LO2
 Operational Amplifiers Applications 1

Chapter 9
Ideal Operational Amplifiers and Op-Amp Circuits
Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill
Prepared by: Dr. Hani Jamleh, Electrical Engineering Department, The University of Jordan

9.1.3 Analysis Method
 Feedback

- Usually, an op-amp is not used in the open-loop configuration shown in Figure 9.2.
- Feedback is added to close the loop between the output and the input.
- Negative feedback:
- The output is connected to the inverting terminal.
- This configuration produces stable circuits.
- Positive feedback:
- The output is connected to the noninverting terminal.
- This configuration can be used to produce oscillators.

Figure 9.1(a)

Figure 9.2

9.1.3 Analysis Method Two Port Network Voltage Amplifier

9.1.3 Analysis Method

Figure 9.7(a)
Figure 9.6

9.1.3 Analysis Method Ideal op-amp characteristics

Figure 9.6

- The ideal op-amp characteristics resulting from our negative feedback analysis are shown in Figure 9.6 and summarized below.

1. The internal differential gain $A_{o d}$ is considered to be infinite.
2. The differential input voltage ($v_{2}-v_{1}$) is assumed to be zero.

- If $A_{o d}$ is very large and if the output voltage v_{O} is finite, then the two input

$$
\begin{aligned}
& \text { voltages must be nearly equal. } \\
& \qquad v_{o}=A_{v}\left(v_{2}-v_{1}\right) \rightarrow\left(v_{2}-v_{1}\right)=\frac{v_{o}}{A_{v}} \rightarrow\left(v_{2}-v_{1}\right)=\frac{v_{o}}{\infty}=0 \rightarrow v_{2}=v_{1}
\end{aligned}
$$

3. The effective input resistance R_{i} to the op-amp is assumed to be infinite, so the two input currents, $i_{1}=i_{2}=0$.
4. The output resistance R_{o} is assumed to be zero, so the output voltage:
5. is connected directly to the dependent voltage source, and
6. is independent of any load connected to the output.

9.1.4 Practical Specifications

- Practical op-amps are not ideal.
- Although their characteristics approach those of an ideal op-amp.
- Figure 9.7(a) is a more accurate equivalent circuit of an op-amp.
- A load resistance R_{L} is connected to the output terminal.
- R_{L} may actually represent another op-amp circuit.

Figure 9.7(a)

9.1.4 Practical Specifications

Output Voltage Swing

- Since the op-amp is composed of transistors biased in the active region by the DC input voltages V^{+}and V^{-}, the output voltage is limited.
- When $v_{O} \rightarrow V^{+}$, it will saturate at a value nearly equal to V^{+}.
- When $v_{O} \rightarrow V^{-}$, it will saturate at a value nearly equal to V^{-}.
- v_{O} cannot go above the V^{+}or below the V^{-}.
- The output voltage is limited to:

$$
V^{-}+\Delta V<v_{O}<V^{+}-\Delta V
$$

Figure 9.7(b)

9.1.4 Practical Specifications

Output Voltage Swing

- Figure $9.7(\mathrm{~b})$ is a simplified voltage transfer characteristic for the op-amp, showing the saturation effect.
- In older op-amp designs, such as the 741, the value of ΔV is between 1 and $2 V$.
- Example: If $V^{+}=15 \mathrm{~V}$ and $V^{-}=-15 \mathrm{~V}$, let $\Delta V=2 V$ then:

$$
-13<v_{O}<13
$$

Figure 9.7(b)

9.1.4 Practical Specifications

Output Currents

- As we can see from Figure 9.7(a):
- If the output voltage is positive, the load current is supplied by the output of the opamp.
- If the output voltage is negative, then the output of the op-amp sinks the load current.
- A limitation of practical op-amps is the maximum current that an op-amp can supply or sink.
- A typical value of the maximum current is on the order of $\pm 20 \mathrm{~mA}$ for a general-

Figure 9.7(a) purpose op-amp.

Op-Amp Applications

1. Inverting Amplifier
2. Amplifier with TNetwork
3. Non-Inverting Amplifier
4. Voltage

Follower (Buffer)
5. Summing Amplifier
6. Current to Voltage Converter

Medıcal tiectronıcs - Ur. Hanı Jamıen - JU

Op-Amp Applications

7. Difference Amplifier
8. Instrumentation Amplifier
9. Integrator
10. Differentiator
11. Reference Voltage Source Design
12. Precision Half-wave Rectifier

9.2 Inverting Amplifier

- One of the most widely used op-amp circuits is the inverting amplifier.
- Figure 9.8 shows the closed-loop

Figure 9.8

Figure 9.9

9.2.1 Basic Amplifier-Inverting Amplifier

- We analyze the circuit in Figure 9.8 by considering the ideal equivalent circuit shown in Figure 9.9.
- The closed-loop voltage gain, or simply the voltage gain, is defined as:

$$
A_{v}=\frac{v_{O}}{v_{I}}
$$

- We stated that if the open-loop gain $A_{o d}$ is very large, then the two inputs v_{1} and v_{2} must be nearly equal.
- Proof:

$$
\begin{gathered}
v_{O}=A_{o d}\left(v_{2}-v_{1}\right) \\
\frac{v_{O}}{A_{o d}}=\left(v_{2}-v_{1}\right) \\
A_{o d} \rightarrow \infty \\
v_{2}=v_{1}
\end{gathered}
$$

Figure 9.9

9.2.1 Basic Amplifier-Inverting Amplifier

$$
v_{2}=v_{1}
$$

- Since v_{2} is at ground potential, voltage v_{1} must also be approximately zero volts.
- Having v_{1} be essentially at ground potential does not imply that terminal (1) is grounded.
- Terminal (1) is said to be at virtual ground:
- It is essentially zero volts, but it does not provide a current path to ground \rightarrow means that terminal 1 is essentially at zero volts, but is not connected to ground potential.

Figure 9.9

9.2.1 Basic Amplifier-Inverting Amplifier

- From Figure 9.9, we can write:

$$
i_{1}=\frac{v_{I}-v_{1}}{R_{1}}=\frac{v_{I}-0}{R_{1}}=\frac{v_{I}}{R_{1}}
$$

Figure 9.8

- Since the current into the op-amp is assumed to be zero, current i_{1} must flow through resistor R_{2} to the output terminal, which means that $i_{2}=i_{1}$.
- The output voltage is given by (KVL):

$$
v_{O}=v_{1}-i_{2} R_{2}=0-\left(\frac{v_{I}}{R_{1}}\right) R_{2}
$$

Figure 9.9

9.2.1 Basic Amplifier-Inverting Amplifier

$$
v_{O}=v_{1}-i_{2} R_{2}=0-\left(\frac{v_{I}}{R_{1}}\right) R_{2}
$$

- Therefore, the closed-loop voltage gain is:

$$
A_{v}=\frac{v_{O}}{v_{I}}=-\frac{R_{2}}{R_{1}}
$$

- For the ideal op-amp, the closed-loop voltage gain A_{v} is a function of the ratio of two resistors;
- Note: It is not a function of the transistor parameters within the op-amp circuit.
- The minus sign implies a phase reversal \rightarrow 180^{0} phase shift.

Figure 9.9

9.2.1 Basic Amplifier-Inverting Amplifier

- We can also determine the input resistance seen by the voltage source v_{I}.
- Because of the virtual ground, we have:

Figure 9.8

9.2.1 Basic Amplifier-Inverting Amplifier

$$
R_{i}=\frac{v_{I}}{i_{1}}=R_{1}
$$

- This shows that:
- The input resistance seen by the source is a function of R_{1} only, and is a result of the "virtual ground" concept.
- Figure 9.10 summarizes our analysis of the inverting amplifier circuit.
- Since there are no coupling capacitors in the opamp circuit, the input and output voltages, as well as the currents in the resistors, can be DC signals.
- The inverting op-amp can then amplify DC voltages.

Figure 9.10

DESIGN EXAMPLE 9.1

- Specifications: The circuit configuration to be designed is shown in Figure 9.10.
- Design the circuit such that the voltage gain is A_{v} $=-5$.
- Assume the op-amp is driven by an ideal sinusoidal source:

$$
v_{s}=0.1 \sin \omega t(V)
$$

that can supply a maximum current of $5 \mu A$.

- Note: Assume that frequency ω is low so that any frequency effects can be neglected.
- Design Pointer: If the sinusoidal input signal source has a nonzero output resistance, the op-amp must be redesigned to provide the specified voltage gain.

Figure 9.10

DESIGN EXAMPLE 9.1

- Initial Solution: The input current is given by:

$$
i_{1}=\frac{v_{I}}{R_{1}}=\frac{v_{S}}{R_{1}}
$$

- If $i_{1}(\max)=5 \mu A$, then we can write:

$$
R_{1}=\frac{v_{S}(\max)}{i_{1}(\max)}=\frac{0.1}{5 \times 10^{-6}} \Rightarrow 20 \mathrm{k} \Omega
$$

- The closed-loop gain is given by:

$$
A_{v}=-\frac{R_{2}}{R_{1}}=-5
$$

- We then have:

$$
R_{2}=5 R_{1}=5(20 \mathrm{k} \Omega)=100 \mathrm{k} \Omega
$$

- Comment: The output resistance of the signal source R_{S} must be included in the design of the op-amp to provide a specified voltage gain.

Figure 9.10

Problem-Solving Technique: Ideal Op-Amp Circuits

1. If the noninverting terminal of the op-amp is at ground potential, then the inverting terminal v_{1} is at virtual ground.

- Sum currents at this node, assuming zero current enters the op-amp itself.

2. If the noninverting terminal of the op-amp is not at ground potential, then the inverting terminal voltage v_{1} is equal to that at the noninverting terminal voltage v_{2}.

- Sum currents at the inverting terminal node, assuming zero current enters the op-amp itself.

3. For the ideal op-amp circuit, the output voltage is determined from either step 1 or step 2 above and is independent of any load connected to the output terminal.

9.2.2 Amplifier with a T-Network

- Assume that an inverting amplifier is to be designed having a closed-loop voltage gain of $A_{v}=-100$ and an input resistance of R_{i} $=R_{1}=50 \mathrm{k} \Omega$.
- The feedback resistor R_{2} would then have to be $R_{2}=\left|A_{v}\right| \cdot R_{1}=100 \cdot 50 \mathrm{k} \Omega=5 \mathrm{M}$!
- However this resistance value is too large for most practical circuits.
- Practically, for IC design, always avoid resistance values larger than $50 \mathrm{k} \Omega$!
-What is the solution?

Figure 9.10

9.2.2 Amplifier with a T-Network

- Consider the op-amp circuit shown in Figure 9.12 with a T-network in the feedback loop.
- The analysis of this circuit is similar to that of the inverting op-amp circuit of Figure 9.10. At the input, we have:

$$
i_{1}=\frac{v_{I}}{R_{1}}=i_{2}
$$

- We can also write that:

$$
v_{X}=0-i_{2} R_{2}=-v_{I}\left(\frac{R_{2}}{R_{1}}\right)
$$

Figure 9.12

9.2.2 Amplifier with a T-Network

$$
v_{X}=0-i_{2} R_{2}=-v_{I}\left(\frac{R_{2}}{R_{1}}\right)
$$

- If we sum the currents at the node v_{X}, we have (i.e. KCL at node v_{X}):

$$
i_{2}+i_{4}=i_{3}
$$

- which can be written:

$$
\begin{gathered}
-\frac{v_{X}}{R_{2}}-\frac{v_{X}}{R_{4}}=\frac{v_{X}-v_{O}}{R_{3}} \\
v_{X}\left(\frac{1}{R_{2}}+\frac{1}{R_{4}}+\frac{1}{R_{3}}\right)=\frac{v_{O}}{R_{3}}
\end{gathered}
$$

Figure 9.12

9.2.2 Amplifier with a T-Network

$$
\begin{gathered}
v_{X}=0-i_{2} R_{2}=-v_{I}\left(\frac{R_{2}}{R_{1}}\right) \\
v_{X}\left(\frac{1}{R_{2}}+\frac{1}{R_{4}}+\frac{1}{R_{3}}\right)=\frac{v_{O}}{R_{3}}
\end{gathered}
$$

- Substituting the expression for v_{X} we obtain:

$$
-v_{I}\left(\frac{R_{2}}{R_{1}}\right)\left(\frac{1}{R_{2}}+\frac{1}{R_{4}}+\frac{1}{R_{3}}\right)=\frac{v_{O}}{R_{3}}
$$

- The closed-loop voltage gain is therefore:

$$
A_{v}=\frac{v_{O}}{v_{I}}=-\frac{R_{2}}{R_{1}}\left(1+\frac{R_{3}}{R_{4}}+\frac{R_{3}}{R_{2}}\right)
$$

Figure 9.12

DESIGN EXAMPLE 9.2

- Objective: An op-amp with a T-network is to be designed as a microphone preamplifier.
- Specifications: The circuit configuration to be designed is shown in Figure 9.12.
- The maximum microphone output voltage is 12 mV (rms) and the microphone has an output resistance of $R_{S}=1 \mathrm{k} \Omega$.
- The op-amp circuit is to be designed such that the maximum output voltage is 1.2 V (rms).
- The input amplifier resistance should be fairly large, but all resistance values should be less that $500 \mathrm{k} \Omega$.

DESIGN EXAMPLE 9.2

- Choices:
- The final design should use standard resistor values.
- Standard resistors with tolerances of ± 2 percent are to be considered.
- Solution: We need a voltage gain of

$$
\left|A_{v}\right|=1.2 / 0.012=100
$$

- The gain Equation for such a circuit can be written in the form:

$$
\begin{aligned}
& A_{v}=\frac{v_{O}}{v_{I}}=-\frac{R_{2}}{R_{1}}\left(1+\frac{R_{3}}{R_{4}}+\frac{R_{3}}{R_{2}}\right) \\
& =-\frac{R_{2}}{R_{1}}\left(1+\frac{R_{3}}{R_{4}}\right)-\frac{R_{3}}{R_{1}}
\end{aligned}
$$

Figure 9.12

DESIGN EXAMPLE 9.2

$$
A_{v}=\frac{v_{O}}{v_{I}}=-\frac{R_{2}}{R_{1}}\left(1+\frac{R_{3}}{R_{4}}\right)-\frac{R_{3}}{R_{1}}
$$

- As a designer, we arbitrarily choose:

$$
R_{2} / R_{1}=R_{3} / R_{1}=8
$$

- Then:

$$
-100=-8\left(1+\frac{R_{3}}{R_{4}}\right)-8
$$

- Which yields:

Figure 9.12

DESIGN EXAMPLE 9.2

- The effective R_{1}^{\prime} must include the R_{S} resistance of the microphone.
- If we set $R_{1}=49 \mathrm{k} \Omega$ so that $R_{1}^{\prime}=50 \mathrm{k} \Omega$, then:

$$
R_{2}=R_{3}=400 \mathrm{k} \Omega
$$

and:

$$
R_{4}=\frac{R_{3}}{10.5}=\frac{400 \mathrm{k}}{10.5}=38.1 \mathrm{k} \Omega
$$

Figure 9.12

Choosing Standard Resistor Values (Appendix C)

Resistor	Calculated Value	Nearest Standard Value
R_{1}	$49 k \Omega$	$51 k \Omega$
R_{2}	$400 k \Omega$	$390 k \Omega$
R_{3}	$400 k \Omega$	$390 k \Omega$
R_{4}	$38.1 k \Omega$	$?$

Table C. 1	Standard resistance				
		values $\left(\times 10^{n}\right)$			

DESIGN EXAMPLE 9.2

- Design Pointer: If we need to use standard resistance values in our design, then, using Appendix C, we can choose $R_{1}=51 k \Omega$ so that $R_{1}^{\prime}=52 k \Omega$, and we can choose $R_{2}=R_{3}=390 k \Omega$. Then, after recalculating for R_{4} we have:

$$
\begin{gathered}
-100=-\frac{R_{2}}{R_{1}^{\prime}}\left(1+\frac{R_{3}}{R_{4}}\right)-\frac{R_{3}}{R_{1}^{\prime}} \\
-100=-\frac{390 k}{52 k}\left(1+\frac{390 k}{R_{4}}\right)-\frac{390 k}{52 k}
\end{gathered}
$$

- which yields $R_{4}=34.4 \mathrm{k} \Omega$. We may use a standard resistor of $R_{4}=33 \mathrm{k} \Omega$.
- This resistance value then produces a voltage gain of:

$$
A_{v}=-\frac{R_{2}}{R_{1}^{\prime}}\left(1+\frac{R_{3}}{R_{4}}\right)-\frac{R_{3}}{R_{1}^{\prime}}=-\frac{390}{52}\left(1+\frac{390}{33}\right)-\frac{390}{52}=-103.6
$$

DESIGN EXAMPLE 9.2

- Trade-offs: If we consider ± 2 percent tolerances in the standard resistor values, the A_{v} can be written as:

$$
\begin{aligned}
& A_{v}=-\frac{R_{2}(1 \pm 0.02)}{1 k+R_{1}(1 \pm 0.02)}\left[1+\frac{R_{3}(1 \pm 0.02)}{R_{4}(1 \pm 0.02)}\right]-\frac{R_{3}(1 \pm 0.02)}{1 k+R_{1}(1 \pm 0.02)} \\
= & -\frac{390 k(1 \pm 0.02)}{1 k+51 k(1 \pm 0.02)}\left[1+\frac{390 k(1 \pm 0.02)}{33 k(1 \pm 0.02)}\right]-\frac{390 k(1 \pm 0.02)}{1 k+51 k(1 \pm 0.02)}
\end{aligned}
$$

- Analyzing this equation, we find:
- The maximum magnitude as $\left|A_{v}\right|_{\text {max }}=111.6$ or +7.72 percent, and
- The minimum magnitude as $\left|A_{v}\right|_{\text {min }}=96.3$ or -7.05 percent.

DESIGN EXAMPLE 9.2

- Comments:

1. All resistor values are less than $500 k \Omega$.
2. The resistance ratios in the voltage gain expression are approximately equal.

- As with most design problems, there is no unique solution.
- We must keep in mind that:
- Because of resistor value tolerances, the actual gain of the amplifier will have a range of values.
- The amplifier with a T-network allows us

Figure 9.12 to obtain a large gain using reasonably sized resistors.

9.4.1 Basic Amplifier-Noninverting Amplifier

- Figure 9.15 shows the basic noninverting amplifier.
- The input signal v_{I} is applied directly to the noninverting terminal, while:
- One side of resistor R_{1} is connected to the inverting terminal and
- The other side is at ground.

Figure 9.15

9.4.1 Basic Amplifier-Noninverting Amplifier

- The analysis of the noninverting amplifier is essentially the same as for the inverting amplifier.
- We assume that no current enters the input terminals.
- Since $v_{1}=v_{2}$, then $v_{1}=v_{I}$, and current i_{1} is given by:

$$
i_{1}=-\frac{v_{1}}{R_{1}}=-\frac{v_{I}}{R_{1}}
$$

- Current i_{2} is given by:

$$
i_{2}=\frac{v_{1}-v_{O}}{R_{2}}=\frac{v_{2}-v_{O}}{R_{2}}=\frac{v_{I}-v_{O}}{R_{2}}
$$

- As before, $i_{1}=i_{2}$, so that:

$$
-\frac{v_{I}}{R_{1}}=\frac{v_{I}-v_{O}}{R_{2}}
$$

Figure 9.15

9.4.1 Basic Amplifier-Noninverting Amplifier

$$
-\frac{v_{I}}{R_{1}}=\frac{v_{I}-v_{O}}{R_{2}}
$$

- Solving for the closed-loop voltage gain, we find:

$$
A_{v}=\frac{v_{O}}{v_{I}}=1+\frac{R_{2}}{R_{1}}
$$

- From this equation, note that:

1. The output is in phase with the input, as expected (i.e. it is a non-inverting amplifier).
2. The gain is always greater than unity (i.e $A_{v}>1$).

Figure 9.15

9.4.1 Basic Amplifier-Noninverting Amplifier

- The input signal v_{I} is connected directly to the noninverting terminal; therefore, since the input current is essentially zero, the input impedance R_{i} seen by the source is very large, ideally infinite.
- The ideal equivalent circuit of the noninverting op-amp is shown in Figure 9.16.

9.4.2 Voltage Follower-Noninverting Amplifier

$$
A_{v}=\frac{v_{O}}{v_{I}}=1+\frac{R_{2}}{R_{1}}
$$

- An interesting property of the noninverting op-amp occurs when:
- $R_{1}=\infty$, an open circuit, and
- $R_{2}=0$, a short circuit.

- The closed-loop gain then becomes:

$$
A_{v}=\frac{v_{O}}{v_{I}}=1+\frac{R_{2}}{R_{1}}=1+\frac{0}{\infty}=1
$$

9.4.2 Voltage Follower-Noninverting Amplifier

$$
\begin{gathered}
A_{v}=\frac{v_{O}}{v_{I}}=1+\frac{R_{2}}{R_{1}}=1+\frac{0}{\infty}=1 \\
v_{O}=v_{I}
\end{gathered}
$$

- Since the output voltage follows the input, this op-amp circuit is called a voltage follower.
- The closed-loop gain is independent of resistor R_{2} (except when $R_{2}=\infty$),
- So we can set $R_{2}=0 \Omega$ to create a short circuit.

9.4.2 Voltage Follower-Noninverting Amplifier

- The voltage-follower op-amp circuit is shown in Figure 9.17.
- It might seem that this circuit, with unity voltage gain, would be of little value.
- However, other terms used for the voltage follower are impedance transformer or buffer.
- The input impedance $R_{i} \rightarrow \infty$, and the output impedance $R_{o} \rightarrow 0$.

- If, for example, the output impedance of a signal source is large, a voltage follower inserted between the source and a load will prevent loading effects.
- It will act as a buffer between the source and the load.

9.4.2 Voltage Follower-Noninverting Amplifier

- Compare between the following two circuits!

Figure 9.18

