L05 Practical Operational Amplifiers Op-Amps 1

Chapter 14

Nonideal Effects in Operational Amplifier

CircuitsDonald A. Neamen (2009). Microelectronics: Circuit Analysis and Design,

4th Edition, Mc-Graw-Hill

Prepared by: Dr. Hani Jamleh, School of Engineering, The University of Jordan

14.1.1 Practical Op-Amp Parameter Definitions: *Input voltage limits*

- Two input voltage limitations must be considered:
 - A DC input voltage limit and
 - A differential signal input voltage.
- All transistors in the input diff-amp stage must be properly biased
 - So there is a limit in the range of common-mode input voltage that can be applied and still maintain the proper transistor biasing.
- The maximum differential input signal voltage that can be applied and still maintain linear circuit operation.
 - Is limited primarily by the maximum allowed output signal voltage.

14.1.1 Practical Op-Amp Parameter Definitions: **Output voltage limits**

- The output voltage of the op-amp can never exceed the limits of the DC supply voltages.
- In practice, the difference between the bias voltage and the maximum output voltage depends on the design of the output stage.
 - In older designs, this difference was on the order of 1 to 2 volts.
 - In newer designs, this difference can be on the order of millivolts.
- If $V_{out} = A_v \cdot V_{in}$ (where A_v is the overall voltage gain) is greater than the bias voltage, then:
 - 1. The output voltage would saturate and
 - 2. V_{out} is no longer a linear function of the input voltage.

14.1.1 Practical Op-Amp Parameter Definitions: **Output current limitation**

- The maximum current out of or into the op-amp is determined by the current ratings of the output transistors.
 - Practical op-amp circuits cannot source or sink an infinite amount of current.

14.1.1 Practical Op-Amp Parameter Definitions: *Finite open-loop voltage gain*

- The open-loop gain, A_{od} , of the ideal op-amp is assumed to be infinite.
- In practice, the open-loop gain of any op-amp circuit is always finite.
 - This nonideal parameter value will affect circuit performance.

14.1.1 Practical Op-Amp Parameter Definitions: *Input resistance*

- The input resistance.
 - Is the small-signal resistance between the inverting and noninverting terminals when a differential voltage is applied.
- Ideally, this parameter is infinite.
- Practically and especially for BJT circuits, this parameter is finite.

14.1.1 Practical Op-Amp Parameter Definitions: *Output resistance*

- The output resistance is the Thevenin equivalent small-signal resistance looking back into the output terminal of the op-amp measured with respect to ground.
- The ideal output resistance is *zero*, which means there is **no loading effect** at the output.
- In practice, this value is not zero.

14.1.1 Practical Op-Amp Parameter Definitions: *Finite bandwidth*

- In the ideal op-amp, the bandwidth is infinite.
- In practical op-amps, the bandwidth is finite.
 - Because of capacitances within the op-amp circuit.

14.1.1 Practical Op-Amp Parameter Definitions: *Slew rate*

- The slew rate is defined as:
 - The maximum rate of change in output voltage per unit of time, due to limited current sink or source.

$$SR = \max\left(\left|\frac{\partial V_o(t)}{\partial t}\right|\right)$$

- The maximum rate at which the output voltage can change.
 - It is also a function of capacitances within the op-amp circuit.

14.1.1 Practical Op-Amp Parameter Definitions: *Slew rate*

- If a node in a circuit where the load is capacitivedominant, i.e., the load is mostly made of a capacitance C (although there is always some very large parallel resistance R).
- So that all current *I* entering the load will flow to the capacitor and none to the resistance.
 - Then, the rate of voltage change across the capacitor is defined by:

$$\frac{dV_o}{dt} = \frac{I}{C}$$

• If the current being sourced to this load is limited at I_{max} , the maximum voltage change per unit time is:

$$SR = \max\left(\left|\frac{\partial V_o}{\partial t}\right|\right) = \frac{I_{max}}{C}$$

C-dominant load

14.1.1 Practical Op-Amp Parameter Definitions: *Slew rate of a Sinusoidal waveform*

$$SR = \max\left(\left|\frac{\partial V_o}{\partial t}\right|\right) = \frac{I_{max}}{C}$$

- To avoid distortion of an output signal.
 - The circuit must be designed so that output node has a Slew-Rate higher than the highest slope of the output signal.
- Let the output has the highest sinusoidal as a function of frequency f:

$$\frac{V_o(t) = V_P \cdot \sin(2\pi f t)}{\frac{\partial V_o}{\partial t}} = V_P \cdot 2\pi f \cdot \cos(2\pi f t)$$

• The highest slope is when the cosine is 1, therefore:

Source: http://www.onmyphd.com/?p=slew.rate

 $SR \ge 2\pi f V_p$

14.1.1 Practical Op-Amp Parameter Definitions: *Slew rate*

- In amplifiers, limitations in slew rate capability, can give rise to nonlinear effects.
- For a sinusoidal waveform not to be subject to slew rate limitation, the slew rate capability (in volts per second) at all points in an amplifier must satisfy the following condition:

$$SR \ge 2\pi f V_p$$

• Where:

- $\succ f$ is the operating frequency, and
- $\geq V_p$ is the peak amplitude of the waveform.

14.1.1 Practical Op-Amp Parameter Definitions: *Slew rate*

- Slew rate helps us identify:
 - The maximum input frequency and
 - The maximum input amplitude

applicable to the amplifier such that the output is not significantly distorted.

• Thus it becomes imperative to check the **datasheet** for the device's slew rate before using it for <u>high-frequency applications</u>.

Electrical Characteristics (Note 5) (Continued)											
Parameter	Conditions	LM741A		LM741			LM741C			Units	
		Min	Тур	Max	Min	Түр	Max	Min	Түр	Max	
Slew Rate	T _A = 25°C, Unity Gain	0.3	0.7			0.5			0.5		V/µs

Part of LM741 Datasheet

14.1.1 Practical Op-Amp Parameter *Slew rate*

Circuit with SR = 15V/s

Circuit with SR = 5V/s

Source: http://www.onmyphd.com/?p=slew.rate

Slew Rate Testing Conditions for 741

14.1.1 Practical Op-Amp Parameter Definitions: *Input offset voltage*

- In an ideal op-amp, the output voltage is *zero* for *zero* differential input signal voltage.
- However, mismatches between input devices, may create a nonzero output voltage with *zero* input.
- The input offset voltage is the applied differential input voltage required to induce a *zero* output voltage.

14.1.1 Practical Op-Amp Parameter Definitions: *Input bias currents*

- In an ideal op-amp, the input bias DC current to the op-amp circuit is assumed to be *zero*.
- In practical op-amps, especially with BJT input devices, the input bias currents are not zero.

14.6.2 Common-Mode Rejection Ratio

- The ability of a differential amplifier to reject a common-mode signal is described in terms of the $\frac{v_d}{2}$
 - The CMRR is a figure of merit for the diff-amp.
- Figure 14.30(a) shows the open-loop op-amp with a pure differential-mode input signal.
- The differential-mode gain A_d is the same as the open-loop gain A_{OL} .
- Figure 14.30(b) shows the open-loop op-amp with a pure common-mode input signal.

Figure 14.30(a)

14.6.2 Common-Mode Rejection Ratio

• The common-mode rejection ratio, in dB, is:

$$CMRR_{dB} = 20 \cdot \log_{10} \left| \frac{A_d}{A_{cm}} \right|$$

- 1. For an ideal diff-amp, $A_{cm} = 0$ and $CMRR = \infty$.
- 2. Typical values of $CMRR_{dB}$ range from 80 to 100 dB.
- 3. The common-mode gain decreases as R_o increases and vice versa.

14.1.1 Practical Op-Amp Parameter Definitions

- We will discuss the effects of these nonideal parameters on op-amp circuit performance.
- Table 14.1 lists a few of the nonideal parameter values for three of the opamps i.e. 741E, CA3140, and LH0042C.
- The output resistance for **741E** is about 75Ω .

Table 14.1 Nonideal parame	ter valu	es for th	iree op-a	mp circ	uits				
	741E		CA3140			LH0042C			
	Тур.	Max.	Unit	Тур.	Max.	Unit	Тур.	Max.	Unit
Input offset voltage	0.8	3	mV	5	15	mV	6	20	mV
Average input offset voltage drift		15	µV/°C				10		µV/°C
Input offset current Average input offset current drift	3.0	30 0.5	nA nA/°C	0.5	30	pА	2		pA
Input bias current	30	80	nA	10	50	pА	2	10	pA
Slew rate	0.7		$V/\mu s$	9		V/µs	3		$V/\mu s$
CMRR	95		dB	90		dB	80		dB

Schematic Diagram

14.2 Finite Open-loop Gain $A_{od} \neq \infty$

• Objective:

Analyze the effect of finite open-loop gain.

• In the ideal op-amp:

- 1. The open-loop gain A_{od} is infinite,
- 2. The input differential resistance R_i is infinite, and
- 3. The output resistance R_o is zero.
- None of these conditions exists in actual operational amplifiers.
- But we determined that:
 - 1. The open-loop gain may be large but finite and
 - 2. The input differential resistance may be large but finite, and
 - 3. The output resistance may be small but *non zero*.

14.2 Finite Open-loop Gain $A_{od} \neq \infty$

- We will:
 - Determine the effect of a finite open-loop gain and input resistance on both the inverting and noninverting amplifier characteristics.
 - Calculate the output resistance.
 - Limit our discussion of the finite open-loop gain to low frequency.
 - Consider the effect of finite gain, and the frequency response of the amplifier.

14.2.1 Inverting Amplifier Closed-Loop Gain

- The equivalent circuit of the inverting amplifier with a finite open-loop gain is shown in Figure 14.2.
- If the open-loop input resistance is assumed to be $v_l \sim infinite$, then:

$$\frac{v_{I} - v_{1}^{i_{1}} = i_{2}}{R_{1}} = \frac{v_{1} - v_{0}}{R_{2}}$$
$$\frac{v_{I}}{R_{1}} = v_{1} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right) - \frac{v_{0}}{R_{2}}$$

- Since $v_2 = 0$, the output voltage is: $v_0 = A_{0L}(v_2 - v_1) = -A_{0L}v_1$
 - where A_{OL} is the low-frequency open-loop gain.

14.2.1 Inverting Amplifier Closed-Loop Gain

• Solving for v_1 from Equation $v_0 = -A_{0L}v_1$ and substituting the result into Equation: $\frac{v_I}{R_1} = v_1 \left(\frac{1}{R_1} + \frac{1}{R_2}\right) - \frac{v_0}{R_2}$ • We get: $\frac{v_I}{R_1} = -\left(\frac{v_0}{A_{0L}}\right) \left(\frac{1}{R_1} + \frac{1}{R_2}\right) - \frac{v_0}{R_2}$ • The closed-loop voltage gain is then: $\binom{R_2}{R_1} = \frac{v_1}{R_2} + \frac{v_0}{R_2} + \frac{v_0}{R_2}$

$$A_{CL} = \frac{v_0}{v_I} = -\frac{\left(\frac{R_2}{R_1}\right)}{1 + \frac{1}{A_{OL}}\left(1 + \frac{R_2}{R_1}\right)}$$

EXAMPLE 9.3

- Consider an inverting op-amp with $R_1 = 10 \ k\Omega$ and $R_2 = 100 \ k\Omega$.
- Determine the closed-loop gain for: $A_{od} = 10^2$, 10^3 , 10^4 , 10^5 , and 10^6 .
- Calculate the percent deviation from the ideal gain (i.e. ∞).
- **Solution**: The ideal closed-loop gain is:

$$A_{\nu} = -\frac{R_2}{R_1} = -\frac{100}{10} = -10$$

• If
$$A_{od} = 10^2$$
, we have, from Equation:

$$A_{CL} = \frac{v_0}{v_I} = -\frac{\left(\frac{R_2}{R_1}\right)}{\left(1 + \frac{1}{A_{OL}}\left(1 + \frac{R_2}{R_1}\right)\right)} = -\frac{\left(\frac{100}{10}\right)}{\left(1 + \frac{1}{10^2}\left(1 + \frac{100}{10}\right)\right)} = -9.01$$
• which is a $\frac{10-9.01}{10} \times 100 = 9.9\%$ deviation from the ideal.

EXAMPLE 9.3

• For the other differential gain values we have the following results:

A _{od}	A_v	Deviation (%)
10^{2}	-9.01	9.9
10^{3}	-9.89	1.1
10^{4}	-9.989	0.11
10^{5}	-9.999	0.01
10^{6}	-9.9999	0.001

• Comment:

- For this case, the open-loop gain must be on the order of at least 10³ in order to be within 1 *percent* of the ideal gain.
- If the ideal closed-loop gain changes, a new value of open-loop gain must be determined in order to meet the specified requirements.
- Usually, at **low frequencies**, most op-amp circuits have gains on the order of $A_{od} = 10^5$, so achieving the required accuracy is not difficult.

- **Objective**: Determine the minimum open-loop voltage gain (A_{OL}) to achieve a particular <u>accuracy</u>.
- A pressure transducer:
 - Produces a maximum DC voltage signal of 2mV and
 - Has an output resistance of $R_S = 2k\Omega$.
 - The maximum DC current is to be limited to $0.2 \ \mu A$.
- An inverting amplifier is to be used in conjunction with the transducer:
 - To produce an output voltage of -0.10V for a 2 mV transducer signal.
 - The error in the output voltage cannot be greater than 0.1 *percent*.
- Determine the minimum open-loop gain of the amplifier to meet this specification.

- Solution: We must first determine the resistor values to be used in the inverting amplifier.
- The source resistor is in series with R_1 , so let:

$$R_1' = R_1 + R_S$$

• The minimum input resistance is found from the maximum input current as:

$$R'_1(\min) = \frac{v_i}{i_i(\max)} = \frac{2 \times 10^{-3}}{0.2 \times 10^{-6}} = 10 \times 10^3 = 10 \ k\Omega$$

• The resistor
$$R_1$$
 then:
$$R_1 = R_1' - R_S = 10k\Omega - 2k\Omega = 8k\Omega$$

- The closed-loop voltage gain required is: $A_{CL} = \frac{v_0}{v_i} = -\frac{0.10}{2 \times 10^{-3}} = -50 = -\frac{R_F}{R_1'}$
- The required value of the feedback resistor is: $R_F = A_{CL} \times R_1' = 50 \times 10k = 500k\Omega$
- For the voltage gain to be within 0.1 *percent*, the minimum gain is:

$$A_{CL} = 50 - (50 * 0.001) = 49.95$$

• We can determine the minimum value of the open-loop gain from:

$$A_{CL} = \frac{v_0}{v_I} = -\frac{\left(\frac{R_F}{R_1'}\right)}{\left(1 + \frac{1}{A_{OL}}\left(1 + \frac{R_F}{R_1'}\right)\right)} = -49.95 = -\frac{\left(\frac{500k}{10k}\right)}{\left(1 + \frac{1}{A_{OL}}\left(1 + \frac{500k}{10k}\right)\right)}$$

• Which yields $A_{OL}(\min) = 50,949$.

- Comment:
 - If the A_{OL} is greater than the value of $A_{OL}(\min) = 50,949$, then the error in the voltage gain will be less than 0.1%.

Exercise: Ex 14.1

- Consider an inverting amplifier in which the op-amp open-loop gain is $A_{OL} = 2 \times 10^5$ and the ideal closed-loop amplifier gain is $A_{CL}(\infty) = -40$.
 - a) Determine the actual closed-loop gain.
 - b) Repeat part (a) if the open-loop gain is $A_{OL} = 5 \times 10^4$.
 - c) What is the percent change between the magnitudes of the actual gains from part (a) to part (b)?

Exercise: Ex 14.1

14.2.1 Inverting Amplifier Closed-Loop Gain

$$A_{CL} = \frac{v_0}{v_I} = -\frac{\left(\frac{R_F}{R_1'}\right)}{(1 + \frac{1}{A_{OL}}\left(1 + \frac{R_F}{R_1'}\right)}$$

• In the limit as $A_{OL} \rightarrow \infty$, the closed-loop gain is equal to the ideal value, designated $A_{CL}(\infty)$, which for the inverting amplifier is:

$$A_{CL}(\infty) = -\frac{R_2}{R_1}$$

• Then we can write:

$$A_{CL} = \frac{A_{CL}(\infty)}{\left(1 + \frac{1}{A_{OL}}(1 - A_{CL}(\infty))\right)}$$

14.2.2 Noninverting Amplifier Closed-Loop Gain

- Figure 14.3 shows the circuit of the noninverting amplifier with a finite open-loop gain A_{OL} .
- The open-loop input differential resistance is assumed to be infinite.

• We have
$$i_1 = i_2$$
:

$$-\frac{v_1}{R_1} = \frac{v_1 - v_0}{R_2}$$

$$\frac{v_0}{R_2} = v_1 \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

• The output voltage is:

$$v_0 = A_{0L}(v_2 - v_1)$$

• Since $v_2 = v_I$, voltage v_1 can be written: $v_1 = v_I - \frac{v_O}{A_{OL}}$

/ledical Electronics - Dr. Hani Jamleh - JU

14.2.2 Noninverting Amplifier Closed-Loop Gain

• Combining Equations the following two equations:

$$\frac{v_{O}}{R_{2}} = v_{1} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} \right)$$
$$v_{1} = v_{I} - \frac{v_{O}}{A_{OL}}$$

• Rearranging terms, we have an expression for the closed-loop voltage gain:

$$A_{CL} = \frac{v_0}{v_I} = \frac{1 + \frac{R_2}{R_1}}{1 + \frac{1}{A_{OL}} \left(1 + \frac{R_2}{R_1}\right)}$$

14.2.2 Noninverting Amplifier Closed-Loop Gain

$$A_{CL} = \frac{v_0}{v_I} = \frac{1 + \frac{R_2}{R_1}}{1 + \frac{1}{A_{OL}} \left(1 + \frac{R_2}{R_1}\right)}$$

- In the limit as $A_{OL} \to \infty$, the ideal closed-loop gain is: $A_{CL}(\infty) = 1 + \frac{R_2}{R_1}$
- Then we can write:

$$A_{CL} = \frac{v_0}{v_I} = \frac{A_{CL}(\infty)}{1 + \frac{A_{CL}(\infty)}{A_{OL}}}$$

 The result for the noninverting amplifier is very similar to that for the inverting amplifier!

Closed-Loop Gain Comparison

	Inverting Amplifier	Noninverting Amplifier
Closed loop gain	$A_{CL} = \frac{v_{O}}{v_{I}} = -\frac{\left(\frac{R_{F}}{R_{1}'}\right)}{\left(1 + \frac{1}{A_{OL}}\left(1 + \frac{R_{F}}{R_{1}'}\right)\right)}$	$A_{CL} = \frac{v_0}{v_I} = \frac{1 + \frac{R_2}{R_1}}{1 + \frac{1}{A_{OL}} \left(1 + \frac{R_2}{R_1}\right)}$
Closed Loop gain assumed $A_{OL} \rightarrow \infty$	$A_{CL}(\infty) = -\frac{R_2}{R_1}$	$A_{CL}(\infty) = 1 + \frac{R_2}{R_1}$
A_{CL} as a function of ideal $A_{CL}(\infty)$	$A_{CL} = \frac{A_{CL}(\infty)}{(1 + \frac{1}{A_{OL}}(1 - A_{CL}(\infty)))}$	$A_{CL} = \frac{v_O}{v_I} = \frac{A_{CL}(\infty)}{1 + \frac{A_{CL}(\infty)}{A_{OL}}}$