Scanned with CamScanner

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
A	B	C	D	A	B	A	E	C	E	B	E
	C				•	D		D			A

Physics 102

October 31, 2018

الاسم: معد أب والمدة

اسم الدكتور: ٥٠ مرتد جسر

Q1) Each plate	e of a capacitor s	tores a charge of n	nagnitude 1 mC who	en a 100-V potential
	plied. The capac	itance (in μ F) of t	he capacitor is:	
(A) 10	B) 5	C) 50	D) 100	E) 20

- Q2) Charge is distributed uniformly on the surface of a very large flat plate. The electric field 2 cm from the plate is 30 N/C. The electric field (in N/C) 4 cm from the plate is:

 A) 120

 B) 60

 C) 30

 D) 15

 E) 7.5
- **Q3)** An electron is accelerated from rest through a potential difference V. Its final speed is proportional to:

First Exam

University of Jordan

- A) V B) V^2 D) 1/V E) $1/\sqrt{V}$
- Q4) An electric dipole p in a 300-N/C electric field is initially perpendicular to the field, but it rotates so it is in the same direction as the field.

 If p has a magnitude of 2×10^{-9} C·m, then the work (in J) done by the field is:
- A) -12×10^{-7} B) -3×10^{-7} C) 0 D) 6×10^{-7} E) 12×10^{-7}
- Q5) Two identical capacitors, each with capacitance C, are connected in parallel. The combination is then connected in series to a third identical capacitor. The equivalent capacitance of this arrangement is:
- (A) 2C/3 B) C C) 3C/2 D) 2C E) 3C
 - **Q6)** A particle with a charge of 5×10^{-6} C and a mass of 20 g moves uniformly with a speed of 7 m/s in a circular orbit around a stationary particle with a charge of -5×10^{-6} C located at the origin. The radius (in m) of the orbit is:
 - A) 0 B) 0.23 C) 0.62 D) 1.6 E) 4.4

$(A) E_0/4$	B) ze	ro	C) $E_0/2$	D) E ₀	E) 2E ₀
Q8) If the el $E = Cx^2$, whe	ectric field is tre C is a cor	s in the pos	itive x direction the electric po	on and has a magn otential is given by	itude given by
A) 2 <i>Cx</i>	B) -20	Cx	C) Cx ³ /3	D) $-3Cx^{3}$	(E) - $Cx^3/3$
				is filled with air and fithe electric field	and the other with oil E_{air}/E_{oil} is:
A) between (0 and 1	B) 0 (C	D) bo	etween 1 and infin	ity E) infinite
radius 2R is:				Φ_1 D) $\Phi_2 = 20$	hrough the surface of Φ_1 $\stackrel{\frown}{(E)}\Phi_2 = \Phi_1$
	e carrying a	charge dens	sity of λ C/m i	s bent into a circle	
A) $\lambda/4\pi\varepsilon_0 r$	(B)	$\lambda i_2 \varepsilon_0$	C) λ/4ε ₀	D) λ/4πε	ϵ_0 E) $\mathcal{U}\epsilon_0$
	narge on each	h plate has a	a plate area o a magnitude o a magnitude	$f 5 \times 10^{-6}$ C, then	e separation of 0.1 the force (in N)
mm. If the ch	ne plate on tr				(E)2 × 10 ⁷
mm. If the ch	B) 9	C) 1 ×	10 ⁴	D) 9×10^5	(L)2 × 10
mm. If the chexerted by or		C) 1 ×	10 ⁴	D) 9×10^5	(L)2 × 10
mm. If the chexerted by or		C) 1 ×	104	D) 9 × 10 ⁵	(L) 2 × 10
mm. If the chexerted by or		C) 1 ×	104	D) 9 × 10 ⁵	(L) 2 × 10
mm. If the chexerted by or		C) 1 ×	104	D) 9 × 10 ⁵	(L) 2 × 10