| A) 0.0032 | B) 0.32 | C) 0.032 | D) 0.00 | E) 1.0 | | | |--|--|---------------------------------|---------------------------------|---------------------------------------|---|---| | A) zero | agnetic flux the
B) I/µ, | C) 4 | E ₀ D |) 1/μ ₀ ε ₀ | E) μ _ο J | | |) A flat coi
geometry ha | of wire, having 20 turns in | g 5 turns, has a
s: | an inductance | L. The induct | tance of another | coil with a similar | | A) 4L. | B) L/4 | C) L | D) 16L | E) L/16 | | Lutor | | A 1 O 80 | B) 0.20 | C) 0.10 | D) 0.40 | E) 0 | | | | across the r | esistor is equal
B) 0.57 | to the voltage
C) 1.1 | D) 1.4 | E) 0.86 | rent in the | 21-Ω resistor, and a sd. When the voltage tor (in A) is: electric field of E) 0 | | 7000 500 | DE CHARLE OF CO. | | () + L C V | 10 | | | | | n arry one | (1) | a/s- D | 0/460 | | | | Our through | | | a 40-C charg | e from one po | oint to another, t | the potential difference
E) 12.5 | | flux throug
A) q/652
14) If 500 J
(in V) betw | of work are receen these two p | | th taken | C) 0.08 | | | | flux throug
A) q/602
14) If 500 J
(in V) betw
A) 20000
15) A parallelectric field | of work are recent these two p B) depo | or has a plate
//m between t | area of 0.2 m
he plates, the | ² and a plate magnitude of | separation of 0. The charge (in D) 1.8 × 10 ⁻⁵ | 1 mm. To obtain an
C) on each plate should
E) 8.9 × 10 ⁻⁵ | | flux throug
A) q/602
14) If 500 J
(in V) betw
A) 20000
(5) A parallelectric fields: | of work are recent these two p B) depo | or has a plate
//m between t | area of 0.2 m
he plates, the | ² and a plate magnitude of | separation of 0. The charge (in D) 1.8 × 10 ⁻⁵ | 1 mm. To obtain an
C) on each plate should | | | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 | Q13 | Q14 | Q15 | Q16 | |---|--|--|--|--|--|---|--|--|---|----------------|--|---------|---------------|-------------|---------| | | | | | | | | | | | | | | | | | | ,= | 8.85x1 | 0 ⁻¹² F | /m , | μ ₀ = 4 | π × 10° | 7 T.m/ | A | | | | | _ | | | | | | | | _ | _ | | | | | 836 | | (0) (0) | | | | - | | bo | vo paral
th these
F/3 | curre | nts are | double | the sa | me cur | rent and | d repel | each o | ther wi | ith a fo | rce F p | er unit | length | 1. | |) 2 | F/3 | B) | 4F/9 | C |) 4F/3 | | D) 2F/9 |) | E) 6F | | | | | | | |) T | wo long | straig | th wir | es ente | r a roor | m thro | igh a w | indow | 1.5 m | high an | d 1.0 | n wide | . One | arries | a | | urr | ent of 3 | .0 A i | nto the | room v | while th | he othe | r carrie | s a cur | rent of | 5.0 A | out. Th | e mag | nitude | of the | path | | inte
A) (| gral∮∄
53 | | (in 10 ⁻
3.8 | 200000000000000000000000000000000000000 | around
C) 2.5 | the w | indow f | rame i
D) 0. | | E) 0 | 0 | | | | | | | | | | | | | | ···· | | | | | | | | | 3) / | s show | n in th | e figur | e, a wi | re is be | ent into | the sh | ape of | a
0 | | | | 1 | | E (1) | | tig | htly clo | ng str | nega (1
aight se | ections | . The l | oop is | op of ra | v-plan | e, with | | 5.0 A | 1// | 1 | 11, | 50 A | | the | center a | it the c | origin. | The str | raight s | section | s are pa | rallel | to the | | | 11 | | 1 | 1 | | | kis. The
gnitude | | | | | | | | he loor | is: | | // | 4 | n.a. | 1 | | ma | giinude | Or un | · magn | ctic iii | | 1 | | | | | 200 | 11 | | / | 5.0 | | | | | | | | | | | | | 5.0 A | 11 | | // | -1 | | A) : | 54 | В |) 40 | | C) 25 | | D) 80 |) | E) I | 04 | ====================================== | | > 0 | | | | 4) 7 | he figu | re sho | ws the | cross | -section | n of a l | nollow | cylind | E) 1 | 04 | ====================================== | | > | 1 | | | 4) 7 | The figu | re sho | ws the | cross- | -section | radius | nollow $b = 7.0$ | cylind
cm. | E) I | 04 | 511 A | | > | 10 | | | 4) Tofi | The figu
nner rac
uniform | re sho | = 5.0 | cross-
cm and
sity of | section
d outer | radius
cm² f | hollow $b = 7.0$ lows the | cylind
cm.
rough | E) I
er
the | 04 | 500 | | 200 | 1 | | | 4) Tofi | The figu
nner rac
uniform | re sho | = 5.0 | cross-
cm and
sity of | section
d outer | radius
cm² f | hollow $b = 7.0$ lows the | cylind
cm.
rough | E) I
er
the | 04 | 300 | | > C | 1 | →
- | | of i | The figuration | re sho
dius a
curre
arallel
field (| = 5.0
ent den
to its | cross-
cm and
sity of
axis. T | section
d outer | radius
cm² f | hollow $b = 7.0$ lows the | cylind
cm.
rough | E) I
er
the | 04 | 300 | | | 1 | →
- | | 4) Tof i | The figurant race inder particular axis of | re sho
dius a
curre
arallel
field (| ent den
to its
in 10 ⁻⁴
ylinder | e cross-
cm and
sity of
axis. T
T) at a | section
d outer
1.0 A/
he mag
a distan | radius
cm² f
gnitude
nce of | hollow $b = 7.0$ lows the of the $d = 10$ | cylind
) cm.
rough
cm fro | E) I
er
the
m | E |
) 1.5 | d | | 1 | | | 4) Tof ii A ii cyli ma the | The figuranter radiuniform inder particular axis of | re sho
dius a
curre
arallel
field (
the cy | ent den
to its
in 10 ⁻⁴
ylinder
3) 0.50 | e cross-
cm and
sity of
axis. T
T) at a | section
d outer
1.0 A/
he mag
a distan | radius
cm² f
gnitude
nce of | hollow $b = 7.0$ lows the of the $d = 10$ | cylind
) cm.
rough
cm fro | E) I
er
the
om | E | 4 | d mag | netic fi | eld. T | → he ma | | 4) Tof ii A ii cyli ma the | The figuranter radiuniform inder particular axis of | re sho
dius a
curre
arallel
field (
the cy | ent den
to its
in 10 ⁻⁴
ylinder
3) 0.50 | e cross-
cm and
sity of
axis. T
T) at a | section
d outer
1.0 A/
he mag
a distan | radius
cm² f
gnitude
nce of | hollow $b = 7.0$ lows the of the $d = 10$ | cylind
) cm.
rough
cm fro | E) I
er
the
om | E | 4 | d mag | netic fi | eld. To the | → he ma | | 4) Tof i A cylinathe the A) | The figuration radius inder position axis of 0.00 | re sho
dius a
curre
rallel
field (
the cy | ent den
to its
in 10 ⁻⁴
ylinder
3) 0.50 | e cross-
cm and
sity of
axis. T
T) at a
is: | -section
d outer
1.0 A/he mag
a distant | cm² f
gnitude
nce of
C) 2 | hollow
b = 7.0
lows the
c of the
d = 10
.5 | cylind
) cm.
rough
cm fro | E) I
er
the
om | E | 4 | d mag | netic fi | eld. To the | → he ma | | 4) Tofi A cylinathe | The figuranter radiuniform inder particular axis of | re sho
dius a
curre
rallel
field (
the cy | ent den
to its
in 10 ⁻⁴
ylinder
3) 0.50 | e cross-
cm and
sity of
axis. T
T) at a
is: | -section
d outer
1.0 A/he mag
a distant
0 m² ar
same as
area (in | cm ² fignitude of C) 2 rea mais the fin m ²) i | hollow
b = 7.0
lows the
c of the
d = 10
.5
kes an analysis | cylind) cm. rough cm fro D) angle o | E) I
er
the
om | with a |) 1.5
uniform | n mag | netic fi | eld. To the | → he ma | | 4) Tof i A cylindra the A) | The figuration rate inder particular axis of 0.00 The nor a through the control of o | re sho
dius a
curre
arallel
field (
the cy
mal to
gh this
field if | ent den
to its
in 10 ⁻⁴
ylinder
3) 0.50
a cert
s area
f the se | e cross-
cm and
sity of
axis. T
T) at a
is: | outer 1.0 A/he maga distant | cm ² fignitude of C) 2 rea mais the fin m ²) i | hollow
b = 7.0
lows the
c of the
d = 10
.5
kes an a
tux throws: | cylind) cm. rough cm fro D) angle ough a | E) I
er
the
om
4.5 | with a tarea t |) 1.5
uniform | n mag | | | he ma | | 4) Tof i A cylindra the A) | The figuration rate inder particular axis of 0.00 The nor a through the control of o | re sho
dius a
curre
arallel
field (
the cy
mal to
gh this
field if | ent den
to its
in 10 ⁻⁴
ylinder
3) 0.50
a cert
s area
f the se | e cross-
cm and
sity of
axis. T
T) at a
is: | outer 1.0 A/he maga distant | cm ² fignitude of C) 2 rea mais the fin m ²) i | hollow
b = 7.0
lows the
c of the
d = 10
.5
kes an a
tux throws: | cylind) cm. rough cm fro D) angle ough a | E) I
er
the
om
4.5 | with a tarea t |) 1.5
uniform | n mag | wire 0 | arryin | he ma | | 4) Tof i A cyling the A) S) Thursday A) A) A) | The figuration rate inder particular axis of 0.00 The nor a through the control of o | re sho
dius a
curre
arallel
field (
the cy
mal to
gh this
field if | ent den
to its
in 10 ⁻⁴
ylinder
3) 0.50
a cert
s area
f the se | e cross-
cm and
sity of
axis. T
T) at a
is: | outer 1.0 A/he maga distant area (in C) 1. | cm ² fignitude of C) 2 rea mais the fin m ²) i | hollow b = 7.0 lows the of the d = 10 .5 kes an a tux thros: D) agnetic | cylind) cm. rough cm fro D) angle ough a | E) I
er
the
m
4.5
of 60° v
second | with a tarea t |) 1.5
uniform
hat is p | n mag | | arryin | he ma | ## # physics 2 final # # fall 2019 # 1) $$F = f = \frac{40I^2}{2\pi r} \Rightarrow \frac{40(2I)^2}{2\pi t^3 r} = \frac{4}{3}, \frac{40I^2}{2\pi r} = \frac{4f}{3}$$ 3) $$EB = B_{loop} - B_{wire}$$ = $\frac{MoI}{2r} - \frac{MoI}{2\pi r} = 78.54 + 16 - 25 + 16 MAMM = 54 + 16^{-6}T$. B = $$\frac{M_0}{2\pi r}$$ | $\frac{1}{\log s}$ $\frac{1}{\log$ $$\phi_1 = \phi_2 \implies \beta A_1 \cos \theta_1 = \beta A_2 \cos \theta_2$$ $$\Rightarrow 1 \times \cos 60 = A_1 \times \cos \theta$$ $$= \frac{1}{2} = A_1 \implies A_2 = 0.5 \text{ m}^2$$ 4) $$U = \frac{B^2}{2 l l_0} \implies B = \frac{l l_0 I}{2 \pi r} = \frac{l l_0 I}{2 \pi + 25 l_0^{-7}} = 9.6 l_0^{-6}$$ $= W = \frac{(9.6 l_0^{-6})^2}{2 l l_0} = 3.7 \times l_0^{-5} I l_m^3.$ 7) $$\mathcal{E}ind = -N \frac{\Delta \phi}{PL}$$ $\Rightarrow \Delta \phi = \phi_2 - \phi_1$ $\phi_2 = Zero.!$ $$\Rightarrow \mathcal{E}ind = -10 + -0.01081 | = -(AB \cos \phi) = 0.23 + 0.047 = -0.01081$$ $$= 0.32 \text{ V}$$ $$\Rightarrow \mathcal{E}ind = -N \frac{\Delta \phi}{PL} \Rightarrow \Delta \phi = \phi_2 - \phi_1$$ $$= -\phi_1$$ $$= -(AB \cos \phi) = 0.23 + 0.047 = -0.01081$$ $$\Rightarrow \mathcal{E}ind = -N \frac{\Delta \phi}{PL} \Rightarrow \Delta \phi = \phi_2 - \phi_1$$ $$= -\phi_1$$ $$= -(AB \cos \phi) = 0.23 + 0.047 = -0.01081$$ $$\Rightarrow \mathcal{E}ind = -N \frac{\Delta \phi}{PL} \Rightarrow \Delta \phi = \phi_2 - \phi_1$$ $$= -\phi_1$$ $$= -(AB \cos \phi) = 0.23 + 0.047 = -0.01081$$ $$\Rightarrow \mathcal{E}ind = -N \frac{\Delta \phi}{PL} \Rightarrow \phi}{PL}$$ 8) The Net Magnetic Flux through any essectosed surface is equal to ZERO 12) $$F_E = mg = 210^9 \times 9.7 = 1.96 \times 10^{-3} N.$$ $$9 = \frac{F_E}{E} = \frac{1.96 \, \text{k/o}}{300} = 96.5 \, \text{k/o} \, \text{C}$$ 13) $$\vec{\Phi} = \frac{9 \text{ ins}}{6 \epsilon_0}$$ 14) $$W = 9 \, V_{a \to b} = 500 = 40 \, \text{K} \, V_{a \to b}$$. $V = 12.5 \, \text{V}$ 15) $$F = \frac{6}{C_0} \implies 2 \pm 10^6 = \frac{6}{8.35 \pm 10} \implies 6 = 1.77 \pm 10^{-5}$$ $$\Rightarrow 6 = \frac{9}{4} \Rightarrow 1.77 \times 10^{-5} = \frac{9}{0.2} \Rightarrow 9 = 3.5 \times 10^{-6} \text{C}.$$ # Sanfoor-Monames # power-Unit # Monamula Alines