A) 0.0032	B) 0.32	C) 0.032	D) 0.00	E) 1.0		
A) zero	agnetic flux the B) I/µ,	C) 4	E ₀ D) 1/μ ₀ ε ₀	E) μ _ο J	
) A flat coi geometry ha	of wire, having 20 turns in	g 5 turns, has a s:	an inductance	L. The induct	tance of another	coil with a similar
A) 4L.	B) L/4	C) L	D) 16L	E) L/16		Lutor
A 1 O 80	B) 0.20	C) 0.10	D) 0.40	E) 0		
across the r	esistor is equal B) 0.57	to the voltage C) 1.1	D) 1.4	E) 0.86	rent in the	21-Ω resistor, and a sd. When the voltage tor (in A) is: electric field of E) 0
7000 500	DE CHARLE OF CO.		() + L C V	10		
	n arry one	(1)	a/s- D	0/460		
Our through			a 40-C charg	e from one po	oint to another, t	the potential difference E) 12.5
flux throug A) q/652 14) If 500 J (in V) betw	of work are receen these two p		th taken	C) 0.08		
flux throug A) q/602 14) If 500 J (in V) betw A) 20000 15) A parallelectric field	of work are recent these two p B) depo	or has a plate //m between t	area of 0.2 m he plates, the	² and a plate magnitude of	separation of 0. The charge (in D) 1.8 × 10 ⁻⁵	1 mm. To obtain an C) on each plate should E) 8.9 × 10 ⁻⁵
flux throug A) q/602 14) If 500 J (in V) betw A) 20000 (5) A parallelectric fields:	of work are recent these two p B) depo	or has a plate //m between t	area of 0.2 m he plates, the	² and a plate magnitude of	separation of 0. The charge (in D) 1.8 × 10 ⁻⁵	1 mm. To obtain an C) on each plate should

	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16
,=	8.85x1	0 ⁻¹² F	/m ,	μ ₀ = 4	π × 10°	7 T.m/	A					_			
			_	_					836		(0) (0)				-
bo	vo paral th these F/3	curre	nts are	double	the sa	me cur	rent and	d repel	each o	ther wi	ith a fo	rce F p	er unit	length	1.
) 2	F/3	B)	4F/9	C) 4F/3		D) 2F/9)	E) 6F						
) T	wo long	straig	th wir	es ente	r a roor	m thro	igh a w	indow	1.5 m	high an	d 1.0	n wide	. One	arries	a
urr	ent of 3	.0 A i	nto the	room v	while th	he othe	r carrie	s a cur	rent of	5.0 A	out. Th	e mag	nitude	of the	path
inte A) (gral∮∄ 53		(in 10 ⁻ 3.8	200000000000000000000000000000000000000	around C) 2.5	the w	indow f	rame i D) 0.		E) 0	0				
								····							
3) /	s show	n in th	e figur	e, a wi	re is be	ent into	the sh	ape of	a 0				1		E (1)
tig	htly clo	ng str	nega (1 aight se	ections	. The l	oop is	op of ra	v-plan	e, with		5.0 A	1//	1	11,	50 A
the	center a	it the c	origin.	The str	raight s	section	s are pa	rallel	to the			11		1	1
	kis. The gnitude								he loor	is:		//	4	n.a.	1
ma	giinude	Or un	· magn	ctic iii		1					200	11		/	5.0
											5.0 A	11		//	-1
A) :	54	В) 40		C) 25		D) 80)	E) I	04	======================================		> 0		
4) 7	he figu	re sho	ws the	cross	-section	n of a l	nollow	cylind	E) 1	04	======================================		>	1	
4) 7	The figu	re sho	ws the	cross-	-section	radius	nollow $b = 7.0$	cylind cm.	E) I	04	511 A		>	10	
4) Tofi	The figu nner rac uniform	re sho	= 5.0	cross- cm and sity of	section d outer	radius cm² f	hollow $b = 7.0$ lows the	cylind cm. rough	E) I er the	04	500		200	1	
4) Tofi	The figu nner rac uniform	re sho	= 5.0	cross- cm and sity of	section d outer	radius cm² f	hollow $b = 7.0$ lows the	cylind cm. rough	E) I er the	04	300		> C	1	→ -
of i	The figuration	re sho dius a curre arallel field (= 5.0 ent den to its	cross- cm and sity of axis. T	section d outer	radius cm² f	hollow $b = 7.0$ lows the	cylind cm. rough	E) I er the	04	300			1	→ -
4) Tof i	The figurant race inder particular axis of	re sho dius a curre arallel field (ent den to its in 10 ⁻⁴ ylinder	e cross- cm and sity of axis. T T) at a	section d outer 1.0 A/ he mag a distan	radius cm² f gnitude nce of	hollow $b = 7.0$ lows the of the $d = 10$	cylind) cm. rough cm fro	E) I er the m	E) 1.5	d		1	
4) Tof ii A ii cyli ma the	The figuranter radiuniform inder particular axis of	re sho dius a curre arallel field (the cy	ent den to its in 10 ⁻⁴ ylinder 3) 0.50	e cross- cm and sity of axis. T T) at a	section d outer 1.0 A/ he mag a distan	radius cm² f gnitude nce of	hollow $b = 7.0$ lows the of the $d = 10$	cylind) cm. rough cm fro	E) I er the om	E	4	d mag	netic fi	eld. T	→ he ma
4) Tof ii A ii cyli ma the	The figuranter radiuniform inder particular axis of	re sho dius a curre arallel field (the cy	ent den to its in 10 ⁻⁴ ylinder 3) 0.50	e cross- cm and sity of axis. T T) at a	section d outer 1.0 A/ he mag a distan	radius cm² f gnitude nce of	hollow $b = 7.0$ lows the of the $d = 10$	cylind) cm. rough cm fro	E) I er the om	E	4	d mag	netic fi	eld. To the	→ he ma
4) Tof i A cylinathe the A)	The figuration radius inder position axis of 0.00	re sho dius a curre rallel field (the cy	ent den to its in 10 ⁻⁴ ylinder 3) 0.50	e cross- cm and sity of axis. T T) at a is:	-section d outer 1.0 A/he mag a distant	cm² f gnitude nce of C) 2	hollow b = 7.0 lows the c of the d = 10 .5	cylind) cm. rough cm fro	E) I er the om	E	4	d mag	netic fi	eld. To the	→ he ma
4) Tofi A cylinathe	The figuranter radiuniform inder particular axis of	re sho dius a curre rallel field (the cy	ent den to its in 10 ⁻⁴ ylinder 3) 0.50	e cross- cm and sity of axis. T T) at a is:	-section d outer 1.0 A/he mag a distant 0 m² ar same as area (in	cm ² fignitude of C) 2 rea mais the fin m ²) i	hollow b = 7.0 lows the c of the d = 10 .5 kes an analysis	cylind) cm. rough cm fro D) angle o	E) I er the om	with a) 1.5 uniform	n mag	netic fi	eld. To the	→ he ma
4) Tof i A cylindra the A)	The figuration rate inder particular axis of 0.00 The nor a through the control of the control o	re sho dius a curre arallel field (the cy mal to gh this field if	ent den to its in 10 ⁻⁴ ylinder 3) 0.50 a cert s area f the se	e cross- cm and sity of axis. T T) at a is:	outer 1.0 A/he maga distant	cm ² fignitude of C) 2 rea mais the fin m ²) i	hollow b = 7.0 lows the c of the d = 10 .5 kes an a tux throws:	cylind) cm. rough cm fro D) angle ough a	E) I er the om 4.5	with a tarea t) 1.5 uniform	n mag			he ma
4) Tof i A cylindra the A)	The figuration rate inder particular axis of 0.00 The nor a through the control of the control o	re sho dius a curre arallel field (the cy mal to gh this field if	ent den to its in 10 ⁻⁴ ylinder 3) 0.50 a cert s area f the se	e cross- cm and sity of axis. T T) at a is:	outer 1.0 A/he maga distant	cm ² fignitude of C) 2 rea mais the fin m ²) i	hollow b = 7.0 lows the c of the d = 10 .5 kes an a tux throws:	cylind) cm. rough cm fro D) angle ough a	E) I er the om 4.5	with a tarea t) 1.5 uniform	n mag	wire 0	arryin	he ma
4) Tof i A cyling the A) S) Thursday A) A) A)	The figuration rate inder particular axis of 0.00 The nor a through the control of the control o	re sho dius a curre arallel field (the cy mal to gh this field if	ent den to its in 10 ⁻⁴ ylinder 3) 0.50 a cert s area f the se	e cross- cm and sity of axis. T T) at a is:	outer 1.0 A/he maga distant area (in C) 1.	cm ² fignitude of C) 2 rea mais the fin m ²) i	hollow b = 7.0 lows the of the d = 10 .5 kes an a tux thros: D) agnetic	cylind) cm. rough cm fro D) angle ough a	E) I er the m 4.5 of 60° v second	with a tarea t) 1.5 uniform hat is p	n mag		arryin	he ma

physics 2 final # # fall 2019

1)
$$F = f = \frac{40I^2}{2\pi r} \Rightarrow \frac{40(2I)^2}{2\pi t^3 r} = \frac{4}{3}, \frac{40I^2}{2\pi r} = \frac{4f}{3}$$

3)
$$EB = B_{loop} - B_{wire}$$

= $\frac{MoI}{2r} - \frac{MoI}{2\pi r} = 78.54 + 16 - 25 + 16 MAMM = 54 + 16^{-6}T$.

B =
$$\frac{M_0}{2\pi r}$$
 | $\frac{1}{\log s}$ | $\frac{1}{\log$

$$\phi_1 = \phi_2 \implies \beta A_1 \cos \theta_1 = \beta A_2 \cos \theta_2$$

$$\Rightarrow 1 \times \cos 60 = A_1 \times \cos \theta$$

$$= \frac{1}{2} = A_1 \implies A_2 = 0.5 \text{ m}^2$$

4)
$$U = \frac{B^2}{2 l l_0} \implies B = \frac{l l_0 I}{2 \pi r} = \frac{l l_0 I}{2 \pi + 25 l_0^{-7}} = 9.6 l_0^{-6}$$

 $= W = \frac{(9.6 l_0^{-6})^2}{2 l l_0} = 3.7 \times l_0^{-5} I l_m^3.$

7)
$$\mathcal{E}ind = -N \frac{\Delta \phi}{PL}$$
 $\Rightarrow \Delta \phi = \phi_2 - \phi_1$ $\phi_2 = Zero.!$

$$\Rightarrow \mathcal{E}ind = -10 + -0.01081 | = -(AB \cos \phi) = 0.23 + 0.047 = -0.01081$$

$$= 0.32 \text{ V}$$

$$\Rightarrow \mathcal{E}ind = -N \frac{\Delta \phi}{PL} \Rightarrow \Delta \phi = \phi_2 - \phi_1$$

$$= -\phi_1$$

$$= -(AB \cos \phi) = 0.23 + 0.047 = -0.01081$$

$$\Rightarrow \mathcal{E}ind = -N \frac{\Delta \phi}{PL} \Rightarrow \Delta \phi = \phi_2 - \phi_1$$

$$= -\phi_1$$

$$= -(AB \cos \phi) = 0.23 + 0.047 = -0.01081$$

$$\Rightarrow \mathcal{E}ind = -N \frac{\Delta \phi}{PL} \Rightarrow \Delta \phi = \phi_2 - \phi_1$$

$$= -\phi_1$$

$$= -(AB \cos \phi) = 0.23 + 0.047 = -0.01081$$

$$\Rightarrow \mathcal{E}ind = -N \frac{\Delta \phi}{PL} \Rightarrow \mathcal{E}ind = -N \frac{\Delta \phi}{PL}$$

8) The Net Magnetic Flux through any essectosed surface is equal to ZERO

12)
$$F_E = mg = 210^9 \times 9.7 = 1.96 \times 10^{-3} N.$$

$$9 = \frac{F_E}{E} = \frac{1.96 \, \text{k/o}}{300} = 96.5 \, \text{k/o} \, \text{C}$$

13)
$$\vec{\Phi} = \frac{9 \text{ ins}}{6 \epsilon_0}$$

14)
$$W = 9 \, V_{a \to b} = 500 = 40 \, \text{K} \, V_{a \to b}$$
.

 $V = 12.5 \, \text{V}$

15)
$$F = \frac{6}{C_0} \implies 2 \pm 10^6 = \frac{6}{8.35 \pm 10} \implies 6 = 1.77 \pm 10^{-5}$$

$$\Rightarrow 6 = \frac{9}{4} \Rightarrow 1.77 \times 10^{-5} = \frac{9}{0.2} \Rightarrow 9 = 3.5 \times 10^{-6} \text{C}.$$

Sanfoor-Monames

power-Unit

Monamula Alines