LO4 Operational Amplifiers Applications 3

Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits

Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design,

4th Edition, Mc-Graw-Hill

Prepared by: Dr. Hani Jamleh, Electrical Engineering Department, The University of Jordan

8.

9.

Amplifier

Integrator

10. Differentiator

11. Reference

12. Precision Half-wave Rectifier

 V_Z

Med

11

 C_2

- An ideal difference amplifier amplifies <u>only</u> the difference between two signals
 - It rejects any common signals to the two input terminals.
 - For example, a microphone system amplifies an audio signal applied to one terminal of a difference amplifier, and rejects any 60 Hz noise signal or "hum" existing on both terminals.
- We would like to make a difference amplifier, in which:
 - The output is a function of the ratio of resistors, as we had for the inverting and noninverting amplifiers.

- Consider the circuit shown in Figure 9.24(a), with inputs v_{I1} and v_{I2} .
- To analyze the circuit, we will use:
 - 1. Superposition and
 - 2. The virtual short concept.
- Figure 9.24(b) shows the circuit with input $v_{I2} = 0$.
 - There are no currents in R_3 and R_4 ; therefore, $v_{2a} = 0$.
- The resulting circuit is the inverting amplifier previously considered, for which:

$$v_{01} = -\frac{R_2}{R_1} v_{I1}$$

- Figure 9.24(c) shows the circuit with $v_{I1} = 0$.
- Since the current into the op-amp is zero, R_3 and R_4 form a voltage divider.

$$v_{2b} = \frac{R_4}{(R_3 + R_4)} v_{I2}$$

• From the virtual short concept, $v_{1b} = v_{2b}$ and the circuit becomes a noninverting amplifier:

$$v_{O2} = \left(1 + \frac{R_2}{R_1}\right) v_{1b} = \left(1 + \frac{R_2}{R_1}\right) v_{2b}$$

• Substituting:

$$v_{2b} = \frac{R_4}{(R_3 + R_4)} v_{I2}$$

• Into:

$$v_{02} = \left(1 + \frac{R_2}{R_1}\right) v_{2b}$$

• we obtain:

$$v_{02} = \left(1 + \frac{R_2}{R_1}\right) \left(\frac{R_4}{R_3 + R_4}\right) v_{I2}$$

which can be rearranged as follows:

$$v_{02} = \left(1 + \frac{R_2}{R_1}\right) \left(\frac{R_4/R_3}{1 + R_4/R_3}\right) v_{I2}$$

$$v_{01} = -\left(\frac{R_2}{R_1}\right)v_{I1}$$
$$v_{02} = \left(1 + \frac{R_2}{R_1}\right)\left(\frac{R_4/R_3}{1 + R_4/R_3}\right)v_{I2}$$

• By superposition, the net output voltage is the sum of the individual terms, we have:

$$v_{O} = v_{O1} + v_{O2}$$
$$v_{O} = -\left(\frac{R_{2}}{R_{1}}\right)v_{I1} + \left(1 + \frac{R_{2}}{R_{1}}\right)\left(\frac{R_{4}/R_{3}}{1 + R_{4}/R_{3}}\right)v_{I2}$$

$$v_{O} = \left(1 + \frac{R_{2}}{R_{1}}\right) \left(\frac{R_{4}/R_{3}}{1 + R_{4}/R_{3}}\right) v_{I2} - \left(\frac{R_{2}}{R_{1}}\right) v_{I1}$$

- A property of the ideal difference amplifier is that:
 - The output voltage is *zero* when $v_{I1} = v_{I2}$.

$$\frac{R_4}{R_3} = \frac{R_2}{R_1}$$

• The output voltage is then:

$$v_0 = \frac{R_2}{R_1} (v_{I2} - v_{I1})$$

• Which indicates that this amplifier has a differential gain of:

$$A_d = R_2/R_1$$

• This factor is a closed-loop differential gain, rather than the open-loop differential gain A_{od} of the op-amp itself.

Figure 9.24(b)

- Another important characteristic of electronic circuits is the input resistance.
- The differential input resistance can be determined by using the circuit shown in Figure 9.25.
- In the figure, we have imposed the condition given in Equation:

• Set
$$R_1 = R_3$$
 and $R_2 = R_4$.

• The input resistance is then defined as:

10

$$R_i = \frac{v_I}{i}$$

• Taking into account the virtual short concept, we can write a loop equation, as follows: $v_I = i \cdot R_1 + i \cdot R_1 = i(2 \cdot R_1)$

• The input resistance is:

$$R_i = 2R_1$$

9.5.3 Difference Amplifier common-mode input signal

- In the ideal difference amplifier, the output v_0 is *zero* when $v_{I1} = v_{I2}$.
- However, an inspection of Equation:

$$v_{O} = \left(1 + \frac{R_{2}}{R_{1}}\right) \left(\frac{R_{4}/R_{3}}{1 + R_{4}/R_{3}}\right) v_{I2} - \left(\frac{R_{2}}{R_{1}}\right) v_{I1}$$

shows that this condition is not satisfied if: $R_4/R_3 \neq R_2/R_1$

- When $v_{I1} = v_{I2}$, the input is called a **common**mode input signal.
- The common-mode input voltage is defined as: $v_{cm} = (v_{I1} + v_{I2})/2$

9.5.3 Difference Amplifier common-mode rejection ratio

 $v_{cm} = (v_{I1} + v_{I2})/2$

- The common-mode gain is then defined as: $A_{cm} = \frac{v_0}{v_{cm}}$
- Ideally, when a common-mode signal is applied, $v_0 = 0$ and $A_{cm} = 0$.
- A *nonzero* common-mode gain may be generated in actual op-amp circuits.
- A figure of merit for a difference amplifier is the commonmode rejection ratio (CMRR), which is defined as:
 - The magnitude of the ratio of differential gain to common-mode gain:

$$CMRR = \left| \frac{A_d}{A_{cm}} \right|$$

$$R_1$$

$$v_{I10}$$

$$v_{I20}$$

$$R_3$$

$$R_4$$
Figure 9.24(a)

P.

$$CMRR = \left| \frac{A_d}{A_{cm}} \right|$$

• Usually, the CMRR is expressed in decibels:

$$CMRR(dB) = 20 \log_{10} \left| \frac{A_d}{A_{cm}} \right|$$

- Ideally, the common-mode rejection ratio is *infinite*.
- In an actual differential amplifier, we would like the common-mode rejection ratio to be as large as possible.

- **Objective**: Calculate the common-mode rejection ratio of a difference amplifier.
- Consider the difference amplifier shown in Figure 9.24(a). Let $R_2/R_1 = 10$ and $R_4/R_3 = 11$.
- Determine *CMRR*(*dB*).
- **Solution**: From Equation:

$$v_{O} = \left(1 + \frac{R_{2}}{R_{1}}\right) \left(\frac{R_{4}/R_{3}}{1 + R_{4}/R_{3}}\right) v_{I2} - \left(\frac{R_{2}}{R_{1}}\right) v_{I1}$$

• we have:

$$v_{0} = (1+10) \left(\frac{11}{1+11}\right) v_{I2} - (10) v_{I1}$$
$$v_{0} = 10.0833 v_{I2} - 10 v_{I1}$$

$$v_0 = 10.0833 v_{I2} - 10 v_{I1}$$

• The differential-mode input voltage is defined as:

$$v_d = v_{I2} - v_{I1}$$

and the common-mode input voltage is defined as: $v_{cm} = (v_{I1} + v_{I2})/2$

• Combining these two equations produces:

$$v_{I1} = v_{cm} - \frac{v_d}{2}$$
$$v_{I2} = v_{cm} + \frac{v_d}{2}$$

• If we substitute Equations: $v_{I1} = v_{cm} - \frac{v_d}{2}$

and

$$v_{I2} = v_{cm} + \frac{v_d}{2}$$

in Equation:

$$v_0 = 10.0833 v_{I2} - 10 v_{I1}$$

we obtain:

$$v_0 = (10.0833) \left(v_{cm} + \frac{v_d}{2} \right) - (10) \left(v_{cm} - \frac{v_d}{2} \right)$$

$$v_{0} = (10.0833) \left(v_{cm} + \frac{v_{d}}{2} \right) - (10) \left(v_{cm} - \frac{v_{d}}{2} \right)$$
$$v_{0} = 10.042v_{d} + 0.0833v_{cm}$$

• The output voltage is also:

$$v_0 = A_d v_d + A_{cm} v_{cm}$$

• If we compare the two Equations above, we get:

$$A_d = 10.042$$
 and $A_{cm} = 0.0833$

• Therefore the common-mode rejection ratio, is:

$$CMRR(dB) = 20\log_{10}\left|\frac{A_d}{A_{cm}}\right| = 20\log_{10}\left(\frac{10.042}{0.0833}\right) = 41.6dB$$

$$CMRR(dB) = 20\log_{10}\left(\frac{10.042}{0.0833}\right) = 41.6dB$$

- **Comment**: For good differential amplifiers, typical CMRR values are in the range of $80 \sim 100$ dB.
- This example shows how close the ratios R_2/R_1 and R_4/R_3 must be in order to achieve a *CMRR* value in that range.

- We saw that it is difficult to obtain:
 - 1. A high input impedance R_i and
 - 2. A high gain A_d in a difference amplifier
 - with reasonable resistor values.
- One solution is:
 - To insert a voltage follower between each source and the corresponding input.
- A disadvantage of this design is that:
 - The gain of the amplifier cannot easily be changed. In which we would need to change two resistance values and still maintain equal ratios between R_2/R_1 and R_4/R_3 .

- Optimally, we would like to be able to change the gain by changing only a single resistance value.
- The circuit in Figure 9.26, called an instrumentation amplifier, allows this flexibility.
 - Two noninverting amplifiers, A_1 and A_2 , are used as the input stage, and
 - A difference amplifier, A_3 is the amplifying stage.

- We begin the analysis using the virtual short concept for the input stages.
- The currents and voltages in the amplifier are shown in Figure 9.27. The current in resistor R_1 is then:

$$i_1 = \frac{(v_{I1}^1 - v_{I2})}{R_1}$$

Figure 9.27

 The current in resistors R₂ is also i₁, and the output voltages of op-amps A₁ and A₂ are, respectively:

$$v_{01} = v_{I1} + i_1 R_2 = \left(1 + \frac{R_2}{R_1}\right) v_{I1} - \frac{R_2}{R_1} v_{I2}$$

Figure 9.27

$$v_{O2} = v_{I2} - i_1 R_2 = \left(1 + \frac{R_2}{R_1}\right) v_{I2} - \frac{R_2}{R_1} v_{I1}$$

• From previous results, the output of the difference amplifier is given as: R_4

$$v_0 = \frac{\kappa_4}{R_3} (v_{02} - v_{01})$$

• Substituting Equations of v_{01} and v_{02} into the Equation above:

$$v_{O} = \frac{R_{4}}{R_{3}} \left(1 + \frac{2R_{2}}{R_{1}} \right) (v_{I2} - v_{I1})$$

$$v_0 = \frac{R_4}{R_3} \left(1 + \frac{2R_2}{R_1} \right) (v_{I2} - v_{I1})$$

- Two advantages:
- 1. Since the input signal voltages are applied directly to the noninverting terminals of A_1 and A_2 , the input impedance is **very large**, ideally infinite.
 - It is one desirable characteristic of the instrumentation amplifier.
- 2. The differential gain is a function of resistor R_1 , which can easily be varied by using a potentiometer, thus providing a variable amplifier gain.

Medical Electronics - Dr. Hani Jamleh - JU

- **Objective**: Determine the range required for resistor R_1 , to realize a differential gain adjustable from 5 to 500.
- For the instrumentation amplifier circuit shown in Figure 9.26.

- Solution: Assume that resistance R_1 is a combination of a fixed resistance R_{1f} and a variable resistance R_{1v} , as shown in Figure 9.28.
- The fixed resistance ensures that:
 - The gain is limited to a maximum value, even if the variable resistance is set equal to zero.
- Assume the variable resistance is a potentiometer:

 $R_{1v} = 100 k\Omega$

• From the Equation:

$$v_{O} = \frac{R_{4}}{R_{3}} \left(1 + \frac{2R_{2}}{R_{1}} \right) (v_{I2} - v_{I1})$$

• The maximum differential gain is:

$$500 = 2\left(1 + \frac{2R_2}{R_{1f}}\right)$$
$$2R_2 = 249R_{1f}$$

• The minimum differential gain is:

$$5 = 2\left(1 + \frac{2R_2}{R_{1f} + 100k}\right)$$

• Let:

$$2R_2 = 249R_{1f}$$

• Into:

$$5 = 2\left(1 + \frac{2R_2}{R_{1f} + 100k}\right)$$

• We get:

$$1.5 = \frac{249R_{1f}}{R_{1f} + 100}$$

• The resulting value of R_{1f} is:

$$R_{1f} = 0.606k\Omega = 606\Omega$$

• which yields:

$$R_2 = 75.5k\Omega$$

 $R_{1f} = 606\Omega$, and $R_2 = 75.5k\Omega$

• **Comment**: We can select standard resistance values that are close to the values calculated, and the range of the gain will be approximately in the desired range.

Table	e C.1	Standard resistance values (×10 ⁿ)		
10	16	27	43	68
11	18	30	47	75
12	20	33	51	82
13	22	36	56	91
15	24	39	62	100

- $R_{1f} = 606 \rightarrow 470 + 130 = 600\Omega$, and
- $R_2 = 75.5k\Omega \rightarrow 75k\Omega + 510\Omega = 75.51 \text{ k}\Omega$

- Design Pointer: An amplifier with a wide range of gain and designed with a potentiometer would normally not be used with standard integrated circuits in electronic systems.
- However, such a circuit might be very useful in specialized test equipment.

- A transducer is:
 - A device that transforms one form of energy into another form.
- One type of transducer uses nonelectrical inputs to produce electrical outputs.
- For example:
 - A microphone converts acoustical energy into electrical energy.
 - A **pressure transducer** is a device in which a **resistance** is a function of pressure, so that pressure can be converted to an electrical signal.
- Often, the output characteristics of these transducers are measured with a **bridge circuit**.

Wheatstone bridge [Wikipedia]

- A Wheatstone bridge is an electrical circuit used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, <u>one leg</u> of which includes the unknown component.
- The primary benefit of a Wheatstone bridge is:
 - Its ability to provide extremely accurate measurements (in contrast with something like a simple voltage divider).
- Its operation is similar to the original potentiometer.

- Figure 9.44 shows a bridge circuit.
 - Resistance R₃ represents the transducer, and
 - Parameter δ is the deviation of R_3 from R_2 due to the input response of the transducer.
 - The output voltage v_{01} is now a measure of δ .
- Applying voltage divider concept:

$$v_{01}^{+} = \frac{R_3}{R_3 + R_1} V^{+}$$
$$v_{01}^{-} = \frac{R_2}{R_1 + R_2} V^{+}$$

• Therefore:

$$v_{01} = v_{01}^+ - v_{01}^-$$

• If v_{01} is an open-circuit voltage, then: $v_{01} = v_{01}^+ - v_{01}^$ $v_{01} = \left| \frac{R_2(1+\delta)}{R_2(1+\delta) + R_1} - \frac{R_2}{R_1 + R_2} \right| V^+$ $R_3 = R_2(1 +$ $v_{01} = \frac{R_1 R_2 + R_2^2 + \delta R_1 R_2 + \delta R_2^2 - R_2^2 - \delta R_2^2 - R_1 R_2}{\delta R_2 (R_1 + R_2) + (R_1 + R_2)^2} V^+$ Figure 9.44 $v_{01} = \frac{\delta R_1 R_2}{\delta R_2 (R_1 + R_2) + (R_1 + R_2)^2} V^+$

$$v_{01} = \frac{\delta R_1 R_2}{\delta R_2 (R_1 + R_2) + (R_1 + R_2)^2} V^+$$

Reduces to:

$$v_{01} = \delta\left(\frac{R_1 \parallel R_2}{R_1 + R_2}\right) V^+$$

$$v_{O1} = \delta \left(\frac{R_1 \parallel R_2}{R_1 + R_2} \right) V^+$$

- Since neither side of voltage v_{01} is at ground potential, we must connect v_{01} to an instrumentation amplifier.
- In addition, v_{01} is directly proportional to supply voltage V^+ ; therefore, this bias should be a well-defined voltage reference.

Figure 9.44

DESIGN EXAMPLE 9.12

- **Objective**: Design an amplifier system that will produce an output voltage of $\pm 5V$ when the resistance R_3 deviates by $\pm 1\%$ from the value of R_2 .
- This would occur, for example, in a system where R_3 is a thermistor whose resistance is given by:

$$R_3 = 200 \left[1 + \frac{(0.040)(T - 300)}{300} \right] kG$$

- Where *T* is the absolute temperature.
- For R_3 to vary by $\pm 1\%$ means the temperature is in the range:

 $225 \leq T \leq 375K \rightarrow -48 \leq T \leq 102^{o}C$

- Consider biasing the bridge circuit at $V^+ = 7.5V$ using a 5.6 V Zener diode.
- Assume $\pm 10V$ is available for biasing the op-amp and reference voltage source, and that $R_1 = R_2 = 200 \ k\Omega$.

Home Work #1

9.5.5 Integrator and Differentiator

- In the op-amp circuits previously considered, the elements exterior to the op-amp have been resistors.
 - Other elements can be used, with differing results.
- Figure 9.29 shows a <u>generalized inverting amplifier</u> for which the voltage transfer function has the same general form as before:

$$\frac{v_0}{v_I} = -\frac{Z_2}{Z_1}$$

- where Z_1 and Z_2 are generalized impedances.
- Two special circuits can be developed from this generalized inverting amplifier :
 - Integrator and
 - Differentiator.

Figure 9.29

Op-amp integrator

• Low Pass Filter

- $v_{I} \circ \cdots v_{C} + \cdots \circ v_{O} = V_{C} \frac{1}{R_{1}C_{2}} \int_{O}^{t} v_{I}(t') dt'$
 - Figure 9.30

Op-amp differentiator

• High Pass Filter

 R_2

 $\circ v_0$