LO3
 Operational Amplifiers Applications 2

Chapter 9
Ideal Operational Amplifiers and Op-Amp Circuits
Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill
Prepared by: Dr. Hani Jamleh, Electrical Engineering Department, The University of Jordan

Op-Amp Applications

1. Inverting Amplifier
2. Amplifier with T Network
3. Non-Inverting Amplifier
4. Voltage

Follower (Buffer)
5. Summing Amplifier
6. Current to Voltage Converter

Medıcal tlectronıcs - Ur. Hanı Jamıen - JU

Op-Amp Applications

7. Difference Amplifier
8. Instrumentation

Amplifier
9. Integrator
10. Differentiator
11. Reference Voltage Source Design
12. Precision Half-wave Rectifier

9.3 Summing Amplifier

- To analyze the op-amp circuit shown in Figure 9.14(a), we will use:

1. The superposition theorem and
2. The concept of virtual ground.

- Using the superposition theorem, we will:

1. Determine the output voltage due to each input acting alone, then
2. Algebraically sum these terms to determine the total output.

Figure 9.14(a)

9.3 Summing Amplifier

- If we set $v_{I_{2}}=v_{I_{3}}=0$, the current i_{1} is:

$$
i_{1}=\frac{v_{I_{1}}}{R_{1}}
$$

- Since $v_{I_{2}}=v_{I_{3}}=0$ and the inverting terminal is at virtual ground, the currents i_{2} and i_{3} must both be zero.
- Current i_{1} does not flow through either R_{2} or R_{3}, but the entire current must flow through the feedback resistor R_{F}, as indicated in Figure 9.14(b).

9.3 Summing Amplifier

$$
i_{1}=\frac{v_{I_{1}}}{R_{1}}
$$

- The output voltage due to $v_{I_{1}}$ acting alone is:

$$
v_{O}\left(v_{I_{1}}\right)=-i_{1} R_{F}=-\left(\frac{R_{F}}{R_{1}}\right) v_{I_{1}}
$$

Figure 9.14(a)

9.3 Summing Amplifier

- Now we have:

$$
\begin{aligned}
& v_{O}\left(v_{I_{1}}\right)=-i_{1} R_{F}=-\left(\frac{R_{F}}{R_{1}}\right) v_{I_{1}} \\
& v_{O}\left(v_{I_{2}}\right)=-i_{2} R_{F}=-\left(\frac{R_{F}}{R_{2}}\right) v_{I_{2}} \\
& v_{O}\left(v_{I_{3}}\right)=-i_{3} R_{F}=-\left(\frac{R_{F}}{R_{3}}\right) v_{I_{3}}
\end{aligned}
$$

Figure 9.14(a)

- The total output voltage is the algebraic sum of the individual output voltages:

$$
\begin{aligned}
& v_{O}=v_{O}\left(v_{I_{1}}\right)+v_{O}\left(v_{I_{2}}\right)+v_{O}\left(v_{I_{3}}\right) \\
& v_{O}=-\left(\frac{R_{F}}{R_{1}} v_{I_{1}}+\frac{R_{F}}{R_{2}} v_{I_{2}}+\frac{R_{F}}{R_{3}} v_{I_{3}}\right)
\end{aligned}
$$

9.3 Summing Amplifier

$$
v_{O}=-\left(\frac{R_{F}}{R_{1}} v_{I_{1}}+\frac{R_{F}}{R_{2}} v_{I_{2}}+\frac{R_{F}}{R_{3}} v_{I_{3}}\right)
$$

- The output voltage is the sum of the three input voltages, $v_{I 3}$ with different weighting factors.
- This circuit is therefore called the inverting summing amplifier.

Figure 9.14(a)

- The number of input terminals and input resistors can be changed to add more or fewer voltages.
- A special case occurs when the three input resistances are equal. When $R_{1}=R_{2}=R_{3} \equiv R$, then

$$
v_{O}=-\frac{R_{F}}{R_{1}}\left(v_{I_{1}}+v_{I_{2}}+v_{I_{3}}\right)
$$

- This means that the output voltage is the sum of the input voltages, with a single amplification factor.

Discussion

- Up to this point, we have seen that op-amps can be used to:
- Multiply a signal by a constant (e.g. $\frac{R_{F}}{R_{1}}$)
- Sum a number of signals with prescribed weights.
$>$ These are mathematical operations.
- Later in the chapter, we will see that op-amps can also be used to integrate and differentiate.
- These circuits are the building blocks needed to perform analog computations-hence the original name of operational amplifier.

Discussion

- Opamps, however, are versatile and can do much more than just perform mathematical operations, as we will continue to observe through the remainder of this course.

DESIGN EXAMPLE 9.4

- Objective: Design a summing amplifier to produce a specified output signal.
- Specifications: The output signal generated from an ideal amplifier circuit is:

$$
v_{O 1}=1.2-0.5 \sin \omega t(V)
$$

- Design a summing amplifier to be connected to the amplifier circuit such that the output signal is:

$$
v_{O}=2 \cdot \sin \omega t(V)
$$

DESIGN EXAMPLE 9.4

$$
v_{01}=1.2-0.5 \sin \omega t(V) \rightarrow v_{O}=2 \cdot \sin \omega t(V)
$$

- Choices:

1. Standard precision resistors with tolerances of ± 1 percent are to be used in the final design.
2. Assume an ideal op-amp is available.

- Solution: In this case, we need only two inputs to the summing amplifier, as shown in Figure 9.14.

Figure 9.14

- One input to the summing amplifier is the output of the ideal amplifier circuit and
- The second input should be a DC voltage to cancel the +1.2 V signal from the amplifier circuit.

DESIGN EXAMPLE 9.4

$$
v_{01}=1.2-0.5 \sin \omega t(V) \rightarrow v_{O}=2 \cdot \sin \omega t(V)
$$

- If the voltage gains of each input to the summing amplifier are equal, then an input of -1.2 V at the second input will cancel the +1.2 V from the amplifier circuit.
- For a -0.5 V sinusoidal input signal and a desired 2 V sinusoidal output signal, the summing amplifier gain must be:

$$
A_{v}=-\frac{R_{F}}{R_{1}}=\frac{2}{-0.5}=-4
$$

Figure 9.14

- If we choose the input resistances to be:

$$
R_{1}=R_{2}=30 k \Omega
$$

- Then the feedback resistance must be:

$$
R_{F}=4 \times 30 k \Omega=120 k \Omega
$$

DESIGN EXAMPLE 9.4

$$
\begin{gathered}
v_{01}=1.2-0.5 \sin \omega t(V) \rightarrow v_{0}=2 \cdot \sin \omega t(V) \\
R_{1}=R_{2}=30 k \Omega \\
R_{F}=4 \times 30 \mathrm{k} \Omega=120 \mathrm{k} \Omega
\end{gathered}
$$

- Trade-offs: From Appendix C, we can choose precision resistor values of $R_{F}=124 \mathrm{k} \Omega$ and $R_{1}=R_{2}=30 \mathrm{k} \Omega$. The ratio of the ideal resistors is 4.13 .
- Considering the ± 1 percent tolerance values, the output of the summing amplifier is:
$v_{O}=-\frac{R_{F}(1 \pm 0.01)}{R_{1}(1 \pm 0.01)} \cdot(1.2-0.5 \sin \omega t)-\frac{R_{F}(1 \pm 0.01)}{R_{2}(1 \pm 0.01)} \cdot(-1.2)$
- The DC output voltage is in the range:

$$
-0.1926 \leq v_{O}(D C) \leq 0.1926 V
$$

- The peak ac output voltage is in the range:

$$
1.967 \leq v_{O}(a c) \leq 2.047 V
$$

Table C. 1

Table C. 1	Standard resistance values $\left(\times 10^{n}\right)$			
$\mathbf{1 0}$	16	$\mathbf{2 7}$	43	$\mathbf{6 8}$
11	$\mathbf{1 8}$	30	$\mathbf{4 7}$	75
$\mathbf{1 2}$	20	$\mathbf{3 3}$	51	$\mathbf{8 2}$
13	$\mathbf{2 2}$	36	$\mathbf{5 6}$	91
$\mathbf{1 5}$	24	$\mathbf{3 9}$	62	$\mathbf{1 0 0}$

EXERCISE PROBLEM Ex. 9.4

- Design an inverting summing amplifier that will produce an output voltage of:

$$
v_{O}=-3\left(v_{I_{1}}+2 v_{I_{2}}+0.3 v_{I_{3}}+4 v_{I_{4}}\right)
$$

- The maximum resistance is to be limited to:

$$
R_{\max }=400 \mathrm{k} \Omega
$$

- Answer: Recall the summing amplifier output for three inputs:

$$
v_{O}=-\left(\frac{R_{F}}{R_{1}} v_{I_{1}}+\frac{R_{F}}{R_{2}} v_{I_{2}}+\frac{R_{F}}{R_{3}} v_{I_{3}}\right)
$$

- We expand it for Four inputs as:

$$
v_{O}=-\left(\frac{R_{F}}{R_{1}} v_{I_{1}}+\frac{R_{F}}{R_{2}} v_{I_{2}}+\frac{R_{F}}{R_{3}} v_{I_{3}}+\frac{R_{F}}{R_{4}} v_{I_{4}}\right)
$$

- Let $R_{3}=R_{\max }=400 \mathrm{k} \Omega$. Why R_{3} ?

EXERCISE PROBLEM Ex. 9.4

$$
\begin{gathered}
v_{O}=-3\left(v_{I_{1}}+2 v_{I_{2}}+0.3 v_{I_{3}}+4 v_{I_{4}}\right) \\
v_{O}=-\left(\frac{R_{F}}{R_{1}} v_{I_{1}}+\frac{R_{F}}{R_{2}} v_{I_{2}}+\frac{R_{F}}{R_{3}} v_{I_{3}}+\frac{R_{F}}{R_{4}} v_{I_{4}}\right)
\end{gathered}
$$

- Let $R_{3}=R_{\max }=400 \mathrm{k} \Omega . \rightarrow 390 \mathrm{k} \Omega+10 \mathrm{k} \Omega$
- $R_{F}=3 \times 0.3 \cdot 400 \mathrm{k} \Omega=360 \mathrm{k} \Omega$
- $R_{1}=\frac{360 \mathrm{k}}{3}=120 \mathrm{k} \Omega$
- $R_{2}=\frac{360 \mathrm{k}}{3 \times 2}=60 \mathrm{k} \Omega \rightarrow 47 \mathrm{k} \Omega+13 \mathrm{k} \Omega$
- $R_{4}=\frac{360 \mathrm{k}}{3 \times 4}=30 \mathrm{k} \Omega$

Table C. 1		Standard resistance values $\left(\times 10^{n}\right)$		
			$\mathbf{6 8}$	
$\mathbf{1 0}$	16	$\mathbf{2 7}$	43	75
11	$\mathbf{1 8}$	30	$\mathbf{4 7}$	$\mathbf{8 2}$
$\mathbf{1 2}$	20	$\mathbf{3 3}$	51	$\mathbf{8 2}$
13	$\mathbf{2 2}$	36	$\mathbf{5 6}$	91
$\mathbf{1 5}$	24	$\mathbf{3 9}$	62	$\mathbf{1 0 0}$

EXERCISE PROBLEM Ex. 9.4

- Using the results of previous part for $R^{\prime} s$ values. Determine v_{O} for:
a) $v_{I_{1}}=0.1 \mathrm{~V}, v_{I_{2}}=-0.2 \mathrm{~V}, v_{I_{3}}=-1 \mathrm{~V}, v_{I_{4}}=0.05 \mathrm{~V}$;
- Answer: $v_{0}=+1.2 \mathrm{~V}$
b) $v_{I_{1}}=-0.2 \mathrm{~V}, v_{I_{2}}=0.3 \mathrm{~V}, v_{I_{3}}=1.5 \mathrm{~V}, v_{I_{4}}=-0.1 \mathrm{~V}$;
- Answer: $v_{0}=-1.35 \mathrm{~V}$

9.4 Noninverting Amplifier

- In our previous discussions, the feedback element R_{2} or R_{F} was connected between the output and the inverting terminal creating a negative feedback loop.
- However, a signal can be applied to the noninverting terminal while still maintaining negative feedback.

Figure 9.10

Figure 9.14(a)

