following MIPS code
—_—

el:
e2:
e3:
ed:
e5:
e6:

e’
8
€9:

LD Ti,

ADD T1

LD Tz,

MUL T1

LD T2,

MUL T1

LD T2,

MUL T1
SW T

A
, TLTI
B
, TILT2
C
, T1,T2
D
, T1,T2
, A

«t All nghts reserved

We need operations’ latencies

for determaning their priofity 2 SH CS

10
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1. Perform register renaming

el
e2:
e3:
cd:
AN
eh:
er:
e&:
e9:

LD Ti, A
ADD TI, T1,TI
LD T2, B

MUL T1, T1, T2

LD T2.C
MUL T1, TI, T2
LD T2. D
MUL T1, T1, T2
SW TI, A

Register Renaming

B All rights reserved

ds &=
¢2: ADD T2, T, T1
¢3: LD T3, B _ \_,_,(.\/o f?i

ed: MUL T4, T2, T3
e5: LD T5 C

&6 MUL T6, T4, TS = > Q A (/J
71D T, D

¢8: MUL TS, T6, T7
9 SW TS, A

Scheduling Example (cont.)

_2. Build the dependence graph
e T

(/@ LD Ti A

label

e3;
e4:
es:
e6:
e7:
e8:
e9:

: ADD T2, T1,TI
LD T3, B
MUL T4, T2, T3
LD T5, C
MUL T6, T4, T5
LD T7. D
MUL TS, T6, T7
SW T8, A

it All rights reserved

[
S
‘\»/ o
N/
|

.
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Scheduling Example (cont.)

3. Compute a priority

—

function for each node in the

dependence graph
C .-

el LD TI, A ]’ T feaves
e
€22 ADD T2, T1I,Tq & ;5 j We will use the
¢3: 1D Ti B \ / \ latency-weighted
ed: MUL T4, T2, T3 e,

el e, Cs which is computed a5
e LD T5 ¢ \ / the total latency 1o
¢6: MUL T6, T4, T5 » e, Merootnode

5 7

e7: LD T. D (\ /
<8 MUL Tg, Te, T7
e9: SW Ts, A K

'1

/-'ﬂﬂs is the root node

£y

%t Al rig s reserved

3. Compute a priority function for each node in the dependence graph

el: LD TI, A i"

e2: ADD T2, T1,T1 b &

¢3 LD T3, B \

ed: MUL T4, T2, T3 & Jo

e5: LD T5, C \

¢6: MUL T6, T4, T5 7 8
¢7: LD TI, D “ /”"
e8: MUL T8, T6,T7 \'\

e9- SW T8, A E

Po——

"~
< )

4 All nghts resenved

3/29/19
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Scheduling Example (cont.)

(D Perform register renaming

—

el LD TLA

el LD THA
- ADD T2, T1, Tl

¢} ADD T1, TI,TI (o

i LD T2, B | et LD T3 B

o MULTLTLTZ Renamitg' . pmyL T4, T2, T3

¢3; LD T2, C ::> S LD TS5, C

6. MUL TH, TIL T2 et MUL T6. T4, TS

(7LD T2 D e LD T D

oS MUL TIL T1.T2 c8 MUL T8, T6.T7
e SWw T5. A

e SW O TL A

Scheduling Example (cont.)

() Build the dependence graph ((‘ﬂf’j S-EP)/-'—'—’_P__—

el LD TI A “rf!
¢2: ADD T2, TLLTI 1 "
ei: LD T3 B

B

o4 MUL T4, T2.T3
e+ LD TS5 C
v6: MUL T6, T4, TS

10

e7- LD T, D 4 :
o8 MUL T8, T6,T7 N\ /%
v SW TS, A 5 ¢
v
3 |3

N
b
3
ks lc..'rEan '
C’f'] O Lue
S gl

Cecle S,ledimfg :

11
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e

Scheduling Example (cont.)

—

L Compute a pricee w . .
PULe a priority funetion for each node in the dependence gruph

¢l LD T A GP leaves ;i‘-:;‘)
CIADD T, T T : Wewillusethe _—T[ "

3 ) s Cwill use the

el LD i n \ latencyv-welphted 1{,““LJ
4 MUL T4, T2 T3 priority scheme,

&1 e - which s computed as
2 the total larency ta
oo MUL Te, T4 T3

. . the rect node
¢ LD ™. D
oY MUL TS, To, 17 \ -’
evoRW T A
~ This s Iht‘_l::'l nole

L T 1

Scheduling Example (cont.)

@L‘mnpmc a priority function for cach node in the dependence graph

i
el LD TL A 'I'J
¢2. ADD T2, TI, T a0 2
¢i LD T3, B \ /"
o MUL T4, T2, T) rg rm
e LD TS, C .
vo. MUL T6, T4, TS \?/ :
< LD T D ¢, 1
«8" MUL TS, T6,T7 \‘ /
e¥. SW TS, A ¢y
|
vy

PO e oyl
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Scheduling Example (cont.)
{4!Schcduminsnncﬁonuﬂngthchchnvamnhnun
Cfl'.'f.". ] r_'__—_________,__ : T qoeE
Ready « leaves of O '—ﬂ {rplemert Ready ma & P nty :.__]
Active +— 0
while (Readyw Active «0)
._______—-_alrc;huccmrlm\tnmnim j
for each opc Active
if (5{cp)* delaylep) = Cycle) then
rcmavch;*p from Achuf . .
for each successor 8 of 9 10 If sieccason’s opxTands a8 “reody”
if (sis ready) then = "1 Manionesy
Reody ¢~ Reody w3
if (Ready » O) then TR -
Coo'.e .‘ ﬂf\ remave on op fI'D".\ Rtody — --'HI-"I"I\'I 1] ['1* iy etesd __J
5(ap) «- Cycle
heduﬁr}} Active ~ Active w1 of
<C Cycle v Cycle + 1
el

F

Scheduling Example (cont.)

..
/k
\ P,
o
Nﬁ-'.‘n"-‘lmm&w'_‘_l

Irinally:
o Add all leaves to Ready queus

& Active queue 18 emply

l'|7.| /‘-’.'
\\?j
[ '
I:
lj 10
[y e
' FayiT
, i‘r]-‘-op.»n b

3/29/19
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Scheduling Example (cont.)

el is remonved finst from Ready
gueue because it has highest prionty

— — —
—

l 0 12 1 o = Cumentoycle
\ /l" i <r1 12>, <e35.10>,
o ‘,1'0 3 “t.*: 8> . _‘_’i_ll"_e;..
! i <cpfnd > » '-I
\ / 5 Q {1. I
l':: l'&' 6 cycde where ¢ finnhes exceution \’
- N
\'5/ 8 LT
T 9 > 97 50
10
c'i 7 |‘0P r’ed(ij

Scheduling Example (cont.) @
et <esl0>,<er, 8>
lm ) _ | i [ Active EEIERTN (T
e e’ Ry e

N 3 i1
e o 4 03;5‘-""1
\/ , B 22
! e LU
ﬁ\ # . 5 (_./
ls 8
i
L e
i i
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Scheduling Example (cont.) ,
YA PA R
RE m < B M
(] ', 1 ._____{..-
IICI 5 I l I ¢ | W <y, = ey, H5, ([ﬂ!it'(’ é{' J"
\\ / 3 ey = Ud-‘ U-:)c
I'? {*-l'ﬂ' l 4 3 VS = 6 ~ =
NS ) a7
: 8 6 Z : :
y X €s . _ sl
l 9 Y f@ éL g;fj ij dvn‘j
t*&‘ u : ‘_'l‘.—- M
I e, Twol= o5

-
Scheduling Example (cont.)

b
!
!_ 1o 12
.'\ oy
9 10
L] ,‘-.1
\ 7 R
ey "y
S
l.'J
IJ
'y

Schedule
|

Ly}
2 ey
3 €3
4 n =
2
6
B
8
el 1)
10
VR

PR b e en

m q'f,!s:'nq:ﬁ'c 10>

Active RETHUT -SR0S P §N
;-yﬂﬁ >

ey has compleled

m_'-‘r:.ﬂt-

SELHSS <oy, w5,
e RG>

1 is now ready

E M* bs’l"'tf"
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Scheduling Example (cont.) g
" ey
13 ma:r.-,ﬂi‘.‘-’-_l_'_l_,_?_'” : i 9
) W {'_{.,lns‘::,-ac,. 1-‘5-:_“.? G_;,Cﬂz;
b NS Gy 7
\*?/ 1 o . "'“fc:"j:""c ¢ is now ready
t'y ¢y 4 complele
S iy =
N, g L J
N 8 iy R
"; i : M<rh#5:‘.-¢ﬂ, [T
l.: 0
& I
or L pgtespnarnd ]
Scheduling Example (cont.) @
o h‘rlu-d le [ Ready RERE
1:(1 12 l_I ' m <ey H6> ,<ey, AT
It e .2 e //
\ / 10 [ LY ve have completed
:3 s : AT el o5 "
N 50 Cal] ] 32
7 8 6, 8 = 6
Yo o = | -7 e
el -
N .
1'.‘5 WEY <.1‘.|. W15, <er, B9 > E:)w
g I \
Al gt g m el Lc lpl'-) gl
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Scheduling Example (cont.)

l,‘” 12 b [Acilve S ““N-”"
; "\\ ki 1 o /-/ o 15 ow 2y
p 10 34 ¢ have completed
Uy Y 4 (5]
\ / 5 (7] B
7 by 6 (3]
Oy L

| k.
Nl rese =
a g [Acive ERUIIEE N

13 Schedule

10 12 _
“ e 22 ey and oo ate still 2cive
\ / WS N ration is ready

10 o ope 3
l—'? ey - :‘ AR [ nt this eycle
o A
[ 4 T 7 1 o \s;'.c w
\ 5 B “q.p.f = &3 m_-
li‘ X B ackhve -
L]
'y . | '
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Scheduling Example (cont.)
_—_-_-_-_---—-#_—.—.
The reerdered MIPS code pru.luc-:d by
the instruction scheduler
L Ler
2 el- LD T A
1 e e3: LD T3 B
% 25 o5 LD T5.C
- 22 12, TI.TI
5 ce ﬁ 2 ADD L2 i
! ¢ MUL T4, T2.T3
6 i KT | ignore the nops * : 7. D
T | e but you can put e7 LD .
§ nop them if you want eh- MUL T6, T4.T5
9 e o8 MUL TS, T6,T7
10 nop cu- SWoOTE A
[ -
I ; e
el flop s g L) 2.2 o J\ P
5 A gt st . p=
L e i -
& .
bod . o5 - Code
e conpiler

Tie Breaking in List Scheduling

« When two or more ready operations have the same
rank, list scheduler necds another priority scheme to

break ties
. Several schemes have been proposed for breaking ties

i Examples:

@ Prioritize the node that has the more expensive operation
@ Prioritize the node with the higher number of immediate
successors in the dependence graph
(@ Prioritize the node with the higher number of total
descendants in the dependence graph

Gf’. &J_[Y]ﬂfn[ ¥ Ml gts nEnnd s i

et
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5520/ Yp Lpy osen gee

; ; b
Exercise g 2
o p &
Consider the shown data dependency graph A . - T Y,
10 uns“‘-*cr the l'uHowi.!u; questions: . ’\ //t : de{St' -
1. Using latency-weighted priority scheme, case
determine the priority function for cach node do

(nodes latency are shown in the table below)

(93P

Y.

2. Using the list scheduling algorithm, write the - g ¢ E ot
scheduling order of the geaph nodes. 10 there \ / \ /
is a ti¢ in priority, choose the node with. P 5
L—  smallest lubel number S \ /
[ operatlon |- Latency | Wiy
€1, €. €4y Cae €1, €11 3 cycles i
cy 2cyceles €3
€), €3, €1, €0 1 eycle

Bonus: Regional Scheduling .
(\M\/
X

+ We studied list scheduling, which is n heuristic
technique for scheduling instructions in basic
blocks (maximal-length of sequential instructions)

« What about scheduling for an entire program?

« Section 12.4 in the text book introduces regional
scheduling: techniques that can schedule
instructions across multiple basic blocks by relying [

- e
on the control flow graph representation of the ; )
B ey |

program

Andimid bl

-
Cameg i

o AL pghes osned
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Recap

* The next and the final step in the compilation process

* Instruction selector and instruction scheduler produce
an assembly code that assumes, for simplicity, virtual
registers (which are infinite)

Machines have limited registers, i.c., correct
assembly codes must follow this constraint

is to assign hardware physical registers to program

values in the assembly code - &
t.r:—F ESY)
Next lecture will cover the third and final pass a7 5
of code generation: register allocation D =2 T

o Adrgremrved * ]

o

<o| exercise

-

) e
ala
lee
Ll __g-g—
5163
o les
7 es
] ey
9 ]lex
i
THEAL

Ciry M ey-;i 10 G’ga-ﬁ' \ ,ﬁﬁ'f'"f
Secd el egid  purgp
aclsve €y 4 ’_E-‘-{Tg €3, 6 €549
R _
€235 Coy €,

) ,&'mf_l)'
ﬁ‘ﬂél =l €io
Cr 5 €q 0 -
acke | 47" Sar© €0, 11
() B8 o
lo.

-
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