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Preface

The field of high-frequency circuit design is receiv-
ing significant industrial attention due to a host of radio-frequency (RF) and microwave
(MW) applications. Improved semiconductor devices have made possible a prolifera-
tion of high-speed digital and analog systems as observed in wireless communication,
global positioning, RADAR, and related electrical and computer engineering disci-
plines. This interest has translated into a strong demand for engineers with comprehen-
sive knowledge of high-frequency circuit design principles.

For the student, the professional engineer, and even the faculty member teaching
this material there is, however, a general problem. The majerity of existing textbooks
appear to target two separate audiences: A) the advanced graduate-level population
with a broad theoretical background, and B) the technologists with little interest in
mathematical and physical rigor. As a result, RF circuit design has been presented in
two very different formats. For the advanced students the entry into this field is often
pursued through an electromagnetic field approach, while for the technologists the
basic circuit aspect embedded in Kirchhoff's laws is the prefemred treatment. Both
approaches make it difficult to adequately address the theoretical and practical issues
surrounding high-frequency design principles. The basic circuit approach lacks, or only
superficially covers, the wave nature of currents and voltages whose reflection and
transmission properties constitute indispensable ingredients of the RF circuit behavior.
The electromagnetic field approach certainly covers the wave guide and transmission
line aspect, but falls far short of reaching the important aspects of designing high-fre-
guency amplifier, oscillator, and mixer circuits.

The objective of this textbook is to develop the RF circuit design aspects in such a
way that the need for transmission line principles is made clear without adopting an
electromagnetic field approach. Therefore, no EM background is necessary beyond a
first vear undergraduate physics course in fields and waves as provided by most colleges
and universities. Students equipped with the knowledge of basic circuit theory and/or an
exposure to microelectronics can use this book and cover the entire spectrum from the
basic principles of transmission and microstrip lines to the various high-frequency cir-
cuit design procedures. Lengthy mathematical derivations are either relegated to the
appendices or placed in examples, separated from the main text. This allows the omis-
sion of some of the dry theoretical details and thus focuses on the main concepts.

Accepting the challenge of providing a high degree of design experience, we have
included many examples that discuss in considerable detail, in many cases exiending
over several pages, the philosophy and the intricacies of the various design approaches.



This has cavsed some problems as well, specifically with respect to the circuit simula-
tions. Obviously, we cannot expect the reader to have ready access to modern computer
simulation tools such as MMICAD or ADS to name but two of the popular choices.
Professional high-frequency simulation packages are generally expensive and require
familiarity to use them effectively. For this reason we have created a considerable num-
ber of MATLAB M-files that the interested student can download from our website listed
in Appendix G. Since MATLAB is a widely used relatively inexpensive mathematical
tool, many examples discussed in this book can be executed and the results graphically
displayed in a matter of seconds. Specifically the various Smith-Chart computations of
the impedance transformations should appeal to the reader. Nonetheless, all design
examples, specifically the ones presented in Chapters 8 to 10, have been independently
simulated and verified in MMICAD for the linear circuit models, and ADS for the non-
linear oscillator and mixer models.

In terms of material coverage, this textbook purposely omitted the high-speed dig-
ital circuits as well as coding and modulation aspects. Although important, these topics
would simply have required too many additional pages and would have moved the book
too far away from its original intent of providing a fundamental, one- or two-semester,
introduction to RF circuit design. At WPI this does not turn out to be a disadvantage,
since most of the material can readily be acquired in available communication systems
engineering courses,

The organization of this text is as follows: Chapter 1 presents a general explana-
tion of why basic circuit theory breaks down as the operating frequency is increased to
a level where the wavelength becomes comparable with the discrete circuit compo-
nents. In Chapter 2 the transmission line theory is developed as a way to replace the
low-frequency circuit models. Because of the voltage and current wave nature, Chap-
ter 3 introduces the Smith Chart as a generic tool to deal with the impedance behavior
on the basis of the reflection coefficient. Chapter 4 discusses two-port networks with
their flow-chart representations and how they can be described on the basis of the so-
called scattering parameters. These network models and their scattering parameter
descriptions are utilized in Chapter 5 to develop passive RF filter configurations.
Before covering active devices, Chapter 6 provides a review of some of the key semi-
conductor fundamentals, followed by their circuit models representation in Chapter 7.
The impedance matching and biasing of bipolar and field effect transistors is taken up
in Chapter 8 in an effort to eliminate potentially dangerous reflections and to provide
optimal power flow. Chapter 9 focuses on a number of key high-frequency amplifier
configurations and their design intricacies ranging from low noise te high power appli-
cations. Finally, Chapter 10 introduces the reader to noniinear systems and their
designs in oscillator and mixer circuits.
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This book is used in the Electrical and Computer Engineering Department at WPI
as required text for the standard 7-week (5 lecture hours per week) course in RF circuit
design (EE 3113, Introduction to RF Circuit Design). The course has primarily
attracted an audience of 3rd and 4th year undergraduate students with a background in
microelectronics. The course does not include a laboratory, although six videotapes of
practical circuit performances conducted at Philips Semiconductors and in-class RF cir-
cuit measurements with a network analyzer are included. In addition, MMICAD and
ADS simulations are incorporated as part of the regular lectures. Each chapter is fairly
self-contained, with the goal of providing wide flexibility in organizing the course
material. At WPI the content of approximately one three semester hour course is com-
pressed into a 7-week period (consisting of a total of 25-28 lectures). The topics cov-
ered are shown in the table below.

EE 3113, Introduction to RF Circuit Design

Chapter 1, Introduction Sections 1.1-1.6
Chapter 2, Transmission Line Analysis Sections 2.1-2.12
Chapter 3, Smith Chart Sections 3.1-3.5

Chapter 4, Single- and Multi-Port Networks | Sections 4.1-4.5

Chapter 7, Active RF Component Modeling | Sections 7.1-7.2

Chapter 8, Matching and Biasing Networks Sections 8.1-8.4

Chapter 9, RF Transistor Amplifier Designs Sections 9.1-9.4

The remaining material is targeted for a second (7-week) term covering more
advanced topics such as microwave filters, equivalent circuit models, oscillators and
mixers. An organizational plan is provided below.

Advanced Principles of RF Circuit Design

Chapter 5, A Brief Overview of RF Filter Design Sections 5.1-3.5
Chapter 6, Active RF Components Sections 6.1-6.6
Chapter 7, Active RF Component Modeling Sections 7.3-7.5
Chapter 9, RF Transistor Amplifier Designs Sections 9.5-9.8
Chapter 10, Oscillators and Mixers Sections 10.1-10.4
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However, the entire course organization will always remain subject to change
depending on total classrcom time, student background, and interface requirements
with related courses.

Please refer to the companion website at http://www.prenhall.com/ludwig for
more material including all of the art files in this text in pdf format.
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CHAPTER 1

Introduction

It is common knowledge that both analog and digi-
tal design engineers are continually developing and refining circuits for increasingly
higher operational frequencies. Analog circuits for wireless communication in the giga-
hertz (GHz) range and the ever-increasing clock speeds of computer circuits in high-
performance mainframes, workstations, and, of course, personal computers exemplify
this trend. Global positioning systems require carrier frequencies in the range of
1227.60 and 1575.42 MHz. The low-noise amplifier in a personal communication sys-
tem may operate at 1.9 GHz and fit on a circuit board smaller in size than a dime. Satel-
lite broadcasting in the C band involves 4 GHz uplink and 6 GHz downlink systems. In
general, due to the rapid expansion of wireless communication, more compact ampli-
fier, filter, oscillator, and mixer circuits are being designed and placed in service at fre-
quencies generally above 1 GHz. There is little doubt that this trend will continue
unabated, resulting not only in engineering systems with unigue capabilities, but also
special design challenges not encountered in conventional low-frequency systems.

This chapter reviews the evolution from low- to high-frequency circuit operations. [t
motivates and provides the physical rationales that have prompted the need for new engi-
neering approaches to design and optimize these circuits, The example of a cellular phone
circuit, components of which will be analyzed in more detail in later chapters, serves as a
vehicle to outline the goals and objectives of this textbook and its organization.

The chapter begins with a brief historical discussion explaining the transition from
direct current (DC) to high-frequency modes of operation. As the frequency increases
and the associated wavelengths of the electromagnetic waves becomes comparable to
the dimensions of the discrete circuit components such as resistors, capacitors, and
inductors, these components start to deviate in their electric responses from the ideal
frequency behavior. It is the purpose of this chapter to provide the reader with an appre-

1



2 Chapter 1 » introduction

ciation and understanding of high-frequency passive component characteristics. In par-
ticular, due to the availability of sophisticated measurement equipment, the design
engineer must know exactly why and how the high-frequency behavior of his or her cir-
cuit differs from the low-frequency realization. Without this knowledge it will be impos-
sible to develop and understand the special requirements of high-performance systems.

1.1 Importance of Radiofrequency Design

The beginning of electrical circuit design is most likely traced back to the late
eighteenth and early nineteenth centuries when the first reliable batteries became avail-
able. Named after their inventor A. Volta (1745-1827), the Voltaic cells permitted the
supply of reliable DC energy to power the first crude circuits. However, it soon became
apparent that low-frequency alternating current (AC) power sources can transport elec-
tricity more efficiently and with less electtic losses when transmitted over some dis-
tance and that rerouting the electric energy could be facilitated through transformers
that operate in accordance with Faraday’s induction law. Due to pioneering work by
such eminent engineers as Charles Steinmetz, Thomas Edison, Werner Siemens, and
Nikolas Tesla, the power generation and distribution industry quickly gained entry into
our everyday life. it was James Maxwell (1831-1879) who, in a paper first read in 1864
to the Royal Society in London, postulated the coupling of the electric and magnetic
fields whose linkage through space gives rise to wave propagation. In 1887 Heinrich
Hertz experimentally proved the radiation and reception of electromagnetic energy
through air. This discovery heralded the rapidly expanding field of wireless communi-
cation, from radio and TV transmissions in the 1920s and 1930s to cellular phones and
Global Positioning Systems (GPS) in the 1980s and 1990s. Unfortunately, the design
and development of suitable high-frequency circuits for today’s wireless communica-
tion applications is not so straightforward. As will be discussed in detail, conventional
Kirchhoff-type voltage and current law analysis tools, as presented to first- and second-
year undergraduate electrical engineering students, apply strictly only to DC and low-
frequency lumped parameter systems consisting of networks of resistors, capacitors,
and inductors. They fail when applied to circuits governed by electromagnetic wave
propagation. B

The main purpose of this textbook is to provide the reader with theorctical and
practical aspects of analog circuit design when the frequency of operation extends into
the radio frequency (RF) and microwave (MW) domains. Here conventional circuit
analysis principles fail. The following questions arise:

* At what upper frequency does conventional circuit analysis become inappropriate?
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* What characteristics make the high-frequency behavior of electric components so
different from their low-frequency behavior?

* What “new” circuit theory has to be employed?

* How is this theory applied to the practical design of high- frequency analog circuits?

This book intends to provide comprehensive answers to these questions by developing
not only the theoretical framework but also delivering the practical applications through
a host of examples and design projects.

To identify more clearly the issues that we will address, let us examine the generic

RF system shown in Figure 1-1.

Antenna

L D R ettt I e N L

e ]
¥
(

g F — Transmitter Switch:
E Digital-to-Analog i Power Amplifier
o Converter OSC.

% : Local Oscillator

6 H

Low-Pass Receiver Power

Analog-to-Digital Filter Amplifier
Converter |
Mixed Signal X L
Circuits Analog Signal Circuits

Figure 1-1 Block diagram of a generic AF system.

Typical applications of this configuration are cellular phones and wireless local
area networks (WLANs). The entire block diagram in Figure 1-1 can be called a
transceiver, since it incorporates both transmitter and receiver circuits and uses a single
antenna for communication. In: this configuration the input signal (either a voice or a
digital signal from a computer) is first digitally processed. If the input signal is a voice
signal, as is the case in cellular phones, it is first converted into digital form; then com-
pressed to reduce the time of transmission; and finally appropriately coded to suppress
noise and communication errors.



4 Chapler 1 « Introduction

After the input signal has been digitally preprocessed, it is converted back to ana-
log form via a digital-to-analog converter (DAC). This low-frequency signal is mixed
with a high-frequency carrier signal provided by a local oscillator. The combined signal
is subsequently amplified through a power amplifier (PA) and then routed to the
antenna, whose task is to radiate the encoded information as electromagnetic waves
into free space. '

In the block diagram of Figure 1-1 let us focus on the transmitter PA. This could be
a 2 GHz PA for cellular phones that may be implemented as a dual-stage amplifier.
Details of the circuit diagram for the first stage PA are shown in Figure 1-2(a).

RF Blocking
‘/Networks\ .
100pF 100 pF |
| T
8.2pF~
Sreci”
A T— . Cs o the Second
c, -—“—0 Stage
RF;n°_| =C4 Interstage

DC Blocking ~! Blocking Capacitor

Capacitor

BFG425W Imerstage Matchmg

AN Network
Input Matchmg

Network

Figure 1-2(a) Simplified circuit diagram of the first stage of a 2 GHz power
amplifier for a celiular phone.

We notice that the input signal is fed through a DC blocking capacitor into an
input matching network, needed to match the input impedance of the ransistor (type
BFG425W of Philips Semiconductors), operated in common emitter configuration, to
the output impedance of the mixer that precedes the PA. The matching is needed to
ensure optimal power transfer as well as to eliminate performance degrading reflec-
tions. The interstage matching network must then match the output impedance of the
transistor to the input impedance of the second stage of the PA. Key components in the
matching networks are microstrip lines shown by the shaded rectangles in Figure
1-2(a). At high frequency these distributed elements exhibit unique electric properties
that differ significantly from low-frequency lumped circuit elements. We also notice
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additional networks to bias the input and output ports of the transistor. The separation
of high-frequency signals from the DC bias conditions is achieved through two RF
blocking networks that feature so-called radio frequency coils (RFCs).

The actual dual-stage circuit board implementation is given in Figure 1-2(b),
which shows the microstrip lines as copper traces of specific lengths and widths.
Attached to the microstrip lines are chip capacitors, resistors, and inductors.

0.5 inch Interstage Matching
> _ .= Network

L
| I

First Stage
Transistor
Second Stage
Input Matching Transistor
Network ~+ .
N Output Matching

~ Network

RF, RF,,

DC Bias Network
Figure 1-2(b) Printed circuit board layout of the power amplifier.

Dual Transistor IC

To understand, analyze, and ultimately build such a PA circuit requires knowledge
of a aumber of crucial RF topics discussed in this textbook:

«Microstrip line impedance behavior is discussed in “Transmission Line Analysis”
(Chapter 2) and its quantitative evaluation is considered in Chapter 3, “The Smith
Chart.”

«The ability to reduce a complicated circuit into simpler constituents whose input-
output is described through two-port network description. This is discussed in
Chapter 4, “Single- and Multiport Networks.”

»Strategies of generically developing particular impedance versus frequency
responses as encountered in filter design. Chapter 5, “A Brief Overview of RF Fil-
ter Design,” outlines the basic discrete and distributed filter theories, and Chapter
8, “Matching Networks,” delves into a detailed circuit implementation as related
to Figure 1-2(b).
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* High-frequency bipolar junction and field effect transistors as well as RF diodes
are investigated in “Active RF Components” (Chapter 6) in terms of their physical
basis followed by “Active Circuit Device Models™ (Chapter 7), where large signal
and smal) signal circuit models are analyzed.

* The overall amplification requirements, as related to gain, linearity, noise, and sta-
bility, are basis of “RF Transistor Amplifier Design” (Chapter 9).

* In addition to amplifiers, Chapter 10, “Oscillators and Mixers,” focuses on addi-
tional important RF circuit design concepts, as shown in Figure 1-1.

A successful RF design engineer knows about and applies all these concepts in the
design, construction, and testing of a particular RF circuit project. As the preceding
example implies, our concemn in this textbook is mostly geared toward analog RF cir-
cuit theory and applications. We purposely neglect mixed and digital RF signals since
their treatment would exceed the size and scope of this textbook.

1.2 Dimensions and Units

To understand the upper frequency limit, beyond which conventional circuit the-
ory can no longer be applied to analyze an electric system, we should recall the repre-
sentation of an electromagnetic wave. In free space, plane electromagnetic (EM) wave
propagation in the positive z-direction is typically written in sinusoidal form:

E. = Ej.cos{wr—[z) {1.1a)

H, = Hgcos(wt - Bz) (1.1b)

where E, and H, are the x-directed electric and the y-directed magnetic field vector
components, as shown qualitatively in Figure 1-3. Here E;, and H,, represent con-
stant amplitude factors in units of V/m and A/m.

These waves possess an angular frequency @, and a propagation constant B that
defines the spatial extent in terms of the wavelength A, such that § = 2%/A . Classical
field theory based on Maxwell’s equations reveals that the ratio between electric and
magnetic field components is defined in terms of the so-called intrinsic impedance Z,

% = Zy = Ju/e = J(Roh))/(5,) = 377 Q Ju, /¢, (1.2)
based on the material dependent permeability i = o, and permittivity € = £,€,,
with W, and €, being absolute permeability and permittivity of free space and p_and g,
denoting relative values. We also point out that the field components are orthogonal to
cach other and both are orthogonal to the direction of propagation. This is known as
transverse electromagnetic mode (TEM) and, since we deal exclusively with RE, it is
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Figure 1-3 Electromagnetic wave propagation in free space. The electric and
magnetic fields are recorded at a fixed instance in time as a function of space
(%, ¥ are unit vectors in x- and y-direction).

the only mode that is considered in this text. TEM wave propagation is in stark contrast
to the various transverse electric (TE) and transverse magnetic (TM) wave modes,
which are the underlying principles of MW and optical communication. In these cases
the field vectors are no longer perpendicular to the direction of propagation.

The phase velocity v, of the TEM wave can be found via

=2 = (1.3)

Relevant quantities, urits and symbols used throughout the book are summarized in
Tables A-1 and A-2 in Appendix A. Although we are dealing here with rather abstract
concepts of electromagnetic wave quantities, we can immediately relate (1.1) to circuit
parameters by observing that the electric field, as the unit of V/m already implies, can
intuitively be understood as a normalized voltage wave. Similarly, the magnetic field,
given in units of A/m, is a normalized current wave.

RFEMW—+
Example 1-1: Intrinsic wave impedance, phase velocity, and
wavelengths

Compute the intrinsic wave impedance, phase velocity, and wave-
lengths of an electromagnetic wave in free space for the frequencies
f=30MHz, 300 MHz, 30 GHz.
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Solution:  Relative permeability and permittivity of free space
are equal to unity. Therefore, from (1.2) we determine that intrinsic
impedance in this case is equal to

-7
Zy = fi - JE“ = (A0 a7 g
€ o 8.85x10

The phase velocity according to (1.3) is equal to

which happens to be the speed of light v, = c. The wavelength is
evaluated by the following expression;

2
7«.:%:%:\% (1.4)

where f is the operating frequency. Using equation (1.4), we find
that the wavelength for an electromagnetic wave propagating in free
space at a frequency of 30 MHz is equal to A = 10 m; at 300 MHz it
is already reduced to A =1 m; and at 30 GHz the wavelength is a
minute A =1 cm.

This example conveys an appreciation of how the wavelength
changes as a function of frequency. As the frequency increases, the
wavelength reduces to dimensions comparable to the size of circuit
boards or even individual discrete components. The implication of
this fact will be analyzed in Chapter 2.

1.3 Frequency Spectrum

Because of the vast scope of applications, engineers have to deal with a broad
range of frequencies of circuit operation. Over the years several attempts have been
made to classify the frequency spectrum. The first designations for industrial and gov-
emnment organizations were introduced in the United States by the Department of
Defense during and shortly after World War II. However, the most common frequency
spectrum classification in use today was created by the Institute of Electrical and Elec-
tronic Engineers (IEEE) and is listed in Table 1-1.



Frequency Spectrum

Table 1-1 |EEE Frequency Spectrum

Frequency Band Frequency Wavelength
ELF (Extreme Low Frequency) |30-300Hz 10,000-1000 km
VF (Voice Frequency) 300-3000 Hz 1000-100 km
VLF (Very Low Frequency) 3-30kHz 10010 km
LF (Low Frequency) 30-300 kHz 10-1 km
MF {Medium Frequency) 300-3000 kHz 1-0.1 km
HF (High Frequency) 3-30 MHz 100-10m
VHF (Very High Frequency) 30-300 MHz 10-1m
UHF (UMrahigh Frequency) 300-3000 MHz 100-10cm
SHF (Superhigh Frequency) 3-30 GHz 101 cm
EHF (Extreme High Frequency) |30-300 GHz 1-0.1 cm
Decimillimeter 300-3000 GHz 1-0.1 mm
P Band 0.23-1 GHz 130-30 cm
L Band 1-2 GHz 30-15cm
S Band 24 GHz 15-7.5cm
C Band 4-8 GHz 1.5-375¢cm
X Band 8-12.5 GHz 3.75-24cm
Ku Band 12.5-18 GHz 2.4-1.67 cm
K Band 18-26.5 GHz 1.67-1.13 cm
Ka Band 26.5-40 GHz 1.13-0.75 cm
Millimeter wave 40-300 GHz 7.5-1 mm
Submillimeter wave 300-3000 GHz 1-0.1 mm

Based on Table 1-1 and calculations carried out in Example 1-1 we note that the
VHF/UHF band, as typically encountered in television sets, constitutes the point at
which the wavelength first reaches dimensions equivalent to the physical extent of the
electronic system, It is this region where we need to begin to take into account the wave
nature of current and voltage signals in the respective electronic circuits. The situation
becomes even more critical when for instance 30 GHz frequency in the EHF band is
considered. Without being able to assign exact limits, the RF frequency range is cus-
tomarily associated from VHF to the S band. The MW frequency range has been tradi-

tionally associated with radar systems operating in the C band and above.
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1.4 RF Behavior of Passive Components

From conventional AC circuit analysis we know that a resistance R is frequency
independent and that a capacitor C and an inductor L can simply be specified by their
reactances X- and X, as follows:

1
X = — .
c=on (1.59)
X, = oL (1.5b)

The implications of (1.5}, for example, are such that a capacitor of C =1 pF and an
inductor of L = 1 nH at low frequencies of 60 Hz represent, respectively, either an open
or short circuit condition because

X (60 Hz) = 1 — =2.65x10° Q= o (1.6a)
2r-60-10
X (60 Hz) = 2x-60- 107 =3.77x107 Q=0 (1.6b)

It is important to point out that resistances, inductances, and capacitances are not only
created by wires, coils, and plates as typically encountered in conventional low-fre-
quency electronics. Even a single straight wire or a copper segment of a printed circuit
board (PCB) layout possesses frequency dependent resistance and inductance. For
instance, a cylindrical copper conductor of radius a, length /, and conductivity ¢
has a DC resistance of

cond

!
Rpe = —— (1.7

na GCOI'Id

For a DC signal the entire conductor cross-sectional area is utilized for the current flow.
At AC the situation is complicated by the fact that the alternating charge carrier flow
establishes a magnetic field that induces an electric field (according to Faraday’s law)
whose associated current density opposes the initial current flow. The effect is strongest
at the center r = 0, therefore significantly increasing the resistance in the center of the
conductor. The result is a current flow that tends to reside at the outer perimeter with
increasing frequency. As derived in Appendix B, the z-directed current density J, can be
represented by

_ pl Jolpr)
z = 2ral | (pa)

(1.8)

where p2 = —JOUG 4. and Jo(pr), J,(pa) are Bessel functions of zeroth and first
order, and [ is the total current flow in the conductor. Further calculations reveal that the



RF Bahavior of Passive Components "

normalized resistance and inductance under high-frequency conditions ( f =z 500 MHz)
can be put in the form

R/Rp-=a/(28) (1.9)
and
(0L)/Rpo=as(28) (1.10)
In these expressions 0 is the so-called skin depth
8 = (MG~ 2 (1.11)

which describes the spatial drop-off in resistance and reactance as a function of fre-
quency f, permeability p, and conductivity o 4. For the equnations (1.9) and (1.10) to
be valid it is assumed that § « a. In most cases, the relative permeability of the conduc-
tor is equal to unity (i.e., L, = 1). Because of the inverse square root frequency behav-
ior, the skin depth is large for low frequencies and rapidly decreases for increasing
frequencies. Figure 1-4 exemplifies the skin depth behavior as a function of frequency
for matertal conductivities of copper, aluminum, and gold.

1
091
0.3
Q.7
0.6
05
047
03¢
02¢t
0.1+

&, mm

0 M
10* 10° 10¢ 10 10 10

J Hz

Flgure 1-4  Skin depth behavior of copper o, = 64.516><10iS!m.aIuminum

G, = 40.0x10° S/m, and gold G, 3.544x10" S/m .

If we consider the conductivity of copper, we can plot the AC current density (1.8)
normalized with respect to the DC current density J,, = I/(%ta?) as schematically
shown for the axisymmetric wire depicted in Figure 1-5(a).

For a fixed wire radius of, let us say, 4 = 1 mm we can now plot J,/J 4 as a
function of radius # for various frequencies as given in Figure 1-5(b).
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High current Low current
density density

Current Flow —a | TR

Figure 1-5(a) Schematic cross-sectional AG current density representation
normalized to DC current density.
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Figure 1-5(b) Frequency behavior of normalized AC current density for a
copper wire of radius a = 1 mm.

We notice the significant increase in current flow at the outer perimeter of the wire
even for moderate frequencies of less than 1 MHz. At frequencies around 1 GHz, the
current flow is almost completely confined to the surface of the wire with negligible
radial penetration. An often used high-frequency approximation for the z-directed cur-
rent density is

a-r

Ip —(1+j)T

J =—~L ¢
] j21ta,\/;

1

(1.12)
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As seen in (1.12), the skin depth & has a simple physical meaning. It denotes the
reduction in the current density to the e~! factor (approximately 37%) of its original
DC value. If we rewrite (1.9) slightly, we find

a na?
= — = —— 1
¢ RDCZS RDCZnaB (29

This equation shows that the resistance increases inverse proportionally with the

cross-sectional skin area, see Figure 1-6.

Figure 1-6 Increase in resistance over the cross sectional surface area. The
current flow is confined to a small area defined by the skin depth 8.

To standardize the sizes of wires, the American Wire Gauge (AWG) system is
commonly used in the United States. For instance, the diameter of the wire can be
determined by its AWG value. A complete listing of all AWG values and their corre-
sponding diameters is given in Table A-4 in Appendix A. The general rule is that in the
AWG system, the diameter of the wire roughly doubles every six wire gauges starting
with 1 mil for a AWG 50 wire (see Table A-4).

—RF&MW->

Example 1-2: Conversion between wire diameter and AWG
size

Determine the radius of the AWG 26 wire if the diameter of the
AWG 50 wire is 1.0 mil (or 2.54x10™ m).
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Solution:  The increase in diameter is computed as follows:
AWG S50 d=1mil
AWG 44 d=2mils
AWG 38 d=4mils
AWG 32 d=8mils
AWG 26 d=16mils
Thus we determined that the diameter of a AWG 26 wire is equal to
16 mils. Therefore, the radius is

$mil = 8 X (2.54x10"°m) = 0.2032 mm

Even in today’s increasingly metric world, AWG has retained
its importance, and knowledge of how to convert mil-based AWG
size wires into millimeters often proves indispensable.

1.41 High-Frequency Resistors

Perhaps the most common circuit element in low-frequency electronics is a resis-
tor whose purpose is to produce a voltage drop by converting some of the electric
energy into heat. We can differentiate among several types of resistors:

* Carbon-composite resistors of high-density dielectric granules

* Wire-wound resistors of nickel or other winding material

* Metal-film resistors of temperature stable materials

* Thin-film chip resistors of aluminum or beryllium based materials

Of these types mainly the thin-film chip resistors find application nowadays in RF and
MW circuits as surface mounted devices (SMDs). This is due to the fact that they can
be produced in extremely small sizes, as Figure 1-7 shows.

As the previous section has shown, even a straight wire possesses an associated
inductance. Consequently, the electric equivalent circuit representation of a high-
frequency resistor of nominal value R is more complicated and has to be modified such
that the finite lead dimensions as well as parasitic capacitances are taken into account.
This situation is depicted in Figure 1-8.

The two inductances L model the leads, while the capacitances are needed to
account for the actual wire arrangement, which always represents a certain charge sepa-
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Figure 1-7 One- and quarter-watt thin-film chip resistors in comparison with a
conventional quarter-watt resistor.

C

L R L
AN

Figure 1-8 Electric equivalent circuit representation of the resistor.

ration effect modeled by capacitance C,, and interlead capacitance C, . The lead resis-
tance is generally neglected when compared with the nominal resistance R. For a wire-
wound resistor the model is more complex, as Figurc 1-9 shows.

Cl
Al
I
L, R L, L,
T WN— T~ T~
C2
Il

Figure 1-9  Electric equivalent circuit representation for a high-frequency wire-
wound resistor.
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Here, in addition to the lead inductances L, and the contact capacitance, we need
to include the inductance L, of the wire-wound resistor, which acts as a coil, and the
stray capacitance C, established between the windings. The interlead capacitance C,
(or C,, in Figure 1-8) is usually much smaller than the internal or stray capacitance and
in many cases can be neglected.

RF&MW—
Example 1-3: RF impedance response of metal film resistors

Find the high frequency impedance behavior of a 500 £2 metal film
resistor (see Figure 1-8) with 2.5 cm copper wire connections of
AWG 26 and a stray capacitance C, of 5 pF.

Solution:  In Example 1-2 we have determined that the radius of
an AWG 26 wire is a = = 2.032x10* m. According to (1.10) the
inductance of the straight wire at high frequency is approximately
equal to L = Rpca/(2wd). Substituting (1.11) for the skin depth,
we get the following expression of a lead mcluctance (we set the

conductivity of copper to be 6, = 64. 516x10° Q! 1):
I =R of T My 154 uH
DC2 N ROy = ond 247|:f Koy 4750 EGCuf «/}

where the length of the leads is doubled to account for two connec-
tions. The preceding formula for the computation of the lead induc-
tance is applicable only for frequencies where the skin depth is
smaller than the radius of the wire [i.e., § = (®flLo)~12«a]orin
terms of frequency f » 1/{npno,a?) = 95 kHz.

Knowing the inductance of the leads, we can now compute the
impedance of the entire circuit as

1
Z= ol e IR

The result of the computation is presented in Figure 1-10, where the
absolute value of the impedance of the resistor is plotted versus
frequency.

As seen, at low frequencies the impedance of the resistor is
equal to R. However, as the frequency increases and exceeds
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Figure 1-10  Absolute impedance value of a 500-Q thin-film resistor as a
unction of frequency.

10 MHz, the effect of the stray capacitance becomes dominant,
which causes the impedance of the resistor to decrease. Beyond the
resonance at approximately 20 GHz, the total impedance increases
due to the lead inductance, which represents an open circuit or infi-
nite impedance at very high frequencies.

This example underscores the care that is required when deal-
ing with the ubiquitous, seemingly frequency-independent resistors.
While not all resistors exhibit exactly the same response as shown in
Figure 1-10, it is the single, often multiple, resonance point that
occurs when the frequency reaches into the GHz range.

14.2 High-Frequency Capacitors

In most RF circuits chip capacitors find widespread application for the tuning of
filters and matching networks as well as for biasing active components such as transis-
tors. It is therefore important to understand their high-frequency behavior. Elementary
circuit analysis defines capacitance for a parallel plate capacitor whose plate dimen-
sions are large compared to its separation as follows:
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€4 A

C = -E = 808_,.3

where A is the plate surface area and 4 denotes the plate separation. Ideally there is no
current flow between the plates. However, at high frequencies the dielectric materials
become lossy (i.e., there is a conduction current flow). The impedance of a capacitor

must thus be written as a parallel combination of conductance G, and susceptance wC:

1
Z= —mr
G, + joC

(1.14)

(1.15)

In this expression the current flow at DC is due to the conductance G, = Oy, A/ d,
with G4, being the conductivity of the dielectric. It is now custornary to introduce the
series loss tangent tanA, = e/ G, and insert it into the expression for G, to yield

- Cgietd _ @A _ oC

¢ d T~ dtanA,  tanA, (1.16)

Some practical values for the loss tangent are summarized in Table A-3. The corre-
sponding electric equivalent circuit with parasitic lead inductance L, series resistance R,
describing losses in the lead conductors, and dielectric loss resistance R, = 1/G,, is
shown in Figure 1-11.

RFEMW—

Example 1-4: RF impedance respense of capacitor

Compute the high frequency impedance of a 47 pF capacitor whose
dielectric medium consists of an aluminum oxide (AL,O;) possess-
ing a series loss tangent of 10~ (assumed to be frequency indepen-
dent) and whose leads are 1.25 cm AWG 26 copper wires

(6, = 64.516x10°Q7 . m™"),
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Solution:  Similar to Example 1-3, the inductance associated

with the leads is given by
K 771
= Rocg /W hoScy = 41I:a oot T

The series resistance of the leads is computed from (1.13) to be

R, = RDCZS ZTEaG Y HoOcy = ncCu = 48Jf @

Finally, in accordance w1th (1.16), the parallel leakage resistance is
equal to

_ 1 | _ 33 9x10°
k. = G,  2nfCtand,  f M
The frequency response of the magnitude of the impedance based on

equation (1.15) for the capacitor is shown in Figure 1-12.

10°
o' Real capacitor
a
S 10
10"t
Ideal capacitor
10° : :
10* 10’ 10° 10"
f Hz
Figure 1-12 Absolute value of the capacitor impedance as a function of
frequency.

In computing the parallel leakage resistance R, we have
assumed the loss tangent tanA; to be frequency independent. In
reality, however, this factor may significantly depend upon the oper-
ating frequency. Unfortunately, data sheets often do not, or only
very incompletely, report this behavior.
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Since the loss tangent can also be defined as the ratio of an
equivalent series resistance (ESR) to the capacitor’s reactance, many
data sheets list ESR instead of tanA . The ESR value is thus given as

tanA,
@C
This indicates that ESR — 0 as tanA, - 0.

ESR =

As already known from the RF resistor impedance response in
Example 1-3, the capacitor reveals a similar resonance behavior
due to the presence of dielectric losses and finite lead wires.

The construction of a surface-mounted ceramic capacitor is shown in Figure 1-13.
The capacitor is a rectangular block of a ceramic dielectric into which a number of
interleaved metal electrodes are sandwiched. The purpose of this type of packaging is
to provide a high capacitance per unit volume by maximizing the electrode surface
area. Capacitance values range from 0.47 pF to 100 nF with operating voltage ranging
from 16V to 63V. The loss tangent is usually listed by the manufacturer as
tanA, < 10~ at a 1 MHz test frequency. Again, this loss tangent can significantly
increase as the frequency reaches into the GHz range.

Ternminations

Ceramic material

Figure 1-13  Actual construction of a surface-mounted ceramic multilayer
capacitor.
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Besides capacitance and loss tangent, manufactures list a nominal voltage that
cannot be exceeded at a particular operating temperature (for instance, T < 85°C). Fur-
thermore, the capacitance is temperature dependent, as further discussed in the problem
section of this chapter.

1.4.3 High-Frequency Inductors

Although not employed as often as resistors and capacitors, inductors generally
are used in transistor biasing networks, for instance as RF coils (RFCs) to short circuit
the device to DC voltage conditions. Since a coil is generally formed by winding a
straight wire on a cylindrical former, we know from our previous discussion that the
windings represent an inductance in addition to the frequency-dependent wire resis-
tance. Moreover, adjacently positioned wires constitute separated moving charges, thus
giving rise to a parasitic capacitance effect as shown in Figure 1-14.

Figure 1-14 Distributed capacitance and series resistance in the inductor coil.

The equivalent circuit model of the inductor is shown in Figure 1-15. The para-
sitic shunt capacitance C, and series resistance R, represent composite effects of distrib-
uted capacitance C, and resistance R, respectively.

(L
i

Figure 1-15 Equivalent circuit of the high-frequency inductor.
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RF &M W
Example 1-5: RF impedance response of an RFC

Estimate the frequency response of an RFC formed by N = 3.5 turns
of AWG 36 copper wire on a 0.1 inch air core. Assume that the
length of the coil is 0.05 inch.

2r

d
Figure 1-16 Inductor dimensions of an air-core coil.

Solution:  The dimensions of the coil are shown in Figure 1-16.
From Table A-4 in Appendix A, we find that the radius of the
AWG 36 wire is a = 2.5 mils = 63.5 pm. The radius of the coil core
is r=>50 mils = 1.27 mm. The length of the coil is /=50 mils
=127mm. The distance between two adjacent turns is
d=1/N~36x10"m,
To estimate the inductance of the coil we will use a well-
known formula for the inductance of an air core solenoid:
nrzuoNz
L= "%
!
Strictly speaking, this formula is valid only for the case when r « 1
and the number of turns X is large. In our case, the length of the coil
is comparable with its radius and the number of turns is relatively
small. Therefore, (1.17) will not give an exact value for the induc-
tance, but a rather good approximation. Substituting the given val-
ues into (1.17), we obtain L = 61.4 nH.
To approximate the effect of the capacitance C,, we will use
the formula for an ideal parallel-plate capacitor (1.14). In our case

(1.17)
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the separation 4 between the plates is assumed to be equal to the
distance between the turns d = I/N ~ 3.6x107 m, and the area A
can be estimated as A = 2al ., where [, . = 21trN is the length
of the wire. We conclude that

€y 2RrN - 2a 2

7 4"€°ra§v

Since the radius of the wire is only 63.5 pm, we can neglect the skin
effect and compute the series resistance R, as a DC resistance of the
wire.

= 0.087 pF

1.
R = wire 2TU‘N2 = 0.034 O

s 2
Ce,Ma”  Og la

The frequency response of the RFC impedance just analyzed is
shown in Figure 1-17.

5

10

Ideal inductor

Real inductor

121, 2

10° 10° 10" 10"
fHz
Figure 1-17 Frequency response of the impedance of an RFC.

RFCs find widespread use for biasing RF circuits. However, as
Figure 1-17 shows, the frequency dependency can form complicated
resonance conditions with additional elements in an RF system.
Indeed, certain matching circuits rely on the RFCs as tuning elements.
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As can be seen from Figure 1-17, the behavior of the RFC deviates from the
expected behavior of an ideal inductance at high frequencies. First, the impedance of
the RFC increases more rapidly as the frequency approaches resenance. Second, as the
frequency continues to increase, the influence of the parasitic capacitance C, becomes
dominant and the impedance of the coil decreases.

If the RFC had zero series resistance, then the overall impedance behavior at reso-
nance would reach infinity, but due to the nonzero value of R, the maximum value of
the impedance is of finite value. To characterize the impact of the coil resistance, the
quality factor Q is commonly used:

=X
0=z (1.18)

5

where X is the reactance and R, is the series resistance of the coil. The quality factor
characterizes the resistive loss in this passive circuit, and for tuning purposes it is desir-
able that this factor is as high as possible.

1.5 Chip Components and Circuit Board Considerations

The practical realization of passive components on printed RF circuit boards is
primarily accomplished in chip form and placed on specially fabricated board materi-
als. In the following section we examine the three most common passive chip elements
in terms of their sizes and electric characteristics.

1.5.1 Chip Reslistors

The size of chip resistors can be as small as 40 by 20 mils (where 1 mil = 0.001
inch = 0.0254 mm) for 0.5 W power ratings and up to 1 by 1 inch for 1000 W ratings in
RF power amplifiers. The chip resistor sizes that are most commonly used in circuits
operating up to several hundred watts are summarized in Table 1-2.

A general rule of thumb in determining the size of the chip components from the
known size code is as follows: the first two digits in the code denote the length L in
terms of tens of mils, and the last two digits denote the width W of the component. The
thickness of the chip resistors is not standardized and depends on the particular compo-
nent type.

The resistance value range from 1/10 € up to several MQ . Higher values are diffi-
cult to manufacture and result in high tolerances. Typical resistor tolerance values range
from 5% to £0.01% . Another difficulty that arises with high-value resistors is that they
are prone to produce parasitic fields, adversely affecting the linearity of the resistance ver-
sus frequency behavior. A conventional chip resistor realization is shown in Figure 1-18.
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Table 1-2 Standard sizes of chip resistors

Geometry Size Code Length L, mils Width W, mils
0402 40 20
0603 60 30
0805 80 50
L w 1206 120 60
1218 120 180

End contact

Figure 1-18

A metal film (usually nichrome) layer is deposited on a ceramic body (usually
aluminum oxide). This resistive layer is trimmed to the desired nominal value by reduc-
ing its length and inserting inner electrodes. Contacts are made on both ends of the
resistor that allow the component to be soldered to the board. The resistive film is

Marking

Protective coat

Inner electrodes

Resistive layer

End contact

Ceramic substrate

Cross-sectional view of a typical chip resistor.

coated with a protective layer to prevent environmental interferences.

1.5.2 Chip Capacitors

The chip capacitors are implemented either as a conventional single-plate configu-

ration, as shown in Figure 1-19, or a multiple-layer design (see Figure 1-13).

Frequently, single-piate capacitors are combined in clusters of two or four ele-
ments sharing a single dielectric material and a common electrode, as shown in Figure

1-20.
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Chip capacitor Ribbon lead or wire

Circuit traces

Figure 1-19 Cross sectionof a typigal sLngie-plate capacitor connected to the
oard.

Dual capacitor Quadrupole capacitor

i i
b ¥ ey

Figure 1-20 Clusters of single-plated caplacitors sharing a common dielectric
material.

The standard sizes of the capacitors range from a minimum of 15 mils square in a
single layer configuration to 400 by 425 mils at higher values. Typical values for com-
mercial capacitors range from 0.1 pF to several uF. The tolerances vary from +2% to
+50% . For small capacitances tolerances are usually expressed in terms of pF instead
of percent; for example, we often encounter capacitors with the nominal values given as
(0.5+0.25) pF.

1.5.3 Surface-Mounted Inductors

The most common implementation of surface-mounted inductors is still the wire-
wound coil. A typical example of such an inductor with air core is shown in Figure 1-21.
Modern manufacturing technology allows us to make these inductors extremely small.
Their dimensions are comparable to those of chip resistors and capacitors. Typical sizes
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Figure 1-21 Typical size of an RF wire-wound air-core inductor in comparison
with a cellular phone antenna (courtesy of Coilcraft, Inc.).

of the surface-mounted wire-wound inductors range from 60 by 30 mils to 180 by 120
mils. The inductance values cover the range from 1 nH to 1000 uH.

When thickness constraints of the circuit play a major role, flat inductors are often
employed that can be integrated with microstrip transmission lines. A generic configu-
ration of a flat coil is shown in Figure 1-22. Although such thin-wire coils have rela-
tively low inductances on the order of 1 to 500 nH, it is the frequency in the GHz range
that helps push the reactance beyond 1 kQ. The physical construction can be as small
as 2 mm by 2 mm.

Terminals Terminals
Air bridge
Figure 1-22 Flat coil configuration. An air bridge is made by using either a wire
or a conductive ribbon.

Flat coils are used in both integrated and hybrid circuits. Hybrid circuits are very
similar to an ordinary circuit, but discrete semiconductor elements are placed on the
dielectric substrate in die form (without case) and are connected to the conductors on
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the board using bond wires. After the entire circuit is assembled, it is then placed into a
single case to protect it from environmental interferences. Resistors and capacitors for
hybrid circuits can directly be implemented on the board by metal-film deposition. This
approach permits significant reduction in the size of the circnit.

1.6 Summary

In this chapter the evelution from low- to high-frequency systems is discussed and
placed in a historical context. A key concept when dealing with high-frequency applica-
tions is the fact that the electromagnetic wave nature begins to dominate over Kirch-
hoff’s current and voltage laws. Issues such as propagation constant and phase velocity,

o_ 1
B=2m/handv, =5 ==

kY

gain importance.

A consequence of the electromagnetic wave nature is the skin effect, which forces
the current to flow close to the surface of the conducting structures. The depth of pene-
tration from the surface can be determined via the skin depth equation:

1
JTfUG

With the skin depth we can approximately characterize the frequency dependent resis-
tance and reactance of components at RF frequency. As an example, the simple cylin-
drical lead wires exhibit resistances and reactances that become a function of frequency

S =

R=RDC2£8 and X = wL:RDC%

These wires, in conjunction with the respective R, C, and L elements, form electric equiv-
alent circuits whose performance markedly deviate from the ideal element behavior. We
find that the constant resistance at low frequency is no longer constant, but displays a
second-order system response with a resonant dip. The dielectric material in a capacitor
becomes lossy at high frequencies (i.¢., allows the flow of a small conduction current).
The degree of loss is quantified by the loss tangent, which is tabulated for a range of
engineering materials. Therefore, a capacitor exhibits an impedance behavior that fol-
lows an inverse frequency response only at low frequencies. Finally, inductors represent
an impedance response that follows a linear increase at low frequencies before deviating
from the ideal behavior by reaching a resonance peak and then turning capacitive.

A passive RF compenent vendor will always attempt to keep the physical dimen-
sions of resistors, capacitors, and inductors as small as possible. This is desired since
the wavelength of high-frequency voltage and current waves becomes ever smaller,
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eventually reaching the characteristic sizes of the circuit components. As discussed in
subsequent chapters, when the wavelength is comparable in size with the discrete elec-
tronic components, basic circuit analysis no longer applies.
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Problems

1.1 Compute the phase velocity and wavelength in an FR4 printed circuit board
whose relative dielectric constant is 4.6 and where the operational frequency
is 1.92 GHz.
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1.3

14

1.5

1.6
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The current flowing in a microstrip line (assumcd to be infinite and lossless)
is specified to be i(t) = 0.6cos(9 X 10°¢ - 500z) A. Find the (a) phase
velocity, (b) frequency, (¢) wavelength, and (d) phasor expression of the cur-
rent.

A coaxial cable that is assumed lossless has a wavelength of the electric and
magnetic fields of A = 20 c¢m at 960 MHz. Find the relative dieleciric con-
stant of the insulation.

The electric wave field of a positive z-traveling wave in a medium with rela-

tive dielectric constant of €, = 4 and with frequency of 5 GHz is given by
E = E;cos(wt—kz) V/im

(a) Find the magnetic field if E,, = 10°V/m,

(b) Determine phase velocity and wavelength.

(¢) Compute the spatial advance of the traveling wave between time intervals

t, = 3us and 7, = 7ps.

Find the frequency response of the impedance magnitude of the following
series and parallel LC circuits:

L=10nH
— 00 L=10pH
" C=10pF
=10pF
Compare your results to the situation when the ideal inductance is replaced
by the same inductance and a 5 I resistance connected in series. Assume

that these circuits operate in the VHF/UHF frequency band of 30-3000
MHz.

For the circuit shown, derive the resonance frequency and plot the resonance
frequency behavior as a function of the resistance R.

L=10nH R

T —MWA

— C=IpF t—
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A

Repeat Problem 1.6 for the following circuit.
R

C=1pF

For the following circuit we chose R « (JL/C)/2.

AMA— %
L% ==C

Find |V,/V|| as a function of frequency and identify the dominant circuit
portions for the low-, mid-, and high-frequency domains.

One of the objectives of Chapter 1 is to sensitize the reader to high-fre-
quency phenomena that are usually neglected in a low-frequency circuit ana-
lysis. One such phenomenon is the skin effect. To show its importance in RF
calculations, (a) compute the frequency behavior of an inductor formed by
10 turns of AWG 26 copper wire on a 5 mm air core. The length of the coil is
5 mm. (b) repeat the computations by first neglecting the skin effect and then
including it.

The leads of a resmtor in an RF circuit are treated as straight aluminum wires
(G, = 40X 10° S/m) of AWG size 14 and of total length of 5 cm. (a)
Compute the DC resistance. (b} Find the AC resistance and inductance at
100 MHz, 1 GHz, and 10 GHz operating frequencies.

Compute the skm depths for copper (0o, = 64.316 >< 10° S/m), aluminum
(G4 = 40x 10°S/m), and gold (0,, = 48.544 % 10°S/m ) at 1 GHz and
10 GHz, and find the resistance of a 10 cm wire with diameter of 1 mm.

A typical PCB substrate consists of Al,O, with a relative dielectric constant
of 10 and a loss tangent of 0.0004 at 10 GHz. Find the conductivity of the
substrate.
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For the series RLC circuit with R = 1, L = 1 nH, and C = 1 pF,
compute the resonance frequency and quality factor at £10% of the reso-
nance frequency. Does the presence of the resistor affect the resonance fre-
quency?

A 4.7 pF capacitor with relative dielectric constant of 4.6 and series loss tan-
gent of 0.003 is used in a circuit operated at 10 GHz. For a combined copper
lead length of 6 cm and diameter of 0.5 mm, determine (a) the lead resis-
tance and lead reactance, and (b) the conductance and the total 1chdance
The conductivity of copper is given as o, = 64. 516x10°Q~"

A manufacturer data sheert records the series loss tangent of a capacitor to be
10~ at 5 GHz. For a total plate dimension of 10 Zem” and plate separation
of 0.01 mm and a relative dielectric constant of 10, find the conductance.

A two-element impedance of the generic form

Z=R+jX
has to be converted into an equivalent admittance form ¥ = 1/Z such that
Y=G+jB

Find the conductance G and susceptance B in terms of resistance R and reac-
tance X.

A more elaborate model of a capacitor is sometimes represented by the fol-
lowing circuit:

Here the loss tangcnt is specified as consisting of two parts involving the
admittance Y, = 1/R, + joC with a parallel-circuit loss tangent
tana, |Re{Y }/Im{Y »}| and series impedance Zg = R+ I/(j(DC)
with a series-circuit loss tangent tanAg = |Re{Z;}/Im{Z;}| (it is noted
that R, is different from Example 1-4). Show that for low-loss capacitances
we approximately obtain tanA ~ tanAg + tana where
tanA = |Re{Z}/Im{Z}| and Z s the total impedance.

When recording the capacitance with a measurement equipment, the user
has often the choice to select a suitable circuit representation. For the series
representation, the instrument attempts to predict Ry and Cg, while for the
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parallel representation the prediction involves Rp and Cp. Which mode
should be chosen if large capacitors of more than 100 puF are to be mea-
sured? Is this mode also suitable for small values of less than 10 pF?
Explain your answers.

The ability to store electric charge, expressed through the capacitance,
depends on the operating temperature. This behavior can be quantified
through the relation C = Cy[1+ (7 —20°C)], where C, is the nominal
capacitance and ¢tis a temperature coefficient that can be positive or nega-
tive. If the capacitance C at T = 20°C is recorded to be 4.6 pF, which
increases to 4.8 pF at T = 40°C, what is the temperature coefficient o ?
Determine the capacitance at 0°C and 80°C.

When measuring impedance at low frequency we connect the measurement
equipment to a device using a pair of wires and assume that the reading
reflects the impedance of the device under test (DUT). As we have seen in
this chapter, at high frequencies we have to take into account the influence of
the parasitic elements. The typical circuit representation of the measurement
arrangement is as follows.

Zl'w ZDUT

& |‘1

Measurement| | : L
Equipment Gr ==Cr buUT

Ry Lg

O <

Cables and Fixture

Measurement Device
Plane Plane

Here the fixture and cables are replaced by an equivalent circuit of the lead
impedance (Rg+ jwLg) and stray admittance (Gp+ jwCp). Ideally, we
would like to perform the measurement at the device plane. However, due to
the influence of the fixture, the measurement plane is shifted away from the
DUT.

To measure accurately the impedance of the DUT, the test fixture with
connecting cables has to be taken into account. The methodology adopted by
most manufacturers is to compensate for these undesired, fixture-related
influences through an open- and short-circuit calibration. The first step is to
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replace the DUT by a short circuit and record the resulting impedance. Due
to the influence of the fixture, the measured impedance will not be equal to
zero. Next, the short circuit is replaced by an open circuit and the impedance
is recorded again. These two measurements allow us to quantify the parasitic
influence of the fixture.

After calibration, we can connect the DUT and measure the input
impedance. The equivalent circuit in this case is as follows.

VA 5 =R S+j L $
. — ) Y
"— 1 J aSo

Yo=GatjoCp | | ZLpur
- . «

Z

M

Knowing the values of the parasitic elements (Z; and Yp), we can now
compute the true impedance of the DUT.

Explain the procedure with all necessary equations, and specify under
what conditions such a calibration is possible. Next, develop the formula that
allows us to find the desired DUT impedance in the absence of the fixture.

The results of a frequency sweep impedance measurement of an unknown
passive device are shown in the following figure.

5

10

10 - . RO . . :
w10 100 100 100 100 10° 10" 10"
Frequency, Hz
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Based on the shape of the impedance response, develop a circuit that can be
used as an equivalent circuit to replicate this device under test. What device
can it be: resistor, inductor, or capacitor?

To measure the impedance of a passive component at RF frequencies is quite
a challenge. Conventional techniques such as bridge circuits and resonance
techniques fail beyond a few MHz. A technique pursued by several instru-
ment manufactures is the current voltage recording based on the following
simplified schematic.

1:1 I_

bUT

Here the voltages are measured with vector voltmeters that allow the record-
ing of magnitude and phase. Explain how the impedance of the component
under test is determined and discuss the purpose of the transformer and
operational amplifier.

An RFC is constructed by winding four turns of AWG 38 copper wire on a
2 mun ceramic core diameter (1, = 1) of 0.1 mm length. Based on Example
1-5, estimate the inductance, stray capacitance, resistance, and resonance
frequency.

Using data and the equivalent circuit diagram developed in the previous
problem, find values of the equivalent circuit parameters for the magnitude
of the impedance if the device is 100 £ under DC conditions and 1257 Q
at 100 GHz. Assume the resonance frequency point to be at 1.125 GHz.

A quadrupole capacitor as shown in Figure 1-18 consists of four equal-size
electrodes of 25 mils square separated 5 mils from a common ground plane
through a dielectric medium of a relative dielectric constant of 11. Find the
individual and total capacitance that can be achieved.
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1.26 Consider the following diode circuit.

DGy 50
RFC
RF,, o ﬁ @ RFqy7
5nH
=,
o —
. .

As will be shown in Chapter 6, a reverse biased diode can be represented as
a series combination of a resistor R¢ and junction capacitor C, where the
capacitance is bias dependent. Its value is approximately given by the
expression

_\-172
-
diff
Assuming that RFC and blocking capacitor C have infinite values, find the
biasing voltage such that the circuit exhibits a resonance at the frequency of
1 GHz. The diode is characterized as follows: C, = 10 pF, R; = 3 Q,
and barrier voltage V4 = 0.75 V.



CHAPTER 2

Transmission Line Analysis

As we already know, higher frequencies imply
decreasing wavelengths. The consequence for an RF circuit is that voltages and currents
no longer remain spatially uniform when compared to the geometric size of the discrete
circuit elements: They have (o be treated as propagating waves, Since Kirchhoff’s volt-
age and current laws do not account for these spatial variations, we must significantly
modify the conventional lumped circuit analysis.

The purpose of this chapter is to outline the physical reason for transitioning from
lumped to distributed circuit representation and, in the process, develop one of the most
useful equations: the spatially dependent impedance representation of a generic RF
transmission line configuration. The application of this equation to the analysis and
design of high-frequency circuits is going to assume central importance in subsequent
chapters. Developing the background of transmission line theory in this chapter, we have
purposely attempted to minimize (albeit not eliminate) the reliance on electromagnetics.
The motivated reader who would like to delve deeper into the concepts of electromag-
netic wave theory is referred to a host of excellent books listed at the end of this chapter.

2.1 Why Transmission Line Theory?

Let us once again return to the wave field representation (1.l1a):
E, = E,cos(wt-Pz). Here we have an x-directed electric field propagating in the
positive z-direction. For propagation in free space the orthogonality between electric
field and direction of propagation is always assured. If, on the other hand, we assume
that the wave is confined to a conducting medium that is aligned with the z-axis, we will
find that the electric field has a longitudinal component E, that, when integrated in z-
direction, gives us a voltage drop (i.e., V= —szdiZ, where dl, is the line element in the

aw
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z-direction). Let us now consider more closely the argument of the cosine term in
{1.1a). It couples space and time in such a manner that the sinusoidal space behavior is
characterized by the wavelength A along the z-axis. Moreover, the sinusoidal temporal
behavior can be quantified by the time period T = 1/ f along the time-axis. In mathe-
matical terms this leads to the method of characteristics, where the differential change
in space over time denotes the speed of evolution, in our case the constant phase veloc-
ity in the form v,

.
R RS S 2.1

For a frequency of let us say, f=1 MHz and medium parameters of €,= 10 and

=1 (v = 9.49x10" m/s ), a wavelength of A = 94.86 m is obtained. This situation is

spatlally and temporally depicted in Figure 2-1 for the voltage wave
V = =Jcos(wr~Pz)dz = sin(wt-Pz)/B.

20 . — . y —— a

0 02 04 0.6 08 10 12 14 16 L8 20
f s
e s

% 20 40 60 80 100 120 140 160 180 200
z, m
Figure 2-1 Voltage distribution as a function of time (z = 0) and as a function of
space {f=0)

We next direct our attention to a simple electric circuit consisting of load resistor
R; and sinusoidal voltage source V with internal resistance R; connected to the load
by means of 1.5 cm long copper wires. We further assume that those wires are aligned
along the z-axis and their resistance is negligible. If the generator is set to a frequency
of 1 MHz, then, as computed before, the wavelength will be 8486 m. A 1.5 ¢cm long
wire connecting source with load will experience spatial voltage variations on such a
minute scale that they are insignificant.
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When the frequency is increased to 10 GHz, the situation becomes dramatically
different. In this case the wavelength reduces to A = v,/10'" m= 0.949 cm and thus
is approximately two-thirds the length of the wire. Consequently, if voltage measure-
ments are now conducted along the 1.5 cm wire, location becomes very important in
determining the phase reference of the signal. This fact would readily be observed if an
oscilloscope were to measure the voltage at the beginning (location A), at the end (loca-
tion B), or somewhere along the wire, where distance A-B is 1.5 cm measured along the
z-axis in Figure 2-2.

Va

Ve

_Ki ...............

Y

Figure 2-2 Amplitude measurements of 10 GHz voltage signal at the beginning
{location A) and somewhere in between a wire connecting load to source.

We are now faced with a dilemma. A simple circuit, seen in Figure 2-2, with a
voltage source V; and source resistance R connected to a load resistor R, through a
two-wire line of length /, whose resistance is assumed negligible, can only be analyzed
with Kirchhoff’s voltage law

N

i=1
when the line connecting source with load does not possess a spatial voltage variation,
as is the case in low-frequency circuits. In (2.2) V, (i=1, ..., N) represents the voltage

drops over N discrete components. When the frequency attains such high values that the
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spatial behavior of the voltage, and also the current, has to be taken into account, Kirch-
hoff’s circuit laws cannot be directly applied. The situation can be remedied, however,
if the line is subdivided into elements of small, (mathematically speaking) infinitesimal
length, over which voltage and current can be assumed to remain constant, as depicted
in Figure 2-3.

z ztAz
)i R, L,  I(z+42)
i =
"z) G=C i V(z+AzZ)
vi Ry L, :

N

z+Az

Figure 2-3 Partitioning an electri¢ line into small elements Az over which
Kirchhoff's laws of constant voltage and current can be applied.

For each section of length Az, we can devise an equivalent electric circuit repre-
sentation. With reference to our discussions in Chapter 1 it is immediately concluded
that there will be some series resistance and inductance associated with each wire. In
addition, due to the relative proximity of the two wires, a capacitive effect will also be
observed. Since in reality no perfect insulator does exist, a small current flow through
the dielectric occurs. A more accurate analysis of all these effects will be given in
Section 2.2. At this point we need to stress that equivalent elements, briefly described
here, represent only a small segment of the line. To build the complete model of the
entire line we would have to replicate Az a large number of times. Therefore, the trans-
mission line in general cannot be represented in terms of Jumped parameters, but must
be viewed as distributed parameters R, L, C, and G, where all circuit parameters are
given in terms of unit length.

The question of when a wire, or a discrete component, has to be treated as a trans-
mission line cannot precisely be answered with a single number. The transition from
lumped circuit analysis obeying Kirchhoff’s laws to distributed circuit theory involving
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voltage and current waves depends on the wavelength in comparison with the average
component size. The transition takes place gradually as the wavelength becomes
increasingly comparable with the circuit elements. As a rule of thumb, when the aver-
age size l, of the discrete circuit component is more than a tenth of the wavelength,
transmission line theory should be applied (1, 2 A/10). For the example of the 1.5 cm
wire we would determine the following frequency estimation:

101 0.15m
Can the RF design engineer deal with the simple circuit in Figure 2-2 as a lumped ele-
ment representation at 700 MHz? Perhaps. Can Kirchhoff’s circuit theory be applied to
the circuit at 1 GHz? Not without having to take into account a significant loss in preci-
sion. Additional reasons why the use of transmission line theory is needed will become
apparent in later chapters.

2.2 Examples of Transmission Lines

2.2.1 Two-Wire Lines

The two-wire transmission line discussed in Section 2.1 is one example of a sys-
tem capable of transporting high-frequency electric energy from one location to
another. Unfortunately, it is perhaps the most unsuitable way of transmitting high-fre-
quency voltage and current waves. As shown schematically in Figure 2-4, the two con-
ductors separated over a fixed distance suffer from the drawback that the electric and
magnetic field lines emanating from the conductors extend to infinity and thus influence
electronic equipment in the vicinity of the line.

Electric Field
(solid lines)

Magnetic Field
(dashed lines)

Figure 2-4 Geometry and field distribution in two-wire parallel conductor
transmission line.
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Further, due to the fact that the wire pair acts as a large antenna, radiation loss
tends to be very high. Therefore, the two-wire line finds only limited applications in the
RF domain (for instance, when connecting private TV sets to receiving antennas). How-
ever, it is commonly used in 50-60 Hz power lines and local telephone connections.
Even though the frequency is low, the distance can easily extend over several kilome-
ters, thus making the wire size comparable to the wavelength (as an example,
A =c/f =3%x10°/60 = 5000 km). Here again, distributed circuit behavior may
have to be taken into account.

2.2.2 Coaxial Line

A more common example of a transmission line is the coaxial cable. It is used for
almost all cases of externally connected RF systems or measurement equipment at fre-
quencies of up to 10 GHz. As shown in Figure 2-5, a typical coaxial line consists of an
inner cylindrical conductor of radius a, an outer conductor of radius b, and a dielectric
medium layered in between. Usually the outer conductor is grounded, thus minimizing
radiation loss and field interference. Several of the most commonly used dielectric
materials include polystyrene (g,=2.5, tanA, =0.0003 at 10 GHz), polyethylene
(e, = 2.3, tanA, = 0.0004 at 10 GHz), or teflon (g, = 2.1, tanA, = 0.0004 at 10 GHz).

Figure 2-5 Coaxial cable transmission line.

2.2.3 Microstrip Lines

It is a common practice to use planar printed circuit boards (PCBs) as the basic
medium to implement most electronic systems. When dealing with actual RF circuits,
we need to consider the high-frequency behavior of the conducting strips etched on the
PCBs, as depicted qualitatively in Figure 2-6.

The ground plane below the current carrying conductor traces helps prevent exces-
sive field leakage and thus reduces radiation loss. The use of PCBs simplifies the access
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(a) Printed circuit board section (b) Microstrip line
Figure 2-6 Microstrip transmission line representation.

to the active and passive devices on the board and reduces the cost of the manufacturing
process. In addition, PCBs allow the tuning of circuits by simply changing the position
of the components and manually adjusting variable tuning capacitors and inductors.

One of the disadvantages of single layered PCBs is that they have rather high radi-
ation loss and are prone to “crosstalk” (interference) between neighboring conductor
traces. As noted in Figure 2-7, the severity of field leakage depends on the relative
dielectric constants, as shown qualitatively in the electric field line displays for teflon
epoxy (g, = 2.55) and alumina (g, = 10.0) dielectrics.

(a) Teflon epoxy (¢, = 2.55) (b) Alumina (¢, = 10.0)
Figure 2-7 Electric field leakage as a function of dielectric constants.

Direct comparison of the field lines in Figure 2-7 suggests that to achieve high
board density of the component layout, we should use substrates with high dielectric
constants since they minimize field leakage and cross coupling.

Another way to reduce radiation losses and interference is to use multilayer tech-
niques to achieve balanced circuit board designs where the microstrip line is “sand-
wiched” between two ground planes, resulting in the triple-layer configuration seen in
Figure 2-8.

A microstrip configuration that is primarily used for low impedance, high-power
applications is the parallel-plate line. Here the current and voltage flow is confined to two
plates separated by a dielectric medium. This configuration and the corresponding field
distribution are shown in Figure 2-9 for the dielectric medium of teflon epoxy (g, = 2.55).
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(a) Sandwich structure (g, = 2.55) (b) Cross-sectional field distribution

Figure 2-8 Triple-layer transmission line configuration.

(a) Geometric representation (b) Field distribution (¢, =2.55)
Figure 2-9 Parallel-plate transmission line.

There are many more transmission line configurations used for a number of spe-
cial-purpose applications. However, a detailed coverage of the pros and cons of all pos-
sible combinations would go beyond the objectives of this book.

The preceding transmission line examples all have the commonality that the elec-
tric and magnetic field components between the current-carrying conductors are trans-
versely orientated (or polarized); that is, they form a transverse electromagnetic (TEM)
field pattern similar to the one shown in Figure 1-3. As mentioned in Chapter 1, the
TEM behavior has to be seen in contrast to guided modes, where the electromagnetic
wave propagation is accomplished through wave reflections and refractions between
conducting plates or indexed dielectric media in optical fibers. The analysis is broken
down into so-called transverse magnetic (TM) and transverse electric (TE) modes.
Such modes of operation are of major interest in the microwave range for satellite com-
munication, radar, and remote sensing applications. Due to their extremely high fre-
quency of operation, well above the RF range, waveguides and optical fiber cables
require special electromagnetic treatment and are not considered further. Instead, we
refer the reader to a number of references listed at the end of this chapter.
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2.3 Equivalent Circuit Representation

As mentioned previously, voltages and currents are no longer spatially constant on
the geometric scale of interest to RF circuit design engineers. As a consequence, Kirch-
hoff’s voltage and circuit laws cannot be applied over the macroscopic line dimension.
However, this problem can be circumvented when the transmission line is broken down
into smaller (in the limit infinitesimally small) segments. Those segments are still large
enough to contain all relevant electric characteristics such as loss, as well as inductive
and capacitive line effects. The main advantage of this reduction to a microscopic rep-
resentation is the fact that a distributed parameter description can now be introduced
whose analysis follows Kirchhoff’s laws on a microscopic scale. Besides providing an
intuitive picture, the approach also lends itself to a two-port network analysis, as dis-
cussed in Chapter 4.

To develop an electric model, let us consider once again a two-wire fransmission
line. As Figure 2-10 indicates, the transmission line is aligned along the z-axis and seg-
mented into elements of length Az.

z z+Az
—2z 3 N¥
[a) ) 1
[®] ) 2
L
ST 1
Gic
Lz ‘E
A I T 2

Figure 2-10 Segmentation of two-wire transmission line into Az-long sections
suitable for lumped parameter analysis.,

If we focus our attention on a single section residing between z and z + Az, we
notice that each conductor (1 and 2) is described as a series connection of resistor and
inductor (R, L, and R,, L,). In addition, the charge separation created by conduc-
tors 1 and 2 gives rise to a capacitive effect denoted by C. Recognizing that all dielec-
trics suffer losses (see our discussion in Section 1.4.2), we need to include a
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conductance G. Again attention is drawn to the fact that all circuit parameters R, L, C,
and G are given in values per unit length.

Similar to the two-wire transmission line, the coaxial cable in Figure 2-11 can
also be recognized as a two-conductor configuration with the same lumped parameter
representation.

Figure 2-11 Segmentation of a coaxial cable into Az length elements suitable for
lumped parameter analysis.

A generic form of an electric equivalent circuit is developed as shown in Figure 2-
12, where the resistances and inductances of the two conductors are usually combined
into single elements. This representation is not suitable for all transmission line appli-
cations. For instance, when dealing with transient wave propagation and signal integrity
issues of inductive and capacitive crosstalks, it generally makes more sense to retain the
parameter representation shown in Figure 2-11. However, for our treatment of transmis-
sion lines we will exclusively use the model shown in Figure 2-12.

TR L~ s
f §

V(z£ GZC=F Vz+Az)
i z + Az

Figure 2-12 Generic electric equivalent circuit representation.
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It should be recalled from the discussion in Chapter 1 that the aforementioned R,
L, C, and G elements are frequency-dependent parameters that change significantly
depending on the operational frequency and the employed transmission line type. Fur-
ther, L not only incorporates the inductance of the wire (self-inductance; see Section
1.4.3) but also takes into account the mutual inductance between the wires, In general,
the self-inductance is so small compared with the mutual inductance that it can be
safely neglected. To summarize the advantages of the electric circuit representation, we
observe that it

» provides a clear intuitive physical picture

* lends itself to a standardized two-port network representation

* permits the analysis with Kirchhoff’s voltage and current laws

e provides building blocks that allow the expansion from microscopic to macro-
scopic forms

There are also two significant disadvantages worth noting:

It is basically a one-dimensional analysis that does not take into account field
fringing in the plane orthogonal to the direction of propagation and therefore can-
not predict interference with other components of the circuit.

» Material-related nonlinearities due to hysteresis effects are neglected.

Despite these disadvantages, the equivalent circuit representation is a powerful mathe-
matical model for describing the characteristic transmission line behavior. With this
model in place, we can now embark on developing generalized transmission line
equations.

2.4 Theoretical Foundation

241 Basiclaws

The next question that we should ask ourselves is how to determine the distributed
circuit parameters if we know the physical dimensions and electric properties of the
transmission line. The answer is provided through the use of two central laws of elec-
tromagnetics: Faraday’s law and Ampére’s law.

Rooted in experimental observations, Faraday’s and Ampere’s laws establish two
fundamental relations linking electric and magnetic field quantities. As such, both laws
provide cornerstones of Maxwell’s theory by stating so-called source-field relations. In
other words, the time-varying electric field as a source gives rise to a rotational mag-
netic field. Alternatively, the time-varying magnetic field as a source results in a time-
varying electric field that is proportional to the rate of change of the magnetic field. The
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mutual linkage between electric and magnetic fields is ultimately responsible for wave
propagation and traveling voltage and current waves in RF circuits.

By stating Faraday’s and Ampere’s laws in integral and differential forms, we pos-
sess the necessary tools to calculate, at least in principle, the line parameters R, L, C,
and G for the electric circuit elements. They are needed to characterize various trans-
mission line systems. By going through the subsequent calculations, we will observe
how abstract theoretical laws can be used as a starting point to derive practical circuit
parameters for a particular type of transmission line.

Ampére’s Law

This fundamental law states that moving charges, which are characterized by the
current density J, give rise to a rotational magnetic field H surrounding the charge flow
as expressed by the integral relation

§H-d: = ”st 2.3)

where the line integral is taken along the path characterized by the differential element
dl that defines the edge of the surface element S in such a manner that the surface §
always stays on the left side. In equation (2.3) the total current density can be written as
J = J,+oE + d(¢E)/0:. It is comprised of (a) the impressed source current density
J;» (b) the conduction current density OE, which is induced by an electric field E in the
conductor and is responsible for conduction losses; and (¢) the displacement current
density d(€E)/dr, which is responsible for radiation losses. Here and in the following
equations we use again bold letters to denote vector quantities such that

E(r,ty = E(x, 5,2, DX +E (x,%, 7, ) +E (x,5,2,1)2

where E,, Ey, E, are the vector components and £, 7, £ are unit vectors in x, y, z direc-
tions in a Cartesian coordinate system. Figure 2-13 illustrates the meaning of equation
(2.3).

Perhaps less intuitive than the integral relation, nonetheless perfectly identical to
(2.3), is Ampere’s law in differential or point form:

T I SO I
(VxH) -n = A}lllloAS§H dl = ﬂlsulmoMj'AJ;J 48 =1Jn 2.4)

where VX is the cur! operator and n is a unit vector perpendicular to the surface ele-
ment AS. When using vector components in a rectangular coordinate system, this dif-
ferential operator can be represented in the matrix form
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- -
" %%
d d
Vx=12 -z 25
az 0 dx @)
a 4
5
Therefore, by applying the curi to the vector field H, we obtain
_ -~
° —a_z 5 H X ‘Ix
vH=|9 o _9 = 26
S0 ZH =1, (2.6)
Jd 4 0 Hz J 2
oy x|

where H,, H, H and J,, J,, J are x, y, and z components of the magnetic field vector H,

and the current density J.
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e B Example 2-1: Magnetic field generated by a constant current
flow in a conductor

Plot the graph of the radial magnetic field H(r) inside and outside
an infinitely long wire of radius ¢ = 5 mm aligned along the z-axis
and carrying a DC current of 5 A. The surrounding medium is
assumed to be air.

Solution:  This is a typical example for Ampére’s law in integral
form as given by (2.3). Inside the conductor the current density J is
uniform and is equal to J = I/(na?)Z. Therefore, the application
of (2.3) yields the following result:

H2nr = Lnp? = H=1r
fta? 27a?

where 0 £r<a. Outside of the conductor the current density is
equal to zero and the surface integral in (2.3) gives the total current 7
flowing through the conductor. Thus, the magnetic field H outside
the wire is obtained as

H2mrr=1 = H= L
2rr
where r 2 a. The total magnetic field inside and outside of the infi-

nitely long wire is thus

Ir
,r<a
H(r) = 2ma ={ 31.83r kA/m, r €5 mm
i 0.796/r A/m, r 25 mm

I 0720

The graph of this radial magnetic field distribution is plotied in
Figure 2-14.

We make the important observation that inside the wire the
magnetic field linearly increases from the center to the outer con-
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Figure 2-14 Magnetic field distribution inside and outside of an infinitely long wire
of radius a =5 mm carrying a current of 5 A.

ductor periphery since more current contributes to the magnetic
Jield.

Faraday’s law

This law implies that the time rate of change of the magnetic flux density B = pH
(0 = Mo, ) as a source gives rise to a rotating electric field

§E - i = -%”B-ds .7

The line integral is again taken along the edge of the surface S as previously described
for Ampére’s law. The integration of the electric field aéon a wire loop as shown in
Figure 2-15 yields an induced voltage V = -.f,E dl= Z[[B-ds.

Similar to Ampre’s law, we can convert (2.7) into a dilferential, or point form:

oB
VXE = - — 2.8
xE 3 (2.8)
Equation (2.8) makes it clear that we need a time-dependent magnetic flux density to

obtain an electric field, which in turn creates a magnetic field according to Ampere’s law.
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Figure 2-15 The time rate of change of the magnetic flux density induces a
voltage.

RF &M W—
Example 2-2: Induced voltage in a stationary wire loop

Find the induced voltage of a thin wire loop of radivs ¢ = 5 mm in
air subjected to a time-varying magnetic field H = Hycos(wr}),
where Hy =5 A/m, and the operating frequency is
f = 100 MHz.

Solution:  The voltage induced in the loop is equal to the line
integral of the electrical field E along the loop. Employing Faraday’s
law (2.7) results in the following:

V=-— E-dl:%”B-dS

Since the surrounding medium is air, the relative permeability [,
equals unity and the magnetic flux density s
B = pH = pyH cos(we)z. Substituting B into the preceding
integral leads to an expression for the induced voltage V in the loop:

V= —IIB —poﬂocos(a)r)na2 = —na’opgH,sin(of)
This can be further simplified to V = -0.31 sin(6.28x1081) V.
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The result of this example is also known as the transformer
form of Faraday’s law whereby a time-varying field produced by a
primary coil induces a voltage response in a secondary loop.

2.5 Circuit Parameters for a Parallel Plate Transmission Line

Our goal is to compute the line parameters R, L, C, and G for a section of a trans-
mission line seen in Figure 2-16. To avoid any confusion we explicitly use ¢4 and
64, to denote, respectively, conductivity in the conductor and conductivity in the
dielectric medium.

Figure 2-16 Parallel-plate transmission line geometry, The plate width wis large
compared with the separation d.

For the analysis we must assume that the plate width w is large compared with the plate
separation d for a one-dimensional analysis to apply. Further, we assume that the skin
depth & is small compared to the thickness d » of the plates to simplify the derivation of
the parameters. Under these conditions we are able to cast the electric and magnetic
fields in the conducting plates in th= form

E = $E (x, z)e/™ (2.9a)

H = yH (x, z)e/* (2.9b)
The term ¢’®' represents the time dependence of the sinusoidal electric and magnetic
fields, and phasors E (x,z) and H(x,z) encode spatial variations. We do not have any
field dependency upon y, because the plates are assumed very wide, and thus the elec-
tromagnetic fields do not change appreciably along the y-axis. Application of the differ-
ential forms of Faraday’s and Ampere’s laws
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VXE = —u%lj (2.10)
VxH = 6, 4E (2.11)
results in two differential equations:
0o -2 2
aZ ay 0 0
J 9l __%-_EH L (2.12)
% 0 o =T T Mgy T g T e, :
E 0
__a_ i 0 i
| dy dx |
and
0 2 9
dz dy 0 0
oH
J O gt = —=2 = Gpngl O} = GegnaE (2.13)
a_Z 0 —a T x = “cond = “eond™: :
0 E,
9.9 :
dy dx |

By differentiating (2.13) with respect to x and substituting (2.12), we find

d'H y : 2
—5 = JOOMH, = p*H, (2.14)
dx
where p2 = j0G 41 . The general solution for this second-order ordinary differential
equation (2.14) is H (x) = Ae " 4+ Be®" . The coefficients A and B are integration

constants. We can now perform the following manipulations:

p = Jioo b = SO0 gt = (1+ ) (06,,40)/2 = (1+/)/8  (2.15)

where 8 = /2/(06_,411) is recognized as the skin depth. Since p has a positive real
component, constant 4 should be equal to zero to satisfy the condition that the magnetic
field in the lower plate must decay in amplitude for negative x. A similar argument can
be made for the upper plate by setting B = 0. Thus, for the magnetic field in the lower
conducting plate we have a simple exponential solution

(1+ j)x/8

, = Hye" = Hye (2.16)
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where B = Hj is a yet to be determined constant factor. Since the current density can
be written as

oH - (1+ f)Hoeu + )xs
z z ox o

we are now able to relate the current density J, to the total current flow [ in the lower
plate

1 = (fs.dxdy = wJ'D Jdx = wHe
b 4

(2.17)

1+ Hxs8)° ~(1+j)d, /3

u wHy(l-¢

P

) (2.18)

where § is the cross sectional area of the lower plate and d, is the thickness of that plate.
Since we assume that d, » 3§, the exponential term in (2.18) drops out and 7 = wH,.
From this we conclude that H, = I/w . The electric field at the surface of the conduc-
tor {x = 0) can be specified as

JA0) (A +)Hy 1451

Goond 0'mmda T cond ow

E0) = (2.19)

Equation (2.19) allows us to compute the surface impedance per unit length, Z,, by
eliminating the current 7 as follows:

— - } = I .
Zs = EZ/I = wo nda wG, d8 = RS"'}O) 5 (2 20)

The surface resistance and surface inductance per unit length are then identified as

1
R = 2.
: wo‘v:c-nd8 ( 21)

_ 1
L, = WG 0O

(2.22)

Both are dependent on the skin depth 8. It is important to point out that {(2.21) and
(2.22) apply for a single conductor. Since we have two conductors in our system (upper
and lower plates) the total series resistance and inductance per unit length will be twice
the value of R, and L_, respectively.

To obtain the inductive and capacitive behavior of the mutual line coupling, we
must employ the definitions of capacitance and inductance:

c=2- §D-d5 _ef[EdS 5w _ew 2.23)

% V J‘ Ea. Ed d
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and

s [[wmds pna pmd e
1 I I~ Hw w

(2.24)

where we have used the result of (2.18) to compute the current / = wi,. Both in (2.23)
and (2.24) the capacitance and inductance are given per unit length.
Finally, we can express the conductance G in a similar way as derived in (2.23):

G = .[ .[ ¥-d8 = G‘““I .[ EdS _ TaieEsW _ Gga¥ 2.25)

1% J'Exdl Ed d

Thus we have succeeded in deriving all relevant parameters for the parallel-plate trans-
mission line. From a practical point of view, at RF frequencies the magnitude of L, is
typically much smaller than L and therefore is neglected.

RF &M W+
Example 2-3: Line parameters of a parallel-plate transmission
line

For a parallel copper-plate transmission line operated at 1 GHz, the
following parameters are given: w = 6 mm, d = 1 mm, €, = 2.25, and
O giey = 0.125 mS/m. Find the line parameters R, L, G, and C per unit
length.

Solution: The skin depth for copper with conductivity
Goopg = 645 16x10°Q-'m~! at operating frequency of 1 GHz is
8 = 1/ /RG pqlhof = 1.98 um, which is assumed to be much
smaller than the thickness of the conductor. Therefore, the resistance
of each plate is determined by (2.21). Since we have two plates, the
total resistance is R = 2R, = 2/(w0_,40) = 2.6 Q/m. The
series  inductance due to  the  skin  effect is
L, = 2/(WG,qw8) = 0.42 nH/m, where the factor 2 takes into
account both plates. The mutual inductance between plates is deter-
mined by (2.24) and for our problem is equal to L = 209.4 nH/m.
As seen, the series inductance is much smaller than the mutual
inductance and therefore can safely be neglected. According to
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(2.23), the capacitance of the line 1is given by
C = (gge,w)/d = 1195 pF/m. Finally, the conductance G is
determined from (2.25) and eguals G = 0.75 mS/m.

The RF surface resistance due to the skin depth phenomenon
does, in general, contribute much more significantly to the line
losses than does the DC resistance.

2.6 Summary of Different Line Configurations

The previous computations were carried out for the relatively simple case of a
parallel-plate transmission line. Similar analyses apply when dealing with more com-
plicated line geometries, such as coaxial cables and twisted wire pairs. Table 2-1 sum-
marizes the three common transmission line types.

57

Table 2-1 Transmission line parameters for three line types
Parameter Two-Wire Line Coaxial Line Paraliel-Plate Line Unit
R _ 1 L (1, 1) 2 Q/m
NAG pgd chmndﬁ(c_z b WO (ondd
L p D no (b d H/m
= acosh(%) > ln[a) Lt
G O 4ot 2G4 W Sim
e cdielz
acosh(D/(2a)) In(b/a)
C ne 2ne ¥ F/m
acosh(D/(2a)) In(b/a)

The geometric dimensions for the two-wire (D, a), coaxial (a, b), and parallel-
plate (w; d) lines are depicted in Figures 2-4, 2-5, and 2-16. The term acosh in Table 2-1
denotes the inverse hyperbolic cosine function. For more complex transmission line
configurations, significant mathematical effort must be exerted, and resorting to numer-
ical analysis procedures is often the only available solution. This is seen when dealing
with microstrip transmission lines (Section 2.8).
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2.7 General Transmission Line Equation

2.7.1 Kirchhoff Voltage and Current Law Representations

Having developed the background of Faraday's and Ampere’s laws in
Section 2.4.1, we are well positioned to exploit both equations from a circuit point of
view. This is identical with applying Kirchhoff’s voltage and current laws (KVL and
KCL, respectively) to the loop and node a shown in Figure 2-17.

2 R L o fetAg)

Figure 2-17 Segment of a transmission line with voltage loop and current node.

Adopting phasor notation, we can use Kirchhoff’s voltage law to conclude
(R+jol)I(2)Az+V(z+Az) = V(2) (2.26)

which is re-expressed as a differential equation by combining the voltage drop on either
side of the differential transmission line segment into a differential quotient:

. Viz+Az)-V(2)) _ dV(z) _ :
ﬂ121133&( ) ) = -2 = R+ joL)I() 2.27)
or
_‘%gz) = (R +joL)I(z) (2.28)

where R and L are the combined resistance and inductance of the two lines. Applying
Kirchhoff’s current law to the designated node a in Figure 2-17 yields

I(2)-V(z+ANG+ JoO)Az = I{(z+ A7) (2.29)
which can be converted into a differential equation similar to (2.27). The result is

i Iz+Az)-I(2) _ dI(z) _
im = =
Az >0 Az dz

—~(G + joC)V(z) (2.30)

Equations (2.28) and (2.30) are coupled first-order differential equations. They can also
be derived from a more fundamental point of view, revealing the definitions of R, G, C,
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and L as discussed in Example 2-4 for the previously analyzed parallel-plate transmis-
sion line example.

RFEMW—

Example 2-4: Derivation of the parallel-plate transmission line
equations

Establish the transmission line equations for the parallel-plate con-
ductors.

Solution:  The purpose of this example is to show how the trans-
mission line equations (2.28) and (2.30) can be derived from the
fundamental physical concepts of Faraday’s and Ampere’s laws.

Let us first consider Faraday’s law (2.7). The surface element
over which the line and surface integrations are performed is shown
as a shadowed area in Figure 2-18.

ith cell plate 2
— /

Figure 2-18 Integration surface element for Faraday's law application.

The line integral in (2.7) is taken along the edge of the shaded
region with the integration direction denoted by arrows in Figure 2-
18. Evaluation of this line integration yields the following contribu-
tions:

§E-dt = B! 2Az+ E(z + A7) - %d - E2 - (-2)Az + E(2) - (R%)d
i
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where E] = E'-2 and E? = E2-% are the clectric fields in the
lower (denoted by index 1) and upper (index 2) plates, respectively;
and E (z) = E(z)-% and E (z+Az) = E(z+Az)-% are the
electric fields in the dielectric medium between locations z and
z+ Az. It is important to note that the direction of the electric field
in the upper conductor is opposite to that of the electric field in the
lower conductor, whereas the direction of the field in the diclectric is
the same regardless of position. The minus sign in front of the unit
vectors indicates that the integration is performed counterclockwise.
Combining terms, we obtain

§E -dl = E\Az+ E2Az+ E (2 + Az)d - E (2)d

Since the magnetic field in the dielectric is assumed uniform, the
integration over the surface in (2.7} gives

”uH -dS = WH Azd

Substitution of these two integrals into (2.7) results in
EgAz + EfAz +E (z+A)d-E (2)d = —%MH),Azd

Similar to discussions in Section 2.5, the magnetic field in the
dielectric can be expressed as H y = 1/w. The electric field in the
conductor at high frequency is dependent on the skin effect and is
E} = E2 = 1/(wG0q8) + j1/ (WG ,pq8) = E,. At low fre-
quency, the skin effect does not affect the electric field behavior. The
field is solely determined by the DC resistivity of the plates and cur-
rent[: E, = I/(w0,,,4d ) . Since we are primarily concemned with
the high-frequency performance, we must assume that the skin
depth & is much smaller than the thickness of the plates. Thus, d v
has to be replaced with . Combining expressions for H yand E |
and taking into account the relation for the potential between the
plates, V = E d, we obtain

I i) V() = pdledl _ . dAc
z(wcmnd8+wocond8 A7+ V(z+A)-V(2) = — JoOu ” I

or

Viz+Az)-V(z) _ av
Az 9z

2RI+ joi(L+2L)) =
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where R, = 1/(w0_,40) is the surface resistance of the plates,
Ly = 1/(w0,,,q@0) is the high-frequency self-inductance of the
plates, and L = pd/w is the mutual inductance between both plate
conductors.

For the application of Ampere’s law (2.3) we use the surface
¢lement shown in Figure 2-19.

ith cell plate 2
L

i

Figure 2-19 Surface-element used to apply Ampére’s law.

The surface integral of the current density J in the dielectric
medium results in the following expression

oE,
[Ja-a8 = 782w = oy, wAz +e—wiz
where the 64, E, wAz term represents the conduction current in the
dielectric, and €(dE,/dt)wAz is the contribution of the displace-

ment current. The line integration of the magnetic field yields
{)H “dl = ~H(z+A)w + Hy(2)w = —I(z+ A7) +1(2)

Taking into account the relation between the electric field and the
potential drop Vbetween z and z + Az, thatis, E, = V/d, we com-

bine both integrals:
Cdiet™,  &wdV _ I(z+A7) -1(z)
d d drt Az

or, after introducing the differential quotient,

_of _ Gaie™,, EwdV _ Cdiel™
dz d d dt d

V+%ijv = (G + jaC)V

61
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Thus, we succeeded in deriving the equations for the parallel-plate
transmission line. To obtain the voltage and current distribution of
such a line, the following system of coupled first-order differential
equations must be solved:

v _ .
5, = 2R, + jo(L+2L))I

ol _ .
%" (G+ jol)V

Usually, the self-inductance due to the skin effect L, is much
smaller than the mutual inductance L and is often neglected.

This example underscores the effort and assumptions required
to develop closed-form expressions for the parallel-plate transmis-
sion line. However, if w is comparable in size to d, the preceding
treatment breaks down and one has to resort to numerical
simulations.

2.7.2 Traveling Voltage and Current Waves

The solution of equations {2.28) and (2.30) is greatly facilitated if these first-order
differential equations are decoupled. This can be accomplished by spatially differentiat-
ing both sides of (2.28) and substituting (2.30) for the space derivative of the current.
The result is a standard second-order differential equation

2
V) Ry = 0 @31)
dz

describing the voltage behavior in phasor form. Here the factor & i1s known as a complex
propagation constant

k =k, + jk, = J(R+jOL)(G + joC) (2.32)

that depends on the type of transmission line. For simple line configurations, Table 2-1
provides explicit parameters. Reversing the order of decoupling by differentiating
(2.30) and substituting (2.28) results in an identical differential equation describing the
current:
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a1 5D 1z = (233)
7’
Solutions to these decoupled equations are two exponential functions for the voltage
V(z) = Ve 4 v e™ (2.34)
and for the current
I(2) = 'e a1 et™ (2.35)

It is important to observe that (2.34) and (2.35) are general solutions for transmission
lines aligned along the z-axis. The convention is such that the first term represents
wavefronts propagating in the +z-direction, whereas the second term denotes wave
propagation in the —z-direction. This makes physical sense since the negative sign in
conjunction with k, >0 ensures diminishing amplitudes for the positive (+2) traveling
wave, Conversely, negative traveling waves are attenuated due to the diminishing expo-
nential term.

2.7.3 General Impedance Definltion

Equation (2.35) is related to (2.34). This can be seen if (2.34) is substituted into
(2.28). Differentiating and rearranging provides us with a current expression in the fol-
lowing form:

1(z) = (Ve oy ety (2.36)

__k__
(R+ jolL)
Since voltage and current are generally related via an impedance, we can introduce the
so-called characteristic line impedance Z,, by defining

_ (R+jol) _ [{R+jol)
Zo= N(G + joC) @37)

Substituting the current expression (2.35) into the left-hand side of (2.36), we also find

Zy = — = — (2.38)
T
The characteristic impedance allows us to express the current (2.36) in the concise form

—kz - +kz

I(z) = —Z!;(V+e -V e (2.39)
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The importance of Z, will become apparent in the following sections. Here it is note-
worthy to point out that Z, is not an impedance in the conventional circuit sense. Its
definition is based on the positive and negative traveling voltage and current waves. As
such this definition has nothing in common with the total voitage and current expres-
sions used to define a conventional circuit impedance.

2.7.4 Lossless Transmission Line Model

The characteristic line impedance defined in (2.37) is, in general, a complex quan-
tity and therefore takes into account iosses that are always present when dealing with
realistic lines. However, for short line segments, as mostly encountered in RF and MW
circuits, it does not create an appreciable error to deal with lossless line conditions. This
implies R = G = 0 and the characteristic impedance (2.37) simplifies to

Z, = JL/C (2.40)

Since Z,, is independent of frequency, current and voltage waves are only scaled by a
constant factor. It is instructive to substitute values for a particular transmission line
type. If we use the parallel-plate transmission line with L and C given in Table 2-1, we

find the explicit form
- fud
Z, = J;w (2.41)

where the square root term is known as the wave impedance, which yields (L = pn,,
£ = &), a value of approximately 377 Q in free space. This value is typical when deal-
ing with radiation systems whereby an antenna emits electromagnetic energy into free
space. However, unlike electromagnetic field radiation into open space, the transmis-
sion line introduces geometric constraints as expressed through w and d for the parallel-
plate line configuration.

2.8 Microstrip Transmission Lines

As we have seen in Figures 2-6 and 2-7, a simple treatment of the strip line as a
parallel-plate capacitor that formed the basis of computing C in Table 2-1 does not
apply in the general case. If the substrate thickness / increases or if the conductor width
w decreases, fringing fields become more prominent and cannot be ignored in the math-
ematical model. Over the years a number of researchers have developed approximate
expressions for the calculation of the characteristic line impedance, taking into account
conductor width and thickness. As often encountered in engineering, we have to strike a
balance between complexity and the accuracy of our computations. The most precise
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expressions describing microstrip lines are derived by using conformal mapping, but
these expressions are also the most complex, requiring substantial computational
efforts. For the purposes of obtaining fast and generally reliable estimations of the line
parameters, simpler empirical formulas are more beneficial.

As a first approximation, we assume that the thickness ¢ of the conductor forming
the line is negligible compared to the substrate height & (/% < 0.005 ). In this case, we
can use empirical formulas that depend only on the line dimensions (w and 4) and the
dielectric constant €, . They require two separate regions of applicability depending on
whether the ratio w/h is larger or less than unity. For narrow strip lines, w/h <1, we
obtain the line impedance

z
Z,= —1 1n(8ﬁ+ﬁ) (2.42)
M fe e \ W A

where Z, = /hy/g, = 376.8 Q is the wave impedance in free space, and £ is the
effective dielectric constant given by

el g1 Y172 2
Eup = T*T[(“ 12;] +0'04[1_ZH (2.43)

For a wide line, w/h > 1, we need to resort to a different characteristic line impedance
expression:

Zy
Zy = ; (2.44)
/eeff(1.393 + % + §1n(§ + 1444))
with
g+1 ¢g.-1 -1/2

It is important to note that the characteristic impedances given by (2.42) and (2.44) are
only approximations and do not produce continuous functions over the entire range of
w/h. In particular, we notice that at w/h = 1 the characteristic impedance computed
according to (2.42) and (2.44) displays a small discontinuity. Since the error introduced
by this discontinuity is less than 0.5%, we still can use the preceding expressions for the
computation of both the characteristic line impedance and the effective dielectric con-
stant, as shown in Figures 2-20 and 2-21. In these figures the quantities Z,, and €, are
plotted as functions of w/h ratios and €, values. The parameter range of w/h and €,
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is chosen such that it spans the domain of typically encountered practically relevant cir-
cuit values.

k¢ —

100 F

10t

Characteristic line impedance Z,, €2

l L L L i hed 1 1 1, Il Il 1 Ll
0.1 0.3 1 3 10

Line width to dielectri¢ thickness ratio, w/h

Figure 2-20 Characteristic line impedance as a function of wh.

12 T T T T 17 rrT

—
=

-]

on

s

Effective dielectric constant, £.¢

2

0.1 0.3 1 3 10
Line width to dielectric thickness ratio, w /i

Figure 2-21 Effective dielectric constant as a function of w/h for different
dielectric constants.
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In the preceding formulas the effective dielectric constant is viewed as the dielec-
tric constant of a homogeneous material that fills the entire space around the line,
replacing dielectric substrate and surrounding air. With the knowledge of the effective
dielectric constant we can compute the phase velocity of the strip line as
v, = ¢/ JE. This leads to an expression for the wavelength of

c 7“0

f " ffea e
where, as before, ¢ is the speed of light and f is the operating frequency.
For design purposes we would like to have a relation that allows us to compute
w/h ratios based on a given characteristic impedance Z,, and dielectric constant £, of
the substrate. Assuming an infinitely thin line conductor, we can write (see Sobol’s arti-
cle in Further Reading at the end of the chapter) for w/h <2:

w _ Bed
E - ez“—_2 (246a)
where the factor A is given by
Zy e, +1 g,-1
A=2md [T (0.23+‘ﬂ]
Z}c 2 g, +1 g,
For w/h =2 we obtain:
w_2 -1 0.61
i II:{B-—l In(2B - l)+ 3 [ln(B 1)+039—_§]} (2.46b)
where the factor B is given by
zZ,m
B= L
22, F,
RFEMW—

Example 2-5: Design of a microstrip line

A particular RF circuit requires that a line impedance of 50 Q is to
be maintained. The selected PCB board material is FR-4 with a rela-
tive dielectric constant of 4.6 and a thickness of 40 mil. What are the
width of the trace, phase velocity, and wavelength at 2 GHz?
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Solution: At first we can use Figure 2-20 to determine an
approximate ratio of w/k. Choosing a curve comesponding to
g, = 4.6, we find that for Z; = 50 Q, w/h is approximately 1.9.
Therefore, in (2.46) we have to chose the case where w/h < 2. This
leads to

Zy g, +1 ¢g-1 0.11
A= 2120 +—(0.23+-;-] = 1.5583
ZN 2 g +1 €,

r

Substituting this result into (2.46a), we find
w_ _8ef
h o e2A_2
Then, by using (2.45), we obtain the effective dielectric constant
to be

= 1.8477

g +1 £ -1 hy- 172
£y = T+—2-(1 . 12;J = 3.4575
We can compute the characteristic impedance of the line (2.44) to

verify our result:

i
Zy = - = 50.2243Q
@(1.393 + % + §ln(% + 1444))

which is very close to the target impedance of 50 £} and therefore
indicates that our result is correct.

Using the obtained ratio for w/h, we find the trace width to be
w = 73.9 mil. Finally, the effective dielectric constant just com-
puted allows us to evaluate the phase velocity of the microstrip line

v, = ¢/ Jegr = 161x10° mss
and the effective wave length at 2 GHz
A= v,/ f = 80.67 mm

Strictly speaking, this example focuses on a single trace of infi-
nite length only. In reality, proximity to neighboring traces and
bends is an issue of practical importance that is most easily
accounted for in RF/MW computer aided design (CAD) programs.
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For many applications the assumption of zero thickness of the strip line may not be
valid and corrections to the preceding equations are needed. The effect of nonzero copper
strip thickness is approximated as an increase in effective width w ¢ of the conductor
since more fringing fields will occur. In other words, a finite thickness is modeled by sim-
ply replacing the width of the strip in (2.42)—(2.45) with an effective width computed as

¢ 2x
W = W+ R(l + m?) (247)
where 7 is the thickness of the conductor, and either x = k if w>h/(27)>2t, or
x=2nwif A/ (2R)>w>2¢.

The influence of nonzero thickness on the characteristic line impedance for a stan-
dard FR-4 substrate with & = 25mil is illustrated in Figure 2-22.

—
L
[—]

FR4
h =25 mil
=46

2

r=15mil

Characteristic line impedance Z,, Q
Ly
[ ]

00.1 o3 1 3 1o
Line width to dielectric thickness ratio, w/h

Figure 2-22 Effect of conductor thickness on the characteristic impedance of a
microstrip line placed on a 25 mil thick FR-4 printed circuit board.

As seen in the figure, the effect is most noticeable for narrow strips, while it become
almost negligible for cases when the width is greater than the thickness of the dielectric.

2.9 Terminated Lossless Transmission Line

2.9.1 Voltage Reflection Coefficient

High-frequency electric circuits can be viewed as a collection of finite transmis-
sion line sections connected to various discrete active and passive devices. Therefore,
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let us take at first a closer look at the simple configuration of a load impedance con-
nected to a finite transmission line segment of length ! depicted in Figure 2-23. Such a
system forces us to investigate how an incident voltage wave propagating along the
positive z-axis interacts with a load impedance representing a generic line termination.

\: j
Z, L z,
z\
| e
z=-1 0

Figure 2-23 Terminated transmission line at location z = 0.

Without a loss of generality, the load is assumed to be located at z = 0 and the
voltage wave is coupled into the line at z = —I. As we know, the voltage anywhere
along the line is generically given by (2.34). The second term in (2.34) has the meaning
of a reflection from the terminating load impedance for values z < 0. We introduce the
voltage reflection coefficient I as the ratio of reflected to incident voltage wave

T, = — (2.48)

at the load location z = 0. As a consequence of this definition, the voltage and current
waves can be re-expressed in terms of the reflection coefficient as

V(z) = V(™ +Tye*™) (2.49)
and
V+ -kz +kz
1) = 5™ ~Toe™) (2.50)

If (2.49) is divided by (2.50), we find the impedance as a function of space Z(z) any-

where along the z-axis -/ <z < 0. For instance at z = —{ the total input impedance Z,,

is recorded, and for location z = O the impedance becomes the load impedance
1+T,

Z(O) = ZL = Zo_—ro (251)
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Equation (2.51) can be solved for the reflection coefficient 'y with the result
_ 4 -7y
T Z,+Z,

(2.52)

This is a more useful representation than (2.48) since it involves known circuit quanti-
ties independent of particular voltage wave amplitude ratios.

We conclude that for an open line (Z; — =) the reflection coefficient becomes 1,
which means the reflected wave returns with the same polarity as the incident voltage.
In contrast, for a short circuit (Z; = 0) the reflected voltage returns with inverted
amplitude, resulting in Iy = —1. For the case where the load impedance matches the
line impedance, Z; = Z;, noreflection occurs and Ty = 0. If there is no reflection we
have the case where the incident voltage wave is completely absorbed by the load. This
can be regarded as if a second transmission line with the same characteristic imped-
ance, but infinite length, is attached at z = 0.

2.9.2 Propagation Constant and Phase Velocity

The definition of the complex propagation constant (2.32) assumes a very simple
form for the lossless line (R = G = 0). For this case we obtain

k =k +jk; = joJLC (2.53)
This is identified in generally accepted engineering notation as
o=k, =0 (2.54)
and
B=k; = oJ/LC (2.55)

where ¢ represenis the attenuation coefficient and f is the wave number or propaga-
tion constant for lossless lines. The propagation constant is now purely imaginary,
resulting in

V(z) = Ve 4+ (2.56)
and
+ I3 .
1) = 3-(e7 - Tyt .57
{

Here, the characteristic impedance is again given by (2.40). Furthermore, from (2.1) it 1s
known that the wavelength A, can be related to the frequency f via the phase velocity v, :
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A=v 7 f (2.58)
and the phase velocity v, is given in terms of the line parameters L, C as
1
P (2.59)
PoJLc
Because of (2.55), we can relate the wave number to the phase velocity:
=2 (2.60)
Ve

Substituting the appropriate line parameters from Table 2-1, it is noticed that for all
three transmission line types the phase velocity is independent of frequency. The impli-
cation of this fact is as follows: If we assume a pulsed voltage signal propagating down
a line, we can decompose the pulse into its frequency components, and each frequency
component propagates with the same fixed phase velocity. Thus, the original pulse will
appear at a different location without having changed in shape. This phenomenon is
known as dispersion-free transmission. Unfortunately, in reality we always have to
take into account a certain degree of frequency dependence or dispersion of the phase
velocity that causes signal distortion.

2.9.3 Standing Waves

It is instructive to insert the reflection coefficient for a short-circuit line
(T'y = —1) into the voltage expression (2.56) and change to a new coordinate d repre-
sentation such that z = 0 in the old system coincides with the ongin of the new coordi-
nate system but extends in opposite, —z direction, as shown in Figure 2-24.

Z

i

[_:
Z, Z, =0

o
|

d

by

d=1 0
Filgure 2-24 Short-circuit transmission line and new coordinate system d.

Equation (2.56) now reads

Vid) = V(e 7P (2.61)



Terminated Lossless Transmission Line T3

We notice that the bracket can be replaced by 2 jsin(Bd), and upon converting the pha-
sor expression back into the time domain, we obtain

Re{Ve'™} = Re{2jV'sin(pd)e’™}
2V sin(Bd) cos (w1 + 1/2)

The sin-term ensures that the voltage maintains the short circuit condition for d = 0 at
all time instances ¢, see Figure 2-25. Because time and space are now decoupled, no
wave propagation, as discussed in Chapter 1, occurs. This phenomenon can physically
be explained by the fact that the incident wave is 180° out of phase with the reflected
wave, giving rise to fixed zero crossings of the wave at spatial locations 0, A/2, A, 3A/2,
and so on.

vid, 1)

(2.62)

—

=121+ 27
o =L2m+2m ot =3/8% + 21

s <
=

ot=1/8n+2nn

i
=~

S
g
1l
g

V/(2V")
=

02}
041
0.6
087

or=1/4x+2

0 05t % 15t 21 25t 3t 35m
Bd

Figure 2-25 Standing wave pattern for various instances of time.

Introducing the new coordinate d into (2.56), this equation becomes

Vid) = Ve a + T,y = A1 +T(@)] (2.63)

ipd . .
tet! B and define a reflection coefficient

[(d) = Tye2M 2.64)

where we set A(d) = V
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valid anywhere along the length of the line d. The far-reaching implications of equation
(2.64) as part of the Smith Chart will be subject of Chapter 3. Similarly, the current in
the new spatial reference frame can be defined as

1y = Vet _ I,e /2P _A(‘”n r(d)] (2.65)
0

Under matched condition (I'; = 0) the reflection coefficient I'(d) is zero, thus main-
taining only a right-propagating wave. To quantify the degree of mismatch, it is cus-
tomary to introduce the standing wave ratio (SWR) as the ratio of the maximum
voltage (or current) over the minimum voltage (or current) as follows:

SWR = ]V

(2.66)

mm' \I mm\
We note that the extreme values of (2.64) can only be +1 and -1. Knowing that the
exponential function has a magnitude of 1, we find for (2.66) the form
14+ |Ty

-0y

which has a range of 1 £ SWR < oo, as seen in Figure 2-26.

SWR = (2.67)

20
181
161
14+

12
:

10t

[—T o B - S -

0 01 02 03 04 05 06 07 08 09 1
[Fl

Figure 2-26 SWR as a function of load reflection coefficient |I'y| .
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In many cases engincers use the term voltage standing wave ratio (VSWR)
instead of SWR by defining it as the ratio of the maximum absolute voltage value to its
minimum. It is concluded from the definition (2.66) and from Figure 2-26 that the ideal
case of matched termination yields an SWR of 1, whereas the worst case of either open
or short-circuit termination results in SWR — oo . Strictly speaking, SWR can only be
applied to lossless lines, since it is impossible to define a SWR for lossy transmission
systems. This is because the magnitude of the voltage or current waves diminishes as a
function of distance due to attenuation and thus invalidates (2.67), which, as a single
descriptor, is independent of where along the transmission line the measurement is
taken. Because most RF systems possess very low losses, (2.67) can be safely applied.
Upon inspection of the exponent in (2.64) we see that the distance between the maxi-
mum and minimum of the reflection coefficient is 2Bd = %t or d = A/4 and the dis-
tance between two maximais d = A/2.

2.10 Speclal Termination Conditions

2.10.1 Input Impedance of Terminated Lossless Line
At a distance d away from the load the input impedance is given by the expression
V(d) _ V+ejﬂd(l + l"oe_”ﬁd)
-0 ipd -2jfd
I(d) V"'eJB (l_roe ip )

Z (d) = (2.68)

where (2.63) and (2.65) are used for the voltage and current expressions. Equation
{2.68) can be converted into the form

1+ T'(d)
T-T(d)

and, upon using (2.52) to replace I'y,, we obtain
. Z, —Za\ s
P, ( L o)e—;ﬂd
Z;+2,
¢ jﬁd_(ZL - Zo)e—jﬂd
Z,+2Z,

Ziy(d) = Z, (2.69)

Z,(d) =

_ ZL(ede +e Py Zo(ejﬁd - P (2.70)

B ZL(ejﬁd—e_de) +Zo(ejﬁd+e_md)
_ Z;cos(Pd) + jZ,sin(Bd)
~ Zycos(Bd) + jZ, sin(Bd) °

Z,
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Division by the cosine term gives us the final form of the input impedance for the termi-
nated transmission line:
Z; + jZytan(fd)
Zi(d)= Zyz—"
o+ JZ;tan(Pd)

(2.71)

This important result allows us to predict how the load impedance Z, is trans-
formed along a transmission line of characteristic impedance Z, and length 4. It takes
into account the frequency of operation through the wave number . Depending on the
application, B can be expressed either in terms of frequency and phase velocity,
B = (2nf)/v,, or wavelength, B = 2r/X.

2.10.2 Short Clrcuit Transmission Line

If Z; = 0 (which means the load is represented by a short circuit) expression
(2.71) simplifies to

Z, (d) = jZ,tan(PBd) 2.72)
Equation (2.72) can also directly be derived by the division of voltage through current
wave for the short circuit condition (I'y = -1):
Vid) = V'[P P = 2V sin(Bd) 2.73)
and
+ . N +
1dy = L1 4 o8 2 2V ocpa Q.74)
Zy Zy

so that Z; (d) = V/I = jZ,tan(Bd). A plot of voltage, current, and impedance as a
function of line length is shown in Figure 2-27.

It is interesting to note the periodic transitions of the impedance as the distance
from the load increases. If 4 = 0, the impedance is equal to the load impedance, which
is zero. For increasing d the impedance of the line is purely imaginary and increases in
magnitude. The positive sign of the impedance at this location shows that the line
exhibits inductive behavior. When d reaches a quarter-wave length, the impedance is
equal to infinity, which represents an open-circuit condition. Further increase in dis-
tance leads to negative imaginary impedance, which is equivalent to a capacitive behav-
ior. At distance d = A/2 the impedance becomes zero and the entire periodic process
is repeated for d > A/2.

From a practical point of view, it is difficult to conduct electric measurements at
various locations along the line, or altemnatively by considering a multitude of lines of
different lengths. Much easier (for instance, through the use of a network analyzer) is
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Figure 2-27 \Voltage, current, and impedance as a function of line length for a
short circuit termination.

the recording of the impedance as a function of frequency. In this case 4 is fixed, and
the frequency is swept over a specified range, as discussed in the following example.

RFEMW—

Example 2-6: Input impedance of a short-circuit transmission
line as a function of frequency

For a short-circuit transmission line of { = 10 cm compute the mag-
nitude of the input impedance when the frequency is swept from
f=1GHz to 4 GHz. Assume the line parameters are the same as the
ones given in Example 2.3 (i.e., L=209.4 nH/m and C=119.5
pF/m).

Solution:  Based on the line parameters L and C, the characteris-
tic impedance is found tobe Z, = /L/C = 41.86 Q. Further, the

phase velocity is given by v, = 1/JLC and is equal to
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1.99x10° m/s. The input impedance of the transmission line
Z,(d = I) as a function of frequency can then be expressed in the
form
7z oo s s 2nf
wd =10 = jZytan(Pl) = ;ZOtan(—v—l) (2.75)
P
The magnitude of the impedance is shown in Figure 2-28 for the fre-
quency range of 1 GHz to 4 GHz. Again we notice the periodic
short- or open-circuit bebavior of this line segment. In other words,
depending on the frequency, the line exhibits an open-circuit behav-
ior (for instance at 1.5 GHz) or a short-circuit behavior {for instance
at 2 GHz).

500 T r r . r

15 2 25 3 35 4
J, GHz

Figure 2-28 Magnitude of the input impedance for a 10 cm long, short-circuit
transmission line as a function of frequency.

Practical measurements with a network analyzer permit the
recording of graphs as the one seen in Figure 2-28. Had we fixed the
frequency and varied the line length, we would have gotten an iden-
tical response.
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2.10.3 Open-Circuit Transmission Line
If Z; — o the input impedance (2.71) simplifies to the expression

Z (d) = (2.76)

) 1
~Zotn(Bd)
which can be directly derived when we divide the voltage (2.63) by the current wave
(2.65) for the open circuit condition (T'y= +1):

vid) = Ve 4 e = 2v7cos(Bd) Q.77)
and
/A ; 2iv*
() = =[P _ P = 2L _gin(Bd) (2.78)
Z, Z,

so that Z, (d) = V/I = —jZcot(8d) . Plotting voltage, current, and impedance as a
function of line length is shown in Figure 2-29.

2 j " ! ) ! i o )

1.5} L) -

. k’/gllfzo
0.5 L _Id)

: ;/jV;"ZO
Hd) i

—0.5¢ pl 2

-1

-1.5}

267701 02 03 04 05 06 07 08 09 14*
NN "k"“v“"f“‘v"" ",t-—\/—-:\
Open Short Open Short Open
circuit circuit circuit circuit circuit

Figure 2-29 Voltage, current, and impedance as a function of line length for an
open-circuit termination,

It is again of interest to keep the length d fixed, and sweep the frequency over a speci-
fied range, as the next example illustrates.
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RF&EM W

Example 2-7: Input impedance of an open-circuit transmission
line as a function of frequency

For an open-circuit transmission line of / = 10 ¢m, repeat the calcu-
lations of Example 2-6.

Solution:  All calculations remain the same, except that the input
impedance is changed to

Z,(d=1) = -jZycot(Bl) = - jzocot(g‘:t—fl) 2.79)
P

The magnitude of the impedance is displayed in Figure 2-30 for the
frequency range of 1 GHz to 4 GHz. The points where the cotangent
appreaches infinity correspond to values where the argument
reaches 90°, 180°, 270°, and so on. In reality, small losses due to
the presence of R and G tend to limit the amplitude to finite peaks.
The physical reason for these peaks is due to a phase shift between

500
450
400 |
150 | !

S 300}

N 550!
2001
150}
100}

!
0

1 15 2 2.5 3 35 4
£, GHz

Figure 2-30 Magnitude of impedance for a 10 cm long, open-circuit transmission
line as a function of frequency.
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voltage and current wave. Specifically, when the current wave
approaches zero and the voltage is finite, the line impedance
assumes a maximum. This is equivalent to the mechanical effect
where, for instance, a sound wave at particular discrete frequencies
(so-called eigen frequencies) forms standing waves between the
walls of a confining structure.

Figures 2-28 and 2-30 teach us that impedance matching to a
particular impedance value is only possible at a fixed frequency.
Any deviations can result in significantly different impedances.

2.10.4 Quarter-Wave Tranamlssion Line

As evident from (2.70), if the line is matched, Z, = Z;, we see that
Z,,(d) = Z, regardless of the line length. We can also ask ourselves the question: Is it
possible to make the input impedance of the line equal to the load impedance
(Z,,(d) = Z;)? The answer is found by setting d = A/2 (or more generally
d=A 2+m(A/2),m =1,2,...)1.e,

ZL+jZOtan(2%c - %)

Z,(d=1/2) = Z, =Z; (2.80)
. 21 A
ZO+JZLtan(T . E)

In other words, if the line is exactly a half wavelength long, the input impedance is
equal to the load impedance, independent of the characteristic line impedance Z,.

As a next step, let us reduce the length to d = A/4 (or d = A/4+m(A/2),
m = 1,2,...). This yields

: 2r A
Z. (d= M/4) = Z, =% (2.81)

The implication of (2.81) leads to the lambda-quarter transformer, which allows the
matching of a real load impedance to a desired real input impedance by choosing a
transmission line segment whose characteristic impedance can be computed as the geo-
metric mean of load and input impedances:
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Zy= [Z,Z, (2.82)

This is shown in Figure 2-31, where Z;, and Z; are known impedances and Z; is

determined based on (2.82).
Z, & d?sired Z, = gi!ven
o |
[} 1
|r Z, =«/Tzi;. : ZL
!
1

|
I
O

A4

Ead

Figure 2-31 Input impedance matched to a load impedance through a 1./4 line
segment Z,,.

The idea of impedance matching has important practical design implications and
is investigated extensively in Chapter 8. In terms of a simple example we place the pre-
ceding formula in context with the reflection coefficient.

RFEMW-

Example 2-8: Impedance matching via a A/4 transformer

A transistor has an input impedance of Z; = 25 & which is 10 be
matched to a 50 £ microstrip line at an operating frequency of
500 MHz (see Figure 2-32). Find the length, width, and characteris-
tic impedance of the quarter-wave parallel-plate line transformer for
which matching is achieved. The thickness of the dielectric is
d = 1 mm and the relative dielectric constant of the material is
g, = 4. Assume that the surface resistance R and shunt conduc-
tance G (see Table 2-1) can be neglected.

Solution: We can directly apply (2.81) by using the given
impedances from the problem statement. For the line impedance we
find
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Figure 2-32 Input impedance of quarter-length transformer.

On the other hand, the characteristic impedance of the parallel-plate
line is

Zype = NL/C = (d,/w)Jp/e
Thus, the width of the line is

d
w= —£ Iﬂ = 5.329 mm
Zline EOEr

From Table 2-1 we find the values for capacitance and inductance of

the line:
L= udp/w = 235.8 nH/m
C = ew/d, = 188.6 pF/m
The line length [ follows from the condition
A 1
-= = 74.967 mm
4’ g5 i

The input impedance of the combined transmission line and the load
is shown in Figure 2-32.

7 =7 Z+ jZyytan(Pd) 14+ T(d)
i T ey £ 7 eiBe) M -THd)

where d = [ = M4 and the reflection coefficient is given by

il —2jBd _ Zy e (_. QLf )
I'(d) _.I"Oe ] Z—-—L_'_Zuneexp j2 v, d

The reflection coefficient is next inserted into the expression for
Z;, - Plotting the impedance magnitude is shown in Figure 2-33.

We note that Z; is matched to the line impedance of 50 £ not
only at 500 MHz, but also at 1.5 GHz. Since the quarter-wave trans-
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Figure 2-33 Magnitude of Z, folr Ireq#ency range of 0 to 2 GHz and fixed
ength d.

former is designed to achieve matching only at 500 MHz for a par-
ticular line length !, we cannot expect matching to occur for
frequencies away from the 500 MHz point. In fact, for circuits
required to operate over a wide frequency band, this approach may
not be a suitable strategy.

The A/ 4 transformer plays an important role in many applica-
tions as an easy-to-build, narrowband matching circuit.

2.11 Sourced and Loaded Transmission Line

Thus far our discussion has only relied on the transmission line and its termina-
tion through a load impedance. In completing our investigation, we need to attach a
source to the line. This results in the added complication of not only having to deal with
an impedance mismatch between transmission line and load, but having to take into
considerations possible line-to-source mismatches as well.
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2.11.1 Phascor Representation of Source

The generic transmission line circuit is shown in Figure 2-34 and involves a volt-
age source consisting of a generator voltage V; and source impedance Z;.

L=T,

A
O

A —>(—‘ VA
=
r

out

Figure 2-34 Generic transmission line circuit involving source and load
terminations.

The input voltage recorded at the beginning of the transmission line can be written
in general form

V.=V

n

+ - _ 7t _ Zin

wt Vi = V(14 Tg) = Vol 7=~ Z. (2.83)
where the last expression follows from the voltage divider rule. The input reflection
coefficient T, is obtained by looking from the source into the transmission line of
length d = I

zZ. -2 oy
[o=T(d=1) = 7220 = Te /bt (2.84)
in 0

In (2.84), [, is the load reflection coefficient as defined in (2.52). In addition, it is often
useful to introduce transmission coefficients, which take the form

2Z.
T = 14T = —— (2.85)
Zi.tZg
at the beginning of the line, and
2Z,
Ty = 1+To = 7—& (2.86)

at the load end. The formal derivation of the transmission coefficient for a terminated
transmission line is presented in the following example.
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RFE&EMW-

Example 2-9: Determination of transmission coefficient

Consider a transmission line aligned along the z-axis whose charac-
teristic line impedance is Z, and has a load Z; at d = G. Derive
the transmission coefficient T'.

Solution:  To the left of the load impedance (d > 0) we can write
for the voltage wave

V(d) = V(P 4T e )

and for the transmitted voltage at the load impedance (d = 0) we set
generically

V(d=0) = V'T,
Since the voltage has to maintain continuity at 4 = 0, we obtain
1+, =T,
from which we can find the transmission coefficient
T, =1 +Z,_—ZO _ 2Z;
Z;+Z, Z;+Z,
The argument of matching incident voltage with transmitted voltage

wave can be applied to any discontinuity between two lines involv-
ing different characteristic impedances.

Reflection and transmission coefficients are easier to measure
at high frequency than impedances. They are therefore more com-
monly used to characterize an interface berween two dissimilar
transmission line segments,

In addition to the preceding reflection and transmission coefficients, the connected
source introduces an additional difficulty. Since the voltage reflected from the load is
traveling toward the source, we need to consider a mismatch between the transmission
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line and the source impedance. Accordingly, when leoking from the line into the source
we can define the source reflection coefficient:

_ Z-2,
$ T Zg+ 2,

(2.87)

The output reflection coefficient shown in Figure 2- 34 is then computed similar to
(2.84), but moving in opposite direction: I, = T'ge -2

2.11.2 Power Considerations for a Transmission Line
From the definition of time-averaged power

P, = %Re{‘/!*} (2.88)

we can compute the total power at the beginning of the transmission line. To accom-
plish this task, the complex imput voltage V, = Vi (1+T;,) and curent
= (V /Zy)(1 =T;,) have to be inserted in (2.88). The result is

v’
. :
P = Pin+Pin=§Z;; -t

(2.89)
We notice here again that, just like voltage and current, power is also treated as being
comprised of a positive and negative traveling wave.
Since V;'n in (2.89) is not directly accessible, it is more useful to re-express (2.89)
in terms of the generator voltage V; as follows:
Vf= Vin - VG( Zin J
mo1+r, 1+ \Z,+Z;

where (2.83) is used. As already known from (2.69), the input impedance is rewritien

(2.90)

= zol * L (2.91)

1- F-

The generator impedance follows from (2.87) as
Zg = Zoit_ll:s (2.92)

S

Inserting (2.91) and (2.92) into (2.90) yields, after some algebra,



88 Chapter 2 +* Transmission Line Analysis

. _ Ve (1-Ty)

in — 7(1 _rsrin) (2.93)
Using (2.93) in (2.89), the final expression for the input power is therefore
V]? [1-T
Py =1 o [1-Ts (1= [Ty (2.94)
8 Zy n-r,ry,)

Upon using (2.84), we obtain the following expression for the input power for a lossless
line:

2 P
Vel [1-T4
Zo |1 - TgTpe P

Since the line is lossless, the power delivered to the load will be equal to the input
power. If source and load impedances both are matched to the transmission line imped-
ance (implying Ty = 0 and Ty = 0), then (2.95) simplifies to

p - Wl _1lvd
n =37, 82

which represents the power produced by the source under perfectly matched conditions
and which constitutes the maximum available power provided by the source. When the
load Z; is maiched to the transmission line, but the source impedance Z; is mis-
matched, then part of the power will be reflected and only portion of the maximum
available power will be transmitted into the line at location 4 = [:

P, (1= [T P (2.95)

=1
ln_8

(2.96)

2.97)

For the case where both source and load impedances are mismatched, reflections will
occur on both sides of the transmission line and the power that will be delivered to the
load is defined by (2.95). Besides watts (W), the unit that is widely used to quantify
power in RF circuit design is dBm, which is defined as follows:
P[W]

Im

In other words, power is measured relative to 1 milliwatt.

P[dBm] = 10log bt (2.98)
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Example 2-10: Power considerations of transmission line

For the circuit shown in Figure 2-34, assume a lossless line with
Zy=75Q, Z; = 50Q, and Z; = 40 &. Compute the input
power and power delivered to the load. Give your answer both in W
and dBm. Assume the length of the line to be A/2 with a source
voltageof V; = 5V.

Solution:  Since the line is lossless, the power delivered to the
load is exactly the same as the input power. To find the input power,
we use expression (2.95). Because the length of the line is A./2, all
exponential terms in (2.95) are equal to unity; that is,

oI o 2N _ g (2.95) can be rewritten as

_ 1|VG|2 [1-Ty*
8 Z, i1 —l"sl“o|2
where the reflecion coefficient at the source end is
T =(Z5-2p)/(Zg+Zy) = -0.2 and the reflection coefficient
at the load is Ty = (Z; -Z,)/(Z; +Z,) = —0.304. Substitution
of the obtained values into the preceding equation yields
P, = P, = 61L.7TmW

(1-|T)

in

or
P, = P, = 17.9.dBm.

Most RF data sheets and application notes specify the output
power in dBm. It is therefore important to gain a “feel” of the rela-
tive magnitudes of mW and dBm.

The previous analysis is easy to extend to a lossy transmission line. Here we find
that the input power is no longer equal to the load power due to signal attenuation.
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However, with reference to Figure 2-34 the power absorbed by the load can be
expressed similarly to (2.89) as

p,

-r% (2.99)

where the voltage |V}| for a lossy transmission is v = !, with o again being
the attenuation coefficient. Inserting (2.93) into (2.99) gives as the final expression
'VGI |1- Fs[ o2

1
P -
tT R Zo |l_rSrin|

(1-|Ty% (2.100)

where all parameters are defined in terms of the source voltage and the reflection
coefficients.

2,11.3 Input Impedance Matching

Employing an electric equivalent circuit representation for the transmission line
configuration shown in Figure 2-34 allows us to examine optimal conditions for the
matching of the generator to the line.

Figure 2-36 Equivalent lumped input network for a transmission line
configuration.

In a lumped parameter expression, and consistent with Figure 2-35, we can
express (2.95) as

* 2
1 Vin } |VG|
2 { n[zin] zRe{Zm}

If we assume the generator impedance to be of fixed complex value Z; = Rg+ jX;,
we can find the conditions that have to be imposed on Z,, to obtain maximum power
transfer into the transmission line. Treating P, as a function of two independent vari-
ables R;, and X, , we find the maximum power value by taking the first derivatives of
P, with respect to R;, and X, and setting the values to zero:

Z;

Iﬂ

Zo+Z,

(2.101)
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oP, oP,

&, - X, = ° 2.102)
The two conditions that result are
RL-RL+(XZ+2XsX,+X2) =0 (2.103a)
and
XX+ X)) =0 (2.103b)

Solving (2.103b) gives X;, = ~X, and, upon substituting this result into (2.103a),
yields R;, = R;. This derivation shows that optimal power transfer requires conjugate
complex matching of the transmission line to the generator impedance:

Z, = Z4 (2.104)

Although this is done for the case of generator to input impedance maiching, an identi-
cal analysis can be carried out to match the output impedance to the load impedance.
Again we will find that the impedances require conjugate complex matching for maxi-
mum power transfer:

Zoy = ZE

Here, Z, represents the impedance looking into the transmission line from the load

side,

ou

2.11.4 Return Loss and Insgertion Loss

Practical circuit realizations always suffer a certain degree of mismatch between
available source power and power delivered to the transmission line; that is, ', in
{2.89) is not zero. This mismatch is customarily defined as return loss (RL), which is
the ratio of reflected power, P, = P, , to incident power, P; = P; , or
(2.105a)

i)

P
RL = —IOIOg(F’) = ~10log|T,| = ~20log|T

(2.105b)

Here equation (2.105a) specifies the refurn loss in decibel (dB) based on the logarithm
to the base 10, whereas (2.105b) specifies RL in Nepers (Np) based on the natural loga-
rithm. A conversion between Np and dB is accomplished by noting that

RL = -20log|T,| = —20(In|F,|)/(In10) = ~(20loge)In|T;

RL = —In|T;

(2.106)

o
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Therefore, 1 Np = 20loge = 8.686 dB. As seen from (2.106), if the line is matched
I, = 0, then RL — o,

RF &M W
Example 2-11: Return loss of transmission line section

For the circuit in Figure 2-35 a return loss of 20 dB is measured.
Assuming real impedance values only, what is the source resistance
R if the transmission line has a characteristic line impedance of
R,, = 50 Q715 the answer unique?

Solution:  The reflection coefficient is found from (2.105a) as
~RL/20 —20/20

Tl = 10 = 10 = 0.1
The source resistance is now computed by using (2.91):
1+T, 1+0.1
Rg = Rinr——l'in = so(m) Q=611Q

In the preceding calculations, we assumed that the reflection coeffi-
cient T,  is positive and therefore is equal to its absolute value.
However, it can also be negative, and in that case the source resis-
tance would be

Re = RuTTT 1+01

m

1+T. -
in _ 50(1 Ul) Q= 409 Q

The return loss, which can be recorded with a network ana-
lyzer, provides immediate access to the reflection coefficient and
thus the degree of impedance mismatch between the transmission
line and generator.

In addition to the return loss, which involves the reflected power, it is useful to intro-
duce the insertion loss (IL) defined as a ratio of transmitted power P, to incident
power P,. In practice insertion loss is measured in dB according to the following
formula:
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PP
P,

I

P
IL = —-ll)logF’ = -10log

L = —10log(1- |y} (2.107)

The meaning of (2.107) in circuit design is straightforward. As the name implies, if an
unmatched circuit is connected to an RF source, reflections occur that result in a loss of
power delivered to the circuit. For instance, if the circuit represents an open- or short-
circuit condition, the insertion loss reaches a maximum (IL — <o ). Alternatively, if the
circuit is matched to the source, all power is transferred to the circuit, and the insertion
loss becomes a minimum (IL = 0).

2.12 Summary

In this chapter a detailed description is given of the fundamental concepts of dis-
tributed circuit theory. The topic is motivated by the fact that when the wavelengths of
the voltage and current waves shrink to roughly 10 times the size of the circuit compo-
nents, a transition must be made from lumped element analysis, based on Kirchhoff's
current and voltage laws, to distributed theory according to wave principles. This transi-
tion from low- to high-frequency circuit analysis may not be as clear-cut as the defini-
tion of less than or equal to 10 A implies; in fact, a considerable “gray area” does exist.
Nonetheless, starting at a particular frequency a transition is needed to obtain meaning-
ful design results.

The underlying concepts of distributed theory can best be understood by develop-
ing an equivalent circuit representation (Section 2.3) of a microscopic section of the
tramsmission line. The required circuit parameters per unit length R, L, G, C are
obtained directly from Table 2-1 for three commeon transmission line types (Section
2.6) without going into much theoretical detail. However, for the readers who are inter-
ested in how the parameters can be found, Section 2.4 introduces the necessary tools of
Faraday’s and Ampeére’s laws, followed by Section 2.5, which derives all four circuit
parameters for the paralle]-plate transmission line.

In either case, the knowledge of the circuit parameters ultimately leads to the
characteristic line impedance of a generic transmission line system:

Z = (R+ jolL)
0 = N{G+ joC)
From this representation the input impedance of a terminated transmission line is devel-
oped. The result is perhaps one of the single most important RF equations:

Z Z; + jZytan(Pd)
9Z + jZ; tan(Bd)

Z,(d)=
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The application of this equation for the special cases of open, short, and matched load
impedances are investigated in terms of their spatial and frequency domain behaviors.
Furthermore, the lambda-quarter or quarter-wave transformer is introduced as a way of
matching a load impedance to a desired input impedance.

As an alternative to the input impedance equation, it is often very useful to repre-
sent the line impedance in terms of the reflection coefficients at load and source end:

_zL‘zo _Zo‘zo
° " Z,+zy 57 Zs+ 2,

It is found that the reflection coefficient is spatially dependent, as shown by

I(d) = Tpe P
The reflection coefficient concept allows concise expressions for power flow con-
siderations. Similar to the input impedance we found the input power
2 2
_ 1|VG| [1-T}
~ 8 Z —2jpl
0 [1-TsTe |
This equation permits the investigation of various matching or mismatching conditions

at the load/source side. Chapter 2 concludes with a brief discussion of insertion loss and
return loss.

P.

n
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To estimate the effective relative permittivity €, of a dielectric material used
in a transmission line, you decide to measure the voltage distribution along
the line using a similar setup as depicted in Figure 2-2. Your measurements
at 1 GHz excitation frequency have shown that the wavelength of the signal
in the cable is equal to 10 m. Using this information, compute the effective
relative permittivity of the material. Discuss how this experimental setup
could be used to measure the attenuation factor o.

As discussed in this chapter, a single signal trace on a printed circuit board
(PCB) can be treated as a transmission line and can be modeled using an
equivalent circuit, shown in Figure 2-12. Nevertheless, when the size of the
PCB gets smaller, the distance between the traces decreases and they can no
longer be treated as separate transmission lines. Therefore, the interaction
between them has to be accounted for. Using the configuration shown in
Figure 2-7, suggest a new equivalent circuit that takes into account interac-
tion between two signal traces.

In Example 2-1 we showed how to compute the magnetic field distribution
produced by the wire carrying current /. Repeat your computations for a
system consisting of two parallel wires each of radius 5 mm and carrying a
current of 5 A in the same direction. Plot the field distribution of the mag-
netic field H(r) as a function of distance r starting at the center-line posi-
tion between the two wires.

Consider a system consisting of a circular loop of radius r = 1 cm of thin
wire (assume the radius of the wire to be equal to zero) and carrying a con-
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stant current / = 5 A. Compute the magnetic field along the center line of
the loop as a function of distance A from the center of the loop.

Find &, and k; interms of L, C, G, R, and ® in equation (2.32).

In the text we have derived the transmission line parameters (R, L, G, and O)
for a parallel-plate line. Derive these parameters for a two-wire configura-
tion, see Figure 2-4. Assume that D >> a.

Repeat Problem 2.6 for a coaxial cable, see Figure 2-5.

An RG6A/U cable has a characteristic impedance of 75 £). The capacitance
of a 0.5 m long cable is measured and the value is found to be 33.6 pF. What
is the cable inductance per unit length, if the cable is lossless?

Assuming that dielectric and conductor losses in a transmission line are
small (i.e. G« ®wC and R « @L), show that propagation constant k¥ can be
written as

k= o+B = %(Z%+GZOJ+;’0JA/LC

where Z, = JL/C is the characteristic impedance of the line in the
absence of loss.

Using the results from the previous problem and the transmission line
parameters given in Table 2-1,
(a) show that the attenuation constant in a coaxial cable with small losses is

L 1 fe_ 1 (1 1), Tde fu

R T uln(b/a)(a+b)+ 2 »j;
where G4y and G, are the conductivities of the dielectric material
and the conduciors, respectively.

(b) show that the attenuation in this case is minimized for conductor radii
such that xInx = 1+ x, where x = b/a.

{c) show that for a coaxial cable with dielectric constant €, = 1 the condi-

tion of minimum losses results in the characteristic impedance of
Zy = 76.7Q.

Compute the transmission-line parameters for a coaxial cable, which charac-
teristics are listed as follows:
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2.13

2.14

2.15

er Conductor: Copper
a = 05mm, 6., = 64.516x10° S/m
DRiclectric: Polyethylene
b = L.5mm, Opy, = 107 S/m

QOuter Conductor: Copper
t = 0.5mm, 0, = 64.516x10° S/m

An RG58A/U cable has a characteristic line impedance of 50 Q. The mea-
surements performed on a section of this cable produce the following results
» capacitance of 1 meter of cable: 101 pF
phase velocity: 66% of speed of light
attenuation at 1 GHz: 0.705 dB/m
outer diameter of the insulation layer: 2.95 mm
center conductor is made out of AWG20 copper wire,
O, = 64.516x10° S/m
* dielectric layer is made out of polyethylene, 6, = 10
From this list of information, find the following quantities:
(a) inductance L per unit length of the cable assuming that cable is lossless
(b) relative permeability €, of the dielectric material
(¢) resistance R per unit length of the cable at operating frequency of
1 GHz (Hint: use the formula for the attenuation constant detived in
Problem 2.10)
(d) conductance G of the dielectric per unit length

¢ 0 & b

-14 S/m

Using the coaxial cable from the previous problem, compute its characteris-
tic impedance. Plot the frequency behavior of the real and imaginary compo-
nents of the characteristic impedance. Is the resuit what you expected 10 see?
Explain any discrepancies.

A distortionless transmission line results if R = G = 0, which resulis in
k= joJLC = a+jp,oro =0 and f = w/v, with the phase velocity
independent of frequency [ie., v, = 1/ (VJLO)]. A signal propagating along
this transmission line will not suffer any pulse distortion or attenuation, If we
allow R # G =0, find the condition for which o = ./RG and B = wJLC.
In other words, the line is attenuative but remains distortionless.

It is desired to construct a 50 €2 microstrip line. The relative dielectric con-
stant is 2.23 and the board height is h = 0.787 mm. Find the width, wave-
length, and effective diclectric constant when the thickness of the copper
trace is negligible. Assume an operating frequency of 1 GHz.
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Starting with basic definition for the standing wave ratio (SWR)
|V |I

max| _ |Imas|

SWR = =
|Vmin| |I minl
show that it can be re-expressed as
swr = *ITd
1Tyl

The characteristic impedance of a coax cable is 50 2 and assumed lossless.
If the load is a short circuit, find the input impedance if the cable is 2 wave-
length, 0.75 wavelength, and 0.5 wavelength in length.

An experiment similar to the one shown in Figure 2-2 is performed with the
following results: The distance between successive voltage minima is
2.1 cm; the distance of the first voltage minimum from the load impedance

is 0.9 cm; the SWR of the load is 2.5. If Z, = 50 Q, find the load imped-
ance.

In this chapter we have derived the equation for the input impedance of the
loaded lossless line, (2.65). Using the same approach, show that for a loaded
lossy transmission line (i.e., R # 0, G # 0) the input impedance is
Z; + Zytanh(yd
Zu(d)= Zoz Zotanh?d)
ot <L vd)

where v is the complex propagation constant and tanh denotes the hyper-
bolic tangent

X -X
e —¢€

tanh(x) =
e e

Using the result from the previous problem, compute the input impedance of

a 10 cm long lossy coaxial cable connected to a Z; = (45 + j5) Q load

impedance. The system is operated at 1 GHz frequency, and the coaxial

cable has the following parameters: R = 123(p€2/m), L = 123(nH/m),

G = 123(pS/m), and C = 123(pF/m).

Show that the input impedance of a lossless transmission line repeats itself
every half wavelength [i.e., Z, (I;) = Z, {l;+m(A/2)}], where [; is an
arbitrary length and m is an integer 0, 1, 2, . ..
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A radio transmitter is capable of producing 3 W output power. The transmit-
ter is connected to an antenna having a characteristic impedance of 75 .
The connection is made using a lossless coaxial cable with 50 Q character-
istic impedance. Calculate the power delivered to the antenna if the source
impedance is 45 Q and the cable length is 11A.

For an RF circuit project an open-circuit impedance has to be created with a
75 Q microstrip line placed on a circuit board with relative dielectric con-
stant of 10 and operated at 1.96 GHz. The line is terminated with a short cir-
cuit on one side. To what length does the line have to be cut to measure an
infinite impedance on the other side?

A short-circuited microstrip line of Z, = 85 Q2 and (3/4)A in length is
used as a lumped circuit element. What is the input impedance if the line is
assumed lossless?

For the following system, compute the input power, power delivered to the
load, and insertion loss. Assume that all transmission lines are lossless.

Zg

1

50 €2 _ _ Z;
oy Z=75Q Z,=500Q 40 O

0.35% 0.65%

Repeat Problem 2.25 for a 50 Q load impedance.

The complex load impedance Z; = (75 - j50)£2 is attached to a lossless
transmission line of 100 € characteristic impedance. The frequency is
selected such that the wavelength is 30 cm for a 50 cm long line. Find (a) the
input impedance, (b) the impedance looking toward the load 10 cm away
from the load, and (¢} the voltage reflection coefficient at the load and 10 ¢m
away from the load.

A 100 © microstrip line is connected to a 75 £ line. Determine I', SWR,
percentage power reflected, return loss, percentage power transmitted, and
insertion loss.

A 50 Q transinission line i1s matched to a source and feeds a load of
Z, =75Q. If the line is 3.4\ long and has an attenuation constant



100

2.30

2.31

2.32

2.33

Chapter 2 + Transmission Line Analysis

¢ = 0.5 dB/A, find the power that is (a) delivered by the source, (b) lost in
the line, and (c) delivered to the load. The amplitude of the signal produced
by the source is 10 V.

A measurement technique is proposed to determine the characteristic line
impedance of a coaxial cable via the determination of open, Z{¢, and short
circuit, Z& input impedances with a network analyzer. It is assumed that the
line impedance is real. How does one have to process these impedances to
obtain Z;?

A signal generator is used to feed two loads, as shown in the following
figure.

»
5‘5 Z;
40 Q
ZG r 50 ﬂ
Zo
50 Q
10V ([~ Zy=50%
2,0
0.35X A 34
Q iz
2 L2
N9 50 Q

Find the both the power produced by the source and the power delivered to
each load. '

A lossless 50 €2 microstrip line is terminated into a load with an admittance
of 0.05 mS. (a) what additional impedance has to placed in parallel with the
load te assure an input impedance of 50 Q? (b) If the input voltage is 10V,
find the voltage, current, and power absorbed by the combined load.

Show that return loss and insertion loss can be expressed in terms of the
voltage standing wave ratio SWR as

SWR + 1

RL = 20log " and IL = 2010g VR +1

2./SWR
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The Smith Chart

A transmission line changes its impedance
depending on material properties and geometric dimensions. Typical practical realiza-
tions include microstrip line, coaxial cable, and parallel-plate line. In addition, both the
length and operating frequency of the transmission line significantly influence the input
impedance. In the previous chapter we derived the fundamental equation describing the
input impedance of a terminated transmission line. We found that this equation incorpo-
rates the characteristic line impedance, load impedance, and, through the argument of
the tangent function, line length and operating frequency. As we saw in Section 2.9, the
input impedance can equivalently be evaluated by using the spatially dependent reflec-
tion coefficient. To facilitate the evaluation of the reflection coefficient, P. H. Smith
developed a graphical procedure based on conformal mapping principles. This
approach permits an easy and intuitive display of the reflection coefficient as well as the
line impedance in one single graph. Although this graphical procedure, nowadays
known as the Smith Chart, was developed in the 1930s prior to the computer age, it has
retained its popularity and today can be found in every data book describing passive
and active RE/MW components and systems. Almost all computer-aided design pro-
grams utilize the Smith Chart for the analysis of circuit impedances, design of matching
networks, and computations of noise figures, gain, and stability circles. Even instru-
ments such as the ubiquitous network analyzer have the option to represent certain
measurements in a Smith Chast format.

This chapter reviews the steps necessary to convert the input impedance in its
standard complex plane into a suitable complex reflection coefficient representation via
a specific conformal transformation originally proposed by Smith. The graphical dis-

m
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play of the reflection coefficient in this new complex plane can then be utilized directly
to find the input impedance of the transmission line. Moreover, the Smith Chart facili-
tates evaluation of more complicated circuit configurations, which will be employed in
subsequent chapters to build filters and matching networks for active devices.

The following sections present a step-by-step derivation of the Smith Chart fol-
lowed by several examples of how to use this graphical design tool in computing the
impedance of passive circuits.

3.1 From Reflection Coefficient to Load Impedance

In Section 2.9 the reflection coefficient is defined as the ratic of reflected voltage
wave (o incident voltage wave at a certain fixed spatial location along the transmission
line. Of particular interest is the reflection coefficient at the load location d = 0. Froma
physical point of view this coefficient Iy describes the mismatch in impedance between
the characteristic line impedance Z; and the load impedance Z; as expressed by (2.52).
In moving away from the load in the positive d-direction toward the beginning of the
transmission line, we have to multiply I'y by the exponential factor exp(-j2pd), as
seen in (2.64), to obtain I'(d) . It is this transformation from I'; to T'(d) that constitutes
one of the key ingredients in the Smith Chart as a graphical design tool.

3.1.1 Reflection Coefficient in Phasor Form
The representation of the reflection coefficient I'; can be cast in the following
complex notation.
_ 212,
°TZ+7,

=Ty, + Ty = |r01ejeL (3.1)

where 8; = tan'l(f‘of/ ['y,) . We recall that pure short- and open-circuit conditions in
(3.1) correspond to I'y values of —1 and +1, located on the real axis in the complex I"-
plane.

—RF &M W

Example 3-1: Reflection coefficient representations

A transmission line with a characteristic line impedance of
Z, = 50 Q is terminated into the following load impedances:

(@) Z; = 0 (short circuit)
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(b) Z; — o= (open circuit)
©Z, =500

d) Z;, = (16.67-j16.67) Q
€ Z; = (50+ j150) Q

Find the individual reflection coefficients T', and display them in
the complex I"-plane.

Solution:  Based on (3.1) we compute the following numbers for
the reflection coefficients:

(a) I'y = -1 (short circuit)

(b) I'y = 1 (open circuit)

(¢) Ty = 0 (matched circuit)

@) T, = 0.54.2221°

(e) [, = 0.83£34°

The values are displayed in polar form in Figure 3-1.

120 60

I[,=083.34°

T, =0.54 £221°

240

270

Figure 3-1 Complex I'-plane and various locations of I,

The reflection coefficient is represented in phasor form as done
when dealing with the conventional voltages and currents in basic
circuit theory.
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3.1.2 Normalized Impedance Equation

Let us return to our general input impedance expression (2.69), into which we
substitute the reflection coefficient

o
I(d) = [Tje’ ‘e = T +T, 3.2)

This results in
7 (d _Zl+l“r+j1",- 13
il'l( )- Ol_l"r_jl"‘_ (‘)

In order to generalize the subsequent derivations, we normalize (3.3) with respect to the
characteristic line impedance as foliows

_1+T(d)_ 1+T,+ jT;
T 1-T(d) 1-T,-)T;

Z,(d)/Zy = z,=r+jx (3.4)
The preceding equation represents a mapping from one complex plane, the z,, -plane,
to a second complex plane, the I'-plane. Multiplying numerator and denominator of
(3.4) by the complex conjugate of the denominator allows us to isolate real and imagi-
nary parts of z; in terms of the reflection coefficient. This means

. 1-T =T+ 2T, 35
Zp, =T+ jx = .
" (1-T) +T7?
can be separated into
2 2
1-T,~T;
r = (——1 - rr)z R rlz (36)
and
21,
x a7

T (-1

Equations (3.6) and (3.7) are explicit transformation rules of finding z;,, if the refiection
coefficient is specified in terms of I', and I',. Therefore, the mapping from the com-
plex T -plane into the z,,-plane is straightforward, as the following example under-
Scores.
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RF &M W
Example 3-2: Input impedance of a terminated transmission
line

A load impedance Z; = (30 + j60) £ is connected to a 50 Q
transmission line of 2 cm length and operated at 2 GHz. Use the
reflection coefficient concept and find the input impedance Z,
under the assumption that the phase velocity is 50% of the speed of
light.

Solution: ~ We first determine the load reflection coefficient
r.oo Ze=% _ 30+ 6050

T Z,+Zy 30+ j60+50
Next we compute I'(d = 2cm) based on the fact that

22 2 o0
P=g =3, 05 B7m

This results in 2Bd = 191.99° and yields for the refection coeffi-
cient

[ = Fye ™ = T, 4T, = ~032- j0.55 = J2/5¢7 204

Having thus determined the reflection coefficient, we can now
directly find the corresponding input impedance:

Zy = Zop—p = R+jX = 147-j267 Q

j71.56°

= 02+ j0.6 = J2/5¢ (3.8)

We note that the reflection coefficient phasor form art the load,
Ly, is multiplied with a rotator that incorporates twice the electric
line length Bd. This mathematical statement thus conveys the idea
that voltage/current waves have to travel 1o the load and return back
to the source 1o define the input impedance.

Example 3.2 could have been solved just as efficiently by using the impedance
equation (2.65) developed in Section 2.9.
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3.1.3 Parametric Reflection Coefficient Equation

The goal of our investigation is to pursue a different approach toward computing
the input impedance. This new approach involves the inversion of (3.6) and (3.7). In
other words, we ask ourselves how a point in the z;, -domain, expressed through its nor-
malized real, r, and imaginary, x, components, is mapped into the complex I -plane,
where it then can be expressed in terms of the real, I',, and imaginary, I';, components
of the reflection coefficient. Since T' appears in the numerator and denominator, we
have to suspect that straight lines in the impedance plane z;, may not be mapped into
straight lines in the I'-plane. All we can say at this point is that the matching of the load
impedance to the transmission line impedance Z;, = Z,, or z;, = 1, results in a zero
reflection ceefficient (i.e., I', = I'; = 0) located in the center of the [ -plane.

The inversion of (3.6) is accomplished by going through the following basic alge-
braic operations:

rl(1-T)2+T?] = 1-T2-1¢ (3.92)

P+ )-0T +To(r+1) = 1-r (3.9b)
2r 1-r

-+ T = =2 (3.90)

At this point the trick consists in recognizing that I', can be written as a complete bino-
mial expression (see also Appendix C)

r 2 r2 2 _1l-r
(r’-r+l) _(Jr'+1)75+ri Tr+l (3.9d)

This finally can be cast in the form

r o2 (1Y
(r,-m) 4T = (m) (3.10)

In an identical way as done previously, we proceed to invert (3.7). The result for
the nommalized reactance is
2 V2 (1Y
- —=] =[~- 3.11
(T,~1) + (r, x) (x) @.11)
Both (3.10) and (3.11) are parametric equaﬂons of mrcles in the complex I"-plane that

can be written in the generic form (I, ~ a) +(T; - b) = ¢*. Here a, b denote shifts
along the real and imaginary I" axes, and c is the radius of the circle.
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Figure 3-2 depicts the parametric circle equations of (3.10) for various resis-
tances. For example, if the normalized resistance r is zero, the cnrcle is centered at the
origin and possesses aradlus of 1, since (3.10) reduces to F + T = 1.Forr=1we
find (I', - 1/ 2)2 + 1'“ = {1/ 2)2 , which represents a circle of radius 172 shifted in the
positive I, direction by 1/2 units. We conclude that as r increases, the radii of the cir-
cles are continually reduced and shifted further to the right toward the point 1 on the
real axis. In the limit for r —» == we see that the sthl converges to the point
r/{(r+1) = 1 and the circle radius approaches 1/(r + 1) -0,

It is important to realize that this mapping transforms fixed values of r only and
does not involve x, Thus, for a fixed r an infinite range of reactance values x, as indi-
cated by the straight lines in the z-plane, maps onto the same resistance circle. The
mapping involving r alone is therefore not a unique point-to-point correspondence.

-1

z-plane Tplane
Constant resistance lines ( = const)

Figure 3-2 Parametric representation of the normalized resistance rin the
complex I' -plane.

A different graphical display results for the circle equation (3.11), which involves
the normalized reactance. Here the centers of the circles reside all along a line perpen-
dicular to the I', = 1 point. For instance, for x = e wenote that (I', - 1)" +I; = 0,
which is a circle of zero radius, or a point locatcd at T, l and I'; = 0. For x = 1
we see that the circle equation becomes (I, - l) +(T; - 1) =1, As x =3 Q the radii
and shifts along the positive imaginary axis approach mﬁmty Interestingly, the shifts
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can also be along the negative imaginary axis. Here for x = —1 we notice that the cir-
cle equation becomes (I', - 1)2 +([;+ 1)2 = 1 with the center located at I',= 1 and
I'; = —1. We observe that negative x-values refer to capacitive impedances residing in
the lower half of the I"-plane. Figure 3-3 shows the parametric form of the normalized
imaginary impedance. For better readability the circles are displayed inside the unit cir-
¢le only. In contrast to Figure 3-2 we notice that fixed x-values are mapped into circles
in the T -plane for arbitrary resistance values 0 <r <eo, as indicated by the straight
lines in the impedance plane.

The transformations (3.10) and (3.11) taken individually do not constitute unique
mappings from the normalized impedance into the reflection coefficient plane. In other
words, impedance points mapped into the I'-plane by either (3.10) or (3.11) cannot
uniquely be inverted back into the original impedance points. However, since the trans-
formations complement each other, a unique mapping can be constructed by combining
both transformations, as discussed in the next section.

-1
z-plane (r > 0) T-plane

Constant reactance lines (x = const)

Figure 3-3 Parametric representation of the normalized reactance xin the
complex I -plane.

3.1.4 Graphical Representation

Combining the parametric representations for normalized resistance and reactance
circles (i.e., Figures 3-2 and 3-3) for |T'| < 1 results in the Smith Chart as illustrated in
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Figure 3-4. An important observation of the Smith Chart is that there is a one-to-one
mapping between the normalized impedance plane and the reflection coefficient plane.
‘We notice also that the normalized resistance circles r have a range 0 < r < and the
normalized reactance circles x can represent either negative (i.e., capacitive) or positive
(i.e., inductive) values in the range —co < x < +o0.

It should be pointed out that the reflection coefficient does not have to satisfy
[T £ 1. Negative resistances, encountered for instance as part of the oscillation condi-
tion for resonators, lead to the case |T'| > 1 and consequently map to points residing
outside the unit circle. Graphical displays where the reflection coefficient is greater than
1 are known as compressed Smith Charts. These charts, however, play a rather limited
role in RF/MW engineering designs and are therefore not further pursued in this text.
The interested reader may consult specialized literature (see the Hewlett-Packard appli-
cation note listed at the end of this chapter).

xa z=r+jix h4 =r+jx-_]
%=+l rtjx+1
3 Bheerereeeneensnsieeenes s snesnens r=
B r=173
x=+113 x =43
1 :>\ r=12
173 z 3 L
0] 4173 i 3 ;xzo
_1/3 | s
1;‘? S
x=-1/3 x=-3
—3 ©
by = —1
z-plane I'-plane

Figure 3-4 Smith Chart representation by combining r and x circles for I < 1.

In Figure 3-4 we must note that the angle of rotation 2 introduced by the length
of the transmission line is measured from the phasor location of T'y = |Tg|e” * in clock-
wise (mathematically negative) direction due to the negative exponent (-2 jBd) in the
reflection coefficient expression (3.2). For the computation of the input impedance of a
terminated transmission line, the motion is thus always away from the load impedance
or toward the generator. This rotation is indicated by an arrow on the periphery of the
chart. We further cbserve that a complete revolution around the unit circle requires
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2Bd = 227".:1 =21
where d = A/2 or 180°. The quantity Bd is sometimes referred to as the electrical

length of the line.

3.2 Impedance Transformation

3.2.1 Impedance Transformation for General Load

The determination of the impedance response of a high-frequency circuit is often
a critical issue for the RF design engineer. Without detailed knowledge of the imped-
ance behavior, RE/MW system performance cannot adequately be predicted. In this
section we will elaborate on how the impedance can be determined easily and effi-
ciently with the aid of the previously introduced Smith Chart.

A typical Smith Chart computation involving a load impedance Z; connected to a
transmission line of characteristic line impedance Z,; and length 4 proceeds according
to the following six steps:

1. Normalize the load impedance Z, with respect to the line impedance Z; to deter-
mine z; .

2. Locate z; in the Smith Chart.

3. Identify the corresponding load reflection coefficient I'y in the Smith Chart both
in terms of its magnitude and phase.

4. Rotate 'y by twice its electrical length Bd to obtain I'; (d).

5. Record the normalized input impedance z;, at this spatial location 4.

6. Convert z;, into the actual impedance Z;, .

Example 3-3 goes through these steps, which are the standard procedure to arrive at the
graphical impedance solution.

RF &M W+
Example 3-3: Transmission line input impedance determina-
tion with the Smith Chart

Solve Example 3-2 by following the six-step Smith Chart computa-
tions given in the preceding list.
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Solution: We commence with the load impedance
Z, = (30+ j60) Q and proceed according to the previously out-
lined steps:

1. The normalized load impedance is

z, = (30+ j60)/50 = 0.6+ j1.2

2. This point can be identified in the Smith Chart as the intersec-
tion of the circle of constant resistance r = 0.6 with the circle of
constant reactance x = 1.2, as seen in Figure 3-5.

3. The straight line connecting the origin to point z; determines
the load reflection coefficient I'y. The associated angle is recorded
with respect to the positive real axis.

4. Keeping in mind that the outside circle on the Smith Chart cor-
responds to the unity reflection coefficient (|T'| = 1), we can find
its magnitude as the length of the vector connecting the origin to z; .
Rotating this vector by twice the electrical length of the line {i.e.,
2xBd = 2x96° = 192°) yields the input reflection coefficient
r,.
5. This point uniquely identifies the associated normalized input
impedance z;, = 0.3 - j0.53.

6. The preceding normalized impedance can be converted back
into actual input impedance values by multiplying it by
Zy = 50 Q, resulting in the final solution: Z;; = (15 - j26.5)€2.

We recall that the exact value of the input impedance obtained
in Exampie 3-2 is (14.7 - j26.7) 2. The small discrepancy is
understandable because of the approximate processing of the graph-
ical data in the Smith Chart. The entire sequence of steps leading to
the determination of the input impedance of the line connected to
the load is shown in Figure 3-5.

"
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Figure 3-5 Usage of the Smith Chart to determine the input impedance for
Exampie 3-3,

These steps appear at first cumbersome and prone to error if
carried out by hand. However, using mathematical spreadsheets and
relying on modern computer-based instrumentation, the calcula-

tions are routinely done in seconds and with a high degree of
accuracy.
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3.2.2 Standing Wave Ratio

From the basic definition of the SWR in Section 2.8.3 it follows that for an arbi-
trary distance d along the transmission line, the standing wave ratio is written

1 +|T(d)l
SWR(d) = ———=5 3.12
where I'(d) = T'yexp(—j2Bd). Equation (3.12) can be inverted to give
SWR -1
T = SR T1 (3.13)

This form of the refiection coefficient permits the representation of the SWR as circles
in the Smith Chart with the matched condition T'(d) = 0 (or SWR = 1) being the
origin.
It is interesting to note that equation (3.12) is very similar in appearance to the

expression for determining the impedance from a given reflection coefficient:

1+T'(d)
01 -T(d)
This similarity, together with the fact that for [['(d)| <1 the SWR is greater or equal to
unity, suggests that the actual numerical value for the SWR can be found from the
Smith Chart by finding the intersection of the circle of radius |I'(d)| with the right-
hand side of the real axis.

Z{d) = Z (3.149)

RF &M W=

Example 3-4: Reflection coefficient, voltage standing wave
ratio, and return loss

Four different load impedances:

(@)Z, =50Q, M Z, =485Q, () Z; = (75+j25) Q, and
(d) Z;, = (10— j5) Q, are sequentially connected to a 50 £ trans-
mission line. Find the reflection coefficients and the SWR circles,
and determine the return loss in dB.

Solation:  The normalized load impedances and corresponding
reflection coefficients, return loss, and SWR values are computed as
follows:
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(a)ZL = Igr = (ZL_I)/(ZL+I) = O‘RLdB = oo, SWR =1
Mz =097, T = (g, -1)/(zp+1) = -0015, RL ;5 = 363,
SWR = 1.03

©z; = 15+j05,T = (z; -1}/ (z,+ 1) = 0.23 + jO.15,
(dyz;, = 02-j0.1,T = (z;~1)/(z; +1) = ~0.66- j0.14,
RLg = 3.5, SWR = 5.05

To determine the approximate values of the SWR requires us to
exploit the similarity with the input impedance, as discussed previ-
ously. To this end, we first plot the normalized impedance values in
the Smith Chart (se¢ Figure 3-6). Then we draw circles with centers
at the origin and radii whose lengths reach the respective impedance
points defined in the previous step. From these circles we see that
the load refection coefficient for zero load reactance (x; = 0)is

The SWR can be defined in term of the real load reflection coeffi-
cient along the real T -axis:

14|l _1+T,
1-[F | t-T
This requires || = T', 2 0. In other words, for ', 20 we have to

enforce r; 2 1, meaning that only the intersects of the right-hand-
side circles with the real axis define the SWR.

SWR =

r

As a graphical design tool, the Smith Chart allows immediate
observation of the degree of mismatch between line and load imped-
ances by plotting the radius of the SWR circle.
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Figure 3-6 SWR circles for various reflection coefficients.

3.2.3 Special Transformation Conditlons

The amount of rotation by which the point of the normalized transmission line
impedance circles around the Smith Chart is controlled by the length of the line, or
alternatively the operating frequency. Consequently, both inductive (upper plane) and
capacitive (lower plane) impedances can be generated based on the line length and the
termination conditions at a given frequency. These lumped circuit parameter represen-
tations, realized through distributed circuit analysis techniques, are of significant practi-
cal importance.

The cases of open- and short-circuit line termination are of particular interest in
generating inductive and capacitive behavior and are examined in more detail next.
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Open Circuit Transformations

To obtain a pure inductive or capacitive impedance behavior, we need to operate
along the r = 0 circle. The starting point is the right-hand location (T, = 1) with
rotation toward the generator in a clockwise sense.

A capacitive impedance —jX . is obtained through the condition

1 1_ .
j(D_C'Z_O—Zi“ = —jcot(Pd,) (3.15)
as direct comparison with (2.70) shows. The line length d, is found to be
4, = gleot (5 )+ 2] (3.16)
'™ B oCZ, )

where nt (n = 1,2, ...)is required due to the periodicity of the cotangent function.
Alternatively, an inductive impedance jX; can be realized via the condition

. 1 .
;(oLZ—O =z, = —jcot(Bd,) 3.17D
The line length d, is now found to be
| -1{ WL
d, = -[rt—cot (—)+nn] 3.1%)
27 B Zy

Both conditions are schematically depicted in Figure 3-7. How to choose a particular
open-circuit line length to exhibit capacitive or inductive behavior is discussed in the
following example.

RF &M W

Example 3-5: Representation of passive circuit elements
through transmission line section

For an open-ended 50 2 transmission line operated at 3 GHz and
with a phase velocity of 77% of the speed of light, find the line
lengths to create a 2 pF capacitor and a 5.3 nH inductor. Perform
your computations both by relying on (3.16) and (3.18) and by using
the Smith Chart,

Solution:  For a given value of phase velocity, the propagation
constant is
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B = 2mf/v, = 2mf/(0.77¢c) = 81.6 m™"
Substituting this value into (3.16) and (3.18), we conclude that for
the representation of a 2 pF capacitor we need an open-circuit line or
stub with line length d, = 13.27 + n38.5 mm . For the realization of
a 5.3 nH inducior, a d, = 32.81 + n38.5 mm stub is required.

The alternative method for computing the lengths of the
required stubs is through the use of the Smith Chart (see Figure 3-7).
At a 3-GHz frequency, the reactance of a 2 pF capacitor is
Xc = 1/{0C) = 26.5Q . The corresponding normalized imped-

L=53nH

P

s
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Figure 3-7 Creating capacitive and inductive impedances via an open-circuit
transmission line.
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ance in this case is 7~ = ~jX = —j0.53. From the Smith Chart
we can deduce that the required transmission line length has to be
approximately 0.172 of one wavelength. We note that for the given
phase velocity, the wavelength is A = v,/f = 77 mm. This
results in a line length of d; = 13.24 mm which is very close to the
previously computed value of 13.27 mm. Similarly, for the induc-
tance we obtain z; = j2. The line length in this case is 0.426 of
one wavelength, which is equal to 32.8 mm.

Circuits are often designed with lumped elements before con-
verting them into transmission line segments, similar to the proce-
dure described in this example.

Short-Circuit Transformations

Here the transformation rules follow similar procedures as outlined previously,
except that the starting point in the Smith Chart is now the I'; = —1 point on the real
axis, as indicated in Figure 3-8,

A capacitive impedance —jX - follows from the condition

11 .
Tatz, =t = Jtan(Bd)) (3.19)

where use is made of (2.66). The line length d, is found to be

d, = %[n - tan_l(m clzo) +nr (3.20)

Alternatively, an inductive impedance jX, can be realized via the condition

joLl =z, = jtan(Bd,) 3.21)
Zy

The line length d, is now found to be

d, = %[tan](c;—i') +nn (3.22)

At high frequencies, it is very difficult to maintain perfect open-circuit conditions
because of changing temperatures, humidity, and other parameters of the medium sur-

rounding the open transmission line. For this reason short-circuit conditions are more
preferable in practical applications. However, even a short-circuit termination becomes
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Figure 3-8 Creating capacitive and inductive impedances via a short-circuit
transmission line.

problematic at very high frequencies or when through-hole connections in printed cir-
cuit boards are involved, since they result in additional parasitic inductances. Moreover,
a design engineer may not have a choice if the circuit layout area is to be minimized by
requiring the selection of the shortest line segments. For instance, the realization of a
capacitor always yields the shortest length for an epen-circuit line.

3.24 Computer Simulations

There are many computer aided design (CAD) programs available to facilitate the
RF/MW circuit design and simulation processes. These programs can perform a multi-
tude of tasks, varying from simple impedance calculations to complex circuit optimiza-
tions and circuit board layouts, One commercial software package that is used throughout
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this textbeok is calied Monolithic and Microwave Integrated Circuit Analysis and Design
(MMICAD) (Optotek Ltd., Kanata, Ontarie, Canada), which is a linear simulator pro-
gram with optimization tools. Another well-known program with advanced features is
EESof’s Libra package (Hewlett-Packard Corporation, Westlake Village, CA, USA),
which is capable of performing linear as well as nonlinear analyses and optimizations.

It is not the purpose of this textbook to review and discuss the various CAD pro-
grams presently in industrial and academic use. However, to reproduce the subsequent
simulation results, Appendix I provides a brief introduction to the basic features of
MaATLAB, which was chosen as a tool to carry out most simulations presented in this book.

The main reason for using MATLAB is its wide-spread use as a mathematical
spreadsheet which permits easy programming and direct graphical display. This elimi-
nates the need to rely on complex and expensive programs accessible to only a few
readers. The benefit of a MATLAB routine will immediately become apparent when the
Smith Chart computations have to be performed repetitively for a range of operating
frequencies or line lengths as the following discussion underscores.

In this section we revisit Example 3-2, which computed the input reflection coeffi-
cient and input impedance of a generic transmission line connected to a load. We now
extend this example beyond a single operating frequency and a fixed line length. Our
goal is to examine the effect of a frequency sweep in the range from 0.1 GHz to 3 GHz
and a change in line length varying from 0.1 ¢m to 3 cm. The example MATLAB routine,
which performs the analysis of the transmission line length changing from 0.1 cm to
3 cm at a fixed operating frequency 2 GHz, is as follows:

smith chart;
Set _20(50);

% plot smith chart
% set characteristic impedance to 50 Ohm
g_Load(30+j*60); % set load impedance to 30+j60 Ohm
vp=0.5%3e8; % compute phase velocity
£=2e9; % set frequency to 2 GHz
d=0.0:0.001:0.03; % set the line length to a range from 0 to

% 3 am in 1 mm increments
betta=2*pivf/vp; % compute propagation constant
Gamma=(2L-2Z0)/(2L+20); % compute load reflection coefficient
rd=abs (Gamma) ; % magnitude of the reflection coefficient
alpha=angle(Ganma}-2+bettard; % phase of the reflection

% coefficient

plot{rd*cos(alpha),rd*sin(alpha)); % plot the graph

In the first line of the MATLAB code (see file fig3_9.m on the accompanying CD)
we generate the Smith Chart with the necessary resistance and reactance circles. The
next lines define the characteristic line impedance Z; = 50 Q, load impedance
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Z; = (30+ j60) Q, operation frequency f = 2X 10° Hz , and phase velocity
v, = 05%x3x 10° m/s . The command line d=0.0:0.001:0.03 creates an array d rep-
resenting the transmission line length, which is varied from 0 mm to 3 cm in 1-mm
increments. After all parameters have been identified, the magnitude and phase of the
input reflection coefficients have to be computed. This is accomplished by determining
the  propagation constant J = 2nf/v, load reflection  coefficient
Ty = (2, -Zg)/(Z; + Zy) and its magnitude |[(|, and the total angle of rotation
o = £(Ty)-2Pd. Finally, the display of the impedance as part of the Smith Chart is
done through the plot command, which requires both real and imaginary phasor argu-
ments |[y|cos(a) and |Ty|sin(c). The final result is shown in Figure 3-9.

Figure 3-9 Input impedance of a loaded line of 2 cm length for a sweep in
operating frequency from 0.0 to 3 GHz. | the operating frequency is fixed at 2 GHz
and the line length is varied from 0.0 to 3 cm, the same impedance curve is obtained.

For the case where the length of the line is fixed to be 2 cm and the frequency is
swept from values ranging from 0.0 to 3 GHz, the only necessary modification to the
above input file is to set d=0.02, followed by specifying the frequency range in incre-
ments of 100 MHz (i.e., £=0.0:1e7:3e9). We should note that in both cases the electri-
cal length (Pd) of the line changes from 0° to 144° . Therefore, the impedance graphs
produced for both cases are identical.

At the end of the rotation, either by fixing the frequency and varying the length or
vice versa, the input impedance is found tobe Z, = (12.4 + j15.5) . It is reassuring
that for a fixed frequency f = 2 GHz and a line length range d =0 . . . 2 cm, we ulti-
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mately arrive at the same input impedance of Z,, = (14.7 - j26.7) {2 as obtained in
Example 3-2.

3.3 Admittance Transformation

3.3.1 Parametric Admittance Equation

From the representation of the normalized input impedance (3.4), it is possible to
obtain a normalized admittance equation by simple inversion:

Yo 1 _ 1-T(d)

Yo 2z, 1+1(d) 3.23)

where Y, = 1/Z,. To represent (3.23) graphically in the Smith Chart, we have several
options. A very intuitive way of displaying admittances in the conventional Smith Chart
or Z-Smith Chart is to recognize that (3.23) can be found from the standard represen-
tation (3.4) via

1-T(d) _ 1+’ "T(d)

= - 3.24
1 + r(d) 1 — e_ﬂtr(d) ( )

In other words, we take the normalized input impedance representation and multiply
the reflection coefficient by -1 = ¢, which is equivalent to a 180° rotation in the
complex I' -plane.

RF &M W=

Example 3-6: Use of the Smith Chart for converting imped-
ance to admittance

Convert the normalized input impedance z;, = 1+ j1 = ﬁej (/4
into normalized admittance and display it in the Smith Chart.

Solution:  The admittance can be found by direct inversion, that is

1 -jinse 1 .1
Yin = € i )=-—}'

2 2 2
In the Smith Chart we simply rofate the refiection coefficient corre-
sponding to z;,, by 180° to obtain the impedance. Its numerical
value is equal to y;, as shown in Figure 3-10. To denormalize y,,
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Figure 3-10 Conversion from impedance to admittance by 180° rotation.

we multiply by the inverse of the impedance normalization factor.
Thus,

1
YVip = Z,Yin = YoYin-

Rotations by 180 degrees to convert from the impedance to the
admittance representation require only a reflection about the origin
in the I'-plane.

In addition to the preceding operation, there is a widely used additional possibility.
Instead of rotating the reflection coefficient by 180° in the Z-Smith Chart, we can
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rotate the Smith Chart itself. The chart obtained by this transformation is called the
admittance Smith Chart or the Y-Smith Chart. The correspondences are such that
normalized resistances become normalized conductances and normalized reactances
become normalized susceptances. That is,

G

R
?’—z—0=>g—Y—0—ZOG
and
X B
I-—Z—O#b——YO—ZOB

This reinterpretation is depicted in Figure 3-11 for a particular normalized impedance
point z = 0.6 + j1.2.

(@) Z-Smith Chart (b) ¥“Smith Chart
Figure 3-11 Reinterpretation of the Z-Smith Chart as a ¥Y-Smith Chart.

As seen in Figure 3-11, the transformation preserves (a) the direction in which the
angle of the reflection coefficient is measured and (b) the direction of rotation (either
toward or away from the generator). Attention has to be paid to the proper identification
of the extreme points: A short-circuit condition z; = O in the Z-Smith Chart is
yr = ¢o in the ¥-Smith Chart, and conversely an open-circuit z; = <o in the Z-Smith
Chartis y; = 0 in the ¥-Smith Chart. Furthermore, negative values of susceptance are
plotted now in the upper half of the chart, corresponding to inductive behavior, and pos-
itive values in the bottom half, corresponding to capacitive behavior. The real compo-
nent of the admittance increases from right to left.
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Admittance Transtormation

To complete our discussion of the ¥-Smith Chart, we should mention an addi-
tional, often employed definition of the admittance chart. Here the admittance is repre-
sented in exactly the same manner as the impedance chart without a 180° rotation. In
this case the reflection coefficient phase angle is measured from the opposite end of the
chart (see the book by Gonzalez listed in Further Reading at the end of this chapter).

3.3.2 Additional Graphical Dispiays
In many practical design applications it is necessary to switch frequently from

impedance to admittance representations and vice versa. To deal with those situations a
combined, or so-called Z¥-Smith Chart, can be obtained by overlaying the Z- and ¥-

Smith Charts, as shown in Figure 3-12.
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Figure 3-12 The ZY-Smith Chart superimposes the Z- and Y-Smith Charts in one
graphical display.
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This combined Z¥-Smith Chart allows direct conversion between impedances and
admittances. In other words, a point in this combined chart has two interpretations
depending on whether the Z-Chart or Y-Chart display is chosen.

RF &M W
Example 3-7: Use of the combined ZY-Smith Chart

Identify (a) the normalized impedance value z = 0.5 + j0.5 and (b)
the normalized admittance value y = 1+ j2 in the combined Z¥-
Smith Chart and find the corresponding values of normalized admit-
tance and impedance.

Solution:  Let us first consider the normalized impedance value
z =05+ j05. In the combined ZY-Smith Chart we locate the
impedance by using circles of constant resistance r = 0.5 and con-
stant reactance x = 0.5, as shown in Figure 3-12. The intersection of
these two circles determines the specified impedance value
z = 0.5+ j0.5. To find the corresponding admittance value we
simply move along the circles of constant conductance g and sus-
ceptance b. The intersection gives us g=1 and jb=—jl (i.e., the
admittance for part (a) of this example is y = 1 - j1). The solution
for the normalized admittance y = 1+ j2 is obtained in identical
fashion and is also illustrated in Figure 3-12.

The ZY-Smith Chart requires a fair amount of practice due to
its “busy” appearance and the fact that inductors and capacitors
are counted either in positive or negative units depending on
whether an impedance or admittance representation is needed,

3.4 Parallel and Series Connections

In the following sections several basic circuit element configurations are analyzed
and their impedance responses are displayed in the Smith Chart as a function of fre-
quency. The aim is to develop insight into how the impedance/admittance behaves over
a range of frequencies for different combinations of lumped circuit parameters. A prac-
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tical understanding of these circuit responses is needed later in the design of matching
networks (see Chapter 8) and in the development of equivalent circuit models.

3.4.1 Parallel Connection of & and L Elements

Recognizing that ¢ = Z,/R and b, = +Z,/(®L), we can locate the normal-
ized admittance value in the upper ¥-Smith Chart plane for a particular, fixed normal-
ized conductance g at a certain angular frequency ®; :

. ZO

Yinl®) = g gy (3.25)
As the angular frequency is increased to the upper limit o, we trace out a curve along
the constant conductance circle g. Figure 3-13 schematically shows the frequency-
dependent admittance behavior for various constant conductance values g = 0.3, 0.5,
0.7, and 1 and for frequencies ranging from 500 MHz to 4 GHz. For a fixed inductance
value of L = 10 nH and a characteristic line impedance Z;, = 50 (Q, the susceptance
always starts at —1.59 (500 MHz) and ends at —0.20 (4 GHz).

In Figure 3-13 and the following three additional cases, the transmission line
characteristic impedance is represented as a lumped impedance of Z, = 50 €. This is
permissible since our interest is focused on the impedance and admittance behavior of
different load configurations. For these cases the characteristic line impedance serves
only as a normalization factor.

Zn /g

R=

Figure 3-13 Admittance response of parallel RL circuit for @, < @ < @ at
constant conductances g =0.3, 0.5, 0.7, and 1.
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3.4.2 Parallel Connection of R and C Elements

Here we operate in the lower ¥-Chart plane because susceptance b, = Z,wC
remains positive. To locate the normalized admittance value for a particular, fixed nor-
malized conductance g and angular frequency ®; we have

Yinl®y) = g+ jZy0,C (3.26)

Figure 3-14 depicts the frequency-dependent admittance behavior as a function of vari-
ous constant conductance values g =0.3, 0.5, 0.7, and 1. The normalized susceptance
for C = 1 pF and characteristic line impedance Z, = 50 Q always starts at 0.16
(500 MHz) and ends at 1.26 (4 GHz).

VAY/ 4

’R=

Figure 3-14 Admittance response of parallel AC circuit for @; <@ < ® v at
constant conductances g=0.3, 0.5, 0.7, and 1.

3.4.3 Series Connection of Rand L Elements

When dealing with series connections, we can conveniently choose the Z-Smith
Chart for the impedance display. Identifying the normalized reactive component as
x; = OL/Z,, itis straightforward to locate the normalized impedance vatue for a par-
ticular, fixed normalized resistance r at a given angular frequency ®, :

Zin{®y) = r+ jo,L/Z, (3.27)
In Figure 3-15 the frequency-dependent impedance behavior is shown as a function of

various constant resistance values r=0.3, 0.5, 0.7, and 1. For the same inductance of
10 nH and characteristic line impedance of 50 Q as used in Figure 3-13, we now pick



Paraliel and Series Connections 129

reactance circles associated with 0.63 (500 MHz) and with 5,03 (4 GHz). Because the
reactance is positive and since we use the Z-Smith Chart, all impedances have to reside
in the upper half plane.

R=rZ,

Figure 3-15 Impedance response of series AL circuit for ®; < w £ ®, and
constant resistances r=0.3, 05, 0.7, and 1.

3.4.4 Series Connection of Rand C Elements

We again choose the Z-Smith Chart for the impedance display. The normalized
reactive component is x. = +1/{WCZ;}, indicating that all curves will reside in the
lower half of the Smith Chart. The normalized impedance value for a particular, fixed
normalized resistance r at an angular frequency ; reads

Zm({Op) = r—j (3.28)

1
w, CZ,
Figure 3-16 displays the frequency-dependent impedance behavior as a function of var-
ious constant resistance values r = 0.3, 0.5, 0.7, and 1. The capacitance of 1 pF in series
with the variable resistance connected to a characteristic line impedance of 50 £ now
yields circles associated with the reactances of —6.03 (500 MHz) and 0.8 (4 GHz),
which intersect with the four resistance circles, uniquely determining upper and lower
impedance values.
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Z, Z, C=1pF

Figure 3-16 Impedance response of series RC circuit for @, < ® < @, at
constant resistances r=0.3, 0.5, 0.7, and 1.

3.4.5 Example of a FNetwork

In the previous examples only pure series or shunt configurations have been ana-
lyzed. In reality, however, one often encounters combinations of both. To show how
easily the ZY Chart allows transitions between series and shunt connections, let us
investigate by way of an example the behavior of a T-type network connected to the
input of a bipolar transistor. The input port of the transistor is modeled as a parallel RC
network as depicted in Figure 3-17. As we will see in Chapter 6, R; approximates the
base-emitter resistance and C, is the base-emitter junction capacitance. The numerical
parameter values are listed in Figure 3-17.

lel Lz Ll ‘TL
3.98 nH 4.38 nH
= L = =CL RL
2.39 pF 1.91 pF| 3125 ©
T-type network Transistor
input

Figure 3-17 T network connected to the base-emitter input impedance of a
bipolar transistor.
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To use the Smith Chart for the computation of the input impedance of this more
complicated network, we first analyze this circuit at 2 GHz and then show the entire
response of the circuit for a frequency range from 500 MHz to 4 GHz by employing the
commercial MMICAD software simulation package.

To obtain the load impedance, or the input impedance of the transistor, we use the
¥-Smith Chart to identify the conductance point corresponding to the load resistor
R; = 3125 Q. Assuming a 50 Q characteristic line impedance, we determine the
normalized admittance for this case to be g, = 1.6, which corresponds to point A in
Figure 3-18.

Figure 3-18 Computation of the normalized input impedance of the T network
shown in Figure 3-17 for a center frequency f = 2 GHz.
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The next step is to connect the capacitance C; = 1.91pF in shunt with the resis-
tor R;. At the angular frequency of ®; = 22 X 10° s , the susceptance of this
capacitor becomes B = 0,C; = 24 mS, which corresponds to a rotation of the
original point A into the new location B. The amount of rotation is determined by the
normalized susceptance of the capacitor b = B Z, = 1.2 and is carried out along

L
the circle of constant conductance in the Y-Smith Chart (see Figure 3-18).

Re-evaluating point B in the Z-Smith Chart, we obtain the normalized impedance
of the parallel combination of resistor R; and capacitor C, tobe z; = 0.4 - j0.3.The
series connection of the inductance L, results in the new location C. This point is
obtained through a rotation from xz = —0.3 by an amount xp, =0 L/Z = 1L1to
X = 0.8 along the circle of constant resistance r = 0.4 in the Z-Smith Chart as dis-
cussed in Section 3.4.3.

Converting point C into a ¥-Smith Chart value results in y- = 0.5- j1.0. The
shunt connected capacitance requires the addition of a normalized susceptance
be = 0CZ, = 1.5, which results in the admittance value of y, = 0.5+ j0.5 or
point D in the Y-Smith Chart. Finally, converting point D into the impedance value
zp = 1 =jl in the Z-Smith Chart allows us to add the normalized reactance
xp, = 0 Ly/Zy = 1 along the constant r = 1 circle. Therefore, we reach z;, = 1
or point E in Figure 3-18. This value happens to match the 50 €2 characteristic trans-
mission line impedance at the given frequency 2 GHz. In other words,
Z,=2Z,=50%Q.

When the frequency changes we need to go through the same steps but will arrive
at a different input impedance point z;; . It would be extremely tedious to go through
the preceding computations for a range of frequencies. This is most efficiently done by
the computer.

Relying on the previously mentioned CAD program MMICAD we are able to
produce a graphical display of the input impedance in the Z-Smith Chart over the entire
frequency range in preselected increments of 10 MHz, as shown in Figure 3-19. This
figure can also be generated as part of the MATLAB software (see file fig3_18.m on the
accompanying CD).

We notice that the impedance trace ranging from 0.5 to 4 GHz is in agreement
with our previous calculations at 2 GHz. Also, as the frequency approaches 4 GHz, the
capacitor of C = 2.39 pF behaves increasingly like a short circuit in series with a single
inductor L, . For this reason, the normalized resistance r approaches zero and the reac-
tance grows to large positive values.
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Figure 3-19 CAD simulation of the normalized input impedance Z, for the
network depicted in Fi%ure 3-17 over the entire frequency range
500 MHz < f< 4 GHz.

3.5 Summary

This chapter has derived the Smith Chart as the most widely used RF graphical
design tool to display the impedance behavior of a transmission line as a function of
either line length or frequency. Qur approach originated from the representation of the
normalized input impedance of a terminated transmission line in the form

_1+T(@)_ 1+, +jT;
T 1-T(d)” 1-T,-,T;
which can be inverted in terms of the reflection coefficient to yield two circle equations
(3.10) and (3.11), which take on the following expressions for the normalized

resistance r;
2 2
r 1
(r) = (=)

and for the normalized reactance x

(o - )

Superimposing the circles described by both equations over the complex polar form of
the normalized impedance z-plane on the unit circle yields the Smith Chart. The key
feature 1o remember is that one full rotation is equal to half a wavelength because of the

I, =r+jx
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exponent 2f3d in the reflection coefficient expression (3.2). In addition to observing the
impedance behavior, we can also quantify in the Smith Chart the degree of mismatch
expressed by the standing wave ratio (SWR) equation (3.12), or

1 +|T(d)]
1 - [T(d)
which can be directly obtained from the chart.

To facilitate computer-based evaluation of the Smith Chart, a wide range of com-
mercial programs can be utilized. Due to its ease of implementation on a PC and its
user-friendly interface, throughout this book we have used the package MMICAD
developed by Optotek. However, for the relatively incomplicated circuits analyzed in
this Chapter, one can also create a custom-tailored Smith Chart and perform simple
computations by relying on mathematical spreadsheets such as Mathematica, MATLAB,
or MathCad. To demonstrate the procedure, a number of MATLAB modules have been
developed, and the use of these so-called m.files as part of a basic Smith Chart compu-
tation is demonstrated in Section 3.2.4.

A transition to the admittance, or Y-Smith Chart, can be made via (3.23):

SWR() =

R T T )
and it is found that the only difference to (3.4) is a sign reversal in front of the reflection
coefficient. Consequently, rotating the reflection coefficient in the Z-Smith Chart by
180° results in the ¥-Smith Chart. In practice, this rotation can be avoided by turning
the chart itself. Superimposing the rotated chart over the original Z-Smith Chart pro-
vides a combined ZY-Smith Chart display. The benefit of such a display is the easy tran-
sition from parallel to series connection in circuit designs. This ease is demonstrated by
a T-nerwork configuration connected to the input port of a bipolar transistor consisting
of a parallel RC network. To investigate the impedance behavior as a function of fre-
quency sweep, however, is most easily accomplished through the use of CAD programs.
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Problems

3.1 Consideraload Z; = (80 + j40) Q2 connected to a lossy transmission line
with characteristic line impedance of

7 = 0.1 + j200
0 Jo.os — j0.003
Determine the reflection coefficient and the standing wave ratio (SWR) at
the load.

3.2 A coaxial cable of characteristic line impedance Z, = 75 £ is terminated
by a load impedance of Z; = (40 + j35) Q. Find the input impedance of
the line for each of the following pairs of frequency f and cable length 4
assnming that the propagation velocity is 77% of the speed of light:
(a) f=1GHz and d = 50 cm
(b) f =5GHz andd = 25 cm
¢} f=9GHzandd = S5cm

3.3  The attenuation coefficient of a transmission line can be determined by
shortening the load side and recording the VSWR at the beginning of the
line. We recall that the reflection coefficient for a lossy line takes on the form
I'(d) = Tyexp(-kl) = Tyexp(—al)exp(—jB/). If the line is 100 m in
length and the VSWR is 3, find the attenuation coefficient o in Np/m, and
dB/m.



136

34

3.5

3.6

3.7

3.8

Chapler 3 = The Smith Chart

A load impedance of Z; = (150 - j30) Q is connected to a 5 cm long
transmission line with characteristic line impedance of Z, = 75 Q. For a
wavelength of 6 cm, compute

(a) the input impedance

(b) the operating frequency, if the phase velocity is 77% the speed of light
(c) the SWR

Identify the following normalized impedances and admittances in the Smith
Chart:

(@) z = 0.1+ ;0.7

b) y = 0.3+ j0.5

(c) z=02+j01

d y =01+j02

Also find the corresponding reflection coefficients and SWRs.

An unknown load impedance is connected to a 0.31 long, 50 § lossless
transmission line, The SWR and phase of the reflection coefficient measured
at the input of the line are 2.0 and —20°, respectively. Using the Smith Chart,
determine the input and load impedances.

In Section 3.1.3 the circle equation (3.10) for the normalized resistance r is
derived from (3.6). Start with (3.7); that is,
2T,

X = _—1_
(1-T,) +T%

and show that the circle equation

reote(a-t) - O

Starting with the equation for normalized admittance

. 1-r
y—g+;b-1+l_

can be derived,

prove that the circle equations for the Y-Smith Chart are given by the follow-
ing two formulas:
(a) For the constant conductance circle as

2 2
_8 2 _ _1_)
(r,+1+3) +T (Hg

(b) For the constant susceptance circle as
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3.10

3.11

3.12

3.13

3.14

3.15

137

(T, +1)° +(T,+ 1/b) = (1/b)*

A lossless transmission line (Z, = 50 Q) is 10 cm long (f = 800 MHz,

v, = 0.77¢). If the input impedance is Z;, = j60 Q

(a) Find Z; (using the Smith Chart)

(b) What length of a short-circuit transmission line would be needed to
replace Z; ?

A transmission line of characteristic impedance Z; = 50 Q and length
d = 0.15A is terminated into a load impedance of Z; = (25-j30) Q.
Find 'y, Z, (d), and the SWR by using the Z-Smith Chart.

A short-circuited 50 € transmission line section is operated at 1 GHz and
possesses a phase velocity of 75% of the speed of light. Use both the analyt-
ical and the Smith Chart approach to determine the shortest lengths required
to obtain (a} a 5.6 pF capacitor, and (b} a 4.7 nH inductor.

Determine the shortest length of a 75 Q open-circuit transmission line that
equivalently represents a capacitor of 4.7 pF at 3 GHz. Assume the phase
velocity is 66% of the speed of light.

A circuit is operated at 1.9 GHz and a lossless section of a 50 €2 transmis-
sion line is short circuited to construct a reactance of 25 £). (a} If the phase
velocity is 3/4 of the speed of light, what is the shortest possible length of
the line to realize this impedance? (b) If an equivalent capacitive load of 25
Q is desired, determine the shortest possible length based on the same phase
velocity.

A microstrip line with 50 Q characteristic line impedance is terminated into
a load impedance consisting of a 200 € resistor in shunt with a 5 pF capac-
itor. The line is 10 cm in length and the phase velocity is 50% the speed of
light. (a) Find the input impedance in the Smith Chart at 500 MHz, 1 GHz,
and 2 GHz, and (b) use the MATLAB routine (see Section 3.2.4) and plot the
frequency response from 100 MHz to 3 GHz in the Smith Chart.

For an FM broadcasting station operated at 100 MHz, the amplifier output

impedance of 250 Q has to be matched to a 75 Q dipole antenna.

(a) Determine the length and characteristic impedance of a quarter-wave
transformer with v, = 0.7¢.

(b) Find the spacing D for a two-wire lossless transmission line with AWG
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3.16

3.17

3.18

3.19

Chapter 3 * The Smith Chart

26 wire size and a polysterene dielectric (g, = 2.55).

Consider the case of matching 2 73 Q load to a 50 Q line by means of a
A/4 wransformer. Assume the matching is achieved for a center frequency of
fc = 2 GHz. Plot the SWR for the frequency range 1/3< f/f-<3.

A line of characteristic impedance of 75 € is terminated by a load consist-
ing of a series connection of R = 30 Q, L = 10nH, and C = 2.5 pF.
Find the values of the SWR and minimum line lengths at which a match of
the input impedance to the characteristic line is achieved. Consider the fol-
lowing range of frequencies: (a) 100 MHz, (b) 500 MHz, and (c) 2 GHz.

A 50 Q lossless coaxial cable (€, = 2.8) is connected to a 75 £ antenna
operated at 2 GHz. If the cable length is 25 c¢m, find the input impedance by
using the analytical equation (2.71) and the Z-Smith Chart.

A balanced to unbalanced (balun) transformation is often needed to connect
a dipole antenna (balanced) to a coaxial cable (unbalanced). The following
figure depicts the basic concept.

Unbalanced ﬂ Balanced
coaxial cable L ~ Hantenna
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1%

As an alternative of using a transformer, one often uses the following
antenna connection.

[

(a) Explain why one leg of the dipole antenna is connected a distance A/4
away from the end of the coax cable.
(b) For an FM broadcast band antenna in the frequency range from 88 to

108 MHz, find the average length where the connection has to be made.

Using the ZY-Smith Chart, find the input impedance of the following net-
work at 2 GHz.

1531;.1: 398nH 1l ¢, 2
19911]-1 398111-1 1.59 pF 230

What is the i mput 1mpcdancc of this network at 1 GHz?

A Z, = 50 transmission line is 0.5 in length and terminated into a load
of Z, = (50-j30)Q. At 0.35% away from the load, a resistor of

= 258} is connected in shunt configuration (see figure below). Find the
input impedance with the help of the ZY Smith Chart.
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3.22 A 50-Q transmission line of 3/4 wavelength in length is connected to two
transmission line sections each of 75 Q in impedance and length of 0.86 and
0.5 wavelength, respectively, as illustrated in the following figure.

0‘56?‘
Z
O 1
75
2°
Zi Z,=50Q
0.75% i 75
0
03 z,

The termination for line 1 is Z; = (30 + j40) Q and Z, = (75-j80) Q
for line 2. Employ the Smith Chart and find the input impedance.

323 Repeat the previous problem if all characteristic line impedances are
Zy = 50 Q and all transmission line sections are A/4 in length.

3.24 A dipole antenna of impedance Z; = (75 + j20) Q is connected toa 50 Q
lossless transmission whose length is A/3. The voltage source V; = 25V
is attached to the transmission line via an unknown resistance Rg. It is
determined that an average power of 3W is delivered to the load under load-
side matching (ZP™" = 50 Q). Find the generator resistance Rg, and
determine the power delivered to the antenna if the generator impedance is
matched to the line via a quarter-wave transformer.
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3.28

3.29
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Determine the values of the inductance L and the capacitance C such that
they result in a 50 £ input impedance at 3 GHz operating frequency for the
following network.

Zil'l L

An open-circuit transmission line (50 £2) is operated at 500 MHz ("p =0.7¢).
Use the ZY Smith Chart and find the impedance Z;, if the line is 65 cm in
length. Find the shortest distance for which the admittance is ¥;; = —j0.05S.

Find the minimum line length /, and the minimum length of the short-cir-
cuited stub I, in terms of wavelength A, such that the input impedance of
the circuit is equal to 50 Q.

!

- 7z
L _J
Zin z s Z
a2 {50 + j50)2
L

Z, =500

Find the input impedance in terms of magnitude and phase of the following
network at an operating frequency of 950 MHz.

in € A/4 r/4 0.1

?_"_l Zo Zo Zo
i 2pF I R
i % nH 750

Repeat your computation and solve Problem 3.28 for a 1.5 GHz operating
frequency. Comment on the differences in your resalts.
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3.30 A specific transmission line configuration is as follows:

9, =
— % Z,
Z'in 92 ZL
1

The characteristic line impedance for all three elements is Z, = 50 Q. The
load impedance has a value of Z; = (20 + j40) 2, and the electrical
lengths of the corresponding line segments are ®, = 164.3°, 6, = 57.7°,
and ©, = 25.5°.

(a) Find the input impedance.

(b) Find the input impedance if transmission line segment ©, is open

circuit.

(This problem and Problem 3.27 become very important in Chapter 8, when
we discuss the problem of matching a particular load impedance to a desired
input impedance.)




CHAPTER 4

Single- and Multiport
Networks

Evcr since single- and multiple port networks were
first introduced into the electrical engineering profession through Guillemin and Feld-
keller, they have quickly become indispensable tools in restructuring and simplifying
complicated circuits as well as in providing fundamental insight into the performance
of active and passive electronic devices. Moreover, the importance of network model-
ing has extended far beyond electrical engineering and has influenced such diverse
fields as vibrational analysis in structural and mechanical engineering as well as bio-
medicine. For example, today’s piezoelectric medical transducer clements and their
electrical-mechanical conversion mechanisms are most easily modeled as a three-port
network.

The ability to reduce most passive and active circuit devices, irrespective of their
complicated and often nonlinear behavior, to simple input-output relations has many
advantages. Chief among them is the experimental determination of input and output
port parameters without the need to know the internal structure of the system. The
“black box” methodology has tremendous appeal to engineers whose concern is mostly
focused on the overall circuit performance rather than the analysis of individual compo-
nents, This approach is especially important in RF and MW circuits, where complete
field theoretical solutions to Maxwell’s equations are either too difficult to derive or the
solutions provide more information than is normally needed to develop functional,
practical designs involving systems such as filters, resonators, and amplifiers.

In the following sections our objective is to establish the basic network input-out-
put parameter relations such as impedance, admittance, hybrid, and ABCD-parameters.
We then develop conversions between these sets. Rules of connecting networks are pre-
sented to show how more complicated circuits can be constructed by series and parallel
cascading of individual network blocks. Finally, the scattering parameters are presented
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as an important practical way of characterizing RF/MW circuits and devices through
the use of power wave relations.

4.1 Basic Definitions

Before embarking on a discussion of electrical networks we have to identify some
general definitions pertaining to directions and polarity of voltages and cuirents. For
our purposes we use the convention shown in Figure 4-1. Regardless of whether we
deal with a single-port or an N-port network, the port-indexed current is assumed to
flow into the respective port and the associated voltage is recorded as indicated.

i i i
L | 2

+ o + =+
:T*_ One-port 1;1._ Two-port _—:2
Network Network
- —l — — ——n——p —

Port 1 Port 2
P + O] —0 +
ort 1 _‘:'I Y2 _ Port 2
iy PLY
+ o . ———a +
Port3 _ W Multiport Ve Portd
. Network .
iy’ ‘i
Mo -
+ G— — = o+
PortN—1 _ VYw_ Yu Port N

Figure 4-1 Basic voltage and current definitions for single- and
multiport network.

In establishing the various parameter conventions we begin with the voltage-cur-
rent relations through double-indexed impedance coefficients Z,,,, where indices n and
m range between 1 and N. The voltage ateach port n=1. .. N is given by

v = Zyyiy+ Zypiy o+ Zyyin 4.1a)
for port 1,

V2 = Z2ll] +222i2+ ra +Zz~i~ (4.lb)
for port 2, and

VN = ZN1£1+ZN2i2+ ea +ZNNiN (4.10)

for port N. We see that each port # is affected by its own impedance Z,, as well as by a
linear superposition of all other ports. In a more concise notation, (4.1) can be con-
verted into an impedance or Z-matrix form:
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4] Zy Zyy - Zipl) G
V2 Zy Zp - Zon|] B2 4.2)
Vy Zy1 Zyz - Zyy| | in
or, in matrix notation,
{V} =[Z]{1} 4.3)

where {V} and {I} are vectors of voltages v, v,, ..., vy and cuments i}, i,, ..., iy,
respectively, and [Z] is the impedance matrix.
Each impedance element in (4.2) can be determined via the following protocol:
v

z,, =2 4.9)

nm i
" 1i, = 0 (for k# m)
which means that the voltage v, is recorded at port n while port m is driven by cusrent
i,, and the rest of the ports are maintained under open terminal conditions (i.e. i, = 0
where k#m).
Instead of voltages as the dependent variable, we can specify currents such that

i Yip Yo oo Vil W
Bl Y Yo You|) v2 4.5)
iy Y1 Yug = Yw| [ v
or
{1} = [Y{V} (4.6)

where, similar to (4.4), we define the individual elements of the admittance or
Y-matrix as
Y =2 @4.7)

nm

2

v, =0 (for k2 m)

Comparing (4.2) and (4.5), it is apparent that impedance and admittance matrices are
the inverse of each other:

(z] = [vy" (4.8)
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RF EM W
Example 4-1: Matrix representation of Pi-network

For the pi-network (the name of the network comes from the resem-
blance with the greek letter IT) shown in Figure 4-2 with generic
impedances Z,, Zg, and Z find the impedance and admittance
matrices.

___________________

Figure 4-2 Pi-network as a two-port network.

Solution:  The impedance elements are found by using (4.4) and
the appropriate open- and short-circuit termination conditions.

To find Z,, we must compute the ratio of the voltage drop v,
across port 1 to the current i; flowing into this port when the current
into port 2 equals zere. The requirement i, = 0 is equivalent to an
open-circuit condition. Thus, the impedance Z,, is equal to the par-
allel combination of impedances Z, and Zz+ Z .

Z(Zg+Zp)

Y1

1 iy=0
The value for Z,, can be found as the ratio of voltage drop v, mea-
sured across port 1 to the current i, . In this case we must ensure that
the current i, remains zero (i.c., we must treat port 1 as open). Volt-
age v, is equal to the voltage drop across impedance Z, and can be
obtained using the voltage divider rule:
Z,
1T ZvZ. A8

where v, is a voltage drop across impedances Z, and Zg con-
nected in series and computed as v, 5 = i,[ZN(Z + Zz}]. Thus,
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Z.Z,

[ZC"(Z +ZB)] = m

Z Z

Similarly, we can obtain the remaining two coefficients of the
impedance matrix:

4] c ZpZc
_ — z = —re———
“a =7 Zyvz Al + 2ol = 77
iy =
Vs ZAZy+Zg)
Zy = = = ZMZ +Zg) = 4 B
i Zi+Zp+Z
2}; 2o atiptic

Thus, the impedance matrix for the generic pi-network is written in
the form

zy o | [ZA(ZB+ZC) Z,Z¢

Zy+Zg+Zo| Z,Z. ZAZ4+Zg)

The coefficients for the admittance matrix can be derived using
(4.7). To find the value for Y, we must find the ratio of current flow
into port 1 to the voltage drop across this port when the second port
is shortened (ie., v, = 0).

1 1

= —f um

i]
Y]l - ZA ZB

Vi

v,=0
The value for coefficient Y, of the admittance matrix can be
obtained by shortening port 1 (i.e., forcing v, = 0) and measuring
the ratio of the current i, to the voltage drop across port 2. We note
that, when a positive voltage is applied to port 2, the current #; will
flow away from port 1, resulting in a negative current:

v =0
The rest of the admittance matrix can be derived in the same way,
leading to the following final form
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1

_— ——  ———
BREN SO B S AR AR
ZB ZB ZC

where Y, = 2;', Yy = Z5 ,and Y = Z¢ .

Direct evaluation shows that the obtained impedance and
admittance matrices are indeed inversely related, which supports the
validity of (4.8).

The practical determination of the matrix coefficients can be
accomplished easily by enforcing open- and short-circuit condi-
tions. However, as the frequency reaches RF limits, parasitic termi-
nal effects can no longer be ignored and a different measurement
approach becomes necessary.

Example 4-1 indicates that both impedance and admittance matrices are symmet-
ric. This is generally true for linear, passive networks. Passive in this context implies
not containing any current or voltage sources. We can state the symmetry as

Zom = Zpy (4.9)

which also applies for admittances because of (4.8). In fact, it can be proved that any
reciprocal (that is, nonactive, linear) and lossless N-port network is symmetric.

Besides impedance and admittance network descriptions, there are two more use-
ful parameter sets depending on how the voltage and currents are arranged. Restricting
our discussion to two-port networks and with reference to Figure 4-1, we define the

chain or ABCD-matrix as
{V|}= AB{%} (4.10)
i C DI -i,

and the hybrid or h-matrix as

{vl} = |:h|1 h|2:|{ l’l } (4.11)
i hyy By Lv;
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The determination of the individual matrix coefficients is identical to the method intro-
duced for the impedance and admittance matrices. For instance, 10 find k,, in (4.11),
we set i) 1o zero and compute the ratio of v, over v,; thatis,

i\ =0

It is interesting to note that in the hybrid representation parameters #,, and h,, define
the forward current and reverse voltage gain, respectively. The remaining two parame-
ters determine the input impedance (4,, ) and output admittance (h,, ) of the network.
These properties of the hybrid representation explain why it is most often used for low-
frequency transistor models. The following example shows the derivation of the hybrid
matrix representation for a bipolar-junction transistor (BJT) for low-frequency
operation.

RF &M W
Example 4-2: Low-frequency hybrid network description of a
BJT

Describe the common-emitter BJT transistor in terms of its hybrid
network parameters for the low-frequency, small-signal transistor
model shown in Figure 4-3.

_________ ic ipg | L T Ve
[ C B = C
¥ ] 1 1
ip : 'y, :
B °+( : > |V :lgl rse By Tee! Veg
[ 1 1 !
: : : )
E 00—t —oF Eo— —o0F

Figure 4-3 Common-emitter low-frequency, small-signal transistor model.

Solution:  In the transistor model shown in Figure 4-3 rgg, rpe,
and r-. represent base-emitier, base-collector, and collector-emit-
ter internal resistances of the transistor. The current through the cur-
rent-controlled current source is dependent on the current ip’
flowing through the base-emitter resistance.



150

Chapter 4 + Single- and Multiport Netwotks

To evaluate the h,, parameter of the hybrid matrix according
to (4.10) we must short-circuit the collector and emitter terminals,
thus setting v, = v~g = 0, and compute the ratio of the base-emit-
ter voltage to the base current. Using the notation established in
Figure 4-3, we notice that &, is equal to the parallel combination of
rgg and rg.:

L Yald
= BCBE (input impedance)

Tpet Tpc

vV
_ VBE
ha =+

vep=10
Following a similar procedure, the relations for the remaining three
parameters of the hybrid representation can be established as follows:

v r
hy, = _BE = BE {voltage feedback ratio)
VCEiB=0 rpe* rpc
i Brgc—r , :
hy = £ = B¢ 3% (small-signal current gain)
' Fge*+ Tpc
vep=0
f 1 1+
hyy = - = — 4+ _1+p (output admittance)
Veej, oo TeE rgetTpc
-

In the majority of all practical transistor designs, the current amplifi-
cation coefficient B is usually much greater than unity and the
collector-base resistance is much larger than the base-emitter resis-
tance. Keeping these relations in mind, we can simplify the expres-
sions derived for the h-matrix representation of the transistor:

b = VBE _ . :
= = rgg (input impedance)
‘B vep =0
_ VBE _ .
hy, = — = 0 (voltage feedback ratio)
Vce ip=0
ic . .
hy = g = B (small-signal current gain)

Vep=0
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i
hyy = — - 1.,8 (output admittance)
v fep '
CElj .o TcE BC

The hybrid nerwork description is a very popular way to char-
acterize the BJT, and its h-parameter coefficients are widely
reported in many data sheets.

Due to the presence of the current source in Example 4-2, the h-matrix is no
longer symmetric (4, # h,;) and the transistor model is nonreciprocal. In low-fre-
quency electronic circuit design the coefficients of the hybrid matrix representation are
often listed as h;, for h,, h,, for h;,, hfe for h,;,and h,, for hy,.

Up to this point we considered the problem of deriving the matrix representation
based on a known topology and element values of the circuit. However, in practical
design tasks it is often required to solve an inverse problem and obtain the equivalent
circuit for an unknown or incompletely defined device based on a few measurements.
This becomes exiremely important when the characterization of the device is per-
formed under a particular set of operating conditions, but it becomes necessary to eval-
uate its performance under completely different circuit conditions. In this case the use
of the equivalent circuit representation enables an engineer to predict with reasonable
accuracy the response of the device or circuit under changing operating conditions. In
the following example we will derive the values of the internal resistances of the BJT
from known h-matrix parameters.

RF&EMW—

Example 4-3: Determination of internal resistances and cur-
rent gain of a BJT based on A-parameter mea-
surements

Use the equivalent circuit representation of the BJT shown in
Figure 4-3 and employ the following measured hybrid parameters:
h, =5kQ, h, = 2x10™, hge = 250, h,, = 20 uS (these
parameters correspond to the 2n3904 transistor manufactured by
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Motorola). Find the internal resistances rgg, g, and rqz, and the
current gain 3.

Solution:  As derived in Example 4-2, the values of the h-matrix
for the equivalent circuit shown in Figure 4-3 are given by the fol-
lowing four equations:

b, = —BCTBE (input impedance) @.12)
Tget I'pc

= —BE__ (voltage feedback ratio) (4.13)
Tge+pc

_ Brec—rge . .

fo = ——— {small-signal current gain) 4.14)
Ype+ Ype

h, = L+ 1*P  Guputadmitance)  (4.15)

Yce Tee*Tac

If we divide (4.12) by (4.13), we determine that the base-collector
resistance is equal to the ratio of h;, over k. Accordingly, for
values given in the problem formulation, we obtain:
rgc = h;,/h,, = 71 M&. Substituting this value into either equa-
tion (4.12) or (4.13), we find rzp = h,/(1-h,) = 5 kQ. Know-
ing rge and rgp, (4.14) allows us to find the current gain
coefficient B = (h,,—hp)/(h,,—1) = 300.02. Finally, the col-
lector-emitter resistance can be evaluated from (4.15) as

hie
3 = 63.35 kQ
haehie - hrehfe + 2hre —h

We note from the obtained values that rpp is indeed much smaller
than ry..

Feg =
re

This example provides a first idea of how the measured h-
parameters can be used as a basis to characterize the BJT circuit
model. The concept of “inverting” the measurements 1o determine
circuit model parameters will be further analyzed in Chapter 7.
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4.2 interconnecting Networks

4.21 Series Connection of Networks

A series connection consisting of two two-port networks is shown in Figure 4-4.
The individual networks are shown in impedance mairix representation,

+ o —_— 4
WV ' vit
e [z] !
'
4 :

L4} 1 m = | Le]

I Il
[ v g— |
i 1
|F -v.il'l' [Z"] V":
|

N ] .I _

Figure 4-4 Series connection of two two-port networks.

In this case the individual voltages are additive while the currents remain the

same. This results in
{”1}={v1'+vl"}=[z]{fl} 4.16)
Vv, vy vy iy

where the new composite network [Z] takes the form

417

(Z) = [Z] +[Z"}= 2:11""211” 212""212’;’
Zy'+Zy" 2+ 2y

Caution has to be exercised in not indiscriminately connecting individual net-
works, as short circuits may be created. This situation is exemplified in Figure 4-5 (a).
The problem can be avoided by including a transformer, as seen in Figure 4-5 (b). The
transformer in this case decouples input and output ports of the second network. How-
ever, this approach will only work for AC signals since the transformer acts as a high-
pass filter and rejects all DC contributions.

When two networks are connected with the output interchanged, as shown in
Figure 4-6, the most suitable representation is the hybrid form.

In the network connection that is shown in Figure 4-6, the voltages on the input
ports and currents on the output ports are additive (ie., v, = v,"+v,” and
iy = i, +1i,”), while the voltages on the cutput ports and curtents on input ports are
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(@) (b}
Figure 4-5 (a} Short circuit in series connection. (b) Transformer 1o avoid short
circuit.
Ay R
+ 0—-——!—{__ q: : = > +
i W] | ¥
vy E £illp' I;r E V2
IR R - 1
v H " :
Vi (w1 vi|s
"—0'——-:—-—'— L - —

Figure 4-6 Conneciion of two-port networks suitable for hybrid representation.

the same (ie., v, = v," = v,” and i, = {;" = {|”). From this observation we can
conclude that the resulting h-matrix for the overall system is equal to the sum of the h-
matrices of the individual networks:

{ 4 } - { “’1"""1”} _ [ By h]2’+h12”{ iy } @.18)
iz 1'2’ + I'Q” hZI’ + hzl” hzz’ + hzz” V2

An example of this type of connection is the Darlington transistor pair Q,and
@, shown in Figure 4-7.

4.2.2 Parallel Connection of Networks

A parallel connection of two dual-port networks is shown in Figure 4-8 for the
admittance matrices Y’ and Y”, where, unlike (4.16), the currents are now additive



Interconnacting Networks 185

h

v

Flgure 4-7 Series connection of two hybrid networks,

{£1}={51f+i1”}=[‘,]{v1} @.19)
iy iy +1y” V2

and the new admittance matrix is defined as the sum of the individual admittances

, " Y/ +Y,.” Y, +¥,”
[Y]=[Y]+[Y"= | 1 7" ~12 I{J (4.20)
Yo'+ Yp'+¥y

i i

+ oy . o+
Vi v vi

port 1 i i port 2

— -—
vr [YM] vi'

Figure 4-8 Parallel connection of two two-port networks,

42,3 Cascading Networks

The ABCD-parameter description is most suitable when cascading networks, as
depicted in Figure 4-9 for the example of a two-transistor configuration. In this case the
current on the output of the first network is equal in value, but opposite in sign, to the
input current of the second network (i.e., i," = —i;”). The voltage drop v,” across the
output port of the first network is equal to the voltage drop v,” across the input port of
the second network. Thus, we can write the following relations:
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+o— . — . N ot
port 1 ! [‘g« g;] i [érrgn] v{ port 2
— O — -0 ety —

Flgure 4-9 Cascading two networks.
{ vlr } - A.r B; { vz’ } _ A; Bt {vlﬂ}
i coll-iy) ool
_ A’ B ” B” { vz” }
Cf DI Ls D” _izﬂ

The overall sysiem ABCD-mairix is equal to the product of the ABCD-matrices of the
individual networks.

p———
o
- Pk
e —
1]

424 Summary of ABCD Network Representations

As we will see in subsequent chapters, microwave circuits can usually be repre-
sented as the result of cascading simpler networks, It is therefore important to develop
ABCD-matrix representations for simple two-port networks that can be used as build-
ing blocks of more complex configurations. In this section several examples are consid-
ered for which we will derive ABCD-parameters such as transmission line, series
impedance, and passive T-network. Other very useful circuits, such as parallel imped-
ance, passive pi-network, and transformer, are left as exercises at the end of this chapter
(see Problems 4.10—4.12). The results of all the computations are summarized in Table
4-1 at the end of this section.
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RF &M W->
Example 4-4: ABCD network representation of an impedance
element

Compute the ABCD-matrix representation for the following net-

work:
4 Z [
o— [ | = o
| M|
v, ¥y
o o

Solution:  Guided by the definition (4.10), to determine parame-
ter A we have to compute the ratio of the voltage drop across port 1
to the voltage drop across port 2 when the current into this port is
equal to zero (i.e., port 2 is disconnected). In this case, it is apparent
that for the circuit under consideration, the voltages on both ports
are equal to their ratio, which is equal to unity

!

Vs

=1
=0
To obtain the value for B, we need to find the ratio of the voltage
drop across port 1 to the current flowing from port 2 when the termi-
nals of port 2 are shortened. From the circuit topology, this ratio is
equal to the impedance Z:

The remaining two parameters are found according to (4.10) of the
ABCD-representation and can be shown to be

i
c=-21 =Q0and D = —+

|
[=

vy =0

The ABCD-matrix coefficients are determined in a similar
manner as the previously discussed Z-, Y-, and h-matrix coefficients.
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The accurate prediction of the coefficients again depends on the
ability to enforce open- and short-circuit terminal conditions.

In the following example the ABCD-parameters of the passive T-network are
determined. In the derivation of the parameters we will rely on the knowledge of ABCD
parameters for series and parallel connections of the impedance.

RF &M W
Example 4-5: ABCD matrix computation of a T-network

Compute the ABCD-matrix representation for the following T-net-

work:
2 Zs i
Y Ze V2
o > <

Solation:  This problem can be solved using two different
approaches. The first approach involves directly applying the defini-
tion of the ABCD-matrix coefficients and compute them as done in
the previous example. Another approach is to utilize the knowledge
of the ABCD-parameters for parallel and series connections of a sin-
gle impedance. If we choose this method, we first have to break the
initial circuit into subcircuits as follows:

e —— M
NetworkA ~ Network C Network B
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As discussed previously, the ABCD-matrix representation of the
entire circuit is equal to the product of the ABCD-matrices of the
individual subcircuits. Using the results from Example 4-4 and
Problem 4.8, we can write

1+ZA Z,+Z +ZAZB
1 0 7 A B
(aBCD] = 1 24| " |1 28 o | Zc Z¢
0 1|2z ][0 1 1 Zg
—_— 1+ —
Zc Zc

Here we see the advantage of using the ABCD-matrix repre-
sentation in that a more complex network can be constructed by
multiplication of simpler building blocks.

As a last example, let us consider the computation of the ABCD parameters for a
transmission line.

RF &M W+
Example 4-6: ABCD-matrix coefficient computation of a
transmission line section

Compute the ABCD-matrix representation of the following trans-
mission line with characteristic impedance Z,, propagation con-
stant B, and length /.

i
— .‘_2
] —

¥y Z,, B V2

— I}

Solution:  Similar to Example 4-4, we have to apply open- and
short-circuit conditions at port 2. For a transmission line these con-
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ditions are equivalent to the analysis of open- and short-circuit stub
lines. Such lines are simply the open/short-circuit transmission line
representations discussed in Sections 2.9.3 and 2.9.2. In these sec-
tions we found that for the open-circuit stub the voltage and current
are given by the following expressions [see (2.71) and (2.72)}:

2

.yt
V(d) = 2V*cos(Bd) and I(d) = fZV sin(Bd)
0
where distance d is measured from the open port (i.e., in our case
from port 2).
For a short-circuit stub of length  voltages and currenis are
determined by (2.67) and (2.68):
s 2v*
V(d) = 2jV sin(Pd) and I{d) = Z—Ocos(ﬂd)
where distance 4 is again measured from port 2 to port 1. In addition
to these relations, it is important to recall that the current is defined
as flowing foward the load. Therefore, the current is equal to i; at
port 1 and equal to —i, at port 2.

Having determined the relations for voltages and currents, it is
now possible to establish equations for the ABCD-parameters of the
transmission line. Parameter A is defined as the ratio of the voltages
at ports 1 and 2 when port 2 is open (i.e., we have to use the formu-
las for the open-circuit stub):

_ 2V7cos(BY) _
+
i=0 2V
where we employ the factthat d = 0 atport2and d = [ at port 1.
Parameter B is defined as the ratio of the voltage drop across
port 1 to the current flowing from port 2 (i.e., toward the load) when

port 2 is shorted. For this case we have to use the formulas for volt-
age and current defined for a short-circuit stub. This yields

- 2}V+SIH(EI) = fZOSln(BI)

2v*/zZ,

v
A=—l

) cos(pl)

Vi
B = -

vy =0

The remaining two coefficients are obtained in a similar manner:
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2;v*

‘ ——sin(BI)
Al LB iy sinh
Val _o 2v?
2
; 2; cos(BI)
= L = =2 - = cos(Pi)
-!2 vy=0 2i
Zy

Thus, a transmission line with characteristic impedance Z,, propa-

gation constant B, and length / has the following matrix representa-
tion:

[A ]= cos(Bl)  jZosin(Bl)
cCD FYgsin(Bl) cos(Bi)

The ABCD transmission line representation has the expected
periodic parameter behavior similar to the line input impedance
Jormula derived in Chapter 2.

In Table 4-1 six of the most common circuit configurations are summarized in
terms of their ABCD two-port network representations. From these six basic models,
more complicated circuits are readily constructed by suitably combining these elemen-
tary networks.

4.3 Network Properties and Applications

4.3.1 Interrelations between Parameter Sets

Depending on the particular circuit configuration, we may be forced to convert
between different parameter sets to arrive at a particular input/output description. For
instance, the low-frequency transistor parameters are often recorded in h-matrix form.
However, when cascading the transistor with additional networks, a more useful
ABCD-matrix form may be appropriate. Thus, converting the h-matrix into an ABCD-
matrix form and vice versa can greatly simplify the analysis.
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Table 3-1 ABCD-Parameters of Some Useful Two-Port Circuits.

Circult ABCD-Parameters
b, £ .
o i } o'y A= 1 B= Z
¥ e C=10 D=1
[ O
Ar , oh A= 1 B= 0
" [:]Y i€ C=Y D=1
z Z A aZp
i L 5 b A= 1+=2 B=Z, +Zz+
v, Z- v 1 Z
\ C= = D=1+2=2%
c Zc
1
hy 2 b A= 1+ 2 B= Y.
| S| - C
vy Kj [:]12 vy Y D=1 A
= 4+ w—
C=Y,+Yp+—=22 Y,
Ye
- - ! ] .
iy i
— =% A= cosp! ey
B= jZ,sinfl
¥, Z, B v jsin 37 0
— 1} C= j—ZE D= cosB!
0
d
iy N1 & B=0
Y |§ ¢] = = 1
? C=0 D N

To show how the conversion between the individual parameter sets can be accom-
plished, let us find an ABCD-matrix representation of a given h-matrix. From the defi-
nition (4.11) we can express parameter A as follows

Vi hyyiy+hyov,

= — = (4.22)

Va

A=
v,

i=0
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In this expression we are able to re-express the current i, in (4.11) in terms of the volt-
age v, because i, = (. The result is

h
hn(—ﬁ"z) +Ryavy
iy Ah

= = —(hphy, —hpphy,) = -8
v, h21 22711 127721 th

v
A=

Va

(4.23)

=0

where Ah = h h,, ~ h,h,, denotes the determinant of the h-matrix. Similarly, for
the remaining coefficients we compute

()
hllil !l hZI hI]

1%
B=-1 = = X = (4.24)
“l,. 20 2 2 ha)
T,
1 h h
C = i_l -2 (4.25)
Hi,=0 2 2
i
' hy,
D = ....l’_l = —-ﬁ = --—1— (4°26)
I vy ¢ hy,

This concludes the conversion from k-parameters to ABCD form. A similar procedure
could have been performed from ABCD-parameters to h-matrix form.

As an additional case, let us investigate the conversion from ABCD-parameters to
the Z-representation. Starting with (4.2) and using (4.11), we can develop the following
relations:

A
z, =41 =24 (4.27)
iy =0 Cv, C
Av —E—?Ev
7 v, Av, - Bi, 2" D! AD-BC _ AABCD
g = = = = = (4.28)
iz i=0 gv gv C C
1 D D2
v/A Av,/A |
Z, = 2 S Wil A | (4.29)
M e v Cvy, C
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V2 - Vy D

222 = £ = = —
Bli =0 Cvz/D C

where AABCD = AD - BC is the determinant of the ABCD-matrix.

By relying on the respective defining voltage and current relations, it is relatively
straightforward to work out all parameter conversions. For convenience, Table 4-2 sum-
marizes the formulas for the previously defined four network parameter sets (see also
Appendix H for a complete list of all conversion formulas).

(4.30)

Table 4-2 Conversion between Different Network Representations

4] V] @] [ABCD]
Zp Zp AZ Zp Zn AZ
@ Zy Zyy AZ AZ Zy Zpy Zn Zy
Zn 2y Za Zu Zu 1 1 Zy
AZ AZ Zy Zy Zy 25
Yy Yy, 1 Yy RENE S
vl AY AY YnYpn Yo Yy Y, Yy
Y Yy Y Yo Ya AY _AY Ty
AY AY Yo Y, Y51 ¥y
A by 1y _Ar Ay
il hy hy by Ay Ry By hy By
P 1 ha AR hyr By P 1
hyy By hyy Ay hyy hyy
AAABCD | D AABCD | B AABCD
(ABCD] C C B B D D AB
1 D 1A 1 ¢ CD
C C B B D D

4.3.2 Analysls of Microwave Amplifier

In this section we consider, by way of an example, the usage of the conversion
between different network representations to analyze a relatively complicated circuit.
Basis of the analysis is the circuit diagram of a particular microwave amplifier shown in
Figure 4-10,
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Bl Z, T

© > > O

Figurs 4-10 Microwave amplifier circuit diagram.

The first step is to break down the circuit into smaller, simpler subnetwerks. This
can be accomplished in several ways, one of which is shown in Figure 4-11.

Feedback loop
R
W\ Output matching
@ ° network
Input matching ' i
_network o s
A { WIML

e T

L o - - b

Figure 4-11 Subnetwork representation of the microwave amplifier,

As shown in this figure, the amplifier is divided into a set of four subcircuits. The
input matching network consists of a transmission line (for convenience only the upper
trace is shown) and is cascaded with a parallel combination of the transistor and a feed-
back loop. This circuit is then cascaded with an output matching network.

For the transistor we will use a high-frequency hybrid pi-network model (see also
Chapter 7), which is shown in Figure 4-12.

1
“'_caC

Tee TCBE EnVs Feg
’ | . ———O F

Figure 4-12 High-frequency hybrid transistor model.

Eo
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The derivation of the A-parameters is left as a problem (Problem 4.13 at the end of
this chapter). Here we only list the resulting h-matrix for the transistor:

'BE
=hHh = 4.
i = b T+ j0(Cpyp+ Cpo)Tag (4.31a)
i -
hy = h, = —— - BCTBE (4.31b)

¢ 1+ jo(Cgp+ Cge)rpg

_ _ rpp(8m—Jj0Cpe)
hor = hpe = 1+ jo{Cpp + Cpe)rpe (4.31c)

1, JoCpoAl +g,rpp+ jOCpprpg)
Fce 1 +fm(CBE+CBC)rBE

To compute the matrix for the parallel combination of the transistor and the feed-
back loop resistor we have to convert the h-matrix into a2 Y-matrix called [Y], in order
to apply the summation rule (4.20). To accomplish this, we can use formulas from
Table 4-2 and add the result to the Y-matrix of the feedback resistor. The admittance
matrix for the feedback resistor can be derived either directly using the definition of the
Y-matrix or by converting the ABCD-parameters derived in Example 4-4 into the Y-
form. The result of these computations is

Y Yoy R R R
After the summation we obtain the admittance matrix for the parallel combination of
the transistor and the feedback resistor [Y]; , -

The same result could have been obtained if we had noticed that the feedback
resistor is connected in parallel with the capacitor Cg- of the transistor. Thus, to obtain
the admittance matrix of the parallel combination of the feedback resistor and the tran-
sistor, we simply need to replace Cp~ in the h-matrix of the transistor with
Cpe+ 1/(joR) and then convert the resulting matrix into Y-representation.

The final step in the analysis is to multiply the ABCD-matrices for the input
matching network (index: IMN), the transistor with feedback resistor (index: tr + R),
and the output matching network (index: OMN)

[A B] _ [A B:i [A B] [A B] 4.33)
CDamp CD[MI"ICDH'+RCDOMN

4.31d)

h22 = hoe =
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where the ABCD-matrices for the maiching networks are found using the results from
Table 4-1:

cosPl  jZ,sinpl
ABL = s @.34)
C DN - cosfl
0
AB 1-0’LC  2jeL-jo’L’C
{ ] = - JoL-jo (4.35)
C Dfomn joC 1-w°LC

Due to rather lengthy expressions we are not presenting the final result for the
ABCD-parameters of the entire amplifier. Instead we urge the interested readers to per-
form these computations by relying on a mathematical spreadsheet program of their
choice (MathCad, MATLAB, Mathematica, etc.). One of the results of these computa-
tions is shown in Figure 4-13, where the small-signal current gain for the amplifier with
short-circuited output (inverse of the D-coefficient) is plotted versus frequency for dif-
ferent values of the feedback resistor.

40 '

L

Lh
=

I
Lh
=3
S
©

=
=y
I

b
£
@)

2
wh
T

201

Small-signal current gain, dB

151

1010“ 10° 10° 10° 10° 10
Frequency, Hz

Figure 4-13 Small-signal current ?ain of the amplifier versus frequency for
different values of the feedback resistor.
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The computations are based on the circuit in Figure 4-11 with L = 1nH,
C = 10 pF, transmission line length of I = 5 cm, and phase velocity equal to 65% of
the speed of light. The transistor is described by the following set of values:
rpp = 5200, rop = 80k Q, Cyp = 10pF, Cg- = 1 pF,and g,, = 0.192 5.

4.4 Scattering Parameters

In almost all databooks and technical literature regarding RF systems, the scatter-
ing or S-parameter representation plays a central role. This importance is derived from
the fact that practical system characterizations can no longer be accomplished through
simple open- or short-circuit measurements, as it is customarily done in low-frequency
applications and as discussed at the beginning of this chapter, We should recall what
happens when we attempt to create a short circuit with a wire: The wire itself possesses
an inductance that can be of substantial magnitude at high frequency. Also, the open
circuit leads to capacitive loading at the terminal. In either case, the open/short-circuit
conditions needed to determine Z-, Y-, h-, and ABCD-parameters can no longer be guar-
anteed. Moreover, when dealing with wavepropagation phenomena, it is not desirable
to introduce a reflection coefficient whose magnitude is unity. For instance, the terminal
discontinuity will cause undesirable voltage and/or current wave reflections, leading to
oscillations that can result in the destruction of the device. With the S-parameters, the
RF engineer has a tool to characterize the two-port network description of practically
all RF devices without requiring unachievable terminal conditions or causing harm to
the device under test (DUT).

44.1 Definltion of Scattering Parameters

Simply put, S-parameters are power wave descriptors that permit us to define the
input-output relations of a network in terms of incident and reflected power waves.
With reference to Figure 4-14 we define an incident normalized power wave a, and a
reflected normalized power wave b, as follows:

a = — (V, +Z,l,) (4.36a)

T2z

1
b, = —=(V,—-Z,1) (4.36b)
n » ﬁ:) n tn
where the index » refers either to port number 1 or 2. The impedance Z, is the charac-
teristic impedance of the connecting lines on the input and output side of the network.
Under more general conditions the line impedance on the input side can differ from the
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line impedance on the output side. However, for our initial discussion, we will keep
things simple and assume that both impedances are the same.

]l a;
_H+ o TN 4—H—
(5]
bTH_ o ‘—H-’bz

Figure 4-14 Convention used to define S-parameters for a two-port network.
Inverting (4.36) leads to the following voltage and current expressions:
n = JZola,+by) (4.37a)
I, = —(a,-b,) (4.37b)

7z

The physical meaning of (4.36) becomes clear when we recall the equations for power:

P, = JRe(V, 13} = §(janj2- bl 438)

Isolating forward and backward traveling wave components in (4.37), we immediately
see

a

Zol! (4.39a)

" J_o

(4.39b)

which is consistent with the definitions (4.37) since

V, = V4V, = Zl, - 2,1, (4.40)

Based on the directional convention shown in Figure 4-14 we are now in a position to

define the S-parameiers:
{b]} - Sll Sl2 {al} (4.41)
b, Sy Sp2| L 4y

where the terms are
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§. = b _ reflected power wave at port 1 (4.422)
=g, , \incident power wave at port | '
ﬂz =
b, transmitted power wave at port 2
S = a, . ~ " incident power wave at port 1 (4.425)
ay =
S = b, _ reflected power wave at port 2 (4.420)
27 g, o=0 ~ incident power wave at port 2 '
b .
Sy, = a_1 = lralallllzmm;tl:d p\c:rwer wave at por; 1 (4.424)
2 0 power wave at port

a4, =
We observe that the conditions @, = 0 and a; = 0 imply that no power waves are
returned to the network at either port 2 or port 1. However, these condition can only be
ensured when the connecting transmission lines are terminated into their characteristic
impedances.

Since the S-parameters are closely related to power relations, we can express the
normalized input and output waves in terms of time averaged power. With reference to
Section 2.10.2 we note that the average power at port 1 is given by

1| 1|

where the reflection coefficient at the input side is expressed in terms of §;, under
matched output according to the following argument:

1| 1|

P, = (1‘|Fm| ) = (l_lslll ) (4.43)

Vi_b

vi @

=5, (4.44)
az=0

in

This also allows us to redefine the VSWR at port 1 in terms of §,, as
1+ |S“|
=Sl

Furthermore, based on (4.39a) we can identify the incident power in (4.43) and express
it in terms of a, :

VSWR = (4.45)

Pie = I'z_ (4.46)

Nll—
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which is the maximal available power from the generator. Using (4.46) and (4.44) in
(4.43) finally gives us the total power at port 1 (under matched output condition)
expressed as a combination of incident and reflected powers:

2
lea”
2
If the reflection coefficient, or S, , is zero, all available power from the source is deliv-

ered to port 1 of the network. An identical analysis at port 2 yields

o]
2

Py = Pyt Po = 3 - [b") = S0 -7 (4.47)

Py = %(1“2*2‘|b2|2) = 2L (1- |0, H (4.48)

4.4.2 Meaning of S-Parameters

As already mentioned in the previous section, the S-parameters can only be deter-
mined under conditions of perfect matching on the input or output side. For instance, in
order to record S;; and S,; we have to ensure that on the output side the line imped-
ance Z is matched for @, = 0 to be enforced, as shown in Figure 4-135.

Z, a

—H> a,=0
(::) Zy (8] Zy | |ZL
<t >

Figure 4-15 Measurement of S, and S,,by matching the line impedance Z, at
port 2 through a corresponding load impedance Z, = £,

This configuration aliows us to compute S,, by finding the input reflection
coefficient:

Z,-Z,
Sn=Typ= Z‘m+ZO
m

(4.49)

In addition, taking the logarithm of the magnitude of S, gives us the return loss in dB
RL = -20log|$),| (4.50)
Moreover, with port 2 properly terminated, we find
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gm0 Vi +2o01)/ (2,(Z)

S =
L'=v,"=0
Since a, = 0, we can set to zero the positive traveling voltage and current waves at

port 2. Replacing V; by the generator voltage V, minus the voltage drop over the
source impedance Z,, V., - Z,l, gives

_2v; 2y,

S, = 122 (4.52)
27 Ve Ve

Here we observe that the voltage recorded at port 2 is directly related to the generator
voltage and thus specifies the forward voltage gain of the network. To find the for-
ward power gain, we square (4.52) to obtain

vV, |?

2
Go = [Sal” = |55
G1

(4.53)

If we reverse the measurement procedure and attach a generator voltage Vi, to
port 2 and properly terminate port 1, as shown in Figure 4-16, we can determine the
Temaining two S-parameters, S,, and S,,.

“=0 ~H %
z| | 2 i) Z @
“Hy P

1 2

Figure 4-16 Measurement of S,, and S,, by rnatching the line impedance Z, at
port 1 through a corresponding input impedance Z, = Z,.

To compute §,, we need to find the output reflection coefficient T, in a similar

way as already discussed for §\,:
zout ~ ZO
Sz = Tow = 7o @54

and for S,
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b Vi/JZ
Sp=- = L (4.55)
Ulgeo V2t Zd)/QJZ0)| L, 0
| =2¥ =

The term §,, can further be manipulated through the substitution of V, by
Vg2~ Zyl,, leading to the form

Sp = o = (4.56)

known as the reverse voltage gain and whose square |S 12|2 is identified as reverse
power gain. While determining §,, and §,, can be directly computed as part of the
impedance definitions, S|, an S, require the replacement of the defining voltages by
the appropriate network parameters. In the following example, the S-parameters are
computed for a simple, three element network.

RF&MW->

Example 4-7: Determination of a T-network elements

Find the S-parameters and the resistive elements for the 3 dB attenu-
ator network shown in Figure 4-17(a) assuming that the network is
placed into a transmission line section with a characteristic line
impedance of Z, = 50 Q.

Solution:  An attenuator should be matched to the line imped-
ance and must therefore meet the requirement S,; = §,, = 0.Asa
result, based on Figure 4-17(b) and consistent with (4.49), we set
R3(R,+ 50 Q)

(R;+ R, +50 Q)
Because of symmetry, it is immediately clear that R, = R,. We
now investigate the voltage V, = V, at port 2 in terms of
V= VJI'. According to the circuit configuration shown in Figure
4-17(c), the following expression is obtained

Z. =R+ =50 Q
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Port 1 R; Port2
{a)
R, R, R, R,
—\W—
; 50 Q 00 2R,
Port 1 Port 2 Port | Port 2

(b) (©)

Figure 4-17 S-parameter computation for a T-network. (a) circuit diagram;
{b) circuit for 54 and 5;, measurements; (¢) circuit for S;, and S,, measurements,

Ry{R,+50 Q)
v | _RatR +50Q ( 50 Q )v
27 | Ry(R,+50 Q) S0Q+R,/) !
R+Rr500 0

For a 3 dB attenuation, we require

821=—=_=_2=0.707=S12

Setting the ratio of V,/V, to 0.707 in the preceding equation
allows us, in combination with the input impedance expression, to
determine R; and R, . After simplification it is seen that

R =R, = ﬁ'lzo =858 Q and Ry = 242 Zy = 1414 Q

Ji+1

The choice of the resistor network ensures that at the input and
output ports an impedance of 50 Q is maintained. This implies that
this network can be inserted into a 50 ) transmission line section
without causing undesired reflections, resulting in an insertion loss.
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The definitions for the S-parameters require appropriate termination. For instance,
if §; is desired, the transmission line connected to port 2 has to be terminated into its
characteristic line impedance. This does not necessarily mean that the output impedance
Z o of the network has to be matched to the line impedance Z,,. Rather, the line imped-
ance must be matched to ensure that no wave is reflected from the load, as implied by
a, = 0.If this is not the case, we will see in Section 4.4.5 how S, is modified.

4.4.3 Chain Scattering Matrix

To extend the concept of the S-parameter representation to cascaded networks, it
is more efficient to rewrite the power wave expressions arranged in terms of input and
output ports. This results in the chain scatfering matrix notation. That is,

{ a4 } ~ |Tu le{ b, } (4.57)
b Ty Ty|l a
It is immediately seen that the cascading of two dual-port networks becomes a simple

multiplication, This is apparent in Figure 4-18, where network A (given by matrix [T],)
is connected to network B (given by matrix [T]p).

b': a': a; bf af
port 1 1], [T}, port 2
Qe A, [
it o >
by b, a4 b;

Figure 4-18 Cascading of two networks A and 8.

If network A is described by the relation

A Y. - A
{ ) } = |Tu Tu{ b2 } (4.58)
b1 Iy Tyl @
and network B by
B B B B
{a;}= T“T”{bi} (4.58b)
b Ty Tyl 2

we notice, based on the parameter convention shown in Figure 4-18, that
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be aB
a, b

Thus, for the combined system, we conclude

A B
{ 4 } = T‘;‘l T‘:‘Z Tfl TIIB2{ bz } (460)

A B
b All8 ~B{| a
! 7;1 Ty||Ty Tyl 2

which is the desired matrix multiplication. Therefore, the chain scattering matrix plays
a similar role as the ABCD-matrix discussed earlier.

The conversion from the S-matrix to the chain matrix notation follows identical
steps as outlined in Section 4.3.1. In particular, to compute T, for instance, we see that

T, =3 = (4.61)
2lg, =0 2191 21
Similarly,
Ty = _.z_z‘:- (4.62)
T, = z__;: (4.63)
T, = "(SIIS2‘2$2_1512521) - TS'A; (4.64)

Conversely, when the chain scattering parameters are given and we need to convert to
S-parameters, we find the following relations:

Sy = STt Th (4.65)
S, = TuTzzT—lsznle - ?_?: 4.66)
Sy = Ti“ (4.67)
Sy = 12 (4.68)
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Alternatively, a matrix manipulation as discussed in the next section could have been
carried out with the same result.

444 Conversion between Z- and S-Parameters

We have already seen how certain S-parameters can be defined in terms of input
and output impedances of a network [i.e., equations (4.49) and (4.54)]. In this section,
we go through a formal conversion between the Z- and S-parameter sets. Once this
interrelation is established, we are able to formulate conversion links between all six
network parameter sets (S, Z, ¥, ABCD, h, T).

To find the conversion between the previously defined S-parameters and the Z-
parameters, let us begin with the defining S-parameter relation in matrix notation [i.e.,
(4.41)]

{b} = [S]{a} (4.69)
Multiplying by JZ) gives
JZo{b} = {V'} = JZ,[8]{a} = [S{V"} 4.70)
Adding {V"} = ,/Z,{a}to both sides results in

{V} = [SHV'}+{V'} = (S]+[ED{V"} 4.71)

where [E] is the identity matrix. To compare this form with the impedance expression
{V} = [Z]{I}, we have to express {V+} in terms of {I}. This is accomplished by
first subtracting [S]{V"} from both sides of {V*} = ,/Z;{a}; thatis,

(VISV} = JZo({a} - {b}) = Zy{I} (4.72)
Now, by isolating {V™}, it is seen that
{V'} = Zy(IE]- [SD) {1} 4.73)
Substituting (4.73) into (4.71) yields the desired result of
[V} = (S)1+[ED{V'} = Zy([S]1+ [E]D(E]-[S])"' {1} (4.74)
or
[Z] = Zo([S1+ [ED(E] - [S]) (4.75)

Explicit evaluation yields
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-1
Zy Zy| _ Z, L+5y Si [I‘Su —S12
Zy Zy Sy 1+83)| =83 1-8p
L [1+50 s (4.76)
0 Szl 1 +322

- 1-8%n S
(1=-5,,)(1=-55)- 85,5, Sy 1-8y,

Identifying individual terms is now easily carried out. A complete summary of all net-
work coefficient sets is given in Appendix C.

4.4.5 Signal Flow Chart Modeling

The analysis of RF networks and their overall interconnection is greatly facilitated
through signal flow charts as commonly used in system and control theory. As origi-
nally introduced to seismology and remote sensing, wave propagation can be associated
with directed paths and associated nodes connecting these paths. Even complicated net-
works are easily reduced to input-output relations in which the reflection and transmis-
sion coefficients play integral parts. In this section we will briefly summarize key
principles needed for a signal flow network analysis.

The main concepts required to construct flow charts are as follows:

1. Nodes that are deployed to identify network parameters such as ay, by, @, by
when dealing with S-parameters

2. Branches that are needed when connecting the network parameters

3. Addition and subtraction of branch values in accordance with the directions of the
branches

We will now discuss these three items in detail. To this end let us consider a section
of a transmission line that is terminated in a load impedance Z, , as seen in Figure 4-19.

--_-ZO | |ZL - 5 yI;
P
(a) (b)

Figure 4-19 Terminated transmission line segment with incident and reflected S-
parameter description. (a) Conventional form, and (b) Signal flow form,
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Even though we could use voltage values as node identifier, it is the S-parameter
representation that finds widespread use. In Figure 4-19(b) the nodes a and b are con-
nected through the load reflection coefficient I'; . This makes sense since the reflection
coefficient is the ratio b/a, so that it simply states that node b is found as a result of mul-
tiplying node a by T'; . This is depicted in generic form in Figure 4-20.

a b
—)
{a) Source node a, which launches wave. {b) Sink node b, which receives wave.
al b
Qemrrrel—)

(c) Branch connecting source and sink,
Figure 4-20 Generic source node (a), receiver node (b), and the associated (c)
branch connection.

In terms of notation, we can encode the situation shown in Figure 4-20 as
b=Ta .70

A more complicated situation arises when we need to make the transmission line
circuit shown in Figure 4-19 more realistic by including a source term, as seen in Fig-

ure 4-21.

(b) (c)
Figure 4-21 Terminated transmission line with source. (a) conventional form, (b)
signal flow form, and (c) simplified signal flow form.

Unlike Figure 4-19, the nodes a and & are preceded by two additional nodes that
we shall denote a” and b". The ratio 5’/a” defines the source reflection coefficient I'gas
already discussed in Section 2.11. Here we also see that b is given by multiplying @’
with the source reflection coefficient. By relying on the concept of summation, we
define b as the sum of b5 and a'T';. Thus, the source by is

bs = b —a'T 4.78)



180 Chapter 4 » Single- and Multipart Networks

An explicit expression for b is obtained by noting that
Ve = Va+lgZs (4.79)

based on an outflowing current convention (see Figure 4-21). This can be converted into
the form

. Vi v
Zy Z4

Rearranging terms and division by JZ_,] gives

2oy, _ Vs -rSV—; (4.81)
JZo "Iz '

When comparing (4.81) with (4.78), we immediately see that

b, = 2o\, (4.82)
§ T Zo+Zy © ’

An important conclusion can be drawn when expressing @’ in (4.78) by I';d" so that we
obtain

’ I bS
b’ = be+I;I'gh” = [=T,T, (4.83)

This is a known as a self- or feedback loop (see Figure 4-22), which allows us to repre-
sent the nodes bg and b” by a single branch whose value is given by (4.83).

be — 1/(1 -1;T3)

Qi sl

b b’ by b
rLFS

Figure 4-22 A self-loop that collapses to a single branch.

All signal flow chart principles can therefore be reduced to six building blocks, as
summarized in Table 4-3.

By way of an example, let us analyze a more complicated RF circuit consisting of
a sourced and terminated dual-port network.
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Table 4-3  Signal flow chart building blocks

Description Graphical Representation
a a
- [ 2 — - -z - e———. - -
Nodal Assignment
iy [ ] — - -z - ——— -
—— - a a
PR — — e ——
Branch Zo b ZL # b v FL
—=2T : e . —
Series Connection @M—O =53 S
a b ¢ a ¢
S,
Parallel Connection Si+5;
A% B T e b
Splitting of Branches _.3_;_.. = Py S
“ :§l “ gl S3
b 141-T)
> Ot
Self-loop a E S ¢ a ¢
T
RF &M W+

Example 4-8: Flow chart analysis of a dual-port network

For the network shown in Figure 4-23 find the ratios of £,/a, and

a,/bg. Assume unity for the multiplication factor of the transmis-
sion line segments.
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Zzph & & T
o —o'—'"f:
<J Z, Is) % ||z
PAS b,

(a) Circuit representation

Ln
T o

1 a §2| b, _1_

— o

¥
3 S”n JLSn I,

-1

.

:i b, 512 a3 ri
(b) Signal fiow chart
Figure 4-23 Sourced and terminated two-port network.

Solution:  The process of setting up the individual ratios is
explained best by going through a step-by-step simplification for the
ratio a,/bg employing the rules summarized in Table 4-3. Figure 4-
24 depicts the five steps.

Step 1. Splitting of the rightmost loop between b, and a,, leading
to the self-loop §,,I",

Step 2: Decomposition of the self-loop between branches @, and b,,
resulting in the multiplication factor §,,/(1 - §5,T', ), which can be
combined with I'; and §,,

Step 3: Series and parallel connections between a, and b, leading
to the input reflection coefficient

r = by - $12521

Step 4: Splitting the loop into a self-loop, resulting in the multiplica-
tion factor

Iy

81259
(S ut 1—_522-1-_[‘ 1“,_)1"3
Step 5. Decomposition of the self-loop at a,, leading to the
expression
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Step 4
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S+ 1-5,T; )T 1[5+ zSz;rLr)H

Step 5

Figure 4-24 Step-by-step simplification to determine the ratio a,/b;.
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1
SIZSZI s
1- (S” + -ITEFL)FS

Rearranging and simplification leads to the final form:

bs  1=(S) T+ ST + 51255 T5) + 515,161,

The preceding derivation follows a pattern similar to finding
the transfer function of a control system or a signal processor. Even
complicated circuits can be reduced efficiently and quickly to estab-
lish the nodal dependcies.

The preceding example points out what will happen if the matching condition for
recording the S-parameters is not satisfied. As we know, if we compute §,, we need to
ensure that a, = 0. However, if a, # 0, as is the case in the preceding example, we see
that S, is modified by the additional factor §,,5,,I'; /(1 -8,,I;).

4.4.6 Generalization of S-Parameters

In cur discussion thus far it was assumed that the characteristic line impedance at
both ports has the same value Z,. However, this does not have to be the case. Indeed, if
we assume that port 1 is connected to line impedance Z,, and port 2 to impedance
Zy,, we have to represent the voltage and current waves at the respective port
(n=12)as

V,= Vo4V, = [Z(a,+b,) (4.84)

and

= L. Bt __" (4.85)

a, = —=,b, = —" (4.86)
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These equations allow the definition of the S-parameters as follows:

S, = b _ YidiZo

) I
Ha, =0(mn=p Vj/«/zo;‘

When compared to the previous S-parameter definitions, we notice that scaling by the
appropriate line impedances has to be taken into account. It should also be apparent that
although the focus of our derivations was a two-port network, the preceding formulas
can be extended to an N-port network where n = 1,..., N.

A second consideration is related to the fact that practical measurements involve
the determination of the network S-parameters through transmission lines of finite
length. In this case we need to investigate a system where the measurement planes are
shifted away from the actual network, as depicted in Figure 4-25.

(4.87)

o
=

Vi=0(n=)

bS a) a,
Zs 4> -
Two-port —
Vs Zo network Zo Z,=2g
Zet e
; U 2 +
=) 0% 220 -

Figure 4-25 Two-port network with finite-length transmission line segments.

An incident voltage wave launched from the power supply will have to travel a
distance !, in order to reach port 1. Consistent with the notation intreduced in
Section 2.9, we note that at port 1 the incident voltage is given as

Vidz= 0)= V] (4.88)
and, at the generator side, as

-ip, (=}
Vi(z= —)= Vie (4.89)

The reflected voltage wave at port 1 can be cast in the form

Viz= 0)= V} (4.90)
and

- B
€

Vildzi= 1)) =V,

4.91)
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where, as usual, B, stands for the lossless propagation constant of line 1. In an identical
fashion, the voltage behavior at port 2 can be formulated by simply replacing V., in
terms of V, and V,in terms of ¥, as well as B, in terms of B,. The preceding equa-
tions can be combined in matrix form

Vi(-1)) B v
fori N ) R
Voul—42) 0 e!lez v,

which links the impinging waves at the network ports to the corresponding voltages
shifted by the electric lengths of the attached transmission line segments. For the
reflected voltage waves we get the matrix form

V. (=] -ib¢ V.
{ nl-h) }= Pl { 1} 4.93)
VOI.II:(-IZ) 0 e_.j]:"ZIZ Vz

As the discussion in Section 4.4.1 taught us, the S-parameters are linked to the coeffi-
cients a, and b,, which in tumn can be expressed through voltages (if we assume

Zoy = Zgy)
Vi $.S vy
{ N } = 11 12 { i } (4‘94)
V, S Snll V)

It is apparent that if transmission line segments are added, we have to replace the above
voltages by the previously derived expressions, leading to the form

{ Vial=h) }_ B | T | P { V;(—ll)} (4.95)
V;l.lt(_iz) 0 e_jBZIZ Sz] Szz O e‘fﬁzfz V:}.ut(_l2)

This final reveals that the S-parameters for the shifted network are comprised of three
matrices. In terms of the coefficients, we see that

-i2B4, e_'j(BlIl +B,1)

SHIFT _ Sne S12
=iB 1, +Bahy) —§2PB4,
Sye Sype

[S] (4.96)

The physical meaning of this form is easy to understand. The first matrix coefficient
reveals that we have to take into account 2f,!; or twice the travel time for the incident
voltage to reach port 1 and, upon refiection, return. Similarly, for port 2 we see that the
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phase shift is 2P, . Moreover, the cross terms, which are closely related to the for-
ward and reverse gains, require the additive phase shifts associated with transmission

line 1 (B,1,) and transmission line 2 {3,/,), since the overall input/output configura-
tion now consists of both line segments.

RF&MW-
Example 4-9: Input impedance computation of a transmission
line based on the use of the signal flow chart

A lossless transmission line system with characteristic line imped-
ance Z, and length ! is terminated into a load impedance Z; and
attached to a source voltage V,; and source impedance Zg, as
shown in Figure 4-26. (a) Draw the signal flow chart and (b) derive

the input impedance formula at port 1 from the signal flow chart rep-
resentation.

Ll @

Figure 4-26 Transmission line attached to a voltage source and terminated by a
load impedance.

Solution:  (a) Consistent with our previously established signal
flow chart notation, we can readily convert Figure 4-26 into the form
seen in Figure 4-27.

b

a e a,
4

1
It 1.
by, ™ b

Figure 4-27 Signal flow chart diagram for transmission line system in
Figure 4-26.

(b) The input reflection coefficient at port 1 is given by
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which is exactly in the form given in Section 3.1, with I'; = I’y and

I = d.Thus
on oo 2B _ Zin=Zg
() =Te 7. 72,
Solving for Z, yields the final result
7 1+ l"l_.‘z_JF 2Bt

This example shows how the input impedance of a transmis-
sion line can be found quickly and elegantly by using signal flow
chart concepts.

4.4.7 Practical Measurements of S-Parameters

Measurement of the S-parameters of a two-port network requires reflection and
transmission evaluations of traveling waves at both ports. One of the most popular
methods is to use a vector network analyzer. The vector network analyzer is an instru-
ment that can measure voltages in terms of magnitude and phase. Usually network ana-
lyzers have one output port, which provides the RF signal either from an internal source
or an external signal generator, and three measurement channels, which are denoted as
R, A, and B (see Figure 4-28).

The RF source is typically set to sweep over a specified frequency range. The
measurement channel R is employed for measuring the incident wave. Channel R also
serves as a reference port. Channels A and B usualty measure the reflected and transmit-
ted waves. In general, the measurement channeis A and B can be configured to record
any two parameters with a single measurement setup. An example of the test arrange-
ment that allows us to measure §;; and §,, is shown in Figure 4-28.

In this case the value of §;; can be obtained by evaluating the ratio A/R, and
S, through computing B/R . To measure S, and S,, we have to reverse the DUT. In
Figure 4-28 the dual-directional coupler allows the separation of the incident and
reflected waves at the input port of the DUT. The bias tees are employed to provide nec-
essary biasing conditions, such as a quiescent point for the DUT. Since the most com-
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Q:
o
%g
ol eee
of 888
=0
RF R AR
—° P

50 Q
)——-—-’K]—[Biastee]—[ @ Biaa;stee]—[)—--K

Dual-Directional Dual-Directional
Coupler Coupler

50 Q

DC Power Supply

Figure 4-28 Measurement system for IS11 and §,, parameters using a network
analyzer.

mon use of network analyzers is the characterization of two-port devices, bias tees,
directtonal couplers, and necessary electronic switches as well as the RF sweep signal
generator are all integral parts of most modern analyzers.

As we can see, a practical test arrangement is more complicated when compared
with the simple ideal system described in Sections 4.4.4 and 4.4.6, where we assume
that the DUT is connected to perfectly matched transmission lines of equal (Section
4.4.4) or unequal (Section 4.4.6) characteristic impedance. In a realistic measurement
system we cannot guarantee either matching conditions or ideality of the components.
In fact, we have to consider ali effects of the external components connected to the
input and output ports of the DUT. Furthermore, the primary reference plane for mea-
surements of complex voltages, which are then converted into S-parameters, is usually
somewhere inside of the networks analyzer. As a result, it is necessary to take into
account not only attenuation and phase shifts due to the external components, but also
portions of the internal structure of the network analyzer itself.

In general, the measurement test arrangement can be reduced to the cascade of
three networks depicted in Figure 4-29.
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a a,
- -
Error Error
box A DUT box B
Measurement AN VA Measurement
Reference Plane Desired Reference Plane Reference Plane
(a)
Ey

Figure 4-29 (a) Block diagram of the setup for measurement of S-parameters of
a two-port network; (b} signal flow chart of the measurement test setup.

In Figure 4-29 the signals R, A, B correspond to the reference port and channels A
and B of the network analyzer. RF;, is the output line from the signal source. The
branch denoted E, represents possible leakage between the output of the signal source
and the channel B.

The network analyzer treats everything between the measurement reference
planes as a single device. Therefore, our task is reduced to finding a way to calibrate the
network analyzer in such a way that it becomes possible to eliminate the effect of all
undesired influences or parasitics. The main goal of a calibration procedure is to char-
acterize the error boxes prior to measuring the DUT. This information can then be used
by an internal computer to evaluate the error-free S-parameters of the actual DUT.

Assuming that the error box A network is reciprocal, we can staie E,, = E,,.
Therefore, we have to find six parameters (E,,, E,,, Ey;, Ex, Eg, and E7) to character-
ize the error boxes.

The simplest calibration method involves three or more known loads (open, short,
and matched). The problem with this approach is that such standards are usually imper-
fect and are likely to introduce additional errors into the measurement procedures.
These errors become especially significant at higher frequencies. To avoid the depen-
dency on the accuracy of calibration standards, several methods have been developed
(see Eul and Schiek and Engen and Hoer, listed in the Further Reading section at the
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end of this chapter). In this section we will only consider the so-called Through-
Reflect-Line (TRL) technique (see Engen and Hoer).

The TRL calibration scheme does not rely on known standard loads. Instead, it is
based on the use of three types of connections, which are shown in Figure 4-30.

RE| E; R 1 FEr |B

Ell" Ezzn ‘FER
fA — -
En 1
(a) Through
Ey
R By R F & [B
Ey Exf Y Fy
A
12
(b) Reflect
Ey
RE| Enw R &F Er |B.
EYy Epnb vE,
Al -
E, e’
{c) Line
Figure 4-30 Signal flow graphs of TRL method: (a) Through, (b} Reflect, (c) Line
configurations.

The Through connection is made by directly connecting ports 1 and 2 of the DUT.
Next, the Reflect connection uses a load with high reflectivity. The reflection coefficient
does not have to be known because it will be determined during the calibration process.
The only requirement is that the load possesses the same reflection coefficient for both
input and cutput ports. The Line connection is made by connecting ports 1 and 2 viaa
transmission line matched to the impedance of the error boxes. Usually, this impedance
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is close to 50 2. Before we continue with the actual analysis of each particular con-
nection type, let us first consider the system as a general two-port network.

From Figure 4-29(b) it is seen that the signal at node B is a linear combination of
the input RF signal and the signal at node F:

B = Ex+E.F (4.97)
Applying the self-loop rule, we can write that signal at node F as
F = L R {4.98)
1 —EgS,, '

To compate the signal at port R, the same method as discussed in Example 4-8 can
be used. In this example we first replaced the loop with the signal F through a self-loop
and then performed the same transformation for the signal R. The result of these com-
putations is

EZI
SIZSZIER
1 —E22(3“ + ms—zz)

Substituting {4.99) into (4.98) followed by the substitution of (4.98) into (4.97), we
obtain an expression for signal B:

R = (4.99)

S E
B = Ey+E;—2 2 (4.100)
1 _ERSZZI E (S + 51232153)
— 220711 1 -E.S
R°22

Finatly, the value for the signal at node A is obtained by using the summation rule:

E,E, S
A= E11+ S.S. . E (S11+312ERm-) {4.101)
l-En(S“+ 12921 R) RO22

If the measurement system does not introduce any errors, then £, = E, = Ey = 1
and E,, = E), = Ep = Ey = 0. Substituting these values into (4.99), (4.100), and
(4.101), we find that R = 1, A = S;, and B = §,, which shows the validity of the
formulas,

Now we are ready to investigate the TRL connections in more detail. To avoid
confusion, let us denote the measured signals R, A, and B for Through by subscript T,
for Reflect by R, and for Line by L.
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For the Through connection we know that S;; = S5, = 0 and §), = §5; = 1.
Setting E |, = E,, it follows that

Ry = __'[::..1.2...__ (4.102a)
2
By = Ey+ Epot2__ 4.102¢
T~ =X Tl _EZZER ( . )
For the Reflect connection we have S;; = S, = I' and §;; = §5; = 0. This results
in the equations

R. = _F12_ (4.1032)

E5,T
AR - E“ + ﬁ'—r (4103b)

e

Finally, for the Line connection we see that §;; = §,, = 0 and §, = § = e,

where [ is the transmission line length and ¥ is a complex propagation constant
(y = o+ jP) that takes into account attenuation effects. The resuit is

E
R, = ——12 (4.104a)
1-EpEpe "
2 —2y
A = g 4 Lrfre (4.104b)
L= £n e .
1 - E,,Ege
E
B, = E +Ee——12 (4.104c)
L x*Ere T EnERe'M

Equations (4.102a)~(4.104b) allow us to solve for the unknown coefficients of the error
boxes Ey;, E5, Eyp, Ex, Eg, Ep, the reflection coefficient I, and the transmission
line parameter ¢ ' . Knowing the error coefficients we are then in a position to process
the measured data in order to obtain an error-free S-parameter set of the DUT.
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4.5 Summary

Networks play an integral part in analyzing basic low-frequency circuits as well as
RF/MW circuits. For instance, the admittance or ¥-matrix for an N-port network can be
written in generic form as

i Yiu Yoo Yinl|lw
i Y Yo " Yonl|) V2
iy Yor Yoo = Yuul L vw

where currents and voltages become the defining external port conditions. The evalua-
tion of the matrix coefficients is accomplished through appropriate terminal conditions:
Yﬂm = l_n
m v =0 (for k#m)
The concepts of Z-, Y-, h-, and ABCD-matrix representations of networks can be
directly extended to high-frequency circuits. Unfortunately, we encounter practical dif-
ficulties in applying the required open- and short-circuit network conditions needed
when defining the respective parameter sets. It is for this reason that the scattering
parameters as normalized forward and backward propagating power waves are

introduced:
V,
Z

= JZol,

a, =

w

V-
b, = —= = = JZyl,
n JZ_(] N/_On

For a two-port network this results in the matrix form

{bl}= S 312{“1}
b, S21 S L 83

Unlike open- or short-circuit network conditions, impedance line matching at the
respective port is now required to establish the S-matrix set. The S-parameters can be
directly related to the reflection coefficients at the input and output of the two-port
network (S, S5, ). Furthermore, forward and reverse power gains are readily identified

(4Sal% S
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The S-parameters are also very useful descriptors when dealing with signal flow
diagrams. A signal flow diagram is a circuit representation involving nodes and paths
for the sourced and terminated transmission line as follows:

b l1a e a,

]'f‘;u ”rL
b, e b

With signal flow diagrams even complicated systems can be examined in terms of spe-
cific input output relations in a similar manner as done in control system theory.

Chapter 4 finishes with a brief discussion of the practical recording of the S-
parameters for a two-port network (DUT) through the use of a vector network analyzer.
To compensate for various error sources associated with the measurement arrangement,
the so-called TRL method is presented. Here the Through, Reflect, and Line calibrations
are shown to account for the various errors and therefore permit the recording of the
actual S-parameters needed to characterize the DUT.
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Problems

4.1 From the defining equations (4.3) and (4.6) for the impedance and admit-

42

4.3

44

4.5

tance matrices, show that (Z] = [Y]™.

For the following generic T-network, find the impedance and admittance
matrices.

Show that for a bipolar-junction transistor in a common-base configuration
under small-signal low-frequency conditions (whose equivalent circuit is
shown below) a hybrid parameter matrix can be established as follows:

Yeelbe The
rp.+(1+B)r,, ry. +(1+P)r,,

rbe"' Brce L 1
rbe"'(]‘"'B)rce The rbe+(l+B)rcc

[h] =

where the individual transistor parameters are denoted in the figure.

- B
I, - i
I I E o= ri=e
E _.': ----- — : Sy """ - :
B L =P B 2
""" ' B

Using the results from Problem 4.3, compute the equivalent circuit parame-
ters for a BT in common-base configuration if the h-matrix is given as

166 0262x10°
-0.99668 66.5x10™°

(h]) =

Employ the conversion table for the different parameter representations of
the two-port network and find the h-matrix representation for a Darlington
pair shown in Figure 4-7 under the assumption that the transistors are speci-
fied by the same h-matrices derived in Example 4-2.
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4.7

4.8

49

4.10

4.11

4.12

197

Using the definition of the ABCD network representation, find the ¥-parame-
ter description.

From the results of Problem 4.3 and Example 4.2, establish the conversion
equations between the h-matrix parameters for the common-base and com-
mon-emitter transistor configurations.

Unlike the series connection discussed in Example 4-4, derive the ABCD-
parameters for a two-port network where the impedance Z is connected in
parallel.

Find the ABCD-parameters for a generic three-element pi-network, as
depicted in Figure 4-2.

Compute the ABCD-parameters for an RF transformer with turn ratio
N = N,/N,, where N, is the number of turns a the primary winding and
N, is the number of turns of the secondary winding.

Prove that the h-matrix parameters for a high-frequency hybrid transistor
model shown in Figure 4-12 are given by (4.31).

In this chapter we have mentioned several h-matrix representations of the
bipolar-junction transistor for different frequency conditions. In all cases we
have neglected the influence of the parasitic components associated with the
casing of the transistor. The medification to the equivalent circuit of the tran-
sistor that takes into account these parasitics is shown below:

CBC

Ly Intrinsic L
Bt "NAB ! fansistor o
Model

E
——t—

Cse ? L, Ce

E
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4.13

4.14

4.15

4.16

4.17
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Assuming that the intrinsic transistor model is given by a generic h-matrix,
derive the modified model that accounts for the casing.

Compute the retumn loss for a 25 Q resistor connected to a 75 € lossless
transmission line.

Find the forward gain of the circuit discussed in Example 4-8,

Given that the input of an amplifier has a VSWR of 2 and the output is given
by VSWR = 3, find the magnitudes of the input and output reflection coefti-
cients. What does your result mean in terms of S, and S, ?

Using the same approach as described in Section 4.4.4, show that the S-
parameters of the network can be computed from the known ¥Y-parameters
using
[S] = ([Y]+ Yo [ED) (Y [E1-[Y])
and the corresponding inverse relation
[Y] = Yo([E]-[S1)([S]+[E])!
where Y, = 1/Z, is the characteristic line admittance.

The ideal transformer of Problem 4.10 can also be represented in S-parame-
ter form. Show that the S-matrix is given by

1 N’-1) (2N
1= (L) -0 )2]
(2ZN) (1-N7)
where N = N|/N,.

For the following two circuits, prove that the S-parameters are given as
r -
(5] = p 1-T, and [S] = I, 1+T,
1-T, T, 1+, T,
respectively, where [') = (14+2Z,/Z)! and [, = ~(1 +2Y/Y ).

—_}—

Z,
and ¥,
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4.19

4.20

4.21
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For the following T-network inserted into a transmission line with character-
istic impedance of Z; =500, the three resistances are
R, =R, =856Q, and R, = 141.8 Q. Find the S-parameters of this
configuration and plot the insertion loss as a function of inductance L for
the frequency of £ = 2 GHz and L changing from 0 to 100 nH.

In practice, the resistors in the 7-network of the previous problem are not
frequency independent. At RF frequencies parasitic effects have to be taken
into account. Compute the S-parameters at 2 GHz when all resistors have a
0.5 nH parasitic series inductance. Assume L is fixed at 10 nH.

A BJT is operated in a 50 Q circuit at 1.5 GHz. For the bias conditions of 4
mA collector current and collector-emitter voltage of 10 V, the manufacturer
provides the S-parameters in magnitude and angle as follows:

S, =06 £-127°, §,, =3.88 £87% §,, =0.039 £28°; §,, =0.76 £ -35°.
Find (a) the Z-parameter and (b) the h-parameter representation.






CHAPTER 5

An Overview of RF Filter
Design

After the discussion in Chapter 4, we are ready to
extend and apply our knowledge of one- and two-port networks to develop RF filters. It
is of particular interest in any analog circuit design to manipulate high-frequency sig-
nals in such a way as to enhance or attenvate certain frequency ranges or bands. This
chapter examines the filtering of analog signals. As we know from elementary circuit
courses, there are generally four types of filters: low-pass, high-pass, bandpass, and
bandstop. The low-pass filter allows low-frequency signals to be transmitted from the
input to the output port with little attenuation. However, as the frequency exceeds a cer-
tain cuz-off point, the attenuaticn increases significantly with the result of delivering an
amplitude-reduced signal to the output port. The opposite behavior is true for a high-
pass filter, where the low-frequency signal components are highly attenuated or reduced
in amplitude, while beyond a cut-off frequency point the signal passes the filter with lit-
tle attenuation. Bandpass and bandstop filters restrict the passband between specific
lower and upper frequency points where the attenuation is either low (bandpass) or high
(bandstop) compared to the remaining frequency band.

In this chapter we first review several fundamental concepts and definitions per-
taining to filters and resonators. Specifically, the key concept of loaded and unloaded
quality factors will be examined in some detail. Then, we introduce the basic, multisec-
tion low-pass filter configuration for which tabulated coefficients have been developed
both for the so-called maximally flat binomial, or Butterworth filter, and the equi-ripple
or Chebyshev filter. The intent of Chapter 5 is not to introduce the reader to the entire
filter theory, particularly how to derive these coefficients, but rather how to utilize the
information to design specific filter types. We will see that the normalized low-pass fil-
ter serves as the basic building block from which all four filter types can be derived.
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Once we know the procedures of converting a standard low-pass filter design in
Butterworth or Chebyshev configuration inte a particular filter type that meets our
requirements, we then need to investigate ways of implementing the filter through
distributed elements. This step is critical, since at frequencies above 500 MHz lumped
elements such as inductors and capacitors are unsuitable. Relying on Richards transfor-
mation, which converts lumped into distributed elements, and Kuroda’s identities, we
are given powerful tools to develop a wide range of practically realizable filter
configurations.

5.1 Basic Resonator and Fiiter Configurations

§.1.1 Filter Types and Parameters

It is convenient to begin our discussion by introducing the ideal behavior of the
four basic filter types: low-pass, high-pass, bandpass, and bandstop. Figure 5-1 summa-
tizes their attenvation ¢ versus normalized angular frequency behavior.

o, dB o, dB
» [ 3
o —>oe

» - {2
¢ 2 0 1
Low-pass filter High-pass filter
«,dB o, dB
i »
oo O — oo O — oo

1 ' ! I
| | | |
I | 1 a

0 0, Q, 0 Q, Q,
Bandpass filter Bandstop filter

Figure 5-1 Four basic filter types.

We have chosen the parameter £ = @/@, as a normalized frequency with
respect to the angular frequency @,., which denotes cut-off frequency for low-pass and
high-pass filters and center frequency for bandpass and bandstop filters. As we will
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see, this normalization will greatly simplify our task of developing standard filter
approaches. Actual attenuation profiles are shown in Figure 5-2 for the so-called bino-
mial (Butterworth), Chebyshev, and elliptic (Cauer) low-pass filters.

o, dB o, dB
F 3 -

1
Binominal filter Chebyshev filter

JA\ .a

1
Elliptic filter

Figure 5-2 Actual attenuation profile for three types of low-pass filters.

The binomial filter exhibits a monotonic attenuation profile that is generally easy
to implement. Unfortunately, to achieve a steep attenuation transition from pass- to stop
band, a large number of components is needed. A better, steeper slope can be imple-
mented if one permits a certain degree of variations, or ripples, in the passband attenua-
tion profile. If these ripples maintain equal amplitude, either in the stopband or
passband, we speak of a Chebysheyv filter since the design relies on the so-called Che-
byshev polynomials. For both the binomial and the Chebyshev filter we observe that the
attenuation approaches infinity as £2 - oo, This is in contrast to the elliptic filters,
which allow the steepest transitions from passband to stopband at the expense of ripples
in both bands. Because of their mathematical complexity in designing elliptic filters, we
will not investigate them any further (for more information see Rizzi, listed in Further
Reading at the end of this chapter).

In analyzing the various trade-offs when dealing with filters, the following param-
eters play key roles:
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* Insertion loss. Ideally, a perfect filter inserted into the RF circuit path would
introduce no power loss in the passband. In other words, it would have zero inser-
tion loss. In reality, however, we have to expect a certain amount of power loss
associated with the filter. The insertion loss quantifies how much below the 0 dB
line the power amplitude response drops. In mathematical terms it states

Py 2
IL = 10108P_L = —10log(1 - 1Ty | (5.1)
where P, is the power delivered to the load, P;, is the input power from the
source, and |[; | is the reflection coefficient looking into the filter.

* Ripple. The flatness of the signal in the passband can be quantified by specifying
the ripple or difference between maximum and minimum amplitude response in
either dB or Nepers. As already mentioned, and as will be discussed further, the
Chebysheyv filter design allows us to precisely control the magnitude of the ripple.

* Bandwidth. For a bandpass filter, bandwidth defines the difference between upper
and lower frequencies typically recorded at the 3 dB attenuation points above the
passband:

idB 3dB 3dB
[ _fL

BW™ = f (5.2)

* Shape factor. This factor describes the sharpness of the filter response by taking
the ratio between the 60 dB and the 3 dB bandwidths:

BWRE -
SF = 3dB - _3dB  .3dB G.3)
BW fo —f1L
* Rejection. For an ideal filter we would obtain infinite attenuation level for the
undesirable signal frequencies. However, in reality we expect an vpper bound due
to the deployment of a finite number of filter components. Practical designs often
specify 60 dB as the rejection rate since it can readily be combined with the shape

factor (5.3).

The preceding filter parameters are best illustrated by way of a generic bandpass
attenuation profile, as summarized in Figure 5-3. The magnitude of the filter’s attenua-
tion behavior is plotted with respect to the normalized frequency 2. As a result, the
center frequency f. is normalized to €2 = 1. The 3 dB lower and upper cut-off fre-
quencies are symmetric with respect to this center frequency. Beyond these 3 dB points,
we observe the attenuation response rapidly increasing and reaching the 60 dB rejection
points at which the stopband begins.
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Figure 5-3 Generic attenuation profile for a bandpass filter.

There is one additional parameter describing the selectivity of the filter. This
parameter is known as the quality factor @, which generally defines the ratio of the
average stored energy to the energy loss per cycle at the resonant frequency:

3\’6‘1‘358 stored energ - waverage stored energx - Ws[ored

energy loss percycle | _ power loss ® Pross

Q=0

W, 0=, =,

(5.4)

where the power loss P, is equal to the energy loss per unit time. In applying this def-
inition, care must be taken to distinguish between an unloaded and loaded filter. What is
meant here is best seen by viewing the filter as a two-port network connected to a
source at the input side and a load at the output, as shown in Figure 5-4,

Z;

Vcdi Filter EZL

Figure 5-4 Filter as a two-port network connected to an RF source and load.

It is customary to consider the power loss as consisting of the power loss associ-
ated with the external load and the filter itself. The resulting quality factor is named
loaded @, or @, . Interestingly, if we take the inverse of the loaded (), we see that
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1 _ l( power loss in filter )’ l( power loss in load )‘ (5.5)

Q;p  W\average stored energy w\average stored energy

= ®=w,

since the total power loss is comprised of the power losses due to the presence of the fil-
ter and the load. This can be written in the concise form
LI S
Qip Qr Q¢
where O and Q) are the filter { and the external Q. The precise meaning of (5.6)

will be analyzed in Section 5.1.4. As we will also see in this section, (5.6) can be cast in
the form

(5.6)

Q - fc - fC

LD = 3dB _34B " 3dB
fu -f1" BW

where f, is the center or resonance frequency of the filter. In the following sections a

summary is given of the salient features of the three most common filters. Emphasis is
placed on the network description as previously developed in Chapter 4.

5.7

5.1.2 Low-Pass Filter

As one of the simplest examples we start our investigation by analyzing a first-
order low-pass filter connected to a load resistance, as depicted in Figure 5-5.

| '5 .
2 4k CElr; z, % %| | Filer le
L B T ) —

(a) Low-pass filter with load resistance.  (b) Network with input/output voltages
Figure 5-5§ Low-pass filter connected between source and load resistance.

The focal point in any filter design is to find the output V, due to the input volt-
age V, or even better, the generator voltage V ;. For our simple circuit this can best be
accomplished by cascading four ABCD-networks (labeled 1 through 4) as suggested in
Figure 5-6.
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Figure 8-6 Cascading four ABCD-networks.
The overall ABCD-network is therefore

: 1
1+(R+R )( 0)C+-—)R +R
aBl_RJNER[1 o] 1 0 _ FVFT TR TeT
CD 0 1|0 1[joC 1f{1/R 1 1

fC + — I
joC R,

(5.8)
where we use the fact that both source and load impedances are resistive, i.e., Z; = Rg
and Z; = R;. Since A is already the ratio V;/V,, we only have to invert this single
coefficient:

V
I 1 5.9)

Yo 4 iR +RG)(jcoC+ -1-)
‘RL

Equation (5.9) can be examined for the limiting cases where the frequency is either zero
or approaches infinity. For 0 —~ 0 we obtain

V, 1 Ry

Ve T+(R+R5)/R, Ro+R+R, (5-10a)
and for @ — o
V2 0 5.10b)
Vo " e

In the first case we notice that the voltage divider rule applies for the DC condition,
while for the second case the filter exhibits the expected low-pass behavior of zero out-
put voltage at high frequencies. Further, if the load resistance goes to infinity
(R, = ), the filter becomes unloaded and in the limit a pure first-order system
results:

K%= H(m): 1

Ve 1+ jo(R;+R)C 1D
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where H(®) is known from system theory as transfer function. Besides specifying
the transfer function, it is more common to compute the attenuation factor in Neper
(Np) such that

a(®) = —In|H(®)| = -%muar(mn2 (5.12a)
orin dB as
(@) = -20loglH(w)| = ~10log|H(w)* (5.12b)
The corresponding phase is

Directly related to phase is the so-called group delay ¢_, which is defined as the fre-
quency derivative of the phase
= 99(w)
e = g (5.12d)

It is often desirable to design a filter with nearly linear phase (ie., ¢« WA, with A
being an arbitrary constant factor). The group delay is then simply a constant ¢, o< A.

A typical filter response for C = 10 pF, R = 10 £, R; = 50 Q and various load
resistances is shown in Figure 5-7.

35
30t
25t
9 R =580
g 201
=
151
‘% R,=20Q
16}
R, =500
st R, =100Q
R, =250Q
(] e
10 10

Frequency, Hz
(a) Attenuation profile of the low-pass filter for various load resistances

Figure 5-7 First-order low-pass filter response as a function of various load
resistances.
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Phase, deg.

10° 107 10° 10° 10"
Frequency, Hz
{b) Phase response of the low-pass filter for various load resistances

Figure 5-7 First-order low-pass filter response as a function of various load
resistances. (Continued)

5.1.3 High-Pass Filter

Replacing the capacitor with an inductor in Figure 5-5 permits the construction of
a first-order high-pass filter, as depicted in Figure 5-8. The analysis follows the same
steps as outlined in (5.9), except that the capacitive reactance is replaced by an induc-

tive reactance. The result is

0 1+{R+RG)(—-+ 1) Rg+R

1 0if1 7R
PR A
01 joL |[Ry jo:nC-!-l 1
Ry
Zs [TRTTTT ': P Z o TTROETTR T
E W : E:‘ :W'E: :AE m
¥ : §L§ [Il_]ZL H;l o 3L§ '5[1]24115

{a) High-pass filter with load resistance {b} Network and input/output voltages

Figure 5-8 First-order high-pass filter.
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This gives us directly the result

1%
G
1+ (R+RG)( ~7 RL]
As 0 — 0, it is seen that
V
2 -9 (5.15a)
Ve
and for @ — o we conclude
v R
z 1 = L (5.15b)

Vo 1+(R+Ry/R, Rg+R+R,

which reveals that the inductive influence can be neglected. The filter response for
L=100nH, R=10Q, R; = 50 ©, and various load resistances is shown in Figure 5-9.

5.1.4 Bandpass and Bandstop Filters

A bandpass filter can be constructed through an RLC series circuit or through a
parallel connection of an RLC shunt circuit. The generic series circuit diagram, includ-
ing generator and load impedances, is displayed in Figure 5-10.

The network representation in ABCD notation takes on the form

Z+Zg
[AB]= 120[12] 1o _ 'tz Gt 5.16)
cbl o 1]lo1f{1/Z; 1 1 1 '
ZL

where impedence Z is specified from conventional circuit analysis as

. 1
Z= R+;((0L—m—c) (5.17)
The transfer function H{®) = 1/A is found to be
Y2 . H(®) = 2L (5.18)
Vo ) (Z;+Z5)+ R+ jloL - 1/(0C)) '

Explicit plots of the transfer function and the attenuation profile are discussed in the
following example.
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{a) Attenuation profile of the filter for various load resistances
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(b) Phase response of the filter for various load resistances

Figure 5-9 Low-pass filter response as a function of various load resistances.

Zg

as

Figure 5-10 Bandpass filter implemented in series configuration.
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RF &M W—
Example 5-1: Bandpass filter response

For a bandpass filter with Z; = Z; = 50 2 the following compo-
nents are selected: R = 20 Q, L = 5nH, and C = 2 pF. Find
the resonance frequency, and plot the frequency response of the
phase of the transfer function and the associated attenuvation profile
in dB.

Solution:  To solve this problem we use the definition of the trans-
fer function for the bandpass filter presented in (5.18). The attenua-
tion profile of the filter expressed in dB is computed as
o = 20log[H(®) '] = ~20log[H(®)]. Both the attenuation and
phase profiles of the filter are shown in Figure 5-11. From the graph
we can estimate the resonance frequency f; of the filter to be approx-
imately 1.5GHz. The exact numerical value is
fo = 1/(2nJLC) = 1.59 GHz.

45 T T x 100
m 80
60
35t
% 40
I a
.o -
g 25¢ 0w
g 2| 20 ®
. __40
15F
1 —60
10t —80
5 . L . ~100
10’ 10° 10° 10" 10"
Frequency, Hz

Figure 5-11 Bandpass filter response.
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As expected, our bandpass filter assumes a minimum attenua-
tion at the resonance point, but the transitions from stopband to
passband are very gradual.

If the series circuit is replaced by a shunt circuit, as shown in Figure 5-12, we only
have to replace Z by 1/Y in (5.17), which leads to

= N
Vo Z+25+1/Y (5-19)
where the admittance is
, 1
Y = G+ J(mc-m—L) (5.20)
and upon insertion into (5.19) yields
, 1
Z) G+ jloC-—
1 L[ ( L)]
22 = H(o) = ® (5.21)

(Z, + ZG)[G + j(mC - EIE)] +1

A typical transfer function response of magnitude and phase for the values listed in
Example 5-1 is seen in Figure 5-12.

Working with energy storage systemns or LC-based networks, we can use the qual-
ity factor as introduced in Section 5.1.1 to specify the bandwidth of the 3 dB passband
or stopband of a filter:

fo

W== 5.22
B ) (5.22)

where f is the resonance frequency. This quality factor is the inverse of the dissipa-
tion factor d, which depends on whether we deal with a series (RLC) or a parallet con-
nected (GLC) circuit. Table 5-1 summarizes all relevant definitions for the series and
parallel resonance circuits.

The quality factor provides important insight into the losses generated by a partic-
ular resonator circuit configuration. The circuits shown in Table 5-1 depict untoaded fil-
ters (i.e., filters in the absence of any external load connections).
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(b) Phase of transfer function
Figure 5-12 Bandstop filter response.

When dealing with the loaded situation we are confronted with the additional
complication of generator and load impedances attached to the resonator. With refer-
ence to Figure 5-10, let us take a more detailed look at how the three different quality
factors arise. To this end, our aim is to analyze the series resonance, or bandpass filter,
connected to the generator resistance R; and load R; . Without loss of generality, we
can combine both resistances into the configuration shown in Figure 5-13.
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Tabla 5-1 Series and parallel resonators

C
parsmeter A ”‘%—’
L
_ . i _ . 1
Impedance or Admittance Z = R+}(0L+jm—c Y = G+JOJC+}_0)L
Resonance Frequen =1 W, = L
wene JLC ° e
Dissipation Factor d = R = Rw,C d = G . Goy,lL
ool 0 ©,C o
Wyl 1 W, C 1
Quality Fact = — = = —— =
ality Factor 2= = Ra,C €= G = Gol
fo IR fo 1G
Bandwidth === —= == = —=
BW =3 =t BW =5 = e
L C

Figure 5-13 Circuit used for the definitions of loaded and unloaded quality factors.

where Ry = Rz+ R, and V; is understood as a Thévenin-equivalent source. The
losses can now be partitioned as originating from an external resistance R, an internal
resistance R, or both. Therefore, we need to differentiate three cases:

External quality factor (R #0, R = 0)

WL 1
O = —— = ——
E Ry Ry0,C
Internal or filter quality factor (R = 0,R#0)
_wl
F7 R 7 Re,C
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Loaded quality factor (Rp #0, R=0)
Wy 1
Q D = =
R+Ry (R+Rp)n,C
Identical expressions are derived for a shunt resonator circuit if we replace R and Rg

by G and Gg. It is customary to introduce the normalized frequency deviation from
the resonance pomnt

-0 %
T w (5.23)
and expand it as follows:
fot+f-Jo fo Af AFY' A
- _ =(1+2_(1+2) =2 5.24
Y ey ey ] L o (4 Mt A

with Af = f,— f. Equation (5.24) leads to the expression of the differential change in
quality factor

A
If (5.25) is solved for Q; ,,, and using X = ®L, we obtain
AQ;p fo dXx
Oip = e - AR+ R df (5.26a)

=1
for the series circuit configuration.
Alternatively, for a parallel circuit with B = 1/(®L) we have

0 A%y fo 4B
LD = g T 2Gp+ G)df

(5.26b)

=S
The equations (5.26a) and (5.26b) show that generically the loaded quality factor for
complex impedances (or admittances) can be computed as

0 _AQp fo dIm{Z}
LD = "¢ " 2Re{Z} df

—
n

fo
or

AQu;;_ fo dim{Y}
e  2Re{Y} df

QLD
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where Re{Z}, Im{Z}, Re{Y}, and Im{Y} are real and imaginary parts of the total
impedance or admittance of the resonance circuit.

8.1.5 Insertion Loss

The previously developed quality factor expressions are very useful in RF circuit
design, since the O of a filter can more easily be measured (for instance, with a network
analyzer) than the actual impedance or admittance. It is therefore helpful to re-express
the impedance or admittance values of bandpass or bandstop filters in terms of the vari-
ous Q-factors. For example, the impedance of the series resonance circuit can be rewrit-
ten as:

R R (oL 1
Z—-R+J[0)L &)C)_(RE+R)[RE+R+J(RE+R (oC(RE+R))] (5.27)

which leads to

Oup ] (5.28)

Z = (R£+R)[5; +j0,pE

Following the same steps as described for a series resonator, a very similar expression
can be derived for the admittance ¥ of a parallel resonator:
Y = (Gg+ G)[Qi’ + jQwe] (5.29)
Qr
We now turn our attention to the following situation: a transmission line system
with characteristic line impedance Z, is maiched at the load and generator sides
(Z; = Z; = Z,) as seen in Figure 5-14(a).

{b) Inserted bandpass filter
Figure 5-14 Insertion loss considerations,
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In Figure 5-14(a) the power delivered to the load P, is the total available power from
the source P, :

P, = P, = [Vg*/(8Zy) (5.30)

If the filter is inserted as shown in Figure 5-14(b), the power delivered to the load
becomes

2
2 V| /(82
P, =i _Ye Iz, = Vel /(8Z) . (5.31)
22Z,+Z 1 Qip | .
L2z,+ (22, + R)[-—- +je0,p
4Z, Or
which, after some algebra and the use of (5.6), yields
1
P, =P, (5.32)
(1+€°01p) 0/ Q1p
The insertion loss in dB due to the presence of the filter is then computed as
2,2
1+¢
IL = 101og(-—2—-Q—L;’] = 10log(1 +€°Q7,)-10log(1 - 0,5/ QF)  (533)
/
LD E

At resonance, ¢ = 0, the first term drops out and the second term quantifies the associ-
ated resonator losses. However, if the filter is off resonance, then the first term quanti-
fies the sensitivity. If we consider the frequency at which the power delivered to the
load is half, or 3 dB, of the power at resonance frequency, we can immediately write
that 1+ szQ,z_D = 2, or, taking into account relation (5.24), we obtain

BWiyg = 2Af =efy = fo/Qup
Recalling Section 2.11, we notice that (5.33) can be related to the input reflection coef-
ficient:

2 A2
2 Oip/ Ok 1

Zin_ZG =
1+ ezQiD LF

2
1-IF. "= 1= G
IFa Z +Z

(5.34)

where LF is known as the loss factor. This loss factor plays a central role when devel-
oping the desired filter attenuation profiles.
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RF&MW—+
Example 5-2: Calculation of various quality factors for a filter

For the filter configuration shown in Figure 5-14(b), the following
parameters are given: Z, = 50 Q, Z; = Z; = Z;,, R = 10 Q,
L =50nH, C =047 pF, and the generator voltage is
Vs = 5 V. Find the loaded, unloaded (filter), and external quality
factors; power generated by the source; power absorbed by the load
at resonance; and plot the insertion loss in the range of +20% of the
resonance frequency.

Solution:  The first step in the solution of this problem is to find
the resonance frequency of the filter:

1

= = 1.038 GHz
Jo = Suiic
Knowing this value we are now capable of computing the various
quality factors of the filter:
_ oL
External quality factor: Qp = =— = 326
2Z,
. wyL
Internal or filter quality factor: Qp = = = 32.62
Loaded quality fact =% e
quality factor: QLD—m)- .

To determine the input power, or maximum available power from
the source, we use (5.30).

Py = [V /(8Zy) = 625 mW
Due to nonzero internal resistance of the filter (R = 10 £2), the sig-

nal will suffer some attenuation even at the resonance frequency and
the power delivered to the load will be less than the available power:

P, = P, L =P-;2=51.?mw

in 2,2 v A2 ;2 in”_2
(1+&0Q;p)Q/Q1p Fef, Qr/Cip
Finally, substituting the loaded and external quality factors into

(5.33), we proceed to find the insertion loss of the filter in the range
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of +20% of the resonance frequency by plotting the frequency
response of IL, as shown in Figure 5-15. As we see from the graph,
the 3 dB bandwidth of this filter is approximately equal to 350 MHz,
which agrees with the result obtained using our formula derived ear-
lier in this section (i.e., BW45 = fo/Qrp = 350.07MHz).

5.5
5|
457
4t
357
3l
25}
2|
L5 £

It k.

BW =350 MHz

3dB

Insertion loss, dB

/\_

0.5 > — L
03 085 09 095 1 105 115 12 125
Frequency, GHz

Figure 5-15 Insertion loss versus freguency.

Although not as distinctively observed in practice, the example
shows that the loaded quality is lower than both the external and
internal filter quality factors.

5.2 Special Filter Realizations

The analytical synthesis of spectal filter characteristics such as low-pass, high-pass,
and bandpass/bandstop filters is generally very complicated. In our brief introductory
treatment we are going to concentrate on two filter types: the maximally flat Butterworth
and the equi-ripple Chebyshey filter realizations. Both filter types are analyzed first in a
normalized low-pass configuration, before the low-pass behavior is frequency scaled to
implement the remaining filter types through a frequency transformation.
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§.2.1 Butterworth-Type Filters

This filter type is also known as maximally flat filter since no ripple is permitted in
its attenuation profile. For the low-pass filter, the insertion loss is determined through
the loss factor,

IL = -10log(1 - |[y|?) = 10log{LF} = 10log{1+a’Q*"} (5.35)

where Q is again the normalized frequency as introduced in Section 5.1.1 and where N
denotes the order of the filter. It is customary to select the constant @ = 1 so that at
Q = w/w, = 1 the insertion loss becomes /L = 10log{2}, which is the 3 dB point
at the cut-off frequency. In Figure 5-16 the insertion loss for several values N is plotted.

35 y - ‘

301

Insertion loss, dB
— — (o) (o]
) wn ] Lh

wh
T

3dB.

0 RN
0 02 04 06 08 1| 12 14 16 1.8 2

Normalized frequency, Q

Figure 5-16 Butterworth low-pass filter design.

Two possible realizations of the generic normalized low-pass filter are shown in
Figure 5-17, where we set R; = 1.

The element values in the circuits in Figure 5-17 are numbered from g, at the
generator side 0 gy, at the load location. The elements in the circuit alternate

between series inductance and shunt capacitance. The corresponding elements g are
defined as follows:

g = { internal generator resistance for circuit in Figure 5-17(a)
internal generator conductance for circuit in Figure 5-17(b)
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Figure 5-17 Two equivalent realizations of the generic multisection low-pass
fiker with normalized elements.

inducance for series inductor
&n = | capacitance for shunt capacitor
(m=1,...,N)}

_ load resistance if the last element is a shunt capacitor
Bns+1 = ) ) L
load conductance if the last element is a series inductor

The values for the g’s are tabulated and can be found in the literature (see Pozar and Rizzi,
listed in Further Reading). For N up to 10, Table 5-2 summarizes the respective g-values
for the maximally flat low-pass filter based on gy = 1 and cut-off frequency ®, = 1.

The corresponding attenuation versus frequency behavior for various filter orders
N is seen in Figure 5-18, We note that Q = 1 is the 3 dB cut-off frequency point. The
attenuation curves in Figure 5-18 are very useful in determining the required order of
the filter. For instance, if a maximally flat low-pass filter is to be designed with attenua-
tion of at least 60 dB at Q = 2, we see that an order of N = 10 is required.

Figure 5-18 exhibits a steep increase in attenuation after cut-off. We notice that
for Q» 1 or ®» @, the loss factor increases as Q*", which is a rate of 20N dB per
decade. However, nothing is said about the phase response of such a filter. In many
wireless communication applications, a linear phase behavior may be a more critical
issue than a rapid attenuation or amplitude transition. Unfortunately, linear phase and
rapid amplitude change are opposing requirements. If lincar phase is desired, we
demand a functional behavior similar to (5.35)

0(Q) = 4,01 +4,0°) (5.36)
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Table 5-2  Coefficients for maximally flat low-pass filter (N =1 to 10)
Nl 5 £ g3 84 g5 8 &7 &3 89 g0 | &n
1 12.0000 | 1.0000
2 (14142 {1.4142 |1.0000
3 [1.0000 |2.0000 | 1.0000 | 1.0000
4 10.7654 |1.8478 | 1.8478 [ 0.7654 | 1.0000
5 10.6180 [ 1.6180 |2.0000 |1.6180 |0.6180 | 1.0000
6 105176 | 1.4142 | 1.9318 [1.9318 [1.4142 {0.5176 | 1.0000
7 104450 11,2470 | 1.8019 12.0000 ; 1.8019 | 1.2470 |0.4450 |1,0000
8 10.3902 | 1.1111 |1.6629 |1.9615 [1.9615 | 1.6629 |1.1111 (0.3902 |1.0000
9 |0.3473 | 1.0000 |1.5321 | 1.8794 [2.0000 | 1.8794 |1.5321 |1.0000 |0.3473 | 1.0000
10103129 10.9080 | 14142 |1.7820 [1.9754 | 1.9754 | 1.7820 }1.4142 10,9080 |0.3129 | 1.0000
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Figure 5-18 Attenuation behavior of maximally flat low-pass filter versus

nomalized frequency.
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with A, and A, being arbitrary constants. The associated group delay r, is

', = % = A,[1+A4,2N + DO

5.37)

In Table 5-3, the first 10 coefficients for a linear phase response with group delay
t, = 1 are listed.

Since steep filter transition and linear phase are gencrally competing require-
ments, it has to be expected that the shape factor is reduced. The question of how a lin-
ear phase design based on Table 5-3 compares with a standard decign of Table 5-2 is
discussed in Example 5-3 for the case N =3,

Table 5-3 Coefficients for linear phase low-pass filter (N = 1 to 10},

N1 & 8 23 84 8s &s &7 83 89 8o | &n

1 |2.0000 | 1.0000

2 11.5774 | 0.4226 | 1.0000

3 |1.2550 [0.5528 | 0.1922 | 1.0000

4 |1.0598 [0.5116 |0.3181 |0.1104 | 1.0000

5 10.9303 104577 |0.3312 |0.2090 |0.0718 | 1.0000

6 |0.8377 [0.4116 [0.3158 |0.2364 [0.1480 [0.0505 | 1.0000

7 ]0.7677 | 0.3744 |0.2944 (0.2378 | 0.1778 [ 0.1104 | 0.0375 [ 1.0000

8 |0.7125 {0.3446 {0.2735 | 0.2297 | 0.1867 |0.1387 |0.0855 (0.0289 | 1.0000

9 0.6678 0.3203 [0.2547 |0.2184 [0.1859 | 0.1506 {0.1111 | 0.0682 |0.0230 | 1.0000

10 |0.6305 |0.3002 [0.2384 10.2066 |0.1808 [0.1539 |0.1240 [0.0911 |0.0557 |0.0187 | 1.0000
5.2.2 Chebyshev-Type Filters

The design of an equi-ripple filter type is based on an insertion loss whose func-
tional behavior is described by the Chebyshev polynomials 7T ,(€2) in the following

form:

where

IL = 10log{LF} = 10log{l +a’T2(Q)}

Ty(R) = cos{N[cos™ (Q)]}, for |Q < 1

T () = cosh{N[cosh™ (Q)]}, for |Q 2 1

(5.38)
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To appreciate the behavior of the Chebyshev polynomials in the normalized frequency
range —1 < Q < 1, we list the first five terms:

To=1,T, = QT, =-1+2Q°T, = -3Q+4Q> T, = 1-8Q°+8Q"

The functional behavior of the first two terms is a constant and a linear function, and
the subsequent three terms are quadratic, cubic, and fourth-order functions, as seen in
Figure 5-19.
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Figure 5-19 Chebyshev polynomials T,(£2) through T,(£2) in the normalized
frequency range ~1 <Q <1.

It can be observed that all polynomials oscillate within a +1 interval, a fact that is
exploited in the equi-ripple design. The magnitude of the transfer function |H{jQ)] is
obtained from the Chebyshev polynomial as follows:

HQ) = JHQHQ) = ——— e (5.39)
J1+a°TH(Q)

where T (£2)is the Chebyshev polynomial of order N and a is a constant factor that
allows us to control the height of the passband ripples. For instance, if we choose
a = 1,thenat Q = 1 we have

|H(0)| = — = 0.707

L
NG
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which is the 3 dB level that applies uniformly throughout the passband (equiripple). We do
not go any further into the general theory of Chebyshev filter design, but rather refer the
reader to a classical textbook that covers this topic comprehensively (see Matthaei et al.).

In Figure 5-20 the loss factor and insertion loss are plotted for a Chebyshev filter
with coefficient a = 1, which again results in a 3 dB attenuation respense at resonance
frequency (Q2 = 1),

Loss factor
Lad
N

A,

¢ 02 04 06 08 1 12 14 16 18 2
Normalized frequency,

30 y . ——

Insertion loss, dB
-

0 02 04 06 08 1 12 14 16 18 2
Normalized frequency, £

Figure 5-20 Frequency dependence of the loss factor and insertion loss of the
Chebyshev low-pass filter.
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As mentioned, the magnitude of the ripple can be controlled by suitably choosing
factor a. Since Chebyshev polynomials oscillate in the range from -1 to +1 for
-1£Q<1, the squared value of these polynornials will change from 0 to +1 in the
same frequency range. Therefore, in the frequency range of —1 £Q <1 the minimum
attenuation that is introduced by the filter is 0 dB and the maximum attenuation, or
equivalently the magnitude of the ripples, is /L = 10log(1 + az) . Thus, if the desired
magnitude of the ripples is denoted as RPL ;5 , then a should be chosen as

a = flORPLdB/IO _1

For instance, to obtain a ripple level of 05dB we have to select
a= (100'5/10— 1)”2 = (.3493 . The associated attenuation profiles for the first 10
orders are shown in Figure 5-21 for a 3 dB ripple, and in Figure 5-22 for a 0.5 dB ripple.

/

80

70

60 IO SO

50 ........:

40

30

Attermation, dB

20

10 -

L1 12 14 172 3 5 811
Normalized frequency,

0 : :
1.01 1.02 1.04

Figure 5-21 Attenuation response for 3 dB Chebyshev design.

Upon comparing Figure 5-21 with 5-22, it is apparent that the disadvantage of a
higher ripple in the passband has as an advantage a steeper transition to the stopband. For
instance, a fifth-order, 3 dB ripple Chebyshev filter design at £ = 1.2 has an attenua-
tion of 20 dB, whereas the same order 0.5 dB ripple filter reaches only 12 dB at the same
frequency point. The trend remains the same for higher frequencies and different orders.
As a case in point, at = 5 the fourth-order, 0.5 dB filter has an attenuation of 65 dB
compared with the 3 dB design, which has an attenuation of approximately 73 dB.

With reference to the prototype filter circuit, Figure 5-17, the corresponding coef-
ficients are listed in Table 5-4.
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Figure 5-22 Attenuation response for 0.5 dB Chebyshev design.
Table 5-4 (a) Chebyshev filter coefficients; 3 dB filter design (N =1 to 10)
N| 8 &2 &3 84 &8s {3 &7 83 89 | 810 | &n
1 11.9953 | 1.0000
2 13.1013 |0.5339 [5.8095
3 [3.3487 [0.7117 |3.3487 | 1.0000
4 |3.4389 [0.7483 [4.3471 |0.5920 |5.8095
5 |3.4817 [0.7618 [4.5381 |0.7618 |3.4817 |1.0000
6 |3.5045 [0.7685 |4.6061 |0.7929 |4.4641 [0.6033 |5.8095
7 |3.5182 [0.7723 |4.6386 |0.8039 |4.6386 [0.7723 |3.5182 | 1.0000
8 |3.5277 | 0.7745 [4.6575 |0.8089 |4.6990 | 0.8018 |4.4990 | 0.6073 |5.8095
9 |3.5340 [0.7760 |4.6692 [0.8118 [4.7272 [0.8118 [4.6692 | 0.7760 |3.5340 | 1.0000
10 |13.5384 [0.7771 |4.6768 |0.8136 |4.7425 [0.8164 |4.7260 [0.8051 |4.5142 | 0.6091 |5.8095
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Table 54 (b) Chebyshev filter coefficients; 0.5 dB filter design (N =1 to 10}

N | g 82 8 84 gs g6 g7 £g 89 10 { &1

1 ]0.6986 |1.0000

2 |1.4029 |0.7071 | 1.9841

3 |1.5963 | 1.0967 | 1.5963 | 1.0000

4 11.6703 | 1.1926 |2.3661 |0.8419 | 1.9841

5 |1.7058 | 1.2296 |2.5408 [1.2296 |1.7058 | 1.0000

6 |1.7254 | 1.2479 | 2.6064 | 1.3137 | 24758 | 0.8696 | 1.9841

7 |1.7372 | 1.2583 | 2.6381 [1.3444 [2.6381 | 1.2583 | 1.7372 | 1.0000

8 |1.7451 | 1.2647 | 2.6564 [1.3590 [2.6964 |1.3389 |2.5093 |0.8796 [1.9841

8 (17504 | 1.2690 |2.6678 | 1.3673 | 2.7939 | 1.3673 {2.6678 |1.2690 | 1.7504 | 1.0000

10 | 1.7543 | 1.2721 | 2.6754 | 1.3725 [2.7392 | 1.3806 |2.7231 | 1.3485 | 2.5239 | 0.8842 |1.9841

Unlike the previously discussed Butterworth filter, the Chebyshev filter approach
provides us with a steeper passband/stopband transition. For higher normalized fre-
quencies Q» 1, the Chebyshev polynomials T,(€2) can be approximated as
1/ 2)(ZQ)N . This means that the filter has an improvement in attentuation of roughly
(ZZN)/ 4 over the Butterworth design.

RFEMW—
Example 5-3: Comparison between Butterworth, linear phase
Butterworth, and Chebyshey filters

Compare the attenuation versus frequency behavior of the third-
order low-pass filter for (a) standard 3 dB Butterworth, (b) linear
phase Butterworth, and (¢) 3 dB Chebyshev design.

Solution:  If we choose the first element of the filter to be an
inductor connected in series with the source, then the circuit topol-
ogy of the third order filter is given by
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Rg L
t ’m“

VG i ——] CI

where the inductances and the capacitor are obtamcd from Tables
5-2, 5-3, and 5-4. Specifically,
s Standard Butterworth: L, = L, = 1H, C; = 2 F
e Linear phase Butterworth: L, = 1255 H, C, = 0.5528 F,
L, = 01922 H

s 3dB Chebyshev filter: L, = L, = 3.3487 H, C, = 07117 F
s generator and load: RG=R; =1Q

As we can see from the preceding circuit diagram, under DC
conditton the inductances become short circuits and the capacitor
acts like an open circuit. The voltage across the load is equal to one-
half of the voltage at the source due to the voltage divider formed by
the load and source impedances (i.e. V, = 0.5V ;). When the fre-
quency is not equal to zero the voltage across the load can be
obtained by applying the voltage divider rule twice; first, to obtain
the voltage at node A:

ZA(Z, +R;) v
ZMZ +R)+Z; +Rg ¢

and, second, to obtain the voltage across the load with reference to
V,:
A

VA=

R,
R +Z, *

V2=

where Z-= R + joL,. If we find the ratio of the circuit gain at AC to
the gain under DC conditions, it is possible to compute the attenua-
tion that is introduced by the filter:

R, Z(Z, +Ry)
Ry+Zy ZMZy +R)+Zy +Rg

The graph of the attenuation coefficient expressed in dB for the
three filter realizations is shown in Figure 5-23. As expected, the
Chebyshev filter has the steepest slope of the attenuation profile,
while the linear phase filter exhibits the lowest roll-off with fre-

o =2
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Figure 5-23 Comparison of the frequency response of the Butterworth, linear
phase, and 3-dB Chebyshev third-order fitters.

quency. Therefore, if a sharp transition from passband to stopband is
required, and ripples can be tolerated, the most appropriate choice
would be a Chebyshev filter implementation. We also note that the
attenuation of the Chebyshev filter at cut-off frequency is equal to
the ripple size in the passband.

Even though the linear phase Butterworth filter suffers from a
shallow transition, it is the linear phase that makes it particularly
attractive for modulation and mixer circuits.

§.2.3 Denormalization of Standard Low-Pass Design

To arrive at realizable filters, we have to denormalize the aforementioned coeffi-
cients to meet realistic frequency and impedance requirements. In addition, the stan-
dard low-pass filter prototype should be convertible into high-pass or
bandpass/bandstop filter types depending on the application. Those objectives can be
achieved by considering two distinct steps:
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»Frequency transformation to convert from nomalized frequency £ to actual
frequency @ . This step implies the scaling of the standard inductances and capac-
itances.

«Impedance transformation to convert standard generator and load resistances
8o and gy, 1 to actual resistances R; and R;.

We begin by examining the frequency transformation and its implications in terms of
the various filter types. To eliminate confusing notation, we drop the index denoting
individual components (ie., L,(n=1,...,N)=L and C,(n=1,...,N)>C).
This makes sense since the transformation rules te be developed will be applicable to
all components equally.

Frequency Transformation

A standard fourth-order low-pass Chebyshev filter with 3 dB ripples in the pass-
band response is shown in Figure 5-24, where we have included negative frequencies to
display more clearly the symmetry of the attenuation profile in the frequency domain.
Furthermore, by appropriately scaling and shifting, we notice that all four filter types,
Figures 5-25, 5-26, 5-28, and 5-29, can be generated. This is now examined in detail.

30
25 ]
m 201 1
<
’§ 15+
2
g: 10+ ]
5 J
0 . /\_/\ .
-2 -1.5 1.5 2

Normahzed frcquency,

Figure 5-24 Fourth-order low-pass Cheb Jrshev filter with 3 dB rippies in the
passban
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For the low-pass filter we see that a simple multiplication by the angular cut-off
frequency ®, accomplishes the desired scaling (see Figure 5-25):

o = Qm, (5.40)
30
25}
g3
.g 15}
=
g |
sl
% 02 04 06 08 1 12 14 16 18 2

Frequency, GHz

Figure 5-25 Conversion of standard low-pass filter frototype into low-pass
realization. Cut-off frequency is f. =1 GHz.

For the scaling we picked an arbitrary cut-off frequency of 1 GHz. In the corresponding
insertion loss and loss factor expressions, Q is simply replaced by Q. For the induc-
tive and capactive elements, we have to compare normalized with actual reactances:

jX, = JAL = j(o/w, )L = joL (5.41a)

_ 1 _ 1 _ 1
€T jQC T j(w/e)C joC
This reveals that the actual inductance and capacitance L and C are computed from the
normalized L and C as

JX (5.41b)

L

L/® (5.42a)

[

C=cC/o (5.42b)

For the high-pass filter the parabolically shaped frequency response has to be
mapped into a hyperbolic frequency domain behavior. This can be accomplished
through the transformation

[
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_ 9
W = 3 (5.43)

The correctness of this transformation is immediately apparent when the normalized
cut-off frequency £ = %1 is substituted in (5.43). This assigns the actual cut-off fre-
quency ®@ = T, to the high-pass filter, consistent with Figure 5-26.

30
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Frequency, GHz
Figure 5-26 Conversion of standard low-pass filter prototype into high-pass
realization. Cut-off frequency is £,= 1 GHz.
Care has to be exercised in de-normalizing the circuit parameters. We note

w

. . ; 1
X, = jQL = -j—L = —— (5.44a)
Jap =} ] " e
. 1 i) -
N = 5.44b
iX, 7ac = e JoL ( )
Thus, it follows that
- 1
= 5.45
C ol (5.45a)
j=_1 (5.45b)
®.C

~
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This makes intuitive sense since it is known from fundamental circuit theory that a first-
order high-pass filter can be obtained from a low-pass filter by replacing the inductors
with capacitors or vice versa, Equations (5.45) are the logical extension to higher-order
filters.

The bandpass filter requires a more sophisticated transformation. In addition to
scaling, we also have to shift the standard low-pass filter response. The mapping from
the normalized frequency € to the actual frequency o is best explained by considering
Figure 5-27.

Normalized frequency, £2

5 4 3 2 1 0
Frequency, ©

Flgure 5-27 Mapping from standard frequency Q info actual frequency ®.
Lower cut-off frequency is @, = 1 and upper cut-off frequency is w, = 3.

The functional relation that achieves scaling and shifting is

o 0
= 1 (..".). _1 ) = ¢ (ﬂ - _‘3) (5.46)
W,/ B, -0,/ O\, ©O/0, Wy -0 \®, ®

where the upper and lower frequencies @, ®, define the bandwidth expressed in
rad/s (BW = o, - 0, ) of the passband located at ®, = ©,. In other words, the cut-
off frequency ®, now defines the center frequency @, as mentioned earlier. Using @,
and (5.23), it is possible to rewrite (5.46) as

Wy
Wy — O

Q =

€ (5.47)

The upper and lower frequencies are the inverse of each other:
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Qv 2o (5.48)
Wy 0y
a fact that can be employed to specify the center frequency as the geometric mean of
the upper and lower frequencies, @y = /0,0, . The mapping of this transformation is
verified if we first consider 2 = 1. Equation (5.46) is unity for ® = @, and
® = ®; . For Q = 0 we obtain @ = *wg. The frequency transformations are there-
fore as follows:

o=

0sQ<sl->ys0soy

-1€Q<0-5 0, swE-w,

The result of this transformation applied to the low-pass filter prototype is shown in
Figure 5-28.
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Figure 5-28 Conversion of standard low-pass filter prototype into bandpass
realization with lower cut-off frequency f; = 0.7 GHz, upper cut-off frequency
fy= 1.8 GHz, and center frequency of f, = 1 GHz.

The circuit parameters are next transformed according to the assignment

e)L = jol+— (5.49)

joC

X = QL = i
JXp =17 }(mu“-')!.

which yields for the series inductor L in (5.49) the denormalized sevies inductor L
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p=-L (5.50a)
Oy — 0
and the denormalized series capacitance C
. Q-0
¢=-1—= (5.50b)
oeL
The shunt capacitor is transformed based on the equation
jBe = JQC = j( %o a)C = joC+-L (5.51)
Wy — @y JjoL
to the following two shunt elements:
. @Op-©
L= (5.52a)
®,C
¢c=—C (5.52b)
@y =0y

Referring to Figure 5-17, we see that a normalized inductor is transformed into a series
inductor and capacitor with values given by (5.50). On the other hand, the normalized
capacitor is transformed into shunt inductor and capacitor, whose values are stated by
(5.52).

The bandstop filter transformation rules are not explicitly derived, since they can
be developed through an inverse transform of (5-47) or by using the previously derived
high-pass filter and applying (5.49). In either case, we find for the series inductor the
series combination

L= (oy-a,)L/ v, (5.53a)

€ = 1/[{oy - w;)L] (5.53b)
and for the shunt capacitor the shunt combination

L = 1/[(wy - 0,)C] (5.54a)

€ = (0y-,)C/ o (5.54b)

The resulting frequency response for the band-stop filter is shown in Figure 5-29,
Table 5-5 summarizes the conversion from the standard low-pass filter to the four
filter realizations.
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Figure 5-28 Conversion of standard low-pass filter prototype into band-stop
realization with center frequency of §, = 1 GHz. Lower cut-off frequency is

f, = 0.7 GHz and upper cut-off frequency is f, = 1.3 GHz.

Table 5-5 Transformation between normalized low-pass filter and actual bandpass

and bandstop filter (BW = oy, - n,)

Low-pass

prototype Low-pass | High-pass Bandpass Bandstop
L
L= L _]_ 1 BW S O {7:1:4)
= £ o, T oL BW BWLT 0)3
T o)gL
_1
1 C=g lc L | e L 3sw (BW)C
_]_ T o, o.C | BW cogC (BW)C
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Impedance transformation

In the original filter prototype shown in Figure 5-17 we have unit source and load
resistances except for the even-numbered Chebyshev filter coefficients listed in
Table 5-4. If, however, cither the generator resistance g, or the load resistance R; is
required to be unequal to unity, we need to scale the entire impedance expression. This
is accomplished by scaling all filter coefficients by the actual resistance R. That is,

-

R; = 1R, (5.55a)
L =LR; (5.55b)
¢ =L
C = % (5.55¢)

Rp = R,R; (5.55d)

where the tilde expressions are again the resulting actual parameters and L, C, and R}
are the values of the original prototype.

In Example 5-4 we demonstrate the design of a Chebyshev bandpass filter based
on the low-pass prototype.

RFEMW—
Example 5-4: Chebysehev bandpass filter design

An N = 3 Chebyshev bandpass filter is to be designed with a 3 dB
passband ripple for a communication link. The center frequency is at
2.4 GHz and the filter has to meet a bandwidth requirement of 20%.
The filter has to be inserted into a 50 Q characteristic line imped-
ance. Find the inductive and capactive elements and plot the attenu-
ation response in the frequency range 1 to 4 GHz.

Solution:  From Table 5-4(a) we find that the coefficients for a
standard low-pass N = 3 Chebyshev filter with 3 dB ripples in the
pass-band are g,=g,=1, g, =g, =33487, and
g, = 0.7117 . In this filter prototype we assumed that both genera-
tor and load impedances are equal to unity. In our problem, however,
we have to match the filter to 50 £ line impedances. Thus we must
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apply scaling as described by (5.55). The resulting circuit is shown
in the following figure:

Re=50Q I, L,

T C, R,=50 Q

L,=L,=167435H C,;=14.234 mF

This is still a low-pass filter with cut-off frequency of w, = 1 or
f. = 1/(2x) = 0.159 Hz . We can next apply the frequency trans-
formation to change the low-pass filter into a bandpass filter:

o, = 1.1(2r2.4x10°) = 16.59x10°
w; = 0.9(2r2.4x10°) = 13.57x10°

and

The actual inductive and capacitive values are defined in (5.50) and
(5.52):

5 2
= = 4.7 pF
% Wy -, P
The final circuit is shown in Figure 5-30 together with the resulting
graph for the attenuation response.
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Flgure 5-30 Attenuation response of a third-order 3-dB ripple bandpass
Chebyshev filter centered at 2.4 GHz. The fower cut-off 1requency is f; =216
GHz and the upper cut-off frequency is f;; = 2.64 GHz.

The filter design becomes almost a cook-book approach if we
start from the standard low-pass filter and subsequently apply the
appropriate frequency transformation and component scaling.

5.3 Filter Implementation

Filter designs beyond 500 MHz are difficult to realize with discrete components
because the wavelength becomes comparable with the physical filter element dimen-
sions, resulting in various losses severely degrading the circuit performance. Thus, to
arTive at practical filters, the lumped component filters discussed in Section 5.2 must be
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converted into distributed element realizations. In this section, some of the necessary
tools are introduced—namely, Richards transformation, the concept of the unit ele-
ment, and Kuroda’s identities.

To accomplish the conversion between lumped and distributed circuit designs,
Richards proposed a special transformation that allows open- and short-circuit trans-
mission line segments to emulate the inductive and capactive behavior of the discrete
components. We recall that the input impedance Z;, of a short-circuit transmission line
(Z, = 0) of characteristic line impedance Z,, is purely reactive:

Z, = jZytan(Bl) = jZ,tan® (5.56)

Here, the electric length 8 can be rewritten in such a way as to make the frequency
behavior explicit. If we pick the line length to be A,/8 at a particular reference fre-
quency fo = v,/ Ag, the electric length becomes

R

A
9=B_..9—_?.5fﬁ’.— 1

- L

8 v, 8fp  4fy
By substituting (5.57) into (5.56), a direct link between the frequency-dependent induc-
tive behavior of the transmission line and the lumped element representation can be
established:

Q 5.57)

jX, = joL= jzotan(’—ti) = jzotan(-’fg) = §Z, (5.58)
4f, 4
where § = jtan(m€2/4) is the actual Richards transform. The capacitive lumped ele-
ment effect can be replicated through the open-circuit transmission line section

jBg = joC= jYOmn(gQJ = §Y, (5.59)
Thus, Richards transformation allows us to replace lumped inductors with short-circuit
stubs of characteristic impedance Z, = L and capacitors with open-circuit stubs of
characteristic impedance Z, = 1/C.

It is interesting to note that the choice of A,/8 as line length is somewhat arbi-
trary. Indeed, several authors use A,/4 as the basic length. However, 4,/8 is more
convenient since it results in smaller physical circuits and the cut-off frequency point in
the standard low-pass filter response is preserved (i.e., S = jl for f = f, = f.).In
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Section 5.5.3 we will encounter a bandstop filter that requires a A,/4 line length to
meet the expected attenuation profile.

Richards transformation maps the lumped element frequency response in the
range of 0 < f << into the range 0 < f <4 f, due to the periodic behavior of the tan-
gent function and the fact that all lines are A,/8 in length, a property that is known as
commensurate line length. To obtain the inductive responses, we need to restrict the
domain to 0< f <2f,. Because of this periodic property, the frequency response of
such a filter cannot be regarded as broadband.

5.3.1 Unit Elements

When converting lumped elements into transmission line sections, there is a need
to separate the transmission line elements spatially to achieve practically realizable
configurations. This is accomplished by inserting so-called unit elements (UEs). The
unit element has an electric length of 8 = E( f/ fo) and a characteristic impedance
Z g - The two-port network expression in chain parameter representation is immedi-
ately apparent from our discussion in Chapter 4. We recall that the transmission line
representation is

A B cos®  jZypsin® 1 1 ZygS

[UE] = [ v ”E] jsin® = s (5.60)
Cyp D cos0 l1_¢?l=— 1
vE MUE Zye 1-§ Zye

where the definition of § is given by (5.58). The use of the unit elements is discussed
best by way of a few examples, as presented in Section 5.3.4.

5.3.2 Kuroda’s Identities

In addition to the unit element, it is important to be able to convert a practically
difficult-to-implement design to a more suitable filter realization. For instance, a series
inductance implemented by a short-circuit transmission line segment is more compli-
cated to realize than a shunt stub line. To facilitate the conversion between the various
transmission line realizations, Kuroda has developed four identities which are summa-
rized in Table 5-6.

‘We should note that in Table 5-6 all inductances and capacitances are represented
by their equivalent Richards transformations. As an example we will prove one of the
identities and defer proof of the remaining identities to the problems at the end of this
chapter,
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Table 5-6 Kuroda's Identities

Initial Circuit Kuroda’'s Identity
YC = ‘g/% ZL = SZ]J'{N
| Unit Unit
element element
,_T_ Z . Z,/N
Z,=ZS Yo = SUNZ;)
e YN . EEE———Y L | .
Unit Unit
element element
Z, NZ, L
e e ———u —
Y =8/Z, Yo =SANZ))
L Unit Unie [
element element
& Zl L C— erl
. N:1
=8Z /N
L Unit Unit
zZ, =25 element element
L L el ZN
" RFEMW—
Example 5-5: Prove the fourth of Kuroda’s identities from
Table 5-6

Solution: It is convenient to employ chain parameter representa-
tien of the shunt connected inductor (see Table 4-1 for the corre-
sponding ABCD-matrix) and the unit element as given in (5.60) to
write the left-hand side as follows:
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= S =T7=/1 _3S§ Z,

— 1 2| 2 20 -+ 2 _2

CDl. |5z, ! |1-8|z, ! 1-8'57. %7, 1z,

Similarly, we can write the ABCD-matrix for Kuroda’s fourth iden-
tity, or the right-hand side:

1 Z,S
{A B] i 0f (1 &8 1 2

2
1 = 1 0
[A B} _ 1 N | [1 /N 0 ]
C D|p ,1-—32‘5_{_\{ 1 El' 0 N |iams
A ind
2 UE
where subscripts UE, ind, and trans indicate chain parameter matri-
ces for unit element, inductor, and transformer, respectively. After
carrying out the multiplication between the matrices, we obtain the
following ABCD-matrix describing Kuroda’s identity:

1(1 +é) Z,S
[A B] __1 N Z,
CD R A1 —-Sz £+ 1 N

Z, 5z,

which is identical with the left-hand side, if we set
N = 1+2Z,/Z,. The remaining three Kuroda identities can be
proved in a similar fashion.

We see again the importance of the ABCD network representa-
tion, which allows us to directly multiply the individual element
nerworks.

5.3.3 Examples of Microstrip Filter Design

In the following two examples we will concentrate on the design of a low-pass
and a bandstop filter. The bandstop design will be conducted based on the aforemen-
tioned Richards transformation followed by employing Kudora’s identities. Specifi-
cally, the bandstop design requires some attention in converting from lumped to
distributed elements.

The practical filter realization proceeds in four steps.
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1. Select the normalized filter parameters to meet the design criteria.
2. Replace the inductances and capacitances by equivalent A,/8 transmission lines.
3. Convert series stub lines to shunt stubs through Kudora’s identities.
4. De-normalize and select equivalent microstrip lines (length, width, and dielectric
constant).
Specifically, step 4 requires knowledge of the appropriate geometric dimensions of the
respective microstrip lines, a subject that is discussed in detail in Chapter 2. According
to these four steps, let us now discuss the two examples.
The first design task involves a low-pass filter which is formulated as follows:

Project I

Design a low-pass filter whose input and output are matched to a 50 Q impedance
and that meets the following specifications: cut-off frequency of 3 GHz; equi-rippie of
0.5 dB; and rejection of at least 40 dB at approximately twice the cut-off frequency.
Assume a dielectric material that results in a phase velocity of 60% of the speed of
light.

In solving this problem, we proceed according to the previously outlined four
steps.

Step 1 From Figure 5-22, it is seen that the filter has to be of order N = 5, with
coefficients

g =17058 = g5, 8, =1.2296 = g4, 85 = 2.5408, 8, = 1.0
The normalized low-pass filter is given in Figure 5-31.

?‘G=l LZ L¢

—|— Ct T C3 = C5 F‘L=]

C,=C=17058 (,=2.5408 L,=L,=12296

Figure 5-31 Normalized low-pass filter of order N= 5.

Step 2 The inductances and capacitances in Figure 5-31 are replaced by open
and short circuit series and shunt stubs as shown in Figure 5-32. This is a direct conse-
quence of applying Richards transformation (5.58) and (5.59). The characteristic line
impedances and admittances are

Y =Ys=¢8.Y35=832,=2,=¢g,
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Figure 5-32 Replacing inductors and capacitors by series and shunt stubs
(0.c. = open circuit line, s.c. = short circuit line).

Step 3 To match source and load sides, and to make the filter realizable, unit
elements are introduced with the intent to apply the first and second of Kudora’s identi-
ties (see Table 5-6) to convert all series stubs into shunt stubs, Since we have a fifth-
order filter we must deploy a total of four unit elements to convert all series connected
short-circuited stubs into shunt connected open-circuit stubs. To clarify this process we
divide this step into several substeps.

First, we introduce two unit elements on the input and output ends of the filter, as
shown in Figure 5-33,

5.C. 5.C
22 24
é"/‘/"—— UE. UE. ?q =1
z, A Z
0.C. 0.C. o.C.

Figure 5-33 Deployment of the first set of unit elements (U.E. = unit element).

The introduction of unit elements does not affect the filter performance since they
are matched to source and load impedances. The result of applying Kuroda’s identities
to the first and last shunt stubs is shown in Figure 5-34.
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Z, = 0.6304 Z,=12296 Z,=2, Z,=2,
5.C. 5.C. s.C, S.C.

Zygr = Zyg

U.E. =1

0.C.

Z,=0.393
Figure 5-34 Converting shunt stubs to series stubs.

This version of the circuit is still nonrealizable because we have four series stubs.

To convert them to shunt connections, we have to deploy two more unit elements, as
shown in Figure 5-35.

Z,=0.6304 Z,=1229 2Z,=2 Z,=2
5.C. 5.C. 5.C. s.C.
7o =1 Zyg, =1 Zyg,=0.3696 Zypr=Zye, Zyge =1
é'vv"_‘ UE. UE. UE. UE. %r}_ =1
0.c.
2, =0.3936

Figure 56-35 Deployment of the second set of unit elements to the fifth-order filter.

Again, the introduction of unit elements does not affect the performance of the fil-
ter since they are matched to the source and joad impedances. Applying Kuroda’s iden-

tities to the circuit shown in Figure 5-35, we finally arrive at the realizable filter design,
depicted in Figure 5-36.

Step 4 De-normalization involves scaling the unit elements to the 50 Q input
and output impedances and computing the length of the lines based on (5.57). Using
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Fo = 1 ZUES =1.6304 ZUEI =1.5992 Zuﬂ =1.5992 Z[.I'Ed = 1.6304

o0.C.

U.E. r = 1

Z,=25862 Z,=04807 Z,=03936 Z,=04807 Z,=2.5862

Figure5-36 Realizable filter circuit obtained by converting series and shunt stubs
using Kuroda's identities.

v, = 0.6c = 18X 10® m/s, the length is found to be [ = (Ay/8)=
v,/ (8fy) = 7.5 mm. The final design implemented in microstrip lines is shown in
Figure 5-37(a). Figure 5-37(b) plots the attenuation profile in the frequency range 0 to
3.5 GHz. We notice that the passband ripple does not exceed 0.5 dB up to the cut-off
frequency of 3 GHz.

The second design project involves a more complicated bandstop filter, which
requires the transformation of the standard low-pass prototype with a unity cut-off fre-
quency into a design with specified center frequency and lower and upper 3 dB fre-
quency points.

Project 11

Design a maximally flat third-order bandstop filter whose input and output are
matched to a 50 ) impedance that meets the following design specifications: center
frequency of 4 GHz and bandwidth of 50%. Again, we assume a dielectric material that
results in a phase velocity of 60% of the speed of light.

This design requires a careful analysis when converting from lumped to distributed
elements. Specifically, when dealing with bandstop designs, we require either maximal
or minimal impedance at the center frequency f, depending on whether series or shunt
connections are involved. With our previous definition of Richards transformation based
on A,/8 line segments, we encounter the difficulty that at f = f, (5.58) yields a tan-
gent value of 1, and not a maximum. However, if a line length of 4,/4 is used, then the
tangent will go to infinity as required for a bandstop design. Another aspect that we have
to take into account is the fact that we want the © = 1 cut-off frequency of the low-
pass prototype filter to be transformed into lower and upper cut-off frequencies of the
bandstop filter. This is done by introducing a so-called bandwidth factor bf:

bf = cot(g%ﬂ = cot[g(l_”—z—wﬂ (5.61)
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50 Q
81.5Q 80.0 Q2 80,00 81.5Q 00

1293 Q 24.0Q 197 Q 24.0Q 1293 Q
(a) Microstrip line low-pass filter implementation
3
4.5
4
35
3
2.5
2
1.5
1

N ~_1 T\

0.5

Attenunation, dB

0 0.5 1 1.5 2 2.5 3 35
Frequency, GHz

(b) Attenuation versus frequency response

Figure 5-37 Final microstrip line low-pass filter.

where sbw = (@y - 0;)/®, is the stopband width and w, = (®y, +®;)/2 is the
center frequency. Multiplying the Richards transformation for A,/4 line lengths by bf
at the lower or upper frequency points reveals that the magnitude of the product is equal
to unity. For instance, for the lower frequency point ®, , it follows that

_ EALS Tl:‘”LJ _
(bf)Sh.,:m,_ = cot(2m0)tan(2% =1
This corresponds to a = 1 cut-off frequency in the normalized low-pass filter
response. Similarly, for the upper cut-off frequency ®,, we have

(52 S22
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which corresponds to a £2 = -1 cut-off frequency in the normalized low-pass filter.
With these preliminary remarks, we are now ready to proceed according to the four steps.

Step 1 From Table 5-2, the coefficients for a maximally flat normalized low-
pass filter prototype of third order are

gl = 1.0 = g3, gz = 2.0, 84 = 1.0
Thus, the normalized low-pass filter has the form shown in Figure 5-38.

rc=l L|=l L3=l

Tczzz r=1

Figure 5-38 Normalized third-order low-pass filter.

Step 2 The inductances and capacitances in Figure 5-38 are replaced by open
and short circuit series and shunt stubs, as depicted in Figure 5-39. The line impedances
and the admittance are multiplied by the bandwidth factor (5.61).

Zy=2Z,=bf g, Y,= bf'gz

s.C. 5.C.

Z,=04142 Z,=0.4142

re=1

0.C.

Z,=1.2071

Figure 5-3% Replacing inductors and capacitors by series and shunt stubs,

Step 3 Unit elements of A;/4 line length are inserted and Kudora’s identity is
used to convert all series stubs into shunt stubs as seen in Figure 5-40.
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s.C. 5.C.

Z, Zy
re=1

U.E. U.E. ro=1
Zys =1 Zyer 1 t

(a) Unit elements at source and load sides
rg=1 Zys = 14142 Zye, = 14142

UE. UE. I
ZUEI ZUEZ t

Z.“T z, z,

0.c. 0.C. 0.C.

Z,=3.4142 Z,=1.2071 Z,=34142

(b) Conversion from series to shunt stubs

Figure 5-40 Introducing unit elements and converting series stubs to shunt
stubs.

Step 4 De-normalization the unit elements and explicit computation of the indi-
vidual line lengths can now be conducted. Using the phase velocity
v, = 06c = 18x10°m/s, the length is computed to be I= (Ay/4)=
v,/ (4fo) = 15 mm. Thus, the resulting design in microstrip line implementation is
as shown in Figure 5-41.

Finally, for this bandstop filter we can also utilize a commercial simulation pack-
age such as MMICAD to simulate the filter response of the microstrip line configura-
tion shown in Figure 5-41. The attenuation profile is given in Figure 5-42, and shows
that the filter specifications are met.
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08 70.7 Q 70.7 Q S0

170.7Q 60.4Q 170.7 Q

Figure 5-41 Characteristic impedances of final microstrip line implementation of
bandstop filter design.
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Figure 5-42 Attenuation versus fre?ﬂency response for third-order bandstop
ilter.

5.4 Coupled Filter

The literature is extensive when dealing with coupled filter designs and analyses.
For our cursory treatment we will introduce only the most salient points and refer the
reader to the references listed at the end of this chapter.

Our discussion briefly covers the odd and even wave coupling of transmission
lines through a common ground plane, which results in odd and even characteristic line
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impedances. This sets the stage to an understanding of the coupling between two strip
lines and their input/output impedances as part of a two-port chain matrix representa-
tion. Cascading these elements gives rise to bandpass filter structures that are most eas-
ily designed with the aid of RF circuit simulation packages.

5.4.1 Odd and Even Mode Excitation

A simple modeling approach of coupled microstrip line interaction is established
when considering the geometry depicted in Figure 5-43. The configuration consists of
two lines separated over a distance S and attached to a dielectric medinm of thickness 4
and dielectric constant €, . The strip lines are W wide, and the thickness is negligible
when compared with 4. The capacitive and inductive coupling phenomena between the
lines and ground is schematically given in Figure 5-44. Here equal indices denote self-
capacitances and inductances, whereas index 12 stands for coupling between line 1 and
line 2 (which is equal to coupling between line 2 and line 1).

Figure 5-43 Coupled microstrip lines.

We can now define an even mode voltage V, and current /, and an odd mode volt-
age V4 and current 4 in terms of the total voltages and currents at terminals 1 and 2
such that

14 %(V1+V2), I, = %(fluz) (5.62a)

&
and

L
Vo= %(V,-Vz). Ioa = 301~ 1) (5.62b)

This is consistent with the voltage and current convention shown in Figure 5-44. For
even mode of operation (V,, I,), voltages are additive and currents flow in the same
direction. However, for odd mode of operation (V_4, I ;) the terminal voltages are sub-
tractive and currents flow in opposite directions.
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Figure 5-44 Equivalent circuit diagram and appropriate voltage and current

definitions for a system of two lossless coupled transmission lines.

The benefit of introducing odd and even modes of operation is seen when estab-
lishing the fundamental equations. It can be shown that for two lines we get a set of
first-order, coupled ordinary differential equations similar in form to the transmission
line equations in Chapter 2.

and

£

dz

ar,

= jo(L,; + L),

dVy .
_Tz- = jo(L; — L)y

dlyy _
% Jo(Cy - Cp)Voy

(5.63a)

(5.63b)

(5.64a)

(5.64b)

What is important to notice is the fact that even and odd modes allow us to decouple the
governing equations. The characteristic line impedances Z;, and Z;, for the even and
odd modes can be defined in terms of even and odd mode capacitances C,, C,4, and the
respective phase velocities as follows:
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1 1
Z,=——, Z;, = —— (5.65)
VpeCo 00 VpoCod

If both conductors are equal in size and location, we can conclude for the even mode
Ce = C]l = C22 (5.66&)
and for the odd mode

Cog = € +2C ), = Cyy +2C, (5.66b)
The capacitances are, in general, difficult to find since fringing fields and different
media have to be taken into account. For instance, even the strip line conductor over a
dielectric substrate cannot be computed based on the simple capacitance per unit length
formula C|; = £,¢€,(w/d) because the width-to-thickness ratio is not sufficiently
large for this formula to apply. Moreover, the cross-coupling capacitance C,, requires
a very intricate treatment. For this reason, it is common practice to resort to a numeri-
cally computed impedance grid, such as the one shown in Figure 5-45.

180 oot s &

160

140 ..... PEELITEIT

120

100

80 ..... e .

Even mode impedance Z,,, Q

40

20 [

20 40 60 80 100 120
Odd mode impedance £, 2

Figure 5-45 Even and odd characteristic impedance for microstrip lines.



Coupled Filter 257

§5.4.2 Bandpass Filter Section

We turn our attention to two microstrip lines as the main building block of a band-
pass filter shown in Figure 5-46. Both the geometric arrangement with input and output
ports and open-circuit conditions and the corresponding transtission line representa-
tion are depicted.

Filter element

. 1 .
...... z,
—bo—i
B. 2,

(a) Arrangement of two microstrip lines (b) Transmission line representation
Figure 5-46 Bandpass filter element.

Without delving into details of the rather complicated treatment (see Gupta in
Further Reading), this configuration has the impedance matrix coefficients for open
transmission line segments in the form

2y, = =j3(Zo, + Zo,)col(Bl) = Zo, (5.672)
1 1
Zy, = —JQ(ZO.‘:‘“ZOO)W =2y

When cascading these building blocks into multiblock filter configurations, our
desire is to match both ports of this segment to the adjacent elements. This is also
known as finding the image impedance. For the input impedance at port 1 we can write

V, AZ,+B

(5.67b)

and the output impedance at port 2
7 - -V, DZ,+B (5.68b)
L=, T ¢z, +A ‘

Since we require Z,, = Z, , we find from (5.68) that A = D and

_ B
zZ, = \[E (5.69)
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If (5.67) is converted into a chain matrix form the coefficients 4, B, C, D can be deter-
mined. Inserting B and C into (5.69), one finds for the input, or image impedance

1
Zn = 55 TE0 S Zoo=ZooY = (Zo, + Zop) cos (BI) (5.70)

The bandpass filter behavior of (5.70) becomes apparent when plotting the real part of

the input impedance response as a function of the electric length in the range
0 < B! <2n, as depicted in Figure 5-47.

50
c L
N"_‘; 401
T 1 |Zoo— Zool2
& 3 [Z0e = Zo,|
§ |
o 20f
g |
=i 10|-
E L 8, O,
0 \ " / i
0 0.51 b1 1.5% 2n

Electrical length, B/

Figure 5-47 Input impedance behavior of equation (5.70). Z,, and Z,,, are
arbitrarily set to 120 Q and 60 L2, respectively.

According to Figure 5-47, the characteristic bandpass filter performance is obtained
when the length is selected to be /4 or B! = n/2. For this case the upper and lower
cut-off frequencies are found as

Z. -Z
BH,, =8, , = icos_l[u] (5.71)
B 1.2 L2 Zl)e+zl)0

Also noticeable is the periodic impedance response in Figure 5-47, which indicates that

the upper operating frequency has to be band limited to avoid multiple bandpass filter
responses at higher frequencies.

5.4.3 Cascading bandpass filter elements

A single bandpass clement as discussed in the previous section does not result in a
good filter performance with steep passband to stopband transitions. However, it is the
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ability to cascade these building blocks that ultimately results in high-performance
filters. Figure 5-48 depicts a generic multiclement design.

Zy

N N+1

Figure 5-48 Multielement configuration of a fifth-order coupled-line
bandpass filter (N = 5).

To design such a structure that meets a particular bandpass filter specification, a
number of computations have to be performed. The following sequence of steps is
needed to translate a set of design requirements into a practical filter realization (see
Matthaei et al. in Further Reading).

= Selection of standard low-pass filter coefficients. Depending on whether a Butter-
worth or Chebyshev design with desired rejection and ripple is needed, the
designer can directly select the appropriate standard low-pass filter coefficients

go, 81, RTY gN’ gN+ 1 liSted i.ll TablCS 5'2 tO 5‘6.

o Identification of normalized bandwidth, upper, and lower frequencies. From the
desired filter specifications for lower and upper frequencies ®;, @, and the cen-

ter frequency @, = (@y + ®;)/2, we define the normalized bandwidth of the

filter as

Oy -0
g

BW = (5.72)

This factor allow us to compute the following parameters:

_ 1 [nBW
Jo1 = Z, 2_g0 3 (5.73a)
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i ="BW
Jiiv1 = = (5.73b)
o Z°2J353f+1
1 rBW
J = 5= 5.7%¢
NN+ T 7 YR ( )
which in turn permit us to determine the odd and even characteristic line imped-
ances:
2
Zoo|, ;1 = Zoll=Z¢J; 141+ (Zod, 04 1)7] (5.74a)
and
2
ZO"L‘,‘.” = 20[1+ZOJi,i+l+(ZOJi,i+l) ] (5.74b)

where the indices i,i + 1 refer to the overlapping elements seen in Figure 5-48.
Here Z, is the characteristic line impedance at the beginning and the end of the
filter structure.

¢ Selection of actual strip line dimensions. Based on Figure 5-435, the individual odd
and even line impedances can be converted into strip line dimensions. For
instance, if the dielectric material and the thickness of the PCB board are given,
we can determine separation S, and width W of the copper strips. Normally, the
width will conform with the width of the other microstrip lines. Therefore, the
separation is the most common parameter that can be varied to achieve the imped-
ances required by (5.74). The length of each coupled line segment has to be equal

10 A/4 at the center frequency, as described in Section 5.4.2.

The preceding steps result in a first and often crude design, which can be made
more precise by introducing length and width corrections to account for fringing field
effects. In addition, the use of simulation packages often allows further adjustments and
fine-tuning to ensure a design that actually performs according to the specifications.

5.4.4 Deslgn Example

In the following example we go through the steps outlined in the previous section
by designing a particular bandpass filter.
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Example 5-6: Bandpass filter design with coupled line trans-
mission line segments

A coupled-line bandpass fiiter with 3 dB ripples in the passband is
to be designed for a center frequency of 5 GHz and lower and upper
cut-off frequencies of 4.8 and 5.2 GHz, respectively. The attenuation
should be at least 30 dB at 5.3 GHz. Select the number of elements
and find odd and even mode characteristic impedances of the cou-
pled transmission lines.

Solution:  According to Section 5.4.3, the first step in the design
of this filter is to choose an appropriate low-pass filter prototype.
The order of the filter can be selected from the requirement of 30 dB
attenuation at 5.3 GHz. Using frequency conversion for the band-
pass filter (5.46), we find that for 5.3 GHz the normalized frequency
of the low-pass filter prototype is

W, wn 9
Q= (.___) = 14764
Oy -0\, ©
From Figure 5-21 we determine that the order of the filter should be
at least N = 5 to achieve 30 dB attenuation at Q = 1.4764. The

coefficients for an N = 5 Chebyshev filter with 3 dB ripples are
g = 8 = 34817, g, = g, = 07618, g, = 45381,g, = 1.

The next step in the design is to find the even and odd excita-
tion mode characteristic impedances of the coupled fransmission
lines as described by (5.74). The results of theses computations are
listed in the following table.

{ ZoJ o1 | Z0o(82) | Zo,(S2)
0.1900 42,3056 61.3037
0.0772 46.4397 54.1557
0.0676 46.8491 53.0077
0.0676 46,8491 53.6077
0.0772 46.4397 54.1557
0.1900 42.3056 61.3037

| -0

RFEMW—
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To confirn the validity of our theoretical design, we can use
MMICAD to analyze the performance of the bandpass filter just
designed. The result of the simulation is shown in Figure 5-49.
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Frequency, GHz

Figure 5-49 MMICAD simulations of the fifth-order coupled-line Chebyshev
bandpass filter with 3 dB ripple in the passband. The lower cut-off frequency is
4.8 GHz and the upper cut-off frequency is 5.2 GHz.

The filter response in Figure 5-49 confirms that the specifications
are met for f; and f;; and that the attenuation at 5.3 GHz even
exceeds the 30 dB requirement.

Often the theoretical filter design leads to coefficients whose
validity must be double-checked against an RF circuit simulator to
test the actual performance.

Another reason for resorting to a simulation package is the need to verify the
design methodology independently and to test the filter performance over a range of
parameter variations in terms of geometry and dielectric properties. Most of these para-
metric studies can be accomplished with little effort on a computer. After the initial the-
oretical design idea, the computer simulations typically precede the actual board
construction and testing,
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5.5 Summary

Our emphasis in this chapter has been an exposure to filter design concepts that
are ubiquitous in many RF/MW circuit designs. Rather than going into detailed deriva-
tions, the intent of this chapter is to present a generic discussion of some of the key
issues facing a design engineer in the construction of practical filter types.

Beginning with a general classification of high-pass, low-pass, bandpass, and
bandstop filters, we introduce a common terminology that is needed to understand the
common descriptors when developing filter specifications. Terms that are often used
such as cut-off, lower, upper, and center frequencies, shape factor, bandwidth, insertion
loss, and rejection, are defined and placed in context with simple first-order high- and
low-pass filters as well as series and parallel resonant circuits. Since the resonator cir-
cuits permit the realization of bandpass and bandstop designs, the sharpness of the
impedance or admittance behavior is quantified through the so-called quality factor:

averaged siored energy
energy loss per cycle

Q=0
w=a,

a measure that can be further broken down into the filter Q5 and external @ quality
factors. Specifically, the notation of insertion loss

Pin 2
IL = IOIOgP— = -10log(1 —|1“in| )
L

which defines the amount of power lost by inserting the filter between the source and
load ports, is of central important in the design of high-frequency filters. Depending on
the attenuation profile necessary to realize the various filter types, the loss factor

is employed to realize a particular response.

To enable a more comprehensive approach, the low-pass filter design based on a
normalized frequency scale is chosen as the standard type. Through frequency scaling
and shifting, all filter types can then be readily realized. The benefit of this approach is
that only a few sets of standard low-pass filter coefficients have to be derived depending
on whether a Butterworth filter with a maximally flat profile or Chebyshev filter with an
equiripple attenuation profile is desired.

The practical implementation is achieved through Richards transformation:

. T
S = jlﬂl’l(zg)
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This transformation is central in establishing a link between lumped capacitive and
inductive elements and distributed transmission line theory. The various series and
shunt transmission line segments can be spatially separated through unit elements
before Kudora’s identities permit the conversion of some of the transmission sections
into easy-to-implement segmental elements. In particular, series inductive configura-
tions are often easier to implement than stub elements. With the aid of Kudora’s identi-
ties this can be accemplished elegantly.

The fact that the proximity of strip lines causes electromagnetic coupling is
exploited o design bandpass and bandstop filters, Without delving into the theoretical
explanations too deeply, two line segments are used as the basic building block of a
two-port network representation. Through odd and even mode impedance analysis we
can find the image impedance

1
zin = m—wBJ(ZOe - 200)2 - (ZOe + 200)23052( B”

as the characteristic bandpass response. This single element can be cascaded into multi-
ple section filters to fulfill various design requirements. By using an RF/MW simulation
package, the same example is revisited and the coupled filter response is computed as a
function of various element numbers and geometric dimensions of the microstrip lines.

Although the topic of filter design could only cursively be covered, Chapter 5
should convey the basic engineering steps nceded to arrive at a functional high-
frequency filter realization. We attempted to make the process of picking the appropri-
ate filter coefficients, scaling the results to actual frequencies, and implementing the
process in microstrip lines as much of a cookbook approach as possible. However,
Chapter 5 should also make clear the vsefulness of commercial simulation packages in
camrying out a detailed numerical analysis. Indeed, for most modem filter design exam-
ples, an RF/MW simulation package is an indispensable tool to predict the filter perfor-
mance. Moreover, from the circuit schematic it is relatively straightforward to use
special layout programs to generate the actual PCB layout file that becomes the basis
for the physical board construction.

Further Reading

S. Butterworth, “On the Theory of Filter Amplifiers,” Wireless Eng., Vol. 7, pp. 536~
541, 1930.
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Problems

5.1 For the simple integrator circuit shown,
500 2pF

Ve IT’ |A|LOQ% ]‘1;’ %SOQ
T4 Tl

determine the following quantities:
e Transfer function H(w) = V,/ Vg
» Attenuation versus frequency behavior o(®)
» Phase versus frequency behavior ¢(®)
* Group delay ¢,
Plot these factors for the frequency range from DC to 1 GHz.

5.2 Derive expressions for internal, external, and loaded quality factors for the
standard series and parallel resonance circuits discussed in Section 5.1.4.

5.3 In Section 5.1.5 the admittance of the parallel resonance circuit is expressed
in terms of a quality factor expression. Prove the resulting equation (5.29).

5.4  For the filter circuit shown,

10nH  10pF

VG'SV(A\?I: Z,=50Q % Z,=50Q 5062
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5.7

3.8

5.9

5.10

5.11
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Find the loaded, unloaded, and external quality factors. In addition deter-
mine the power generated by the source as well as the power absorbed by the
load at resonance. Furthermore, plot the insertion loss as a function of fre-
quency in the range of +50% of the resonance frequency.

Repeat Problem 5.4 for the following filter circuit:
10nH

500 ,./m.

10pF Z,=508 50Q

V=5V

You are required to build a low-pass Butterworth filter that provides an
attenuation value of at least 50 dB at f = 1.5 f345 . Which filter order is
required? How many components (inductors and capacitors) do you need to
realize this filter?

Design a prototype low-pass Butterworth filter that will provide at least
20 dB attenuation at the frequency of f = 2f44.

Plot the insertion loss of a low-pass Chebyshev filter that has 6 dB ripple in
the passband and at least 50 dB attenuation at f = 2f . .

Using the low-pass prototype developed in Problem 5.7, design a high-pass
filter with cut-off frequency of 1 GHz. Plot the attenuation profile.

To suppress noise in a digital communication system a bandpass RF filter is
required with a passband from 1.9 GHz to 2 GHz. The minimum attenuation
of the filter at 2.1 GHz and 1.8 GHz should be 30 dB. Assuming that a
0.5 dB ripple in the passband can be tolerated, design a filter that will use a
minimum number of components.

In the design of an amplifier for cellular phone applications it is discovered
that the circuit exhibits excessive noise at 3 GHz. Develop a bandstop filter
with a center frequency of f. = 3GHz and bandwidth of 10% at f_, with
30 dB minimum attenuation in the stopband.
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5.13
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In previous chapters we examined the input impedance behavior of an open-
circuit stub assuming that open-circuit conditions at the end are ideal. In
practical realizations, due to fringing fields, leakage occurs. This can be
modeled as an additional parasitic capacitance, as shown below:

Lo MRS o
Z, i
AW =
Zi g

Using your favorite mathematical program, find the input impedance of the
50 Q open-circuit stub of length [ = 1 ¢cm for frequencies ranging from 10
MHz to 100 GHz. In your computations assume that an equivalent load
capacitance is C,, = 0.1 pF and the phase velocity of the line is
Vp = 1.5x10° my/s. Compare your results to the input impedance behavior
of the ideal open-circuit and short-circuit stubs.

Assuming all physical parameters of the open-circuit stub to be the same as
in Problem 5.12, find the effective fringing capacitance C,_ if the lowest
frequency (at which the input impedance of the stub is equal zero) is
3.3 GHz.

After reconsidering the design in Problem 5.12, it is decided to use an open-
circuit stub of half of the length (i.e., I = 5 mm). Since the board is already
manufactured with a 1 cm stub, you cut a slit in the middle so that the length
of the resulting stub is 5 mm, as shown below.

S5mm 5 mm

Due to proximity effects, the equivalent circuit in this case is as follows:

S mm_ 5 mm

i -——(j| S—J—c i ‘——l-—c
R b omdh °“




5.15

5.16

i

Chapter 5 * An Overview of RF Filter Design

Using a mathematical spreadsheet, compute the input impedance of this con-

figuration for frequencies ranging from 10 MHz to 20 GHz, assuming that

the charactensnc line impedance is 50 Q and the phase velocity is

= 1.5x10° mys. Compare the results with the input impedance behavior

of thc 5 mm open-circuit stub taking into account a fringing capacitance
= 100 fF.

In Chapter 2 we introduced a quarter-wave strip line transformer that is able
to transform any real load impedance into any other real value. In our analy-
sis we always assumed that there are no parasitic elements involved. In real-
ity, the connection of two transmission lines with different impedances leads
to discontinuity in the line width as follows:

L)

Due to this discontinuity, additional parasitic elements have to be taken into
account. The equivalent circuit for the above configuration is:

A4
i L
gk, Ry & il
g =

For a load impedance of Z; = 25 Q and a Z;, = 100 Q line impedance
find a characteristic impedance Z, of the quarter-wave transformer and
compute the input impedance Z; of the entire system for a frequency range
from 10 MHz to 20 GHz, assuming that the transmission line is quarter-
wave long and parasitic elements have the following values: L = 10 pH, C =
100 fF.

Prove the first three Kuroda’s identities given in Table 5-6 by computing the
appropriate ABCD matrices.

Develop a low-pass filter with cut-off frequency of 200 MHz and attenuation
of 50 dB at 250 MHz. The flatness of the filter response is not a design con-
sideration. Choose the filter implementation that requires the least number of
components.
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5.18

5.19

5.20

5.21
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5.23

Design a three-section bandpass filter with 3 dB ripples in the passband. The
center frequency is 900 MHz and the bandwidth is 30 MHz. Use a mathe-
matical spreadsheet and plot the insertion loss of the filter.

In Project I of Section 5.3.3 we designed a microstrip realization of the
Chebyshev-type low-pass filter with 3 GHz cut-off frequency. Repeat this
design using an FR-4 substrate with dielectric constant of £, = 4.6 and
thickness of 4 = 25 mil. In addition, obtain the physical width and length of
each microstrip line.

Design a five-section bandstop filter having a maximally fiat response. The
bandwidth of the filter should be 15% with a center frequency of 2.4 GHz.
The filter has to be matched to a 75 £ impedance at both sides.

Design a fifth-order low-pass filter with linear phase response. The cut-off
frequency of the filter is 5 GHz. Provide two designs: the first one using
lumped elements and the second design using microstrip lines. In both cases
assume that a FR-4 substrate is used (¢, = 4.6, h =20 mil).

As a part of a satellite communication link, a bandpass filter for image rejec-
tion in the downconversion stage has to be designed. The bandwidth of a sig-
nal is 300 MHz and the center frequency is 10 GHz. It is essential to provide
maximally flat response in the passband and obtain at least 40 dB attenua-
tion at 10.4 GHz.

Prove equations (5.68a) and (5.68b) and show how (5.70) results.






CHAPTER 6

Active RF Components

Our focus in the first five chapters has been pri-
marily geared toward passive RF devices and their electric circuit behavior. In this
chapter we extend and broaden our scope to include an investigation of various active
circuit elements. Of specific interest for the design of amplifiers, mixers, and oscillators
are solid-state devices such as diodes and transistors. What complicates a unified treat-
ment is the wealth of special purpose components developed and marketed by a range
of companies for a wide host of industrial applications. We cannot adequately address
the multitude of technological advances currently shaping the RE/MW commercial
markets. This is not the intent of this text; rather we emphasize a number of key con-
cepis driving the technological RF/MW evolution. These concepts are utilized later for
the design of amplifiers, mixers, oscillators, and other circuits developed in subsequent
chapters. Our approach intends to enable the reader to formulate and develop his or her
own network descriptions as part of an integrated strategy to construct suitable models
of analog RF circuits.

Before developing appropriate network models for active devices, a short discus-
sion of solid-state physics involving pr and metal-semiconductor junctions is
presented. The aim is to provide a solid-state perspective of the electric circuit repre-
sentations derived from the physical device level. This is neceded because

* at high-frequency modes of operation, additional capacitive and inductive effects
enter the solid-state devices and affect their performance

* the high-frequency behavior of many active devices markedly departs from that of
low-frequency components and therefore requires special treatment

* 10 utilize simulation tools such as SPICE, or more dedicated RF CAD programs, a
working knowledge of the physical parameters must be obtained that directly or
indirectly influence the circuit behavior

271
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Chapter 6 provides a concise summary of the most important semiconductor fun-
damentals that are encountered at high frequencies.

By analyzing the pn-junction and the Schottky contact, we gain a more complete
picture of electronic circuit functions that form the foundation of rectifier, amplifier,
tuning, and switching systems. In particular, the metal-semiconductor interface is
shown to be especially useful for high-frequency operations. It is the RF domain that
has seen many specialized diode developments. Chief among them are the Schottky,
PIN, and tunnel diode, to name but a few.

Next, our attention is turned toward the bipolar and field effect transistors, which
are more complex implementations of the previously investigated prn-junction and
Schotiky contact. We learn about the construction, functionality, temperature, and noise
performance of the bipolar and the metal-semiconductor field effect transistors.

6.1 Semiconductor Basics

6.1.1 Physical Properties of Semiconductors

The operation of semiconductor devices is naturally dependent on the physical
behavior of the semiconductors themselves. This section presents a brief introduction to
the basic building blocks of semiconductor device modeling, particularly the operation
of the pn-junction. In our discussion we will concentrate on the three most commonly
used semiconductors: germanium (Ge), silicon (Si), and gallium arsenide (GaAs). Fig-
ure 6-1(a) schematically shows the bonding structure of pure silicon: Each silicon atom
shares its four valence electrons with the four neighboring atoms, forming four covalent
bonds.

In the absence of thermal energy (i.e., when the temperature is equal to zero
degree Kelvin [T°K = 0 or T°C = -273.15, where T°K = 273.15 + T°C]) all elec-
trons are bonded to the corresponding atoms and the semiconductor is not conductive.
However, when the temperature increases, some of the electrons obtain sufficient
energy to break up the covalent bond and cross the energy gap W, = W, -W,, as
shown in Figure 6-1(b) (at room temperature 7 = 300°K the bandgap energy is
equal to 1.12 eV for Si, 0.62 eV for Ge, and 1.42 eV for GaAs). These free electrons
form negative charge carriers that allow electric current conduction. The concentration
of the conduction electrons in the semiconductor is denoted as n. When an electron
breaks the covalent bond it leaves behind a positively charged vacancy, which can be
occupied by another free electron. These types of vacancies are called holes and their
concentration is denoted by p.

Electrons and holes undergo random motion through the semiconducior lattice as
a result of the presence of thermal energy (7 > 0°K). If an electron happens to meet a
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Free electron Conduction band
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W, Forbidden Band { ®
or Bandgap g
3 w | =

Hole /Va'lence band

{b) Energy band levels

{a) Planar representation of covalent bonds
Figure 6-1 Lattice structure and energy levels of silicon.
(a) schematic planar crystal arrangement with thermal breakup of one valent bond
resulting in a hole and a moving electron for T > 0°K.
(b) equivalent energy band level representation whereby a hole is created in the
valence band W, and an electron is produced in the conduction band W, The energy
gap between both bands is indicated by Wg

hole, they recombine and both charge carriers disappear. In thermal equilibrium we
have equal number of recombinations and generations of holes and electrons. The con-
centrations obey the Fermi statistics according to

W.-W
n= Nccxp[-%] (6.1a)
We-W
p= NVCXPI:-%:I (6.1b)
where
Ney = 202m}, mkT/hY" (6.2)

are the effective carrier concentration in the conduction (N) and valence (N )
bands, respectively. The terms W, and W, denote the energy levels associated with
the conduction and valence bands and W 7 is the Fermi energy level, which indicates
the energy level that has a 50% probability of being occupied by an electron. For
intrinsic (i.e., pure) semiconductors at room temperature the Fermi level is very close
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to the middle of the bandgap. In (6.2), m; and mj, refer to the effective mass of elec-
trons and holes in the semiconductor that are different from the free electron rest mass
due to interaction with the crystal lattice; & is Boltzmann'’s constant; & is Planck’s con-
stant; and T is the absolute temperature measured in Kelvin.

In an intrinsic semiconductor the number of free electrons produced by thermal
excitation is equal to the number of holes (i.e. » = p = n;). Therefore, electron and
hole concentrations are described by the concentration law

np = n; (6.3)

where n; is the intrinsic concentration. Equation (6.3) is true not only for intrinsic but
also for doped semiconductors, which are discussed later in this section,
Substitution of (6.1) into (6.3) results in the expression for the intrinsic carrier
concentration:
We-Wy,

w
e W Y« el 2] e

The effective electron and hole masses as well as the concentrations N, Ny, and
n; for T = 300°K are summarized in Table 6-1 and are also listed in Table E-1 in
Appendix E.

Table 6-1 Effective concentrations and effective mass values at T= 300°K

Semiconductor my/my | mi/my |Ne(em™) [Ny (em™)] n; (em™)
Silicon (Si) 1.08 0.56 2.8x10" 1.04x10" | 1.45x10"
Germanium {Ge) 0.55 037 1.04x10"” | 6.0x10'% 24x10"
Gallium Arsenide {(GaAs) 0.067 0.48 4.7x10" 7.0010" 1.79x10%

Classical electromagnetic theory specifies the electrical conductivity in a material
to be ¢ = J/E, where J is the current density and E is the applied electric field. The
conductivity in the classical model (Drude model) can be found through the carrier con-
centration N, the associated elementary charge g, the drift velocity v, and the applied
electric field E:

6 = gNvy/E (6.5)

In semiconductors, we have both electrons and holes contributing to the conductivity of
the material. At low electric fields the drift velocity v, of the carriers is proportional to
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the applied field strength through a proportionality constant known as mobility .
Thus, for semiconductors we can rewrite (6.5) as

G = gnk, +qpK, (6.6)

where |, L, are the mobilities of electrons and holes, respectively. For intrinsic semi-
conductors we can simplify (6.6) further by recalling that n = p = n;, thatis,

w
C = gni|,+1,) = g /NCNchp[--z-]—(—%](uﬁup) 6.7)

RF EM W

Example 6-1: Computation of the temperature dependence of
the intrinsic semiconductor conductivity

It is desired to find the conductivities for the intrinsic materials of
Si, Ge, and GaAs as a function of temperature. To make the compu-
tations not too difficult, we assume that the bandgap energy and the
mobilities for holes and electrons are temperature independent over
the range of interest —50°C £ 7 <200°C.

Solution:  As a first step it is convenient to combine into one
parameter Gy(T) all factors without the exponential term in (6.7);
that is,

0o(T) = g JNcNy(1, + 1)

where electron and hole mobilities are found from Table E-1:
1, = 1350(Si), 3900(Ge), 8500(GaAs)

K, = 480(Si), 1900(Ge), 400(GaAs)

All values are given in units of em’/(V-s). N, Ny are com-
puted according to (6.2) as

T 372
Ne y(T) = N, VOOOOK)(WJ

This leads to the form
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where the bandgap energy W, = W — Wy, is, respectively, 1.12 eV
(51), 0.62 eV (Ge), and 1.42 eV (GaAs). The three conductivities are
plotted in Figure 6-2.

10°

10°

s =
L

=
"

10°}

Conductivity ¢, Q@ 'cm™

1071}

10—\2_

107 - - : — -
-50 0 50 100 150 2000 250

Temperature,°C
Figure 6-2 Conductivity of Si, Ge, GaAs in the range from —50°C to 250°C.

The electric properties of semiconductors are strongly influ-
enced by the ambient temperature. In this example we have
neglected the temperature dependence of the bandgap energy, which
is discussed in Chapter 7. Knowledge of the temperature behavior of
active devices is an important design consideration where internal
heating, due to power dissipation, can easily result in temperature
values exceeding 100-150°C.

A major change in the electrical properties of a semiconductor can be initiated by
introducing impurity atoms, This process is called doping. To achieve n-type doping
(which supplies additional electrons to the conduction band) we introduce atoms with a
larger number of valence electrons than the atoms in the intrinsic semiconductor lattice
that they substitute. For instance, the implantation of phosphorous (P} atoms into Si intro-
duces loosely bound electrons into the neutral crystal lattice, as shown in Figure 6-3(b).
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Valence band Valence band Valence band

{a} Intrinsic {b) ntype (c) p-type
Figure 6-3 Lattice structure and energy band model for {a) intrinsic, (b) n-type,

and (c) p-type semiconductors at no thermal energy. W, and W, are donor and
acceptor energy levels.

It is intuitively apparent that the energy level of this “extra” electron is closer to
the conduction band than the energy of the remaining four valence electrons. When the
temperature is increased above absolute zero, the loosely bound ¢lectron separates from
the atom, forming a free negative charge and leaving behind the fixed positive ion of
phosphorous. Thus, while still maintaining charge neutrality, the atom has donated an
electron to the conduction band without creating a hole in the valence band. This results
in an increase in the Fermi level since more electrons are located in the conduction
band. Contrary to the intrinsic semiconductor (n;, p;) we now have an n-type semicon-
ductor in which the electron concentration is related to the hole concentration as

n, = Np+p, (6.3)

where N is the donor concentration and p, represents the minority hole concentra-
tion. To find n,, and p, we have to solve (6.8) in conjunction with (6.3). The result is

[2 2
__ Np+ (Np+4dn; 6.92)

"= 2

n



278 Chagter 6§ » Active RF Components

_~Np+ IN2 + an? 69b)

pn_ 2

If the donor concentration Ny, is much greater than the intrinsic electron concentration
n;, then
n,=Np (6.10a)
2,02 2
-Np+Np(1+2n;/Ny)  n;
Pn= b_ D 5 LD . AT‘ (6.10b)
D

Let us now consider adding impurity atoms with fewer valence electrons than the
atoms forming the intrinsic semiconductor lattice. These types of elements are called
acceptors, and an example of such an element for the Si lattice is boron (B). As seen in
Figure 6-3(c), one of the covalent bonds appears to be empty. This empty bond introduces
additional energy states in the bandgap that are closely situated to the valence band.
Again, when the temperature is increased from absolute zero, some electrons gain extra
energy to occupy empty bonds but do not possess sufficient energy to cross the bandgap.
Thus, impurity atoms will accept additional electrons, forming negative net charges. At
the sites where the electrons are removed, holes will be created. These holes are free o
migrate and will contribute to the conduction current of the semiconductor. By doping the
semiconductor with acceptor atoms we have created a p-type semiconductor with

p,=N,+n, 6.11)

where Ny, n p are the acceptor and minority electron concentrations. Solving (6.11)
together with (6.3), we find hole p,, and electron », concentrations in the p-type semi-

conductor:
2 2
N+ JN,+4n;
p, =2 2‘ i (6.12a)
/2 2
N, + N, +4n;
n, = A > A (6.12b)
Stmilar to (6.9), for high doping levels, when N, » n;, we observe
pp= N, (6.13a)

-N +Ny(1+2n, /N n
" 3 N,

(6.13b)
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Minority and majority concentrations play key roles in establishing the current
flow characteristics in the semiconductor materials.

6.1.2 PN-Junction

The physical contact of a p-type with an n-type semiconductor leads to one of the
most important concepts when dealing with active semiconductor devices: the pn-junc-
tion. Because of the difference in the carrier concentrations between the two types of
semiconductors a current flow will be initiated across the interface. This current is com-
monly known as a diffusion carrent and is composed of electrons and holes. To sim-
plify our discussion we consider a one-dimensional model of the pn-junction as seen in
Figure 6-4.

_ Electric field

p-type n-type
~ ~ =~ - ~
Hole - Ir +++
diffusion~d—< +—t— +++| Electron
current .:r-_\‘_ - L~ diffusion
/4-’}/ current

4+
- —t T+
-- +++

\.--\ﬂ-—/ \——-’-——/
Space | Space
charge | charge

x=0 i

Figure 6-4 Current flow in the pn-junction

The diffusion current is composed of [, _and /,  components:

i

_ _ dn dp
Logg = Loyt 1p, = ‘IA[D,,E +Dpa) (6.14)
where A is the semiconductor cross-sectional area orthogonal to the x-axis, and D,
D p are the diffusion constants for electrons and holes in the form (Einstein relation)

kT
= M, p— = I'ln,pVT 6.13)
The thermal potential V; = kT/g is approximately 26 mV at room temperature of
300°K.
Since the p-type semiconductor was initially neutral, the diffusion current of holes
is going to leave behind a negative space charge. Similarly, the electron current flow
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from the n-semiconductor will leave behind positive space charges. As the diffusion
current flow takes place, an electric field E is created between the net positive charge in
the n-semiconductor and the net negative charge in the p-semiconductor. This field in
turn induces a current [ = CAE which opposes the diffusion current such that
Ip+ 144 = 0. Substituting (6.6) for the conductivity, we find

Ip = gA(np, + pRIE = 1, +1, (6.16)

Since the total current is equal to zero, the electron portion of the current is also equal
to zero; that is,

dn
Indiﬁ+1 = gD Ad +gqnu, AE = gu, (VTd _ndxv) =90 6.17)

where the clectric field E has been replaced by the derivative of the potential
E = -dV/dx. Integrating (6.17), we obtain the diffusion barrier voltage or, as it is
often called, the built-in potential:

Vdiff L. | nn
0 ", Ry

where again »,, is the electron concentration in the n-type and n, is the electron con-
centration ir the p-type semiconductor. The same diffusion barrier voltage could have
been found had we considered the hole current flow from the p to the n-semiconductor
and the corresponding balancing field-induced current flow / e The resulting equation
describing the barrier voltage is

Ve = VTln@ P) 6.19)

If the concentration of acceptors in the p-semiconductor is N, » n; and the concentra-
tion of donors in the n-semiconductor is Np» n;, then n, = Np, n, = n; 2N 4 SEE
(6.13b), and by using (6.18) we obtain

N"N”] (6.20)

L

Exactly the same result is obtained from (6.19) if we substitute p, = N, and
Py =N P/N D
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RFEM W

Example 6-2: Determining the diffusion barrier or built-in
voltage of a pn-junction

For a particular Si pn-;unction the doping concentrations are given
tobe N, = 10" cm™ and Np = 5 10”cm™ with an intrinsic
concentration of n, = 1.5 x 10 %em™ . Find the barrier voltages for
T = 300°K.

Solution:  The barrier voltage is directly determined from (6.20):

NN N,N
Vg = VTln{ 4 DJ = k—Tln[ 4 "J = 0.796 (V)

2 2
n; q n;

We note that the built-in potential is strongly dependent on the dop-
ing concentrations and temperature.

For different semiconductor materials such as GaAs, 5i, Ge,
the built-in voltage will be different even if the doping densities are
the same. This is due to significantly different intrinsic carrier con-
Centrations.

If we want to determine the potential distribution along the x-axis, we can employ
Poisson’s equation, which for a one-dimensional analysis is written as

&v(x) _ _plr) _ _dE
dx* £,8, dx

6.21)

where p(x) is the charge density and €, is the relative diclectric constant of the semi-
conductor. Assuming uniform doping and the abrupt junction approximation, as
shown in Figure 6-5(b), the charge density in each material is

p(x) = -gN,, for —dp <x=0 {6.22a)
p(x) = gNp, for 0<x<d, {6.22b)

where d, and d, are the extents of the space charges in the p- and n-type semiconduc-
tors.



Chapter 6 « Active RF Components

p-type n-type
~ ™~ ™ ™

----- +++++
----- ++++4+
----- ++++++
----- +H+tt+
----- ++++++
----- ++++++
----- +4+++4

Qe L
Space | Space
charge | charge

~d, x=0 d,
(a) pr-junction with space charge extent
”’ .p

|

P,= N, (majority carrier)
? ! ty; n, =N, (majority cartier)

m<<p
E E P << n,
——.j;u“éuh.‘hF============—p
-, d, ¥
(b) Acceptor and donor concentrations
p(x)
»

4 |—" s

+++

+++
+++
+
-—- AN

—qNA”—L“ ——— qND

(c) Polarity of charge density distribution

Figure 6-5 The pn-junction with abrupt charge carrier transition in the absence of
an externally applied voltage.
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Figure 6-5 The pn-junction with abrupt charge carrier transition in the absence of
an externally applied voitage. (Continued)

The electric field in the semiconductor is found by integrating (6.21) in the spatial
limits —d,, < x £ d,, such that

‘INA
—(x+d,), for —d x50
€,€,

E(x) = r eeo 6.23)

N
i D(d -x), for 0<x<d,

r

The resulting electric field profile is depicted in Figure 6-5(d). In deriving (6.23)
we used the fact that the charge balance law demands that the total space charge in the

semiconductor equals zero, which for highly doped semiconductors is equivalent to the
condition

NA'dp=ND'dn (6.24)

To obtain the voltage distribution profile we now carry out the integration of
{6.23) as follows:
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N .
;E—:(x+dp)2, for -dprSO
V(x) = -r_d E(x)dx = r=0 N (6.25)
’ q 2 2, 4N p 2 <y<
2£r80(NAdP+NDdu) 2_8,80@” x), for O_I_dn

Since the total voltage drop must be equal to the diffusion voltage V g, it is
found that

2
aNyd, qNpd,
28,8y 2t.8,

V(d) = Vg = (6.26)

Substituting d, = d,Np/N, and solving (6.26) for d,,, we obtain the extent of the
positive space charge domain into the n-semiconductor:

26VyeN,/ 1 172
e ()

where £ = £y, . An identical derivation involving d, = d,N,/ N, gives us the space
charge extent into the p-semiconductor:

2eV4sNp 1 2
dp = { q N_A(NA+ND) 6.28)
The entire length is then the addition of (6.27) and (6.23):
26V . 172
4 { qm( NL . NL )} 6.29)
4A ¥p

We next turn our attention to the computation of the junction capacitance. This is
an important parameter for RF devices, since low capacitances imply rapid switching
speeds and suitability for high-frequency operations. The junction capacitance can be
found via the well-known one-dimensional capacitor formula

c="t4
dg

Substituting (6.29) for the distance d g, we express the capacitance as

172
_ ge NuNp
C= A{zvdiﬁN_A " Np} (6.30)
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If an external voltage V, is applied across the junction, two situations arise that
explain the rectifier action of the diode, as shown in Figure 6-6.

p
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[ +
Qe |—] - - +
+ =] 41

-+ Do ! Ll

Voltage distribution in the pn<unction
(a) Reverse biasing (V, < 0) (b} Forward biasing (V, > 0)

Figure 6-6 External voltage applied to the pn-junction in reverse and forward
directions.

The reverse polarity [Figure 6-6(a)] increases the space charge domain and pre-
vents the flow of current except for a small leakage current involving the minority car-
rier concentration (holes in the n-semiconductor, and electrons in the p-semiconductor).
In contrast, the forward polarity reduces the space charge domain by injecting excessive
electrons into the n- and holes into the p-type semiconductor. To describe these situa-
tions, the previously given equations (6.27) and (6.28) have to be modified by replacing
the barrier voltage V g with Vo=V, ; that is,

1

2e(Vyg-V4)Np 1 2
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1

_[26(Vg— VAN, ] 2
d, = { . ATD(NA-» NDJ (6.32)

which leads to a total length of the space charge or depletion domain
1

)28V — Va1 NE
dg = {T(ﬁ; " EB)} (6.33)

Depending on the polarity of V4, we notice from (6.31)—(6.33) that either the space
charge domain is enlarged or diminished.

RFEM W=

Example 6-3: Computation of the junction capacitance and
the space charge region length of a pr-junction

For an abrupt pn-junction Si semiconductor at room temperature
(e, = 119, n;, = 15X 10" ¢ ) with donor and acceptor con-
centrations equal to Np = 5x 10" em™® and N, = 10" cm’3,
we desire to find the space charge regions d,, and 4, and the junc-
tion capacitance at zerc biasing voltage. Show that the depletion-
layer capacitance of a pn-junction can be cast into the form

and determine C ;. Sketch the depletion capacitance as a function
of applied voltage. Assume that the cross-sectional area of the pn-
junctionis A = 107" em?.

Solution:  We return to the capacitance expression (6.30) where
we introduce the applied voltage V , . Thus,

c - A[ g€ NN, ]1/2
T T2V(1 -V, / V)N + Ny

which is immediately recognized as the preceding formula, if we set
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CJ’D

[ ge NaNp :l” 2
IV N+ Np
Substituting Ve = VoIn(N,Np/nl) = 0.6159 V, it is found
that C,, = 10.68 pF.

For the space charge extents we use (6.28) and (6.29):

i = zevdiﬂ‘NA( 1 2
" q ATDNA"'ND)

d = 2eV4gNp 1 ot
P~ ¢ N_A(NA+ND)

The dependence of the junction capacitance on the applied voltage
is depicted in Figure 6-7.
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0 4 3 2 1 0 1
Applied voltage ¥, V
Figure 8-7 The pn-junction capacitance as a function of applied voltage.
In Figure 6-7 the junction capacitance for applied voltages

near the built-in potential will approach infinity. However, in reality
the value begins to sarurate, as further discussed in Chapter 7.
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For the current flow through the dicde we list the Shockley diode equation, which
is derived in Appendix F:

I=1Iye " T-1) (6.34)

where [ is the reverse saturation or leakage current. The current-voltage character-
istic, often called the I-V curve, is generically depicted in Figure 6-8.
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Figure 6-8 Current-voltage behavior of pr-junction based on Shockley equation.

This curve reveals that for negative voltages a small, voltage independent, current
-I, will flow, whereas for positive voltages an exponentially increasing current is
observed. The function shown in Figure 6-8 is an idealization since it does not take into
account breakdown phenomena. Nonetheless (6.34) reveals clearly the rectifier prop-
erty of the pn-junction when an alternating voltage is applied.

The existence of the depletion layer or junction capacitance requires a reverse-
biased pn-junction diode. This implies, with reference to Example 6-3, the condition
that V, < V4. However, under forward bias condition we encounter an additional dif-
fusion capacitance due to the presence of diffusion charges ¢, (minority carriers)
stored in the semiconductor layers which become dominant if V 4 > V g¢. This charge
can be quantified by realizing that the charge Q, can be computed as diode current [
multiplied by the transition time of carriers through the diode 1, or

Qg = Ity = t,.fo(ev*‘ -1) (6.35)

It is apparent that the diffusion capacitance assumes a nonlinear relation with the
applied voltage and the junction temperature. The diffusion capacitance is computed as



Semiconductor Basics 289

dQ,; _ Loty vuvy
Cy = (ﬁ’: = W (6.36)

and is seen to be strongly dependent on the operating voltage.
In general, the total capacitance C of a pn-diode can roughly be divided into three

regions:

1. V4, < 0: only the depletion capacitance is significant: C = C,
2. 0< V, <V depletion and diffusion capacitances combine: C = C;+ C,
3. V> V4 only the diffusion capacitance is significant: C = C,

The influence of the diffusion capacitance is appreciated if we consider a diode
that is operated at V,=1V and that has an assumed transition nmc of
Ty = 100 ps = 10" and a reverse saturation current of Ip=1fA =107 ®A mea-
sured at room temperature of 300°K (i.e., V; = 26 mV ). Substituting these values
into (6.36), we find C = C; = 194 nF which is rather large and for typical resistances
of R = 0.1...1 Q results in large RC time constants that restrict the high-frequency
use of conventional pr-junction diodes.

6.1.3 Schottky Contact

W. Schottky analyzed the physical phenomena involved when a metallic electrode
is contacting a semiconductor. For instance, if a p-semiconductor is in contact with a
copper or aluminum electrode, there is a tendency for the electrons to diffuse into the
metal, leaving behind an increased concentration of holes in the semiconductor. The
consequences of this effect are modified valence and conduction band energy levels
near the interface. This can be displayed by a local change in the energy band structure
depicted in Figure 6-9(a).
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Metal p-semiconductor

{a} Energy band model {b} Voltage-current characteristic
Figure 6-8 Metal electrode in contact with p-semiconducior.
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Because of the higher concentration of holes, the valence band bends toward the
Fermi level. The conduction band, as the result of a lower electron concentration, bends
away from the Fermi level. For such a configuration we always obtain a low resistance
contact [(see Figure 6-9(b)), irrespective of the polarity of the applied voltage.

The situation becomes more complicated, but technologically much more inter-
esting, when a metallic electrode is brought in contact with an n-semiconductor. Here
the more familiar behavior of a pn-junction emerges: A small positive volume charge
density is created in the semiconductor due to ¢lectron migration from the semiconduc-
tor to the metal. This mechanism is due to the fact that the Fermi level is higher in the
semiconductor (lower work function) than in the metal (higher work function) when the
two materials are apart. However, as both materials are contacted, the Fermi level again
has to be the same and band distortions are created. Electrons diffuse from the n-semi-
conductor and leave behind positive space charges. The depletion zone grows until the
electrostatic repulsion of the space charges prevents further electron diffusion. To clar-
ify the issues associated with a metal n-semiconductor contact, Figure 6-10 shows the
two materials before and after bonding.

T Free electron energy level 1

e

b F 3
gk W |
r WC‘
.......... F_ _ 'WF Wc
W hamaalaaaag - - < - - - - - ¥--- W,
I
Wy

: n-gemiconductor

n-semiconductor

x x

d,
{a) Metal and semiconductor do not interact (b) Metal-semiconductor contact

Figure 6-10 Energy-band diagram of Schottky contact, (a) before and (b}
after contact.

The energy W), = gV, is related to the metal work function Wy, = gV, (V,, is
recorded from the Fermi level to the reference level where the electron becomes a
detached free patticle; values of V,, for some commonly used metals are summarized
in Table 6-2) and the electron affinity gy, where ) is 4.05V for Si, 4.0V for Ge, and
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4.07V for GaAs and is measured from the conduction band to the same reference level
where the electron becomes a free carrier, according to

W, = q(Vy-%) 6.37)
Table 6-2 Work function potentials of some metals
Material Work function potential, V,,

Silver (Ag) 4,26 V
Aluminum (AD 428V
Gold (Au) 51V

Chromium (Cr) 45V

Molybdenum (Mo) 46V

Nickel (Ni) 515V
Palladium (Pd) 512V
Platinum (Pt) 565V
Titanium (Ti) 433V

An expression for a built-in Schottky barrier voltage V; is established just as in
the pr-function, which involves (6.37) and the additional voltage V- between conduc-
tion and Fermi levels:

Vio=(Vy-2)-Ve¢ (6.38)

where V- is dependent on the doping Ny, and the concentration of states in the con-
duction band N, according to N~ = Npexp(V/Vy). Solving for the voltage gives
Ve = VoIn(N-/Np). Although real metal-semiconductor interfaces usually involve
an additional very narrow isolation layer, we will neglect the influence of this layer and
only deal with the length of the space charge in the semiconductor:

1

_ f2e(Va= V)2
ds = {E'—N;'"} 6.39)

Therefore, it is found that the junction capacitance of the Schottky contact
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]
2
£ _4)___49¢8
- A{z(vd_ VA)ND} (6.40)

is almost identical to (6.30). A simple computation now can predict a typical value for
V; as illustrated in the following example.

CJ=A

RF&M W=

Example 6-4: Computation of the barrier voltage, depletion
capacitance, and space charge region width for a
Schottky diode

A Schottky diode is created as an interface between a gold contact
material and an n-tyl[%e silicon semiconductor. The semiconductor is
doped to Ny = 10 "cm~* and the work function V,, for gold is
5.1 V. Also, as mentioned above, the affinity for Si is ¥ = 4.05V.
Find the Schottky barrier V;, space charge width dg, and capaci-
tance C; if the dielectric constant of silicon is €, = 11.9. Assume
the cross-sectional diode areatobe A = 10™*cm? and the tempera-
ture equal to 300°K.

Solution:  Since the concentration of states in the conduction
band of silicon is N = 2.8x10%¢m-3 , we can compute the con-
duction band potential as
N -23 19
Ve = VTln(—C) - 1.38x10 l300 (2.8)(10
Np 1.6x10° 1016
Substituting the obtained value for V . into (6.38), we find the built-
in barrier voltage
Vi= (Vy=2)-Ve=(51V-405V)-021V =084V

The space charge width is obtained from (6.39)

€€,V _ [2(8.85x1072)11.90.84
dg = }—— = =
§ g Np J Loxag® 1% T 2Hm

Finally, the junction capacitance according to the formula for the
parallel-plate capacitor, see (6.40), gives us

)v = 021V
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£.E —12
C, = A% 1ge88XI0 9 5y

dg 332x107°

This example shows that the metal-semiconductor junction
diode for similar size and doping has a depletion capacitance sig-
nificantly smaller than that of a pn-junction, which permits higher
operational frequencies of the device.

6.2 RF Diodes

In this section we will review some practical realizations of the diodes that are
most commonly used in RF and MW circuits. As presented in the previous section, a
classical pn-junction diode is not very suitable for high-frequency applications because
of the high junction capacitance. In contrast, diodes formed by a metal-semiconductor
contact possess smaller junction capacitances and consequently reach higher frequency
limits. Today, Schottky diodes find widespread applications in RF detectors, mixers,
attenuators, oscillators, and amplifiers.

After discussing the Schottky dicde in Section 6.2.1, we will continue investigat-
ing a number of special RF diodes. In Section 6.2.2 the PIN diode is analyzed and
placed in context with its primary use as a variable resistor and high-frequency switch.

Besides relying on the rectifier property of diodes, we can also exploit the depen-
dence of the junction capacitance on the applied voltage to construct voltage-controlled
tuning circuits, where diodes are used as variable capacitors. An example of such a spe-
cialized diode is the varactor diode, covered in Section 6.2.3.

At the end of this section we will discuss a few more exotic diode configurations,
such as IMPATT, Tunnel, TRAPATT, BARRITT, and Gunn diodes, which are less fre-
quently used but which are still of interest due to their unique electric properties.

6.21 Schottky Diode

Compared with the conventional pn-junction, the Schottky barrier diode has a dif-
ferent reverse-saturation current mechanism, which is determined by the thermienic
emission of the majority carriers across the potential barrier. This current is orders of
magnitude larger than the diffusion-driven minority carriers constituting the reverse-
saturation current of the ideal pn-junction diode. For instance, the Schottky diode has a
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typlcal reverse-saturation current density on the order of 10 “® Alem? compared with
10" A/em? of a conventional Si-based pn-junction diode. The schematic diagram of a
cross-sectional view of the Schottky diode with the corresponding circuit elements is
given in Figure 6-11.

Metal contact

Depletion
region

Metal contact

______

|1
|
)

\Metal contact \Metal contact

Figure 6-11 Cross-sectional view of Si Schottky diode.

The metal electrode (tungsten, aluminum, gold, etc.) is in contact with a weakly
doped n-semiconductor layer epitaxially grown on a highly doped »n"* substrate. The
dielectric is assumed to be ideal; that is, the conductance is zero. The current-voltage
characteristic is described by the following equation:

v,-IR
=14y 6.41)
where the reverse-saturation current is given by
I = A(R T exp[ qv"D (6.42)
§ kT

and R" is the so-called Richardson constant for thermionic emission of the majority
carrier across the potential barrier. A typical value of R* for Siis 100 A/cm2K?2,

The corresponding small-signal equivalent circuit model is illustrated in Figure
6-12. In this circuit we note that the junction resistance R, is dependent on the bias cur-
rent, just as is the diode series resistance, which is comprised of epitaxial and substrate
resistances Rg = R + R, The bond wire inductance is fixed and its value is
approximately on the order of Ly = 0.1 nH. As discussed above, the juncticn capaci-
tance C, is given by (6.40). Because of the resistance R, the actual junction voltage is
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equal to the applied voltage minus the voltage drop over the diode series resistance,
resulting in the modified exponential expression (6.41).

Figure 6-12 Circuit model of typical Schottky diode.

Typical component values for Schottky diodes are Rg=2...5Q,
C,=01...02pF, and R; = 200...2 kQ. Ofien, the additional IR term in
(6.41) is neglected for small bias currents below 0.1 mA. However, for certain applica-
tions, the series resistance may form a feedback loop, which means the resistance is
multiplied by a gain factor of potentially large magnitude. For this situation, the /R,
term has to be taken into account.

In circuit realizations of high-frequency Schottky diodes, the planar configuration
in Figure 6-11 gives rise to relatively large parasitic capacitances for very small metal
contacts of typically 10 pm diameter and less. The stray capacitances can be somewhat
minimized through the addition of an isolation ring, as depicted in Figure 6-13.

Metal contact

n-type epitaxial layer

#'-type substrate

\Metal contact

Figure 6-13 Schottky diode with additional isolation ring suitable for very-high-
frequency applications.

The small signal junction capacitance and junction resistance can be found by
expanding the electric current expression (6.41) around the quiescent or operating
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point V. That means the total diode voltage is written as a DC bias V, and a small
AC signal carrier frequency component v,

V=V,+yy, (6.43)
The substitution of (6.43) in (6.41) for a negligible 7R term yields

VQ/VT ve/ Vy

I= Is(e —l) = I¢(e -1) (6.44)

Expanding this equation in a Taylor series about the Q-point and retaining the first two
terms gives

dl Iev, voov v
I(Vy2lo+ 2| vy = TIp+<te T IQ+(IQ+IS) _JQ+E‘* (6.45)
VQ T J
Here the junction resistance R;(V ;) is identified as
Vr
R,(Vy) = 7/ (6.46)

Iyt
and the junction capacitance is given by (6.40), with V, replacing V.

6.2.2 PIN Diode

PIN diodes find applications as high-frequency switches and variable resistors
(attenuators) in the range from 10k to less than 1 Q for RF signals up to 50 GHz.
They contain an additional layer of an intrinsic (I-layer) or lightly doped semiconduc-
tor sandwiched between highly doped p" and n* layers. Depending upon application
and frequency range, the thickness of the middle layer ranges from 1 to 100 pm. In
forward direction, the diode behaves as if it possesses a variable resistance controlled
by the applied current. However, in reverse direction the lightly doped inner layer cre-
ates space charges whose extent reaches the highly doped outer layers. This effect takes
place even for small reverse voltages and remains essentially constant up to high volt-
ages, with the consequence that the diode behaves similar to a dual plate capacitor. For
instance, a Si-based PIN diode with an internal /-layer of 20 pm and a surface area of
200 by 200 p m has a diffusion capacitance on the order of 0.2 pF.

A generic PIN diode and its practical implementation in mesa processing tech-
nology is presented in Figure 6-14. The advantage of the mesa configuration over the
conventional planar construction is a significant reduction in fringing capacitance.

The mathematical representation of the J-V characteristic depends on the level and
direction of current flow. To keep things simple, we will rely to a large extent on discus-
sions already outlined for the pn-junction.
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4 n'-type substrate

(a) Simplified structure of a PIN diode (b) Fabrication in mesa processing technology
Figure 68-14 PIN diode construction.

In the forward direction and for a weakly doped n-type intrinsic layer the current
through the diode is

qn2W V., /(2V,)
_ i A o
I = A( NDTp](e 1) 647

where W is the width of the intrinsic layer; T, is the excess minority carrier lifetime,
which can be on the order of up to 1 » = 1 Us; and Np, is the doping concentration in
the middle layer of the lightly doped n-semiconductor. The factor 2 in the exponent
takes into account the presence of two junctions. For a pure intrinsic layer N, = n,,
(6.47) leads to the form

W
I= A(q:’ )(ev"”m”- 1) (6.48)
P

The total charge can be calculated from the relation Q = It,. This allows us to find
the diffusion capacitance:

- 40 _ (ﬂ) =I5
Ca=av, = Wav,) = v, (6.4%2)

In the reverse direction, the capacitance is dominated by the bias-dependent space
charge length of the Ilayer. For small voltages C; is approximately
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A
¢, = &) (6.49b)
where €, is the dielectric constant of the intrinsic layer.

The dynamic resistance of a PIN diode can be found through a Taylor series
expansion around the Q-point as already discussed for the Schottky diode. The result is

av vy
RiVe) =g ) Ig+1pg

(6.50)

di |f=fQ

where, with reference to (6.47), we have set Ip, = A(qn?W)/ (NpT,).

Based on the PIN diode’s resistive behavior under forward bias (“switch on™) and
capacitive behavior under reverse bias (“switch off” or isolation) we can proceed to con-
struct simple small signal models. For the PIN diode in series connection, the electric cir-
cuit model is seen in Figure 6-15 terminated with source and load resistances. The
junction resistance and diffusion capacitance, as derived in (6.49) and (6.50), may in prac-
tice model the PIN diode behavior only very approximately. More quantitative informa-
tion is obtained through measurements or sophisticated computational modeling efforts.

Ze=2Z, |- _____ )
+—W\—
1 RV,
Vs I A Q) : Z,=2,
! !
ol ;
b e e == =
(a) Forward bias
Zg=2, I- ----- 1
| p— Lo
s
[ '
Ve | ! : Z2,=2,
! '
[

(b) Reverse bias (isolation)
Figure 8-15 PIN diode in series connection.

The bias point setting required to operate the PIN diode has to be provided
through a DC circuit that must be separated from the RF signal path. The DC isolation
is achieved by a radio frequency coil (RFC), representing a short circuit at DC and an
open circuit at high frequency. Conversely, blocking capacitors (Cp) represent an
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open circuit at DC and a short circuit at RF. Figure 6-16 shows a typical attenuator cir-
cuit where the PIN diode is used either in series or shunt connection.

Although in the following discussion we will use a DC bias, a low-frequency AC
bias can also be employed. In this case the current through the dicde consists of two
components such that [ = (dQ/dt)+ @/t - The implication of this is deferred to the
problem section.

chias
RFC
C, C,
i [~
RF, o I - LA | o RF,,
PIN Diode
- g
[+ =
(a) Series connaction of PIN dicde
D Cbias ©-
¢, RFC c,
RF, o | . || o RF,,
2§ PIN Diode
RFC
e CB
@ : -©

(b} Shunt connection of PIN diode

Figure 6-16 Attenuator circuit with biased PIN diode in series and shunt
configurations.

For positive DC bias voltage, the series connected PIN diode represents a low
resistance to the RF signal. The shunt connected PIN diode, however, creates a short-cir-
cuit condition, permitting only a negligibly small RF signal to appear at the output port.
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The shunt connection acts like a high attenuation device with high insertion loss. The
situation is reversed for negative bias condition where the series connected PIN diode
behaves like a capacitor with high impedance or high insertion loss, whereas the shunt
connected diode with a high shunt impedance does not affect the RF signal appreciably.

An often used notation is the transducer loss TL conveniently expressed in terms
of the § parameter |S,)| so that with (4.52)

2V,

G

TL = -20log|S,,| = —20log (6.51)

The following example computes the transducer loss for a PIN diode in series
configuration.

RF&M W

Example 6-5; Computation of transducer loss of a PIN diode
in series configuration for forward and reverse
bias conditions

Find the transducer loss of a forward and reverse biased PIN diode in
series connection (Z; = Z; = Z, = 50 Q). Assume the junction resis-
tance R; under forward bias ranges between 1 and 20 €2. Further-
more, assume that the reverse bias operating conditions result in the
junction capacitance being C, = 0.1, 0.3, 0.6, 1.3, and 2.5 pF, and
the frequency range of interest extends from 10 MHz to 50 GHz.

Solution:  Based on (6.51) and Figure 6-15, the transducer loss is
found with the aid of the voltage divider rule to be

R
TLireard = -2010g(—1 OéOfRJ) = 2010g(1 +ﬁ)
and

100 = 10lo [1 + (——1-)2]
100 - j1/(0Cp) ¢ 1006Cp
Figure 6-17 plots the transducer loss in dB under forward bias
condition for the given range of junction resistances. In contrast,
Figure 6-18 graphs the reverse bias condition where the PIN diode
essentially has a purely capacitive response.

TL yerse = —20l0g
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Figure 6-17 Transducer loss of series connected PIN dicde under forward bias
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Figure 6-18 Transducer loss of series connected PIN diode under reverse bias
condition. The diode behaves as a capacitor.
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6.2.3 Varactor Diode

The PIN diode with its capacitive behavior under reverse bias already suggests
that a variable capacitance versus voltage characteristic can be created by a specific
middle layer doping profile. A varactor diode exactly accomplishes this task by a suit-
able choice of the intrinsic layer thickness W in addition to selecting a particular doping
distribution Np(x).

RF&EMW—

Example 6-6: Determination of the required doping profile for
a particular capacitance-voltage behavior

Find the appropriate doping concentration profile N;(x) that
ensures that the varactor diode capacitance changes depending on
the applied reverse biasing voltage as C(V,) = Cy'/(V, = V),
where Cy" = 5x 1072 FV and the cross-sectional diode area
. -4 2
isA =10 "cm".

Solution:  The extent of the space charge length can be predicted
based on (6.39) to be

_ 28 Vag-Vor 1 2
r= { q (ND)}

which determines the junction capacitance C = £;4/x. In the deri-
vation of the preceding formula we assumed that the doping concen-
tration in the /-layer is much lower than the doping in the adjacent
layers. If the space charge domain is increased by a small increment
Jx, the charge is modified to

90 = gNp(x)Adx
This differential increase in length can be expressed by a corre-
sponding decrease in capacitance. By differentiating the capacitor
formula, we obtain

ax = —€,AdC/C>

Upon substitution of dx into the expression for JQ and noting that
dQ = CdV,, we have
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30 =CaV, = ~gN,(x)A’€,0C/C
This gives us the desired expression for the doping profile:

For the desired capacitance, we find

Cy  2x10"
= = cm
gAx X

Naturally we cannot enforce the doping profile to reach infinity
as x approaches the beginning of the I-layer Nonetheless, by
approximating a hyperbolic function, it is possible to ensure the
desired capacitance-voltage behavior,

Figure 6-19 presents the simplified electric circvit model of the varactor diode
consisting of a substrate resistance and voltage-dependent capacitance of the form
(Vag-V A)_”z. This is the case when the doping profile is constant. Therefore we
have for the capacitance in generic representation:

V. \-172
Cy = Cvo(l - —Q) 6.52)
V aite
where V, is the reverse bias.

One of the main applications of this diode is the frequency tuning of microwave
circuits. This is due to the fact that the cut-off frequency f,, of the first-order varactor
model

1
fv = 21RC (V) (6.53)
can be controlled through the reverse bias V.

In addition, the varactor diode can be used to generate short pulses as schematically
explained in Figure 6-20. An applied voltage V, across a series connection of resistor
and diode creates a current flow I, . This current is in phase with the voltage over the pos-
itive cycle. During the negative voltage cycle the stored carriers in the middle layer con-

tribute to the continued current flow until all carriers are removed. At this point the current
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Figure 6-19 Simplified electric circuit model and capacitance behavior of
varactor diode.

drops abruptly to zero. A transformer can now couple out a voltage pulse according to
Faraday's law V, = L(dl,/dr). The pulse width can be approximated based on the
length of the middle layer W and the saturation drift velocity v ., of the injected carrier
concentration.

I
R —
o—~AAN L °
1
Varactor
A Vout
o o
‘{Q’IV h
v,
Iy
_/ / :
Vol.ll
K t

|fv|

Figure 8-20 Pulse generation with a varactor diode.
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If we assume W = 10 um and v, . = 10° cm/s we obtain a transit time that is
equivalent to a pulse width of

rv = = = 1ns (654)

6.2.4 IMPATT Diode

IMPATT stands for IMPact Avalanche and Transit Time diode and exploits the
avalanche effect as originally proposed by Read. The principle of this diode construc-
tion, which is very similar to the PIN diode, is depicted in Figure 6-21. The key differ-
ence is the high electric field strength that is generated at the interface between the n’
and p layer resulting in an avalanche of carriers through impact ionization.

@—r
o n| p I = Hole /
- W Impact
E N i
Electron
i . _
T *
@—»

(a) Layer structure and electric field profile {b} Impact ionization

Figure 6-21 IMPATT diode behavior.

The additional ionization current 7, that is generated when the applied RF volt-
age V, produces an electric field that exceeds the critical threshold level is seen in Fig-
ure 6-22. The current slowly decreases during the negative voltage cycle as the excess
carriers are removed. The phase shift between this ionization current and the applied
voltage can be tailored so as to reach 90°. The total diode current suffers an additional
delay since the excess carriers have to travel through the intrinsic layer to the p" layer.
The time constant is dependent on the length and drift velocity as given in (6.47).
Choosing the intrinsic layer length appropriately in conjunction with a suitable doping
concentration can create an additional time delay of 90°.
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Figure 6-22 Applied veltage, ionization current, and total current of an
IMPATT diode.

The electric circuit diagram of an IMPATT device shown in Figure 6-23 is more
intricate than the PIN diode and the reactance reveals an inductive behavior below the
diode’s resonance frequency f, before turning capacitive above the resonance fre-
quency. The total resistance is positive for f < f, and becomes negative for f > f,.

C.

II 1on
R, C; ]

—w——
-

L

ion

Figure 6-23 Electric circuit representation for the IMPATT diode.

The resonance frequency is determined based on the operating current /,, dielec-
tric constant, saturation drift velocity v, , and the differential change in the ioniza-
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tion coefficient of with respect to the differential change in electric field strength
o’ = du/dE . The resonance frequency is predicted as

Fo= A 21 Zdmax - (6.55)
07 g0 ¢ :

The additional circuit parameters are specified as follows

R=R,+ Vdmax (6.56a)
20 foCLW 1= (5]

c, =2 (6.56b)

C., = % (6.56¢)

Ligp = —— (6.56d)
(Z“fo) Cion

where R; is the combined resistance of the semiconductor layers, d is the length of the
avalanche region of the p-layer, and W is the total length, as shown in Figure 6-19. The
negative resistance of this diode above the resonance frequency can be understood in
terms of returning electric energy to the RF or MW resonance circuit; which means the
diode operates as an active device. Thus, the circuit attenuation can be substantially
reduced to the point where additional power is transferred to the load impedance.
Unfortunately, the 180-degree phase shift comes with a price: The efficiency of con-
verting DC to RF power at operating frequencies of 5 to 10 GHz is very low, with typi-
cal values in the range of 10 to 15%.

6.2.5 Tunnel Diode

Tunnel diodes are prn-junction diodes that are made of n and p layers with
extremely high doping (concentrations approach 10'°-10?° cm™) that create very nar-
row space charge zones. This can be seen immediately from equations (6.27) and
(6.28). The result is that the electrons and holes exceed the effective state concentra-
tions in the conduction and valence bands. The Fermi level is shifted into the conduc-
tion band W, of the n* layer and into the valence band Wy, of the p
semiconductor. We notice from Figure 6-24 that the permissible electron states in either
semiconductor layer are only separated through a very narrow potential barrier.
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Flgure 6-24 Tunnel diode and its band energy representation.

Based on quantom mechanical considerations, there is a finite probability that
electrons can be exchanged across the narrow gap rather than having to overcome the
potential barrier through an externally supplied voltage. This phenomenon is known as
tunneling. In thermal equilibrium the electron tunneling from the n to p layer is bal-
anced by the opposite tunneling from the p to n layer. No net current flow results.

The peculiar cumrent-voltage response of the tunnel diode is best explained with
reference to the corresponding energy band deformation for four distinct situations, as
shown in Figure 6-25(b)—(e).

e pr-junction
diode current

>V

(a} /-V curve of tunnel diode. At high positive biasing voltages the corresponding current
of the tunnel diode approaches the current of the conventional pn-junction diode.

Figure 6-25 Current-voltage behavior of the tunnel diode and comparison with
energy band structure.
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Figure 6-256 Current-voltage behavior of the tunnel diode and comparison with
energy band structure. {(Continued}

Unlike the equilibrium condition shown in Figure 6-24 and Figure 6-25(c), for a
negative applied voltage V, a higher concentration of electron states is created in the p-
layer, which results in a higher probability to tunnel into the n-layer than vice versa.
The consequence is that even for small negative voltages, a steep increase in current can
be observed [Figure 6-25(b}]. For a small positive voltage the reservoir of free electrons
is shifted to the n-semiconductor and an increase in free electron states is created in the
p-semiconductor. The consequence is a positive current flow [Figure 6-25(d)] in
response to the tunneling of electrons from the n to the p layer. However, if the applied
voltage reaches a critical value V, = V4 no overlapping band structures occur [i.e.,
the condition W,, < Wy, responsible for the tunneling effect no longer exists, see Fig-
ure 6-25(e)]. The current fiow through the tunnel diode approaches a minimum. Above
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this critical voltage point V ¢ the diode behaves again like a conventional pn-junction
diode and current increases exponentially.

The electric circuit of the tunnel diode, Figure 6-26, is very similar to the IMPATT
diode shown in Figure 6-23. Here R and Lg are resistance of the semiconductor layer
and associated lead inductance. The junction capacitance C is in shunt with a negative
conductance -g = dI/dV, which is utilized in the negative slope of the I-V curve
shown in Figure 6-25(a).

£
Ry Lg

=
Cr
Figure 6-26 Electric circuit representation of a tunnel diode.

A simplified amplifier circuit involving a tunnel diode is depicted in Figure 6-27.
If we consider the power amplification factor Gy as the ratio of the power delivered to
the load R, to the maximally available power from the source P = |VG|2/ (8R;), we
obtain at resonance

G| = = ! 6.57)

RL R (1/R, +1/R;-g)

where the influence of Ry is neglected. If g is chosen appropriately (ie.,
g = L/R;+1/Rg), the denominator approaches zero and we have the behavior of an
oscillator.

Figure 6-27 Tunnel dicde circuit for amplification/oscillation behavior.
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6.2.6 TRAPATT, BARRITT, and Gunn Diodes

For completeness we briefly mention these additional three diode types without
going into any detail of their circuit representation and quantitative electric parameter
derivations.

The TRApped Plasma Avalanche Triggered Transit (TRAPATT) diode can be
considered an enhancement of the IMPATT diode in that a higher efficiency (up to
75%) is realized through the use of bandgap traps. Such traps are energy levels that are
situated inside the bandgap and allow the capture of electrons. External circuits ensure
that during the positive cycle a high barrier voltage is generated, resuiting in carrier
multiplication of the electron-hole plasma. The consequence is a breakdown in the rec-
tifier properties of the dicde during the negative cycle. The operating frequency is
slightly lower than the IMPATT diode. This is due to the fact that the buildup of the
electron-hole plasma is slower than the transit time through the middle layer in an
IMPATT diode.

For the BARRier Injection Transit Time (BARRIT) we are essentially dealing
with a transit time diode whose p np* doping profile acts like a transistor without base
contact. The space charge domain extends from the cathode through the middie layer
into the anode. The small-signal circuit model consists of a resistor and shunt capacitor
whose values are dependent on the DC current bias. Unlike the IMPATT diode, this RC
circuit can create a negative phase of up to —90 degrees at a relatively low efficiency of
5% and less. The BARRIT diode finds applications in RADAR mixer and detector
circuits.

The Gunn diode is named after its inventor J. B. Gunn, who found in 1963 that in
certain semiconductors (GaAs, InP) a sufficiently high electric field can cause electrons
to scatter into regions where the bandgap separation increases. As a result of this
increase in bandgap energy, the electrons suffer a loss in mobility |, . This phenome-
non is so dramatic that, for instance in GaAs, the drift velocity (v, = ngu,, ) can drop
from 2 x 10’ cm/s to less than 107 cm/s for electric field strengths growing from
5 kV/cm to 7 kV/cm. The negative differential mobility

dv,

Hn = JE

is again used for oscillator circuits as we will see in later chapters. To exploit the Gunn

effect for RF and MW applications, a special doping profile is needed to ensure that

once the voltage exceeds the required threshold a stable single-carrier space domain is
created.

<0
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6.3 Bipolar-Junction Transistor

The transistor was invented in 1948 by Bardeen and Brattain at the former AT&T
Bell Laboratories and has over the past 50 years received a long lists of improvements
and refinements. Initially developed as a point-contact, single device, the transistor has
proliferated into a wide host of sophisticated types ranging from the still popular bipo-
lar junction transistors (BJTs) over the modem GaAs field effect transistors (GaAs
FETs) to the most recent high electron mobility transistors (HEMTs). Although tran-
sistors are often arranged in the millions in integrated circuits (ICs) as part of micropro-
cessor, memory, and peripheral chips, in RF and MW applications the single transistor
has retained its importance. Many RF circuits stiil rely on discrete transistors in low-
noise, linear, and high-power configurations. It is for this reason that we need to investi-
gate both the DC and RF behavior of the transistors in some detail.

The constituents of a bipolar transistor are three alternatively doped semiconduc-
tors, in npn or pnp configuration. As the word bipolar implies, the internal current flow
is due to both minority and majority carriers. In the following we recapitulate some of
the salient characteristics.

6.3.1 Construction

The BIT is one of the most widely used active RF elements due to its low-cost
construction, relatively high operating frequency, low-noise performance, and high-
power handling capacity. The high-power capacity is achieved through a special inter-
digital emitter-base construction as part of a planar structure. Figure 6-28 shows both
the cross-sectional planar construction and the top view of an interdigital emitter-base
connection.

Because of the interleaved construction shown in Figure 6-28(b) the base-emitter
resistance is kept at a minimum while not compromising the gain performance. As we
will see, a low base resistance directly improves the signal-to-noise ratio by reducing
the current density through the base-emitter junction (shot noise) and by reducing the
random thermal motion in the base (thermal noise), see Chapter 7 for more details.

For frequency applications exceeding 1 GHz it is important to reduce the emitter
width to typically less than 1 pm size while increasing the doping to levels of
10%°...10% c¢m™ to both reduce base resistance and increase current gain. Unfortu-
nately, it becomes extremely difficult to ensure the tight tolerances, and self-aligning
processes are required. Furthermore, the acceptor and donor doping concentrations
reach quickly the solubility limits of the Si or GaAs semiconductor materials, providing
a physical limitation of the achievable current gain. For these reasons, heterojunction
bipolar transistors (HBTs) are becoming increasingly popular. HBTs achieve high
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(a) Cross-sectional view of a multifinger bipolar junction transistor

Base bonding pad

R
mitter contact: i i
il P Metalization

p base well
p’ base contacts

Emitter bonding pad

(b) Top view of a multifinger bipolar junction transistor
Figure 6-28 Interdigitated structure of high-frequency BJT.

current gains without having to dope the emitter excessively. Due to additional semi-
conductor layers (for instance, GaAlAs-GaAs sandwich structures) an enhanced elec-
tron injection into the base is achieved while the reverse hole injection into the emitter
is suppressed. The resuit is an extremely high emitter efficiency as defined by the ratio
of electron current into the base to the sum of the same electron current and reverse
emitter hole current. Figure 6-29 shows a cross-sectional view of such a structure.
Besides GaAs, heterojunctions have been accomplished with InP emitter and
InGaAs base interfaces; even additional heterojunction interfaces between the GalnAs
base and InP collector (double heterojunctions) have been fabricated. The material InP
has the advantage of high breakdown voltage, larger bandgap, and higher thermal con-
ductivity compared to GaAs. Operational frequencies exceeding 100 GHz, and a carrier
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Dielectric

N

Figure 6-29 Cross-sectional view of a GaAs heterojunction bipolar transistor
involving a GaAlAs-GaAs interface.

transition time between base and collector of less than 0.5 ps have been achieved.
Unfortunately, InP is a difficult material to handle and the manufacturing process has
not yet matured to a level that allows it to compete with the Si and GaAs technologies.

6.3.2 Functionality

In general, there are two types of BJTs: npn and pnp transistors. The difference
between these two types lies in the doping of the semiconductor used to produce base,
emitter, and collector. For an npn-transistor, collector and emitter are made of n-type
semiconductor, while the base is of p-type. For a pnp-transistor, the semiconductor
types are reversed (n-type for base, and p-type for emitter and collector). Usually, the
emitter has the highest and the base has the lowest concentration of doping atoms. The
BIT is a current-controlled device that is best explained by referring to Figure 6-30,
which shows the structure, electrical symbol, and diode model with associated voltage
and current convention for the npn-structure. We omit the discussion of the pnp-
transistor since it requires only a reversal of voltage polarity and diode directions.

The first letter in the voltage designation always denotes the positive and the sec-
ond letter gives the negative voltage reference points. Under normal mode of operation
(i.e., the forward active mode), the emitter-base diode is operated in forward direction
(with Vg =0.7 V) and the base-collector diode in reverse. Thus the emitter injects
electrons into the base, and conversely from the base a hole current reaches the emitter.
If we maintain the collector emitter voltage to be larger than the so-called saturation
voltage (typically around 0.1 V), and since the base is a very thin (on the order of
dg <1 pm) and lightly doped p-type layer, only a small amount of electrons recom-
bine with the holes supplied through the base current. The vast majority of electrons
reach the base-collector junction and are collected by the applied reverse voltage V.

For the reverse active mode, the collector-emitter voltage is negative (typically
Vg <-0.1 V) and the base-collector diode is forward biased, while the base-emitter



Bipelar-Junction Transistor 315

Elel;:_trorg T , C
recombination ) l -
Hole . | n tﬁ’pet
recombination collector .
(]
p L, (
p-type
B } base B Ve B
K
n-type
Ho !
injectilgn o] emitter T I
[
E E
@) (b) (c)

Figure 6-30 npntransistor: {a) structure with electrical charge flow under forward
active mode of operation, (D) transistor symbol with voltage and current directions,
and (¢) diode model.

diode is now operated in reverse direction. Unlike the forward active mode, it is now
the electron flow from the collector that bridges the base and reaches the emitter.

Finally, the saturation mode involves the forward biasing of both the base-emit-
ter and base-collector junctions. This mode typically plays an important role when
dealing with switching circuits.

For a common emitter configuration, Figure 6-31(a) depicts a generic biasing
arrangement, where the base current is fixed through an appropriate choice of biasing
resistor Ry and voltage source Vgp, resulting in a suitable Q-point. The base current
versus base-emitter voltage, Figure 6-31(b), follows a typical diode I-V behavior, which
constitutes the input characteristic of the transistor. The base current and base-emitter
voltage at the intersection point between the load line and the transistor input character-
istic are identified as [ g and VgE . The collector current versus collector-emitter voltage
behavior as part of the transistor output characteristic follows a more complicated pat-
tern since the collector current must be treated as a parametric curve dependent on the
base current ({5, < fg, . ..) as seen in Figure 6-31(c).

The quantitative BJT behavior is analyzed by investigating the three modes of
operation in terms of setting appropriate operating points and formulating the various
current flows. For simplicity, we will neglect the spatial extent of the individual space
charge domains and assume typical representative voltage and current conditions. To
keep track of the different minority/majority and doping conditions in the three semi-
conductor layers, Table 6-3 summarizes the parameters and corresponding notation.
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Figure 8-31 Biasing and input, output characteristics of an npn BJT.
Table 6-3 BJT parameter nomenclature
Parameter description Emiftter (n-type) Base (p-type) Caliector (n-type}
E
Doping level Np N ﬁ N g
. . . E 2, .,B C
Minority carrier concentration [ P, = nf/Nf) ngo =n;/N, P, = niz/NS
in thermal equilibrivm
. ) . E B c
Majority carrier concentration |7, Py, P
in thermal equilibrivum
Spatial extent dg dg de
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For the following BJT analysis, it is implicitly understood that the concentrations
obey the inequality pZ, « n8, « p&.

Forward Active Mode(V >V p . = 0.1V, [p>0)

To find the minority charge concentrations, we consider the configuration shown
in Figure 6-32. Here the concentration is plotted as a function of distance across the
three semiconductor layers. For predicting the spatial minority carrier concentrations in
the respective layer, we rely on the so-called short diode (see Appendix F) analysis,
which approximates the exponentials as linear charge concentration gradients.

Forward biased B Reverse biased
junction junction

—

— — I
x =—d; x=40 x=d, x=dy+d;

Figure 6-32 Minority carrier concentrations in forward active BJT.

The minority charge concentrations in each layer are given as follows:

Vo 'V
«Emitter:  pS(-dy) = poy and po(0) = prge = 7

B B Vee/Vy B B Vgc/Vr
¢ Base: n,(0} = n,ge and n(dg) = np,pe =)
VooV
« Collector: pS(dy) = pooe ° T=0

The last two concentrations are zero because the base-collector voltage is negative (for
instance, for typical transistor values of Vi.p = 25V and Vgp = 0.7V we find
Ve = —1.8 V, which yields exp[Vg~/Vy] = exp[-1.8/0.026] — 0). Based on
the aforementioned cartier concentrations we can now predict the diffusion current den-
sity of holes Jﬁdiﬂc in the emitter:

dp.(x) 4D, aD; py,
Jﬁdiff = —QD:E e dEp[Pf(O)—Pf('-d,g)] = b0

e = T_1) (658
dE
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For the diffusion current density of electrons in the base layer J fdiﬂc we similarly obtain

dn®(x DB B
Tnast = qu[ 2 )] 2 "[ Pdg)-nb0)] = L l00, 0T (659

From the preceding two equations, the collector and base currents can be established as

qD

VeV VoV
Ipe = -T2 A = —4e P”A T 2 e T (6.60)
B
and
P gDEpE v v
Irp = ~JpanA = —% VA o) (6.61)
E

where mdex F denotes forward current, A is the junction cross-sectional area, and
Is = (qD n oA)/ dp is the saturation current. The emitter current is directly found
by adding (6 60) and (6.61). The forward current gain $z under constant collector
emitter voitage is defined as

B B
? I 662)
FB Ver D pP nOdB

To arrive at (6.62) it is assumed that the exponential function in (6.61) is much larger
than 1, allowing us to neglect the factor —1. Moreover, the ratio between collector and
emitter currents, or ¢y, is expressed as

Ipc Br
= = 6.63
(~Irg) 1+ BF ( )

RF&MW-

Example 6-7: Computation of the maximum forward current
gain in a bipolar-junction transistor

Find the maximum forward current gain for a silicon-based BIT
w1th the followmg parameters: donor concentration in the emitter,

E = 10 _3; acceptor concentration in the base,
N, = 10" _3; space charge extent in the emitter,
dy = 0.8 pm; and space charge extent in the base, dy = 1.2 pm.
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Solution:  To apply (6.62), we need to determine the diffusion
constants in base and emitter as described by the Einstein relation
(6.15). Substituting this relation into (6.62), we obtain the forward
current gain:

B
M pode
Br = —¢—
upp nOdB
Furthermore, using the expressions for the minority carrier concen-

trations in base and emitter from Table 6-3, we amive at the final
expression for Bg:

As discussed in Section 6.3.3 and in the following chapter, the
current gain is only approximately constant. In general, it depends
on the transistor operating conditions and temperature behavior.

Reverse Active Mode (V ;< -0.1 V, [3>0)

The minority carrier concentrations are shown in Figure 6-33 with the associated
space charge domains (i.e., the base-emitter diode is reversed biased whereas the base-
collector diode is forward biased).

Reverse biased B Forward biased

junction junction

x=-dg x=0 x=d, x =dy+de
Figure 6-33 Reverse active mode of BJT.
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The minority charge concentrations in each layer are as follows:

«Emitter:  pE(-dg)~0 and p£(0) = pEe’ ™ "= 0
*Base:  n5(0) = nlge T~ 0 and n¥(dp) = nPpe Y

Vac/Vr

»Collector: p, (dB) = p,,oe and p, (da +de)= pﬂo

From the diffusion current density, we can find the reverse emitter current

B B
dn D 'n /v Vo'V
Ing = ~JoswA = ~qD. [ }4 = Tnlp0, Yocr Ige 7 (6.64)
dx dg
and the reverse base current
c
d D Ay v ..V
C c|épy, q ano ( sc/ vy J
Ippg = —J yuA = —qD A = —F0—m— -1 (6.65)
REB pdiff p[ dx ) dC

In a similar manner as done for the forward current gain, we define the reverse current
gain Bp

B_B
BR I Cc C ( . )

RBly; Dp Pnodp

and the collector emitter ratic oty
Ipc Br

Oy = = (6.67)

7 (gp) v 1+ By

BC

Saturation Mode (Vyp, V>V, 15> 0)

This mode of operation implies the forward bias of both diodes, so that the diffu-
sion current density in the base is the combination of forward and reverse carrier flows;
that is, with (6.60) and (6.64):

Io voorv, 1o v, sv
deifr =Jre—Jpc = ‘Zse * T"'ZS‘-’ e (6.68)

From (6.68) it is possible to find the emitter current by taking into account the forward
base cwrent. This forward base current (6.61) injects holes into the emitter and thus has
to be taken with a negative sign to comply with our positive emitter current direction
convention. Making the exponential expressions in (6.68) compatible with (6.61), we
add and subtract unity and finally obtain
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Vee/V 1
Ip=-Ie - 1]_5_5(6-"”5”‘"- e rfe 7 -1) (6.69)
F

Because the BJT can be treated as a symunetric device, the collector current is express-
ible in a similar manner as the contribution of three currents: the forward collector and
reverse emitter currents, given by the negative of (6.68), and an additional hole diffu-
sion contribution as the result of the reverse base current p . The resulting equation is

Vae/V Ior Vges/V Vac/V
I, = ‘,S{e e/ Vr l)——S-(e BC T—l)—fs(e 8¢ T—l) (6.70)
Br
Finally, the base current Iz = — I — I is found from the preceding two equations:
v Vae/V
Ip = fs{i(e"”’ T-1)+i(e e 7-1)} 6.71)
Br Br

Here again, it is important to recall that the internal emitter current flow is denoted
opposite in sign to the customary external circuit convention.

6.3.3 Frequency Response

The transition frequency f, (also known as the cut-off frequency) of a micro-
wave BJT is an important figure of merit since it determines the operating frequency at
which the common-emitter, short-circuit current gain h, decreases to unity. The tran-
sition frequency fr is related to the transit time T that is required for carriers to travel
through the emitter-collector structure:

fT = - (6‘72)

This transition time is generally composed of three delays:

T =T+ Tp+T¢ (6.73)
where Tz, T3, and T are delays in emitter, base, and collector, respectively. The base-
emitter depletion region charging time is given by

Vr Vr

e =rgC = I_(CE+ CC)EI_(CE"' Ce) (6.74a)
E ¢

where Cp, C are emitter and collector capacitances, and rp is the emitter resistance
obtained by differentiation of the emitter current with respect to base-emitter voltage.
The second delay in (6.73) is the base layer charging time, and its contribution is given as
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2
dB

nD;

n

Tg = (6.74b)
where the factor 1 is doping profile dependent and ranges from 1 = 2 for uniformly
doped base layers up to | = 60 for highly nonuniform layers. Finally, the transition
time T, through the base-collector junction space charge zone w, can be computed as

o = S (6.74c)

with v representing the saturation drift velocity. In the preceding formulas we have
neglected the collector charging time T~ = r-C, which is typically very small when
compared with T

As seen in (6.74a), the emitter charging time is inversely proportional to the collec-
tor current, resulting in higher transition frequencies for increasing collector currents.
However, as the current reaches sufficiently high values, the concentration of charges
injected into the base becomes comparable with the doping level of the base, which
causes an increase of the effective base width and, in turn, reduces the transition fre-
quency. Usually, BJT data sheets provide information about the dependence of the tran-
sition frequency on the collector current. For instance, Figure 6-34 shows the transition
frequency as a function of collector current for the wideband npn-transistor BFG403W
measured at V. = 2V, f = 2 GHz, and at an ambient temperature of 25°C.
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Figure 6-34 Transition frequency as a function of collector current for the 17 GHz
npn wideband transistor BFG403W (courtesy of Philips Semiconductors).
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Another aspect of the BJT operated at RF and MW frequencies is that at high fre-
quencies the skin effect physically restricts current flow to the outer perimeter of the
emitter (see also Section 1.4). To keep the charging time as low as possible, the emitter
is constructed in a gnd pattem of extremely narrow (less than 1 pPm) strips. Unfortu-
nately, the trade-off is a high current density over the smali surface area, limiting the
power handling capabilities. Additional ways to increase the cut-off frequency are to
reduce the base transition time constant Tz by high doping levels and concomitantly
fabricate very short base layers of less than 100 nm. In addition, a small base thickness
has as an advantage a reduction in power loss.

6.3.4 Temperature Behavior

We have seen in this chapter that almost all parameters describing both the static
and dynamic behavior of semiconductor devices are influenced by the junction temper-
ature T; . As an example of such a dependence, in Figure 6-35 the forward current gain
Bp foragiven V- is plotted as a function of collector current /- for various junction
temperatures T, . As we can see from this graph, the current gain raises from 40 at
Ic =35mAand T; = -50°C to more than 80 at T, = 50°C.
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E 60 A\, N S
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U -‘-"'"-'---._
40 ___"——-_._.___________——
20
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0 1 2 3 4 5 6

Collector current [, mA

Figure 6-35 Currentgain Br = az/(1 - o) as a function of collector current
for various junction émperatures atafixed V..
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Another example that shows the strong temperature influence is the dependence
of the input characteristic of a transistor described by the base current as a function of
base-emitter voltage, as depicted in Figure 6-36.
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Base-emitter voltage V., V

~

Base current [, mA
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Figure 6-36 Typical base current as a function of base-emitter voltage for various
junction temperatures at a fixed V.

Again, if we compare the behavior of the transistor at 7; = -50°C and
T; = 50°C, we notice that at 7; = -50°C and a base-emitter voltage of 1.25 V the
transistor is in cut-off state, whereas at 7; = 50°C the BJT already conducts 4 mA
base current. These two examples underscore the importance of temperature consider-
ations in the design of RF circuits. For instance, the design of a cellular phone for
worldwide use must ensure that our circuit preforms according to specifications under
all temperature conditions encountered by the operator. Standard specifications usually
cover the temperature range from —-50°C to 80°C.

The junction temperature also plays an important role when dealing with the max-
imum power dissipation. In general, the manufacturer provides a power derating
curve that specifies the temperature T up to which the transistor can be operated at
the maximum available power P, . For junction temperatures T ; exceeding this value,
the power has to be reduced to values dictated by the thermal resistance between the

junction and the soldering point (or case) Ry, according to

T =T, T;.-T,;
Jmax J = Jmax i (6.75)
T jmax = T's Rns

P=P
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where T ;.. is the maximum junction temperature. Typical BJT values vary between
150 and 200°C.

For the RF transistor BFG403W the maximum total power P,, of 16 mW can be
maintained up to T = 140°C. For higher temperatures Tg<T ;<7 , the power
must be derated until the maximum junction temperature T ;.. of 150°C is reached.
The corresponding slope is 820°K/W . This value implies that if the power dissipation
of the device decreases by 10 mW, the junction temperature can be increase by 8.2°C
up to the maximum junction temperature. Obviously, transistor cases with such a high
slope (or high thermal resistance) are not acceptable for high-power applications and
manufacturers have to develop effective ways to dissipate the thermal energy generated
by the transistor. Usually, this is done by employing heat sinks and using materials with
high thermal conductivity. Instead of the thermal resistance at the soldering point Ry,
the manufacturer may supply additional information involving heat resistances between
junction-to-case (Ryy), case-to-sink (Ry,), and sink-to-air (Ry,,,) interfaces.

To simplify the thermal analysis it is convenient to resort to a thermal equivalent
circuit with the following correspondences:

* Thermal power dissipation = electric current
» Temperature = electric voltage

A typical thermal circuit in equilibrium is shown in Figure 6-37, where the total electric
power supplied to the device is balanced through a thermal circuit involving thermal
resistances. In particular, we recognize the thermal resistance of junction to soldering
point which is assumed to be equal to Ry Therefore

r.-T 1

R, =L "= (6.76)

R. =
thjc
' this Py YaAsiT

5
determine the thermal resistance in Kelvin per Watt (°K/W), and whose value can also

be expressed in terms of the thermal conductivity y,, and the surface area Agy of the
BJT. The solder point temperature is affected by the transition between casing and heat
sink. This constitutes a thermal resistance R, ., with values up to 5 °K/W. Finally, the
heat sink represents a thermal resistance of

where junction and soldering point temperatures 7 and T, and thermal power Py,

1

Ripha = S AL (6.77)

where 8, is a convectlon coefficient that can vary widely between 10 W/(K-m ) for
still air, 100W/(K-m ) for forced air, up to 1000W /(K. mz) for water cooling, and
Ay, 15 the total area of the heat sink.
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Figure 6-37 Thermal equivalent circuit of BJT.

The following example provides an often encountered design problem.

RFEMW—

Example 6-8: Thermal analysis involving a BJT mounted on a
heat sink

An RF power BJT generates a total power Py, of 15 W at case tem-
perature of 25°C. The maximum junction temperature is 150°C
and the maximum ambient operating temperature is specified by the
user to be 7, = 60°C. What is the maximum dissipated power if
the thermal resistances between case-to-sink and sink-to-air is
2°K/W and 10°K/W , respectively.

Solution:  With reference to Figure 6-37, we are dealing with
three thermal resistances: Ryyo, Ry, and Ry, . The junction-to-
soldering resistance can be found based on equation (6.76):
T,-T, 150°C-25°C
Ripss = =
Py 15 W
Adding up all resistances gives us a total thermal resistance of
Rﬂ‘lt(]t = ijs + thca + Rth]]s = 20333°K/W
The dissipated power P, follows from the temperature drop (junc-

tion temperature T; minus ambient temperature 7T';) divided by the
total thermal resistance:

= 8.33°K/W
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p. = LimTa _ 150°C-60°C

B Rper | 2033°K/W
To operate the BJT in thermal equilibriun, we have to reduce the
total electric power P, = Py, to the point where it is in balance with
the computed thermal power P, = P, . Thus a reduction from
15 W t0 4.43 W is required.

= 443 W

While the design engineer cannot influence the junction-to-sol-
dering point heat resistance, it is the choice of casing and heat sink
that typically allows major improvements in thermal performance.

6.3.5 Limiting Values

The total power dissipation capabilities at a particular temperature restrict the
range of safe operation of the BJT. In our discussicn we will exclusively focus on the
active mode in the common-emitter configuration and will neglect the switch-mode
behavior whereby the BJT is operated either in saturation or cut-off mode. For a given
maximum BJT power rating, we can either vary the collector-emitter voltage V., and
plot the allowable collector current /. = P,./V ~p (here we assume that base current
is negligibly small compared to the collector current due to high ) or vary [~ and plot
the allowable collector-emitter voltage Vg = P, /1. The result is the maximum
power hyperbola. This does not mean that /- and V.p can be increased without
bound. In fact, we need to ensure that /<7 . and Vo<V o ., as depicted in
Figure 6-38. The safe operating area (SOAR) is defined as a set of biasing points
where the transistor can be operated without risk of unrecoverable damage to the
device. The SOAR domain, shown as a shaded region in Figure 6-38, is more restrictive
than a subset bounded by the maximum power hyperbola, since we have to take into
account two more breakdown mechanisms:

1. Breakdown of first kind. Here the collector current density exhibits a nonuni-
form distribution that results in a local temperature increase, which in turn lowers
the resistance of a portion of the collector domain, creating a channel. The conse-
quence is a further increase in current density through this channel until the posi-
tive feedback begins to destroy the crystal structure (avalanche breakdown),
ultimately destroying the transistor itself.
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2. Breakdown of second kind. This breakdown mechanism can take place indepen-
dently of the first mechanism and affects primarily power BJTs. Internal overheat-
ing may cause an abrupt increase in the collector cusrent for constant V.. This
breakdown mechanism usuvally occurs at the base-collector junction when the
temperature increases to such high values that the intrinsic concentration is equal
to the collector doping concentration. At this point the resistance of the junction is
abruptly reduced, resulting in a dramatic current increase and melting of the
junction.

F Fnax LE‘Eman I Cimax

Verimi Ve

Figure 6-38 Operating domain of BJT in active mode with breakdown
mechanisms.

It is interesting to point out that the BJT can exceed the SOAR, indeed even the
maximum power hyperbola, for a short time since the temperature response has a much
larger time constant {on the order of microseconds) in comparison with the electric time
constants.

Additional parameters of importance to a design engineer are the maximum volt-
age conditions for open emitter, base and collector conditions; that is, Vg, (collector-
base voltage, open emitter), V-, (collector-emitter, open base), and Vg, (emitter-
base voltage, open collector). For instance, values for the BEG403W are as follows:
Vcso|m =10V, VCEO'max =45V, and VEBOlmax =10V.

6.4 RF Field Effect Transistors

Unlike BITs, field effect transistors (FETs) are monopolar devices, meaning
that only one carrier type, either holes or electrons, contributes to the current flow
through the channel. If hole contributions are involved we speak of p-channel, other-
wise of n-channel FETs. Moreover, the FET is a voltage-controlled device. A variable
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electric field controls the current flow from source to drain by changing the applied
voltage on the gate electrode.

6.4.1 Construction

Traditionally FET's are ciassified according to how the gate is connected to the
conducting channel. Specifically, the following four types are used:

1. Metal Insulater Semiconductor FET (MISFET). Here the gate is separated
from the channel through an insulation layer. One of the most widely used types,
the Metal Oxide Semiconductor FET (MOSFET), belongs to this class.

2. Junction FET (JFET). This type relies on a reverse biased pn-junction that iso-
lates the gate from the channel.

3. MEtal Semiconductor FET (MESFET). If the reverse biased pn-junction is
replaced by a Schottky contact, the channel can be controlled just as in the JFET
case.

4. Hetero FET. As the name implies (and vnlike the previous three cases, whose
constructions rely on a single semiconductor material such as Si, GaAs, SiGe, or
InP) the hetero structures utilize abrupt transitions between layers of different
semiconductor materials. Examples are GaAlAs to GaAs or GalnAs to GaAlAs
interfaces. The High Electron Mobility Transistor (HEMT) belongs to this
class.

Figure 6-39 provides an overview of the first three types. In all cases the current
flow is directed from the source to drain, with the gate controlling the current flow.

Due to the presence of a large capacitance formed by the gate electrode and the
insulator or reverse biased pr-junction, MISFETSs and JFETs have a relatively low cut-
off frequency and are usually operated in low and medium frequency ranges of typi-
cally up to 1 GHz. GaAs MESFETS3 find applications up to 60-70 GHz, and HEMT can
operate beyond 100 GHz. Since our interest is geared toward RF applications, the
emphasis will be on the last two types.

In addition to the above physical classification, it is customary to electrically clas-
sify FETs according to enhancement and depletion types. This means that the channel
either experiences an increase in carriers (for instance the n-type channel is injected
with electrons) or a depletion in carriers (for instance the n-type channel is depleted of
electrons). In Figure 6-39 (a) the FET is nonconducting, or normally-off, until a suffi-
ciently positive gate voltage sets up a conduction channel. Normally-off FETs can only
be operated in enhancement mode. Alternatively, normally-on FETs can be of both
enhancement and depletion types.
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Source Gate  Drain
Insulator Y ' 1

(a) Metal insulator semiconductor FET (MISFET)
Source Gate Drain

(©) Metal semiconductor FET (MESFET)

Flgure 6-39 Construction of (a) MISFET, {b} JFET, and (¢) MESFET. The shaded
areas depict the space charge domains.
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6.4.2 Functionality

Because of its importance in RF and MW amplifier, mixer, and oscillator circuits,
we focus our analysis on the MESFET, whose physical behavior is in many ways simi-
lar to the JFET. The analysis is based on the geometry shown in Figure 6-40 where the
transistor is operated in depletion mode.

- + —
[~

{a) Opersation in the linear region, (b) Operation in the saturation region.
Figure 6-40 Functionality of MESFET for different drain-source voltages.

The Schottky contact builds up a channel space charge domain that affects the
current flow from source to drain. The space charge extent d¢ can be controlled via the
gate voltage in accordance to our discussion in Section 6.1.3, where (6.39) is adjusted
such that V , is replaced by the gate source voltage V ;:

_ PefVa—Vgs
oo )

For instance, the barrier voltage V; is approximately 0.9 V for a GaAs-Au interface.
The resistance R between source and drain is predicted by

L

k= o(d—dg)W

(6.79)

with the conductivity given by ¢ = gu, N, and W being the gate width. Substituting
(6.78) into (6.79) yields the drain-current equation:

Vps 2¢ (Vd - VGS)
Ih=—=G,1- | —| ———— ||V (6.80)
b R 0{ qd2 ND DS
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where we have defined the conductance G, = 0Wd/L. This equation shows that the
drain current depends linearly on the drain source voltage, a fact that is only true for
small Vp;.

As the drain-source voltage increases, the space charge domain near the drain
contact increases as well, resulting in a nonuniform distribution of the depietion region
along the channel; see Figure 6-40(b). If we assume that the voltage along the channel
changes from 0 at the scurce location to V¢ at the drain end, then we can compute the
drain current for the nonuniform space charge region. This approach is also known as
the gradual-channel approximation. The approximation rests primarily on the
assumption that the cross-sectional area at a particular location y along the channel is
given by A(y) = {d—-d¢(y)}W and the electric field E is only y-directed. The chan-
nel current is thus

dav
T d ~ds() W (6381)

where the difference between V,; and V;, in the expression for dg(y) has to be aug-
mented by the additional drop in voltage V(y) along the channel; that is, (6.78)
becomes

Ip = ocEA(y) =0

172
dy(y) = [ﬁ; (Va=Vas+ VO] (6.82)

Substituting (6.82) into (6.81) and carrying out the integration on both sides of the
equation yields

1 4
L os 2¢
fitody = 15L= awj‘o (d - Jae AT Ve VGS)dV (6.83)

The result is the output characteristic of the MESFET in terms of the drain current as
a function of V¢ for a given fixed V¢, or

Ip = Go{vps-'ﬁ; 28 [{Vps+ vd-vcsf"z-{vd-vas}”z]] (6.84)
gNpd

This equation reduces for small V¢ to (6.80).

An interesting phenomenon occurs when the space charge extends over the entire
channel depth d. The drain-source voltage for this situation is called drain saturation
voltage V., and is given by

ALy = d = |2 (V,= Vg4 Vo) (6.85)
qNp
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or, explicitly,
2
qNpd
Vbsa = 5=~ (Va=Vgs) = Vp=Vy+ Vg5 = Vgs— Vg (6.86)
where we introduced the so-called pinch-off voltage V, = gN,d’/(2c) and
threshold voltage V., = V,~ V. The associated drain saturation current is found by
inserting (6.86) into (6.84) with the result

2
SV

The maximum saturation current in (6.87) is obtained when Vgs = 0, which we
define as I (Vo= 0)= Ipge. In Figure 6-41 the typical input/output transfer as
well as the output characteristic behavior is shown.

I =Gl E_(v._v V,=V.)'? 6.87
Dsat = 0—3“( a=Vgs)+ (Vy=Vgg) (6.87)

Moo /l5s g Linear  Saturation ~
¢ } Vs <0
3 5 Vs /Yo Vos
] - T— »
(a) Circuit symbol  (b) Transfer characteristic (¢) Output characteristic

Figure 6-41 Transfer and output characteristics of an n-channel MESFET.

The saturation drain current (6.87) is often approximated by the simple relation

V.2
Ipga =1 DSS( = f,ﬂ) (6.88)
TO
How well (6.88) approximates (6.87) is discussed in the following example,
WRF &M W=

Example 6-9: Drain saturation current in a MESFET

A GaAs MESFET has the following parameters: N, = 10'°cm™,

d =075 um, W=10pm, L=2pm, g, = 120,
V; = 0.8 V,and b, = 8500 cm’/(Vs) . Determine (a) the pinch-
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off voitage, (b) the threshold voltage, (c) the maximum saturation
current I5¢; and plot the drain saturation current based on (6.87)
and (6.88) for V ;¢ ranging from —4 to 0 V.

Solution:  The pinch-off voltage for the FET is independent of
the gate-source voltage and is computed as

_gN Da'2
P72
Knowing Vp and the barrier voltage V,; = 0.8 V, we find the
threshold voltagetobe V5, = V-V, = -3.44 V. The maximum
saturation drain current is again independent of the applied drain-
source voltage and, based on (6.87), is equal to

Ve 2
Ipss = Gy ?-Vd+3,jv_
P

where Gy = GgNpWd/L = q'p,N,Wd/L = 8.16S.

Figure 6-42 shows results for the saturation drain current com-
puted by using the exact formula (6.87) and by using the quadratic
law approximation given by (6.88).

vV =424V

Vf”z] = 6.89 A

7

6.

Quadratic law
approximation

Saturation drain current I, , A
L

J

Exact formula

1} l/
0 A : . . . .
-4 35 -3 =25 -2 -15 -1 05 0
Gate-source voltage V5, V

Figure 6-42 Drain current versus Vs computed using the exact and the
approximate equations (6.87) and (6.88).
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Because of the excellent agreement, the quadratic law approx-
imation (6.88) is more widely used in the literature and data sheets
than the exact equation.

If Vg reaches the saturation voltage V., for a given V¢, the space charges
pinch off the channel. This implies that the drain current saturates. Interestingly, pinch-
off does not imply a zero I, since there is no charge barrier impeding the flow of carri-
ers. It is the electric field as a result of the applied voltage V¢ that “pulls” the elec-
trons across the depletion space charge domain. Any additional increase Vo> Vp o,
will result in a shortening of the channel length from the original length L to the new
length L’ = L — AL . The result is that (6.87) must be modified to

Iy = 1o 7=5) = ) 6.89)

The change in channel length as a function of V¢ is heuristically taken into account
through the so-called channel length modulation parameter A = AL/(L'V ). This
is particularly useful when expressing the drain current in the saturation region:

Fpo = Ipeac1+AVpg) (6.90)

where measurements show a slight increase in drain current as Vj,¢is increased.

RFEMW—>
Example 6-10: I-V characteristic of a MESFET

For discrete gate-source voltages Vo = -1,-1.5,-2,and =25 V,
plot the drain current /;, of a MESFET as a function of drain-source
voltage V¢ in the range from 0 to 5 V. Assume that the device
parameters are the same as in the previous example and that the
channel length modulation parameter A is set to be 0.03 V-1, Com-
pare your results with the case where A = 0.

Solution:  In the analysis of the MESFET behavior we have to be
careful about choosing the appropriate formulas. At very low drain-
source voltages, the drain current can be described by a simple lin-
ear relation (6.80). As the voltage increases, this approximation
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becomes invalid and a more complicated expression for {, has to be
employed; see (6.84). Further increase in V¢ ultimately leads to
channel pinch-off, where Vo2 Vg, = Vgg— Vyg. In this case the
drain current is equal to the saturation current given by (6.87). Addi-
tional increases in V¢ beyond the saturation voltage result only in
minor increases of the drain current due to a shortening of the chan-
nel. At this point, [y, is linearly dependent on V. Substituting
(6.87) into (6.90) for Vo2 V., . we obtain

24(Vg=Vgs)?

I

To provide a smooth transition from normal to saturation region for
nonzero A we multiply (6.84) by (1 +AVp,). Thus, the final
expression for the drain current for VoSV, 18

[ =G {V 2J(Vps+Vy=Vg5)* = J(Va= V5
p = Go1Vps—3
3 Vs

The results of applying these formulas to predict I, for zero (dashed
line) as well as nonzero A (solid line) are shown in Figure 6-43.

v
I, = Go{{-(vd-vm)af }(1+1VDS)

}(l + AV )

Yos = Vossu Ip=bu(¥ps)
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Figure 6-43 Drain current as a function of applied drain-source voltage for
different gate-source biasing conditions.
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The channel length modulation is similar to the Early effect
encountered in a BJT, where the collector current in saturation
mode increases slightly for increasing collector emitter voltage as
discussed in Chapter 7.

6.4.3 Frequency Response

The high-frequency MESFET performance is determined by the transit time of
charge carriers traveling between source and drain and the RC time constant of the
device. Here we will focus our attention on the transit time only and defer the time con-
stant computation, which requires knowledge of the channel capacitance, to Chapter 7.
Since electrons in silicon and GaAs have much higher mobility than holes, n-channel
MESFET: are used in RF and MW applications almost exclusively. Furthermore, since
the electron mobility of GaAs is roughly five times higher than that of Si, GaAs MES-
FETs are usually preferred over Si devices,

The transit time T of the electrons traveling through the channel of gate length L
is computed as

=L (6.91)
Vsat

where we have assumed a fixed saturation velocity v, . As an example, the transition
frequency fr = 1/(2n7) for a gate length of 1.0 pm and a saturation velocity of

approximately 107 cm/s is 15 GHz.

6.4.4 Limiting Values

The MESFET must be operated in a domain limited by maximum drain current
I pnay » Maximum gate-source voltage Vo .., and maximum drain-source voltage
V p$max - The maximum power P is dictated by the product of V¢ and I, or

Prax = Vpsip (6.92)

which in turn is related to the channel temperature T~ and ambient temperature T,
and the thermal resistance between channel and soldering point Ry, , according to

Figure 6-44 clarifies this point. Also shown in this figure are three possible operat-

ing points. Bias point 3 indicates low amplification and possible clipping of the output
current. However, the power consumption is at a minimum. Bias point 2 reveals accept-
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Figure 6-44 Typical maximum output characteristics and three operating points
of MESFET.

able amplification at substantially increased power consumption. Finally, bias point 1
shows high amplification at high power consumption and low output current swing.
Choosing appropriate bias points for specific applications will be investigated in-depth
in subsequent chapters.

6.5 High Electron Mobility Transistors

The high electron mobility transistor (HEMT), also known as modulation-
doped field effect transistor (MODFET), exploits the differences in band gap energy
between dissimilar semiconductor materials such as GaAlAs and GaAs in an effort to
substantially surpass the upper frequency limit of the MESFET while maintaining low
noise performance and high power rating. At present, transit frequencies of 100 GHz
and above have been achieved. The high frequency behavior is due to a separation of
the carrier electrons from their donor sites at the interface between the doped GaAlAs
and undoped GaAs layer (quantum well), where they are confined to a very narrow
(about 10 nm thick) layer in which motion is possible only parallel to the interface.
Here we speak of a two-dimensional electron gas (2DEG) or plasma of very high
mobility, up to 9000 cm’/ (V-s). This is a major improvement over GaAs MESFETs
with p, = 4500 cm’/ (V-s). Because of the thin layer, the carrier density is often spec-
ified in terms of a surface density, typically on the order of 10'2-10"* cm™2.

To further reduce carrier scattering by impurities it is customary to insert a spacer
layer ranging between 20 and 100 nm of undoped GaAlAs. The layer is grown through
a molecular beam epitaxial process and has to be sufficiently thin so as to allow the gate
voltage V¢ to control the electron plasma through electrostatic force mechanism.
Besides single layer heterostructures (GaAlAs on GaAs), multilayer heterostructures
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involving several 2DEG channels have also been proposed. As can be expected, manu-
facturing an HEMT is significantly more expensive when compared with the relatively
inexpensive GaAs MESFET due to the precisely controlled thin-layer structures, steep
doping gradients, and the use of more difficult to fabricate semiconductor materials.

6.5.1 Construction

The basic heterostructure is shown in Figure 6-45, where a GaAlAs n-doped
semiconductor is followed by an undoped GaAlAs spacer layer of the same material, an
undoped GaAs layer, and a high resistive semi-insulating (s.i.) GaAl substrate.

Source

Gate Drain
L) L)

Figure 6-45 Generic heterostructure of a depletion-mode HEMT.

The 2DEG is formed in the undoped GaAs layer for zero gate bias condition
because the Fermi level is above the conduction band so that electrons accumulate in
this narrow potential well. As discussed later, the electron concentration can be
depleted by applying an increasingly negative gate voltage.

HEMTs are primarily constructed of heterostructures with matching lattice con-
stants to avoid mechanical tensions between layers. Specific examples are the GaAlAs-
GaAs and InGaAs-InP interfaces. Research is also ongoing with mis-matched lattices
whereby, for instance, a larger InGaAs lattice is compressed onto a smaller GaAs lat-
tice. Such device configurations are known as psendomorphic HEMTs, or pHEMTs.

6.5.2 Functionality

The key issue that determines the drain current flow in a HEMT is the narrow
interface between the GaAlAs and the GaAs layers. For simplicity, we neglect the spacer
layer and concentrate our attention at the energy band model shown in Figure 6-46.

A mathematical model similar to (6.21) can be developed by writing down the
one-dimensional Poisson equation in the form
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(a) Energy band diagram (b) Close-up view of conduction band
Figure 6-46 Energy band diagram of GaAlAs-GaAs interface for an HEMT.
v _ N
= = -2 (6.94)
dx £y

where N, and €y are the donor concentration and dielectric constant in the GaAlAs
heterostructure. The boundary conditions for the potential are imposed such that
V(x = 0) =0 and at the metal-semiconductor side V(x = -d) = -V, + Vo + AW _/q.
Here V, is the barrier voltage, see (6.38); AW . is the energy difference in the conduc-
tion levels between the n-doped GaAlAs and GaAs; and V; is comprised of the gate-
source voltage as well as the channel voltage drop V; = — Vo + V(y}. To find the
potential, (6.94) is integrated twice. At the metal-semiconductor we set

N
V(=d) = ‘;—‘—’ 2 _E,(0)d (6.95)

which yields
E(0) = (Vo= V() - Vo) (6.96)

where we defined the HEMT threshold voltage V4 as Vg = V- AWC/ q-Vp.
Here we have used the previously defined pinch-off voltage V, = gN Dd /(2gg).
From the known electric field at the interface, we find the electron drain current

dv
dy

As mentioned previously, the current flow is restricted to a very thin layver so that it is
appropriate to cary out the integration over a surface charge density Q¢ at x = 0. The

Ip = GE,A = ~qu,NpEWd = qp,,ND( )Wd 6.97)
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resultis 6 = -, Q/(WLd) = —1,Q/d . For the surface charge density we find with
Gauss’s law Q¢ = €4E(0). Inserted in (6.97), we obtain

VDS
rIDdy =W j' Q.dV (6.982)
0 0
Upon using (6.96), it is seen that the drain current can be found
IL = unW-[ H(Ves-V-Vyp)av (6.98b)
or
2
Wey Vp
=WTa {VDS(VGS ~Vro) - —} (6.98¢)

Pinch-off occurs when the drain-source voltage is equal to or less than the difference of
gate-source and threshold voltages (i.e., Vo< Vgo— Vo). If the equality of this con-
dition is substituted in (6.98c), it is seen

p= u“_2Ld( Gs— Vo) (6.99)

The threshold voltage allows us to determine if the HEMT is operated as an
enhancement or depletion type. For the depletion type we require Vro<0 or
V,—(AW./q)~Vp<0. Substituting the pinch-off voltage Vp, = gN Dd /(2¢e) and
solving for d, this implies

172
d>{m(vb-7)} (6.100)

and if 4 is less than the preceding expression (i.e., V> 0), we deal with an enhance-
ment HEMT.

RFEMW—

Example 6-11: Computation of HEMT-related electric charac-
teristics

Determine typical numerical values for a HEMT device such as
pinch-off voltage, threshold voltage, and drain current for
Ves = -1,-0.75,-05,-0.25,and 0 V as a function of drain-
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source voltage V .. Assume the following parameters:
Np=10%em™, V, =081V, g4 =125¢, d=50nm,
AW, =35x10°W.s, W=10pum, L=05pum, and

i, = 8500 cm’/(V's).

Solution:  The pinch-off voliage of a HEMT is evaluated as

Vo = qNpd /(28y) = 181V
Knowing V, we can find the threshold voltage as
Using these values the drain current is computed by relying either on
equation (6.98c) for Vjpo<V.o—Vy, or equation (6.99) for
Vps 2 Vs — Vg The results of these computations are plotted in
Figure 6-47. We notice in this graph that unlike the GaAs MESFET in

Figure 6-43, a channel length modulation is not taken into account. In
practical simulations such a heuristic adjustment can be added.

Vos =0V

E‘s Fos =025V

S

:

a2 =

. Vs =05V
Vos =075V
Vs =—1V

>3 4 s

Drain-source voltage ¥,V

Figure 6-47 Drain current in a GaAs HEMT.

Both GaAs MESFET and HEMT exhibit similar output charac-
teristics and are thus represented by the same electric circuit model.
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6.5.3 Frequency Response

The high-frequency performance of the HEMT is determined by the transit time
similar to the MESFET. However, the transit time T is expressed best through the elec-
tron mobility W, and the electric field £ of the drain-source voltage according to

Tz — = —— = (6.101)

We therefore obtain a transit frequency f, = 1/(2n71) of agproximately 190 GHz for
the gate length of 1.0 um and a mobility of p, = 8000 cm”/(V-s) at a typical drain
voltage Vo of 1.5 V.

6.6 Summary

To understand the functicnality and limitations of the most widely employed
active RF solid-state devices, we commenced this chapter with a review of the key ele-
ments of semiconductor physics. The concepts of conduction, valence, and Fermi levels
as part of the energy band model are used as the starting point to examine the various
solid-state mechanisms.

We next turned our attention to the pr-junction, where we derived the barrier
voltage

NaNp
Vaigr = Vrl“( 2 J
1
and the depletion and diffusion capacitances C; and C in the forms
C iy v, /v
N-V,/Vu Vr

Both capacitances are of primary importance when dealing with the frequency response
of a pn-diode whose current is given by the Shockley equation

I = IS(eVA/VT- 1]

This equation underscotes the nonlinear current-voltage diode characteristics.

Unlike the pn-junction, the Schottky contact involves an n-type semiconductor
and a metal interface. The Schottky barrier potential V; is now modified and requires
the work function of metal, gV, , semiconductor, ¢y, and the conduction band poten-
tial V-, expressed via
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Vo= Vy-x-VY¢

Unlike the 0.7 V of a pr-junction, we obtain a typical value of 0.84 V for a Si-Au inter-
face. Technologically, this contact is exploited in the Schottky diode, which has become
ubiquitous in many RF applications such as modulators and mixers. The I-V character-
istic remains the same as for the pn-junction diode, except that the reverse saturation
current /¢ is theoretically more intricate.

Additional special-purpose RF diodes are the PIN, varactor, and tunnel diodes.
The PIN diode incorporates an additional intrinsic layer sandwiched between the p and
n layers. This allows the switching between a low-resistance forward bias to a capaci-
tive reverse, or isolation, bias. PIN dicdes find applications in switchers and attenua-
tors. The I-V characteristic of a PIN diode is very similar to a pn-junction diode but
differs by the factor 2 in the exponent:

. A(qniWJ(evA,f(sz)_ l)
Tp

The varactor diode incorporates the I-layer based on a special doping profile to achieve
a particular capacitance-voltage behavior. Such a response is beneficial for frequency
tuning and the generation of short pulses. The tunnel diode exhibits a negative slope
during a particular portion of its -V curve, thus making it suitable for oscillator circuits.
Additional diodes of interest in the RF field are the IMPATT, TRAPATT, BARRITT,
and Gunn diodes.

The BIT in many ways can be regarded as an extension of our previous diode dis-
cussion since the npn-structure constitutes the series connection of two diodes. The
three transistor modes forward active, reverse active, and saturation are reflected in the
emitter, collector, and base current expressions (6.69)-(6.71):

14 Io vgrv VooV
Ip = —Igte ™ T 1= T 1) 4 Igle * - 1)
Br
I / VeV
I = IS(eVBE"VT_l)__S(eVBC VT—])-—IS(e VT _ 1)
Bz
Vpc/V Vpe/V
Iy = I e _1ya e ™ r-1)}
Br Br

The frequency response of a BJT is determined by the transit or transition frequency
fr = 1/(27m7) at which the short-circuit current gain is equal to unity. The time con-
stant is comprised of three delays T = T + T + T associated with emitter, base, and
collector domains.
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Unlike the bipolar BJT, the FET is a monopolar device that displays superior
high-frequency and low-noise performances. In particular, n-channel GaAs MESFETSs
are commonly found in many RF amplifiers, mixers, and oscillators. The key equation
that determines the output characteristic of a MESFET is the drain current (6.84):

2 2
Ip = Go[vos_ﬁ }W_Ed_z'[{vbs *Vy=Vest v, - Vas}mi)
D

Additional modifications to the drain current are required when the channel is pinched
off and the FET is operated in the saturation domain with channel length modulation.

Finally, the HEMT device is almost identical in construction with the MESFET,
but exploits the differences in bandgap energies between heterogeneous semiconduc-
tors. Here the current flow is restricted to a very narrow, quantum well layer where the
charge mobility can attain twice the value of a MESFET. Because of carrier separation
from the donor sites, extremely high operational frequencies have been reported
{exceeding 100 GHz). The drain-current representation is almost identical with the one
discussed for the MESFET.
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Problems

6.1 To appreciate the large number of atoms in semiconductors, let us consider
the following simple calculation: A silicon semiconductor is a bodg'-ccntered
cubic semiconductor with a lattice constant of @ = 543 %10 cm. The
atom arrangement is such that a corner atom contributes one-eighth plus one
center atom. Find the density of atoms per cubic centimeter.

6.2 The conduction and valence band carrier concentration is determined by
integration of the density of states based on the Fermi statistics.

N = _[g(s}d}-:

For effective electron mass m; , quantum mechanical considerations lead to
the density function

g(E) = 4n(2m))’ > JE/®
(a) Determine the generic electron concentration of states N for energy val-
uesup to 1.5 eV.

(b) For an effective electron mass of 1.08m, or 1.08 x9.11 x 107! kg,
explicitly find the number of states.

6.3  Let us consider a p-type Si semiconductor whose doping concentration at
room temperature contains N, = 5x 10"® boron atoms per cubic centime-
ter (n; = 1.5x 10" em™ ). Find the minority and majority carrier concen-
trations as well as the conductivity of the semiconductor.
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6.5

6.6

6.7

6.8
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The Fermi-Dirac probability for indistinguishable particles is the underlying
statistical theory describing the quantum mechanical distribution of particles
per unit volume and per unit energy N(E) normalized with respect to the
number of quantum states per unit voltage and per unit energy g(E) accord-
ing to

N(E) _ 1
g(E) ~ 1+ cxp(lE-E 1/ [kT])

(a) Plot both the probability of states being occupied, AE), as well as the
probability of states being empty, 1 — f{E), at room temperature and for
Ep=35¢V.

(b) Determine the temperature at which we have a 5% probability of
encountering an empty state.

J(E) =

The intrinsic carrier concentration is typically recorded at room temperature.
For GaAs we find at T = 300°K the effective densities of state
Ne=47x 10" cm_3, Ny =70x 108 em™2, Assuming that the band-
gap energy of 1.42 eV remains constant,

(a) Find the intrinsic carrier concentration at room temperature.

(b) Compute n; at T = 400°K.

{c) Compute n; at T = 450°K.

It is interesting to observe that a significant diffusion current density can be
created even for moderate carrier concentration gradients, We can assume
for a p-type Si semiconductor a linear hole concentration changing from
5%10"7 em™ to 10" em® over a distance of 100 pm. Find the current
density if the diffusion coefficient is given at 7 = 300°K to be
D, = 124 em’/s.

In Section 6.1.2 we derived the expressions for the electric field and poten-
tial distributions in the pn-diode with abrupt junction. Repeat these compu-
tations for a case of gradual junction where the charge density changes
linearly according to the following relation:

qN,(x/d,), -d,<x<0
PO) =\ W p(xd), 05554,

The built-in potential barrier of a pn-junction remains relatively constant
even though the doping concentration may change over several orders of
magnitude. We recall that the typical barrier potential in solid state circuits is
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assumed to be 0.5-0.9 V. In this problem we intend to show how one arrives
at this voltage. Let us assume a p-type semiconductor with
N, = 10" cm ~ joined with an n-type semiconductor of concentration
A 15 3

Np=5%X10"¢em "~ 0

(a) Find the barrier voltage at room temperature (n; = 1.45x10° cm=).
(b) Recompute the Dbarrier voltage if N, is reduced to

N, = 5%10" em™ .

An abrupt pnl?'unctigm made of Si has th]% acce?tor and donor concentrations

of Ny = 10 "cm™ and Np = 5x 107 cm ~, respectively. Assuming that

the device operates at room temperature, determine

(a) the barrier voltage

{b) the space charge width in the p- and n-type semiconductors

(c) the peak electric field across the junction

(d) the junction capacitance for a cross sectional area of 10~ em® and a rel-
ative dielectric constantof ¢, = 11.7

For two pn-diodes with abrupt junction, one of which is made of Si and

another is made of GaAs, with N, = 10 em™ and Np = 12X 10" cm™

in both cases:

(a) Find the barrier voltage.

(b) Find the maximum electric field and the space charge region width.

{(c) Plot the space charge, potential, and electric field distribution along the
diode axis.

A silicon pn junction has a conductivity of 10 §/cm and 4 S/cm for p and
n layers, respectively. Using the necessary properties of silicon, calculate the
built-in voltage of the junction at room temperature.

A Schottky contact between a metal and a semiconductor can be made of
various materials, For both Si and GaAs we would like to investigate the bar-
rier voltage if the metal is ¢ither aluminum or gold. Use Table 6-2 and Table
E-1 to find the four barrier voltages and associated depletion layer thick-
nesses at room temperature.

Consider a Schottky diode formed by the contact between n-type GaAs and
silver. The diode is operated at forward biasing current of 1 mA. The Rich-
ardson constant R* = 4 A/(cm?K?), the parasitic series resistance is
15 Q, and the device cross section A = 10~2 mm?. Compute the barrier
voltage V, and plot the magnitude and phase of the impedance of diode ver-
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sus frequency ranging from 1 MHz to 100 GHz for two doping densities
Np: 1015 and 1017 em=3. Assume that the device is operated at the temper-
ature of 300°K.

It is often of enormous practical interest to investigate the nonlinear current
behavior of a Schottky diode for a given applied voltage. We recall

V,-IR
I= Is(e( 4 “)-1)

with the reverse saturation current giventobe fg = 2 x 10""" A For a sub-
strate resistance Ry = 1.8 {1 write a computer program to predict the cur-
rent if the applied voltage is allowed to vary within 0 SV, <10V,

A PIN diode is a semiconductor device with an intrinsic layer sandwiched
between two highly doped s- and p-type materials. In the intrinsic layer, the
charged minority and majority carriers possess a finite life time T, before
recombination takes place. On the basis of the recombination lifetime a sim-
ple PIN model can be constructed involving the diode current 7 and the
stored charge (:
I = Q + @
T ? dt
(a) Establish the frequency domain response Q{®) of this first-order
system.
(b) Plot the normalized charge response 20log[ Q(w)/ (It p)] Versus angu-
lar frequency for 7, of 10 ps, L ns,and 1 pus.
Note: For frequencies well below the cut-off frequency f, = 1/1, the PIN
diode behaves like a normal pr-junction diode. However, at frequencies
above f, the PIN diode becomes a pure linear resistor whose value is con-
trolled by the biasing signal.

The fabrication of two different types of varactor diodes calls for the follow-
ing two capacitance-voltage behaviors:

(@) C = 5pFJV,/(V,— V)

(by C = SpR(V,/(V4- Ve

Determine the necessary donor doping profile N,(x) for the iﬂtt‘insic layer.
Assume the cross-sectional area of the varactor diode tobe 10 ¢m”.

Consider a Si bipolar junction transistor whose emitter, base, and collector
ar% unifon'nl}{} dopezfl with the f?lglowinag concentrations: Nf) = 102] cm -,
N, =2x10" cm ", Np = 107 cm . Assume that the base-emitter volt-
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age is 0.75 V and the collector-emitter potential is set to 2 V. The cross-
sectional area of both junctions is 107" cm® and the emitter, base, and col-
lector thicknesses are dp = 0.8 pm, dp = 1.2 pm, and d- = 2 um,
respectively. Assuming that the device is operated at room temperature:

(a) Find the space charge region extents for both junctions.

{b) Draw the energy band diagram.

{¢) Compute the base, emitter, and collector cwirents.

(d) Calculate the forward and reverse current gains B and PBy.

For a GaAs BJT the maximum junction temperature is 420°C (which far

exceeds the maximum junction temperature of Si with 200°C). The sup-

plied power is 90 W. The thermal resistance between the BJT and the heat

sink is estimated to be 1.5°C/W

{a) Determine the maximum thermal resistance of the heat sink if the ambi-
ent operating temperature does not exceed 50°C.

{b) For a heat convection coefficient of 100 W./°C . m® find the required
surface area.

A BJT is encapsulated in a plastic housing and mounted on a heat sink
(Ryppa = 3.75°C/W ). Under these conditions the total power dissipation is
supposed to be 20 W at an ambient temperature of 20°C. What rating has the
engineer to choose for the BJT casing if the maximum junction temperature
should not exceed 175°C?

Prove that the drain current (6.84) for a MESFET under graduat-channel
approximation reduces to {6.80) for small V.

Derive the saturation drain current equation {6.88).

The junction field-effect transistor with n-type channel has the following
parameters: W/L = 10, p, = 1000 m2/(Vss}, d = 2um, ¢, = 117,
and V;, = =3 V. Compute the saturation drain currentat V¢ = -1 'V

Compute the output current f,, versus Vo characteristics of the transistor
from Problem 6.22 for drain-source voltage ranging from 0 to 5 V. First
assume that channel length modulation effect is negligible (i.e., A = 0), and
then repeat your computation for a case when A = 0.01.
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Active RF Component
Modeling

Almost all circuit designs of any complexity have
to be modeled as part of computer-aided design (CAD) programs prior to their practical
realizations to assess quantitatively whether or not these circuits meet design specifica-
tions. For the purpose of electric circuit simulation, a large number of software analysis
packages offer a host of equivalent circuit models attempting to replicate the electric
performance of the various discrete elements. Special electric circuit models have been
developed to address such important design requirements as low- or high-frequency
operation, linear or nonlinear system behavior, and normal or reverse mode of opera-
tion to name but a few.

It is the purpose of this chapter to examine several active devices in terms of suit-
able equivalent circuit representations for diodes as well as mono- and bipolar transis-
tors. The physical foundation of these devices is reviewed in Chapter 6. By developing
a close link with the previous chapter, we will be able to observe how a basic under-
standing of solid-state device physics naturally leads to large signal (nonlinear) circuit
models. Subsequent discussions will focus on modifications that can be made to linear-
ize these models and to refine them for high-frequency operations.

Considering the various BJT models, we restrict our discussicn to only the most
popular types such as the Ebers-Moll and Gummel-Poon models. Both types, and a
number of linear derivatives, find widespread applications in such simulation tools as
SPICE, ADS, MMICAD, and others. Often the situation arises where the device manu-
facturer may not be able to specify all the required electric parameters, since they can
casily exceed 40 independent parameters, and a so-called SPICE model representation
is unattainable. Under those circumstances, the S-parameters are recorded for various
bias conditions and operating frequencies to characterize the high-frequency behavior.

351
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In most cases, these S-parameters may provide the design engineer with sufficient
information to complete the simulation task.

7.1 Diode Models

7.1.11  Nonlinear Diode Model

The typical large-scale circuit model treats both the pr and Schottky diode in the
same fashion, as shown in Figure 7-1.

A4

ik

Figure 7-1 Large-scale diode model.

This model takes into account the nonlinear /-V characteristics of the Shockley
diode equation (6.34) in slightly modified form

VA (nVy)

where the emission coefficient » is chosen as an additional parameter aimed at bringing
the model in closer agreement with actual measurements. This coefficient for most
applications is close to 1.0. Furthermore, in Section 6.1.2 the diffusion and junction (or
depletion layer) capacitances C; and C; are discussed. Both effects are combined in a
single capacitance C, but in a more general form. Specifically, for the junction capaci-
tance, we have to consider the space charge Q,, which is differentiated with respect to
the applied voltage, leading to

_d9; Cjo

C, = =
Tav, (1=V,/ V)"

(7.2)

where m is known as the junction grading coefficient. It assumes a value of 0.5 for the
abrupt junction that is subject of our analysis in Section 6.1.2. For the more realistic
case of a gradual transition m lies in the range 0.2 <m <0.5. As mentioned in
Chapter 6, the formula given in (7.2) is applicable only for certain positive applied volt-
ages. If the applied voltage V, approaches the built-in potential V 4, the junction
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capacitance computed using (7.2) approaches infinity which is obviously physically
impossible. In practice, the junction capacitance becomes almost linearly dependent on
the applied voltage once it exceeds a threshold potential V,, , which is usually equal to
half of the built-in potential, V,, = 0.5V 4. Therefore, the approximate formula capa-
ble of describing the junction capacitance over the entire range of applied voltages is
given by

CJ’O

—n_v,<v,
(1=V,/Vye)
c, = AT Tam (1.3)
CJ’O VA_Vm
m(l+m ), V.2V,
(1-V,/ V) Vit = Vin

We also observe that C; is dependent on V ,. For the diffusion capacitance, we
can use

ag, ISTTeVA/(n vy

Ca= d_T/; nVry

7.4
with the transition time 1.

In a realistic diode the injection and extraction of charges is accomplished by the
electric field that constitutes a voltage drop in the charge neutral domains. This voltage
drop is modeled as a series resistance Rg. Thus the total voltage in Figure 7-1 is com-
posed of two contributions:

V = Rgdp+nV In(l +1,/1) (7.5)

Temperature dependencies can also be introduced into this model. Besides the
obvious thermal voltage V; = kT/q it is primarily the reverse saturation current /g
that is found to be strongly influenced by temperature according to

I(T) = Is(ro)(%)p'mexp[—Wf,(:)(l -7 )] (1.6)

where T, is a reference temperature at which the saturation current is recorded. The lit-
erature primarily uses T, = 300°K (or 27°C). The reverse saturation current temper-
ature coefficient p, is cither 3 or 2 depending on whether a pr or Schottky diode is
modeled. The model parameter can thus account for the difference in temperature
behavior between the two diode types. Also, the bandgap energy W (T) is consid-
ered. As the temperature increases, this bandgap decreases, making it easier for charge
carriers to transition from the valence into the conduction band. The semi-empirical
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formula assumes a specific bandgap energy W, (0) recorded at T = 0°K and then
adjusts this value as follows
W o, T
oT) = W,(0)- W an
For instance, the experimentally determined parameters for Si are W <(0) = L16eV,
oy = 7.02 % 10 ev/ °K, and $; = 1108°K. Additional temperature dependencies
affecting the capacitances are usually small and are neglected.

Perhaps the most popular circuit simulation program in industry and academia is
SPICE, which is capable of taking into account the nonlinear diode model depicted in
Figure 7-1. This simulation program incorporates a range of physical model parame-
ters; some of them are so specialized that they are beyond the scope of our textbook.
The most important ones are summarized in Table 7-1. Also listed are the differences
between the standard pr and Schottky diode.

Table 7-1 Diode model parameters and their corresponding SPICE parameters

Symbol | SPICE Description Typical values
I IS saturation current 1fA-10pA
n N emission coefficient 1
Tr T transit time 5 ps=500 ps
R, RS ohmic resistance 0.1-20Q
Vi V] barrier voltage 0.6-0.8V (pn)
0.5-0.6 V (Schottky)
Cp CJo zero-bias junction capacitance 5-50 pF (pn}
0.2-5 pF (Schottky)
m M grading coefficient 0.2-0.5
W, EG bandgap energy 1.11 ¥ (Si}
0.69 eV (Si-Schottky)
by XTI saturation current temperature coefficient 3 (pm)
2 (Schottky)

7.1.2 Linear Diode Model

The nonlinear model is based on the device physics developed in Chapter 6. As
such, this model can be used for static and dynamic analyses under practically any cir-
cuit conditions. However, if the diode is operated at a particular DC voltage bias point
and the signal variations about this point are small, we can develop a linear or small-
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signal model. The concept of linearization implies the approximation of the exponen-
tial I-V characteristic through a tangent at the bias or Q-point V. The tangent at this
Q-point is the differential conductance G, which we can find as
1 dip| _Ig+is_ I,
TR, AV, nVp Tavp

Yo

Gy (7.8)

The tangent approximation is shown in Figure 7-2 along with the simplified, linear cir-
cuit model. It is important to emphasis that the differential capacitance is now the diffu-
sion capacitance at bias point V,, or

ISTTeVQ/(n V)

= =< 1.9
AV, (7.9)
Ina
AL,
AV,
L= |~
A.A.A......: Cd (pé)
R i_
/ V= VQ ‘ff«
R, (%)
(a) tangent approximation at Qoint {b} linear circuit model.

Figure 7-2 Smali-signal diode model.

An apparent benefit of such a linearized circuit model is the ability to decouple the RF
diode operation from the DC bias condition, as the following design example under-

SCOIEs.

RFEM W+
Example 7-1; Derivation of the small-signal pn diode model

A conventional Si-based pn-diode is operated at 300°K and has the
following electric parameters at this temperature: T = 500 ps,
I = 5x10"° A, Ry = 1.5Q,n = 1.16. The DC operating con-
ditions are chosen such that I, = 50 mA. To characterize the per-
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formance of a particular RF system in which this diode is used, we
need to obtain

(a) the impedance behavior of the diode in the frequency range
10 MHz < < 1 GHz at 300°K, and

(b} the impedance response of the dicde in the same frequency
range, but for temperatures of 250°K, 350°K, and 400°K.

Solution: At a temperature of 300°K, we first determine from
I, = 50 mA the corresponding V,, which is found from (7.1}

Next we can compute the differential resistance and capacitance as

nv Ity v, /(nV
Ry=2T -06QandC, = ST "D
IQ HVT

= 8329 pF
Knowing these parameters, we can find the impedance of the diode
as a resistor Ry connected in series with the parallel combination of
R; and C;:
Z=R.+ ._._d__
$T1+ joC, R,
The resulting frequency behavior is shown in Figure 7-3,

As temperature changes and the biasing cumrent I, is main-
tained constant, the biasing voltage V, should change due to the
temperature dependence of the thermal potential V, = kT/¢,
bandgap energy W, given by (7.7), and satration current
described in (7.6). Results of these computations are presented in
Table 7-2, and the corresponding frequency behavior of the diode
impedance is shown in Figure 7-3.

Table 7-2 Diode model parameters for different temperatures

T,°K 250 300 350 400
WD), eV 1.128 1.115 1.101 1.086
L(D,A 5.1x10719 3.0x10°° 3.3x107" 3.8x10710
V.V 0.979 0.898 0.821 0.748
R, Q 0.5 0.6 0.7 0.8
C,. pF 990.5 832.9 713.9 624.7
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Figure 7-3 Frequency behavior of the diode impedance for different junction
temperatures.

We observe how the physical parameters developed for the pn-
Jjunction in Chapter 6 directly translate into the small-signal circuit
model. The DC bias conditions influence the AC behavior because
they affect the differential capacitance and resistance.

7.2 Transistor Models

Over the years a number of large- and small-signal bipelar and monopolar transis-
tor models have been developed. Perhaps the best-known one is the Ebers-Moll BJT
model, which was initially introduced to characterize static and low-frequency transis-
tor modes. The need to expand into RF/MW frequencies and high power applications
required taking into account many important second-order effects, such as low-current
and high-injection phenomena. This has resulted in the Gummel-Poon model as a more
refined BJT circuit representation.

7.2.1 Large-Signal BJT Models

We begin our discussion with the static Ebers-Moll model, which is one of the
most popular large-signal models. Although this model was first introduced in Decem-
ber of 1954, it still is indispensable to understand the basic model requirements and its
extensions to more sophisticated large-signal models as well as the derivation of most
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small signal models. Figure 7-4 shows the generic npn transistor with the associated
Ebers-Moll circuit model in the so-called injection version.

<l
———C)

&

7

O}
{a) Voltage and current convention for npn transistor

ol
1’3 ’_e_‘ IC‘
L /4

==

Ol
Ve wa D 11 Vee
F

Eo < F

(b) Ebers-Moll circuit model
Figure 7-4 Large-signal Ebers-Moll circuit modsl,

In Figure 7-4 we encounter two diodes connected in forward and reverse polarity, as
already seen in Chapter 6. In addition, two current-controlled current sources permit the
mutual coupling of the two diodes as part of the base contact. The forward and reverse
current gains (in common-base configuration) 0t and o possess typical values of
op = 095...099 and oz = 0.02... 0.05. As a direct extension of the previously
discussed single-diode model, the dual-diode Ebers-Mol! equations take on the form

Ig = Oaplp—Ip (7.10)
I = ople~Ig (7.11)
with the diode currents
In = Igs(e*T-1) (7.12)
Var/Vr

Ip = Igg(e 1) (7.13)
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where the reverse collector and emitter saturation currents /¢ and I (whose
numerical values range from 107 A to 107® A) can be related to the transistor satura-
tion current /¢ as follows:

Oplgs = Ogles = I (7.14)

Despite their simplicity, the Ebers-Moll equations are capable of describing all major

physical phenomena developed in Chapter 6. For the important cases of forward and

reverse active modes, the circuit model can be simplified. The following two situations
arise:

* Forward Active Mode (Vop> Vg = 0.1V, Vpe=07 V). With the base-

emitter diode I conducting, and the base-collector diode in reverse direction

(ie., V<0 V), we conclude that I, =0, and also 0tzip ~ 0. The base-collec-
tor diode and the base-emitter current source can thus be neglecied.

*Reverse Active Mode (V- <~0.1V, Vp.=0.7 V). Here the base-collector
diode 7yis conducting, and the base-emitter diode is biased in reverse direction
(i.e., Vgp <0 V), whichresultsin [y~ 0 and apfp~0.

Figure 7-5 summarizes these two modes of operation when the emitter is chosen as
common reference point.

Iy

—

Bo ' -— C B O~ j'>|—o c

Foe jIF | Var CDaRIR IV"__E
O F

Eo - o E E o
(a) Forward active mode (b) Reverse active mode
Figure 7-5 Simplified Ebers-Moll eq&:ations for forward and reverse active
modes.

This model can be modified to account for dynamic operations by including the
familiar base-emitter and base-collector diffusion (C,,, C,; ) and junction (C jer C jc)
diode capacitances. Unlike the simple charge analysis presented for the single-diode
model, a more elaborate wreatment is required for the BJT. For instance, the charge
accounting for the emitter diffusion capacitance is comprised of minority charges stored
in (a) the neutral emitter zone, {b) the emitter-base, (¢} the collector-base space charge
regions, and (d) the neutral base zone. An identical analysis applies to the collector diffu-

sion capacitance, Figure 7-6 depicts the dynamic Ebers-Moll chip-model. Further refine-
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Ebers-Moll
model] Ree
Jod
Cdc q'c
== {1, ol
RBB’
Bo— g

(b) RF model with parasitic terminal effects

Figure 7-6 Dynamic Ebers-Moll model and parasitic slement refinements.
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ments for RF operations are often made by including the resistive and inductive
properties of the lead wires as well as parasitic capacitances between the terminal points,
see Figure 7-6(b).

RFEMW-—

Example 7-2: Transport versus injection form of the Ebers-
Moll large-signal model

Instead of the injection model, it is the transport model that typically
finds use in SPICE simulations. Let us go through the qualitative
steps to arrive at this important representation.

Solution:  We begin our discussion with the static BJT model,
since the diffusion and junction capacitances can be added later in
the derivation. First, we can show that the injection model Figure
7-4 is equivalent to the transport model in Figure 7-7.

C

Ve

TI 3:-/ ax I o
i
——

Bo

l,fcc/ar Iec

tie

E
Figure 7-7 Transport representation of static Ebers-Moll injection model.

The equivalence of both models can be established if we re-
express collector and emitter currents as follows:
Ic = Iec—Igc/og
with the current controlled sources now given as
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Vpe/V
Iec = Ige ™ 721
Vec/V
Igc = Ig(e ™ 77=1)
A slightly different form can be obtain if both current sources are
combined to a single source I, = I~~-Ig, and the diode cur-
renis are re-expressed as

Ige 1-0p Igc
% o BT By
R R R

Or - O fec = Br
This model configuration is shown in Figure 7-8 with base, collec-
tor, and emitter resistances. Also shown in Figure 7-8 are the com-
bined diffusion and junction capacitances C,, and C,. associated
with the base-emitter and base-collector diodes.

C

Ree

=T ZS T&c"'ﬁn
Bo—AAN, CDI‘”"‘

T SF |fec /B

REE,"

E
Figure 7-8 Dynamic Ebers-Moll transport model with single current source.

The Figure 7-8 configuration is important since it leads
directly to the large-signal BJT model under forward active mode
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condition. This mode allows us to neglect the base-collector diode
current, but not its capacitative effect. Renaming the electric param-
eters, we arrive at the circuit depicted in Figure 7-9, where we
replaced the forward-biased diode with an equivalent current source.

RBB" B Cbc c RCC'
BO—Wr Y “ ! ‘VW—OC
+ ¢

. E
Ry
Eo » O F

Figure 7-8 Large-signal BJT model in forward active mode.

This final form can be found in the SPICE library as a nonlin-
ear representation of the standard BJT.

We notice how the dynamic transport model of the Ebers-Moll
equations naturally lead to the SPICE large-signal model. An inher-
ent difficulty for all circuit models is the unique determination of the
model parameters through appropriate measurement strategies.

The Ebers-Moll model was one of the first BIT circuit representations and has
retained its popularity and wide acceptance. However, shortly after its introduction, it
became apparent that a number of physical phenomena could not be taken into account
by this original model. Specifically, research has shown that (1) B, and B are current
dependent, and (2) the saturation current / is affected by the base-collector voltage
(Early effect). Both effects significantly influence the overall BJT performance. For
this reason a number of refinements have been introduced to the original Ebers-Moll
model, culminating in the Gummel-Poon model shown in Figure 7-10.

In this model we immediately notice the addition of two extra diodes 1o deal with
the collector-dependent forward and reverse current gains Br(/) and B4(I.). Figure
7-11 depicts a typical curve for B..
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Figure 7-10 Static Gummel-Poon model.

1000 —
BFG403W
Veg =3V

o 100}

rave

5

B

5

] 16}

l L i L N N L —
10° 107 107 107 10! 10° 10" 10° 10°
Collector current I, mA

Figure 7-11  Typical dependency of B on the collector current I~ for a fixed
collector-emitter voltage V .

The two leakage diodes L1, L2 provide four new design parameters: coefficients
Ig,, ngp in Iy, = I (exp[Vgg/(ng V)] - 1) for low-current normal mode opera-
tion, and Ig¢y, npy in Ipy = Tgo(explVpe/(nep V)l —1) for low-current inverse
mode operation. Additionally, the Gummel-Peon model can handle the Early effect,
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whereby with increasing collector-emitter voltage the space charge domain begins to
extend far into the base region. The result is an increase in collector current for a fixed
base current. If one draws tangents to each collector current curve (see Figure 7-12), they
all converge approximately at a single voltage point ~V , , known as the forward Early
voltage. An identical analysis can be conducted if the BJT is operated in the reverse
active mode, resulting in a voltage point Vg, known as the inverse Early voltage.

alc

“_‘uﬁ?‘:"

=V 0 Vor

Figure 7-12 Collector current dependence on V. and its approximation through
the Early voltage lffr

Both voltages are incorporated as additional factors in the model. Moreover,
Gummel-Poon also permits the specification of a current-dependent base resistance and
a distributed base-collector junction capacitance Cj,.. We will not go into any details
of the various underlying physical reasonings leading to the requirement of these addi-
tional model parameters. The interested reader is referred to the sources listed at the
end of this chapter. Converting the static Gummel-Poon model (Figure 7-10) into
dynamic form by including the diode capacitances and C ;, leads to the equivalent cir-
cuit shown in Figure 7-13.

This circuit is similar to the large-signal Ebers-Moll form (Figure 7-9) but with
the differences that the base resistance Ry is current dependent, the collector current
takes into account the Early effect, and a distributed base-collector junction capacitance
C 5 enters the model.

In SPICE both BJT models can be invoked, with Ebers-Moll requiring the specifi-
cation of 26 circuit parameters and up to 41 parameters for Gummel-Poon. Generally,
the BJT manufactures supply these parameters in their data sheets. Unfortunately, one
increasingly encounters the situation where instead of the generally applicable SPICE
model parameters, only the measured S-parameters are given. Since these measure-
ments are recorded for particular operating frequencies and under certain bias condi-
tions, it is then left to the circuit design engineer to interpolate the data for a particular
transistor operation not found in the data sheet.
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Figure 7-13 Large-signal Gummel-Poon model in normal active mode.

7.2.2 Small-Signal BJT Models

From the large-signal Ebers-Moll equations it is now easy to derive a small-signal
model in the normal active mode. To this end, the large signal model (Figure 7-9) is
converted into the linear hybrid-® model shown in Figure 7-14.

so—wm_

Tc
- —\MA—oc
T = 220 % "o

il
Eo —0E

Figure 7-14 Small-signal hybrid-7 Ebers-Moll BJT model.

We see that the base-emitter diode is replaced by a small-signal diode model and
the collector current source is substituted by a voltage-controlled current source. To
make the model more realistic, a resistor ry is connected in shunt to the feedback
capacitor C,, . For this model we can direcily establish the small-circuit parameters by
expanding the input voltage Vg and output current [~ about the biasing or Q-point in
terms of small AC voltage v,, and current i_ as follows:
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Vgg = VgE + vy, (7.15a)

2
Io = 240, = Lexpl(Ve +v,,)/V,] = 19[1 +[ )+1(@) +] (7.15b)
v T ao\v,

Truncating the series expansion of the exponential expression after the linear term, we
find for the small-signal collector current

IQ
i = (V—‘;]vbe = &V (7.16)

where we identify the transconductance

dic d (Vpe/Vy) C
§m = AVye o - d VBEI $¢ |Q Iz 17
and the small-signal current gain at the operating point
dl .
Br|, = 7 Bo (7.18)
Q
The input resistance is determined through the chain rule:
dv df dv
r = BE dic| ¢VBE Bo (7.19)
For the output conductance we have
Q
dl v /v V I
ro  dVcg 0 dVCE VAN 0 Van

which includes the Early effect, also known as the base-width modulation because of
the increased depletion layer extent into the base.

It is directly seen that this model in its simplest form at the terminals B'-C"-E’
reduces for the static case and, under negligence of the collector-emitter resistance, to
our familiar low-frequency transistor model. Here the output current can simply be
expressed in term of the input voltage v, as

i, = r—"""’+gmvbe = (l+g,r n)- = (1 +Bo) (7.21)

n
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Often additional small-signal BJT circuit models can be developed on the basis of
the A-parameter network representation. For instance, if we recall the definitions of the A-
parameters and apply them to a BJT in common-emitter configuration, we obtain

vbe= hllib'l‘hlzvce (?.22)
iC = hzlib"‘hzzvce (?.23)

which is encoded in generic form in Figure 7-15.

Ty, M e
B + oC
Vb?l B\ Vee hnﬁ;#) %kn lvce
EO ’ O E

Figure 7-15 Generic h-parameter BJT representation with two sources.

In this notation the indices denote 11 = input, 21 = reverse, 21 = forward, and
22 = output .. The individual parameter can be computed via the following relations:

v
hy = % input impedance (7.24a)
b V=0
i
hy = f foward current gain B (7.24b)
b v,=0
%
hi, = be reverse voltage gain (7.24¢c)
)i =0
i
hy, = v—': output admittance (7.244d)
LH -
=0

It is observed that h,, represents the influence of the output voltage “fed back” to the
input as part of a voltage-controlled voltage source. Conversely, h,, models the influ-
ence of the input “fed forward” to the output, or gain, as part of a current-controlled
current source. The output to input feedback is modeled by the reverse biased collector-
base junction capacitance C_,, which is generally on the order of 0.1 to 0.5 pF and a
resistor 7., , with values ranging in the low MQ . Therefore, for low and intermediary
frequencies up to approximately 50 MHz, this feedback can safely be neglected. How-
ever, in the GHz range, it may profoundly affect the BJT operation,
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If the feedback resistor ;. is neglected, a high-frequency circuit model results, as
displayed in Figure 7-16. Also shown in this figure is a converted circuit such that the
feedback capacitance C_, appears as the Miller capacitance on the input and output
sides. The Miller effect allows us to decouple the input from the output port by redis-
tributing the feedback capacitance, as the following example shows.

Cb
Bo— ||

' + oC
Eo —_ £

(a) RF circuit model

BoO + 4 ) o
mvbe

i + e %

Eo ’ O E

{b} Equivalent circuit model

Figure 7-16 RF small-signal circuit model and converted circuit model using the
Miller effect.

5

RF &M W
Example 7-3; The Miller effect

Show that the feedback capacitance C_, can be expressed as
Cyy = Cp(1=v,,/v,,) on the input port and as
Crr = Cop(1-v,,/v,.,) on the output port. Assume that the input
and output voltages are approximately constant, and keep in mind
that v, is negative under common emitter configuration.

Solution:  We need to convince ourselves that the two generic
circuits shown in Figure 7-17 are equivalent,

The curmrent I, is found by taking the voitage difference
between output and input divided by the feedback impedance

and for the equivalent input and output impedances Z,,, Z,,
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Z,
1
| I
£,
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(a) Circuit with feedback impedance Z,,

LA

],
—— -—=

Vll Z, lfpl -E‘ 5| 22:11@

(b) Equivalent form
Figure 7-17 Miller transformation of feedback impedance.

7 =&=_ZI2L=Z(1_V/V)'1
11 Ip (VI—VQ) 12 2 1
and
v zZ.,V -1
Zp = L= o = Zp(1-V,/V))

(-I,) ~ (V4=V}
With the assignments Z,, = 1/(joC.,), Z, = 1/(joCy,),
lent capacitances

CM] = Cbe(l—v“/vbe) (?25)

ce?

and
CM2 = Cbe(l - vbe/v“) (?26)

Decoupling of the input from the output port is accomplished
by computing an equivalent capacitance that depends on a constant
voltage amplification factor v /v,

Another important factor that is directly related to the BJT frequency behavior is
the short-circuit current gain 4 (), which implies the connection of the collector
with the emitter as depicted in Figure 7-18.
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(@) Short-circuit hybrid-t model
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(b} Amplification versus frequency behavior
Figure 7-18 Short-circuit current gain of BJT model.

Since the output is short circuited and thus v, = 0, the Miller effect does not
enter the analysis. We find /(@) by computing the ratio of collector to base currents
e Bmlip(l-joC,/g,)

Rel®) = 1 = T 1T acC,2,

-,

(7.27)

where Z,, = r./(1 + jor,C;). Substituting Z; | into (7.27) and using (7.19) results in

Bo(1 - jooC,/g,)  Boll—Jj(f/fo)]
hp(0) = —— B2 = _ 7.28
5e(®) = 17 JOr(Cp+Cy) L+ j(f/fp) (7.28)
with the maximum frequency f,, and the beta cut-off frequency fg

1
2rr (Cp+ C))

Em

fO:TC“andfﬁ=

(7.29)
The transition frequency fr denotes the point where the magnitude of the current gain
is unity (or 0 dB) under short-circuit output condition. Setting the absolute value of
(7.28) equal unity, we find
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1 Bo-1
T r(Cr+2C,Cp)

Since usually By » 1 and C » C,, we can rewrite (7.30) as

By _ &n

szZWnCn = 7nC, (71.31)

As already seen in Chapter 6, this frequency is related to the emitter-collector time
delay, which is composed of the delays associated with base, emitter, and collector.
Another name for f, is the gain-bandwidth product, which is specified in data sheets
for a particular collector-emitter voltage and collector current bias condition. Addi-
tional figures of merit can be established when one considers |821[2, where the power
gain of the transistor is recorded under zero source and load reflection coefficients. This
condition will be investigated in greater detail in Chapter 9.

Finally, let us discuss a design project involving the BJT. In this project, we will
go through the steps of deciding upon bias conditions, determining the input and output
impedances as a function of frequency, and converting the impedance values to the rel-
evant S-parameters. The transistor parameters used for this example are summarized in
Table 7-3. The MATLAB routine ex7_4.m provides computational details,

RF&M W

Example 7-4: Setting bias conditions, determining input/out-
put impedances, and computing the S-parame-
ters for a BJT

Our task is to design an amplifier for a portable communication sys-
tem. The system is supposed to operate from a 3.6 V battery source.
Taking into considerations the maximum available current and bat-
tery lifetime, we demand that the current for the amplifier should not
exceed approximately 10 mA. Assuming V. =2V and
I- = 10 mA as bias conditions for this transistor, and the BJT
parameters given in Table 7-3, we need to determine the hybrid-n
model. In addition, the resulting input/output impedances and the
corresponding  S-parameters for the frequency range of
1 MHz < f< 100 GHz have to be found.
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Table 7-3  Parameters of the BJT transistor
Symbol Description Typical value

Be forward current gain 145

I saturation current 55fA

Vin forward Early voltage 0V

T forward transition time 4 ps

Cioy base-collector junction capacitance at zero applied junction voltage | 16 fF

Ciro base-emitter junction capacitance at zero applied junction voltage 371F

me collector capacitance grading coefficient 6.2

g emifter capacitance grading cocfficient 0.35

Vdjﬂ” base-emitter diffusion potential 09V

Vdiffnc base-collector diffusion potential 0.6V

g base body resistance 125

ro collector body resistance 15Q

re emitter body resistance 150

Lig base lead inductance 1.1 nH

Le collector lead inductance 1.1 nH

Lg emitter lead inductance 0.5 0 H

Solution: =~ We begin this design by developing a standard voltage

divider biasing network, as shown in Figure 7-19.

With the power supply voltage of V-~ = 3.6 V, desired col-
lector-emitter voltage of V. = 2V, and collector current of
I = 10 mA, we can find a value for the collector resistor R as

follows:

Vee-V
RC=L‘,C—CE=16OQ
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Vec
R
RBI
RFC
REC
RBI

Figure 7-19 Biasing a BJT in common-emitter configuration.

Based on the current gain of B = 145 and collector current of
Io=10mA, we find the base current to be
Ig = I-/B = 69 pA. The current through the resistor Rp, is
equal to the sum of the current flowing through resistor Rg, and 1.
In practice, the values of Ry, and Ry, are selected such that they
make the magnitude of I, equal to 10% of the current through resis-
tor Ry, . Keeping this in mind and realizing that the base-emitter
voltage drop Vg is approximately equal to the base-emitter built-in
potential V¢, we find

_ dlffgs
Ryp = ot = 13000
and
Vee - Va
_ BE _
Rp, e 3560 Q

Now we are ready to compute the hybrid-& model parameters.
From equations {7.17)-(7.20) we obtain g,, = I./V; = 386 mS,
I = PBo/8m =375Q, and ry = V, /I = 3kQ. To find C,
and C, we have to resort to the pn-junction analysis. Since the
base-collector voltage is negative, the base-collector capacitance is
only determined by the junction capacitance, From (7.3) we find

C
C, = JC0 — = 13fF
(1-Vpe/ Vg, )"
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Because the base-emitter voltage is positive, C, is a combination of
both the junction and diffusion capacitances. From (7.3), and by
assuming V,, = 0.5V . we have

EY -

“juncl

and

It Vee/Ve
C, = —Te
diff VT

= 1.085 pF

Thus, the total base-emitter capacitance is
Cp = Cﬂjum|+cnd.il‘f = 1.14 pF

After establishing all parameters of the hybrid-® model, we
can compute the corresponding A-parameter matrix as described in
(7.24). The result takes into account only the transistor die hybrid-1
parameters without incorporating base, collector, and emitter resis-
tances and parasitic inductances.

To consider the influence of the lead resistance and inductance,
we can employ a network analysis as described in Chapter 4. Specif-
ically, we can partition the equivalent transistor circuit into four
two-port networks, as shown in Figure 7-20.

Base Hybrid-1 model Collector
:- Ly ] : | I C, [ :- o L :
B MW—'VW . I , -WG
1 ') + : ( !
0 |
: . lc’rl—— , Vy Em¥nl ¢ foy : X
] 11! i ' !

Eo-

. Sy o F

Figure 7-20 Complete transistor model divided into four two-port networks.
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Relying on this network partitioning we proceed as follows: To
obtain the Z-parameters of the entire transistor we first convert the
h-parameters of the hybrid-r model into ABCD representation.
Next, this converted hybrid-r model is multiplied by the ABCD-
matrix representations for base and collector leads.

The matrix equation is as follows:

[A B] _ {1 rp+ jcoLB] [A B] [1 ro+ ijC]
CD o 0 1 base cDh h-model |0 1 collector

Finally, we convert the ABCD representation of the transistor with
the attached base and collector leads into Z-parameter form and add
the resulting matrix to the Z-matrix of the emitter lead.

[zu ZIZ:| - |21 Zn + [rE"'ijE rg+joLg
Zn 22| ans 1221 222, etnitter

re+ joLg rp+ joLg
The frequency responses of coefficients Z;; and Z,, are shown in
Figure 7-21.

As we see from Figure 7-21(a), the addition of the lead imped-
ance to the basic hybrid-t model at low frequencies results in a sig-
nificant increase in the input impedance due to the large base
resistance. At high frequencies the effect of base and emitter induc-
tances become noticeable in terms of a sharp rise in the impedance.

For the output impedance the situation is quite different. Since
the base resistance does not have any effect on Z,,, the output
impedance remains virtually unaffected by the addition of the leads
and is dominated by the resistance r;, up to very high frequencies.
At that point the inductive effect of the leads become dominant.

From the known Z-parameter representation of the transistor
we can easily compute the S-parameters using the conversion
described in Chapter 4. The resuiting input reflection coefficient,
S,y »and gain, S, , of the transistor are shown in Figure 7-22 as parn
of the Smith Chart and a polar plot, respectively.

As we notice in Figure 7-22(b), even though the emitter resis-
tance and inductance seem to be negligible compared to the values of
the other components in the model, their addition results in a signifi-
cant drop in gain over the entire frequency range. This shows once
again the influence of parasitic elements in RF circuits.
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(b) Output impedance of the transistor

Figure 7-21 Input and output impedances as a function of frequency.
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e Hybrid-‘.l'l: model w0
with base and i
collector leads
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k1]

a0

Hybrid-nt model

three ports

(a) Input reflection coefficient, S,, {b) Gain of the transistor, S,,
Figure 7-22 &, and S,, responses of a BJT for various model configurations.

We have demonstrated an approach of computing the smali-
signal parameters of the transistor from known operating conditions
of the underlying SPICE model. Even though a simple topology is
investigated, this method can be directly applied to more compli-
cated internal structures by breaking them down into a set of inter-
connected two-port networks.

7.2.3 Large-Signal FET Models

FETs offer a number of advantages but also suffer some disadvantages over BJTs.
In choosing the appropriate active device for a particular circuit, one should take into
consideration the following FET-related benefits:

* FETs exhibit a better temperature behavior.

* The noise performance of a FET is, in general, superior.

* The input impedance of FETs is normally very high, making them ideal for
preamplification stages.

¢ The drain current of a FET shows a quadratic (and thus a more linear) functional
behavior compared with the exponential collector current curve of a BJT.

* The upper frequency limit exceeds, often by a substantial margin, that of a BJT.

* The power consumption of a FET is smaller.

In terms of the disadvantages one often hears:

* FET's generally possess smaller gains.
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* Because of the high input impedance, matching networks are more difficult to
construct.
* The power handling capabilities tend to be inferior compared with BJTs.

The preceding list is debatable, since new device concepts and fabrication improve-
ments continnously affect various transistor performance aspects.

For our FET modeling purposes we will focus on the noninsulated gate FET. To
this group we count the MESFET, often identified as GaAs FET (pronounced “gasfet™),
and the HEMT. Both types are discussed in Chapter 6. In Figure 7-23 the basic n-chan-
nel, depletion mode MESFET model (with negative threshold voltage) is shown along
with the transfer and output characteristics.

I, \
"{2 I, Dsat
=]
V,s= const
Vea 0 > Vos
{b) Transfer characteristic
Ip

Vos = Vo

0] < > Vm

{c) MESFET model {d) Output characteristic
Figure 7-23 Static n~channel MESFET model.

The key equations for the drain current in forward, or normal, mode of operation
follow from the analysis developed in Section 6.4, There we obtained the drain current
for both the linear and saturation regions. These current expressions constitute the start-
ing point of deriving the model for the FET.

Saturation region (V5,2 Vo= V7 >0)
The saturation drain current given by (6.94) is repeated here for convenience

2 32

V,-V
3,\/V_p( d GS)

v
Ipea = GO]:"STP -(Vy=Vge) + (7.32)
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If we substitute in (7.32) the combination of threshold voltage V1, and pinch-off volt-
age Vp (in other words, V; = Vo, + Vp) an altemate form is obtained:

|4 Vee=V Vo= Von372
Ipsw = Gof{lﬂ3(l———asvp T°]+2[1-—GSVP T"] } (7.33)

Making a binomial expansion of the square bracketed expression up to the second term
allows us to write (7.33) as

Ve(3
Ipsa = GO?E(Z)(VGs‘Vm)z (7.34)

The constant factors in front of the square term in (7.34) are combined to the conduc-
tion parameter 3,

GO l'l'nez
b= i(72) = 5z (735

where the definitions for the conductance Gy = 6Zd/L = W, NpqZd/L and the
pinch-off voltage V, = (gN Dd )/ (2¢) from Section 6.4 have been used. If the chan-
nel modulation effect is included, we arrive at

I = B,(Vas— Vgl (1+ AV ) (7.36)

Here the parameter A = 0.01 ... 0.1 V™' models the slight increase in drain current for
increasing drain-source voltage in the saturation region, see Figure 7-23(d).

Linear region (0 < Vo< Vo—Viyg)
Identical steps, as outlined for the saturation region, can be invoked to manipulate
the drain current expression (6.91) to yield

Ip = B,[2(Vgg—Vyg)Vps— Vi1 +AV ) (1.37)

where again the channel modulatior is considered to achieve a smooth transition from
the linear into the saturation region. For instance, if Vg = V- Vpg (that is, the
transition from linear to saturation region) both drain currents are identical.

The FET can also be operated in reverse or inverted mode if V¢ <0. For com-
pleteness, the two drain current relations are given without further comments.

Reverse saturation region (Vo2 Vi~ Viyg > 0)

Ip = =B, (Vap - Vi) (1 -AV ) (1.38)
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Revérse linear region (0 < -V <Viop—Vyg)

Ip = BI2(Vgp—Vig)Vps— Vasl(1+AVy) (7.39)

Under reverse operation, the gate-drain diode (GD) is negatively biased.

Making the transition from the static to the dynamic FET model requires only the
addition of gate-drain and gate-source capacitances, as illustrated in Figure 7-24. Also
shown in this model are source and drain resistors associated with source-gate and
drain-gate channel resistances. A gate resistor is typically not included because the gate
current, although substantially higher than for a MOSFET, is still negligible.

Figure 7-24 Dynamk FET model.

A summary of the most relevant SPICE modeling parameters for a MESFET is
presented in Table 7-4.

Table 7-4 SPICE modeling parameters for a MESFET

Symbol SPICE Description
Vi ¥TO Threshold voltage
A LAMBDA Channel-length modulation coefficient
i] BETA Conduction parameter
Con CGD Zero-bias gate-to-drain capacitance
Ces CGS Zero-bias gate-to-source capacitance
rp RD Drain resistance
rs RS Source resistance
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7.24 Small-Signal FET Models

A small-signal FET circuit can directly be derived from the large-signal FET
model (Figure 7-24). In this model we simply replace the gate-drain and the gate-
source diodes by their small-signal representations derived in Section 7.1. In addition,
the voltage-controlled current source is modeled via a transconductance g, and a shunt
conductance g, = 1/r 4. The model can be tied in with a physical device correspon-
dence, as Figure 7-25 shows,

(a) !dealized MESFET device structure

G

rx ng D
"i( Ce
EnV rds=cd.r
Vm %rp % VDS
?
A !

(b) Circuit model
Figure 7-26 Small-signal MESFET model.

This model can be described by a two-port ¥-parameter network in the form
fg = Y11Ves + Yi2Vas (7.40a)

ig = Yy Ves+ Ya2Vus (7.40b)
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Under realistic conditions, the input conductance of y,, and the feedback conduc-
tance of y,, are very small and can thus be neglected. This is consistent with the fact
that the gate current is too small to be of practical consequence. However, for high-fre-
quency operations the capacticances are typically included, resulting in the circuit
model shown in Figure 7-26.

G
. c |
V== Cg;s
Ves EnV: ‘ g”ds==cd; Vos
=~
S‘ >

Cu

-]

Figure 7-26 High-frequency FET model.

For DC and low-frequency operation, the medel in Figure 7-26 simplifies to the
condition where the input is completely decoupled from the output. Transconductance
&, and output conductance g, can be readily computed for the forward saturation
region from the drain current equation (7.36):

di,,

Y2 = 8n= gy = 2B, (Ves— Vo)1 +AvEy) (7.41)
Gs|y
1 ai 2
v = = = | = BMVEs—Vro) (1.42)
Tds Ds|g

with the operating point, or Q-peint, denoted by Vg s and Vg g-

The gate-source and gate-drain capacitances play a crucial role in determining the
frequency performance. For the transition frequency f, we again have to consider the
short-circuit current gain for the situation where the magnitude of the input current 7
is equal to the magnitude of the output current [, or specifically

el = 07(Cys+ CoalVas| = lp| = &nlVos (7.43)
which gives us

Em

fr= m {7.44)

For low-frequency FET applications, it is primarily the charging time defined by these
capacitances that severely limits the FET frequency response. This is in contrast to the
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channel transition time, as defined in Section 6.4.3, which for high-frequency applica-
tions limits the FET"s operation as the following example shows.

RFEMW—
Example 7-5: Approximate determination of cut-off fre-
quency of a GaAs MESFET

A GaAs MESFET with a gold gate is fabricated to be 1.0 um in
length and 200 pm in width, and 4 = 0.5 um in depth. The fol-
lowing electric  characteristics are known: g, = 13.1,
Np = 10" cm™, and p, = 8, 500 cm®/V's. Under suitably cho-
sen approximations, we would like to find the cut-off frequency at
room temperature.

Solution:  To apply (7.44), it is necessary to find an approximate
expression for the transconductance and capacitances. The transcon-
ductance can be found by knowing that the drain saturation current
(7.33) is maximum for V ;¢ = 0, which gives

= Go(1- JV,/Vp)
Vgs=0

where the built-in voltage V, for the Schottky contact is found from
(6.39) to be

Vi=(Vy-0)-V¢
with V.= ViIn(N-/Np) =01V, V, =51V, and
¥ = 4.07 V. Substituting these values yields V,; = 0.93 V. The
pinch-off voltage and the conductance are, respectively,

qunN D wd
L
Thus, g,, = 9.1 mS . For the capacitance we can approximately com-

pute the surface area of the channel times the dielectric constant
divided by the channel thickness:

Cpy+ Cpg = eoe,,(%) = 0.046 pF
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From these values we can finally estimate f, to be

Em

= 2————-——R(Cgs+ ng) = 315 GHZ

fr

In contrast 10 an approximate channel transit time of 15 GHz
discussed in Section 6.4.3, we now have the situation that the RC
time constant is smailer. In other words, the channel transition time
becomes the limiting factor in the high-speed performance of this
MESFET.

An often used approximate formula for (7.44) can be derived if we set g,, = G,.
The explicit result is

_ahNpd
21taL2

This expression applied to the above example would have yielded 29.3 GHz, a value
very close to the computed frequency of 31.5 GHz.

fr (7.45)

7.3 Measurement of Active Devices

7.3.1 DC Characterization of Bipolar Transistor

We commence our analysis with the Ebers-Moll equations (7.10) and (7.11), re-
expressed as collector and base currents:

I
o= Ige ™ oMy ﬁ(ev“’”‘"- 1) (7.46a)
JlrS Voe/Vr IS Vgc/Vr
Iz = =(e — 1)+ =(e -1 (7.46b)
Br Br

The unknown coefficients to be determined through measurements are I, By, and Br.
In addition, forward and reverse Early voltages V5 and Vg, become important when
the BJT is operated for large V. To separate forward and reverse current gain mea-
suremnents, we resort to two measurement protocols, shown in Figure 7-27.
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W
+
Ve =
(a) Forward measurements (b) Reverse measurements

Figure 7-27 Forward and reverse measurements to determine Ebers-Moll BJT
model parameters.

Under the forward measurement condition, the base-collector is short circuited
{Vge = 0), simplifying (7.46) to

I. = IS(eVBENT— 1) (7.47a)
I
Iy = B—i e 1y (7.47b)

Monitoring the base and collector currents as a function of Vg results in the graph
shown in Figure 7-28.

A

In€s /B

Vee
Figure 7-28 /;and /5 versus Vg
Both currents are logarithmically plotted and shown for sufficiently large Vo

values, where the exponential terms dominates over the factor 1. A linear slope of
1/V ¢ for both currents is obtained, since
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v
Inf. = Infg+-2£ (7.4%2a)
Vr
v
Infy = Infg—InPg+ Vi: (7.48b)

From these two curves we can first extrapolate the collector current to get Infg and
thus /. Extrapolating the base current next yields a value for Inlg - Inf, from which
we can determine (. From Figure 7-28 it is apparent that the current gain is constant
only over a very narrow coflector-emitter voltage domain. For low and high current
injections significant deviations occur, The Early effect is expressed as a linear gradient
of the collector current:

Vep/V vV Vep/V Vv
Io = Ige ’"-1)(1 +-£)=15e ce/ ’(1+-Q] (7.49)
VAN VAN

This allows us to find V ,, by projecting the tangent, applied to the collector current in
the saturation region, to the intercept point with the V - -axis in the second quadrant.
The intercept point is the same for various base currents, as shown in Figure 7-12. The
determination of the reverse mode parameters By, Vpy is carried out by interchanging
the collector with the emitter terminal [see Figure 7-27(b)], and then following the
identical procedure as done in the forward direction.

7.3.2 Measurements of AC Parameters of Bipolar Transistors

The determination of the AC parameters is more of a challenge depending on the
model involved and the details required. To extract analytically the large-signal Ebers-
Moll or Gummel-Poon circuit elements is an actively pursued research endeavor. For
our purposes we concentrate on the small-signal, low-frequency circuit model shown in
Figure 7-29.

B o— C

r

Eo— oF

Figure 7-29 Small-signal, low-frequency h-parameter representation.

This model is related to the hybrid-1 model presented in Figure 7-14, but without
the output feedback (4, = 0) and ohmic conttibutions rg=rp=rr-=0. For a O-
point in the active forward region, and consistent with (7.15)—(7.20), we can derive the
following parameters;
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Transconductance
Q
g = e _le (7.50a)
Ve, . T
Input capacitance
Ig vy i
C, = f:,,ev—s BT o rb,V—C (7.50b)
Input resistance
LT T . (7.500)
modly iy €. )
vee Vee =0
Output conductance
o
i dle - fe (7.50d)
ro dVcg 2 Van

where it is understood that the collector current in the presence of the Early effect is
given by I~ = g, 1(1 +V g/V ). Furthermore, since we decided to operate in the
forward active mode, C, denotes the diffusion capacitance, with the forward transit
time 1,, of the base-emitter diode.

The parameter extraction for this simplified hybrid-nt model begins with the pro-
cess of setting the desired @-point, resulting in known [ 2 v 3 ,and V. Thus, a mea-
surement protocol would sequence through the following steps:

* Transconductance g, = [ 2/ V for a given junction temperature
* DC current gain B, = 12/13

« Input resistance r, = By/g,,

¢ Qutput resistance ry, = VAN/Ig

* Input impedance Z;, = (1/r  + ,"(v)C,t)'l recorded at a particular angular fre-
quency and then solved for the capacitance C,,

Instead of recording the input impedance and indirectly determining C,, we can more
elegantly find the transition frequency and thus C, . This is accomplished by noting that
the AC current gain at the transition frequency f is unity:
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i
b ) B |4 (1.51)
lis [T+ jorr,C,
Knowing that B » 1 leads to f,=B,/(2rC_r,), from which it follows that
Bo
Cx= 3af,r. (7.52)

This approach can be implemented quite easily with a network analyzer. Sweeping the
frequency until the base current is equal to the collector current would allow us to enforce
(7.51). The resulting transition frequency can then be substituted into (7.52) to find C,.

RF &M W=
Example 7-6: Small-signal hybrid-i parameter extraction
without Miller effect

An npn-transistor is operated under DC bias of 2= mA,
1_2 = 40 nA, and the Early voltage is recorded to be
V,.n = 30 V., Through a network analyzer measurement the transi-
tion frequency is determined to be f, = 37 GHz at room tempera-
ture. It is required to determine the hybrid-% parameters: B, r
C,,rp,and g, .

me

Solution:  Neglecting feedback from the output to the input, we
can use the preceding equations directly and find

The forward DC current gain 3, of the transistor can be found sim-
ply as a ratio of the collector current to the base current:

By = 12/1% = 150
From the known B, and transconductance g, we find the input
resistance as r; = By/g,, = 647 Q. The output resistance is a
ratio of the forward Early voltage to the collector current

ro=V AN/Ig = 5 k€. Finally, the capacitance is found from
(7.52):
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C = Bo
r 2nfrry

= 1.00 pF

The small-signal parameter determination is almost a cook-
book design process. However, the constant forward current gain
may not always reflect a realistic transistor behavior.

While Example 7-6 is applicable for low- and medium-range frequencies, the sit-
vation becomes more complicated for values approaching 1 GHz and beyond. Here we
cannot neglect the Miller effect, and our attempt must be directed toward finding a
strategy to obtain C, . As discussed in Chapter 4, electric measurements at high fre-
quencies cannot rely on impedance, admittance, or s-parameter determinations because
of the difficulties associated with enforcing short- and open-circuit conditions. At these
frequencies we must resort to S-parameter measurements. How the S-parameters can be
utilized to find the feedback capacitor C is explained in the following example.

RF&MW—

Example 7-7: Small signal hybrid-n parameter extraction
with Miller effect included

We re-examine the previous example, but this time use the network
analyzer to record the following S-parameters based on the charac-
teristic impedance of 50 £ at 500 MHz:

(S] = |0.74€7%°7 0.006¢/%25°
9.78¢/1572° .97¢-178°

Our goal is to find the feedback capacitance . In addition, we
would like to observe how the input and output impedances are
affected if Cu is excluded.

Solution:  Since the DC measurements do not change, we will
not repeat them. For given S-parameters we can casily compute the
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input impedance of the transistor using matrix transformations
described in Chapter 4:

L (L85 (1=8p) +85,5y
"T85 -8p) =S558y
Setting the input impedance equal to the circuit model yields

1
V/rg+ jo(Cr+ Cypy)
where Cy, is the Miller-transformed capacitance. Rearranging this
equation leads to the form
11 1 1
C T f——— T ——
MU ayreRy 12 reR. ®© §

where the real part of the input impedance is used and ® = 2Rf is
the angular frequency at which the S-parameters are recorded. Explic-
iy, we find C,;, = 1.42 pF- 1.00 pF = 0.42 pF. To compute the
actual feedback capacitance Cu , we can use (7.25), where the ratio of
collector-emitter to base-emitter voltage is equal to the h;, parame-
ter. This yields finally C,, = C,;/(1 +|hyy]) = 7.22 {F.

To compute the frequency behavior of the input and cutput
impedances we can first calculate the h-parameters of the transistor
as given by (7.24) and then convert them into Z-parameter represen-
tation. Both input and output impedances are plotted with and with-
out the feedback (Cp = 0) in Figure 7-30.

Rin + inn =

55
5.0

Cu=o

10° 10" 10¢ 10’ 10° 100 10"
Frequency, Hz Frequency, Hz

Figure 7-30 Input and output impedances with and without feedback.
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This example underscores the importance to include the feed-
back effect once the frequency begins ro exceeds 100 MHz.

Although the preceding examples are simple extraction cases, they convey an appre-
ciation of how difficult a realistic situation can become if the entire SPICE parameter set
is attempted to be extracted. For the nonlinear large signal circuit models, this is a
research task with no clear solution methodology. Many manufacturers have therefore
resorted to S-parameter characterization alone. This approach greatly simplifies the BJIT
characterization by utilizing an appropriate test fixture or jig and relying on a network
analyzer to measure the S-parameters at certain bias conditions and operation frequencies.

7.3.3 Measurements of Fleld Effect Transistor Parameters

Because the GaAs MESFET has gained such prominence in many RF circuits, it
is important to take a closer look at its parameter extraction. Since the circuit model is
the same for the HEMT, we can treat both cases in parallel. The fundamental equation
for the drain current in the linear region is derived in Chapter 6 and is repeated here for
convenience:

ew 1,2
Ip = unBZ{(VGS - Vro)Vos~ EVDS} ~B(Vgs—Vro)Vps (1.53)

The only difference between MESFET and HEMT lies in the definition of the threshold
voltage Vr,. Specifically, with the Schottky barrier voltage V ;, pinch-off voltage Vp,
and energy difference AW, between the conduction bands of the heterostructure in a
HEMT, we obtain the following two expressions:

Vo = Vy—AW_/q-V, (HEMT) (7.54b)

For the saturation region, when Vo = Vo= Vg, (7.53) becomes the quadratic
equation

Ip = Ipg = B(Vgs— Viyp)? (7.55)

Using (7.55) we can easily extract values for conduction parameter [ and threshold
voltage V5, by plotting the square root of the drain current versus the applied gate-
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source voltage V ;. A measurement arrangement of a MESFET for obtaining V7, and
B is shown in Figure 7-31.

Ay
V55 = const
Vo 0O * Vos
(a) Measurement arrangement (b} I versus Vg5 transfer characteristic

Figure 7-31 Generic measurement arrangement and transfer characteristics in
saturation region.

The threshold veltage is determined indirectly by setting two different gate-source
voltages Vg, and Vg, while maintaining a constant drain-source voltage
Vps = const2 Vo=V, so that the transistor is operated in the saturation region.
The result of these two measurements gives

JIp1 = BVgs1-Vrg) (7.56a)
Jpy = BVgsa—Vro) (7.56b)

Here we assume that the channel length modulation effect is negligible; therefore, the
measured current is close to the saturation drain current as given by (7.55). Taking the
ratio of (7.56 a) to (7.56 b) and solving for V,, we obtain

_ Va1 =W/ JIp2)Vas2
IO =
1- 41 p1” Jp2
Next we substitute (7.57) into (7.56a) and solve this equation for 8. The extraction pro-
cess can further be simplified if we choose Ip,, = 4I,, so that (7.57) becomes

Vro = 2Vgs1— Vis2- Upon substituting this expression in (7.56a), we see that
B =1p/(Vgsa—Ves1)?

(7.57)

7.4 Scattering Parameter Device Characterization

The S-parameter measurement approach greatly simplifies the device-under-test
{DUT) characterization by utilizing an appropriate test fixture or jig and relying on a
vector voltmeter or network analyzer to record the frequency and bias dependent four
S-parameters.
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Although nowdays a vector voltmeter is seldom used for recording the S-parame-
ters, it nonetheless allows us to gain valuable insight into the basic measurement proce-
dure that is also at the heart of a network analyzer. We will therefore investigate this
approach first. It is generically depicted in Figure 7-32 and requires an RF signal gener-
ator, two dual-directional couplers, transistor biasing networks, the actual transistor fix-
ture, and calibration kit to create short-circuit and through-line conditions.

Figure 7-32 Recording of S-parameters with a vector voltmeter.

The function of a dual-directional coupler in Figure 7-32 is to isolate the inci-
dent from the reflected power wave. How this is accomplished can be explained with
reference to Figure 7-33, where a cross-sectional view of a coaxial coupler is shown.
For incident power coming from the left through the main arm, two slots, spaced A/4
apart, couple the energy into an auxiliary path labeled 4. The incident wave does not
produce any coupling into direction 3, since there is a 180° phase delay between sig-
nals coming from slot B and slot A, essentially canceling the entire wave. However, a
reflected wave from the DUT will enter the coupler at port 2 coming from the right and
subsequently couple out the wave energy through the auxiliary path labeled 3, cancel-
ing any wave leaving port 4. Therefore, port 3 provides an output for the reflected
power, whereas port 4 records the incident power. The two figures of merit for a direc-
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tional coupler are the coupling factor ¢f and its directivity factor df. The factor ¢f is
defined as

P.
of = 1010g(17‘) (7.58a)
and denotes the logarithmic ratio of the power in the main port, either 1 or 2 (i = 1,2),
over the power in the auxiliary port, either 3 or 4 (n = 3, 4). The directivity df

Py
df = 1mog(—

PJ (7.58b)

specifies the ratio of the powers in the auxiliary arm for the condition of equal forward
and reverse power levels applied to the main ports 1 and 2. For high signal discrimina-
tion we expect to see a large directivity value.

i Mainarm

Figure 7-33 Cross-sectional view of directional coupler and signal path
adjustment.

The actual signal propagation paths are observed in Figure 7-32. Here the vector
voltmeter records with channels A and B the incident and reflected powers from the
input port of the active device. Taking the ratio of the voltage magnitudes yields |S,|.
For recording the phase angle it is important to obtain an appropriate phase reference.
For this reason, the DUT is removed and a short circuit is inserted for phase reference.
To ensure equal path length (i.e., from the signal source to channel 4, and from the
short to channel B), a line stretcher is used to perform the necessary adjustment to
achieve a zero phase difference.

The same test setup can also be utilized to find the forward gain §,, . Switching
channel B to the directional coupler situated on the output side of the DUT yields the
ratio between the output and input voltages or |Sy)|. The phase adjustment now calls
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for replacing the DUT with a through section element and again equalizing the signal
paths with the line stretcher.

The remaining two S-parameters, S,, and S,,, are measured by reversing the DUT
Jjig and exchanging the biasing networks. As Figure 7-32 implies, the S-parameter mea-
surements depend on the setting of an appropriate bias or Q-point and the signal source
frequency. As a result, a wide range of parametric curves could be generated.

Instead of employing a vector voltmeter, a more common approach involves the
use of the network analyzer. This instrument is capable of processing magnitude and
phase of a single or dual-port RF network. A simplified block diagram highlighting the
functionality is shown in Figure 7-34,

1
| In%'i‘;:’; Pt 11 Internal computer |—]  Display (
s y ! f I Network
1 ] ana.l
! ) yzer
| Pulse A/D converter :
{Generator
:- 3 : | * t L_ Local |
------ I i '
Frequf:*ncy l — oscillator l
sweeping ) @; | @; I @9 I (
oscillator [ (
— =~ o ___|S-parameter
A By oo pestset _ _
|
|
)
1 |
I ]
1 DC bias DC bias :
|
: DCl_-===== D2 !
S5 ! R |
1 w2 22eth
6 D >4
185550 ) 1 311'321:
' — —
! 500 Directional DUT Directional 00

COUPIST y porty  Port2y Coupler

_____________ ! - am o e o mw wm mm o mm am wh

Figure 7-34 Block diagram of a network analyzer with S-parameter test set.

The advantage of a network analyzer lies in the fact that all the separate functional
units associated with the vector voltmeter based measurement procedures are incorpo-
rated into one single instrument for an entirely automated testing of the RF or MW
device. The operation is such that a sweeping RF generator applies the RF signal to the
directional couplers. In forward direction, the reference channel R records the incident
power wave and channel A provides the S,; parameter via directional coupler 1 (DC1).
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At the same time, parameter S, is recorded via directional coupler 2 (DC2). Switching
to reverse direction, the reference channel R records the incident power launched into
port 2 of the device under test, while channel B records S,, and channel A then yields
S, . This arrangement allows electronic switching between calibration and testing con-
ditions, permitting the recording of the entire S-parameter set without changing the test
Jjig. An interfrequency mixing and amplification stage feeds the signal into an analog-to-
digital conversion unit and subsequently into a microcomputer and display system. The
computer provides the user with the computed S-parameters (in magnitude and phase)
as well as such postprocessed parameters as group delay, return and insertion losses,
voltage standing wave ratio, input and output impedances, and many additional features.

The computer system allows for the software compensation of many imperfec-
tions introduced by the test arrangement. As a case in point, we recall the recording of
the S-parameters in Section 4.4.7 via the through-reflect-line (TRL) technique. This is
only one of a number of calibration schemes proposed to compensate for the various
error sources introduced by the measurement process.

7.5 Summary

Electric circuit models for active devices form the backbone of most CAD soft-
ware packages. These circuits range from simple linear models to very sophisticated
large-signal models. Specifically, a large-scale BJT SPICE model that takes into
account temperature influences can involve over 40 adjustable parameters whose deter-
mination is a daunting task.

In this chapter we reviewed the basic large-scale diode model that is used for
modeling both the conventional pn-junction diode and the Schottky diode. Junction and
diffusion capacitances and the temperature-dependent saturation current are the key
ingredients constituting this model. By identifying a bias or Q-point and considering
only small-signal responses, we arrive at the linear diode model with the differential
conductance and diffusion capacitance

_ 1 _dip| _ Iy
Gd—R—d—d—VAV —n—VTaIldCd
2

The diode model is utilized as the basic building block to develop the static large-
scale BJT model as originally proposed by Ebers and Moll. Issues such as forward
active and reverse active modes are explained by stmplifying the basic Ebers-Moll equa-
tions. Starting from the injection model, we converted the Ebers-Moll BJT equations to
the transport representation and subsequently to the large-scale BJT model in forward
active mode. Additional refinements and modifications of the Ebers-Moll model have

IQ‘I:T Vy/(nVr)
= ey
nvy
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resulted in the more sophisticated Gummel-Poon model, whose large-signal normal
active mode circuit is shown in Figure 7-13. For the small-signal representation the
hybrid-nt is a popular linearization of the large-scale Ebers-Moll representation. The
hybrid-nt parameters are computed for a given collector current operating point:

Em = Ig/v'r’ rr = Bo/2m> |3F|Q = Bg,and /7 = fg/v.m

For high-frequency operations the capacitive coupling between input and output ports
significantly influence the transistor operation. By taking into account the so-called
Miller effect, the collector-base capacitance is transformed into input and output capac-
itances, thus permitting us again to separate the two ports. Since lead inductances and
resistances also influence the high-frequency performance, we go through a detailed
design project to investigate, among other topics. how the input and output impedances
are affected as the frequency increases.

Attention is next directed toward the FET circuit models, specificatly the high-fre-
quency relevant types of MESFET and HEMT. Saturation, linear, reverse saturation,
and reverse linear regions are defined in close relation with Chapter 6. Specifically, the
drain currents in the saturation region

2
Ip = B(Vgs— Vo) (1 +AV )
and in the linear region

Ip = B,[2(Vgs—Vrg)Vps— Vi)_g](l +AVp)

form the basis of the static and dynamic circuit models. Of particular interest are the
small-signal low- and high-frequency FET models. The cut-off frequency allows us to
quantify the frequency limitations of the device. For low to medium frequencies it is the
charging time of the capacitors that determines the frequency performance, whereas for
very high speed operations it is the channel transit time that becomes the limiting factor.

Finally, we discuss some of the electric parameters of the active devices. For the
DC characterization of the BJT we can primarily rely on the collector and base currents
as a function of base-emitter voltage. From these curves, the saturation current, current
gain, and Early voltage are obtained. Measurement of the AC parameters is more of a
challenge, and only the linear hybrid- 1t model allows a cook-book approach as outlined
by equations (7.50). The FET model characterization follows a similar path as outlined
for the DC BJT model and involves the recording of the drain-current versus gate-
source voltage.

In many cases, both for BJIT and FET, the S-parameter representation is the most
common way to characterize an active device for a given bias and operating frequency.
For this purpose either a vector voltmeter or network analyzer is used to record the
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input/output power waves of the device under test. Measurements with the vector volt-
meter require directional couplers, signal sources, switches, and a forward and reverse
measurement protocol. This is all automated by connecting an S-parameter test set to
the three channels of a network analyzer. The recording of S, Sy, S»,, and §,, for
particular bias conditions and operating frequencies generally provides sufficient infor-
mation for the circuit designer to characterize the device.
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Problems
7.1

7.2

1.3

A silicon pnl-junction diode has the following parameters at T = 300°K,
I =5x1007 A, n = 12,1, = 100 ps, and Rg = 10 2. Assuming that
the diode is operated under such biasing conditions that the applied junction
voltage is maintained at 0.7 V, find the differential resistance and the diode
capacitance for temperatures ranging from 200 to 450°K.

The reverse saturation current of a pr-diode is I;=0.01 pA at T,=25°C and
has an emission coefficient of 1.6. For a junction temperature of 120°C find
the reverse saturation current and the diode current fj, at an applied diode
voltage of V, = 0.8 V.

The task for a process engineer is to obtain the model parameters for a
Schottky dicde. From measurements it is determined that the saturation cur-
rent is equal to I¢ = 2 pA. To obtain the remaining parameters (# and 17)
the engineer decides to use the differential capacitance of the diode. It is
assumed that the electric measurements at room temperature indicate a dif-
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7.5

7.6

1.1

7.8
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fusion capacitance of C, = 0.329 pF at an applied junction voltage of
V,=05V,and C; = 0.371 nF at V, = 0.7 V. Find the emission coef-
ficient » and the transit time ;.

A GaAs Schottky diode with gold contact is operated at 80 mA. The follow-
ing parameters are given at 300°K: 1, =40ps, Ry=3Q, n=12,
I;= 107 A. (a) Plot the magnitude of the small signal impedance behavior
in the frequency range from 1 MHz to § GHz. (b) Repeat the calculations for
a temperature of 400°K.

For the PIN diode configuration shown below, compute the S-parameters of
the circuit when the control voltage equals either +1 V or -1 V and the fre-
quency ranges from 1 MHz to 10 GHz. The diode model parameters are
Ig=5x10° A, n=12, 1, =100ps, m =05, C,, = 10pF,
Vag = 07V, and Ry = 10 Q. The ambient operating temperature is
T =300°K, and we set infinite values for the blocking capacitors and RFCs.

I'::.omml o
RFC
CB CE

O . 0

Determine the change in the forward-bias voltage of an ideal Si pn-junction
diode with change in temperature from —20°C to 80°C. Assume that current
is kept constant and the initial bias voltage was 0.7 V at T = 300°K.

Find the maximum operation frequency of the ideal pn-junction diode
whose parameters are given in Example 7-1. The maximum frequency can
be estimated based on the RC constant of the diode.

Consider three ideal pn-junction diodes whose parameters are identical
except for the bandgap energy. Find the ratio of the forward-biased currents
for these diodes if the applied voltage is the same in each case and the diodes
are made of Ge, Si, and GaAs, respectively.
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7.10

7.11

7.12

7.13
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The terminal base current is constrained to be zero in an npn-BJT (open-
circuit condition). Assuming that the device is operated at room temperature
and has ¢t = 0.99 and g = 0.05, use the large-signal Ebers-Moll model
to find the base-emitter voltage as a function of the applied collector-emitter
voltage V.

Express the transconductance g,, of a bipolar junction transistor in terms of
its collector current. Compare this expression with the expression for a dif-
ferential resistance of a pn-diode.

Show that for a small-signal transistor mode] as depicted in Figure 7-16, the
input Miller capacitance can be written as Cyy = (1 +g,7.,)C,. In addi-
tion, obtain an upper frequency limit for which this formula is stilt applicable.

For a hybrid-r BJT model plot the short-circuit current gain Ay, in the fre-
quency range from 10 MHz to 10 GHz. Assume the following parameters
are given at a collector bias point of 20 mA and T =300°K: B, = 140,
C,=0.1pF and C; =5 pF.

In Example 7-4 we discussed the relatively complicated case of a microwave
transistor analysis where we have taken into account effects associated with
parasitic elements such as lead inductances and resistances. In most practical
applications, the situation is even more complicated due to the presence of
internal matching and stability networks incorporated into the transistor
housing by the manufacturer.

For the intemal circuit shown, compute the S-parameters in the fre-
quency range of 100 MHz to 20 GHz.

I Che
]
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The following component values are given: R, = 25 Q, R, = 20 Q,
C, =Cy=02pF, Cpp = Cg = 0.1 pF, and Cpz = 10 fF. Assume
that the biasing conditions and the values for all inductances and compo-
nents in the hybrid-®t model are the same as in Example 7-4.

An easy way to determine the capacitance €, in the hybrid-% BJT model is
to make a capacitance measurement between base and collector, as follows.

C-meter
(Cexr)
C'l-l
B - C
G
. =‘j"" e D
Eo + — OE

If the frequency is sufficiently low such that 1/(«C,,) » rp, we can directly
relate the externally recorded capacitance to the feedback capacitance C,.
Show that this is true by proving that the voltage v, is zero and that r_, C_,
and g,, do not influence the measurement. If a precision instrument mea-
sures an external capacitance C,,, = 0.6 pF at | MHz, can rp, which typi-
cally ranges between 25 and 200 2, be neglected?

For the hybrid-t model it is required to find the parameters r,, rgz, and g,
from low-frequency measurements (which allow us to neglect C, and C;).
The following measurement arrangement is given:

At the operating point and at room temperature (25°C) we record a DC base
current of Iz = 100 pA at a base emitter voltage of Vg = 11.8 V,and a
short-circuit collector current of /- = 25 mA.
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7.16

7.17

7.18

7.19

A small-signal BJT model has the following parameters: g, = 40 mS,
fr=600MHz, h, =100, r, =25kQ, r, =125Q, and
Cy, = 2pF.Aload R; = 50 £ is attached as shown.

, Cu
5 AM—Z - ¢
i -
Ty, = Cbe EnVpe Tee RL
e v O
E E

Under the assumption that V, = -g V,. R, , find the Miller capacitance
C); such that the circuit can be approximated as

B Hr;""n by

rb ] Cbe C A
<
E

Neglecting all parasitic elements, including base, emitter, and collector
resistances in the transistor described in Example 7-4, find the maximum
frequency f, the beta cut-off frequency fg, and the transition frequency

fr

Obtain the h-parameter representation for a BJT in common-base configura-
tion, neglecting base, emitter, and collector resistances (73, rg, and rp).

Derive the h-parameter representation for the following high-frequency FET
model:

C
G I D

, (_ Cg,“
¥ 8V (l) §"ds== Ci |Vos
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7.23

7.24
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Using the equivalent circuit shown in Problem 7.19, obtain the /-parameter
representation for a FET in common-gate configuration.

For the FET circuit model in Problem 7.19, find the equivalent input and
output impedances by replacing C,; with its equivalent Miller capacitances.
Under what condition is this approximation valid?

For the simplified FET model shown, determine the capacitances C,; and
C, aswellas g,

&
il
Tcgs gmvgs
§o— —o0S§

Show that for low frequency operation it is sufficient to record the drain-
current and gate-source voltage under short-circuit output condition. Further,
design a measurement protocol to predict ', and C ;.

Csﬂ’
o

FET models are often given in terms of Y-parameters, as the following
generic figure shows:

B C
Yu ¥v, dr ¥ Ve Ya

Eo : o F
Convert this model into a ®t-network and determine its coefficients A, B, C,

and D.
B
—0
A ¢)va, D
o—4 d 0

For the model parameters in Problem 7.16, plot the cut-off frequency fr as
a function of load resistance in the range 10 Q < R; <200 Q.




CHAPTER 8

Matching and Biasing
Networks

A pointed out in Chapter 2, to achieve maximum
power transfer, we need to match the impedance of the load to that of the source. Usu-
ally this is accomplished by incorporating additional passive networks connected in-
between source and load. These networks are generically referred to as matching net-
works. However, their functionality is not simply limited to matching source and load
impedances for optimal power flow. In fact, for many practical circuits matching net-
works are not only designed to meet the requirement of minimum power loss but are
also based on additional constraints, such as minimizing the noise influence, maximiz-
ing power handling capabilities, and linearizing the frequency response. In a more
general context, the purpose of a maiching network can be defined as a transformation
to convert a given impedance value to another, more suitable value.

In this chapter we restrict our coverage to the techniques of performing imped-
ance transformation using passive matching networks. The emphasis is to ensure mini-
mum reflections between source and load. All remaining considerations, such as noise
figure and linearity, are left for discussions in Chapter 9.

We commence with a smdy of networks based on discrete components. These net-
works are easy to analyze and can be used up to frequencies in the low GHz range.
Next, we continue with the anatysis and design of matching networks using distributed
elements, such as strip lines and stub sections. These networks are more suitable for
operational frequencies exceeding 1 GHz, or for cases where vertical circuit dimen-
sions are of importance, as required in RF integrated circuit designs.

To simplify our treatment and to gain clarity in the design methodology, the Smith
Chart will be utilized extensively throughout as a primary design tool.
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8.1 Impedance Matching Using Discrete Components

8.1.1 Two-Component Matching Networks

In a generic sense our engineering efforts primarily strive for two main goals:
first, to meet system specifications, and second, to find the most inexpensive and reli-
able way to accomplish this first task. The cheapest and most reliable matching net-
works are usually those that contain the least number of components.

The topic of this section is to analyze and design the simplest possible type of
matching networks: so-called two-component networks, also known as L-sections
due to their element arrangement. These networks use two reactive components to
transform the load impedance (Z;) to the desired input impedance (Z,,). In conjunc-
tion with the load and source impedances, the components are alternatively connected
in series and shunt configuration, as shown in Figure 8-1, which depicts eight possible
arrangements of capacitors and inductors.

Figure 8-1 Eight possible configurations of the discrete two-component matching
networks.

In designing a matching network we have two broad approaches at our disposal:

1. To derive the values of the elements analytically
2. To rely on the Smith Chart as a graphical design tool

The first approach yields very precise results and is suitable for computer synthesis. Alter-
natively, the second approach is more infuitive, easier to verify, and faster for an initial
design, since it does not require complicated computations. The example below details
the use of the analytical approach to design a particular L-section matching network.
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Example 8-1: Analytical approach to the design of an L-sec-
tion matching network

The output impedance of a transmitter operating at a frequency of
2GHz is Z; = (150 + j75)Q. Design an L-section matching net-
work, as shown in Figure 8-2, such that maximum power is deliv-
ered to the antenna whose input impedance is Z, = (75 + j15)Q.

AN

Transmitter | C |

!

Figure 8-2 Transmitter to antenna matching circuit design.

Solution:  The condition of maximum power transfer from the
source to the load requires the source impedance to be equal to the
complex conjugate of the load impedance. In our case this implies that
the output impedance Z,, of the matching network has to be equal to
the complex conjugate of Z, [ie., Zy, = Z = (75- j15)Q].
The impedance Z,, can be computed as a series connection of
an inductor L and a paralle]l combination of Cand Z:
Zy = ———+jX, = Z, @.1)
Zr + jB,
where B = @C is the susceptance of the capacitor and X; = oL
is the reactance of the inductor. Expressing transmitter and antenna
impedances in terms of their real and imaginary parts (ie.,
Zr = Rr+jXpand Z, = R, + jX ), we can rewrite (3.1) as
Rr+ jXp
1+ jBo(Rp+ jXy)
Separating real and imaginary parts in (8.2), a system of two equa-
tions is found:

w7

RFEMW—
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Ry = Ry(1=BcXp)+ (X, + X )BoR; (8.3a)
X7 = RpR,Bo—(1-BoXp) (X, + X)) (8.3b)

Solving (8.3a) for X; and substituting into (8.3b) results in a qua-
dratic equation for B, whose solution is

It

R
X, JR—T(Rf,- +X2)-R:
Bc = e — 8.4)
R+ Xy

Since Rp> R,, the argument of the square root is positive and
greater than X7 . Therefore, 10 ensure a positive B~ we must choose
the “plus” sign in (8.4). Substituting (8.4) into (8.3a) yields X, as
_ 1 R,(1-B:Xp)
"R EE " X, (8.5)
Inserting numerical values into (8.4) and (8.5), we find

Br=92m8S=C = Bo/0 = 0.73 pF

X, =769Q=L=X,/0 = 6.1 nH

X

This example shows the analytical approach of designing an L-
section matching nerwork by solving a quadratic equation for C and
then a linear equation for L. The process is tedious but can be easily
implemented on a mathematical spreadsheet.

As we may anticipate from Example 8-1, the analytical approach of designing
matching networks can become very complicated and computationally intensive even
for simple L-sections. Instead of the preceding method, we can use the Smith Chart for
rapid and relatively precise designs of the matching circuits. The appeal of this
approach is that its complexity remains almost the same independent of the number of
components in the network. Moreover, by observing the impedance transformation on
the Smith Chart we obtain a “feel” of how the individual circuit elements contribute to
achieving a particular matching condition. Any errors in component selection and value
assignment are observed immediately and the design engineer can directly intervene.
With the help of a personal computer, this process is carried out in real time. That is, the
parameter choice (L or C) and its value assignment can be instantaneously displayed as
part of the Smith Chart on the computer screen,
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The effect of connecting a single reactive component (either capacitor or inductor)
to a complex load is described in considerable detail in Section 3.4. Here we just point
out the following:

»The addition of a reactance connected in series with a complex impedance results
in motion along a constant-resistance circle in the combined Smith Chart
» A shunt connection preduces motion along a constant-conductance circle.,

This is indicated in Figure 8-3 for the combined ZY Smith Chart. Concerning the direc-
tion of the rotation, the general rule of thumb is that whenever an inductor is involved,
we rotate in the direction that moves the impedance into the upper half of the Smith
Chart. In contrast, a capacitance results in the movement toward the lower half.

Figure 8-3 Impedance effect of series and shunt connections of Land Cto a
complex load in the Smith Chart.
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Having established the effect of connecting a single component to the load, we
can now develop suitable two-component matching networks that perform the transfor-
mation from any load impedance to any specified input impedance. In general, design-
ing an L-type matching network, or for that matter any passive network, in the ZY
Smith Chart consists of moving along either constant resistance or constant conduc-
tance circles.

In the following example we illustrate this graphical design technique as an alter-
native to the analytical approach discussed in Example 8-1. Most modemn CAD pro-
grams allow us to conduct this graphical approach interactively on the computer screen.
In fact, simulation packages such as MMICAD directly permit the placement of com-
ponents with the corresponding impedance behavior displayed on the Smith Chart,

RFE&MW—

Example 8-2: Graphical approach to the design of the L-sec-
tion matching network

Design the L-type reactive matching network discussed in Example
8-1 by using the Smith Chart as a graphical design tool.

Solution:  The first step is to compute normalized transmitter and
antenna impedances. Since no characteristic impedance Z, is given,
we arbitrarily select Z; = 75 Q. Therefore, the normalized trans-
mitter and antenna impedances are z; = Z;/Z, = 2+ jl and
24 = Z4/Zy = 1+ jO.2, respectively. Since the first component
connected to the transmitter is a shunt capacitor, the total impedance
of this parallel combination is positioned somewhere on the circle of
constant conductance that passes through the point z; in the com-
bined Smith Chart (see Figure 8-4).

Next, an inductor is added in series with the parallel combina-
tion of transmitter z; and capacitor; the resulting impedance will
move along the circle of constant resistance. For maximum power
gain we require an output impedance of the matching network con-
nected to the transmitter to be equal to the complex conjugate of the
antenna impedance. This circle has to pass through
Zy = 23 = 1= j0.2, as shown in Figure 8-4.
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Figure 8-4 Design of the two-elemelg ;Inatching network as part of the ZY Smith
ar.

The intersection of two circles in the Smith Chart determines the
normalized impedance formed by the shunt connection of transmitter
and capacitot. Reading from the Smith Chart, we find that this imped-
ance is approximately zy. = 1-j1.22 with the corresponding
admittance of yp- = 0.4 + j0.49 . Therefore, the normalized suscep-
tance of the shunt capacitor is jbs = yrc—yr = j0.69 and the nor-
malized reactance of the inductor is jx; = z4—27¢ = j1.O2.
Finally, the actual values for the inductor and capacitor are

L = (x,Z,)/® = 6.09 nH

)

bo/(WZy) = 0.73 pF
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This example presents a simple and yet precise graphical
approach to design L-section matching networks. The method can
be readily extended to more complicated systems.

The design procedure described in Example 8-2 can be applied to any L-section
matching network shown in Figure 8-1. The generic solution procedure for optimal
power transfer includes the following six steps:

1. Find the normalized source and load impedances.

2. In the Smith Chart plot circles of constant resistance and conductance that pass
through the point denoting the source impedance.

3. Plot circles of constant resistance and conductance that pass through the point of
the complex conjugate of the load impedance.

4. Identify the intersection points between the circles in steps 2 and 3. The number
of intersection points determines the number of possible L-section matching
networks.

S. Find the values of the normalized reactances and susceptances of the inductors
and capacitors by tracing a path along the circles from the source impedance to
the intersection point and then to the complex conjugate of the load impedance.

6. Determine the actual values of inductors and capacitors for a given frequency.

In the preceding steps it is not necessary to move from the source to the complex
conjugate load impedance. As a matter of fact, we can transform the load to the com-
plex conjugate source impedance. The following example illustrates the first approach,
whereas Section 8.1.2 discusses the second methoed.

RF EMW—
Example 8-3: Design of general two-component matching
networks

Using the Smith Chart, design all possible configurations of discrete
two-element matching networks that match the source impedance
Zg = (50+ j25)Q tothe load Z; = (25 - j50)€2. Assume a char-
acteristic impedance of Z; = 50 Q and an operating frequency of
f=2GHz
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Solution:  We follow the six steps listed previously.
1. The normalized load and source impedances are:
ZS = ZS/ZO = 1+j0.5 or yS = 0.8—j0.4
2 =Z;/2Zy=05-jlory, =3+j08
2. We plot circles of constant resistance and constant conductance that

pass through the points of the normalized source impedance (dashed
line circles in Figure 8-5), and

Figure 8-5 Design of a matching network using the Smith Chart

3. Complex conjugate of the load impedance (solid line circles in Figure
8-5).
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4. These circles intersect in four points denoted as A, B, C, and D, with

the normalized impedances and admittances being as follows:

2, = 05+ /06, y, = 0.8—jl
zg = 05-j0.6, yz = 0.8+l
z2c=1-j12, yo=3+j05

zp = L+j12, yp,=3-j05

. Since there are four intersection points, we expect four possible config-

urations of L-section matching networks. Indeed, if we move along the
25 — 74 — z;, path we see that from point zg to z, the impedance is
transformed along the circle of constant conductance indicating shunt
connection. Moreover, we move toward the upper half of the Smith
Chart (see Figure 8-3), which indicates that the first component con-
nected to the source should be a shunt inductor. From peints z, to z7
the impedance is transformed along the circle of constant resistance,
with movement toward the upper half of the chart indicating series
connection of the inductance. Therefore, the zg—z, - z; path
results in a “shunt L, series L matching network, as shown in Figure
8-1(f). If the zS—>iB — z; path is chosen, we obtain a “shunt C,
series L” network [Figure 8-1(h)]. For z3 — z-— z; the matching
network is “series C, shunt L~ [Figure 8-1(a)]. Finally, for the
Zg = Zp > 7; path, a matching network is constructed by a “series L,
shunt L combination, which is shown in Figure 8-1(e).

. We finally have to find the actual component values for the matching

networks identified in the previous step. If we direct our attention again
to the zg = z, = z; path, we see that from the source impedance to
the point z, the normalized admittance of the circuit is changed by
jby, = y4-yg = (0.8-j1)-(0.8-j0.4) = —j0.6
From here the value of the shunt inductor is:
Zy
Ly=— = 663nH
b; @
2
Transformation from point z, to z; is done by adding an inductor
connected in series to the impedance z, . Therefore,

jxp, = f-24 = (05+)1)- (05 + j0.6) = jo4

and the value of this inductor is
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X 2y
L = '

= 1.59 nH

The values of the components for the remaining three matching net-
works are found in the same way. The results are shown in Figure 8-6.

L,=15%nH 6.37 nH

ZS —— 2‘23 pF ZL
zg—z, >z} Zg=>zp > 2z*
0-‘;4 pF 2,79 nH
Il
Z, 3.06 Z, Z; 13.26 Z
ﬁzs—)zc—ézi* ﬁ_zs—)zD-)zL"‘

Figure 8-6 Matching networks for four different paths in the Smith Chart.

The Smith Chart allows us immediate observation whether or
not a particular impedance transformation is capable of achieving
the desired matching. Moreover, the total number of possible net-
work connections can readily be seen.

8.1.2 Forbidden Regions, Frequency Response, and Quality Factor

Before continuing with the frequency analysis of L-type matching networks, let
us first note that not every network topology depicted in Figure 8-1 can perform the
required matching between arbitrary load and source impedances. For example, if the
source is Zg = Z, = 50 Q and if we use a matching network shown in Figure 8-1(h),
then the addition of the capacitor in parallel with the source produces motion in clock-
wise direction away from the circle of constant resistance that passes through the omi-
gin. This implies that all load impedances that fall into the shaded region in Figure
8-7(a) cannot be matched to the 50 € source by this particular network.

Similar “forbidden regions” can be developed for all L-type matching network
topologies depicted in Figure 8-1. Examples of such regions for several other networks
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50 Q.

Figure 8-7 Forbidden regions for L-type matching networks with Zg=2,
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based on a 50 © source impedance are shown in Figure 8-7. Here the shaded areas
denote values of the load impedance that cannot be matched to the 50 € source. It is
important to keep in mind that the forbidden regions in Figure 8-7 are applicable only
when dealing with a Z; = Z, = 50 Q source impedance. The regions take on totally
different shapes for other source impedance values.

As explained in Example 8-3 and displayed in Figure 8-7, for any given load and
input impedances there are at least two possible configurations of L-type networks that
accomplish the required match. The question now is, what is the difference between
these realizations and which network should ultimately be chosen?

Besides the obvious reasons for selecting one network over another (for instance,
availability of components with required values), there are key technical consider-
ations, including DC biasing, stability, and frequency response. In the remainder of this
section we concentrate primarily on the frequency response and quality factor of the L-
type matching networks, whereas DC biasing issues are covered later in Section 8.3.
Stability is deferred to Chapter 9.

Since any L-type matching network consists of series and shunt combinations of
capacitors and/or inductors, the frequency response of these networks can be classified
as either low-pass, high-pass, or bandpass filters. To demonstrate such behavior, let us
consider a matching network that transforms a complex load, consisting of resistance
R; = 80 Q connected in series with capacitor C, = 2.65 pF, into a 50 Q input
impedance. Let us further assume that the operational frequency for this circuit is
fo =1GHz.

At | GHz the normalized load impedance is z; = 1.6 — j1.2, and according to
Figure 8-7 we can use either one of the matching networks shown in Figure 8-7(c) or
Figure 8-7(d), following a similar design procedure as described in Example 8-2. How-
ever, because the source impedance zg is real (zg = 50 €) it is easier to transform from
the load to the source impedance since z§ = zg = 50 Q. This is shown in Figure
8-8(a). The corresponding matching networks are shown in Figures 8-8(b) and 8-8(c).

< The frequency responses of these two networks in terms of the input reflection
coefficient Ty, = (Z;,- Z;)/(Z,,+Z;) and the transfer function H = V ,/V
(where the output voltage V, is measured across the load resistance R; = 80 ) are
shown in Figures 8-9(a) and (b), respectively.

It is apparent from Figure 8-9 that both networks exhibit perfect matching only at
a particular frequency f, = 1 GHz and begin to deviate quickly when moving away
from f,.

The previously developed matching networks can also be viewed as resonance
circuits with f;, being the resonance frequency. As discussed in Section 5.1.1, these
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Az

(a) Impedance transformations displayed in Smith Chart

R=50Q C=26pF C, R;=50Q L=975nH C, .
oyt

(b) ()
Resulting matching networks
Figure 8-8 Two design realizations of an L-type matching network.

networks may be described by a loaded quality factor, Q, , which is equal to the ratio of
the resonance frequency f, over the 3 dB bandwidth BW

= Jo

0 = 5o (8.6)
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Figure 8-9 Frequency response of the two matching network realizations.
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where both f; and BW are expressed in Hz. The question now is how to find the band-
width of the matching network. To answer this, we will exploit the similarity between
the bell-shaped response of the matching network’s transfer function near f, [see Fig-
ure 8-9(b)] and the frequency response of a bandpass filter.

For frequencies close to f, the matching network in Figure 8-8(c) can be redrawn
as a bandpass filter with a loaded quality factor calculated based on (8.6). The equivalent
bandpass filter is shown in Figure 8-10(a). The equivalent capacitance Cy in this circuit
is obtained by replacing the series combination of R; and C, in Figure 8-8(c) with an
equivalent parallel connection of R, p and C;p and then adding the capacitances C and
C;p: C; = C+ Cp. The equivalent shunt inductance L,y is obtained by first replac-
ing the series connection of the voltage source Vg, resistance Ry, and inductance L
with the Norton equivalent current source I, = V/(Rg+ jwgl) connected to the par-
allel combination of conductance G, and inductance Ly, where the admittance is
given as follows: Ggy + (j@Ly)! = (Rg+ jogl) . Next, the current source ,, and
conductance Gy are converted back into a Thévenin equivalent voltage source

= V(1 - j1.2255) 8.7)

and series resistance

2 2
_ R+ (®,L)
Rsp = Gyy = =———— (83)
s
The resonance circuit in Figure 8-10 is loaded by the combined resistance
R; = R, | Rgy = 62,54 Q. Thus, the loaded quality factor Q; of the equivalent

bandpass filter is given by
0, = = = WRC = =5 = 061 (8.9)

It is immediately noticed that the maximum gain for the equivalent bandpass filter
is higher than the gain of the original matching network. This is explained by the fact
that for the matching network we measure the output voltage on the load R, , while for
the equivalent filter we measure the output voltage at the equivalent load resistance R; p,
which is connected in parallel with the capacitance Cy. Therefore, the conversion from

v, to V,, at the resonance frequency can be found through the voltage divider rule:
R,
|V0ut| = |Vb| 1 = 0'?908|Vb|
R; +-
L jeeCy
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(a) Equivalent bandpass filter
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(b) Frequency response of the matching network compared to the equivalent
filter response

Flgure 8-10 Comparison of the fraquency response of the L-type matching
network and an equivalent bandpass filter.

which gives us

Vs
a result that agrees very well with Figure 8-9(b).

From the known @, we can directly find the bandwidth of the filter:
BW = f,/Q; = 1.63 GHz. The frequency response in Figure 8-9(b) shows that the
3 dB point for f < f, occurs at f .. = 0.40 GHz and for f > f, the 3 dB point corre-
sponds to f .. = 2.19 GHz. Thus, the bandwidth of the matching network is

[Vo|
—2.0382 + 20log— = -3.9794 dB

20log 2
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BW = f_ = fmn = 1.79 GHz, which again agrees reasonably well with the result
obtained for the equivalent bandpass filter.

The equivalent bandpass filter analysis allows us to explain the bell-shaped
response of the matching network in the neighborhood of f,, and provides us with a
good estimation of the bandwidth of the circuit. The only drawback to this approach is
its complexity. It would be desirable to develop a simpler method of estimating the
quality factor of the matching network without having first to develop an equivalent
bandpass filter or even computing the frequency response of the network. This is
accomplished through the use of a so-called nodal quality factor O, .

Let us go back to Figure 8-8(a), where we illustrate the impedance transformation
as we move from one node of the circuit to another. We note that at each node of the
matching network the impedance can be expressed in terms of an equivalent series
impedance Z¢ = Rg+ jX¢ or admittance ¥p = Gp+ jBp. Hence, at each node we
can find @, as the ratio of the absolute value of the reactance X to the corresponding
resistance Rg

' g, = X (8.10)
n Rs
or as the ratio of the absolute value of susceptance B to the conductance Gp
[B
== A1
o, G (8.11)

Using (8.10) and (8.11) and the impedance transformations in Figure 8-8(a), we
can deduce that for the matching network shown in Figure 8-8(c) the maximum nodal
quality factor is obtained at point B where the normalized impedance is 1~ 1.23,
resulting in

g, =11.23]/1 = 1.23 (8.12)

To relate the nodal quality factor Q,, 10 Q; , we compare the result of (8.12) with
(8.9) and find

Q = % (8.13)

This result is true for any L-type matching network. For more complicated config-
urations the loaded quality factor of the matching network is usually estimated as sim-
ply the maximum nodal quality factor. Even though this approach does not yield a
quantitative estimate of the circuit bandwidth, it nonetheless allows us to compare net-
works qualitatively and to select a network with higher or lower bandwidth.
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To simplify the matching network design process even further we can draw con-
stant- (', contours in the Smith Chart. Figure 8-11 shows such contours for 0, valued
0.3, 1,3, and 10.

Q,~10 T7

oo

" e
i LWL o S

Figure 8-11 Constant Q, contours displayed in the Smith Chart.

To obtain the equations for these contours we refer back to the general derivation
of the Smith Chart in Chapter 3. There it is shown in (3.6) and (3.7) that the normalized
impedance can be written as

1-T2-T; 2T,
7= r-l-j_x = 3 2-|-j > 3 (8.14)
(1-T) +T; (1-T) +I;
Thus, the nodal quality factor can be written as
2T,
0, - 20 ®.15)
r 1-T;-T,

Rearranging terms in (8.15), it follows that a circle equation is found in the form
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rf+(1",.4_ri)2 =1+ (8.16)
Qﬂ Qn
where the “plus” sign is taken for positive reactance x and the “minus” sign for nega-

tive x.

With these constant @, circles in the Smith Chart it is possible to find the loaded
quality factor of an L-type matching network by simply reading the corresponding Q,,
and dividing it by 2. This procedure is discussed in Example 8-4.

—RF&MW-—

Example 8-4: Design of narrow-band matching network

Using the forbidden regions in Figure 8-7, design two L-type net-
works that match a Z; = (25 + j20)Q load impedance to a 50 Q
source at 1 GHz, Determine the loaded quality factors of these net-
works from the Smith Chart and compare them to the bandwidth
obtained from their frequency response. Assume that the load con-
sists of a resistance and inductance connected in series.

Solution: As we see from Figure 8-7, the normalized load
impedance z; = 0.5 + j0.4 lies inside of the constant conductance
circle g = 1. There are two L-type matching networks that satisfy
our requirements. The first consists of a series inductor and shunt
capacitor, as shown in Figure 8-7(a), and the second is a series
capacitor with shunt inductor, as shown in Figure 8-7(b). Following
the same procedure as described in Example 8-2, we obtain the two
matching networks shown in Figure 8-12.

According to Figure 8-12(a), the nodal quality factor for both
networks is equal to @, = 1. Thus, we can expect that the band-
width should be equal to BW = f,/Q; = 2f,/Q, = 2 GHz.
This is checked by plotiing the corresponding frequency responses
for the designed matching networks, as depicted in Figure 8-13.

We observe that the bandwidth for the network comresponding to
Figure 8-12(c) is approximately BW_, = 2.4 GHz. Interestingly, the
matching network corresponding to Figure 8-12(b) does not possess a
lower cut-off frequency. However, if we assume that the frequency
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o,

2y

(a) Impedance transformation in the Smith Chart
R;=50Q C=3.54pF L,=3.18 nH

R=50Q L=08nH L,=3.18nH Vo
Ho
v, Vs
R, L=796nH R,
(b} (¢)
Resulting matching networks

Figure 8-12 Two L-type matching networks for a 50 £} source and a
Z, = (25+ j20)Q load impedance operated at a frequency of 1 GHz.

response is symmetric around the resonance frequency f, = 1 GHz,
then the bandwidth will be BW, = 2(f e — fo) = 1.9 GHz, with
the upper cut-off frequency being f,.. = 1.95 GHz.
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Figure 8-12(b)
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Figure 8-13 Frequency respenses for the two matching networks.
Despite their design for the same resonance frequency, certain

matching network configurations exhibit better high or low fre-
quency rejection, as Figure 8-13 exemplifies.

In many practical applications the quality factor of the matching network is of
importance. For example, if we design a broadband amplifier we would like to utilize
networks with low @ in order to increase the bandwidth. However, for oscillator design
it is desirable to achieve high- O networks to eliminate unwanted harmonics in the out-
put signal. Unfortunately, as we have seen in the previous example, L-type matching
networks provide no control over the value of (2, and we must either accept or reject
the resulting quality factor. To gain the freedom of choosing the values of Q and thus
affect the bandwidth behavior of the circuit, we can introduce a third element in the
matching network. The addition of this third element resuits in either a T- or Pi-net-
work, both of which are discussed next.

8.1.3 T and Pi Matching Networks

As already pointed out, the loaded quality factor of the matching network can be
estimated from the maximum nodal Q,. The addition of the third element into the
matching network produces an additional node in the circuit and allows us to control
the value of Q; by choosing an appropriate impedance at that node.
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The following two examples illustrate the design of T- and Pi-type matching net-
works with specified @, factor.

RF&EM W
Example 8-5: Design of a T matching network

Design a T-type matching network that transforms a load impedance
Z;, = (60-30)Q into a Z,, = (10 + j20)Q input impedance
and that has a maximum nodal quality factor of 3. Compute the val-
ues for the matching network components, assuming that matching
isrequired at f = 1 GHz.

Solution:  There are several possible solutions that satisfy the
design specifications. In this example, we investigate only one design
since the rest can easily be obtained by using the same approach.

The general topology of the T-type matching network is shown
in Figure §8-14.

Zy

Figure 8-14 General topology of a T-type matching network.

The first element in this network is connected in series with the
load impedance. Because Z, is purely reactive, the combined
impedance Z, will reside somewhere on the constant resistance cir-
cle described by r = r;. Similarly, Z; is connected in series with
the input so that the combined impedance Zg (consisting of Z;,
Z,,and Z,) is positioned somewhere on the constant resistance cir-
cle with » = r,, . Because the network should have a nodal quality
factor Q, = 3, we can choose the impedance values in such a way
that Zp is located on the intersection of the constant resistance cir-
cle r = r,, and the @, = 3 circle (see point B in Figure 8-15).



Chapter & + Matching and Blasing Networks

Figure 8-15 Design of a T-type matching network for a specified Q, = 3.

We next find the intersection point A of the constant conduc-
tance circle that passes through the point B obtained from the previ-
ous step. The circle of constant resistance r = r; now allows us to
determine the required value of the remaining component of the net-
work to reach the point z,, .

The complete T-type matching network with the actual compo-
nent values is illustrated in Figure 8-16. The computed elements are
based on the required matching frequency of f= 1 GHz.

L,=7.85nH C,=8.72pF

T

|—> T G= 3.53 pF Z
Za =

Figure 8-16 T-type matching network circuit schematics.
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The extra degree of freedom to adjust the quality factor (band-
width) of a matching network comes at the expense of an additional
circuit element.

In the following example the design of a Pi-type matching network is developed
with the intent to achieve a minimum nodal quality factor. A low quality factor design
directly translates into a wider bandwidth of the network, as required, for instance, in
broadband FET and BJT amplifiers.

RF &M W
Example 8-6: Design of a Pi-type matching network

For a broadband amplifier it is required to develop a Pi-type match-
ing network that transforms a load impedance of Z; = (10 - j10)Q
into an input impedance of Z,, = (20 + j40)Q2. The design should
involve the lowest possible nodal quality factor. Find the component
values, assuming that matching should be achieved at a frequency of
f = 24 GHz

Solution:  Since the load and input impedances are fixed, we can-
not produce a matching network that has a quality factor lower than
the highest O, computed at the locations Z; and Z, . Therefore,
the minimum value for @, is determined at the input impedance
location as Q, = |X;|/R, = 40/20 = 2. The Smith Chart
design of the Pi-type matching network based on @, = 2 is
depicted in Figure 8-17.

In the design we employ a method very similar to the one used
in Example 8-5. First, we plot a constant conductance circle
g = g&;, and find its intersection with the @, = 2 contour in the
Smith Chart. This intersection is denoted as point B. Next, we find
the intersection point of the constant conductance circle g = g;
with the constant resistance circle that passes through the point B.
The resulting point is denoted as A in Figure 8-17.
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Figure 8-17 Design of a Pi-type matching network using a minimal Q,.

The network components can be determined based on convert-
ing the Smith Chart points into actual capacitances and inductances
as detailed in Example 8-2. The resulting circuit configuration is
shown in Figure 8-18.

—165pF

|_> %msnﬂ%nlmgz‘

Flgure 8-18 Pi-type matching network configuration.

It is interesting to note that unlike the situation discussed in
Example 8-5, the relative positions of Z; and Z,; in this example
are such that only one possible Pi-type network configuration with
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Q, = 2 exists. All other realizations of the Pi-type network will
result in an increased nodal quality factor. Furthermore, if we had a
lower load resistance, we would not be able to implement this Pi-
type network for the given ©,.

As this example shows, the bandwidth cannot be increased
arbitrarily by reducing the nodal quality factor. The limits are set by
the desired input and output impedances.

8.2 Microstrip Line Matching Networks

In the previous sections we have discussed the design of matching networks
involving discrete components. However, with increasing frequency and correspond-
ingly reduced wavelength, the influence of parasitics in the discrete elements becomes
more noticeable. The design now requires us to take these parasitics into account, thus
significantly complicating the component value computations. This, along with the fact
that discrete components are only available for certain values, limits their use in high-
frequency circuit applications. As an alternative to lumped elements, distributed com-
ponents are widely used when the wavelength becomes sufficiently small compared
with the characteristic circuit component length, a fact already discussed in Chapter 2.

8.2.1 From Discrete Components to Microstrip Lines

In the mid-GHz range, design engineers often employ a mixed approach by com-
bining lumped and distributed elements. These types of matching networks usually
contain a number of transmission lines connected in series and capacitors spaced in a
parallel configuration, as illustrated in Figure 8-19. The reader is also referred to Figure
1-2(a) for a practical example.

TL, L, 7L,
. I I
) "1

Figure 8-19 Mixed des.’i_%n of matching network involving transmission fine
sections (TL) and discrete capacitive elements.

Z,
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Inductors are usually avoided in such designs because they tend to have higher
resistive losses than capacitors. In general, only one shunt capacitor with two transmis-
sion lines connected in series on both sides is sufficient to transform any given load
impedance to any input impedance. Similar to the L-type matching networks, such con-
figurations may involve the additional requirement of a fixed Q,, necessitating addi-
tional components to control the quality factor of the circuit.

The arrangement of components shown in Figure 8-19 is very attractive in practice,
since it permits tuning the circuit after it has been manufactured. Changing the values of
the capacitors as well as placing them at different locations along the transmission lines
offers a wide range of flexibility. The tuning capability makes these types of matching
networks very popular for prototyping. Usually, all transmission lines have the same
width (i.e., the same characteristic impedance) to simplify the actual tuning.

Example 8-7 discusses the Smith Chart approach to the design of a matching net-
work containing two 50 & transmission lines connected in series and a single shunt
capacitor placed in-between them.

RF &M W

Example 8-7: Design of a matching network with lumped and
distributed components

Design a matching network that transforms the load
Z; = (30+j10)Q to an input impedance Z;, = {60+ j80)Q2.
The matching network should contain only two series transmission
lines and a shunt capacitance. Both transmission lines have a 50 €
characteristic line impedance, and the frequency at which matching
is desired is f = 1.5 GHz.

Solution:  The first step involves identifying the normalized load
impedance z; = 0.6+ j0.2 as a point in the Smith Chart. We can
then draw a SWR circle that indicates the combined impedance of
the load connected to the 50 £ transmission line. The position on
the SWR circle is determined by the length of the transmission line,
as investigated in Chapter 3.

The second step requires plotting a SWR circle that passes
through the normalized input impedance point z;, = 1.2+ j1.6
shown in Figure 8-20.
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Figure 8-20 Design of the distributed matching network for Example 8-7.

The choice of the point from which we transition from the load
SWR circle to the input SWR circle can be made arbitrarily. In Fig-
ure 8-20 the point A is chosen, which approximately corresponds to
a normalized admittance value of y, = 1~ j0.6. The addition of
the parallel capacitor results in the movement along the circle of
constant conductance g = | and transforms the impedance from
point A to point B on the input SWR circle of the Smith Chart.
From point B an impedance transformation is required along the
constant SWR circle by adding a series connected transmission line.

As a final step, the electrical length of the transmission lines
must be determined. This can be done by reading the two lengths {,,
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I, from the so-called WTG (wavelength toward generator) scale
displayed on the outer perimeter of the Smith Chart (see Figure
8-20). The resulting circuit schematics for the matching network is
shown in Figure 8-21

L=0.26M !} =0.055)

o1 I-r—l
Z, = e
Figure 8-21 Matching network combining series transmission lines and shunt
capacitance.
3.5 2
= F
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Figure 8-22 Input impedance as a function of the position of the shunt capacitor
in Example 8-7.

It is interesting to investigate the tuning capability range for
this circuit configuration. Figure 8-22 shows the dependency of the
real r,, and imaginary x;, parts of the input impedance as a func-
tion of the distance { between the load and the capacitor location. In
other words, the total length [, + I, is kept fixed and the placement
of the capacitor is varied from the load end to the beginning of the
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network (i.e., 0</<! + ;). The dashed lines indicate the original
design. It is noticed that x;; undergoes the expected inductive (posi-
tive values) to capacitive (negative values) transition.

In this example we have designed a combined matching net-
work that involves both distributed (transmission lines) and a
humped (capacitor) element. These types of networks have rather
large tuning capabilities, but are very sensitive to the placement of
the capacitor along the transmission line. Even small deviations
from the target location result in drastic changes in the input
impedance.

8.2.2 Single-Stub Matching Networks

The next logical step in the transition from lumped to distributed element net-
works is the complete elimination of all lumped components. This is accomplished by
employing open- and/or short-circuit stub lines.

In this section we consider matching networks that consist of a series transmission
line connected to a parallel open-circuit or short-circuit stub. Let us investigate two
topologies: The first one involves a series fransmission line connected to the parallel
combination of load and stub, as shown in Figure 8-23(a), and the second involves a
parallel stub connected to the series combination of the load and transmission line, as
depicted in Figure 8-23(b).

Z(l[,a i,[_ ZII’ IL
R | PR | 2
Zin Is Z'n IS’
Openor — i = ¥~ Openor
short circuit  ~ - short circuit
(a) (b)

Figure 8-23 Two topologies of single-stub matching networks.

The matching networks in Figure 8-23 possess four adjustable parameters: length
I and characteristic impedance Z,¢ of the stub, and length /;, and characteristic
impedance Z,,; of the transmission line.
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Example 8-8 demonstrates the design procedure for the matching network topol-
ogy shown in Figure 8-23(a) with the characteristic impedances of both stub Z,; and
transmission line Z;; fixed to the same arbitrary value Z, and their electrical lengths
variable to meet the particular input impedance requirement.

RF&EMW—
Example 8-8: Single-stub matching network design with fixed
characteristic impedances

For a load impedance of Z; = (60~ j45)£2, design two single-stub
matching networks that transform the load to 2 Z;, = (75 + jO0)Q
input impedance. Assume that both stub and transmission line in
Figure 8-23(a) have a characteristic impedance of Z;, = 75 2.

Solution:  The basic concept is to select the length {; of the stub
such that it produces a susceptance B8 sufficient to move the load
admittance y;, = 0.8 + j0.6 to the SWR circle that passes through
the normalized input impedance point z;, = 1+ j1.2, as illustrated
in Figure 8-24.

We notice that the input SWR circle associated with
Zin = 1+ j1.2 intersects the constant conductance circle g = 0.8
in two points (at y, = 0.8+ j1.05 and at y; = 0.8 - j1.05) sug-
gesting two possible solutions. The corresponding susceptance val-
ves for the stwb are jbg, = y,~y, = j045 and
jbsg = yg—~y, = —jl.65, respectively. In the first case, the length
of an open-circuit stub can be found in the Smith Chart by measur-
ing the length /,, starting from the y = 0 point (open circuit) and
moving along the outer perimeter of the Smith Chart g = 0 toward
the generator (clockwise) to the point where y = j0.45. The length
for this case is Iy, = 0.067A . The open-circuit stub can be replaced
by a short-circuit stub if its length is increased by a quarter wave-
length. Such a substitution may become necessary if a coaxial cable
is used because of excessive radiation losses due to the large cross-
sectional area. In printed circuit design, open-circuit stubs are some-
times preferred because they eliminate the deployment of a via,
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Figure 8-24 Smith Chart design for the single-stub matching network based on
Example 8-8.

which is otherwise necessary to obtain the ground connection for a
short-circuit stub.

Similar to the first solution, by, yields the length
Igp = 0.337) for the open-circuit stub, and Iz = 0.087A for the
short-circuit stub. For this case we also notice that creating a short-
circuit stub requires a shorter length than an open-circuit stub, This
is due to the fact that the open-circuit stub models a negative
susceptance.

The length of the series transmission line segment is found in
the same way as described in Example 8-7 and is equal to



438 Chapter 8 « Maiching and Blasing Networks

1,4 = 0.266) for the first solution and /; ; = 0.07A for the second
solution.

A circuit designer often has to minimize the size of the circuit
board and therefore must be concerned about employing the short-
est possible transmission line segments. Depending on the imped-
ance requirements, this can either be an open- or short-circuit stub
section.

In the next example we illustrate the generic design procedure for the matching
network topology shown in Figure 8-23(b). Unlike the previous example, we now fix
the lengths of both the stub and the transmission line segment but vary their characteris-
tic impedances. In a microstrip line circuit design this is typically accomplished by
changing the width of the lines.

RFEMW—

Example 8-9: Design of a single-stub matching network using
transmission lines with different characteristic
impedances

Using the matching network topology shown in Figure 8-23(b),
choose the characteristic impedances of the stub and transmission
line such that the load impedance Z; = (120 - j20)Q is trans-
formed into the input impedance Z;, = (40 + j30)L2. Assume that
the length of the transmission line is [, = 0.252 and the stub has
the length of [; = 0.375A . Furthermore, determine whether a short-
circuit or an open-circuit stub is necessary for this circuit.

Solution:  The combined impedance Z, of the series connection
of the load impedance with the transmission line can be computed
using the formula for the quarter-wave transformer:

Z, =Zo,/Z, (8.17)
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The additicn of the open-circuit stub results in an input admittance
of

Y,, =Y, +JjBg (8.18)
where ¥, = Z}l is the admittance of the previously computed
series combination of load impedance and transmission line and
jBg = # jzg§ is the susceptance of the stub. The “plus” or “minus”
signs correspond to either a short-circuit or an open-circuit stub.

Combining (8.17) and (8.18), we find

G, = R/Z;, (8.19a)

B, = X,/Z}, +Z; (8.19b)
where we have used the input admittance and load impedance repre-
sentation in terms of their real and imaginary components:
Y, = G, +JjB,. Z; = R, +jX;.

Using (8.19a), we find the characteristic impedance of the
transmission line to be

_ Ry 120 _
ZOL-J;;- 5016 = %669

Substituting the obtained value into (8.19b), we find that the
“minus” sign should be used; that is, we need to implement an open-
circuit stub with a characteristic impedance of

1

— = 107.1 Q
XL/ZOL—Bin

Zys =

This design approach is very easy to implement as long as the
characteristic impedance stays within reasonable limits ranging
approximately from 20 to 200 §}.

In practical realizations single-sided unbalanced stubs are often replaced by the
balanced design, as shown in Figure 8-25.

Naturally, the combined susceptance of the parallel connection of stubs ST1 and
ST2 has to be equal to the susceptance of the unbalanced stub. Therefore, the suscep-
tance of each side of the balanced stub must be equal to half of the susceptance of the
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Figure 8-25 Balanced siub design for Example 8-9.
unbalanced stub. We note that the length I, of each side does not scale linearly. In

other words, the length of the balanced stub is not haif of the length of the unbalanced
stub /. Rather, it has to be computed as

- 2xl
lep = %tan ‘(2tanTS) (8.20)
for open-circuit stub, or
Al 2mig
ISB = 2—ntan (itanT) (8.21)

for short-circuit stub. This result can also be found graphically by using the Smith
Chart.

8.2.3 Double-Stub Matching Networks

The single-stub matching networks in the previous section are quite versatile and
allow matching between any input and load impedances, so long as they have a nonzero
real part. One of the main drawbacks of such matching networks is that they require a
variable-length transmission line between stub and input port, or between stub and load
impedance. Usually this does not pose a problem for fixed networks, but it may create
difficulties for variable tuners. In this section we examine matching networks that over-
come this drawback by incorporating a second stub. The general topology of such a net-
work that matches an arbitrary load impedance to an input impedance Z;, = Z, is
shown in Figure 8-26.

In double-stub matching networks two short- or open-circuit stubs are connected
in parallel with a fixed-length transmission line placed in between. The length [, of this
line is usually chosen to be one-eighth, three-eighth, or five-eighth of a wavelength. The
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short circuit
Figure 8-26 Double-stub matching network arrangement.

three-eighth and five-eighth wavelength spacings are typically employed in high-
frequency applications to simplify the tuner construction.

Let us assume for our subsequent discussion that the length of the line segment
between the two stubs is 1, = (3/8)A.. To facilitate the analysis we start from the input
side of the tuner and work backward to the load end.

For a perfect match it is required that Z,, = Z, and therefore y, = 1. Since it is
assumed that the lines are lossless, the normalized admittance yz = y, — jbg, i
located somewhere on the constant conductance circle g = 1 in the Smith Chart, Here
bg, is the susceptance of the stub and /g, is the associated length. For an I, = (3/8)A
line the g = 1 circle is rotated by 2B/, = 31/2 radians or 270° toward the load (i.e., in
counter-clockwise direction, as depicted in Figure 8-27). The admittance y. (being the
series connection of Z; with line /; in parallel to stub ;) needs to reside on this rotated
g = 1 circle (called the y. circle) in order to ensure matching.

By varying the length of the [, stub we can transform point y, in such a way
that the resulting y- is indeed located on the rotated g = 1 circle. This procedure can
be done for any load impedance except for the case when point y;, (i.e., the series con-
nection of Z; and line /, ) is located inside the g = 2 circle. This represents the for-
bidden region that has to be avoided. To overcome this problem in practical
applications, commercial double-stub tuners usvally have input and output transmission
lines whose lengths are related according to {; = I; £ A/4. In this case, if a particular
load impedance cannot be matched, one simply connects the load to the opposite end of
the tuner, which moves y;, out of the forbidden region.

The following example demonstrates the computation of the stub lengths to
achieve matching for a specific load impedance.
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Figure 8-27 Smith Chart analysis of a double-stub matching network shown in
Figure 8-26.

RF &M W+
Example 8-10: Design of a double-stub matching network

It is assumed that in the double-stub matching network shown in
Figure 8-26 the Iengths of the transmission lines are
Iy =1, =3)/8 and !, = /8. Find the lengths of the short-cir-
cuit stubs that match the load impedance Z; = (50 + j50)Q to a
50 Q input impedance. The characteristic line impedance for all
components is Z, = 50 Q.
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Solution:  First the normalized admittance y;, has to be deter-
mined and checked that it does not fall inside the forbidden region.
Using the Smith Chart (see Figure 8-28), we find y;, = 0.4+ j0.2.
Since gp, <2, we are assured that the admittance y; does not fall
into the forbidden region. Next we plot the rotated g = 1 circle as
explained previously. This allows us to fix the intersection of the
rotated g = 1t circle with the constant conductance circle that passes
through the point y;. The intersection point gives us the value of
¥¢ - In fact, there are two intersection points that yield two possible
solutions. If we choose y~ = 0.4 - 1.8, then the susceptance of the
first stub should be jbg, = yo—yp = —j2, which permits us to
determine the length of the first short-circuit stub: 75, = 0.074L.

Figure 8-28 Double-stub tuning network design for Example 8-10,
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Rotating y~ by I, = 3A/8 we find yp = 1+ j3, which
means that we have to make the susceptance of the second stub
equalto jbg, = —j3 sothat y,, = y, = |.Using the Smith Chart,
we find that the length of the second stub is Iy, = 0.051A.

In some practical realizations the stubs are replaced by varac-
tor diodes. This allows an electronic tuning of the diode capaci-
tances and thus the shunt admintances.

8.3 Amplifier Classes of Operation and Biasing Networks

An indispensable building block in any RF circuit is the active or passive biasing
network. The purpose of biasing is to provide the appropriate quiescent point for the
active devices under specified operating conditions and maintain a constant setting irre-
spective of transistor parameter variations and temperature fluctuations.

In the following section we introduce a general analysis of the different classes of
amplifier operation. This will enable us to develop an understanding of how BJT and
FET need to be appropriately biased.

8.3.1 Classes of Operation and Efficiency of Amplifiers

Depending on the application for which the amplifier is designed, specific bias
conditions are required. There are several classes of amplifier operation that describe
the biasing of an active device in an RF circuit.

In Figure 8-29 the transfer function characteristic of an ideal transistor is dis-
played. It is assumed that the transistor does not reach saturation or breakdown regions
and in the linear operating region the output current is proportional to the input voltage.
The voltage V* corresponds either to the threshold voltage in case of FETs or the base-
emitter built-in potential in case of BJTs.

The distinction between different classes of operation is made based upon the so-
called conduction angle, which indicates the portion of the signal cycle when the cur-
rent is flowing through the load. As depicted in Figure 8-29(a), in Class A cperation the
current is present during the entire output signal cycle. This corresponds to a
©, = 360° conduction angle. If the transfer characteristic of the transistor in the lin-
ear region is close to that of a linear function, then the output signal is an amplified rep-
lica of the input signal without suffering any distortion. In practical circuits, however,
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Figure 8-29 Various classes of amplifier operation.

there is always a certain degree of nonlinearity present which results in a distorted out-
put signal of the amplifier.

In Class B [Figure 8-29(b)] the current is present during only half of the cycle,
corresponding to a @5 = 180° conduction angle. During the second half of the cycle,
the transistor is in the cut-off region and no current flows through the device. Class AB
[Figure 8-29(c)] combines the properties of the classes A and B and has a conduction
angle @, ranging from 180° to 360°. This type of amplifier is typically employed
when a high-power “linear”” amplification of the RF signal is required.
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In a Class C amplifier [Figure 8-29(d)] we have a nonzero current for less than
half of the cycle (i.e., the conduction angle is 0 < ©. < 180°). This results in maximum
distortion of the output signal.

A logical question that arises is why are not all amplifiers operated in Class A
since this mode delivers the least signal distortion? The answer is directly linked to the
amplifier efficiency. Efficiency, 1, is defined as the ratio of the average RF power Py
delivered to the load over the average power P supplied by the source, and is usually
measured in percent:

n= P-;—RF 100% (8.22)
Py
The theoretical maximum efficiency of the Class A amplifier is only 50%, but the
efficiency of Class C can reach values close to 100%. Fifty percent efficiency of Class
A amplifiers means that half of the power supplied by the source is dissipated as heat.
This situation may not be acceptable in portable communication systems where most
devices are battery operated. In practical applications, designers usually choose the
class of operation that gives maximum efficiency but still preserves the informational
content of the RF signal.
In the following example we derive the maximum theoretical efficiency n of the
amplifier as a function of conduction angle.

RF EM W
Example 8-11: Amplifier efficiency computation

Derive the general expression for the amplifier efficiency 1} as a
function of conduction angle ©,. List the values of 1 for both
Class A and Class B ampilifiers.

Solution:  The electrical current through the foad for a conduc-
tion angle of @, has a waveform shown in Figure 8-30(a), where
the cosine current amplitude is given by /1.
Similarly, the power supply current /¢ has a maximum value
of I, plus the quiescent current /,:
Ig = Ig+1;c0s© (8.23)
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Figure 8-30 Load and power supply current waveforms as a function of
conduction angle.

The value of the quiescent current necessary to ensure the specified
conduction angle ©, can be found from (8.23) by setting /¢ to zero
at® = 0,/2:

Iy = —14c0s(By/2) (8.24)
The average power supply current is then computed as an integral
over the conduction angle ranging between the limits of
0 = -0,/2 and © = 6,/2; thatis,

©4/2

_ 1 _ Iy B, . (B
(I = ﬁ_[_@0/213@!(9 = —ﬁ[aocos(?)-Zmn(?)] (8.25)

Thus, the average power from the power supply is
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I,V ) e
Py = Vel = -5 =5 [Gocos(?(’]—%in({)] (8.26)

where Vo is the supply voltage.

Since the voltage on the load changes together with the cur-
rent, the average RF power is computed as an integral of the product
of load current and load voltage:

1 (@2 {oVee .
Pep = ﬁj‘_eo/z oV ceos?0d0 = S Z5(0, - sin6;) (8.27)
Dividing (8.27) by (8.26), we find an amplifier efficiency

B, - sin®,
2[Bgcos(By/2) - 2sin(By/2)]
where the conduction angle ©, is measured in radians.

The graph of | as a function of the conduction angle 9, is
shown in Figure 8-31.
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Figure 8-31 Maximum theoretical efficiency of an ideal amplifier as a function of
conduction angle.

Substituting ©; = 2n into (8.28), we find that the efficiency
of a Class A amplifier is indeed 50%. To determine the efficiency of

a Class B amplifier, we simply use the conduction angle €, = % in
(8.28), which yields
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Ny = 7 —sinw _T=
B~ Imcos(m/2)-2sin(m/2)] 4
That is, Class B yields an efficiency of 78.5%.

Efficiency is an important design consideration when dealing
with low power consumption, as required, for instance, in personal
communication systems, where battery lifetime must be maximized.

8.3.2 Bipolar Trangistor Biasing Networks

There are generally two types of biasing networks: passive and active, Passive (or
self-biased) networks are the simplest type of biasing circuits and usually incorporate a
resistive network, which provides the appropriate voltages and currents for the RF tran-
sistor. The main disadvantages of such networks are that they are very sensitive to
changes in transistor parameters and that they provide poor temperature stability. To
compensate for these drawbacks active biasing networks are often employed.

In this section we consider several network configurations for biasing RF BJTs.
Two possible topologies are shown in Figure 8-32.

The combination of the blocking capacitor C, and the RFC connected to the base
and collector terminals of the transistor in Figure 8-32 serve the purpose to isolate the

(@) {b)

Figure 8-32 Passive biasing networks for an RF BJT in common-emitter
configuration.
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RF signal from the DC power source. At high frequencies, the RFCs are usually
replaced by quarter wave transmission lines that convert the short-circuit condition on
the Cp side to an open-circuit condition on the transistor side.

The following example discusses how to compute the resistors for the two biasing
networks shown in Figure 8-32.

RF&MW-

Example 8-12: Design of passive biasing networks for a BJT in
common-emitter configuration

Design biasing networks according to Figures 8-32(a) and (b) for
Assume that the transistorhasa B = 100 and Vg, = 0.8 V.

Solution:  As seen in Figure 8-32(a), the current 7, through
resistor R, is equal to the sum of the collector and base currents.
Since Iy = I-/B, we obtain
The value of R, can be found as
Vee=V
_CCTCE_ 1980
I
Similarly, the base resistor R, is computed as

R,

, = VCEI Vae - VCf /;BE = 2 kQ
B c
For the circuit in Figure 8-32(b) the situation is slightly more com-
plicated. Here we have the freedom of choosing the value of the
voltage potential V, and the current Iy through the voltage divider
resistor R, . Arbitrarily setting V5 to 1.5 V, we determine the base
resistor R; to be

Vy-V V-V
X“VBE _ YXTVBE _ 510
Ip Ic/B
The value of Iy is usually chosen to be 10 times larger than 7.

Therefore, Iy = 10z = 1 mA and the values of the resistances
for the voltage divider are computed as

R3=




Amplifier Classes of Operation and Blasing Networks 451

Vv Vee-V
Ry= -2 =15kQandR, = £ X
Iy Iy+1g
Finally, the collector resistor is found as

Ry = (Vee=Veg)/Ip = 200 Q

= 3.18 kQ

The freedom of selecting particular voltages and currents is in

practice restricted by the need to choose electric seftings that result
in standardized resistance values.

An example of an active biasing network for a BJT in common-emitter configura-
tion is shown in Figure 8-33. Here we employ a low-frequency transistor ¢, to provide
the necessary base current for the RF transistor ,. The resistor Ry, connected to the
emitter of the transistor (¢, improves stability of the quiescent point. If transistors Q,
and @, have the same thermal properties, then this biasing network also results in good
temperature stability.

Example 8-13 illustrates the determination of the component values for the active
biasing network depicted in Figure 8-33.

Fee

|
2

RB] IfCi

o

Figure 8-33 Active biasing network for a common-emitter RF BJT.
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RF &M W
Example 8-13: Design of an active biasing network for a BJT
transistor in common-emitter configuration

Design a biasing network as shown in Figure 8-33 for
transistors have B = 100 and Vp = 0.8 V.

Solution:  Similar to the previous example we have several
degrees of freedom in this biasing network. First, we can pick the
value for a voltage potential V-, at the collector of transistor Q.
Second, we are free in our choice of the collector curmrent through
Q, . Since I g, should not be affected by current fluctuations in 7,
we choose Iy such that I, = 10fg, (ie., I, = 1 mA). Then
the current I, through resistor R, is composed of collector current
{~) and two base currents I, and I, ; that is,

-1
Assuming V-, = 3V, we find

Ve -V Vee-V
BB - 2 kQand Ry = —S< 1 - 18kQ
132 jr1

Another degree of freedom is the choice of voltage Vz, at the emit-
ter terminal of the transistor Q, . Setting V¢, to 1V, we find

Ry, =

VCI"" VBEI B VEl = 120 kO

Rp, = To1

and

v
Ry = —E— = 1.11kQ
ICI_IBI

Finally, the collector resistor R, is determined to be
Rey = (Vee—Vep)/ Ies = 200 Q2

Although active biasing offers a number of performance
advantages over passive networks, certain disadvantages also arise:
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specifically, additional circuit board space, possible layout compli-
cations, and added power requirements.

Another active biasing network for a BJT in common-emitter configuration is
shown in Figure 8-34. Here diodes D, and D, provide a fixed reference for the voltage
drop across the base-emitter junctions of both transistors. Resistor R, is used to adjust
the biasing current to the base of transistor Q, and R, limits the range of this adjust-
ment, Ideally, for temperature compensation, transistor Q, and one of the diodes
should remain at ambient temperature, whereas the second diode should be placed on
the same heat-sink as RF transistor Q,.

Figure 8-34 Active biasing network cc’:imrc\ltaining low-frequency transistor and two
odes.

As a final remark, it is important to point out that in all biasing networks the opet-
ational conditions (common-base, common-cmitter, or common-collector) of the tran-
sistor at RF frequencies are entirely independent of the DC configuration. For instance,
we can take an active biasing network, shown in Figure 8-33, and modify it for com-
mon-base RF operation, as seen in Figure 8-35.

At DC all blocking capacitors represent an open circuit and all RFCs behave like
short circuits. Therefore, this biasing network can be redrawn as shown in Figure
8-36(a), indicating the common-emitter configuration. However, at RF frequency all
blocking capacitors become short circuits and all RFCs behave like open circuits. This
transforms the biasing network into a common-base mode, as depicted in Figure 8-36(b).
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VCC

&

REI

Figure 8-35 Modification of the active biasing network shown in Figure 8-33 for
a common-base RF operation.

(a) DC equivalent circuit (b} RF equivalent circuit

Figure 8-36 DC and RF equivalent circuits for the active biasing network in
Figure 8-35.
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8.3.3 Field Effect Transistor Blasing Networks

The biasing networks for field effect transistors are in many ways very similar to
the BJT networks covered in the previous section. One key distinction is that MESFET
usually require a negative gate voltage as part of the bias conditions.

The most basic passive bipolar biasing network for FETs is shown in Figure 8-37.

Vo s
c, 9T Cs

I B
RFC% RFC

RF‘OI.I(
L

RF, ©

Figure 8-37 Bipolar passive biasing network for FETSs.

The main disadvantage of such a network is the need of a bipolar power supply
for V; <0 and V> 0. If such a bipolar power supply is unavailable one can resort to
a strategy where instead of the gate, the source terminal of the transistor is biased, The
gate in this case is grounded. Two examples of such networks are shown in Figure 3-38.

Vo
Cy

Figure 8-38 Unipolar passive biasing networks for FETs.

The temperature compensation of the FET biasing networks is typically accom-
plished through the use of thermistors.
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8.4 Summary

The material covered in this chapter is geared toward providing an understanding
of two key issues encountered in any RF/MW system: interfacing various components
of different impedance values, and suitably biasing the active devices depending on
their class of operation.

To ensure optimal power iransfer between systems of different impedances, we
investigate at first two-element L-type matching configurations. in the context of two-
port network analysis, the conjugate complex matching requirement at the input and
output ports results in optimal power transfer at a particular target frequency. The tech-
nique is simple and can be compared with the design of a bandpass or bandstop filter.
Care must be exercised in selecting a suitable L-type network to avoid the forbidden
regions for which a given load impedance cannot be matched to the desired input
impedance. From the knowledge of the network transfer function, the loaded quality
factor

f
QL=§';—,

and the simpler to compute nodal quality factor

o - X _ 1B
" Rg Gp

can be utilized as a measure to assess the frequency behavior of the matching networks.
Unfortunately, L-type networks do not allow any fiexibility in conditioning the fre-
quency response and are therefore mostly used for narrow band RF designs. To affect
the frequency behavior, a third element must be added, resulting in T- and Pi-type net-
works. With these configurations a certain nodal quality factor, and indirectly a desired
bandwidth, can be implemented.

While the lumped element design is appropriate at low frequencies, distributed
transmission line elements must be employed when the frequency extends into the GHz
range. The hybrid configurations of using series connected transmission line elements
and shunt connected capacitors are very attractive for prototyping since the location and
value of the capacitors can easily be varied. If the capacitors are replaced by open- and
short-circuit transmission lines, one arrives at the single- and double-stub matching
networks.

Depending on the application (for instance, linear small signal or nonlinear large
signal amplification), various classes of transistor amplifiers are identified. The classifi-
cation is done by computing the RF to supply power ratio, known as efficiency:
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Prr

which can be expressed in terms of the conduction angie ©, quantifying the amount of
load current flow through the relation

6, - sinO,

2[@4c0s(0y/2) - 25in(0,/2)]
For instance, Class A offers the highest linearity at the expense of the lowest efficiency
of 50%, whereas Class B compromises linearity but improves efficiency to 78.5%.

Once the class of operation is identified, a biasing network is chosen to set the
appropriate quiescent point of the transistor. Passive biasing networks are normally
easy to implement. However, they are not as flexible as biasing networks involving
active devices. The biasing not only sets the DC operating conditions but must also
ensure isolation of the RF signal through the use of RFCs and blocking capacitors.

‘ﬂ:
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Problems

8.1 Obtain the “forbidden” regions for the two-element matching networks
shown in Figures 8-1(c)—(f). Assume that the load is matched to the normal-
ized input impedance (ie., z;, = 1).
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8.3
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8.6

8.7

8.8

8.9
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Use the analytical approach and design a two-component matching network
that matches the Z;, = (100+ j20)Q load impedance to a given
Zg = (10 + j25)Q source, at the frequency of f, = 960 MHz.

Develop a two-component matching network fora Z; = (30 - j40)Q load
and a 50 Q source. How many network topologies exist that can be used?
Find the values of the components if a perfect match is desired at
fo = 450 MHz.

Repeat Problem 8.3 for a Z; = (40 + j10)Q load and a matching fre-
quency of f, = 1.2 GHz.

Measurements indicate that the source impedance in Problem 8.3 is not
purely resistive but has a parasitic inductance of Lg = 2 nH. Recompute the
values for the matching network components that take into account the pres-
ence of L.

Aload Z; = (20 + j10)Q consisting of a series R-L combination is to be
maiched to a 50 Q microstrip line at f, = 800 MHz. Design two two-ele-
ment matching networks and specify the values of their components. Plot a
frequency response for both networks and find the cormesponding
bandwidths.

In Example 8-5 a T-network is discussed that matches a load impedance of
Z, = (60-j30)Q to an input impedance of Z; = (10+ j20)Q at
1 GHz, under the constraint that Q, does not exceed the factor of 3. Step-
by-step go through this design and identify each point in the Smith Chart in
terms of its impedance or admittance values, Verify the final results shown in
Figure §-16.

Go through Example 8-6 and find each point in the Smith Chart shown in
Figure 8-17 and verify the final network components depicted in Figure
8-18.

Repeat the Pi-type matching network design in Example 8-6 for a nodal
quality factor of Q, = 2.5. Plot Z, (f) for this Q, value and compare it
against the Q, = 2 design in Example 8-6. As frequency range, choose
1 GHz < f< 4 GHz.
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8.10

8.11

8.12

8.13

8.14

8.15

Design two T-type matching networks that transforma Z; = 100 £ load to
an Z; = (20- j40)Q) input impedance at a nodal quality factor of
Q, = 4. The matching should be achieved at f, = 600 MHz.

Design two Pi-type matching networks for the same conditions as in Prob-
lem 8.10.

To achieve matching conditions for a specified @, , the circuit designer has
to use more than two or three elements in the matching network. Using a
graphical approach, design a multisection matching network that transforms
Z; =10Q into Zg = 250 Q at f, = 500 MHz while maintaining a
nodal quality factor of @, = 1. The multisection matching network should
consist of a series of two-element sections each of which is a “series induc-
tor, shunt capacitor” combination [see Figure 8-1(h)].

For an increased frequency of f, = 1 GHz it was decided that the network
designed in Problem 8.12 should be replaced by a combined matching net-
work shown in Figure 8-19. Determine the total number of capacitors and
transmission line sections necessary to achieve matching and find the values
of all components in the network.

Using the design from Example 8-7, find the length and width of each trans-
mission line if an FR-4 substrate with dielectric constant of €, = 4.6 and
height of A = 25 mil is used. Find the maximum deviation of the input
impedance of the matching network if the capacitor that is used in the circuit
has a £10% tolerance and the automatic component placement equipment
has a +2 mil precision (i.e., the capacitor can be placed within 2 mil of the
intended position).

In Example 8-7 it is argued that open-circuit stubs can be replaced by short-
circuit ones if the length is increased by a quarter wavelength. Matching is
achieved only for a single frequency, and over a broader frequency range the
network response can significantly differ from the target impedance values.
Design a single-stub matching network that transforms a Z; = (80 + j20)Q
load impedance into a Z;, = (30— j10)S) input impedance. Compare the
frequency response over the 0.8 f, frequency range for two different real-
izations of the matching network: open-circuit stub, and using an equivalent
short-circuit stub, Assume that the matching frequency is f, = 1 GHz and
the load is a series combination of resistance and inductance.
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8.17

8.18

8.19
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Using the matching network shown in Figure 8-23(b), find the stub length
I¢, the characteristic line impedance Z; , and the transmission line length
!; such that the Z; = (80 - j40)Q load impedance is matched to 50 Q
source. Assume that the characteristic impedance of the stub is
Zos = 50 Q2.

For a double-stub tuner shown in Figure 8-26 with parameters /, = A/8,
I, = 50/8, and l; = 3L/8, determine to which end of the tuner a
Z; = (20~ j20)Q2 load has to be connected and find the length of the
short-circuited stubs such that the load is matched to a 50 Q line. Assume
that all stubs and transmission lines in the tuner have a 50 £} characteristic
impedance.

Discuss a circuit configuration that replaces in the previous problem the stub
tuners with varactor diodes in series with inductors. Choose the appropriate
inductances if the varactor diodes can change their capacitances in the range
from 1 pF to 6 pF. For a frequency of 1.5 GHz discuss the tuning capabilities
in terms of possible load impedance variations.

An ideal amplifier has a transfer function given by the equation
{30( Vi,-V*), VvV, 2Vv*

mn =
0, V< V*

where V* = 60 mV. Find the quiescent point (V, and /,) and the corre-
sponding maximum efficiency such that the amplifier is operated in the AB
class and has conductance angle of €&, = 270°. Assume that the input sig-
nal is a sinusoidal voltage wave of 100 mV amplitude.

out
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8.20 Find the component values for a low-GHz range biasing network for a BJT

8.21

with bypassed emitter resistor R;, as shown below:

Assume that the power supply voltage is V-~ = 12 V and the transistor has
the following parameters: I =20 mA, Vo =5 V, B = 125, and
Vge = 075 V.

For stability purposes a feedback resistor Rp = 1kQ has been added
between base and collector of the transistor in the biasing network shown in
Figure 8-32(b). Compute the values of all resistors in the biasing network if
the following biasing conditions must be satisfied: supply voltage of
Vee = 5V, collector current of I~ = 10 mA, and collector-emitter volt-
age of Vo =3 V. Assume that the transistor has a B = 100 and a
Vg = 0.8 V.
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8.22 Design a biasing network (shown in the following figure) for /-, = 10 mA,
Vegs = 3 V,and Vo = 5 V. Assume that B, = 156, B, = 80, and both
transistors have Vg = 0.7 V.

8.23 Redraw the active biasing network shown in Figure 8-34 for a common-base
and a common-collector operating mode, respectively.

8.24 For the passive FET biasing network shown in Figure 8-38, find the value of
the source resistance Ry if Vg = =4 V, Vo = 10V, and the drain cur-
rent is giventobe I, = 50 mA.



CHAPTER 9

RF Transistor Amplifier
Designs

Ampliﬁcr designs at RF differ significantly from
the conventional low-frequency circuit approaches and consequently require special
considerations. In particular, the fact that voltage and current waves impinge upon the
active device necessitates appropriate matching to reduce the VSWR and avoid undesir-
able oscillations. For this reason a stability analysis is usually the first step in the design
process and, in conjunction with gain and noise figure circles, is a basic ingredient
needed to develop amplifier circuits that meet the often competing requirements of
gain, gain flatness, output power, bandwidth, and bias conditions.

This chapter expands upon the material covered in Chapters 2 and 3, where power
relations of terminated transmission lines are investigated. However, unlike the passive
circuit presentations, Chapter 9 deals with active devices where gain and feedback con-
siderations assume central importance. Issues such as power gain, unilateral and bilat-
eral circuit designs and their graphical display in the Smith Chart constitute the starting
point of an extensive analysis into quantifying high-frequency transistor amplifier per-
formance. The reader will note the flexibility of the Smith Chart, which allows constant
gain, VSWR, and stability circle displays to be superimposed over the reflection coeffi-
cient and impedance representation discussed in Chapter 3. Moreover, even a noise ana-
lysis can be conducted by converting the noise figure of an amplifier into circles that are
displayed in the Smith Chart.

After covering the basic design tools, Chapter 9 also investigates various types of
power amplifiers and their characteristics such as gain flatness, bandwidth, and inter-
modular distortion as well as the differences between single- and multistage amplifiers.
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9.1 Characteristics of Amplifiers

Perhaps the most important and complex task in analog circuit theory is the ampli-
fication of an input signal through either a single or multistage transistor circuit. A
generic single-stage amplifier configuration embedded between input and output
matching networks is shown in Figure 9-1.

Ly
? Input ; Output p
RF 2 _ |Matching{ Matching Léli
source | > | Network @ Network | Load
i IMN i OMN i
? (IMN) (OMN)} ;

T

I, DC bias Tou

Figure 9-1 Generic amplifier system.

Input and output matching networks, discussed in Chapter 8, are needed to reduce
undesired reflections and thus improve the power flow capabilities. In Figure 9-1 the
amplifier is characterized through its S-matrix at a particular DC bias point. In terms of
performance specifications, the following list constitutes a set of key amplifier

parameters:

¢ Gain and gain flatness (in dB)

* Operating frequency and bandwidth (in Hz)

* Output power (in dBm)

* Power supply requirements (in V and A)

» Input and output reflection coefficients (VSWR)
* Noise figure (in dB)

In addition, one often must consider such parameters as intermodular distortion (IMD)
products, harmonics, feedback, and heating effects, all of which can seriously affect the
amplifier performance.

To approach the amplifier design process systematically, we need first to establish
a number of definitions regarding various power relations. This is followed by several
important analysis tools required to define stability, gain, noise, and VSWR perfor-
mance. The common denominator of all four topics is that they can be expressed as cir-
cle equations and displayed in the Smith Chart.
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9.2 Amplifier Power Relations

9.2.1 RF Source

There are various power gain definitions that are critical to the understanding of
how an RF amplifier functions. For this reason, let us examine Figure 9-1 in terms of its
power flow relations under the assumption that the two matching networks are included
in the source and load impedances. This simplifies our system to the configuration
shown in Figure 9-2(a). The starting point of cur power analysis is the RF source con-
nected to the amplifier network. For the convention depicted in Figure 9-2 we recall our
signal flow discussion in Section 4.4.5 [see (4.82) and (4.83)] and write for the source
voltage

.1

Zs
z,
VS
I
(a) Simplified schematics of a singie-stage amplifier
b 5 1a, S, b, 1a’ by b/
o—> >

L)
A

Fd 4
a, b, 12 a4 b, a,

{b} Signal flow graph
Flgure 9-2 Source and load connected 10 a single-stage amplifier network.

The incident power wave associated with b,” is given as
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_ |b1'2 _1 |"’s|2

inc T 2 _2|1_rmr5|2

%.2)

which is the power launched toward the amplifier. The actual input power P, observed
at the input terminal of the amplifier is composed of the incident and reflected power
waves. With the aid of the input reflection coefficient I';,, we can therefore write:

P.

2
m=P |

ine(1=Tin] ) = 5———
inc in 2
2|1 -T, Ty
The maximum power transfer from the source to the amplifier is achieved if the
input impedance is complex conjugate matched (Z;, = Z s) or, in terms of the reflec-
tion coefficients, if I';) = ['g. Under maximum power transfer condition, we define the
available power P, as

) (9.3)

_l in

R -
Mlr, =13 2|1'"rinrs|2r

(=T = > e

(9.4)
21 -y

*

=l—S

This expression makes clear the depcndence on (. If T, = 0 and I'g# 0 it is seen
from (9.2) and (9.4) that P, |bs| /2.

9.2.2 Transducer Power Gain
We can next investigate the transducer power gain G, which quantifies the
gain of the amplifier placed between source and load.

G. = powerdelivered to the load _P
T = Available power from the source P,

or with P, = %|b2|2 {1 —]FL|2) we obtain

P

= I_JE = 16l 2l (1 - T 5H - |g® (9.5)
A by’

In this expression, the ratio b,/bg has to be determined. With the help of our signal

flow discussion in Section 4.4.5 and based on Figure 9-2, we establish

§y144

b =1 — ST,

(9.6a)
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S21S12rL
by = [1 -(5“ +m)rs}al 9.6b)

The required ratio is therefore given by
by S21

= = 9.7
by  (1-8 T)(1=S55,T;)—85,.T; ©-n
Inserting (9.7) into (9.5) results in
1= 0,18, (1 = Ty

r =
|(1 _Sill-‘.':i')(1 - SZZFL) _SZISIZFLF-le

which can be rearranged by defining the input and output reflection coefficients (see
Problem 9.2)

Sy 8,T

Fp =S+ T-s.T. 2_1 Slzzri (9.9a)
S,8,T

1_|0I.li. = S22 + 1 1_2 Sz;llri (9-9]3)

With these two definitions, two more transducer power gain expressions can be derived.
First, by incorporating (9.9a) into (9.8), it is seen that

_ Q- RN

G (9.10)
T -T2 - ST
Second, using (9.9b) in (9.8) results in the expression
2 2 2
1-, D)8 1-|T
G, = [Ce OIS (1 - [T ) ©.11)

2 3
‘l - rLroutl |1 - SllrS]
An often employed approximation for the transducer power gain is the so-called unilat-
eral power gain, Gy, which neglects the feedback effect of the amplifier (S, = 0).
This simplifies the form (9.11) to
2 2 2
2 2

U (9.12)

As discussed in Section 9.4.1, equation (9.12) is often used as a basis to develop approx-
imate designs for an amplifier and its input and output matching networks.
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9.2.3 Additional Power Relations

The transducer power gain is a fundamental expression from which additional impor-
tant power relations can be derived. For instance, the available power gain for load
side matching (I'; = T, ) is defined as

out

_ power available from the amplifier
I, =T, power available from the source

Gy = G|

or, with the aid of (9.11),
2
[Saal* (1~ |T%)
AT 2 2
(l_'routl )Il_SllrSJ

G (9.13)

Further, the power gain (operating power gain) is defined as the ratio of the power
delivered to the load to the power supplied to the amplifier.

G = _Dowerdelivered to the load  _ i - i ) ﬁ -G ﬁ
power supplied to the amplifier ~ P, TP,

Combining (9.3), (9.4), and (9.10), we find

2 2
G = =TSz

> (9.14)
(1= [Ty )1 - 55T

It is interesting to note that (9.14) can be obtained from (9.10) by setting T = l“;n
since in this case P, = P,. The following example goes through the computation of
some of these expressions for an amplifier with given S-parameters.

RF &M W=

Example 9-1: Power relations for an RF amplifier

An RF amplifier has the following S-parameters: §;, = 0.3.£-70°,
Sy = 3.5485°, S, = 02£-10°, and S,, = 0.4£-45°. Fur-
thermore, the input side of the amplifier is connected to a voltage
source with V¢ = 5V .£0° and source impedance Z; = 40 Q. The
output is utilized to drive an antenna which has an impedance of
Z; = 73 Q. Assuming that the S-parameters of the amplifier are
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measured with reference to a Z; = 50 Q characteristic impedance,
find the following quantities:

(a) transducer gain G, unilateral transducer gain Gy, available
gain G, , operating power gain G, and

(b) power delivered to the load P, , available power P, and inci-
dent power to the amplifier P, .

Solution:  First we find the source and load reflection coefficients
assuming a Z, = 50 £ characteristic impedance:

_%=2% _ o111 andTy = 2220 = 0187
ST Zovz, LTz oz, T
Next, the input and output impedances, as given in (9.9a) and (9.9b),
are determined:

‘521‘51211'.
I ] + — = . 4 - .

S1252T s .
= + —=="_= = (0,265 - j0.35
I'w =5 [=5,Ts 0.265 - j0.358
Substituting the obtained values along with the S-parameters into
(9.11), (9.12), (9.13), and (9.14), the transducer gain G, unilateral
transducer gain Gy, available gain G, , and operating power gain
G are computed as follows:

2 2 2
L= |0, S, =T
o WoTOBa AT ) 56 or 10.99 dB

T
=T, Tl -85, Ty’
2 2 2

1-|T,]5)s -

Gry = (-0 ;‘l ( ll"slz) = 12.67 or 11.03 dB
LTS5 1 -8, T

1,11 - I0g®)

G, = A S = 1474 or11.68dB

1"'|r0ut1 ||1_Sllr3‘

2 2
. (1-—|12“;_| )|S24] . = 13.74 or 11.38 dB
1= |||t - ST
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Using (9.2) in conjunction with (9.1) allows us to find the incident
power flow into the amplifier:

2 2
1 |bs] 124 Vsl

2 - 2 2

21—,y 2(Zs+Zo)*|1 -, T
Often P, . is expressed in dBm as

P, (dBm) = 10log(P,, /(1 mW)] = 18.73 dBm

Similarly, from (9.2) we find the available power 1o be
P, =78.1 mW or P, =18.93 dBm. Finally, the power delivered to
the load is the available power multiplied by the transducer gain.
Thisresults in P, = P,Gyr = 981.4 mW, or, expressed in dBm,

P,(dBm) = P,(dBm)+ G(dB) = 29.92 dBm

P =

me

= 4.7 mW

It is interesting to point out that the unilateral power gain
often matches the actual transducer power gain very closely. As dis-
cussed further, the use of the unilateral amplifier gain significantly
simplifies the amplifier design task.

9.3 Stability Considerations

9.3.1 Stabllity Circles

One of the first requirements that an amplifier circuit must meet is a stable perfor-
mance in the frequency range of interest. This is a particular concern when dealing with
RF circuits, which tend to oscillate depending on operating frequency and termination.
The phenomenon of oscillations can be understood in the context of a voltage wave
along a transmission line. If |T'g| > 1, then the return voltage increases in magnitude
(positive feedback) causing instability. Conversely, |1"0| < 1 causes a diminished retum
voltage wave (negative feedback).

Let us regard the amplifier as a two-port network characterized through its §-
parameters and external terminations described by I'; and I'g. Stability then implies
that the magnitudes of the reflection coefficients are less than unity. Namely,

‘I"Lj <1, |1“S| <1 (9.15a)
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T, = s“;ri:A <1 (9.15b)
TentL

I outl = ‘iZ?.;ri‘-A <1 (9.15¢)
B § Sl

where A = S5, — 5,5, has been used to re-express (9.9a) and (9.9b). Since the 5-
parameters are fixed for a particular frequency, the only factors that have a parametric
effect on the stability are I'; and I's.

In terms of the amplifier’s output port, we need to establish the condition for
which (9.15b) is satisfied. To this end the complex quantities

Sy = Sk 4S8y, = Sh4isSh,A = AR+ AT, =T 4T, 9.16)

are substituted into (9.15b), resulting after some algebra in the output stability circle
equation

2 2
(TF - Co) + (1= Cou)” = Fow ©.17)
where the circle radius is given by
5,8
Fow = _[udal 2 2 5 (9.18)
124" - 1417
and the center of this circle is located at
S-S A)
Cow = Cgut + jCIout = M (9.19)

[S2af” - 1417
as depicted in Figure 9-3(a). In terms of the input port, substituting (9.16) into (9.15¢)
yields the input stability circle equation

F_ Y v (rh-cly’ = 7 (9.20)

I mn
where
|S 12521|

= e el 9.21)
15,% - Al

Fin

and



472 Chapter 9 * RF Trangistor Amplifier Designs

R . (511 - Szzﬁ)*
Cip = Cip+ jCip = "2 9.22)
|S14" - 14l
lq!..‘r Irihl =1 |Fom| =1 r‘.s'!
A -~ P bl s
I |=1 ," e N 7 v Il =1
1 roC )
! Cout ] ! o J
\ /) \ I}
) I/ \\\.. 4
Coul |Gl
>Tf > T
(a) Output stability circle (b} Input stability circle

Figure 8-3 Stability circle |l“vn| = 1 inthe complex I'; plane and stability circte

| =1 inthe complex T’ plane.

oul
When plotted in the I'g-plane we obtain a response as schematically shown in Figure
9-3(b).

To interpret the meaning of Figure 9-3 correctly, a critical issue arises that is
investigated for the output circle [Figure 9-3(a)], although the same argument holds for
the input circle. If I'; = 0, then |[;| = |§,;| and two cases have to be differentiated
depending on S| < 1 or |§,| > 1. For |5})| <1, the origin (the point I'; = 0) is part
of the stable region, see Figure 9-4(a). However, for |S 11’ > 1 the matching condition
I; = 0 resultsin [[y| = |S,;| > L, ie. the origin is part of the unstable region. In this
case the only stable region is the shaded domain between the output stability circle
|1"in, = 1 and the |T;| = 1 circle, see Figure 9-4(b).

For completeness, Figure 9-5 shows the two stability domains for the input stabil-
ity circle. The rule-of-thumb is the inspection if |$,,| < 1, which leads to the conclu-
sion that the center (I'g = 0) must be stable; otherwise the center becomes unstable for
|§2] > 1.

Care has to be exercised in correctly interpreting the stability circles if the circle
radius is larger than |Cy| or |C,,|. Figure 9-6 depicts the input stability circles for
|$2,] < 1 and the two possible stability domains depending on r;, <|Cj,| or ryy >|Cyy .
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L -

Unstable Stable

ICDI.Il I

Unstable

=1

(a) Shaded region is stable, {a} Stable region excludes the origin,
since || <1 [, =0, since S| =1

Figure 9-4 Output stability circles denoting stable and unstable regions.

Stable

Unstable

{8) 1S2] <1 ®) 15521 > 1

Figure 9-5 Input stability circles denoting stable and unstable regions.

9.3.2 Unconditional Stability

As the name implies, unconditional stability refers to the situation where the
amplifier remains stable throughout the entire domain of the Smith Chart at the selected
frequency and bias conditions. This applies to both the input and output ports. For
|Sn| <1 and |S,;,| <1 itis stated as
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Unstable

Tyt =1 s =1

(@) 7 < |G (b) iy > |Cin|

Figure 9-6 Different input stability regions for

S1| < 1 depending on
ratio between r¢ and |C;

Cunl = 730l > 1 (9.23a)

1 Coud = oul > 1 (9.23b)

In other words, the stability circles have to reside completely outside the |T'g] = 1 and
ITy| = 1 circles. In the following discussion we concentrate on the I = 1 circle
shown in Figure 9-7(a). It is shown in Example 9-2 that condition (9.23a) can be reex-
pressed in terms of the stability or Rollett factor &:

- 1—[Sy]* - |Sxl® + 1417
2|S12]1821]

Alternatively, unconditional stability can also be viewed in terms of the I'g behavior in
the complex I'y,, = l"fm + ﬂ"f,.u plane. Here, the |T'g <1 domain must reside com-
pletely within the [T, | = 1 circle, as depicted in Figure 9-7(b}. Plotting [['( = 1 in
the T, plane produces a circle whose center is located at

(9.24)

(9.25)

and which possesses a radius of
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§5,,8
[S12 2‘|2 (9.26)
r I
IGi=1 g |
rin
P
Cs
ICinl l':,,
{a) T,,,| = 1 circle must reside outside (b) T3] = 1 circle must reside inside

Figure 9-7 Unconditional stability in the T’y and I',,, planes for |5, < 1.

where the condltlon |C| + rg< 1 must hold. We note that (9.25) can be rewritten as
Cg = (Syy—AS])/(1- |S11]%) - Employing |Cg| +rg< 1 and (9.26) it is seen that

|52 — AST| + S1282] < 1= |81/ (9.27a)
and since |§1,5;| < lS22 - ASIll +|5,,5,,| we conclude
812851 <1~ |5l (9.27b)

A similar analysis can be established for I'; in the complex T, plane. From the
corresponding circle center C; and radius ry, we set |[C;| = 0 and rg< 1. Thus,

18128211 < 1=|S)° (9.28)

However, as long as |A] < 1, (9.24) remains the sufficient requirement to ensure uncon-
ditional stability. This follows from the fact that when (9.27b) and (9.28) are added, it is
seen that

2 2
2181552 < 2= [S1|" - 152
Introducing the inequality [A] = |§1;55; — §155,;| £[51,52| + |51252)| resuits in
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1 2 1 2
18] < 1= 5| 0|” + 182" -2/l 1S2) = 1= 5¢[Sul = [S22])

Since (1/2)(JS | - |S5l)* < 1, it is seen that (9.27b) and (9.28) are equivalent to
A< 1 (9.29)

RF MW+
Example 9-2: Stability factor derivation

Derive the stability factor & (Rollett factor) from (9.23a).

Solution:  Substituting (9.21) and (9.22) into (9.23a) gives
‘Sll - 5223* B |5212512|| 1 {9.30a)
|S1|” -4l
Squaring and rearranging (9.30a) results in
» NG 2 2 a2
205y, - 3,88 155 m| <511 - S328] + 128> - IS0l - 187 9:30b)
The term |S,, - S;,4]" in (9.30b) can be re-expressed as
* 2
15, - 53,4]" = S8 + (L= (SIS - 18Py ©.30c)
Squaring (9.30b) again and rearranging terms finally gives

2 2
(|Suf* - 181 {[(1-|522|2)—(|S”|2—1AI2)] —4|slzszl|2}>o (9.30d)
The terms inside the curly brackets are recognized as the desired sta-
bility factor:
2 2 2
2181582

(9.30¢)

A stability analysis starting from (9.23b) would have resulted
in exactly the same inegquality. Thus, the stability factor k applies for
both input and output ports.
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It is always prudent to determine that both the |A| <1 and k> 1 conditions are
fulfilled to ensure an unconditionally stable design. The next example investigates a
transistor in common-ernitter configuration in terms of its input and output stability
behavior.

RF &M W=

Example 9-3: Stability circles for a BJT at different operating
frequencies

Determine the stability regions of the bipolar junction transistor
BFG505W (Philips Semiconductors) biased at V. = 6 V and
I- = 4 mA. The corresponding S-parameters as a function of fre-
quency are given in Table 9-1.

Table 9-1 BFG505W S-parameters as a function of frequency
Frequency S Sy S 81,
500 MHz 0.70£-57° 0.04 2477 10.5£136° | 0.79£-33°
750 MHz 0.56£-78° 0.052£33° 8.6.2122° 0.66.£-42°
1000 MHz 0.46£-97° 0.06£22° 7.1£112° 0.57£-48°
1250 MHz | 0.38.2-115° 0.06.£14° 6.02104° 0.50 £-52°
Solution:  Based on the definitions for k, |A|, Cy;, ry,, Coy - and

Tou» We compute the values via a MATLAB routine (see m-file
€x9_3.m). A summary of the results is given in Table 9-2 for the four

frequencies listed in Table 9-1.

Table 9-2  Stability parameters for BFGS05W for frequencies listed in

Table 9-1
k |A| Cin Fin Cout Four
0.41 0.69 39.04£108° 3862 | 3.56L70° 3.03
0.60 0.56 62.21.2119° 61.60 | 4.12270° 3.44
0.81 0.45 206.23£131° | 20542 | 4.39.269° 3.54
1.02 0.37 42.42£143° 4140 | 4.24.268° 322
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The example input and output stability circles for the frequen-
ciesof f = 750 MHz and f = 1.25 GHz are shown in Figure 9-8.
We notice that |S,;| < 1 and |[§,| <1 in all cases. This implies that
the I'; = 0 and Ty = O points are stable, indicating that the inte-
rior domain of the Smith Chart up to the stability circles denotes the
stable region.

f = 1250 MHz
+Hu Output
W ¥ stability
Input

circles

Figure 9-8 Input and output stability circles for BFG505W computed at f =
750 MHz and f = 1.25 GHz.

Also, as can be seen from Figure 9-8 and Table 9-2, the transis-
tor is unconditionally stable at f = 1.25 GHz and both input and
output stability circles are located completely outside of the |T| = 1
circle. At all other frequencies transistor is potentially unstable.

The stability circles are not only affected by frequency, but also
by the bias conditions. We recall that the S-parameters are given for
particular bias conditions. The entire stability analysis must be
repeated if biasing, or even temperature, changes.
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Even though & can vary widely, most unstable practical designs fall into the range
0<k<1. Oscillators, discussed in Chapter 10, target the entire Smith Chart as the
unstable domain, resuiting in negative values of k. It is also interesting to observe that
in the absence of any output to input feedback (S, = 0) the transistor is inherently
stable, since the stability factor yields k¥ — . In practice, one often examines k alone
without paying attention to the JA| < 1 condition. This can cause potential problems, as
the following example highlights.

RF&EMW—

Example 9-4: Stable versus unstabie region of a transistor

Investigate the stability regions of a transistor whose S-parameters
are recorded as follows: S, = 0.7£-70°, §,, = 0.22£-10°,
S, = 5.5£85°,and S,, = 0.7£-45°

Solution:  We again compute the values &, [Al, Cip, Fin» Cous
and r,, . The results are k = 1.15, |A| = 1.58, C,, = 0.214£52°,
ron =054, C,, = 021£27°, and r, = 0.54 (see Figure 9-9).
It is seen that even though k> 1, the transistor is still potentially
unstable because |A| > 1. This results in input and output stability

Input stability circle

o0

Q2 %40
fl

Output stability circle

=10

Figure 9-9 Stability circles for k> 1 and JA| > 1.
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circles being located inside of the Smith Chart. Since both |§,,| and
|S3| are less than unity, the center of the Smith Chart is a stable
point. Therefore, since |Cy,| <ry, and |C,,J <7, the area inside
of the stability circles represents the stable region, as shown in Fig-
ure 9-9,

Usually manufacturers avoid producing transistors with both
k>1 and |Al>1 by incorporating matching networks housed
inside the transistor casing.

9.3.3 Stabilization Methods

If the operation of a FET or BJT is found to be unstable in the desired frequency
range, an attempt can be made to stabilize the transistor. We recall that |I';| >1 and
[T ow| > 1 can be written in terms of the input and output impedances:

Zin_ZO Zou(_ZO
Zin+Z, ZatZ,

>1

Tl = >1and [, =

which imply Re{Z, } <0 and Re{Z . } <0. One way to stabilize the active device is
to add a series resistance or a shunt conductance to the port. Figure 9-10 shows the con-
figuration for the input port. This loading in conjunction with Re{Z;} must compen-
sate the negative contribution of Re{Z,, } . Thus, we require

Re{Z +R, +Z;} >0 orRe{Y +G, +Y}>0 (9.31a)
Zin + Iein"I Yin+ Gin,
Rin’
Active device G, |Active device
Source (BIT or FET) Source (BJT or FET)
Zi.n an
{a) Series resistance {b) Shunt conductance

Figure 9-10 Stabilization of input port through series resistance or shunt
conductance.
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Following an identical argument, Figure 9-11 shows the stabilization of the output port.
The corresponding condition is

Re{Z  +Ry /' +Z;}>0orRe{Y ,+G,, +7;}>0 (9.31b)
A
Rw’ YDI.II + Gout’
Active device Active device ’
(BIT or FET) :‘| Load (BIT or FET)| Cou Load
ZOIII Yollt
{a) Series resistance (b) Shunt conductance

Figure 9-11 Stabilization of output port through series resistance or shunt
conductance.

The next example explains the stabilization procedure for transistor.

RFEM W
Example 9-5: Stabilization of a BJT

Using the transistor BFG505W from Example 9-3 operated at
f =750 MHz (and with the S-parameters given as follows:
§; = 0.56£-78°, §, = 0.05£33°, §,, = 8.64£122°, and
S5, = 0.66£-42°), attempt to stabilize the transistor by finding a
series resistor or shunt conductance for the input and output ports.

Solution:  With given S-parameters we can identify the input and
output stability circles by computing their radii and center positions:
Cp = 6221£119°, r, = 6160, and C,, = 4.12£70°,
rou = 3.44. The corresponding stability circles are shown in Figure
9-12. A constant resistance circle ¥ = 0.33 in the Z-chart indicates
the minimal series resistance that has to be connected to the input of
the transistor to make this port stable. If a passive network is con-
nected in series to the resistor with the value of
R, = r'Z; = 16.5 Q, then the combined impedance will be
located inside of the r = 0.33 circle and therefore in the stable
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region. Similarly, by tracing a constant conductance circle g” = 2.8
we find the shunt admittance G;” = g'/Z, = 56 mS that stabilizes
the input of the transistor. This time any passive network connected to
G,,~ will have the combined admittance residing inside of the
g’ = 2.8 circle in the ¥-chart, which is inside the stable region for the
input port of the transistor.

Input stability circle .

<l

Figure 9-12 [nput and output stability circles and circles for finding stabilizing
series resistance and shunt conductances.

Following an identical procedure we can find a series resistance of
R, = 40 Q and a shunt conductance G’ = 6.2 mS, which
stabilize the output port of the transistor.

Due to the coupling between input and output ports of the
transistor it is usually sufficient to stabilize one port. The choice of
which port is generally up to the circuit designer. However, one
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attempts to avoid resistive elements at the input port since they
cause additional noise to be amplified.

Stabilization through the addition of resistors comes at a prize: the impedance
matching can suffer, there may be a loss in power flow, and the noise figure typically
worsens due to the additional thermal noise sources that the resistors present.

9.4 Constant Gain

9.4.1 LUnilateral Deslgn

Besides ensuring stability, the need to obtain a desired gain performance is
another important consideration in the amplifier design task. If, as sometimes done in
practice, the influence of the transistor’s feedback is neglected (S, =0), we can
employ the unilateral power gain Gy described by (9.12). This equation is rewritten
such that the individual contributions of the matching networks become identifiable.
With reference to Figure 9-13, we write

1-|ry’ 2 -0y
Gry = ———= X [$,)|*x ——E5 = GgxGyx G, (9.32)
|1-8;Ty J1-T S,
where the individual blocks are
2 2
1-|T 1-|T
Gs = ¢|2 Gy = |Syl’. Gy = -—l—d—z (9.33)
il _SllrSI |1 -FL522|

0
(S, =0}

L. =8, L =52

Figure 9-13 Unilateral power gain system arrangement.

Becanse most gain calculations are done in dB, (9.32) is frequently expressed as
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Gry(dB) = Gg(dB) + Go(dB) + G, (dB) (9.34)

where G and G, are gains associated with input and output matching networks and G,
is the insertion gain of the transistor. As seen from (9.33), the network gains can be
greater than unity which at first glance might appear stroager since they do not contain
any active devices. The reason for this seemingly contradictory behavior is that without
any matching a significant power loss can occur at the input and output sides of the
amplifier. The use of G and G; attempts to reduce these inherent losses, which is con-
sidered a gain.

If |S,;] and |Sy| are less than unity, the maximal unilateral power gain Grym,,
results when both input and output are matched (i.e., g = S, pand Iy = .5'22) For
this case it is seen that

.
-8y

Gy = R S (9.36)

max 2
1= |Sy)|

The contributions from Gy and G; can be normalized with respect to their maximum
values such that

G simax (9.35)

G 1-|Ty?

8= g S = [T (1= 845" (9.37a)
Gp 1_|FL|2 2

8L = = 5(1 =S5 (9.37b)

where the normalized gain is given in both casesas 0 £ g; <1, with i = §, L.

Even though we have explicit gain equations for the input and output matching net-
works, they are not directly usable in terms of providing parametric curves of constant
gain. The key question that must be answered is formulated as follows: For a given 5,
(or S,,) and a desired normalized gain g (or g, ), what is the range of values for I';
(or T',) that achieves a particulargain? The solution requires the inversion of (9.37)

L-[ry’
R ©38)

ii l|

for the reflection coefficient I';. Here ii = 11, 22 dependingon i = S, L. The result is
a set of circles with center locations at
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gES:(i
= T (9.39)
1-{8"(1~g))
and radii of size
-g1-8.
r, = L2840 1S (9.40)
1185, (1 -2
Example 9-6 details the necessary steps to derive the unilateral constant gain circle
equations {9.39) and (9.40).
RF &M W

Example 9-6: Derivation of the constant gain circles

Find the expressions for 4 4, and Ty as given in (9.39) and (9.40).

Solution:  The derivation begins with (9.38), which is rewritten
as

2148, T - SiT: - 8:T) = 1-1S:% =T +|S:*T° ©41a)

eI "ot I

The reflection coefficient I'; can be factored out such that

S.. S .
ff-—20i oy 80, (o4
1-|8"(1-gp  1-15,"(1-g)
2
gilsd’  _ (-g)U-[s)

2 2
A-[s -g»”  (-isl(1-g)
This equation is the complex form of a circle expression
* * 2
(l"i—dg!_)(l"i -dg.-) =71, (9.41¢)
with
giS:i J1-g —|Sﬁ|2)
=——F ——andr, = 2
1-[8:]°(1-8) -5 7(1-2p)
Multiplying out (9.41c) results in the more familiar from

(rf-df Y +(r-d! .-)2 = (9.41d)

8;
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where superscripts R and 7 denote real and imaginary parts of [,
and 4 .
&

Because of the unilateral assumption we are able to derive
separate gain circle equations for input and output ports.

The following observations can be made from the constant gain circle equations
(9.39) and (9.40):

* The maximum gain G, = 1/(1- |S | ) is obtained for T'; = Su, which coin-

cides with the gain circle whose center is at d S and of radlus Ty, = 0.

» The constant gain circles all have their centers on a line connecting the origin to
*
§;; . The smaller the gain values, the closer the center 4, moves to the origin and
the larger the radius r o

* For the special case I'; = 0, the normalized gain becomes g; = 1- |S”[2 and
both d, and r, have the same value d, = r, = |8, ]/(L+S; | ). This implies

that the G = 1 (or 0 dB) circle always passes through the origin of the I';-plane.

Example 9-7 demonstrates the source gain circles for an amplifier design under
unilateral approximation.

RF&EMW—

Example 9-7: Computation of the source gain circles for a uni-
lateral design

A FET is operated at f = 4 GHz and is biased such that
$i1 = 0.7£125°. Tt is assumed that the transistor is uncondition-
ally stable so that the unilateral approximation can be applied. Find
the maximum source gain Gg,,, and plot the constant source gain
circles for several values of G;.

Solution:  First we find the maximum source gain G, .. using
(9.35). The result is
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1 1
GSmax = 7 = 3
1-|511| 1-0.7

= 1.96 or Gg,, = 2.92 dB

We can now plot the constant gain circles by using (9.39) and (9.40)
for the computation of circle centers d 2 and radii Tey: A summary
of several arbitrary source gains G is presented in Table 9-3.

Table 9-3 Parameters for constant source gain circles

in Example 9-7.
Gy 8s deg Tes
2.6dB 0.93 0.67.£-125° 0.14
2dB 0.81 0.62£-125° 0.25
1dB 0.64 0.54 £/-125° 0.37
0dB 0.51 047 £-125° 0.47
-1dB .41 0402-125° 0.56

As seen from Table 9-3, the radius Yoo of the G¢ = 0 dB circle
is equal to the magnitude of its center position d, and the ciicle
indeed passes through the center of the Smith Chart We also
observe that the centers for all Gy circles are located on the
© = £5* = -125° line, and as Gy approaches Gy, , the
radius of the corresponding circle reduces to zero and its center
position becomes §;,* = 0.7£-125°.

Figure 9-14 illustrates the source gain circles based on the
computed numerical values given in Table 9-3. The figure points out
clearly that, despite the input matching network being passive, the
gain can be greater than 0 dB, indicating amplification. The physical
meaning for such a behavior lies in the fact that the matching net-
work reduces the input reflection coefficient of the overall system,
thus effectively creating an *“additional” gain.
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Figure 9-14 Constant source gain circles in the Smith Chart.

The underlying assumption of this example is that the gain
associated with the matched input port is not affected by the output
since the unilateral approximation neglects the reverse gain.

We next discuss a typical application that requires the use of the constant gain circle

approach. Specifically, let us develop a unilateral amplifier for a predetermined fixed
gain value.

RF &M W~
Example 9-8: Design of a 18 dB single-stage MESFET ampli-
fier operated at 5.7 GHz

A MESFET operated at 5.7 GHz has the following S-parameters:
§; = 05£-60°, 5, = 0.02£0°, 8, = 65£115°, and
Szz = 0.64_350-

(a) Determine if the circuit is unconditionally stable.
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{b) Find the maximum power gain under optimal choice of the
reflection coefficients, assuming the unilateral design (S, = 0).

(c) Adjust the load reflection coefficient such that the desired gain is
realized using the concept of constant gain circles.

Solution:  (a) The stability of the device is tested via (9.24) and
(9.29), with the results

1= 83,07 - IS, + 147
2|81/ [S|

k= = 2.17

and
|a] = 81,82~ S155y] = 042
Because & > 1 and |A| < 1, the transistor is unconditionally stable.

{b) We next compute the maximum gain for the optimal choice of
the reflection coefficients (i.e., I';, = S,,* and I’y = S,*)

Gsman = ———— = 1.33 or 125 dB
L= [Sy]

Gl = —— = 1.56 or 194 dB
= iS2]

Gy = |Sy|® = 42.25 or 16.26 dB
Therefore, the maximum unilateral transducer gain is given by

GTUmax = GSITIH}I.GOGLITIQX - 88.02 or 19.45 dB

(c) Since the source matching network (I's = §;,* ) and the transis-
tor combined already provide a gain of 17.51 dB, we have to chose
I'; in such a way that G; = 0.49 dB. This means that I'; has to

reside on the re, = 0.38,d, = 0.48£35° circle, as shown in Fig-
ure 9-15. If we choose I, = 0 03 + j0.17, the output matching net-
work reduces to a single element (i.e., a series inductor with a value
of L = 0.49 nH) provided the ioad is equal to the characteristic

impedance (Z; = Z;).
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Figure 9-15 Constant ioad gain circle in the Smith Chart.

If the amplifier is operated over a range of frequencies, the
gain has to be determined for a corresponding number of discrete
frequency points due to the changing S-parameters.

For the case where |S;| > 1 (if = 11 for the input port and ii = 22 for the out-
put port) it is possible for a passive network to produce an infinite value of G; (i = §
or L, respectively). This situation occurs when T; = S;!, meaning that the real com-
ponent of the impedance associated with T, is equal in magnitude to the negative resis-
tance related to S,;. Thus, the two resistances cancel each other and oscillations will
result: the amplifier is unstable. To avoid this problem, we plot the constant gain circles
for |$;;] > 1 and the corresponding stability circle and choose I'; in such a way that it is
located on the desired gain circle but also resides inside the stable region.

9.4.2 Unllateral Figure of Merit

The unilateral design approach discussed in Example 9-8 involves the approxima-
tion that the feedback effect, or the reverse gain, of the amplifier is negligible
(8;, = 0). To estimate the error due to this assumption, the ratio between the trans-
ducer gain Gy, which takes into account S,, and the unilateral transducer gain Gy,
can be formed. Using definitions (9.8) and (9.12), we find
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1 _ L (9.42)
GTU ’ 812521 rLrS 2

T(T=5T(1-5,Tp)

where G < Gy

The maximum value of Gy, and therefore the maximum error, is obtained for
the input and output matching conditions (I's = Sll and I'; = 522) Therefore, (9.42)
becomes

Gr _ 1
G - * _# 2 (9°43)
TUmax _ SudaSxSu
2
(=S = |55%)
This can be used to set bounds on the error fluctuation
G
1+ s =L <1-v)? (9.44)
Gry
where U is known as the frequency-dependent unilateral figure of merit:
U= 1S 12l 1S 21l S22 [S14] (9.45)

(1=18y,) (1~ S

To justify a unilateral amplifier design approach, this figure of merit should be as small
as possible. In the limit, as G approaches Gy for the ideal case of S;, = 0, we see
that the error does indeed vanish (i.e., U = 0).

RFEMW—
Example 9-9: Unilateral design applicability test

For the amplifier discussed in Example 9-8 estimate the error that is
introduced by making the unilateral design approximation.

Solution:  Substituting the S-parameter values into (9.45), the
unilateral figure of merit is found to be

[S12l[S21 12l [S1al

=
(1-181| ) = |SpH

= 0.0812
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The maximum error can then be estimated from (9.44):

GT
0.86< —<1.18
GTU

This implies that the theoretical value for the transducer gain can
deviate from its unilateral approximation by as much as 18%. Prac-
tically, however, the actual difference often is much smaller. This
becomes apparent if we substitute the values obtained in Example
9-8 into the transducer power gain definition (9.8). It is found that
Gy = 6286 or 17.98dB, which compares favorably with
Gy = 03.10 or 18 dB. In other words, we introduced an error of
less than 1%.

The unilateral figure of merit computation constitutes a very
conservative, worst case error estimation.

9.4.3 Bilateral Design

For many practical situations the unilateral approach may not be appropriaie
because the error commiited by setting Sy, = 0 could result in an intolerably impre-
cise design. The bilateral des:gn takes into account this feedback. Instead of the uniiat-
eral matching l"s =3, and l"L = §,,, it deals with the complete equations {see
{9.15b) and (9.15¢)] for the input and output reflection coefficients

N SpSuly_ Sy -TA
R T R TN

r; =S (9.46a)

SSuls _ Sp-TsA
1-Sply  1-5,1,

r‘:: Syy + (9.46b)
which require a simultaneous conjugate match. The meaning of simultaneous implies
that matched source and load reflection coefficients I'y;¢ and [y, have to be found
that satisfy both coupled equations. If the device is potentially unstable, then a simulta-
neous complex conjugate does not exist. The solution approach to obtain these optimal
coefficients is outlined in Example 9-10. The final results, for the matched source
reflection coefficient I' ;¢ is
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r,.- B 1By A 9.47
“5-2_6'1_5 (C_‘J—_ 947)

where
Cy = S, -SpA and By = 1-|Sy|* - A7 + |5, (9.48)
Similarly, the matched load reflection coefficient I'y;, is

T = B, 1 (82)2 4C; (9.49)
ML T 20, 240G, c, '
where
Cy = Sy -SyA and By = 1—|S,|* =11 + S, (9.50)

The solutions (9.47) and (9.49) are derived under the assumption of unconditional
stability.

With T, and I'y,s given by (9.47) and (9.49), the optimal matching can be
rewritten as

L 81281 Ty,
Tys = S+ T—S.T.. 7% o (9.51a)
and
* S1281 s
Topz= Sqp bt ————= (9.51b)
ML 22 1- SllrMS

It is noted that the unilateral approach, which decouples input and output ports, is a
subset of the bilateral design approach.

RFEM W=

Example 9-10; Derivation of simultaneous conjugate matched
reflection coefficients

Derive the reflection coefficient expression (9.47).

Solution:  Starting from (9.46a) and (9.46b), we see that
(1-8,T ) (Tg-8,,) = TS5 (9.52a)



494 Chapter 9 ¢ RF Transistor Ampilfier Designs

(1-8,,ToNT; —Sp) = [sS,S,, (9.52b)
Solving (9.52a) for I'; yields
S -T.
r,=—21=% 9.52¢)
A-8,,T

Substituting (9.52¢) into (9.52b) results, after some algebra, in
T5(S1 - Sp8) - Tg(1 + S, = S22 = 1a17) = =57, + 5,47
* 2 2 (9°522d)
leads to the standard quadratic equation

c,
whose solution 1s

r,. = 21 _1 By 4C: 9.52f)
ws = 3e--3z) o.

The negative sign in front of the square root is picked to ensure sta-
bility (k> 1).

An identical analysis approach for the load side leads to a
quadratic equation for I'; whose solution yields T, .

Example 9-11 demonstrates the use of simultaneously complex conjugate reflec-
tion coefficients for the design of an amplifier with maximum gain.

RFEMW—
Example 9-11: Amplifier design for maximum gain

A BJT with I, = 10 mA and V. = 6 V is operated at a fre-
quency of f = 2.4 GHz. The comresponding S-parameters are:
S = 03430°, S, = 02£-60°, §, =25/-80°, and
S5, = 0.2£-15°. Determine whether the transistor is uncondition-
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9.4.4

ally stable and find the values for source and load reflection coeffi-
cients that provide maximum gain.

Solution:  The stability of the transistor is determined by com-
puting k and |A| based on {9.24) and (9.2%) with the explicit result
of k = 1.18, JA] = 0.56. Since k> 1 and |A| < 1, the transistor is
unconditionally stable.

As we see from the S-parameters of the transistor, ), has a
relatively large magnitude and the use of the unilateral design
method for the amplifier does not appear appropriate, suggesting the
bilateral approach instead.

Using (9.48) and (9.50), we find the coefficients
C,=019+j006, B, =074, and C, = 0.03+;0.07,
B, = 0.64, which allow us to compute the simultaneously complex
conjugate  source and load  reflection  coefficients
g = 0.30£-18° and Ty, = 0.12.£69°, respectlvely It should
be noted that these values differ significantly from S 1 and Sn,
which are the basis for the unilateral design.

Applying (9.8), with T'; and T'g replaced by I';,, and Ty,
we find the transducer gain to be G; = 8.42 dB. This also happens
to be the maximum transducer gain G, -

The discrepancy between unilateral and bziateml gain is best
seen in the large differences in phase between S“ and Uyeo as well
as .5'22 and Ty .

Operating and Available Power Gain Circles

495

For the situation where the reverse gain of §;, cannot be neglected, the input
impedance is dependent on the load reflection coefficient. Conversely, the output
impedance becomes a function of the source reflection coefficient. Because of this
mutual coupling, the unilateral approach described in Section 9.4.1 is not appropriate to
design an amplifier for a predetermined gain.

In the bilateral case, which takes into account the mutual coupling between input
and output ports, there are two alternative design methods to develop amplifiers with a
specified gain.
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The first method is based on the use of the operating power gain G given by
(9.14). Here we attempt to find the load reflection coefficient I';, assuming that the
source is complex conjugate matched to the input reflection coefficient fi.e., Iy = T},
where I';, is computed based on (9.9a)]. This method yields an input voltage standing
wave ratio of VSWR,, = 1.

The second method uses the available power gain G, definition of (9 13). In this
case we assume perfect match on the output side of the amplifier (I'y = l“m,t ), and the
load is chosen in such a way as to satisfy the gain requirement. This method is prefera-
ble if the output standing wave ratio should be unity (i.e., VSWR_, = 1).

Operating Power Gain
To develop the design procedure based on using the operating power gain (and
thus ensuring VSWR, = 1), we rewrite (9.14) in the form

2 2
a-e sy (1-r,*)]S,]

- 2 2 8,181, |2
(1= [T L = ST (1- Sy + 212 L )|I—Snl“,f
1=8ply

= ga|S2I|2

(9.53)
where we use (9.9a) for I, . The factor g, defines a proportionality factor given by

(1
As shown in Example 9-12, (9.54) can be rewritten in terms of a circle equation

for the load reflection coefficient I'; ; that is,
|1“L—dgo| =r, (9.55)

2
-1

2

-7
SuSilL)? 2 |1-8S,T,[ - |5, - AT
Posry Josard ISt e

g, = (9.54)

-8+

where the center position d g, 18

* *
8,(S3 - AS)))

= (9.56)
- 1+ go(‘sn‘z - l&|2)
and the radius r s 1s defined as
Jl - 2kgo[S 125, "‘80|512321| 9.57)

’
o |1 +80('522|2 |A|2)|
with k denoting the Roulette stability factor as defined in (9.24).
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Example 9-12: Operating power gain circle derivation

Starting from (9.54), derive the circle equation (9.55) in the complex
I'; -plane.

Solution:  First we rewrite (9.54) in the form
2
i 1-|ry)
2 2 2 2 *
After multiplying both sides of (9.58) by the denominator and rear-
ranging terms, we see that
T2 +8,(|Sx)? - !A|2)]2 ~2g,Re{T(S,,—AS})} = (9.59)
=1-g(1-[Sy|D

Dividing (9.59) by [1 + g,(|S2|2 - |Al?)], we find

28, Re{T (S -AS}D}  1-g,(1-|S,H
1+ 8,(|55,)2 - 42) 1+8,(|5x]* - 14%)
This equation can already be recognized as a circle equation of the
2 2 . L
form |[I';-d s = Te, where the circle center d g, 18 given by
(9.56) and the radius Te. is computed from
2 *

2 _ 1-80-15ul) | g,(Sp-asy)”

o 1+g,(ISnl* =A%) L+ g, (S~ 1417

(9.58)

8o

ry)? -

2

_{1-g,(1- (1101 + 8,822 - A1) + g, |5, - AS) |1
[1+,(S2)2 - 1A1)1°
1= go(1=|Spy|2 - |S52|? + |A2) - g2M
[L+g,(|Sx|? - 14112
- 1-2g,[8125,|k - g2M
[1+g,(S5/% - A1)

where £k is the stability factor defined in (9.24) and M is a constant
given by
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M= _|S1]|2)(|S22|2_|A|2)_|522_AST1 P = [S08y?
Thus, for the square of the circle radius we obtain
2o 1-28,[S0Sy[k+ 85[5125212
% (1 +80(|Szz|2—|A|2)]2
which agrees with (9.57).

The following example demonstrates the design of an amplifier based on the bilat-
eral method. It targets a specified gain using the constant operating gain circle
approach.

RFE&EMW—

Example 9-13: Amplifier design using the constant operating
gain circles

Use the same BJT as described in Example 9-11, but instead of
Grmax = 842 dB, design an amplifier with 8 dB power gain. In
addition, ensure a perfect match on the input port of the amplifier.

Solution:  As shown in Example 9-11, the transistor is uncondi-
tionally stable. Because a perfect match on the input port must be
maintained, we employ the operating power gain circles in our

design.
First we compute the value of factor g, ; that is,
G
g, = —— = 1.0095
© o Sal?

where G = 6.31 is the required 8 dB operating gain. Substituting
g, into (9.56) and (9.57), we find center and radius of the constant
operating gain circle in the I'; -plane. The corresponding values are
ds., = 0.114£69° and e, = 0.35. The constant gain circle is
shown in Figure 9-16.
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Figure 9-16 Constant operating power circle in the I'; -plane.

There is a great variety of possible choices for the load reflec-
tion coefficient that ensures a G = 8 dB operating gain. To simplify
the output matching network, we pick I'; at the intersection of the
constant gain circle with the constant resistance circle r = 1 (see
Figure 9-16). The value obtained at that point is I'; = 0.26£-75°,
With I'; known, we can next find the source reflection coefficient
that must be the conjugate to the input refection coefficient as given
in (9.9a):

T, = (S n - Al
1-5,1;
Based on the previously computed values, we check the correctness

of our approach. Substituting I',, and I'; into (9.10), we find that
the transducer power gain is indeed 8 dB.

*
) = 0.28.£-55°
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The complexity of the input matching network is directly
affected by the appropriate choice of I'y because of the requirement
Iy = Ty, where T, is a function of T'; .

In Example 9-13 we pick the value of I'; arbitrarily (residing on the desired gain
circle) and compute a corresponding input impedance such that I'g = T , assuming
that there are no restrictions imposed on the value of I'y. Unfortunately, in many prac-
tical applications, 'y has to satisfy certain constraints (for example, to stay within a
desired noise performance). Such additional conditions may therefore restrict our free-
dom in using I'; and, as a consequence, limit the possible choices for I'; . One way to
satisfy both requirements (I'; residing within an appropriate gain circle, and I’y sat-
isfy a particular noise requirement) is via trial-and-error, whereby we arbitrarily pick
I'; and see whether the corresponding I's meets design specifications. This method is
simple but very tedious and time-consuming.

A more scientific approach relics upon mapping the constant gain circle (9.55) in
the I'y -plane into a circle in the ' -plane, i.e.,

ITg—d,| = r, (9.60)

where the equations for the circle radius Tes and its center d, are obtained from the
requirement that I' = I';, . This can be written as

. _ Sy-alg
T = l—_m {9.61)
or
S,-Ts
r,=>2_2F% (9.62)
A-3,,T¢
Substituting (9.62) into (9.55) gives us
S,-Te z
U5 gl = (9.63)
A - S22 rs 30 30
which can be rewritten in the form of (9.60), where the circle radius is
r, |58
gol 12 21| ©9.64)

% 7 U= Spd, 7= 2 [S4]7]
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and the center is given by
_ (1- Sndgo)(S” - Adgo)* - rgoA*Sn
&s ‘1 —-Sna'go|2—r§o|522|2

(9.65)

The derivation of (9.64) and (9.65) is left as a problem at the end of this chapter. The
example of constant gain circle mapping is discussed further in Section 9.5, Example
9-14.

Available Power Gain

In those cases where perfect matching on the output side of the amplifier is
required (VSWR_, = 1), the available power gain approach should be used instead of
the previously presented operating gain method. For this situation, a constant available
gain circle equation can be derived in the same fashion as (9.55) is obtained. The result
of such a derivation is a circle equation which relates the source reflection coefficient to
the desired gain;

|1“3—dga| =g (9.66)
where the center position d, is

8,51 - Aszz*)*

= (9.67)
S T+g,(|Su*-1a1%»
and the radius re, is defined as
2 2
;o= «/1 - 2"‘3a|312521| + 8a1512521| 9.68)
%o |14 g,([S 1> - A1)
The proportionality factor g, is computed as
G,
g, = —=— (9.69)
N

where G, is the desired power level.
Similar to the constant operating power circles, a constant available power circle

can be mapped into the I'; -plane using
|l" 1—d

o] = T, (9.70)

with the circle radius given by
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- rg.,lslzszll ©.71)
o= Sudg P IS0l
and the center location defined by
(1 —S“dgﬂ)(Szz—Adga)* —rgaA*S“ ©72)

% = |1~ S1dg |~ rk [Syl?

We see that rg and &, for VSWR,,, = 1 have their comrespondence to r, and
d, for VSWR;, = 1 with S 11 in (9.71) and (9.72) replaced by S,,.

9.5 Noise Figure Circles

In many RF amplifiers, the need for signal amplification at low noise level
becomes an essential system requirement. Unfortunately, designing a low-noise ampli-
fier competes with such factors as stability and gain. For instance, a minimum noise
performance at maximum gain cannot be obtained. It is therefore important to develop
a method that allows us to display the influence of noise as part of the Smith Chart to
conduct comparisons and observe trade-offs between gain and stability.

From a practical perspective, the key ingredient of a noise analysis is the noise
figure of a two-port amplifier in the admittance form

R 2
F=F,. + Eil Y- Yoy (9.73)
or in the equivalent impedance representation
G
F=F_+ R—:|ZS— Zopt| (9.74)

where Zg = 1/Y is the source impedance.

Both expressions are derived in Appendix H. When using transistors, typically
four noise parameters are known either through datasheets from the FET or BJT manu-
facturers or through direct measurements. They are:

* The minimum (also called optimum) noise figure F ;. whose behavior depends
on biasing condition and operating frequency. If the device were noise free, we
would obtain F,, = 1.

* The equivalent noise resistance R, = 1/G, of the device.
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*‘The optimum source admittance Y, = G, + jB,, = 1/Z_, . Instead of the
impedance or admittance, the optimum reflection coefficient T, is often listed.
The relationship between Y, and I, is given by

1-T oy
Yo = Yo7 (9.75)

Since the S-parameter representation is a more suitable choice for high-frequency
designs, we convert (9.73) into a form that replaces the admittances by reflection coeffi-
cients. Besides (9.75) we use

1-T
YS = YOT*'_FS (9.76)

in (9.73). Recognizing that G can be written as Gg = Yo(1-|Tg2)/|L + Ty’ the
final result becomes
4R, |Tg-To°
min t 7~ 2 )
Zo (1-|Tg)|1 + Ty
In (9.77) the quantities F_.., R, and l"n,Pt are known. In general, the design engineer
has the freedom to adjust I'g to affect the noise figure. For I'g = I, we see that the
lowest possible noise figure is achieved, F = F; . To answer the question of how a
particular noise figure, let us say F,, relates to I'y, (9.77) is put into the form
F,-F n:un)
4R,/ Z,

F=F ©.77)

ITs=Topl” = (1= T3t + T (9.78)

which on the right-hand side already suggests the form of a circle equation. Introducing

a constant O, such that

2 Fk"ijn
Qy = ll+ropt| (4Rn/zo)

and rearranging terms gives
(14 QT ~2Re{T T} +|Tof* = Q4 (9.80)
Division by (1 + ;) and forming a complete square yields, after some algebra,

9.79)

2
ry- Top |7 _ k[ L lropt|2 ] ) Q§+Qk(l—|l;opt| ) ©81)
1+ 0 I+ (1+0) (1+0;)
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This is the required circle equation in standard form that can be displayed as part of the
Smith Chart:

2 : 2
ITs-dp|” = (Ts-dp) +Ts—dp) =rp, (9.82)
with the circle center location d F, denoted by the complex number
r
- R Y . t
dFk = dFk + }dﬁ = I—;%( (983)

and the associated radius

_JO T+ 0

Fy — 1+Q,

(9.84)

There are twe noteworthy conclusions that can be drawn from (9.83) and (9.84):

+* The minimum noise figure is obtained for ¥, = F; , which coincides with the
location df, = 'y, and radius rp = 0.

s All constant noise Cll’ClCS have their centers located along a line drawn from the
origin to point I ,, . The larger the noise figure, the closer the center d 7, Moves to
the origin and the larger the radius . .

The following example points out the trade-offs between gain and noise figure for
a small-signal amplifier.

RFEMW—
Example 9-14: Design of a small-signal amplifier for minimum
noise figure and specified gain

Using the same transistor as in Example 9-13, design a low-noise
power amplifier with 8 dB gain and a noise figure that is less than
1.6 dB. Assume that the transistor has the following noise parame-
ters: Fy = 1L.5dB, R, = 4 Q,and [, = 0.5£45°.

Solution:  The noise figure is independent of the load reflection
coefficient. However, it is a function of the source impedance. It is
therefore convenient to map the constant gain circle obtained in
Example 9-13 into the I'¢-plane. Applying equations (9.64) and
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{9.65) and values from Example 9-13, we find the center and radius
of the mapped constant gain circle: dss = 0.29/-18° and
re, = 0.18. A T’y residing anywhere on this circle will satisfy our
gain requirement. However, for the noise figure specifications to be
met we have to ensure that ['g resides inside the F;, = 2 dB con-
stant noise circle.

The noise circle center and its radius are computed using
(9.83) and (9.84), respectively. They are listed below together with
the coefficient @, , see (9.79):

Q, = 02,dp = 042£45°, 1y = 036

The obtained G =8 dB and F, = 1.6 dB circles are shown in Fig-
ure 9-17.

Figure 9-17 Constant noise figure circle and constant operating gain circle
mapped into the I'g-plane.

Notice that the maximum power gain is obtained at the point
where Ty, = 0.30£-18° (see Example 9-11 for the detailed com-
putations), However, the minimum noise figure is obtained at
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Iy = r°1=t = (.5£45°, which shows for this example that it is
impossible to achieve maximum gain and minimum noise figure
simultaneously. Clearly, some compromises have to be made.

To minimize the noise figure for a given gain, we should pick
the source reflection coefficient as close as possible to the location
of 'y, while still residing on the constant gain circle. Arbitrarily
choosing I'¢ = 0.29.219°, the corresponding load reflection coeffi-
cient is found to be I'; = 0.45450° by applying (9.62). The
obtained amplifier noise figure is then computed using (9.77):

2
4R, [Ts=Topl

g = 1.54 dB
" Zo (1-|TgH|1 + Ty

F=F

2
|

The requirements of maximum gain and minimum noise figure
will always be design trade-offs and cannot be met simuitaneously.

9.6 Constant VSWR Circles

In many cases the amplifier has to stay below a specified VSWR as measured at
the input or output port of the amplifier. Typical values range beiween
1.5 VSWR <£25. As we know from our discussion in Chapter 8, the purpose of
matching networks is primarily motivated by the desire to reduce the VSWR at the tran-
sistor. The complication arises from the fact that the input VSWR (or VSWRp) is
determined at the input matching network (IMN), which in turn is affected by the active
device, and, through feedback, by the output matching network (OMN), Conversely, the
output VSWR (or VSWRg,\) is determined by the OMN and, again through feedback,
by the IMN. This calls for a bilateral design approach, as discussed in Section 9.4.3.

To set the stage, let us consider the arrangement depicted in Figure 9-18. The two
VSWRs that are part of an RF amplifier specification are

(9.85)
1 - Ty 1-[Tomn|

The reflection coefficients 'y . oy require further clarification. If we concentrate
on 'y » it is apparent from Section 9.2.1 that the input power P, (under the assump-
tion T'g = 0) can be expressed as a function of the available power P, :

P, = Py(1-{Coun]® (9.86)
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ry=0
' ° | Input Qutput
RF Matching Matching
source Network Network
i | (IMN) (OMN)
Fivw I T, Tonn

m oul

Figure 9-18 System configuration for input and output VSWR.

Postulating that the matching network is lossless, the same power is also present at the
input terminal of the active device

(1- [T D0 - M)
l]. - Fsr‘nt

P, =P, 9.87)

in

in the absence of any matching, Setting both equations equal and solving for |1"1MN|
yields

2 2
R L
IMN |1_rSrin|

1

_ | Tw-Ts l
1- l-'Sl_‘iﬂ

1-TTy)

(9.88)

Equation (9.88) can be converted into a circle equation for I'y that is centered at loca-
tion dy  with radius ry _ such that

2 2
(Fg_df'm”) +(F§_d{"1MN) = I’%IIMN (989)
where
2 *
R 2 (1 _lrlMNl )r
dVlMN = “Viun Viun 2'“ ©:50
1= |TiynTs)
and
1-|T. [5HIT
_ (- T[T 9.91)

VlMN 1 _ |FIMNrsl 2

Here the subscript Vpyyin dy,  and ry  is used to denote the VSWR at the
IMN location.
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In an identical procedure, the circle equation for the output VSWR is found. The
voltage source is attached to the output side and impedance Z; is treated as source
impedance, whereas Z is the load impedance. Therefore, in a perfectly analogous way
the output reflection coefficient becomes

(1= Ty H(1 = T
l" - 1 _ =
IFomn J T

r..-T,

1-T.T

out

l-‘u:rut— r;_
1-T,T

out

(9.92)

We convert (9.92) into a circle equation for I, that is centered at location d Vor with
radius ry_  such that

2 2 2
(Fi-dy,, ) + Ty -dy, ) =7} (9.93)
where
2 »*
1-|T" r
dy =dv +jdl - (- Tomn{ o (9.94)
Vomn Voun Vomn r T 2
1= |FomnT 4|
and

2
v = (1 - |rout| )|r0MN|
OMN 1— ITOMNrle

(9.95)

The previous derivations allow us to draw the following conclusions regarding the con-
stant VSWR circles:

* For minimum VSWR (on the input side: VSWRy,n = 1, |Tpyy| = 0; on the
output side: VSWRyyy = 1, [Fomy| = 0) the circles are located at

= T, (for the input) and dy, = T, (for the output)

dV|MN||l_[ ,[FOMN| =0

mn| = 0
with both radii equal to zero.

* All VSWR circles reside on the line extending from the origin to I";, (input) or
I, (output).

It is important to be aware of the fact that under bilateral matching the input and
output reflection coefficients are functions of source and load reflection coefficients
(T's, T'1). Therefore, the input and output VSWR circles cannot be plotted simulta-
neously, but rather have to be considered one at a time in the iterative process of adjust-
inglgand T} .
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RF&MW—>
Example 9-15: Constant VSWR design for given gain and noise
figure

Using the results of Example 9-14, plot the VSWR o = 1.5 circle in
the I'g-plane as part of the Smith Chart. Plot the graph of
VSWR\ as a function of the I'g position for a VSWRyy = L.5.
Find I’y that gives a minimum reflection on the output port of the
amplifier and compute its corresponding gain.

Solution:  In Example 9-14 we have found I'y = 0.29.£19° and
T'; = 0.45£50° as source and load reflection coefficients that meet
specifications in terms of power gain and noise figure. Since we use
the design based on constant operating gain circles, we obtain a per-
fect match at the input port of the amplifier. However, the output
port is mismatched and the VSWRg, o can be computed from
[T omn| » which is found from (9.92) in conjunction with (9.9b):

l-‘cu.lt - FL

oLl =026
l- l-‘Ll—‘c’ut

|FOMN| =

The result is

VSWRoun = lerM—N\ = 1.69
1-[Fomn
To improve the VSWRn. we can relax the requirements on
VSWRpy and introduce some mismatch at the input. If we set
VSWRn = 1.5, the corresponding input VSWR circle can be plot-
ted in the Smith Chart, as shown in Figure 9-19.

The center of the VSWRp, = 1.5 circle and its radius are
found from (9.90) and (9.91), respectively. The numerical values
yielddy = 0.28£19° and ry = 0.18.

Every point on the VSWRp = 1.5 circle can be expressed
in the polar form

]

rS = dVlMN + "V an exp{ja)
where the angle o changes from 0 to 360°. As o changes, we
obtain a changing I'g, which in turn results in a corresponding I,
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i &
< 2

Figure 8-19 Constant operating power gain, noise figure, and input VSWR circle
in I'g-plane.
and a computed VSWRn. The graph of such a dependence is
shown in Figure 9-20.

As can be observed in Figure 9-20, the VSWR g, reaches its
minimum value of 1.37 at approximately o = 85°. The corre-
sponding source and output reflection coefficients, transducer gain,
and noise figure are as follows:

g = 0.39245°, T, = 0.32£-52°

Gr=1782dB, F = 151 dB
An improvement in VSWR,,1y has been achieved at the expense of
a reduced gain. If the gain reduction becomes unacceptable, then
both source and load reflection coefficients have to be adjusted
simultaneously.

]

Many specifications explicitly prescribe a maximum tolerable
VSWR that the amplifier design must meet. This becomes particu-
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Input and output VSWR

VSWRyn=1.5
t sk N YSWRM S LS

0 50 100 150 200 250 300 350
Angie o, deg.

Figure 9-20 input and output VSWR as a function of angle o.

larly important when dealing with system integration issues where
several units are cascaded.

9.7 Broadband, High-Power, and Multistage Amplifiers

9.7.1 Broadband Amplifiers

Many modulation and coding circuits require amplifier with a wide or broad fre-
quency band of operation. From the RF point of view, one of the major problems in
broadband amplifier design is the limitation imposed by the gain-bandwidth product of
the active device. As pointed out in Chapter 7, any active device has a gain roll-off at
higher frequencies due to the base-collector capacitance in the BJTs or the gate-source
and gate-drain capacitances in the FETs, Eventually, as the frequency reaches the transi-
tion frequency f, the transistor stops functioning as an amplifier and turns attenuative.

Unfortunately IS:n] seldom remains constant over the wide frequency band of
operation, necessitating compensation measures. Besides forward gain |32,| degrada-
tion, other complications that arise in the design of broadband amplifiers include
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* Increase in the reverse gain |§,|, which degrades the overall gain even further
and increases the possibility for a device to fall into oscillation

s Frequency variation of §,, and §,,

* Noise figure degradation at high frequencies

To account for these effects, two different amplifier design approaches are used:
frequency compensated matching networks and negative feedback. In the subsequent
sections we investigate both design techniques.

Frequency Compensated Matching Networks

Frequency compensated matching networks introduce a mismatch on either the
input or output port of the device to compensate for the frequency variation introduced
by the S-parameters. The difficulty with these types of matching networks is that they
are rather difficult to design and the procedures involved are more an art than a well-
defined engineering approach that guarantees success. Frequency compensated match-
ing networks have to be custom tailored for each particular case.

The following example demonstrates some of the key steps required to design a
frequency compensated matching network.

RFEMW—

Example 9-16: Design of a broadband amplifier using a fire-
quency compensated matching network

Design a broadband amplifier with 7.5 dB nominal gain and 0.2 dB
gain flatness in the frequency range from 2 GHz to 4 GHz. For the
design use Hewlett-Packard’s AT41410 BJT, which is biased with
I = 10 mA collector current and V.- = 8 V collector-emitter
voltage. The corresponding S-parameters measured at frequencies of
2, 3, and 4 GHz under unilateral assumption are summarized in
Table 9-4.

Solution:  According to the data provided in Table 9-4 the inser-
tion gain of the transistor is |§|2 = 11.41 dB at f = 2 GHz,
8.16 dB at 3 GHz, and 5.85 dB at 4 GHz. To realize an amplifier
with a nominal gain of 8.7 dB, source and load matching networks
must be designed that decrease the gain by 2.71 dB at 2 GHz and
tncrease the gain by 0.54 dB at 3 GHz and 2.85 dB at 4 GHz.
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Table 9-4  S-parameters of AT41410 BJT (1. = 10 mA,

f,GHz |S,)] Sy Sn
2 3.72 0.61 £165° 0.452-48°
3 2.56 0.62.2149° 044 /-58°
4 1.96 0.62.£130° 0.48 ~/-78°

The maximum gain provided by the source and load are found
from (9.35) and (9.36) and are as follows:

f =2 GHz: Gy, = 202 dB, Gy, = 0.98 dB
f =3 GHz: Gy, = 2.11 dB, G,,, = 0.93 dB

f = 4 GHz: Gg,, = 2.11 dB, G, = 1.14 dB

Although for the general case source and load matching networks
would have to be designed, in this example an additional gain G
that can be produced by the source matching is already sufficient to
meet the amplifier specifications. Therefore, we concentrate on the
development of the source matching netwotk and leave the output
port of the transistor without any matching network.

Since the output of the transistor is directly connected 1o the
load, we have G; = 0 dB. The input matching network should pro-
duce an additional gain of (-3.910.2) dB at f =2 GHz,
{~0.7+0.2) dB at 3 GHz, and (1.7 £ 0.2) dB at 4 GHz. The corre-
sponding constant gain circles are shown in Figure 9-21.

The required input matching network must be capable of trans-
forming points on the constant gain circles in Figure 9-21 to the cen-
ter of the Smith Chart. There are a number of networks that can
accomplish this task. One solution involves a combination of two
capacitors, one in shunt with the transistor and one in series with the
input port of the amplifier, as shown in Figure 9-22. From a known
I'g we can compute the transducer gain by setting I'; = 0 in (9.10).
We can next find the input and output VSWR. Since I'; = 0, the
values for VSWR\y is equal to VSWR , and is found as
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T -l= ;
c A L
('-'"3 9:1:02)d3@2 GHz VA
. ""- i 0N - ‘f\ ';I'

Y 2o iy, AN
s Gs = —0?+02)dB@3GHz %

Figure 9-21 Smith Chart design of a broadband amplifier in Example 9-16.

Z, 0.95 pF

0.64 pF I

Figure 9-22 Broadband amplifier with 8.7 dB gain and 0.2 dB gain flatness over
a frequency range from 2 te 4 GHz.

Vs

1+(S
VR = 163

For the computation of the VSWR at the input port we use

1+ IFIMNl
VSWRnay = T2

where |y | is computed based on (9.88):
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ITimnd =

Iy -Ty = Sll_rS|
The obtained values are summarized in Table 9-5.

Table 9-5 Parameters of a broadband amplifier

f, GHz Is Gr.dB | VSWRpo | VSWRomw
2 0.74/-83° 7.65 13.1 26
3 0.682-101° 757 53 26
4 0.66£-112° 743 20 2.8

As seen from the values provided in Table 9-5, gain linearity is
achieved at the expense of significantly higher VSWR,

As demonstrated in Example 9-16, the addition of a frequency compensated
matching network to obtain an improved gain flatness may result in significant imped-
ance mismatch, degrading the amplifier performance. To circumvent this problem, a
balanced amplifier can be employed.

Balanced Amplifier Design

The typical balanced amplifier block-diagram using a 3 dB Lange or hybrid cou-
pler and a 3 dB Wilkinson power divider and combiner are shown in Figures 9-23(a)
and (b), respectively. The input signal power is split into two, amplified, and combined
at the output. A complete discussion of the theory behind the operation of couplers and
power dividers is given in Appendix G.

Let us first discuss the operation of the balanced amplifier in Figure 9-23(a). Here
the input power launched into port 1 of the input coupler is equally divided in magni-
tude, but with a 90° phase shift between ports 2 and 3. No power is present at port 4.
The output coupler combines the output signals of amplifiers A and B by introducing an
additional 90° phase shift, thus bringing them in phase again. We denote the S-parame-
ters of amplifier A as ST 1+ sz , S; 1 S;z , and the corresponding S-parameters of ampli-
fier B with superscript B. The equations that relate the S-parameters of the entire
amplifier to the S-parameters of individual branches are as follows
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Amplifier A

Amplifier B |

{a) Balanced amplifier using 3 dB coupier

A4 transformer

Amplifier A

Output

Amplifier B

3 dB Wilkinson
power divider

3 dB Wilkinson ]
power divider Nl
A/4 transformer
{b) Balanced amplifier using 3 dB Wilkinson power divider and combiner

Figure 9-23 Block diagram of a balanced broadband amplifier.

|Sn| = %|3?1 "Sfll

1
1521 = §IS21+SgI‘

114 B (9.96)
|312] = 'lSl2+SIZ|

2

|Szzf = %IS‘;Q—S%[

where coefficients 1/2 take into account the 3 dB attenuation, and the minus sign is due
to the 90° phase shift at port 3 that is traversed twice, adding up to 180°.

If the amplifiers in the two branches are identical, then |S;;| = [Sy| = O and the
forward and reverse gain of the balanced amplifier are equal to the corresponding gains
of each branch.
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The operation of the balanced amplifier with Wilkinson power dividers [see Fig-
ure 9-23(b)] is identical. The only difference compared to the power divider is that the
signals are in phase, and we need to add additional A./4 transformers to produce a 90°
phase shift between branches.

The main advantages of balanced amplifiers are that they possess very good
impedance match at the input and output ports (provided that the amplifiers in both
branches have similar characteristics), and one of the two amplifiers can continue oper-
ating even if the other branch shouvld fail completely. The chief disadvantages of bal-
anced amplifiers include increased circuit size and a reduction in frequency response
introduced by the bandwidth of the couplers.

Negative Feedback Circuits

The alternative to frequency compensating networks is the use of negative feed-
back. This allows a flat gain response and reduces the input and output VSWR over a
wide frequency range. An additional advantage of the negative feedback is that it makes
the circuit less sensitive to transistor-to-transistor parameter variations. The disadvan-
tage of such circuits is that they tend to limit the maximum power gain of the transistor
and increase its noise figure,

The term negative feedback implies that part of the signal from the output of the
transistor is coupled back to the input with opposite phase so that it subtracts from the
input signal, thereby reducing it. If the signals are added in phase, the resulting
response will grow and a positive feedback is obtained. The most general resistive feed-
back circuits for BJT and FET are shown in Figure 9-24, where resistor R, constitutes
a shunt feedback and resistor R, a series feedback.

R, R,
Rz RZ
{a) Feedback in BJTs {(b) Feedhack in FETs

Figure 9-24 Negative resistive feedback circuits,
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As discussed in Chapter 7, both circuits in Figure 9-24 at low-frequencies can be
replaced by the equivalent ft-models, as shown in Figure 9-25, where the input resis-
tance r, is equal to infinity for FETs.

Figure 9-25 Low-frequency model of negative feedback circuit.

If we assume for the BJT that
ro(l+g,.R))» R, 9.97)

then r,; in Figure 9-25 can be replaced by an open circuit and the h-parameter represen-
tation can be written as

R, 1
[h] = 2R _ & (9.98)
1+g,R; 1+¢g,.R,

Using the matrix conversion formula from Appendix D, we find the corresponding
S-parameter representation

(S] = % Zo 1+gnR, (9.99)
Y+g,Ry) Zy 1+g,R,y
where
R, Emlo
= — 2 100
A 2+Zo+l+ng2 9.100)
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Assuming ideal matching conditions §,; = S, = 0 (i.e., the input and output
VSWRs equal unity) vields the following equation relating the value of the shunt feed-
back resistor to the series feedback resistor R, :

Ry=2__~ 9.101)

where the characteristic impedance Z,; and transconductance g, are used.
Substituting (9.101) into (9.100) and (9.99) gives

0 Zo
[S] = R+ 2 9.102)
PR B
Z,

As seen from (9.99) and (9.102), both gain flattening and perfect match can be
achieved by choosing appropriate values for the feedback resistors R, and R,. The
only limitation arises from the requirement that R, in (9.101) must be nonnegative; that
is, there exists a minimum value &m,. that limits the range of g,, to

R, 1-5;
Em2 g”‘min = Z_g = TO_ (9.103)
Any transistor with g, satisfying condition (9.103) can be used in the negative feed-
back configuration shown in Figure 9-24.

The analysis of the feedback circuit is applicable only for ideal devices operated
in the low-frequency range where all reactances are neglected. In practical applications
the presence of the parasitic resistances in the transistor must be taken into account,
resulting in modified values of the feedback resistors. In addition, at RF and MW fre-
quencies the influence of internal capacitances and inductances cannot be neglected,
and additional reactive components in the feedback loops enter the analysis. The most
common practice is to add an inductance in series with the feedback resistor R, . This is
done to reduce the feedback from higher frequencies and thus compensate for §,, -
related roll-off.

The following example demonstrates the use of negative feedback for a broad-
band amplifier design where the feedback resistors are first computed theoretically and
then adjusted using a CAD software package.
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“RF &M W
Example 9-17: Design of a negative feedback loop broadband
amplifier

The BIT BFG403W is biased with Vor = 3 Vand /- = 33 mA
(B = 125). The corresponding S-parameters in common-emitter
configuration are listed in Table 9-6, where a 500 Q2 resistor has
been added to ensure stability.

Design a broad-band amplifier with G, = 10 dB and a band-
width ranging from 10 MHz to 2 GHz by using a negative feedback
loop.

Table 9-6 S-parameters for the transistor in Example 9-17

HMHz | Sy) | £Su | |Su|l | £Sa | S | 451 | ISnl | £8»

i0 0.877 -0.3 7.035 179.6 | 1x107™* | 668 0.805 -0.1

100 0.876 -24 7.027 1761 | 7x107 859 0.805 -14

250 0.870 =59 6.983 170.2 | 0.002 84.3 0.803 =34

500 085¢ | -115 6.834 160.6 0.003 80.5 0.797 6.6

750 0820 | -16.9 | 6.607 1514 | 0.004 76.0 0.789 9.8

1000 0783 | -21.7 6.327 1428 | 0.005 68.2 0777 | -127

1500 0700 | 296 | 5.711 127.2 | 0.007 74.1 0755 | -18.1

2000 0.619 -35.7 5.119 113.8 0.007 74.1 0.735 -23.0

Solution:  As seen from Table 9-6, the minimum gain of 14.2dB
is attained at f = 2GHz, which is well above the required trans-
ducer power gain of G, = 10dB.

Before continuing our approximate analysis, we have to ensure
that condition (9.103) is satisfied. The value of r  is found to be
r. = B/g,, = 984 Q, where the transconductance g,, is com-
puted as g, = I-/Vy = 0.127 §. Thus, the negative feedback
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analysis is applicable since condition (9.103) is satisfied even for
R, =0.

The next step involves an estimation of the resistances R, and
R, . Because the desired gainis G = 10 dB, the low-frequency S,,
coefficient should be equal to —3.16. Here the minus sign is due to
the 180° phase shift of the common-emitter configuration. Substitut-
ing this value into (9.103) yields

Ry = Z4(1-5,) = 208 Q2

Applying (9.101), we compute the value for the series feedback
resistor R, :
2
R, = @ 1. 4.1 Q
Rl Em

The resulting insertion gain of the feedback network is listed in the
second column of Table 9-7. It is observed that the negative feed-
back makes the gain response of the amplifier more uniform at the
lower frequencies, unfortunately at too low a level. The discrepancy
between the expected gain of 10 dB and the obtained value of
[Sn|? = 7.5 dB is largely due to the fact that we neglected all para-
sitic resistances in the transistor. Such parasitics include the base
resistance that is connected in series with r, and thus reduces the
effective transconductance g,,. Furthermore, the emitter resistance,
which is in series with R,, has to be subtracted from the obtained
value of R,.

Optimization of the circuit for frequencies up to 500 MHz
using CAD tools results in the following modified values of the
feedback resistances: R, = 276 Q and R, = 1.43 Q. The corre-
sponding insertion gain is listed in the third column of Table 9-7.

As observed from Table 9-7, these new values for the feedback
resistances bring the transistor gain closer to the 10 dB specification
at lower frequency, but it degrades quickly as the frequency
increases. This indicates thata R, = 276 () feedback resistor is too
small at those frequencies and has to be increased. This can be done
by connecting an additional L, = 4.5 nH inductor in series with
the resistor R, (the value of L, is predicted by a separate CAD
optimization procedure).

s
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Table 9-7 insertion gain of the feedback amplifier

1,1/, dB

AMHEz | g o=28Q, | R =260, | =0

R,=410 | R =14q | 27148

L, = 450H
10 7.50 10.01 1001
100 7.50 10.01 10.01
250 750 10.00 10,01
500 750 997 10,00
750 750 993 10.00
1000 7.50 9.88 10.00
1500 751 975 999
2000 754 9.5 9.99

The resulting gain is listed in the last column in Table 9-7. As
seen from the values presented, the addition of an inductor flattens
the frequency response and improves the gain flatness to better than
0.1% over the entire bandwidth.

As the frequency increases, the negative feedback design
approach becomes increasingly prone to parasitic influences. Above
approximately 5 GHz, this lumped element method begins to break
down.

9.7.2 High-Power Amplifiers

Thus far we have discussed the design of amplifiers based on linear, small-signal
S-parameters. When dealing with high-power amplifiers, however, a small-signal
approximation is usually not valid because the amplifier operates in a nonlinear region
and large-signal S-parameters or impedances have to be obtained to conduct the appro-
priate design. Small-signal S-parameters can still be used when designing a Class A
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amplifier. Here the signal amplification is largely restricted to the linear region of the
transistor. However, the small-signal S-parameters become progressively unsuitable for
Class AB, B, or C amplifiers, which operate in the saturation region.

One of the important characteristics of a high-power amplifier is the so-called
gain compression. As the input signal to the amplifier approaches the saturation
region, the gain begins to fall off, or compress. The typical relationship between input
and output power can be plotted on a log-log scale, as shown in Figure 9-26.

F,. (dBm}
T
F, oul, | dB 148 T "‘ ry
dR
Rmt, mds b .
> P, (dB
Rn. mds Rn | 4B " ( In)

Figure 9-26 Output power of the ampilifier as a function of input power.

At low drive levels, the output is proportional to the input power. However, as the
power increases beyond a certain point, the gain of the transistor decreases, and eventu-
ally the output power reaches saturation. The point where the gain of the amplifier devi-
ates from the linear, or small-signal gain by 1 dB is called the 1 dB compression point
and is used to characterize the power handling capabilitics of the amplifier. The gain
corresponding to the 1 dB compression point is referred to as G, 4p and is computed as
G4p = Gy— 1 dB, where G, is the small-signal gain. If the output power P, 14p at
the 1 dB compression point is expressed in dBm, it can be related to the corresponding
input power P, ;4p as

Pout, ldB(dBm)

G14p(dB) + Py 1qp(dBm)
Go(dB) - 1 dB + P, |p(dBm)

Another important characteristic of an amplifier is its dynamic range labeled dj.
The dynamic range signifies the region where the amplifier has a linear power gain

(9.104)
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expressed as the difference between P, |45 and the output power of the minimum
detectable signal P, . . The quantity P, ., is defined as a level X dB above the
output noise power P, ... In most of the specifications, X is chosen to be 3 dB. The
output noise power of an amplifier is given as

P, ou = KTBGyF (9.105)
which, if expressed in dBm, can be cast in the form
P, su(dBm) = 10log(kT) + 10log B + G((dB) + F(dB) (9.106)

where 10log(kT) = —-173.8 dBm at T = 300°K and B is the bandwidth.

As with any nonlinear circuit, high-power amplifiers create harmonic distortions
(multiples of the fundamental frequency). They appear as a power loss in the funda-
mental frequency. In general, Class A operation produces the lowest distortion figures.
For higher-power applications where Class A operation is not feasible, due to low effi-
ciency, Class AB push-pull amplifiers are employed to achieve nearly comparable dis-
tortion levels. Harmonic distortion is specified as the harmonic content of the overall
output expressed in dB below the output power at the fundamental frequency.

An undesirable property of power amplifiers is the occurrence of so-called inter-
modulation distortion (IMD). Although present in any amplifier (like harmonic distor-
tion) it is most prominent in the high-power region of an active device where the
nonlinear behavior has to be taken into account. Unlike harmonic distortions, IMD is
the result of applying two unmodulated harmonic signals of slightly different frequen-
cies to the input of an amplifier and observing the output, as shown in Figure 9-27.

Ot —0
P'm D 'R)ut
|——) T
B, ¥ S

IMD
T &
A ST
w-h e

Figure 8-27 Observing the intermodular distortion of an amplifier.

Due to third-order nonlinearities of the amplifier, the input signals P, (f,) and
P, (f,) create, besides the expected output signals P, (f,} and P, (f,), additional
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frequencies P (2, ~ f,) and P (2f, — f,) . The additional frequency components
can serve a desirable purpose when dealing with mixer circuits (see Chapter 10). How-
ever, for an amplifier one would like to see these contributions to be as small as possi-
ble. The difference between the desired and the undesired power level (in dBm) at the
output port is typically defined as IMD in dB; that is,

IMD(dB) = P_,(f,)(dBm) - P (2f, - f,)(dBm) (9.107)

In Figure 9-28 the output powers P (f,) and P, (2f,~ f,) are plotted versus
the input power P, (f,) on a log-log scale. In the region of linear amplification, the
output power P, (f,) increases proportionally to the input power P, (f,). let us say

P, .(f2) = aP, (f,). However, the third order product Pm(2 f»=f) increases pro-
portional to the third power [i.e., P, (2f,-f)) = o Pm(fz)] Thus, the IMD is
reduced in proportion to the inverse square of the input power. Projecting the linear
region of P (f,) and P, (2f, - f,) results in a fictitious point called the intercept
point (IP). In practice, if higher than third order products can be neglected, the IP
becomes a fixed point, independent of the particular power gain of the amplifier. This
allows us to us the IP as a single number to quantify the IMD behavior.

£ (dBm)
A
12,

P25~ 1)

Y

‘Dout, mds

> F,(dBm)

‘Rn. mds
Figure 928 Recording of IMD based on input-output power relation.

Also shown in Figure 9-28 is a quantity called spurious free dynamic range, d £
which is defined as

d(dB) = —[IP(dBm)—GO(dB) P, (dBm)] (9.108)

in, mels
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Typical values for a MESFET are P, 4 = -100 dBm, /P = 40 dBm, and
d; = 85 dB.

9.7.3 Multistage Amplifiers

A multistage amplifier circuit should be considered if the power gain requirement
of the amplifier is so high that a single stage may not be able to achieve it. A typical
example of a dual-stage BJT amplifier is shown in Figure 9-29.

Z, Q &
MN, MN, MN,

Vs e = Z,

Figure 9-28 Dual-stage transistor amplifier.

Besides the typical input and output matching networks (MN; and MN;), this
configuration features an additional so-called interstage matching network (MN,)
for matching the output of stage 1 with the input of stage 2. In addition to providing
appropriate matching, M N, can also be used to condition the gain flatness.

Under the assumption of optimally matched and lossless networks, let us summa-
rize the most important dual-stage performance parameters. The total power gain G,,,
of a dual-stage amplifier under linear operating conditions results in a multiplication of
the individual gains G, and G,, or in dB

G(dB) = G(dB) + G,(dB) 9.109)
An increase in gain performance is unfortunately accompanied by an increase in the

noise figure, as discussed in Appendix H. Specifically, if F, and F, denote the noise
figures associated with stages 1 and 2, we obtain a total noise figure

Fy-1
Gl

In addition, if the minimal detectable signal P, .. at 3 dB above thermal noise at the
input is given by P = kTB+3 dB + F|, the minimal detectable output power
P mas Decomes

Py mas(dBm) = kTB(dBm) + 3dB + F,,(dB) + G,,,(dB) (9.111)

(9.110)

in, mds
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The dynamic properties are also affected. For instance, Rhode and Bucher (see Further
Reading) have shown that the previously mentioned third-order intercept point changes to

1

"Fia(dBm) = 7775 (@m) + 1/(G,1P,) (@m)

(9.112)

where 1P, and IP, are the third order intercept points associated with stages 1 and 2.
Finally, the total spurious-fre¢ dynamic range d s, is approximately

d po(dBm) = 1P (dBm) = Py g (dBm) (9.113)

Equation (9.113) also reveals that the addition of a second stage reduces the total
dynamic range.

RFEMW-+
Example 9-18: Transistor choices for multistage amplifier
design

Design an amplifier with P, | ;5 = 18 dBm and a power gain not
less than 20 dB. Using the transistor choices listed in Table 9-8,
which shows pertinent characteristics at the operating frequency of
f =2 GHz, determine the number of stages for the amplifier and dis-
cuss the choice of an appropriate transistor for each stage. In addi-
tion, estimate the noise figure F,, and the third-order intercept point
1P, of the amplifier.

Table 9-8 Transistor characteristics for Example 9-18.

Transistor F[dB] GaxldB]l | Py, 1gg[dBm] | IP[dBm]
BFG505 1.9 10 4 10
BFG520 1.9 9 17 26
BFG540 2 7 21 34

Solution:  Since the output power should be 18'dBm, the only

transistor choice for the output stage of the amplifier is BFG540.
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Because the output power of the amplifier P, |4z = 18 dBm is
much lower than P, 45 of the BFG540, it can operate at maximum
gain of G = 7 dB. This means that the remaining stages of the ampli-
fier must be able to provide at least 20 dB — 7 dB = 13 dB of gain.
Thus, ocur amplifier should have at least three stages.

For the last stage to have 18 dBm output power, the second-
stage transistor should be able to produce a power level of
Py, 1a8 =18 dBm -7 dBm = 11 dBm, which eliminates BFG505
from the list of possible candidates. Since the BFG540 has a much
higher power handling capability than necessary for the second
stage, we choose BEG520.

Due to the fact that P, | g = 11 dBm is much lower than the
1-dB compression power of the BFG520, the second-stage transistor
will also operate well below the compression point and the maxi-
mum gain will be equal to G_,, = 9 dB. Therefore, the transistor
in the first stage has to have a minimum gainof G=13dB-9dB =
4 dB and be able to provide 1’5'0‘lll =11 dBm -9 dB = 2 dBm. Thus,
the BFG505 is more than adequate for the task with P, = 2 dBm
and G, = 4dB. The input power to the amplifier is then
P, = -2dBm.

As shown in Appendix H, the noise figure of the entire ampli-
fier is computed as
Fro1 Fy-l

G, G,G,
and is minimized if the gain of the first stage is high. The BFG303
cannot provide a gain higher than 6 dB because in this case (for a
given P, ) it reaches the compression point. This difficulty is avoided
if the BFG520 is used as the first stage. We can design the first stage
for maximum gain and the second stage for necessary power to drive
the output transistor. We can also adjust the gains of the individual
stages so that none of the transistors reaches the compression point.

The block diagram of the resulting amplifier is shown in Figure
9-30, where the gain of each stage is chosen according to the preced-
ing discussion. The noise figure of this amplifier is predicted as
Fy-1 Fu-1

G, * GG,

Ftot=Fl+

F,

O

= F + = 2.13dB
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G,=9dB G,=7dB  G,=4dB

P, =18dBm

BFG540)

P.,=7dBm  Pu., =14dBm

Figure 9-30 Block diagram of a three-stage amplifier.

The output power at the third-order intercept point is calculated
using (9.112) and modified for a three-stage amplifier

1 _
L/1P, + 1/(G,1P5) ¥ 1/(C,G,IP,) -0 4Bm

where the preceding formula was obtained from (9.112) by first
computing the 7P of the first two stages and then resubstituting it
into (9.112).

iP =

The above analysis is actually one of the first steps reguired in
an amplifier design process. Here the crucial steps of picking suit-
able transistor types and deciding on the number of stages are
made. They then become the starting point of a detailed perfor-
mance analysis.

9.8 Summary

This chapter deals with a broad spectrum of amplifier design concepts. First, the
various power relations are defined. Specifically, the transducer power gain

_ a-r)isu - |rg®
[1 =TTyl - 8,T )

as well as the available and operating power gains are of key importance. We next
establish the various input and output stability circle equations and examine the mean-
ing of unconditional stability. Specifically, the factor
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. 1-|s,1|2-|322|2+m|2>l
212§

is employed to assess the unconditional stability of an active device. If the transistor
turns out to be unstable, additional series or shunt resistances can be used to stabilize
the device. Next the constant unilateral gain circles are established and displayed in the
Smith Chart. The location and radius equations

S M-g(1-1s.
dg‘ = 812 i and re = 31(2 I ul )
! l-IS,-,-l (1~-g) ! 1—|S,~,~| (1-g)

provide insight as to where certain constant gain values are located under unilateral
design conditions (inverse power gain is assumed negligible). The error committed by
using the unilateral design approach over the bilateral method is quantified through the
unilateral figure of merit. If the unilateral approach turns out to be too imprecise, a
bilateral design has to be pursved, leading to the simultaneous conjugate matched
reflection coefficients (I ¢, Iyy; ) at the input and output ports. The optimal matching

512521 U s
1-5Fps

SIZS?.I FML

*
————and FMLz S22 +
1- SZZFML

Fys = S+
results in amplifier designs with maximum gain. Starting from the operating power gain
expression, circles of constant gain under optimal source matching are derived. Alter-
natively, starting with the available power gain expression, circles of constant gain
under optimal load matching are derived.

We then investigate the influence of noise generated by an amplifier. Using the
noise figure of a generic two-port network

R 2

circle equations for the Smith Chart are computed. The noise figure circles can be used
by the circuit designer to make trade-offs with the previously conducted constant gain
analysis.

An investigation into reducing the VSWR as part of various input and output
matching network strategies results in an addition set of circle equations that quantify
the VSWR at the matching network ports:

1+l 1+ (T
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Combining the various circle representations permit the small-signal amplifier design
based on constant operating gain, noise figure, and VSWR circles, jointly displayed in
the Smith Chart.

For broadband design, we discuss the need to develop frequency compensated
matching networks in an effort to widen the operational frequency range. The use of
negative feedback loops is introduced as a way to flatten the power gain over the broad-
band frequency range.

In high-power amplifier applications issues related to the output power compres-
sion are of major concern since they limit the dynamic range of amplification. An
important figure of merit is the 1-dB compression point:

P 1a8(dBm) = Gy(dB)-1 dB + P, ,,;5(dBm)

Furthermore, an additional undesirable property is the occurrence of intermodular dis-
tortion due to the presence of nonlinearities. Finally, the influences of power compres-
sion, noise figure, and gain are investigated in the context of a multistage amplifier
design.
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Problems

9.1 The available power of an RF source driving an amplifier connected to load

9.2

9.3

Z; = 80 £ can be represented as
2
_1_|bg
= 2
21-rg
Based on the signal flow graph shown in Figure 9-2(b),
(a) Find the power to the load P; interms of I';, I'y, and b;.

byPorZ, =40Q,Z, = 50 Q, Vg = 5V.Z0°, find the available power
P, and the power at the load P, .

Use the signal flow graph in Figure 9-2(b) and establish the validity of equa-
tion (9.8) in Section 9.2.2,

An amplifier is characterized by the following S-parameters:

S = 0.78£-65°,8,, = 2.2/78°,8,, = 0.11£-21°, §), = 0.9£-29°.

The input side of the amplifier is connected to a voltage source with

Vg = 4V .£0°, and impedance Zg = 635 €2. The output is utilized to drive

an antenna that has an impedance of Z, = 85 €. Assuming that the S-

parameters of the amplifier are measured with reference to a Z; = 75 £

characteristic impedance, find the following quantities:

{(a) transducer gain Gy, unilateral transducer gain G, available gain G,
operating power gain G

(b) power delivered to the load P; , available power P ., and incident power
to the amplifier P,
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9.5

9.6

9.7

9.8

A FET is operated at f = 55 GHz and under bias conditions
Vps = 3.2 Vand Iy = 24 mA. The S-parameters are S, = 0.73.£176°,
Sy = 3.32475°, Sy, = 0.05434°, S,y = 0.26£-107°. In the absence
of matching networks aload of Z; = 75 £ and a source of Zg = 30 {2 are
attached. Assume Z, = 50 Q.

(@ Find Gyy, Gyp, G4, and plot the magnitude of Gry for

10Q<Z,<100 Q.
(b) Maich the input side for the unilateral case and find G,
(c) Match both input and output for the unilateral case and compute

Gro = Gryma-

Unconditional stability in the complex T, -plane requires that the
Iy = 1 domain resides completely within the |I',,| = 1 circle, or
|Cy| —rs| < 1, where

85,5, 8" S,
CS=S+122I l,_,landrs=|1221|2
1—|.S'11| 1—|S“|
{a) Derive these two equations.

(b) Find the circle equations for C; and r, and show that
S 12821 < 1=[Spf?.

* 2 Y
Prove that |, - S3,A4|" = [$1,8 2+ (1= [S1)(|S2* - [A1%) . This is a
key identity in the stability factor derivation of Example 9.2.

A BJT has the following S-parameters (see the table below) as a function of
four frequencies. Determine the stability regions and sketch them in the
Smith Chart.

Frequency S S, $7 Sa2

500 MHz 0.70£-57° 0.04 £47° 10.52136° | 0.79£-33°

750 MHz 0.56 £-78° 0.05.£33° 8.6£122° 0.66£-42°

1000 MHz | 0.46£-97° 0.06£22° 7.1£112° 0.57£-48°

1250 MHz | 0.38Z-115° | 0.06£14° 6.0£104° 0.50£-52°

The S-parameters for a BJT at a particular bias point and operating fre-
quency are as follows: §,; = 0.60L157°, §,, = 2.18£61°,
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92.10

9.11

9.12

9.13

9.14
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S, = 0.09L77°, Sy, = 0.47£-29°. Check the transistor stability, stabi-
lize it if necessary, and design an amplifier for maximum gain.

In this chapter we have derived the circle equations for constant operating
power gain. It can be concluded that the maximum gain is obtained when the
radius of the constant gain circle is equal to zero. Using this condition, prove
that the maximum achievable power gain in the unconditionally stable case is

hY
Groax = %S—zll(k - Jk2-1)
12l
where k is the stability factor (k> 1).

A BIT is operated at f = 750 MHz (and with the S-parameters given as
follows: S, = 0.56£-78°, §; = 0.05£33°, §,, = 8.64.£122°, and
8y = 0.66£-42°). Auempt (o stabilize the transistor by finding a series
resistor or shunt conductance for the input and output ports.

In Example 9-2 the stability factor % is derived based on the input stability
circle equation. Start with the output stability circle equation and show that
the same result (9.24) is obtained.

A BJT is operated at f = 7.5 GHz and is biased such that the S-parameter
is given as §;; = 0.85£105°. It is assumed that the transistor is uncondi-
tionally stable so that the unilateral approximation can be applied. Find the
maximum source gain and plot the constant source gain circles for several
appropriately chosen values of g.

A MESFET is used as a single-stage amplifier at 2.25 GHz. The S-parame-

ters at that frequency and under given bias conditions are reported as

§;; = 083£-132°, S, = 0.03422°, Sy = 49271°,

§,, = 0.36£-82° . For a required 18-dB gain, use the unilateral assumption

by setting §,, = 0, and

(a) Determine if the circuit is unconditionally stable.

(b) Find the maximum power gain under the optimal choice of the reflection
coefficients.

(c) Adjust the load reflection coefficient such that the desired gain is real-
ized using the concept of constant gain circles.

A BIT is used in an amplifier at 7.5 GHz. The S-parameters at that frequency
and under given bias conditions are reported as §,; = 0.63/-140°,
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9.15

9.16

9.17

9.18

9.19

S, = 0.08235°, S, =57498°, S, = 047£-57°. The design

requires a 19 dB gain. Use the unilateral assumption and

(a) Find the maximum power gain under the optimal choice of the reflection
coefficients.

{b) Adjust the load reflection coefficient such that the desired gain under
stable operating conditions is realized.

A small-signal amplifier for a BIT operated at 4 GHz is appropriately biased
and has the following  S-parameters: §,; = 0.57£-150°,
S, = 0.12245°, §,, = 2.0£56°, S,, = 0.35£-85°. If a unilateral
design approach is pursued, estimate the error involved.

A BJT with I- = 10 mA and V., = 6 V is operated at a frequency of
f = 2.4 GHz. The corresponding S-parameters are S;; = 0.54£-70°,
S12 = 0.017£176°, S5, = 1.53£91°, and §,, = 0.93£-15°. Determine
whether the transistor is unconditionally stable and find the values for source
and load reflection coefficients that provide maximum gain.

Using the same BJT discussed in the Problem 9.16, design an amplifier
whose transducer power gain is 60% of Gy, . In addition, ensure a perfect
match on the input port of the amplifier.

A MESFET operated at 9 GHz under appropriate bias conditions has the
following S-parameters: S = 1.24-60°, §, = 0.02L0°,
S, = 6.5£115°, and S5, = 0.6£-33°. Design an amplifier that stays
within 80% of Gy, - Moreover, ensure that VSWR, = 1.

In Section 9.4.4 it is mentioned that the constant gain design for a matched
input results in the circle equation

Su-T -
A-8,,Fg %

Show that the center d, and radius r, are given by

;o= "30|3123211
B |- Sudg P - g ISl

2
= 2
rSo

and
_ (.l —Szzdgo)(sll —Mgo)* - r;'DA*Szz

8s = |1 Sppd, |2~ r2 1Sy|?
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9.21

9.22
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For the constant available gain circle |Fs—d 8| = r, [see (9.66)], show
that ‘ :

o g,(8y —ASy)” _ «ll —2kg,|S125,)| "‘«E‘»‘:|-5112'5'21|2
8 = 2 7 and rp, = T_IAIZ
i 1"‘3“('511' —14]2) Il "'Sa(lS][l — Al )l

A BFG197X transistor is biased at Vg = 8 V and I, = 10 mA and has
the following S-parameters measured at f = 1 GHz: §;, = 0.73£176°,
S1» = 007435°, 8§, = 3.32£75°, and S,, = 0.26£107°. Determine
the unilateral figure of merit and compare the transducer gain of the ampli-
fier designed under the unilateral and bilateral assumnptions.

The BFG33 BIT is biased under V- = 5 Vand /- = 5 mA and has the
following noise and S-parameters:

Siy Sp2 52 S |FundB| T R, Q

opt

500 MHz

0.72.£-39° | 0.05.263° |16.22.7135°|0.78 £L-32°| 23 0.64£5° | 58.5

1000 MHz | 0.452-70° | 0.08 £56° |5.13.2109°|0.61 £-43°) 25 |0.56£13°| 61.5

2000 MHz |0.182-115°|0.12.454° | 3.24 £82° |0.494£-54° 3.0 [0.52£39°( 49.7

9.23

9.24

9.25

Design a broadband low-noise amplifier with minimum gain of 10 dB and a
noise figure not exceeding 3.5 dB.

Design a microwave amplifier using a GaAs FET whose S-parameters at
fF=10 GHz are Sy = 0.79£100°, S, = 0.20£-21°,
5, = 6.35£-73°, S,, = 0.74£152°. Analyze the trade-offs posed by sta-
bility, gain, and VSWRs.

A broadband amplifier with nominal characteristics of VSWR;, = 4,
VSWR,,, =2.8, and Gy = 10 dB is used as part of a balanced amplifier
design. Compute the worst input and ocutput VSWR and the insertion gain of
the balanced amplifier if the values listed can vary by as much as 10%.

In Section 9.7.3 we have listed equation (9.112) for the IP definition of a

two-stage amplifier.

(a) Derive a generalized formula for the IP computation of an N-stage
amplifier.
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9.26

9.27

928

9.29

9.30

9.31

{b) Compute the total IP and the noise figure of the N-stage amplifier
assuming that all stages are identical and have IP_, = 35 dBm,
F=2dB,and G=8dB.

Design a 15-dB broadband amplifier using a BJT with feedback loop. Cal-
culate the value of the feedback resistor and find the minimum collector cur-
rent of the transistor. Assume that the amplifier is operated at T = 300°K.

A transistor has the following S-parameters: §;; = 0.61.£152°,
S, = 0.1.£79°, §, = 1.89455°, and §,, = 0.47£-30°. Design an
amplifier for minimum noise figure if F;, = 3 dB, [ = 0.52£-153°,
and R, = 9 Q.

Prove equation (9.113), which states the total spurious-free dynamic range.

An amplifier has a transducer gain of Gy = 25 dB, and a 200 MHz band-
width. The noise figure is given as F = 2.5 dB and the 1 dB gain compression
point is measured as P, 145 = 20 dBm. Calculate the dynamic range and
the spurious-free dynamic range of the amplifier if IP,, = 40 dBm.
Assume that the amplifier is operated at room temperature.

An amplifier has a gain of G =8 dB at | GHz and lists a 1 dB compression
point of P, | g = 12 dBm and the third order intercept point at IP,,, = 25
dBm. Find the third order intercept points for the cascaded amplifier stages 2
and 3. What value of /P, is obtained in the limit of an infinite number of
stages?

Derive a formula for the noise figure of a balanced amplifier. Make the
assumption that the power gains and noise figures of the amplifiers in the
individual branches are G, Gz, and F,, Fp, respectively. Assume that the
balanced amplifier uses 3 dB hybrid couplers at the input and output ports.






CHAPTER 10

Oscillators and Mixers

Wth the advent of modern radio and radar sys-
tems came the need to provide stable harmonic oscillations at particular carrier frequen-
cies to establish the required modulation and mixing conditions. While the carrier
frequencies in the early days mostly reached into the low to mid MHz range, today’s
RF systems easily surpass the 1 GHz point. This has resulted in the need for specialized
oscillator circuits capable of providing stable and pure sinusoidal responses. What
makes the design of oscillators such a difficult task is that we exploit an inherently non-
linear circuit behavior that can only be described incompletely with linear system tools.
Specifically, the smali-signal linear circuit models utilized to represent the active device
provide limited capabilities to handle the complicated feedback mechanism. Moreover,
since an oscillator has to provide power to subsequent circuits, frequency-dependent
output loading often plays an important role. It is for these reasons that the design pro-
cess of oscillators remains more of an art than an exact engineering design task. This
holds particularly true for the high-frequency regime, where parasitic component influ-
ences can significantly impact the overall system performance. Affected in part by the
additional resonance effects of the passive circuit element, it is possible that the oscitla-
tor not only operates at the intended frequency but also at lower or higher harmonics.
Certain system realizations may even cease to oscillate completely.

In the first part of this chapter we concentrate on the negative resistance and feed-
back harmonic oscillators as well as a number of Schottky diode mixers. Once the fun-
damental idea is mastered of how to generate oscillations, we investigate the basic
Colpitts and Hartley resonators before moving to the modern RF circuit design
approaches involving the S-parameters of the active device in conjunction with the var-
ious network configurations.
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In the second part of this chapter, we turn our attention to the basic frequency
translation tasks performed by mixers. Of the many different circuit implementations
for a wide range of applications, the main emphasis in this chapter is placed on down-
converters. A typical application of a mixer in a receiver system is to convert the RF
input signal into a lower frequency intermediate signal that is generally more suitable
for subsequent signal conditioning and processing. This conversion is accomplished by
combining the RF input with a local oscillator signal as part of a multiplication opera-
tion that requires a nonlinear, at least quadratic transfer function. Primarily transistors
and diodes are nowadays in use where present FET technology permits the construction
of mixer circuits up to 50 GHz and with diode mixers already exceeding the 100 GHz
mark.

10.1 Basic Oscillator Model

At the core of any oscillator circuit is a loop that causes a positive feedback at a
selected frequency. Figure 10-1(a) illustrates the generic closed-loop system represen-
tation, while Figure 10-1(b) provides a two-port network description.

¥ Voun
H(w) > " Hy(w) Y,
Va
Ve
Hp(w) | H.(w)
{a) Closed-loop circuit model (b) Network representation

Figure 10-1 Basic oscillator configuration.

The mathematical condition for a circuit to oscillate can be established by combining
the transfer functions of the amplification stage H,(®) with the feedback stage
H g(®) 1o the closed-loop transfer function:

14
-2 = Ho (o) = I\

Ve 1-H(0)H (®) (10.1)

Since there is no input to an oscillator, V;, = 0, to obtain a nonzero output voliage,
Voo the denominator in (10.1) has to be zero. This requirement leads to the
Barkhausen criterion, which is also known as the loop gain equation:

Hp(0)H (®) = 1 (10.2)
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If the feedback transfer function Hp(w) is written as a complex quantity (that is,
Hp(®w) = Hp (®) + jHg{®)] and the amplifier transfer function possesses a real val-
ued gain, H (@) = H,,, we can re-express (10.2) as

1

HA(): HFr(o))

(10.3a)

He(®) = 0 (10.3b)

The conditions (10.2) and (10.3) apply only for a steady-state situation. Initially, we
have to require that i 4o H 7 (®) > 1. In other words, the loop gain has to be larger than
unity to obtain an increasing output voltage. However, the voltage must reach a steady
state (i.e., the amplitude eventually must stabilize). This nonlinear behavior of the oscil-
lator is shown in Figure 10-2.

H, 1\

)= g — Negative slope
¢ {negative resistance)

’l

VQ Voull
Figure 10-2 Output voltage versus gain characteristic.

A negative slope of the curve is needed to ensure a decrease in gain for increasing
voltage. At point |V, | = V,, for Hyg = Hy = Hp,(0) the stable operating point is
reached. A similar curve can be established for the frequency versus loop gain with a
stable resonance frequency f,.

10.1.1 Negative Resistance Oscillator

To explain the idea behind an oscillator we need to understand the seemingly
impossible concept of creating a negative resistance. The requirement of a negative
resistance is best explained by investigating the series resonance circuit consisting of
resistance R, inductance L, and capacitance C. As an input we use a current-controlled
voltage source, as shown in Figure 10-3. The voltage source can represent the output of
an active device, e.g. BJT or FET.
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R

LOR L C
v(i) ):' ’—|

Figure 10-3 Series resonance circuit with voltage-controlled source term,

The governing equation in ferms of the current is written as

d :(t) Rdl(f) (t) -
dr* dt

If we set the right-hand side to zero (i.e., we reach steady state and the voltage ampli-
tude is stable), we obtain the standard solution

4 (10.4)

i(5) = (1, + 1,e %) (10.5)

where oo = -R/(2L) and ®, = J1/(LCY - (R/(2L))?. In general, because o is a
negative quantity, the harmonic response of the resonance circuit will reduce to zero as
time progresses. In the limit, as R reaches zero, an undamped sinusoidal response is
obtained. The goal of an active element in the oscillator is therefore to generate a source
response that compensates for the resistance in the circuit. This can only be achieved if
a negative resistance is provided. Thus, if we succeed i m selecting a nonlinear device
whose voltage-current response is v(i) = vy + R,i + th + ..., then the terms may be
adjusted in such a way as to compensate for R. Indeed, subsumting the first two terms
of this series expansion into (10.4), we see

d* ;(t) dl(r)

dv(r) -R a‘:(r)

L Py (r) = - g (10.6)
Combining the coefficients of the first derivative leads to
R+R =0 (10.7)

as the requirement to set the attenuation coefficient to zero. It is now seen that (10.7)
implies a device with a negative differential resistance:

R, =-R (10.8)
Moreover, to get the oscillations started, we require a positive attenuation coefficient,

which implies R, to be less than —R. This sitvation is equivalent to the transfer fuction
having poles in the right-hand side of the complex frequency domain.
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A direct way to implement such a negative resistance condition is via a tunnel
diode, whose electric circuit representation is discussed in Chapter 6 (see Figure 6-26).
Figure 10-4 depicts both the circuit of a tunnel diode oscillator and the corresponding
small-signal circuit model. Since the tunnel diode already possesses an inherent capaci-
tance, an extra capacitor in the external circuit is not required.

R L R L
Tunnel K Cr
diode
+ Lg
wrr— Ve
R

{a) Tunnel diode oscillator circuit  (b) Small-signal equivalent circuit
Figure 104 Tunnel diode oscillator circuit and its small-signal model.

Circuits like the one shown in Figure 10-4 can be used for oscillators with reso-
nance frequencies up to 100 GHz.

10.1.2 Feedback Osclliator Dasign

Because of their fundamental importance in the development of low-frequency as
well as RF oscillators, let us next focus on the two-port feedback networks, shown
generically in Figure 10-3.

H,(0) H (o)
4 D Yo v, D Yo
1 15 -
ZID Z} DZZ 3 23 2
(a) Pi-type feedback {b) T-type feedback

Figure 10-5 Feedback circuits with Pi- and T-type feedback loops.
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It is straightforward to find the transfer function of the feedback loop. For instance,
for the Pi-network we obtain under high-impedance input and output assumptions

(10.9)

More complicated is the computation of the transfer function H ,(®) of the amplifier.
This depends on the chosen active element and its electric equivalent circuit model. To
demonstrate the concept, we use a simple, low-frequency FET model with voltage gain
)y and output resistance Ry The corresponding loop equation for the circuit depicted
in Figure 10-6 is

WV +IgRp+ 17~ = 0 (10.10)

+| R
4 [l]z. —,,l,,V,l [I]z2 Vs

Figure 10-6 Feedback oscillator with FET electric circuit model.

Solving (10.10) for I; and multiplying by Z. gives us the output voltage V_, from
which the voltage gain is found to be
v —My
Hyw) = = = —— (10.11)
A V,  YcoRp+1
The closed-loop transfer function is thus
-WyZ,Z
Hp(0)H (o) = ot 1 (10.12)

Z,Z,+ 2,2, + Ry(Z, + 2o+ Z3)

This equation allows us to design various oscillator types depending on the choice of
the three impedances in the feed-back loop. To eliminate resistive losses, we choose
purely reactive components Z; = jX; (i=1,2,3). This ensures that the numerator is
real. Further, to make the denominator real, it is necessary that X, + X, + X; = 0,
which implies that one of the reactances has to be the negative sum of the others. It is
understood that negative-valued reactances comespond to capacitors and positive-
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valued reactances identify inductors. For inmstance, if we decide to wuse
X, = =(X, + X,), then, upon substitution into (10.12), the result is
HyX; X, _ My

X, =1 (10.13)
It is apparent that X, and X, must have the same sign but different values according to
(10.13). In Table 10-1 a few possible configurations of the feedback loop are summarized.

Table 10-1 Various feedback configurations for oscillator designs based on
Figure 10-5(a)

X%, 5 ——
X —— — T~
— T
z|| & zz‘ L G L c L, c,
Hartley Colpitts
—w
C= G L G
Clapp )

Two often used realizations are the Hartley oscillator, where X, = oL,
X, = oL,, X, = 1/(®C;), and the Colpitts oscillator, where X, = 1/(wC)),
X, = 1/{wC,), and X; = ®L,, as depicted in Figure 10-7, where a FET is
employed as active device. Here resistors R, , Ry, Ry, and R set the DC bias point.
C; is the RF bypass capacitor, and Cp denotes DC blocking capacitors.

The various choices of L and C element combinations are in practice limited by
the range of realizable values for a given frequency. Often hybrid configurations are
used; if, for instance, the inductance becomes very small, a capacitor connected in
series can yield a larger effective inductive reactance (Clapp oscillator).

Besides the standard common-source {or common-emitter for a BIT) configuration,
common-gate (common-base) and common-drain (common-collector) type oscillators
can be constructed, as shown in Figure 10-8 where all DC biasing elements are omitted.
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VE Voo

R, Rp R, Ry
D Cy D Cy
: M =
i G 3 5
Ry R5$ == ng Rsé ==

"8 o éL'? G L, TG
I 755

{(a) Hartley oscillator {b) Colpitts oscillator
Figure 10-7 Hartley and Colpitis oscillators,

S D
11
G
[
Z,
A
(a) Com;non gate (b) Common source {¢) Common drain

Figure 10-8 Common gate, source, and drain configurations.

10.1.3 Design Steps

What makes the oscillator design so complicated is that the nonlinear electric
equivalent circuit describing the active device (BJT, FET) becomes increasingly com-
plicated as the frequency increases. Moreover, the oscillator has to drive additional cir-
cuits and must therefore provide a certain amount of power. This output loading affects
the oscillator in terms of frequency stability and waveform purity.

To provide the reader with a glimpse of the essential steps involved, we will at
first examine the design of a low-frequency Colpitts oscillator. The A-parameter config-
uration with the appropriate feedback loop is depicted in Figure 10-9. The correspond-
ing Kirchhoff voltage mesh equations involving input, output, and feedback loops are
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Figure 10-9 Colpitts oscillator design.

established by utilizing the output voltage V, = V, = I,/hyy—11(hy/hy). In
matrix form for the unknown currents, we obtain

. hiahy) Ry ,
(hll"JXCl_—“_hzz ) oy JXe I, 0
hyy (1 ) ILr=10 (10.14)
—= —jX -jX
hyy By JAc2 Jdce I 0
1 iXc —iXc2 X Xer-Xe2))

Computing the determinant and setting its imaginary portion to zero results, after
lengthy algebra, in the form

1 1
= i—iﬁ,ﬂa/k“ +(C,+Cy) /L, (10.15)
Furthermore, setting the real part of the determinant of (10.14) to zero, and assuming
that h, « 1, yields a quadratic equation in terms of the capacitor ratio C,/C;:

G <
2

which, under the assumption that hil » 4(hy hoy — Biahs, ), can be simplified 1o
by
= C
V(b —highy) ?
The preceding treatment deals with the A-parameters as real quantitics, an

assumption that generally may not be applicable. In fact, even for moderately high fre-
quencies, the h-parameters attain a significant phase angle. To incorporate the actual

C

10.17)
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frequency-dependent behavior, we need to resort to the equations given in Section
4.3.2. For these situations, explicit formulas as (10.15) and (10.17) are impossible to
derive, and we must resort to a mathematical spreadsheet to find numerical resulis.

RFEM W
Example 10-1: Design of a Colpitts oscillator

For a 200 MHz oscillation frequency, a Colpitts BJT oscillator in
common-emitter configuration has to be designed. For the bias point
of Vg = 3V and I = 3 mA, the following circuit parameters
are given at room temperature of 25°C: Cpze = 0.1 fF,
rpe = 2kQ, rop = 10k, Cpp = 100 fF. If the inductance
should not exceed Ly = L = 50 nH, find values for the capaci-
tances in the feedback loop.

Solution:  The first step involves the determination of the h-
parameters. We compute the values for DC (i.e., f = 0).

YpE
= = - 2000 Q
b = he, 1+ jo(Cyp+ Cge)ag
i0Cp-r
hy = b, = _J BCBE =0
1+ jo(Cgp+ Cpe)rpe
r - joC
oy = by, = BEBnTIOCRD) 33
i0C a1 +g rpp+ jO0Cprr
hy = by, = 1 +J ac(l+8,rgg+ JjOCeTpE) = 0.1 mS

rcE 1+jo(Cpg+ Cpc)rpe
At DC the h-parameters are real and we can find from (10.17) the
ratio between the capacitances C; and C,:
- ha
(hy1hyy = Byahy)
Introducing a proportionality factor X such that C, = KC,, equa-
tion (10.15) is rewritten as
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1 1 jhy C,
= ——— [=+(1+K)-= 10.18
2nc2ﬁ4/hll ( )L ( )

Solving the resonance condition (10.15) for C,, we obtain

2 h
1 IK-» J(l IK) + 16K1t2f2h—22
11
= 12.68pF
8Km2f? P
where the inductance L = 50nH has been used.
From the known C, we next find C, = 1166.6C,, or
C; =14.79 nF, In the preceding design, the transistor’s h-parame-
ters are given under DC conditions. In reality, however, the oscilla-
tor is operated at the resonance frequency of 200 MHz. Here the h-
parameters have the following values:

¢,

'BE .
hy = h,. = = (1881 - j473)Q2
1= e = T 70(Cos + Cacdap 473

_ _ JOCperpr _ 5 4
hy =h, = T3 j0(Copr Cobran 5.9x10 " + j2.4x10
- joC
hy = hyy = —ZEEm=IOCRO) g9 ss

¢ " 1+ jo(Cyp + Cpo)pe

1 JoCpc(l+g,7pp+ jOCpergg)

= (0.11 + j0.03) mS
As seen, the h-parameters at this frequency differ only slightly from
the DC conditions. Therefore, the analysis should equally apply for
this frequency setting and the oscillator will require only a minimal
amount of tuning.

h22=h =

ae

In practice, the situation often arises where the h-parameters
at a given oscillation frequency differ significantly from their DC
values, necessitating substantial tuning. The difference becomes
more significant as the frequency increases.
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10.1.4 Quartz Oscillators

Unlike electric resonance circuits, quartz resonators can offer a number of advan-
tages. A much higher quality factor (up to 10° . . . 105), improved frequency stability,
and immunity to temperature fluctuations are among the chief benefits. Unfortunately,
because quartz crystals are mechanical systems, they cannot be constructed to exceed
approximately 250 MHz.

A quartz crystal exploits the piezoelectric effect whereby an applied electric field
causes a mechanical deformation of the crystal. Depending on the geometric configura-
tion and crystal cut, the crystal performs either longitudinal or shear vibrations at dis-
tinct resonance frequencies.

A typical electric circuit representation for a quartz crystal is shown in Figure 10-
10. The circuit approximates the electric behavior at one of the resonance points for
which the quartz is designed for.

Cd' Lq R‘?
-5

o
II

Figure 10-10 Quartz-resonator equivalent electric circuit representation.

The capacitor €, along with R, and L, describes the mechanical resonance
behavior while C,; denotes the capacitance due to the external contacting of the crystal
through electrodes. Normatly, the ratio between C, and C, can reach values as high as
1000. Moreover, the inductance L, is typically in the range from 0.1 mH to 100 H.

The admittance of this model can be stated as

1

Y = joCy+ -
Rq-l-;[qu— 1/(0)Cq)]

= G+ /B (10.19)

The angular resonance frequency w, is found by setting the imaginary component B to
zero, or

=0 (10.20)

Solution of this equation (see Problem 10.4) using a Taylor series expansion (and
retaining the first two terms) leads to approximate expressions for the series and paral-
lel resonance frequencies:
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R:(C,

@, = ws=m50[1+—9( 0)] (10.21a)
2\L,
_Ra(Co

@y = 0p~ Opo 1- (Lq) (10.21b)

where agy = 1/,/L,C, and @apy = J(C,+ C)/(L,C,Cp). A representative model
is discussed next.

RFEMW-+
Example 10-2: Prediction of resonance frequencies of quartz
crystal

A crystal is characterized by the parameters L, = 0.1 H,
R,=25Q,C,=03pFand Cy = 1pFE Determme the series
and paraliel resonancc frequencies and compare them against the
imaginary component of the admittance given by (10.19).

Solution:  As a first approach to compute series and parallel reso-
nance frequencies of the quartz crystal we use (10.21a) and
(10.21b), respectively:

2

2
R/C 1 RZ/C,
= 1.,._‘1(_9) - 1.,._@( ) = 0.919 MHz
Is fs"[ 2\LJ| 2mfLC,| 2\L

fp = fPo[ (i:)} - /5?1’%2[1 %ﬁ(i—;’)] = 1.048 MHz

The second approach is graphical. At resonance reactance and sus-
ceptance of the circuit equal zero; thus we can plot the imaginary
portion of the admittance given by (10.19). Such a plot is shown in
Figure 10-11, where the absolute value of the suceptance is plotted
versus frequency.

Comparing the graphical results with the analytical approach
(10.21), we see that they are virtually the same.
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107 | Series :

Susceptance |B], &
<

10°% +

10°}

1 -10)]
0 0.9

Parallel
resonance

0.94 0.98 1.02 1.06 1.1
Frequency f, MHz
Figure 10-11 Susceptance response of a quartz element.

Care has to be exercised in selecting quartz crystals due to
their multiple resonances. Depending on the crystal these responses
can be very closely spaced and may result in an undesired oscilla-
tion frequency.

10.2 High-Frequency Oscillator Configuration

As the operating frequency approaches the GHz range, the wave nature of volt-
ages and currents cannot be neglected. As outlined in previous chapters, reflection and
transmission coefficients and the associated S-parameter representation are required to
represent the circuit’s functionality. This requires us to re-examine {10.1) from a trans-
mission line point of view. The Barkhausen criterion has to be reformulated in the con-
text of the reflection coefficients.

Toward re-expressing the loop gain in terms of transmission line principles, we
recall our signal flow chart representation in Section 4.4.5 (see Figure 10-12).

The input reflection coefficient for matched source impedance (Z; = Zy) is

bl _ + SIZSZI - SII_AFL

P = f'Tl - I-SZZFL L l_SZZFL

m

(10.22)
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BIT

(FET) Load

Vs

(b} Equivalent signal flow graph
Figure 10-12 Sourced and loaded transistor and its flow chart model.

where A = §,,5,, - 5,,5,, - This is consistent with definitions given in Example 4-8.
Conducting the computation with respect to the source term,
bg = VGJ-ZB/(ZG + Z,) , we can define the loop gain:

b, T,

Ao i 10.23
by 1-Tyly (10.23)

The equation implies that if
rrg=1 (10.24)

at a particular frequency, the circuit is unstable and begins to oscillate.
The identical circuit situation applies if the output side is considered, implying the
condition

r, o, =1 (10.25)

out

for oscillations to occur.

When the stability factor k = (1—|S;,|” - |Sy|* +1A1%)/(2[Sy||S). see
Chapter 9, is included, the preceding conditions for oscillation can be summarized as
follows:

k<1 (10.26a)
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T, =1 (10.26b)
r, =1 (10.26¢)

out

Since the stability factor is dependent on the S-parameters of the active device we have
to ensure that condition (10.26a) is satisfied first and foremost. If the S-parameters at
the desired frequency do not ensure this requirement, we can switch to a common-base
or common-collector configuration or add a positive feedback to increase instability, as
the following example shows.

RFEMW—
Example 10-3: Adding a positive feedback element to initiate
oscillations

A BIJT is operated at 2 GHz and has the following S-parameters
specified in common-base configuration: §,; = 0.94£174°,
S = 0.013£-98°, §,; = 1.9£-28°, and Sy = 1.01Z-17°.
Determine how the Rollett stability factor is affected by adding an
inductance to the base of the transistor ranging from 0 to 2 nH.

Solution:  Using the definition for £ gives us without inductance
the value
k= (1=|8y]" ~|S2)” + 18%)/(2]S,]|Sy|) = -0.25

Accounting for the inductance can be accomplished by redrawing
the circuit in terms of two networks depicted in Figure 10-13.

Positive
L 1€ foedback

loop

O

- H .
o > -

Figure 10-13 Network representation cf the BJT with base inductance.
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In this case the overall S-parameter representation can be found
by first converting the transistor’s S-parameters into impedance repre-
sentation, followed by adding the Z-parameters of the inductor, and
finally converting the result back into S-parameter form.

Using the conversion formulas described in Chapter 4, we find
the Z-representation of the transistor in common-base configuration:

(Z]. = | —042+/343 -217-j0.097
T |-95.23 - j303.06 -6.88— j321.03

For the inductor the Z-matrix is given by

o 11 | |joL joL

[Llina = Jol [1 1] [icoL j(m‘]

Adding [Z], and {Z];,4 results in the Z-parameters of the entire
circuit, which can then be converted into S-parameters.

To obtain the dependence of the Rollett stability factor as a
function of feedback inductance, we have to repeat the preceding
computations for each value of L. The result of such calculations is
shown in Figure 10-14 (see also file ex10_3.m).

e maa—

06|

Rollett stability factor &

-1.0

Y 08 12 16 20
Feed-back inductance L, nH

Figure 10-14 Roliett stability factor (k) as a function of feedback inductance in
common-base configuration.
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As seen from Figure 10-14, a maximurn instability (minimum
value of k) is obtained by adding a 0.6-nH inductor to the base.

At frequencies in the GHZ range, even the lengths of the leads
can be sufficient to create the desired inductance value in the base of
the transistor.

It is interesting to note that if the oscillation condition is met either at the input or
output port, the circuit is oscillating at both ports. This is directly seen by comparing
the reflection coefficients at the input and output ports. We know that

1 _ 1-8,17,

- = —22 LT (10.27)
1-‘in I5"11 - ArL S
and solving for I'; yields
1-8,,Ts
However, ', can also be written as
Sy, — Al
out - I_Sl_lrs (10.29)
Therefore, we conclude that {(10.28) is the inverse of (10.29), and thus
r,=1/T, (10.30)

as required by(10.26c).

10.2.1 Fixed-Frequency Oscillators

A very popular oscillator design approach involves the two-port design where the
transistor configuration is first chosen such that it meets the requirement of ¥ <1 (an
inductive feedback may have to be added). Next, we select I'; such that |, | > 1 or T'g
such that ‘l"om‘ > 1. Either case implies the other condition. For instance, if |[",,| > 1
we conclude that || > 1 and vice versa. A proof is left as an exercise. The following
example details these steps.
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RF &M W
Example 10-4: Design of a fixed-frequency lumped element
oscillator

A BFQ65 BJT manufactured by Philips Semiconductors is used in
the common-base configuration with biasing conditions specified by
Veg = 3 Vand Vg = 0.9 V. For this case, the transistor has the
following S-parameters measured at 1.5 GHz: §;; = 1.47£125°,
Sy = 0.327£130°, 8§y = 22.£-63°, and S,, = 1.23£-45°.
Design a series feedback oscillator that satisfies conditions (10.26)
atf=1.5 GHz.

Solution:  As the first step in the design process we have to
ensure that the transistor is at least potentially unstable. This can be
tested by computing the Rollett stability factor:

k= (1-|Syf" - S + 18P/ 2IS | |S )y = —0.975

Since k is less than unity, the transistor is indeed potentially
unstable.

Next, we plot the input stability circle to choose a reflection
coefficient for the input matching network. The center and radius of
the input stability circle are computed base on the formulas provided
in Chapter 9:

IS'12S2l

in

S —AS* *
C. = (S 2)

in = "|S—ll|2—_W = 0.271—570

Since |C;y| <riy and [S,y| > 1, the stable region is outside of the
shaded circle, as illustrated in Figure 10-15.

According to Figure 10-15, we have a great deal of flexibility
in choosing the reflection coefficient for the input matching net-
work. Theoretically, any I'y residing inside of the stability circle
would satisfy our requirements. In practice, however, we would like
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Figure 10-15 Input stability circle for the oscillator design.

to choose T'g such that it maximizes the output reflection coeffi-
cient:

- 5,405 p (10.31)
out 2279 S“rs 5
From (10.31) 1t is obvious that T, achieves its maximum value
when I'y = S11 In this case we obtain an infinite output reflection
coefficient, which from (10.26c) results in T, =0 (e,
Z; = £y = 50 Q). The problem with such an approach is that in
practical realizations it is almost impossible to achleve a perfect
50 Q matching. Moreover, as we approach I's = .5‘11 , the oscillator
becomes mcreasmgly sensitive to changes in the load impedance. At
Iy = S“, the slightest deviation from the 50 €2 value results in
ceasing all oscillations. Because of this phenomenon we choose I'g
somewhat close, but not exactly equal, to 57 “

After attempting several values for the source reflection coeffi-
cient, we finally select I's = 0.65£-125°. From the knowledge of
I’y the source impedance is computed as Zg = (13 - j25)Q,
which is realized by a series combination of a 13 Q resistor and a
4.3 pF capacitor, as shown in Figure 10-16.

Next the output reflection coefficient is computed using
(10.31) with the result I, = 14.67£-36.85°. To determine the

T
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Iy T,
Figure 10-16 Series-feedback BJT oscillator circuit.

output m?xching network we utilize (10.26¢) and obtain the value
I, = I, = 0.068£36.85°. This corresponds to the impedance
Z, = (55.6+ jA57)Q = -Z_, and can be realized as a series
combination of a 55.6  resistor with a 0.48 nH inductor.

The final point that has to be taken into account in our design
is the fact that as the output power of the oscillator begins to build
up, the transistor's small-signal S-parameters become invalid. Usu-
ally, the power dependence of the transistor’s S-parameters results in
a less negative R, = Re{Z_,} for increasing output power. Thus,
it is necessary to choose R, = Re{Z,} suchthat R, + R, <0.In
practice, a value of R; = —R_,/3 is often used. However, we have
to be careful with such a choice because it is only applicable if I'g is
sufficiently far away from S 11 , as discussed previously. Another
implication of R; # -R_,, is a shift in the oscillation frequency.

In our design we have chosen R; = 50 Q, as shown in Figure
10-16. The output power for this oscillator at the fundamental fre-
quency is P, = 16 dBm, which corresponds to sinusoidal oscilla-
tions with 2 V amplitude. For our design the load resistance is very
close to =R, so that the frequency shift is insignificant.

Although the component values assure that this oscillator
project meets design specifications and the electric behavior Is suc-
cessfully modeled, the final circuit implementation will pose addi-
tional problems. This is apparent when considering, for instance,
the 0.48 nH inductor, which is comparable with the inductance of
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PCB through hole connections (vias) and parasitics of the individ-
ual components.

For high-frequency applications, a more realistic design requires the use of dis-
tributed elements. A typical oscillator example involving a FET with connection to a 50
Q2 load is seen in Figure 10-17. Here, TL; (i = 1, ..., 6) represent microstrip lines,

Ves =0.65V Vop =3V

ATF13100

TL4 50Q

Figure 10-17 GaAs FET oscillator implementation with microstrip lines.

The design approach is presented in the following example, which provides
details of how to increase the instability through a microstrip line attached to the com-
mon gate and how to select appropriate microstrip lines to match the load impedance.

RFEMW—+
Example 10-5: Microstrip design of a GaAs FET oscillator

The S-parameters of the GaAs FET (Hewlett-Packard ATF13100) in
common-gate configuration are measured at 10 GHz and have the
following values: §;, = 0.37£-176°, §,, = 0.17£19.8°,
8, = 1.37£-20.7°, and §,, = 0.90.£-25.6°. Design an oscilla-
tor with 10 GHz fundamental frequency. Furthermore, match the
oscillator to a 50 2 load impedance.



High-Frequency Oscillator Configuration 561

Solution:  Similar to Example 10-4, we first check the stability of
the transistor by computing the Rollett stability factor:

k= (1=|S,12 = |8x)* + 18/ (28 14)1S41)) = 0.776
Even though % < 1 indicates that the transistor is potentially unstable,
we can attempt to increase the instability by connecting a feedback
inductor to the gate of the transistor. Following the same approach as

discussed in Example 10-3, we plot the dependence of the stability
factor as a function of inductance (see Figure 10-18).

08
06|
04
0.2r

Rollett stability factor k

0 04 0.8 1.2 1.6 20
Feedback inductance L, nH

Figure 10-18 Stability factor for FET in common-gate mode as a function of gate
inductance.

It is seen that maximum instability is achieved for L = 0.9 nH.
Due to the high operating frequency of the oscillator, the use of
lumped elements is undesirable and we have to replace the inductor
by its distributed equivalent. One of the ways to realize an inductance
is to replace it with a short-circuit transmission line stub. Referring
back to Chapter 2, we can calculate the electrical length of the (rans-
mission line assuming 50 Q characteristic line impedance:

wL

= = tan~ [ B = °
8 = Bl = tan (20] 485
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The resulting S-parameters for the FET with a short-circuited stub
connected to the gate contact are as foltows:

[S] = 1.01 £169° 0.29.£148°
2.04£-33° 1.36£-34°

The next step in the design procedure is the development of an
input matching network. As mentioned in Example 10-4, for a real-
izable oscillator we should choose a source reflection coefficient
close to the inverse of the §;, parameter of the transistor. In our
design we have selected 'y = 1£-160°, which corresponds to a
source impedance of Z; = —j8.8 £ and which can be realized as
an open-circuit stub with a 50 Q characteristic impedance and 80°
electrical length.,

The output reflection coefficient is computed as

Ty = Syt 202 I = 4182267
out 22 1- SllFS i ’ :

which is equivalent to Z,, = (-74.8 + j17.1)X2. To satisfy

(10.26c), we would have to choose a load impedance of

Z, = -Z,.but due to the power dependence of the transistor’s S-

parameters (see Example 10-4) we choose the real portion of the

load impedance to be slightly smaller than -R__. :

out *

Z, = (70~ 17.)Q

The transformation of the 50 €2 load impedance to Z; is done
through a matching network consisting of a 50  transmission line
with an electrical length of 67° and a short-circuit stub of 66°
length.

The conversion of the electric parameters of the transmission
lines into physical dimensions is done using the same approach as
described in Example 2-5 in Chapter 2. The dimensions of the lines
computed for a FR-4 substrate of 40 mil thickness are summarized
in Table 10-2.

Based on the oscillator circuit diagram shown in Figure 10-17,
the TL3 line is cut into two halves, TL3A and T1L.3B, to accommo-
date the blocking capacitor. The lines TLS and TL6 can have any
length since they are connected to a 50 Q load.
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Table 10-2 Dimensions of the transmission lines in the FET oscillator

Transmission line | Electrical length, deg. Width, mii Length, mil
TL1 80 74 141
TL2 48.5 74 86
TL3 67 74 113
TL4 66 74 116

The microstrip line design allows for an extremely small
circuit board implementation as seen by the individual line lengths.

10.2.2 Dielectric Resonator Oscillators

When dealing with mircostrip line realizations, a dielectric resonator (DR) can
be added to provide a very high- O oscillator design (up to 10° ) with extraordinary tem-
perature stability of better than +10 ppm/°C. This resonator, simply called a puck, can
either be placed on top or next to the microstrip line in a metallic enclosure. The electric
field coupling between the strip line and the cylindrical resonator (see Figure 10-19),
can be modeled near resonance as a parallel RLC circuit. The tuning screw permits a
geomeltric adjustment which translates into a change of the resonance frequency.

Field coupling reg
Figure 10-19 Dielectric resonator (DR) placed in proximity to a microstrip line.
We will not investigate the various waveguide modes (TE and TM modes) that are

established inside the resonator, but rather concentrate on the use of DRs under TEM
conditions.
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In general, the circuit model of a DR (see Figure 10-20) is specified in terms of
the unloaded @, or Q,,,

R

0, = — = 0,RC (10.32)
wol ~ °
and the coupling coefficient, B,
_ R _ R _0yQL
B = R, =3z,° 2% (10.33)

at the desired angular resonance frequency wy = 1/ (JLC ). The value of the external
resistance R, is equal to twice the line impedance because of the symmetric termina-
tion into Z;. Similar to a transformer, the coupling coefficient quantifies the electro-
magnetic linkage between the resonator and the microstrip line, with typical values in
the range of 2 to 20. Additionally, B is also employed to describe the relationship
between the unloaded (Q,, ), loaded (Q; ), and external ( Q) quality factors:

Q, =80 = (1+P)Q; (10.34)

For the oscillator design it is required to specify the DR behavior in terms of the $-
parameters. The modified transmission line configuration is illustrated in Figure
10-20(b).

e 0, e o L
500 d‘f‘ R
— 1+ WN——
Zo= 50 Q Zﬂ C ZD
- 500 |
{a) Terminated microstrip line with DR (b) Transmission line model

Figure 10-20 Placement of DR along a transmission line and equivalent circuit
representation for S-parameter computation.

Recalling our discussion of parallel resonance circuits in Section 5.1.4, we can
compute the impedance Z;, as

R R

zZ = = 10.
PR ™ 1+ joRC - jR/(0L) ~ 1+ jO,(0/wy) - jO (@,/ @) (10.35)

which simplifies to
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Z = R . R
DR~ 2 2 1+j20,Af/f,
o R
1 -l-;Qu[ ]

(10.36)

W,

where Af=f-f, is the deviation from the center frequency. The last equation is only
valid around the resonance point, where ® + @, = 20, . Normalized with respect to Z,
near resonance, it is seen that

R/Z, _
R= T+ 20Af/fo)

The transmission line segments on either side can now be included, leading to

28 (10.37)

-j20,  =j(8,+8))
B0 IR R Yl
[S]DR = O.e € B+] ﬁ"‘ 1 . € = B;‘ 19 B+2].e (10.38)
e'-»' 1o 1 E e‘J‘ 2 e‘J'( i+ &) Be'J' 2
+1B+1 B+1 p+1

Depending on the direction, we can determine the reflection coefficient as either S?IR
or S%R. If the electric line length is equal on both sides of the DR, we obtain
8, = 0, = 8 = (21n/A)(1/2), and therefore

T, () = FiLle"” = T, (05) (10.39)
The selection and purchase of a DR can be carried out quickly and efficiently,
often over the manufacturers’ websites. The design engineer specifies a particular reso-
nance frequency and board material (thickness, dielectric constants) and the manufac-
turer will provide a particular DR in terms of diameter, length, tuning screw extension,
distance d from the microstrip line, and cavity material. In addition, the coupling
parameter and the unloaded Q are given as well as the lumped parallel resonant circuit
elements needed in the CAD simulation programs.

RF&EM W=+
Example 10-6: Dielectric resonator oscillator design

Design an 8 GHz dielectric resonator oscillator (DRQ) using a GaAs
FET whose S-parameters at f, = 8 GHz are §,; = 1.1£170°,
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Si2 = 04£-98°, 5, = 1.5£-163°, and 5y, = 0.9£-170°. A
dielectric resonator that is used in the design has the following
parameters at resonant frequency f.. = fo: B = 7, Q, = 5000.
Find the length of the 50 Q microstrip line at the input port side of
the FET, if the DR is located in the middle. Assume the DR is termi-
nated with a 50 £ resistor. Examine the difference in the DRO
response to the frequency fluctuations as compared to the conven-
tional designs discussed previously.

Solution:  The input stability circle of the FET at f, = 8 GHz is
shown in Figure 10-21.

Figure 10-21 Input stability circle of the FET in the DRO design example.

To satisfy the oscillation conditions we have to chose a source
reflection coefficient somewhere in the non-shaded area of Figure
10-21. Since the termination resistance for the dielectric resonator is
equal to the characteristic line impedance, the output reflection coef-
ficient of the DR is computed according to (10.39):
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As discussed in the previous examples, 0 maximize the output
reflection of the transistor, we have to chose I'g close to the inverse
of the §,; parameter. Since the absolute value of I'g is fixed, the
best we can do is to select © such that the phase angle of T is
equal to the phase angle of S;} ,or 20 = AS]} = -£8,,,leading
to © = 85°. The resulting electric circuit for the input matching
network of the oscillator is shown in Figure 10-22.

L
C H ﬁ ﬁ
B Z, R Zy :
a9 =85° C 8= 85"5
Rr=50Q # ;
Dielectric resonator

Figure 10-22 DR-based input matching network of the FET oscillator.

If the DR is not used in the input matching network of the tran-
sistor, then the simplest network that yields the same
Iy = 0.875£-170° at the oscillation frequency f, would be a
series combination of a 3.35  resistor and a 4.57 pF capacitor. A
comparison of || for the DR versus no DR realization as a func-
tion of frequency is shown in Figure 10-23, where the FET S-param-
eters are assumed to be frequency independent and the DR is
approximated by its equivalent circuit shown in Figure 10-20 with
parameters computed using (10.32) and (10.33):

R =2BZ, = 700 Q
R/(0Q,) = 2.79 pH

L

C = wy’L™ = 142 oF

As clearly seen in Figure 10-23, the DRO design has a || > 1 in
a much narrower frequency band than the conventional oscillator
without the DR. This approach generally results in high selectivity
and reduced drifts of the oscillation frequency. With the tuning
screw small frequency adjustments can be done, typically in the
range 10.01 f, around the target frequency.
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Output reflection coefficient, [T,

798 7985 7.99 7995 8 8005 801 8013 802 8.025
Frequency f, GHz

(a) Oscillator design with DR

Output reflection coefficient, [Ty|

55 6 65 7 75 8 85 9 95 10 105
Frequency £, GHz

(b} Conventional oscillator without DR

Figure 10-23 Frequency response of the output reflection coefficient for an
oscillator design with and without DR,

The dielectric resonator is an inexpensive and easy way to
improve the quality factor of an oscillator. Unfortunately, its geo-
metric size depends on the resonance frequency and typically gets
too large at low frequencies.
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10.2.3 YIG-Tuned Oscillator

The dielectric resonator allows tuning over a very narrow band around the reso-
nance frequency, typically between 0.01 and 1%. As an alternative, a magnetic element
offers a wideband tunabie oscillator design with a tuning range of more than a decade
of bandwidth, Such a tunable element, often of spherical shape, derives its name from
yittrium iron garnet (YIG), a ferrimagnetic material whose effective permeability can
be externally controlled through a static magnetic bias field H,. This applied ficld
directly influences the @ of the equivalent parallel resonant circuit consisting of con-
ductance G, inductance L,, and capacitance C,. Figure 10-24 depicts a typical YIG
element oscillator circuit.

Matching
YIG (@ network R,

L

Figure 10-24 Oscillator design based on a YIG tuning element.

The unloaded quality factor is given as
_ ~4m(M /3)+H,

) T (10.40)

where M, is the saturation magnetization in the sphere and H; is the resonance line
width of 0.2 Oe. The saturation magnetization can be linked te the precessional motion
of the magnetic moments at the angular frequency ®,, via

®, = 2RY(4RMg) = 8”'YM, (10.41)

where 'y is the gyromagnetic ratio recorded in 2.8 MHz/Qe. The resonance frequency
follows from the bias field:

W, = 2RYH, (10.42)

From these equations the circuit elements of the parallel resonance circuit can be quan-
tified. Specifically, the inductance is found to be
_ Ho®y 4

3
Ly = —(—na) (10.42a)
° m0d2 3
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with a bemg the radius of the YIG sphere. This also determines C, from the resonance
condition (00 = 1/(LyC,) ; that is,

Co = Lyt (10.42b)
Finally, the conductance is
&
Gy= ————— (10.42c¢)
4_3
uome“(gna )

In (10.42a)—(10.42c¢) d is the diameter of the coupling loop.

10.2.4 Voltage-Controlled Osclllator

It is mentioned in Chapter 6 that certain diodes exhibit a large change in capaci-
tance in response to an applied bias voltage. A typical example is the varactor diode,
with its variable capacitance Cy = Cyo(1 -V 5/ Vyg) 12 that can be affected by the
reverse bias V. Figure 10-25 illusirates how the feedback loop for the Clapp oscillator
can be modified, by replacing C; in Figure 10-25(a) with the varactor diode and an
appropriate DC isolation. The modified circuit is shown in Figure 10-25(b). This circuit
can readily be analyzed if a simplified BJT model (R, « k,, ) is employed.

R, HC"
T = of

C ==(;
0 I

{a) Pi-type feedback loop {b) Redrawn circuit with DC isolation
Figure 10-25 Varactor diode oscillator.

In Figure 10-26 the varactor diode and a transmission line element, whose length
is adjusted to be inductive, form the termination circuit connected to the input of the
oscillator. If the varactor diode and the transmission line segment is disconnected, the
input impedance Zp, can be computed from two loop equations:
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Zy ﬂ hy jiﬂ
C i
ax | ¢ T bl

|
|
[
X

Flgure 10-26 Circuit analysis of varactor diode oscillator.

Rearranging leads to

1

I = hi+Xc)

(A1 (Xo1 + X o) + X1 X ea (1 + B)] (10.44)

The equation can be simplified by noting that (1+p)~p and assuming that
hy, » X ¢, which results in

1r1 1] B 1
=A1rt, 17 B (10.45)
}(D[C 1 G hll[&)2C1C2]

As expected from our previous discussion, the input resistance is negative. Therefore,
with g,, = B/hyy,

Ry = ——2 (10.463)
o C,C,
and
1
Xov = Foe (10.46b)

where Cpy = C,C,/(C + C,). The resonance frequency follows from the previously
established condition X, + X, + X5 = 0 (see Section 10.1.2), or

. 11,17,
j(m0L3—@)-‘f—mo[a+a] =0 {10.47)

with the result
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=L 1.1
fo= ZEJL3(C3+C2+C1) (10.48)

It can be concluded from (10.46a) that the combined resistance of the varactor diode
must be equal to or less than {Rpy| in order to create sustained oscillations.

RFE&EMW—
Example 10-7: Design of a varactor-controlled oscillator

A typical varactor diode has an equivalent series resistance of 45 Q
and a capacitance ranging from 10 pF to 30 pF for reverse voltages
between 30 V and 2 V. Design a voltage controlled Clapp-type oscil-
lator with center frequency of 300 MHz and £10% tuning capabil-
ity. Assnme that the transconductance of the transistor is constant
and equal to g, = 115 mS.

Solution:  To create sustained oscillations, we have to ensure that
the series resistance of the varactor diode is smaller or equal to
|Rm| over the entire frequency range as computed in (10.46a). From
(10.46a) we can conclude that |Rm| achieves its minimum value at
maximum frequency of operation. Substituting ®@_,, = 28f ..
(with f .. = 1.1f, = 330 MHz being the maximum oscillation
frequency) into (10.46a), it is found that the capacitances C; and
C, are related as

Cpa—to - L o1 (10.49)

RC, KO 1esx10”'c,

where Rg = 45 Q is the varactor’s cquivalent series resistance.
Since the maximum oscillation is obtained when the varactor

capacitance has its minimum value, and the minimum frequency

corresponds to the maximum C,, we can rewrite (10.48) as

S S 3 Y S S §
fain = 2= J Ls( —— C2+kC2) (10.50)

Fo = lJl(—L + L +k6‘2) (10.51)
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where relation (10.49) is used to eliminate C, . Dividing (10.50) by
(10.51) and taking the square of the result, the following quadratic
equation is obtained for C,:

k(l-a2)c§+( 1L _ @ )C2+(l—a2) =0 (1052
C3max C3min

where & = f ./ fnax - Solving (10.52) and substituting the result
in (10.49) and (10.50) or (10.51), we find C, = 124 pF,
C, = 48 pF, and L, = 46.9 nH as our desired values.

Unlike a mechanically adjustable dielectric resonator, the var-
actor diode permits dynamic tuning over a substantial frequency
range.

10.2.5 Gunn Element Oscillator

The Gunn element can be employed to create oscillators from 1 to 100 GHz at
low power outputs of roughly up to 1 W. It exploits a unique negative resistance phe-
nomenon first discovered by Gunn in 1963, When certain semiconductor structures are
subjected to an increasing electric field, they begin to shift, or transfer, electrons from
the main valley to side valleys in the energy band structure, The accumulation of up to
00-95% of the electron concentration into these valleys results in a substantial decrease
in effective carrier mobility and produces a technologically interesting I-V characteris-
tic. Semiconductors with these band structures are primarily GaAs and InP. Figure
10-27 depicts a Gunn element and its current versus applied voltage response.

We notice that in the presence of an applied DC voltage to the Gunn element it
behaves like a noymal ohmic contact resistor for low field strength. However, if a certain
threshold voltage V, is exceeded, dipole domains begin to be created below the cathode
triggered by doping fluctuations. The formation of these domains lowers the current, as
indicated in Figure 10-27 (b). The current then remains constant while the domains
travel from cathode to anode. After collection, the process repeats itself. The frequency
can be estimated from the drift velocity of the domain motion v, = 10° m/s and the
travel length L of the active zone of the Gunn element. For a length of 10 um, we obtain

f= "Id = 20 ms_ 10GHz (10.53)
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{a} Gunn element structure {b) Current vs, applied voltage response
Figure 10-27 Gunn element and current versus voltage response.

If an external DC voltage is applied, the domain motion can be influenced and thus the
resonance frequency is varied. The tuning range is approximately within 1% of the res-
onance frequency.

Figure 10-28 shows a microstrip line implementation of a Gunn element oscilla-
tor. Here the Gunn element is connected to a A/4 microstrip line, which in turn is cou-
pled to a dielectric resonator. The bias voltage for the Gunn element is fed through an
RFC onto the microstrip line.

T[S prc £,

Vgo_

voltage N{I:

Gunn
element

Figure 10-28 Gunn element oscillator circuit with dielectric resonator (DR).

10.3 Basic Characteristics of Mixers

Mixers are commonly used to multiply signals of different frequencies in an effort
to achieve frequency translation. The motivation for this translation stems from the fact
that filtering out a particular RF signal channel centered among many densely popu-
lated, narrowly spaced neighboring channels would require extremely high Q filters.
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The task, however, becomes much more manageable if the RF signal carrier frequency
can be reduced or downconverted within the communication system. Perhaps one of the
best known systems is the downconversion in a heterodyne receiver, schematically
depicted in Figure 10-29.

A4 Mixer

LNA4 Combiner Detector

l/ }_RF /' f:o fmg: o LP Filter -};
A
®

Figure 10-28 Heterodyne receiver system incorporating a mixer.

Here the received RF signal is, after preamplification in a low-noise amplifier
{LNA), supplied to a mixer whose task is to multiply the input signal of center fre-
quency fpr with a local oscillator (LO) frequency f, . The signal obtained after the
mixer contains the frequencies fz7 L f; 5, of which, after low-pass {LP) filtering, the
lower frequency component f - — f; o, known as the intermediate frequency (IF), is
selected for further processing.

The two key ingredients constituting a mixer are the combiner and detector. The
combiner can be implemented through the use of a 90° (or 180°) directional coupler.
A discussion of couplers and hybrids is found in Appendix G. The detector traditionally
employs a single diode as a nonlinear device. However, antiparallel dual diode and dou-
ble-balanced quadrupole diode configurations are also utilized, as discussed later. In
addition to diodes, BJT and MESFET mixers with low noise figure and high conversion
gain, have been designed up to the X-band.

10.3.1 Basic Concepts

Before going into details of the circuit design, let us briefly review how a mixer is
capable of taking two frequencies at its input and producing multiple frequency compo-
nents at the output. Clearly a linear system cannot achieve such a task, and we need to
select a nonlinear device such as a diode, FET, or BJT that can generate multiple har-
monics. Figure 10-30 depicts the basic system arrangement of a mixer connected to an
RF signal, V,(t), and local oscillator signal, V;,(#), which is also known as the
pump signal.
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I

Figure 10-30 Basic mixer concept: two input frequencies are used to create new
frequencies at the output of the system.
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It is seen that the RF input voltage signal is combined with the LO signal and sup-
plied to a semiconductor device with a nonlinear transfer characteristic at its output side
driving a current into the load. Both diode and BJT have an exponential transfer charac-
teristic, as expressed for instance by the Shockley diode equation discussed in Chapter 6:

VIV,

I=1Iye 1 {10.54a)

Alternatively, for a MESFET we have approximately a square behavior:
I(V) = Ipgs(1=V/ Vo) (10.54b)

where the subscripts denoting drain current and gate-source voltage are omitted for
simplicity. The input voltage is represented as the sum of the RF signal
vepr = Vppcos(@gpr) and the LO signal v, 5 = V;,c0s(w;,f) and abias V,; that
is,

This voltage is applied to the nonlinear device whose current output characteristic can
be found via a Taylor series expansion around the Q-point:

2
v av
Q VQ

where the constants A and B refer to (dI/dV)|VQ and (l/2)(d21/dV2)|VQ, respec-
tively. Neglecting the constant bias V, and [, the substitution of (10.55) into (10.56)
yields

dl

2
1vy = 1o+ V(55) .= I +VA+V?B4 .. (1056)

I(V) = A{Vgpcos(@pget) + V sc08(®; 51)}

+ B{V% cos (0gpt) + V2 seos (@, 01)} (10.57)

+ 2BV gV gcos(@ppt)cos(@y ot) + ...
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The factors containing the cosine square terms can be rewritten, via the trigono-
metric identity cosz((m‘) = (1/2){1 ~ cos(2wt) }, into DC terms and terms involving
2wt and 20, ¢ . The key lies in the last term of (10.57), which becomes

V) = ...+ BV V,s{cos[(Wgp + 0, 5)t] + cos[(@gp - 0 o)2]} (10.58)

This expression makes clear that the nonlinear action of a diode or transistor can gener-
ate new frequency components of the form wgy + @; ;. It is also noted that the ampli-
tudes are multiplied by V5V, and B is a device-dependent factor.

Equation (10.58) is the Taylor series rcprcsentatlon up to the third term, and thus
up to second-order intermodular pmdnct ( v? B). Any higher-order products, such as
third-order intermodular product (V ), are neglected. For diodes and BJTs these
higher-order harmonic terms can significantly affect the performance of a mixer. How-
ever, the second-order intermodular product is the only surviving term if a FET with
quadratic transfer characteristic is utilized. Thus, a FET is less prone to generate undes-
ired higher-order intermodular products.

The following example discusses the down conversion process from a given RF
signal frequency to a desired intermediate frequency.

RF &M W
Example 10-8: Local oscillator frequency selection

An RF channel with a center frequency of 1.89 GHz and bandwidth
of 20 MHz is to be downconverted to an IF of 200 MHz. Select an
appropriate f;,. Find the quality factor O of a bandpass filter to
select this channel if no downconversion is involved, and determine
the Q of the bandpass filter after downconversion.

Solution:  As seen in (10.58), by mixing RF and LO frequencies
through a nonlinear device we produce an IF frequency that is equal
to either fir = frr—f1o OF fir = fro—frr. depending on
whether fzr or fi, is higher. Thus, to produce a f;z = 200 MHz
from fpr = 1.89 GHz we can use either

Ffro = fre—fir = 169 GHzor f; = frp+ fir = 209 GHz

These two choices are equally valid and are both used in practice.
When fprp> f1o is chosen, the mixer is said to have low-side
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injection, whereas when fgr < f;, the design is called high-side
injection. The first approach is generally preferred since lower LO
frequencies are easier to generate and process.

Before down conversion, the signal has a bandwidth of
BW = 20 MHz at a center frequency of fr = 1.89 GHz. There-
fore, if we attempted to filter out the desired signal we would have to
use a filter with Q = foo/BW = 94.5. However, after downcon-
version, the bandwidth of the signal does not change but the center
frequency shifts to f;7 = 200 MHz, thus requiring a bandpass fil-
ter with a quality factor of only Q = f,./BW = 10,

This example shows that less selective filtering is required
once the mixer has downconverted the RF signal.

10.3.2 Frequency Domain Considerations

It is important to place the previous section into a frequency domain perspective.
To this end it is assumed that the angular RF signal is centered at wpp with two extra
frequency components situated wy, above and below ®p . The LO signal contains one
single component at @, ,, . After performing mixing, according to (10.58), the resulting
spectral representation contains both upconverted and downconverted frequency
components. Figure 10-31 graphically explains this process.

Typically the upconversion process is associated with the modulation in a trans-
mitter, whereas the downconversion is encountered in a receiver. Specifically, when
dealing with modulation, the following terminology is common:

* Lower sideband, or LSB (&g — @ )
* Upper sideband, or USB (g + @y 4, )
* Double sideband, or DSB (g + 0o, Ogpp = 05 )
A critical question to answer is the choice of an LO frequency that shifts the RF fre-
quency to a suitable IF level.
An interrelated issue is the problem of image frequencies mapping into the same

downconverted frequency range. To understand this problem, assume an RF signal is
downconverted with a given LO frequency. In addition to the desired signal, we have
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(c) Down- and upconverted spactral products
Figure 10-31 Spectral representation of mixing process.

placed symmetrically an interferer about IF (see Figure 10-32). The desired RF signal
transforms as expected:

Opp= W n = OF (10.59a)
However, the image frequency oy, transforms as
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Since cos(~Wt) = cos{mygt), we see that both frequency spectra are shifted to the
same frequency location, as Figure 10-32 illustrates.

Undesired
Vie imagi signal

T ' 0y ‘©

Figure 10-32 Problem of image frequency mapping.

To avoid the presence of undesired image signals that can be greater in magnitude
than the RF signal, a so-called image filter is placed before the mixer circuit to sup-
press this influence, provided sufficient spectral separation is assured. More sophisti-
cated measures involve an image rejection mixer.

10.3.3 Single-Ended Mixer Design

The simplest and least efficient mixer is the single-ended design involving a
Schottky diode, as shown in Figure 10-33(a). The RF and LO sources are supplied to an
appropriately biased diode followed by a resonator circuit tuned to the desired IF. In
contrast, Figure 10-33(b) shows an improved design involving a FET, which, unlike the
diode, is able to provide a gain to the incoming RF and LO signals.

In both cases the combined RF and LO signal is subjected to a nonlinear device
with exponential (diode) or nearly quadratic (FET) transfer characteristic followed by a
bandpass filter whose task is to isolate the IF signal. The two very different mixer real-
izations allow us to contrast a number of parameters important when developing suit-
able designs:

» Conversion loss or gain between the RF and IF signal powers
» Noise figure

= Isolation between LO and RF signal ports

* Nonlinearity
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Figure 10-33 Two single-ended mixer types.

Since LO and RF signals are not electrically separated in Figure 10-33(a), there is the
potential danger that the LO signal can interfere with the RF reception, possibly even
reradiating portions of the LO energy through the receiving antenna. The FET realization
in Figure 10-33(b) allows not only for LO and RF isolation but also provides signal gain
and thus minimizes conversion loss. The conversion loss (CL) of a mixer is generally
defined in dB as the ratio of supplied input power Pgp over the obtained IF power Ppg:

Pgrr
CL = l(}log(—) (10.60)
P
When dealing with BJTs and FETs, it is preferable to specify a conversion gain (CG)
defined as the inverse of the power ratio.
Additionally, the noise figure of a mixer is generically defined as

n

F = (10.61)

- TGP,
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with CG again being the conversion gain, and P, , P, the noise power at the output
due to the RF signal input (at RF) and the total noise power at the output (at IF). The
FET generally has a lower noise figure than a BJT, and because of a nearly quadratic
transfer characteristic (see Section 7.2) the influence of higher-order nonlinear terms is
minimized. Instead of the FET design, a BJT finds application when high conversion
gain and low voltage bias conditions are needed (for instance, for systems relying on
battery operation).

Nonlinearities are customarily quantified in terms of comversion compression
and intermodular distortion (IMD). Conversion compression relates to the fact that
the IF output power as a function of RF input power begins to deviate from the linear
curve at a certain point. The point where the deviation reaches 1 dB is a typical mixer
performance specification. As already encountered in the amplifier discussion, the
intermodulation distortion is related to the influence of a second frequency component
in the RF input signal, giving rise to distortion. To quantify this influence, a two-tone
test is typically employed. If fp is the desired signal and f, is a second input fre-
quency, then the mixing process produces a frequency component at 2, — fert f1 o,
where the +/- sign denotes up- or downconversion. The influence of this intermodula-
tion product can be plotted in the same graph as the conversion compression (see Fig-
ure 10-34),

Ideal P,, vs. P, curve

P, (dBm}
t # . Third order intercept point
Fows . '4//
P T
‘e P paN Real P, vs. P, curve
/ : 1 dB compression point
. £ \ Third harmonic
Small-signal
gain in dB ’ !
P;fPl > in (dBm)
0 dBm

Figure 10-33 Conversion compression and intermodulation product of a mixer.

The intercept point between the desired linear output response and the undesirable
third-order IMD response is a common figure of merit, indicating the ability of a mixer
to suppress this influence.
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Additional mixer definitions include distortion generated inside the mixer which
is defined as harmonic IMD; isolation between RF and IF ports, which is directy
linked to the influence of the combiner (hybrid coupler; see Appendix G); and dynamic
range, which specifies the amplitude range over which no performance degradation
occurs.

The circuit design of an RF mixer follows a similar approach as discussed when
dealing with an RF amplifier. The RF and LO signals are supplied to the input of an
appropriately biased transistor or diode. The matching techniques of the input and out-
put side are presented in Chapter 8 and directly apply for mixers as well. However, one
has to pay special attention to the fact that there is a large difference in frequencies
between RE, LO on the input side, and IF on the output side. Since both sides have to be
matched to the typical 50 Q line impedance, the transistor port impedances (or S-
parameter representation) at these two different frequencies have to be specified. Fur-
thermore, to minimize interference at the output side of the device, it is important to
short circuit the input to IF, and conversely short circuit the output to RF (see Figure
10-35). Including these requirements as part of the matching networks is not always an
easy task.

Input . Output
f matching > dA;t::: : »| matching |—sp
network J_ network S
F 3
Short circuit — -=-]: Short circuit
= for IF for RF
DC biasing
network

Figure 10-35 General single-ended mixer design approach.

These short-circuit conditions in general affect the transistor’s behavior through
internal feedback mechanism. Ideally, I'; (®pr) should be known based on the short-
circuit output condition and similarly I, (0;7) requires a short-circuit input condi-
tion. Typically, an additional load resistance is added to the output port to adjust the
conversion gain. In the following examptle, the salient design steps are explained.
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RFEMW—
Example 10-9: Design of a single-ended BJT mixer

For the DC-biasing topology shown in Figure 10-36, compute the
values of the resistors R; and R, such that biasing conditions are
satisfied. Using this network as a starting point, design a low-side
injection mixer for fpr = 1900 MHz and f = 200 MHz. The
BJT is measured at IF to have an output impedance of
Zo = (677.7-j2324)Q for short-circuit input, and an input
impedance of Z;, = (77.9 - j130.6)2 for short-circuit output at
RF frequency. Attempt to minimize the component count in this
design.

Ve =4V

Ver =3V
Vi =089V
I =22mA
I, =30 pA

Zu(he)=(77.9 - j130.6)Q Z.. () = (677.7 - 2324)Q

Figure 10-36 DC-biasing network for BJT mixer design.

Solution:  Since the voltage drop across resistor R, is equal to
the difference between V-~ and V. and the current is the sum of
the base and collector currents, R, is computed as

R, = M:Msg
2 Ie+ly
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Jrr

Similarly, the base resistor R, is computed as aratio of Vg — Ve
over the base current:

Veg-V
R, = CETBE = 703 kQ

Before beginning the design of an input matching network, we
have to decide on how to supply the LO signal. The simplest
arrangement is to connect the LO source directly to the base of the
transistor via a decoupling capacitor, as shown in Figure 10-37,

VCC
éR’ =448 Q
R,

70.3 k2
RFC, é RFC,

Ze =500 Cs ﬁs Jr

o

“ N fes0a
Z,o=500Q

C]..O
S T

= Io

Figure 10-37 Connection of RF and LO sources to the BJT.

The value of this capacitor C;, has to be chosen small enough
50 as to prevent RF signal coupling into the LO source. We arbitrary
pick C o = 0.2 pF. In this case the series combination of C; 5 and
Z, o creates a return loss RLyr of only 0.24 dB, since

RLgp = —2010g|1“w|f = -20log(0.9727) = 0.24 dB

"
Unfortunately, the LO frequency is very close to fgg so that the
same capacitance will attenuate not only the RF signal but the LO as
well. We can compute the insertion loss ILpe due to this capacitor

at fio = fre-fF
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ILge = —IOIOg(l -|rw|2|fm) = 136 dB

Thus, if the LO source pumps at -20 dBm, only —33.6 dBm reaches
the transistor. This seemingly high power loss is still tolerable since
we can adjust the power provided by the local oscillator.

The presence of Cy, and Z; o modifies the value of the input
impedance. A new total input impedance Z; can be computed as a
parallel combination of C|, and Z , and the input impedance of
the transistor connected to the LO source is

zZ, = (zm+-—1—) 1Z, = (47.2- j103.5)Q
JogpCio

The output impedance does not change since the input is shorted
during the measurement of Z

Knowing Z; , we can next design an input matching network
using any of the methods described in Chapter 8. One of the possi-
ble topologies consists of a shunt inductor followed by a series
capacitor, as shown in Figure 10-38, where we added the blocking
capacitor Cpg, to prevent DC short circuit to ground.

VCC
é}efus Q
K,

; 70.3 kQ
Input matching
network RFC, RFCz

N

e Ll T ,]__

Figure 10-38 Input matching network for a single-ended BJT mixer.
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There are several modifications that can be made to the circuit
in Figure 10-38. First we notice that instead of biasing the base of
the transistor through an RFC, we can connect R, directly to the
contact between L, and Cp, . In this case we still bias the base of
the transistor through L, and maintain isolation of the RF signal
from the DC supply by grounding the RF through Cp,. One more
task of this matching network is to provide a short-circuit condition
for the IF signal. Even though the impedance of the inductor L, is
rather small at fyz, we still can lower it by choosing the value of
Cp, such that L; and Cp, exhibit a series resonance at IF. For
example, if we choose Cpy = 120 pF we still maintain a solid
short circuit for the RF signal and we improve the path to ground for
the fi signal. The modified input matching network is shown in
Figure 10-39.

L, REC,
. C
1“‘1‘33‘0?5’"”8 i |/—|F—° Je

am
o )
Ze

Figure 10-39  Modified input matching network.

The output matching network is developed using a similar
approach. The original matching network again consisted of a shunt
inductance L, followed by a series capacitance C,. The values are
L, = 416 nHand C, = 1.21 pF. This topology atlows us to elimi-
nate the RFC at the collector terminal of the transistor. However, the
problem with this topology is that it does not provide a short circuit
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to ground for the RF signal that may interfere with the output. To
remedy this drawback we replace L, with an equivalent LC combi-
nation where the additional capacitance C; = 120 pF is chosen to
provide solid ground condition for the fpr signal and L, is
adjusted to L, = 5.2 nH. The complete circuit of the designed sin-
gle-ended BJT mixer is shown in Figure 10-40.

% Csr Output matching

J__<“Bl . ‘\N\, | _L/network

Input matching c, "

network £ o__u 5_ L.
T=Co

LY.

of o capacitor

Figure 10-40 Complete electrical circuit of the low-side injection, single-ended
BJT mixer with fqe = 1900 MHz and fz = 200 MHz.

This design shows the multiple purposes that a matching net-
work can perform. At first glance they are often difficuit to under-
stand. Specifically, the dual network purposes of matching and
isolation provide challenges for the circuit designer.

10.3.4 Single-Balanced Mixer

From the previous section it is seen that the single-ended mixers are rather easy to
construct circuits. The main disadvantage of these designs is the difficulty associated
with providing LO energy while maintaining separation between LO, RF, and IF sig-
nals for broadband applications. The balanced dual-diode or dual-transistor mixer in
conjunction with a hybrid coupler offers the ability to conduct such broadband opera-
tions. Moreover, it provides further advantages related to noise suppression and spuri-
ous mode rejection. Spurs arise in oscillators and amplifiers due to parasitic resonances
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and nonlinearities and are only partially suppressed by the front end. Thermal noise can
critically raise the noise floor in the receiver. Figure 10-41 shows the basic mixer design
featuring a quadrature coupler and a dual-diode detector followed by a capacitor acting
as summation point,

90° branch line
fo coupler

Figure 10-41 Balanced mixer involving a hybrid coupler.

Besides an excellent VSWR (see Appendix G), it can be shown that this design is
capable of suppressing a constderable amount of noise because the opposite diode
arrangement in conjunction with the 90° phase shift provides a good degree of noise
cancellation. The proof is left as an exercise, see Problem 10.22.

A more sophisticated design, involving two MESFETs and 90° and 180° hybrid
couplers is shown in Figure 10-42, The 180° phase shift is needed since the second
MESFET cannot easily be reversed as done in the anti-parallel diode configuration seen
in Figure 10-41. It is also important to point out that this circuit exhibits LO to RF as
well as LO to IF signal isolation, but no RF to IF signal isolation. For this reason, a low-
pass filter is typically incorporated into the output matching networks of each of the
transistors in Figure 10-42.

Cutput
matching
Input network |
matching Wilkinson
network power |[—>
combiner | Jr

Cutput 180°
matching |- phase |——
network shift

Input
matching
network

So line coupler

-t}—rLL‘ |

Figure 10-42 Single-balanced MESFET mixer with coupler and power combiner.
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10.3.5 Double-Balanced Mixer

The double-balanced mixer can be constructed by using four diodes arranged in a
rectifier configuration. The additional diodes provided better isolation and an improved
suppression of spurious modes. Unlike the single-balanced approach, the double-bal-
anced design eliminates all even harmonics of both the LO and RF signals. However,
the disadvantages are a considerably higher LO drive power and increased conversion
loss. Figure 10-43 depicts a typical circuit of the double-balanced design. All three sig-
nal paths are decoupled, and the input and output transformers enable a symmetric mix-
ing with the LO signal.

G,

Figure 10-43 Double-balanced mixer design.

For design details of double-balanced mixers the reader is referred to the books by
Vendelin and Mass listed at the end of this chapter.

10.4 Summary

Oscillators and mixers require a nonlinear transfer characteristic and are therefore
more difficult to design than standard linear amplifiers. It is not uncommon to encoun-
ter circuits that perform as desired, but the design engineer does not understand exactly
why they behave this way. Today’s extensive reliance on CAD tools has often reduced
our thinking to trial-and-error approaches. This certainly applies both to oscillators and
mixer RF circuits.

One of the key design requirements of an oscillator is the negative resistance con-
dition as a result of the feedback loop equation, which can be formulated as the
Barkhausen criterion:

Hp(w)H (o) = 1
For instance, the feedback Pi-type network results in a host of different oscillator types,

of which we discussed the Hartley, Colpitts, and Clapp designs. At frequencies up to
approximately 250 MHz one of the passive feedback elements can be replaced by a
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quartz crystal whose mechanical vibrations allow substantial improvements in fre-
quency and temperature stability.

For higher frequencies the S-parameters again become the preferred design proce-
dure. For a two-port oscillator, the stability condition and the input and output oscilla-
tion conditions assume primary importance:

k<1,T,Tg=1,T, =1

out

A typical approach would start with the test of the stability circle k. Next, from a partic-
ular output loading condition, the output reflection coefficient is determined from the
knowledge of the input reflection coefficient. Conversely, the design can also be con-
ducted from the input side. To enhance the Q-factor of the high-frequency performance
a dielectric resonator can be added whose behavior is that of a parallel resonance circuit
with normalized line impedance:

R/Z, _,
R~ T3 2o AAF /T - 2P

Instead of the dielectric resonator a magnetically induced resonance condition can be
established with the help of a YIG element. A Gunn diode finds applications in very
high frequency oscillators. To add frequency tuning flexibility, a varactor diode is often
employed to adjust the resonant circuit capacitively.

Besides oscillators, mixers are the second group of practical circuits directly
exploiting the nonlinear transfer characteristic of active solid-state elements such as
diodes and bi- and monopolar devices. The ability of a mixer to achieve frequency trans-
lation finds applications in heterodyne receiver and transmitter circuits. An RF signal
gy mixed with a local oscillator frequency ©; , results in a main current product of

I(V) = ...+ BVpV of cos[(mgg + 0y g)?] + cos[ (g - 01 0)¢]}

where the first term signifies upconversion and the second term downconversion, This
second-term response can, for instance, be utilized as the required intermediate output
signal in a receiver. To isolate the desired signal frequency, extensive filtering is
required on the input (image filter) and output (low-pass) sides of the mixer. Single-
ended, single-balanced, and double-balanced designs can be constructed by appropriate
impedance matching of the source and load to the active device. One additional compli-
cation over the amplifier matching network design arises because of the need to isolate
the RF and LO inputs from the IF output and, conversely, to isolate the IF output from
both RF and LO input signals. While balanced mixers offer improved signal perfor-
mance through partial cancellation of undesired harmonic responses, they require the
additional complexity of couplers to accomplish the required phase shifts.
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Problems

10.1 Derive the transfer function for the series resonance circuit depicted in Fig-
ure 10-3 with v({) = 0 and zero initial conditions. In particular, show that
wy = WOV *(1-R*c/(aL)"? and & = -R/(2L). For the values
R=5Q,L =50 nH, andC = 270 pF, plot the frequency response.

10.2 In Section 10.1.3 the Colpitts oscillator centered around the A-parameter
description of the BJT in emitter configuration is derived. Follow similar
steps and derive the Hartley oscillator. Specifically, find the oscillator fre-
quency in terms of L,, L,, C;, and the h-parameters. Further, establish the
ratioof L, to L, .



Problems

10.3

104

10.5

10.6

10.7

10.8

A Colpitts oscillator is to be designed for 250 MHz. At the bias point
Veop = 27V and I = 2 mA, the following circuit parameters are given at
room temperature of 25°C: Cp = 0.2 1B, rpp = 3kQ, rep = 12k,
Cyr = 80 fF If the inductance is fixed at 47 nH, find values for the capaci-
tances in the feedback loop. Examine whether it is appropriate to use the h-
parameters obtained under DC conditions.

In Section 10.1.4 the quartz element is discussed. Show that solving (10.20)
results in the approximate series and parallel resonance conditions of equa-
tions (10.21a) and (10.21b). Hint: Use the Taylor Series expansion and retain
the first two terms.

Quartz resonators are typically specified in terms of their series and parallel
resonance frequency. For the electric equivalent circuit parameter of
R, =50Q,L, =50 mH, C, = 04 pF and C; = 0.8 pF, find the series
and parallel resonance frequencies based on (10.21a) and {10.21b). Plot the
reactance of this quartz resonator over a suitable frequency range.

A particular crystal oscillator operates with the crystal in the parallel reso-
nance mode. Then a lossless inductor is added in parallel with the crystal. If
the combination of inductor and crystal is required to have the same reac-
tance as the crystal originally did, will the oscillator frequency go up or
down? Explain your answer.

In an oscillator design it is often required that we need the S-parameters of
the transistor operating in common-base {CB) mode. Unfortunately, the
manufacturer typically supplies the S-parameters for the transistor measured
in common-emitter (CE) mode., We therefore have to convert them: into CB
S-parameters. The usual practice is that the S-parameters are first converted
into Y-parameters, then the CE Y-parameters are converted into CB mode,
and the result is finally converted into S-parameter representation. Derive CE
to CB conversion formulas for the Y-parameter representation.

A GaAs MESFET chip has the following S-parameters in common-source
configuration measured at 4 GHz: §,, = 0.83£-67°, §,, = 2.16/119°,
S, = 0.17£61°, §,, = 0.66£-23°. Using conversion formulas derived
in the previous problem, compute the transistor S-parameters in common-
base mode. Determine the stability circles for both configurations without
and with a positive feedback of L = 0.5 nH at 4 GHz.
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10.9 In Section 10.2.1 we discussed the case where T, is chosen such that ||
becomes greater than unity. Show that || > 1 implies T, | > 1 and vice
versa.

10.10 In designing oscillators based on the S-parameter approach, it was stated that
the following conditions must be satisfied: k<1 and I';I',, = I';, T, = 1.
By representing the input impedance as Z;, = R,  + jX, and output imped-
ance Z,. = R, + X, as well as the source Z; = R+ jX; and load
Z; = R; +jX; impedances, show that R, = -Rg, X, = -Xq,
R,y = —Rp, and X, = —X; . This proves that the S-parameter design is
equivalent to the negative resistance design.

13.11 An oscillator has to be designed for 3.5 GHz. The S-parameters of the BIT
in common-base configuration are determined to be §;;, = 1.1£127°,
§i, = 0.86£128°, §,, = 0.94£-61°, and S,, = 0.94-44°. By adding
an inductance to the base, the instability can be enhanced. Determine the
inductance for which the instability of the BJT is maximized.

10.12 In Section 10.2.2 the dielectric resonator is introduced and the S-parameters
for the angular resonance frequency @, are derived in (10.38). Show that
near resonance (10.38) has to be modified to the form

B L+ j2(Q,Af/ fo)
[S] = L+B+j2(QAf/fo) 1 +B+ j2(QAf/f)
L+ j2(Q,AF/ Fo) B

1+ B+ j2(QAf/fo) 1 +B+ j2(QAf/ fo)

10.13 Since [, >1 and |T,|> 1, they cannot be displayed in a conventional
Smith Chart. Extend the Smith Chart in such a way as to be abie to display
these quantities. What happens with the circles of constant resistance when
the reflection coefficients are larger than unity?

10.14 Design a 7.5 GHz oscillator in common-emitter BJT configuration. The S-
parameters at V. =350 V and Io =20 mA are as follows:
811 = 0.87£-40°, S, = 0.25£-32°, Sy = 06£100°, and
Sy = 1.21.£165°. Sketch the circuit, including the DC biasing network
(B = 80).
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10.15

16.16

10.17

10.18

A BIT is used in common-base configuration with biasing conditions speci-
fied at Vo = 3 Vand Ve = 0.9 V. For this case, the transistor has the
following  S-parameters at 2.5 GHz: S, = 1.41./125°,
S, = 0.389£130°, §,, = 1.5£-63°, and §,, = 1.89£-45°. Design a
series feedback oscillator that satisfies the three conditions (10.26).

The S-parameters of a GaAs FET in common-source configuration are mea-
sured at 9 GHz and have the following values: §,, = 0.30Z£-167°,
$, = 015221.3°, 8, = 1.12£-23.5°, and S, = 0.90£-25.6°.
Design an oscillator with 9 GHz fundamental frequency and match the cir-
cuit to a 50 £2 load impedance. Use microstrip lines for a substrate FR-4 with
40 mil thickness (€, = 3.6) and determine the widths and lengths of the
elements,

A tunable oscillator involving a varactor diode has to be designed. For the
varactor diode, the following data is known: equivalent series resistance of
35 Q and a capacitance ranging from 15 pF to 35 pF for reverse voltages
between 30 V and 2 V. Design a voltage controlled Clapp-type oscillator
with center frequency of 300 MHz and +10% tuning capability. Assume that
transconductance of the transistor is constant and equal to g,, = 115 mS.

The output power of an oscillator can be approximated by

G, P,
Pow = Psm[l = exp( f'(: 1n):|

sat
where P, is the saturated output power, Gy = |S21|2 is the small signal
power gain, and P, is the input power. For maximum output power we
obtain

dP
d(P, —P;,) =0o0r —= =1

arP,
Show that this leads to the maximum oscillator output power
1 InGj
Pom(max) = Psat(l - G_O - —G-O—)

For a typical MESFET at 7 GHz, with G, = 7 dB and P, = 2 W, find the
maximum oscillator power.
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The basic downconverting receiver system is shown in Figure 10-21. Draw a
similar block diagram describing an upconversion transmitter system and
explain its functionality.

10.20 When building BJT and diode-based mixers, the third-order intermodulation

10.21

10.22

distortion (IMD) is an important design criterion. Ideally, over the entire
range of RF input signal magnitudes the mixer should not generate any inter-
modulation. In reality, however, there may be a significant influence. Follow
the same derivation as discussed in Section 10.3.1 and derive the first-, sec-
ond-, and third-order harmonics for the combined mixer input signal
V = Vipeos(gpt) + Vo cos(my of) . If the RF signal is 1.9 GHz and the
output IF is 2 MHz, determine all frequencies up to the third-order harmon-
ics that are generated by this mixer.

Design a single-ended BJT mixer as shown in Figure 10-36. Compute values
for the resistors R, and R, such that biasing conditions Vg = 2.5 V,
Vee = 08V, Io = 25 mA, and Iy = 40 pA are satisfied based on a
supply voltage of V.-=32 V. RF and IF frequencies are
Srrp = 25 GHz and fz = 250 MHz. The BIT is measured at IF to have
an output impedance of Z_, = (650 — j2400)<2 for short-circuit input and
an input impedance of Z;, = (80— j136)Q for short-circuit output at RF
frequency.

For the balanced diode mixer in Figure 10-41 assume the following voltages:

ver(t) = Vgpcos(wppt) and vpo(f) = [V 4+ v, (2)]cos(w; 1)
where the constant amplitudes are such that Vi « V; , and where the noise
voltage v, is much smaller than V,,,.

(a) Find the currents through the upper diode {,(f) and lower diode i,(¢) if
the transfer characteristic is
i, =C(-1)"+1(n=1,2)

where C is a constant, and vy, v, is the respective diode voltage.

(b) Explain how some of the noise cancellation occurs and show that the IF
current, after suitable low-pass filtering (behind each diode), can be
written as

=-2CVapV;osin(w;pt)
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Useful Physical Quantities

and Units
Table A-1 Physical constants
Quantity Symbol Units Value

Permittivity in vacuum & F/m 8.85418x107"2
Permeability in vacuum [T H/m 4r10”

Speed of light in vacuum ¢ m/s 2.99792x10°
Boltzmann’s constant k K 1.38066x10°>
Electron charge e Coulomb 1.60218x107"°
Electron rest mass my kg 0.91095x107°
Electon volt eV J 1.60218x107"?
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Table A-2 Relevant quantities, units, and symbols

Appandix A « Usefut Physical Quantities and Units

Quantity Symbol Unit Value
femto f — 1015
pico p — 10712
nano n -— 10
micro m — 10
milli m — 1073
kilo k — 10°
mega M — 10
giga G — 10°
Mil Mil 0.001 inch = 25.4pum
Conductivity o S/m
Resistivity p Q. m

International System of Units

Quantity Symbol Unit Dimensions
Electric Charge C Coulomb A-s
Current A Ampere C/s
Voltage v Volts I7C
Frequency Hz Hertz = cycles per second 1/s
Electric field E Vim
Magnetic field H A/m
Magnetic flux Wb Weber V-s
Energy J Joule N-m
Power W Watt /s
Capacitance F Farad c/v
Inductance H Henry Wb/A
Resistance Q Ohm V/A
Conductance S Siemens A/V
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Table A-3 Loss angle tangent for different dielectric materials
Loss Tangent
Materlal F=TkHz | 7=1WHz | 7=100 MAz | 7= 3GHz
Aluminum oxide 0.00057 0.00033 0.0003 0.001
Bartum titanate 0.00044 0.0002 0.0023
Porcelain 0.0140 0.0075 0.0078
Silicon dioxide 0.00075 0.0001 0.0002 0.00006
Araldite CN-501 0.0024 0.0190 0.0340 0.0270
Epoxy resin RN-48 0.0038 0.0142 0.0264 0.0210
Foamed polystyrene <0.0002 <0.0001 <0.0002 0.0001
Bakelite BM120 0.0220 0.0280 0.0380 0.0438
Polyethylene <0.0002 <0.0002 0.0002 0.00031
Polystyrene <0.00005 0.00007 <0.0001 0.00033
Teflon <0.0003 <0.0002 <0.0002 0.00015
Sodium chloride <0.0001 <0.0002 <0.0005
[ Water (distilled) 0.0400 0.0050 0.1570
Table A-4 American wire gauge chart
Area In
Wire Size Diameter in Diameter in Area in Square
(AWG) Mils Millimeters Square Mils Millimeters
1 289.3 7.34822 262934 169.6345
2 2576 654304 208469 134.4959
3 2294 5.82676 ~165324 106.6606
4 204.3 5.18922 131125 84.59682
5 181.9 4.62026 103948 67.06296
[ 162.0 4,1148 82448.0 5319212
7 144.3 3.66522 65415.8 4220364
.3 128.5 3.2639 518748 33461752
9 1144 2.90576 41115.2 26.52585
10 101.9 2.58826 32621.1 21.04581
11 9.7 2.30378 258442 16.67370 |
12 20.8 2.05232 20510.3 1323244
13 72.0 1.8288 16286.0 10.50709
14 64.1 1.62814 12908.2 8.327859
15 57.1 1.45034 102429 6.608296
16 50.8 1.29032 8107.32 5230518
17 453 1.15062 6446.83 4.159237
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Table A-4 American wire gauge chart (Continued)

Area in
Wire Size Diameter in Diameter in Areain Square
(AWG) Mils Millimeters Square Mils Milllmeters
403 1.02362 3102.22 3.291754
19 359 0.91186 4048.92 2.612199
! 20 320 0.8128 3216.99 - 2075474
21 28.5 0.7239 255176 - 1.646293
22 253 0.64262 2010.90 1.297354
23 22.6 0.57404 1604.60 1.035224
24 20.1 0.51054 1269.23 0.818860
25 179 0.45466 1006.60 0.649417
26 159 0.40386 794226 0.512403
27 142 0.36068 633.470 (.408690
28 12,6 0.32004 498.759 0.321780
29 11.3 028702 401.150 0.258806
30 10.0 0254 314,159 0.202683
31 8.9 0.22606 248.846 0.160545
32 8.0 0.2032 201.062 0.129717
33 7.1 0.18034 158.368 0.102172
34 6.3 0.16002 124690 0.080445
35 5.6 0.14224 98.5203 0.063561
36 5.0 0.127 78.5398 0.050671
37 4.5 0.1143 63.6173 0.041043
38 40 0.1016 50.2654 0.032429
k1 35 0.0839 384845 0.024829
30 3.1 0.07874 30.1907 0.019478
41 28 0.07112 24.6301 0.015890
42 25 0.0635 19.6350 0.012668
43 22 0.05588 15.2033 0.009810
4 2.0 0.0508 12.5664 0.008107
45 1.76 0.044704 9.73140 0.006278
46 1.57 0.039878 7.74371 0.004996
47 140 0.03536 6.15752 0.003973
48 1.24 0.031496 4.83051 0.003116
49 1T 0.0281%4 3.87076 0.002497
50 0.99 0.025146 3.07907 0.001986




APPENDIX B

Skin Equation for a
Cylindrical Conductor

The starting point of the skin effect analysis is
Maxwell’s equations expressed by the laws of Ampere and Faraday in differential form:

VxH = J = oE (B.1a)
VXE = -p(aa—-’f) (B.1b)

where the displacement current density €(dE/dt) in (B.1a) is neglected inside a con-
ductor. This is permissible since the electric field in conjunction with the dielectric con-
stant is very small, even for rapidly changing fields, when compared with the
conduction current. We evaluate these equations in a cylindrical coordinate system
where E , E,_, and H,, are the only non-zero components. Carrying out the curl in
cylindrical coordinates, results in

1

13H,) = oF, (B.22)
oH

--a—zi’ = oE, = (B.2b)

9E, 8E,  OH, B2

o o Yo (B.20)

The second equation is zero because H,, does not depend on the z-coordinate, Conse-
quently, E, is also zero. Differentiating the last equation with respect to 7, and then
substituting the first into it, yields a second-order differential equation:

2515l -
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For time harmonic fields, the nme derivative can be replaced by j® and combined with

LG to form the new parameter p = —jouo . The final form
d E 1 dE,
£ ( d ]+ E =0 ®B.4)
dr’ r

is the standard Bessel equation with the solution £, = AJy(pr), where A is a constant
and J, is the Bessel function of zeroth order. Substituting this solution into the time
harmonic form of (B.2¢) gives us

JouH, = ApJy'(pr) (B.5)
with the prime denoting differentiation with respect to the argument. The current is
related to the line integral of H, along the outer perimeter, r = a, of the conductor:
Hy2ra = 1. Thus, we can write

H, = A( ]JO (pa) = -;’a (B.6)

which allows us to determine the constant A. Substituting A into the solution of the
Bessel equation leads to

Jo(pr)

" mpalUp0)

z 2‘.rl:pu:z}r Jo (pa) (B.7)

An interesting property of the Bessel function is the fact that J,'(pa) = -J,(pa),

which gives us, after a small algebraic manipulation, the final result
_p (Jo(pr))

¢ 7 2r6a \J,(pa)

This equation is used in Chapter 1. The validity of (B.8) for the case of zero frequency,
or DC condition, can be proved easily. For low frequency we see that

6
Jo(pr)=1-(£f) en’ e’ Lo (B.9)

(B.8)

2) T (247 2-4-6)
- ba (pa) ] pa
Ipa) = & [1 o R (B.9b)
Substituting (B.9) into (B.8) yields Ohm’s law for uniform current density J 2
__1Ir (_2_] -1 7
E = 2rac\pa)  gps’ O (B.10)
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Complex Numbers

This appendix provides a brief summary of several
useful concepts and definitions regarding complex numbers and their manipulations as
repeatedly used throughout this textbook. Emphasis is placed on the basic definition of
a complex number, its use in the magnitude computations, and its meaning in terms of
the circle equation.

C.1 Basic Definition

A complex number z, such as the normalized impedance, can be represented in
rectangular and polar forms as

z=x+jy = |de’® (C.1)
where the magnitude is given by
= V22" = Sar ) - = A+ €2
and the phase is
0 = tan~1(y/x) (C.3)

The star notation denotes the complex conjugate (i.e., z* = x - jy).

C.2 Magnitude Computations
Let us apply the preceding definition to a typical computation involving the mag-
nitude of two complex numbers such as
24w
where w is another complex number of the form w = u + jv. Substituting w yields
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|z + w‘l2 = (z4+w") - ("+w) = [z|2 +w’+ 2Re{z - w} (C4)
where we wused the fact that the terms z-w = wux—vy+ juy+vx} and
" -w" = ux—-vy- j(uy +vx) can be combined to 2Re{z- w}. Here Re{...] repre-
sents the real part.

C.3 Circle Equation

Perhaps one of the most useful equations involving complex numbers in RF cir-
cuits is the circle equation

lz—=w| = ror lz—wl2 =72 (C.5)

which forms the foundation of the Smith Chart. We can verify that this is indeed a circle
equation by going through the magnitude computation

-wl* = @-w)-(z-w)* = x-w)+(y-v)F =/ (C.6)
It is seen that u and v are the coordinates of the circle center in the complex z-plane and
r is its radius, as depicted in Figure C-1.

Ya
.
Ll bbbty Rt behty Y W
W i
W :

Figure C-1 Circle representation in the complex z-plane.



Matrix Conversions

Conversion between Z, Y, h, and ABCD representations

APPENDIX

D

(Z) (Y] (h] [ABCD]
Zy Zn AZ Zp Zu AZ
(Z] Zy Zy AZ AZ Zy Zy Zy Zy
Zuta | ZZy | 1 | 1
AZ AZ Zy 2y Zy Zy
Yy Yy 1 Yo Yu_ 1
(Y] AY AY L ST AT Y, Yy Y, Yy
RLR ST Yo ¥ Yu ar Ay Yy
AY AY Yu ¥y Y, Yy
Ah b 1 M _Ar By
[h] hy hyp hy by By by by hy
o3 o 8 hat b 1
hyy iy By by by By
AMBCD | D AABCD | B AABCD
1o | oa 1c cp
C C B B D D

AZ = 211222_212221 s AY = Y11Y22_ YiZYZI » AR = hllh22 _hllhﬂ *

AABCD = AD-RC
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Conversion from S-parameters to Z, ¥, h, or ABCD representations

(L + 8,01 =85)+5,5, 28,5 28,
u =2 ¥, 12 = Zo"@‘l' Zy = ZOT“I
(Z} (1 =81+ 55) + 525,
Zy =2, 7
1
Whefe "Pl = (l _Sll)(l -‘Szz) -512521
I - ZO‘PZ |} ZO‘PZ 21 ZO‘PZ
[Y] - (A +S (1 =5p) + 81555
22 ZO‘PZ
Whel‘c .Pz = (1 -Sll)(l "Sn)—sl2S21
{1+ 5;))(1 +52)~5,5 28, 2855,
hn = 2 ¥, hiz = T3 hy = 7,
(h] _ (=501~ 55) ~ Sy
2 ZyY¥,
Whel‘e "P3 - (l ‘-S“)(l +Szz)+512321
[ABCD) 253 ¢ 25y
C = (1—8;)(1 = 55) = 51555 D= (L=S, (1 +83) + 5,55
2855372, 285
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Conversion from Z,Y, h, and ABCD representations to Sparameters.

_ Zy -Z)Zy+ 2y} -2y _ 22y . = 2Z3Z,
1 ¥, 12 -__‘1’4 21 —"—q;‘
[Z] ¢ = (Z),+ Z)(Zyy—Zp) =212y
22 = ¥
4
where W, = (Z,,+ Zy{Zy + Zy) — 232
S = (1= Zo¥ (1 + Zo¥ ) + ¥ 13 ¥, 23 $. = “2¥Zy o -2Yy 2
1 — ‘PS 12 'PS 21 ‘PS
[Y] _ (l+ZoY,,)(1—ZOYn)+Y12Y2123
2 Y
5
whete ‘PS = (1 + ZUY“)(I +ZOY22) - Y|2Y2]Z%
11 "Pﬁ 12 ‘PG 21 ‘}'6
2o ¥
6
Whel‘e .PG - (hll{/20+ 1)(h2220+ 1)—h|2h21
s =A+BXZO—CZO—D s _ AAD-BC) 5, _2
1k 'P-; 12 \P? 1 \PT
[ABCD] -A+B/Zy)—CZy+D
Sy = ]
5
where ¥, = A+B/Z;+CZ24+ D




APPENDIX E

Physical Parameters of
Semiconductors

Table E-1  Properties of Ge, Si, and GaAs at 300°K

Properties Ge Si GaAs
Dielectric constant 16.0 11.9 13.1
Energy gap (eV) 0.66 1.12 1.424
Intrinsic carrier concentration (cm™) 2.4x10" | 1.45x10" | 1.79x10°
Intrinsic resistivity (Q - cm) 47 | 23x10° | 10°
Minority carrier lifetime (s) 10~ 2.5%10° 1078
Electron mobility (drift) (cmz/ V) 3900 1350 8500
Normalized effective mass of the electron (m,/m,) | 0.55 1.08 0.067
Hole mobility (drift) (cm/V-s) 1900 480 400
Normalized effective mass of the hole (m;/ m,) 0.37 0.56 048
Electron affinity, %(V) 40 4.05 4.07
Specific heat (1/(g - °K)) 0.31 0.7 0.35
Thermal conductivity W/ (cm - °K}) 0.6 1.5 0.46
Thermal diffusivity (cm>/s) 0.36 0.9 0.24




APPENDIX F

Long and Short Diode
Models

The current flow through a diode under an applied
forward bias voltage (see Chapter 6) can be evaluated based on the concentration of the
injected excess charge carriers in each semiconductor region. Depending on the
length of the semiconductor layers, we need to differentiate between a long and short
diode model. In the following discussion the current flow is derived for both cases.

With reference to Figure F-1, let us examine the pn-junction under forward bias
voltage V4.

+ . T > X
—d, + “’L) _dp 4, dut W,
Figure F-1 pn-junction under forward bias.

Under this applied voltage the junction is no longer in thermal equilibrium, and
minority concentrations are created that exceed the equilibrium condition #,, in the p-
layer and p,, in the n-layer. Indeed, thermodynamic considerations predict the minor-
ity concentrations in each layer as

VA" VIV
Pald,) = Poe © T and ny(=d,) = nye T (F1)

The corresponding excess charge concentrations
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Ap, = p,~ P and An, = n,—ny, (E2)

begin to diffuse into the semiconductor layers, a process governed by the steady-state
diffusion equation. For the n-layer, the equation reads

2
d* (A A
e (F3)
dx Dy,
where D pr Tp ae the diffusion constant of holes in the n-layer and excess charge car-
rier lifetime (on the order of 107...107° s), respectively. It is the so-called diffusion

length

L,= /D,g,and L, = JD,%, (F4)
with respect to the length of each semiconductor layer that determines whether we have
to deal with a long or short diode model. The general solution to (E3) is
Ap, = C,e* Lo s Cze"‘/ Lo, with two unknown constants to be determined through
the boundary conditions on either end of the semiconductor layer. The following two
cases are considered:

F.1 Long Diode (W,>L, Ap, > 0asx — )

Since the excess carriers completely decay to zero before reaching the end of the
layer, only C, has to be specified and C; = 0. Applying (F.1) as a boundary condi-
tion, we can find C, and insert it into the general solution, with the result

Ap, = pno(ev“w’"— Dle ] (E.5)

In an identical way we can find for the p-layer (W, >L,, An, 5 0 as x — —eo)

-(x-d /L,

V /Yy (x+d)/L
An, = n,o(e -Dfe 77

) (F.6)
F.2 ShortDiode (W, <L, Ap,—0asx—d,+W)

Here the sitvation is more complicated since the decay takes place over a finite
distance. As as result, both coefficients have to be retained. The additional boundary
condition on the right-hand layer now reads p,(d,+ W, )} = p,,. Going through the
mathematics eventually leads to

E7)

V,/Vy sinh[(d, + W, -x)/L ]
which can be further simplified by approximating the hyperbolic sine function, sinh, by
its argument. This is permissible as long as the layer length is less than the diffusion
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length (W, <L)). The final result is

(A% d,+W, -x
Apn = pnO(e ' T_l)( L _) (FS)
P
Similarly for the p-layer (W ,<L,, An,—0 as x—>—~(d,+ Wp))
-(d +W
An, = nge T~ 1)(“-—(-{-—”)) (E.9)
b2

Similar to (6.14), equations (F.5), (F.6) or (F.8), (F.9) can be used to find the total cur-
rent through the diode:

[ = AU+, )] = Al D (22 4 gp [ F.10
= AlJ,(d,) +J,(d,)] = Al{-q) p(m—) +q n(—d}—) (F.10)
d, -d,
Inserting (E.5), (F.6) or (F.8), (F9) into (F.10) finally results in the Shockley equation:
=121 (E11)
where the reverse saturation current is for the long diode
_ qupn{] annpO_
I, = A[ e (F.12)
and for the short diode
_ qupnﬁ an"pO-
I, = A[ Rl (F13)

A typical numerical example for a short Si diode involves the following
parameters:

A 3

2x107° cmz,Dn =22 cmz/s,Dp =9 cmz/s,NA = 15%10" em™,

U

;= 15x10° em™, Ny = 3%x10% em™, 1, = 1, = 107 s,
W,=W,=25um.
With these data we can compute the minority catrier electron and hole concentrations
in thermal equilibrivm:
Puo = Me/Np = 15%10° e™  nyg = ny/N, = 15%10° em™
Inserting into (F.13) results in a reverse saturation current of 0.5 fA.

n.



APPENDIX G

Couplers

Branchline couplers and power dividers play
important roles in RF circuits and measurement arrangements since they allow the sep-
aration and combination of RF signals under fixed phase references. Notably, in the
mixer section of Chapter 10 and the measurement protocol of characterizing a device
under test in Chapter 4, we see their usefulness. The purpose of this appendix is to dis-
cuss some of the couplers and dividers encountered most often in terms of their S-
parameters and figures of merit.

G.1 Wilkinson Divider

The transmission line configuration and its microstip line implementation of this
power divider are shown in Figure G-1. The S-parameters for such a three-port network
are given by the matrix

11077
[51= 1500 G.1)
00
The figures of merit are the return loss at ports 1 and 2
RL; = -20log|S,,| and RL, = -20log|S,,| (G.2)
the coupling between ports 1 and 2
CP,, = -20logl$,| (G.3)
and isolation between ports 2 and 3
IL); = —20log|S,,| (G4

Figure G-2 provides a typical frequency response of RL,, CP,, and IL,; for a center
frequency of f, = 1 GHz.

612
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Port2

Port 1

Port 3

%
x/

(a) Transmission line model

(b) Microstrip line realization
Figure G-1 3 dB Wilkinson power divider.

30
ILy,—,2
//
Q.31
S RL,
32

3 L L L 0 . L
0.5 075 1.0 1.25 1.5 05 075 1.0 1.25 1.5
Normalized frequency, /77, Normalized frequency, /11,

Figure G-2 Frequency response of Wilkinson power divider,
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Ideally, return loss and isolation should approach negative infinity at the center
frequency and the coupling should be as close to the 3 dB value as possible. We also
note that a coupler is not a broadband device. Typical frequency bandwidths do not
exceed 20% of the center frequency.

The derivation of matrix (G.1) is most conveniently carried out by an even and
odd mode analysis, as depicted in Figure G-3 for the computation of the S,, coeffi-
cient. We attach a source Vg to port 2 and terminated the other two ports with a Z,,
load. To make the circuit symmetric the source Vg at port 2 is divided into a series
combination of two V¢/2 sources operating in phase. At port 3 two V¢/2 sources
have a 180° phase shift and their sum is equal to zero. Also, the Z, load impedance
connected to port 1 is replaced by the parallel combination of two 2Z,, impedances.

z, K2 %R

{(a) Even mode (b) Odd mode

Figure G-3 Even and odd mode representation of Wilkinson divider
(0.c. = open circuit).

The reason for choosing the odd and even mode decomposition becomes immedi-
ately apparent. Let us consider at first the circuit in Figure G-3(a), which is driven by an
even mode, meaning that the drive signals at ports 2 and 3 are in phase. In this case both
ends of the 2Z;, cross impedance have the same potential. Thus, there is no current flow
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and the impedance can be neglected. The input impedance seen at port 2 for this case is
the impedance of a 2Z,, quarter-wave transformer terminated with a 2Z; load [i.c.,
Zy = (ﬁzo)z/(zzo) = Z,). Consequently, in the even mode excitation, port 2 is
perfectly matched and the voltage at port 2 is V5 = 0.5(V/2) = Vg/4. The corre-
sponding voltage at port 1 can be found based on our discussion regarding the voltage
distribution along a transmission line (see Chapter 2):

Vi = Vi1 +Tp) (G.5)
where Ty = (2Zy- +2Z4)/(2Zy+ 4[2Z,) is the even mode reflection coefficient at
port 1. Therefore, the even mode voltage at port 1 is

e
V= VT = vt o 2
-1 4
and where the factor j is due to the A/4 transmission line. For the odd mode excitation
voltages at ports 2 and 3 have opposite polarities and there is a zero potential along the
middle of the circuit. This means that the middle is shorted to ground. Since the input
impedance seen from port 2 is again Z,, and port 1 is grounded, we find that V{ = 0
and V3 = Vg/4.
The total voltage at ports 1 and 2 is found by adding the even and odd mode volt-
ages. The corresponding S, parameter is then computed as

v (G6)

Sp=o=21—= _J (G.7)

An identical analysis for the port 3 to 1 configuration results in ;3 = —j/ /2.
Furthermore, because the divider is a linear, passive network we conclude that
53 = 8y, and $3; = S;3. Also, both in the even and odd mode analysis port 2 is iso-
lated from port 3 by either an open circuit or ground, we find that §,; = §3, = 0.
Thus, all off-diagonal terms in (G.1) are verified.

In addition, S,;, = S35 = 0 is due to the matching of the odd and even modes.
This leaves us only to prove that S;; = (. We notice that when port 1 is driven, the
current through the 2Z,, resistor between ports 2 and 3 is again zero and has no influ-
ence on the circuit. Thus, the impedance Z, seen at port 1 is a parallel combination of
two Z, terminations connected through JiAZO quarter-wave transformers

122
=1 -

2 Z,
This proves that port 1 is matched (i.e., §;; = 0).

zZ, (G.8)
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G.2 Branch Line Coupler
There are two 3 dB branch line couplers of importance. According to their phase
shifts, they are either referred to as 90° (quadrature) or 180° couplers. The S-parameter
representation for the 90° coupler is
0j10

~1{j001

[Sen] = == |7 (G.9)
T Bliooj
010

and a circuit schematic is shown in Figure G-4.

Z,/Z

ZyiZ
Figure G-4 Microstrip line realization of quadrature hybrid.

Besides return loss, isolation, and coupling definitions given in (G.2)~(G.4), the direc-
tivity of a branch coupler is a key parameter and defined as

Dyy = ~20log|Syy| (G.10)
where D5, ideally approaches infinity at f,.

In our derivation of (G.9) we begin by using an even and odd mede analysis, as
depicted in Figure G-5. We drive the hybrid at port 1 with an RF source Vg and termi-
nate the remaining ports into the characteristic line impedance Z,. An equivalent cir-
cuit results if the source voltage at port 1 is written as the sum of an even (V) and odd
(V,,) voltage such that V, = V. = V| + V| with V;, = V¢/2 and V|, = V/2.
At port 4 we can enforce zero voltage condition by setting V, = 0 = V, +V,,,
where V,, = V,/2and V,, = -Vy/2.

The total transmitted voltage at port 2 due to the input voltage at port 1 can be
established as

VS
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L * 'z, Pot4a N4 pon3
Even mode Tg & Odd mode
%L Portl z43  Port2 % portl gz Pont2
Z,
(a) even mode {b) odd mode
Figure G-5 Building blocks of a branch line coupler.
and similarly
Vs
Vs
The reflected signal at port 1 is
Vs

We must next turn our attention toward finding 7,, T,, T, and T',. The transmission
line circuits in Figure G-5(a) and (b) can be represented as a three-element model
involving either short or open-ended stub lines A./8 in length.
The even mode and odd mode stub lines have an admittance of
-1

=7 = Lan(® =y = oot ®
Y, =¥ —zotan(4) and ¥, =7 —Zocot[4] G.15)
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The three-component circuit in ABCD network representation is then

{Vm}_rl of{ cos(Bl) jY3lsin(BD|| 1 O{Vuz}
Iyt) |i¥eo 1 |jYsinB)  cos(Bl) ||i¥e0 1 |-Tu2

(4 B {Vuz}
IC Di\-Tp2

where Y, = 1/Z, is the admittance of the /4 line element. Multiplying the three
matrices and converting the result into S-parameter form yields, after some rather tedious
computations, the following nonzero coefficients: S, = §,, = ~j(Z,/Z,),

. 2:1/2

ting Z, = Zy/ 2 gives the desired matrix listed in (G.9). Again, it is noted that all four

ports are matched into Z,, .

The 180° coupler can be constructed by adjusting the lengths of the four transmis-
sion line segments and arranging the impedances in a ring configuration, as shown in
Figure G-6.

(G.16)

Port 1 Port 2

o Port 4

Iv4
Figure G-6 A 180° ring coupler,

The S-parameter matrix for this configuration, also known as “rat race,” is given by

011 0
[S1g0] = :f : g 3]’ (G.17)
0 -11 0
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G.3 Lange Coupler

Port 1 Port 2

Port 4 Port 3

Figure G-7 A 3 dB Lange coupler.

A popular implementation of the quadrature hybid in microstrip line form is the
so-called Lange coupler shown in Figure G-7 for a four-strip configuration. Additional
variations involve six- and eight-strip realizations. The interdigital form of the micro-
strips permits a very compact geometric size and provides for tight coupling.

Typical coupling values range between —5 and —1 dB. By choosing the length of
the microstrip elements appropriately, a very broadband realization of up to 40% band-
width can be achieved.

Further Reading

P. Karmel, G. Colef, and R. Camisa, Introduction to Electromagnetic and Microwave
Engineering, John Wiley, New York, 1998.

J. Lange, “Interdigitated Stripline Quadrature Hybrid,” IEEE Trans. on MTT, Vol. 17,
pp. 1150-1151, 1969.



APPENDIX H

Noise Analysis

Tle intent of this appendix is to provide an over-
view of the most important noise definitions and concepts as related to the noise figure
analysis conducted in Chapter 9.

H.1 Basic Definitions

In a broad sense noise can be characterized as any undesired signal that interfers
with the main signal to be processed. Examples of noisy signals are AC power cou-
pling, crosstalk between circuits and electromagnetic (EM) radiation to name but a few
sources. Mathematically we use random variables of Gaussian distribution and zero
mean to describe the noise behavior. Although the mean is zero, the root mean square
(RMS) value of a noisy voltage signal v,(¢) is not. This can be expressed as

4T, 172
Virms = JV_?; = {Tlig_[: [v,,(r)]zdt} #0 (H.D)
M 1

where T, is an arbitrary point in the time and T, is the measurement interval.

In 1928 Johnson first observed the fact that a resistor in the absence of any exter-
nal current flow generates noise due to the random motion of charge carriers in the con-
ductor. The noise power in a conductor is quantified as

P, = kTAf = kTB (H.2)

where k is Boltzmann’s constant, T is the absolute temperature in °K, and Af = B is
the noise bandwidth of the measurement system. The noise bandwidth is defined as the
integration of the instrument’s gain G(f) over all frequencies normalized with the
respect to the maximum gain G, :

.
= g=[ 6war H.3)

We next turmn our attention to the noise voltage. Let us consider the simple circuit
shown in Figure H-1.
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o

Rs
éRL =R_5'
g

Figure H-1 Nolse voltage of a circuit.

P!
'

According to this circuit, the noise power is treated as if a noise voltage source
drives a noiseless resistor R¢. Under matching condition Ry = R; , the noise power of
the resistor is given as

V2
p = InRMS _ -
"= iR kTB (H.4)

from which the RMS noise voltage is found

V.rms = JAKTBRg (H.5)

To keep the notation simple (and since no ambiguity will arise) the subscript RMS is
dropped (i.e., V,pus =V, ) In general, we represent a noisy resistor R as a noise volt-
age source in series with the noise free resistor R (Thévenin equivalent circuit) or as a
noise current source I, = J4kTB/R in shunt with a noise free resistor, as shown in
Figure H-2.

R
(noise free)
R
R pma =1 (noise free)

(noisy)
dl

Figure H-2 Equivalent voltage and current models for noisy resistor.

If the the bandwidth is eliminated from (H.5) we can define a so-called spectral
noise voltage and a spectral noise current:
V.=V,/J/B and I,=1,/JB (H.6)
whose units are given in V/ JHz and A/ JHz.
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Frequently, the spectral density S(f) is used to quantify the noise content in a unit
bandwidth of 1 Hz. For the thermal noise source associated with resistor R, it is given
by

2

%
S(f) = 5 = kTR H.T)

If S(f} is a constant (i.e., independent of frequency), we speak of white noise. Care is
required when noisy elements are added in a circuit. For instance, if two noisy resistors
R, and R, are added, the associated noise sources V,_; and V , cannot be linearly
summed. Instead, the resultant noise source V, is

v, = Vi V2 (H.8)

provided both noise sources are uncorrelated. This is equivalent to saying that only
power proportional voltage square quantities can be added because of their random dis-
tribution of amplitudes and phases as well as different nonharmonic frequencies.
If the noise sources are correlated, a correlation coefficient C,; ,, enters (H.8)
such that
Vi= V2 +vi,42C

nl, a2 VnZ (H 9)
where -1 <, ,,<1.1Itis mtcreslmg to observe thatif V,, and V_, are 100% corre-
lated (C,; ,, = 1), then V = V"l-l- V,,2+2V Voo = (Vi + Vﬂz) and the volt-
ages can again be added, in agreement with Kirchhoff’s linear circuit theory.

The thermal noise of a resistor is also referred to as an internal noise source,
since no external current has to be impressed to observe the noise voltage. However,
many noise mechanisms only occur due to externally impressed current flow through
the device. They are collectively known as excess noise. Chief among them are the 1/f
noise (also known as flicker noise, semiconductor noise, pink noise) and shot noise.
The 1/f noise is most prominent at low frequencies and exhibits, as the name implies,
an inverse frequency-dependent spectral distribution. It was first encountered in vaccum
tubes as a result of “flickering” noticed on the plates. The shot noise is most important
in semiconductor devices and can be attributed to the discontinuous current flow across
junction potential barriers. As an example, in a semiconductor diode the reverse bias
noise current I, is given as

I, = [J4qI B (H.10)

where I is the reverse saturation current and g is the electron charge.
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H.2 Noisy Two-Port Networks

The previous analysis can be expanded to two-port networks. Figure H-3 shows a
noisy network and the equivalent noise-free network augmented by two current noise
sources /,, and I ,.

I—') (..12_ I—') (IA
o0— -——0
Noisy Noise free
Vi network £ :> [ 2 network e
o— -—0

Figure H-3 Noisy two-port network and its equivalent representation.

In ¥-parameter matrix representation we can write

{ Il } = [Yll Ylli{ V] }_'_{ Inl } (H]l)
12 YZI Y22 VZ InZ

A more useful representation is obtained when rearranging (H.11) as follows:

Yy | 1
Vi=-2Vod—1, -1 (H.12a)
: Yy 2 ¥y % Yy ™
and
Y¥p-Yiply Yy Y
= Vod oIyl —5—1 (H.12b)
1 Y21 2 Y21 2 nl Yz; nl
Defining the transformed voltage and current noise sources
| Y
V,= g I,adl, =1 ,-—I, (H.13)
" Ya " Yy "

we arrive at the network model shown in Figure H-4.
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A
I, —_— : I
2 -
Noise free
4 L network £
o —0
T Noisy network

Figure H-4 Transformed network model with noise sources at the input.

To apply the various noise definitions and concepts to a practical example, let us
consider a simplified BJT amplifier.

RFEMW—
Example H-1: Noise analysis of a low-frequency BJT amplifier

In Figure H-5 a simplified BJT amplifier is treated as a two-port net-
work consisting of the following parameters: V¢ = 25 mV,
R; = 50 Q, R, = 200 Q, voltage gain g, = 50, and measure-
ment bandwidth B = 1 MHz. The spectral noise voltage and current
of the amplifier are given by the manufactureras V,, = 9 nV/J/Hz
and [, =9fAJ/Hz. Find the signal-to-noise ratio
SNR = 20log(V,/V,,) atthe output.

R
Vs

Figure H-5 Amplifier model and network representation with noise sources.

The output voltage V, is directly found from
V, = gyRiy/ (R, + Rg)Vg = 1 V. The spectral noise sources of
the network are next expressed in RMS noise voltage and current:

V,=V J/B=9uV and [, =1,/B=9pA
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The veltage source creates through the voltage divider rule the fol-
lowing noise voltage across R, :

R+ RsV = 72nV
The noise current source is responsible for the noise voltage of
RuBs | _ 036av
R;, R s "
Finally, the source resistor contributes the voltage
R.
R = Rs = 728 nV

where V, = [4kTBR; = 910 nV, assuming T = 300°K.
Therefore, the total noise voltage at the output is

vV, = Rin v : R"‘RSIZ Rin v 2-364\/
2 = 8y (R + Ry )+(Rm+RS ) (Rm+RS ”‘) = Jo4u

Finally, the signal to noise ratio is

Va
SNR = 20log (-V—
n2

We notice that the noise voltage is dominated by the source.

) = 122.8 dB

The example makes clear how the noise voltages are individu-
ally computed, added, and amplified to provide the output noise
voltage. This is in stark contrast to linear circuit theory.

H.3 Noise Figure for Two-Port Network

The noise figure is defined as the ratio between the SNR at the input to the SNR
at the output port of a network. Specifically, Figure H-6 depicts the relevant power flow
conventions, including the noise representation of the source Z.

The noise figure F can be cast into several equivalent representations. The first
form involves the ratios of the signal to noise power at the input and output ports:

F = =
P,/P, P, /P,

(H.14)



Noise free
network

Figure H-6 Generic noise model for noise figure computation.

Employing the available power gain G, from Section 9.2.3 to express P, = G, P,
and P,, = G,P,, +P,;, (H.14) is re-expressed as

F=lan (H.15)
GAP nl
where P,; is the internally generated noise power within the amplifier.
Based on Figure H-6, we see that the signal power P is

Re{Z.
L= l { m} VSZ (H.lﬁ)
2 2
|Zs+ 2,
which is less than the power under source matching (Z; = Z ):
2
1 |Vl
= | =—= H.
Prly ez 2(4Re{zin} (H17)
The thermal neise at the input side is with Z; = Rg+ jX:
Re{Z. Re{Z
P, = 4kTRSB—ﬁ}-5 = Vﬁ,—-i—“'—}z (H.18)
The power ratio is therefore
V2
S
P\/Py = — (H.19)

|14
The signal power P, is simply P, = G,P,, where P, is given by (H.16). For the
noise power P,, we set P,, = G,4P,, +P,;, where the internally generated noise

power P, takes into account the noise sources associated with the two-port network
V, and I,. Thus, v: in (H.18) has to be replaced by all three noise sources:

RS

ns
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Vﬁs + Vi + (I,,Rm)2 , where R, = Re{Z;,} is the input resistance of the network.
Since the gain applies equally to signal and noise, it cancels and we arrive at

2
Vs
Py/Py = —— 5 (H.20)
Vi + Vo + U Ry)
The noise figure therefore takes the form
2 2 2 2 2
V,+V,+ (I R,) Va+(,R,)
= =] 4+ —— 21
d V2 * T4kTBR, ®2D

ns

The preceding treatment does not take into account the fact that the same noise
mechanisms are usually responsibe for both V, and 7. Thus, these sources are, to a
certain degree, correlated. This can be incorporated into the noise model by splitting I,
into an uncorrelated, /,,,,, and a correlated current, /, ., contribution, respectively. The
correlated current contribution is related to the noise voltage V, via a complex correla-
tion factor ¥~ = G, + jB, such that I, = Y.V, . Since it is more convenient to
deal with noise currents than voltages for our network, we convert the source into an
equivalent Norton representation, as seen in Figure H-7.

Figure H-7 Noise sources modeled at network input.

The total RMS noise current I, under short circuit input conditions can be expressed
as
2 2 2 2.2
L =L+ V,(Ys+Yo) +1, (H.22)
where I,,, = Y.V, and I, = V ¥ are combined because of their correlation. We can
now rewrite (H.21) as
2 2 2,52
B L4V (¥Ye+Yo) +1,,
- 2
Ins

Under the assumption that all noise sources are represented by an equivalent thermal
noise source, we identify in (H.23)

(H.23)
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I = 4kTBGg: noise due to the source Yy = G+ jBs (H.24)

I2, = 4kTBG,: noise due to the equivalent noise conductance G,  (H.25)

V: = 4kTBR,,: noise due to the equivalent noise resistance R, (H.26)
Inserting (H.24)—(H.26) into (H.23) gives

2

G, +R,|Yg+Y G,

F=is St RlVs* ¥ G [(GS+GC) +(Bs+Bo)’l  (H2Y)

G, G ' G,

The circuit designer can minimize (H.27) through an appropriate choice of source
admittance Y. This process is accomplished by first observing that the imaginary part
can be chosen such that By = —B. This eliminates the (Bs"'Bc) term in (H.27).
Next, the remaining expression is minimized with respect to Gg; that is,
ik - B (R [265(Gyopet Go) = (Ggap + G 1} = 0 (H2B)
Sopt
which yields the explicit optimum value

Gisopn = %./R,,Géﬁucu (H.29)

The minimum noise figure is thus obtained by the optimal source admittance

1 .
Ygop = (F RHG% + G,J -JjBc (H.30)
R

Substituting (H.29) into (H.27) results in the expression

Fo= 142 e 20 (G Gy (H.31)
min GSopt GSop(( Sopt C) .
Eliminating G, in (H.31) by using G, = R, Gy, ~ R,Gy from (H.29) gives
Foin = 1+ 2R (Gsop + Ge) (H.32)

This number is typically provided by the device manufacturer. It is dependent on fre-
quency and bias conditions. Equation (H.32) can be incorporated into (H.27) with the
result

G,
F = Fpy~2R,Gso~ 2R, G+ =*

G G[(GS+GC) +(Bs—Bgo)’]  (H33)
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Replacing G, by G, = RnGiop‘-RnGé and rearranging terms provides the final
result

F = Fop + S[(Gg = Gyy) + (Bg— Byop)?) = F +&|Y ~ Yoo} (H34
min GS 5 Sopt A Sopt min GS A Sopt

This is the starting point of our noise circle analysis in Section 9.5. Based on the char-
acteristic line impedance Z, = 1/Y,, (H.34) is often expressed in terms of normalized
noise resistance r, = R,/Z,, conductance g; = Gs/Y,, and admitiances
¥s=Ys/ Yo, Ysopt = ¥ g/ Yo in the form

r 2
F=Fpnt él)’s - )’30pt| (H.35)

H.4 Noise Figure for Cascaded Multiport Network

The previous noise figure discussion for a single two-port network, with P,
being the input noise and P,, = G,P,; + P,; being the output noise, can be extended
to multiple cascaded networks, as shown in Figure H-8.

1 2 k
o —— — — —
P|§: Gy .ﬂ"2 Ga ﬁ Gu
> <> e s
ré}'—' P, ail —Fé— ‘Dm'E —"—é ré‘—" R!I.i —é
£, P y

Figure H-8 Cascaded network representation,

In accordance with Figure H-8, we adopt a suitable notation such that G4, and
P,;; denote power gain and internal noise generated by amplifier block k£ = 1,2,...
Thus, for the noise power at the second amplifier section it is seen that

Py = GuGyPry+ Ppy) + Py (H.36)
or for the total noise figure F,,, we see
P P, P,
F = n3 = 1 + nil + ni2 (H.g?)
R SYRTN PGy PpyGyiGy

It is customary to retain the same noise figure expression for the individual blocks as
derived for the single network; that is,
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Pnil Pm'2 P

Fi=1+ JFy =1+ oo Fp= L4 & (H.38)
: Pn]GAI 2 Pn]GAZ g PukGAk
For two networks this concept leads to the expression
Foo=F+ (H.39)
Gai
or for multiple cascaded networks
Fo,=F + + + + ... (H.40)

v ¥
Gy GaGay Ga1Gaz-Gag-yy

The preceding considerations have important practical implications. For instance, if
two amplifier stages with different gains and noise figures (F, G4, and F,, G, ) are
to be cascaded, which sequence of these stages results in the lowest noise figure? To
answer this question, let us hypothetically assume amlifier block 1 (F,, G,;) is fol-
lowed by amplifier block 2 (F,, G4, ). The total noise figure for this configuration is

Fy-1
F(1,2) = F, + (H.41)
GAI
On the other hand, if block 2 is followed by block 1, we obtain
F. -1
F (2,1) = Fy+ - (H.42)
Gaz

Under the assumption that F, (1, 2) has a lower noise figure than F (2, 1), the fol-
lowing inequality must hold:

F,-1 F-1

F o+ —2—<F,+ (H.43)
' Gy z G
Rewriting (H.43)
1 1
(F —1)(1——)<(F —1)(1——-—) (H.44)
: Gaz : Ga

allows us to define

NM, <NM, (H.45)

where NM, = (F,~1)/(1-G};) and NM, = (Fz-l)/(l—Gglz) are the noise
measures of amplifiers 1 and 2, respectively. In other words, it is a combination of
noise figure and gain that determines the noise measure as a basis of an overall noise
performance comparison.
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Introduction to MATLAB

A considerable number of MATLAB simulations
have been created to enable the reader to reproduce the results presented in the exam-
ples. Moreover, it is hoped that these so-called M-files will stimulate and encourage the
reader to develop code on his or her own relative to the RF topics covered in the ten
chapters. This appendix is neither a tutorial of MATLAB nor a detailed discussion of the
software written in support of this textbook. Rather, it is hoped that sufficient back-
ground is provided to understand how MATLAB routines are created, and how code can
be written to reproduce some of the results and graphs presented in the text. Being a gen-
eral-purpose mathematical spreadsheet tool, MAaTLAB does not replace specifically
developed RF and MW CAD programs, such as MMICAD and ADS, with their power-
ful circuit analysis, optimization, and even layout utilities. Such dedicated simulation
packages cannot be expected to be available to the general reader. For this reason, the
authors have attempted to use MATLAB as a package that is widely available to students
and at very reasonable cost. For more information regarding the use of MATLAB the
reader should refer to the following Web site: http:/Avww.mathworks.com.

This appendix first provides some general background as to how we created the
M-files, followed by a brief example of how they are used in the context of a stability
analysis, as done in Chapter 9. All M-files can be downloaded from our Web site:
hatp://www.wpi.eduw/ece/EM_RF _LAB/book.

.1 Background

MATLAB is an easy-to-use mathematical spreadsheet with the capabilities to write
special routines for mathematically evaluating the equations discussed in the main text
and to display the results graphically. The authors have MATLAB implemented on a PC
with a 450 MHz Pentium IT processor, 128 MB RAM and 8 GB disk space, This does
not constitute a mimimal configuration; it merely reflects the environment used during
the writing of this textbook.
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Upon executir;g MATLAB, a window is opened with a command line indicator >>,
The appropriate directory can be checked with the command pwd, which yields

>>pwd
ans =
d:\RF\similations

indicating that the directory is located on d-drive under subdirectories RF\simulations.
Changing to a different directory can be initiated througth the command cd, and a list-
ing of the files within a directory is done with the commands 1s or dir.

By way of an example from Chapter 2, let us consider the following command
lines, which can be executed sequentially, each line terminated by pressing ENTER.

I=5
a=0.005
N=100
M=10
r=(0:N)/N*(M*a)
for k=1:N+1
if(rik)<=a)
H(k)=I*r(k)/(2*pi*a*a)
else
Hik)=1/(2*pi*r(k))
end
end
plot{r*1000,H,'k")

In the first line of the program we specify a current through the wire. The second
line defines the wire radius. Variables N and M specify the number of points and the max-
imum distance from the center of the wire at which the magnetic field will be computed.
In our case u=10, which means that we will look at distances ranging from 0 to 10 wire
radii, and the number of points is set to n=100. The fifth line of the code defines a one-
dimentional array of points that determine the actual position from the center of the
wire. The command (0:N) creates an array of N + 1 elements with values of 0,1,2,3, etc.
After dividing this array by u, the values range between 0 to 1. Next, the array is scaled
so that the distance changes from o to M*a, An alternative way to define this array would
be r=(0:M*a/N:M*a), where the parameter between the two colons defines the step size.

The next line of the code starts a for loop cycle for k ranging from 1 to n+1. For
each k we take the corresponding radius from the array r and check whether it is less or
greater than the wire radius. As discussed in Chapter 2, the field inside the wire is linear

Ir
2na

H =

2
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with respect to the radial distance, whereas outside the wire we observe

_ I
" 2nr
The last line of the code instructs the program to plot a graph of the magnetic field
u versus radius r. The graph is shown in black, which is specified in the last parameter
of the plot instruction. Some of the possible choices for color include ‘x’-black, ‘r’—
red, ‘y’-yellow, ‘b’-blue, and ‘g’—green. Other usefull options for creating graphs
include the following:

semilogx—logarithmic scale along x-axis, linear scale on y-axis
semilogy—logarithmic scale along y-axis, linear scale on x-axis
loglog—logarithmic scale on both axes

polar—polar plot

The entire list of commands can be entered in an interactive mode by using the
command line. Alternatively, the commands can be placed in a file for batch-mode exe-
cution. For example, we can save this program in a file with name field.m; then to exe-
cute this program we simply type >>field on the MATLAB command line. Note that .m
is a file extension resevered for use by MATLAB.

.2 Brief Example of Stability Evaluation

Another useful capability of MATLAB is the creation of functions. For example,
the following listing is a function that takes an array of S-parameter data (s_param) and
computes two output parameters: the stability factor k and JA|, denoted as K and delta.

function [K,delta)
% Usage: [K,delta]
%

% Purpose: returns K factor for a given s-parameter matrix
% if K>1 and delta<l then circuit is unconditicnally stable
% otherwise circuit might be unstable

K_factor(s_param)
K_factor(s_param)

sll=s_param(l,1);
sl2=s param(1,2);
s2l=s param(2,1);
822=s_param(2,2);

delta=abs(det(s_param));

K=(l-abs(sll)."2-abs(s822). 2+delta. 2)./(2*abs(s12.*521));
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The first line in the listing defines a function K_factor that takes one input param-
eter s_param and returns two values as a result: K and delta, which are computed inside
the function. Unlike program scripts, files containing functions must have the same
name as the function name. Therefore, this function is stored in the file X_factor.m.

If the user does not know or forgot how to use the function, he or she can type
help K_factor in the command line of MATLAB, and the comments that follow the first
line in the function will be displayed.

The program file for creating the S-parameter matrix of a particular transistor and
the stability check as well as the display of the stability circles is shown in the next file,
entitled test.m

% s-parameters for hypothetical transistor
close all;

s11=0.7%exp(*(=70)/180%pi);
512m0.2%exp(j*(~10)/180*pi);
821=5,5%exp(§* (+85)/180*pi);
g22=0,Trexp(i*(-45)/180*pi);

s_param=[sll,sl2;s821,s22];

% check stability
[K,delta] = K_factor(s_param)

% create a Smith Chart
smith_chart;

% plot input and ocutput stability circles
input_stability(s_param, 'r');
output_stability({s param, 'b'});

% create PostScript copy of the figure
print -deps 'fig9 B.eps’

This file is not a function; it is a collection of commands (program script) and
therefore can have any name. In our case we use the name test.m.

We notice that the S-parameters are given in magnitude and phase and stored in an
array called s_param. Next, a stability check is performed by passing on the s_param
array into the M-file x_factor.m, whose task is to find the stability factor and |A| based
on equations (9.24) and (9.29). After this we call three user-defined functions:

* smith_chart—creates a figure containing the Z-Smith Chart.
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* input_stability—draws the input stability circles computed from the supplied §-
parameters. Circles are drawn in the currently active figure (Smith Chart) and use
a specified color (red in our case).

* output_stability—draws the output stability circles in the currently active
figure.

The last line of the script creates a file called £ig9_8.eps, which contains the figure
stored in PostScript format. This is the format employed to produce most of the simula-
tion results throughout the book.

1.3 Simulation Software on Compact Disk

1.3.1 Overview

The intent of the software contained on this CD is to provide support for the mate-
rial covered in the textbook. All programs have been developed and tested using MAT-
LAB Version 5.2. Although the authors believe that all routines should be compatible
with earlier versions of MATLAB, this may not be the case. The software is maintained
and regularly updated through our Web-site at www.wpi.edu/ece/EM_RF _lab/book.

.3.2 Software Instailation
The installation of the RF software involves the following steps:

1. Copy the entire directory r€_matlab onto the desired harddrive location.

2. Invoke MATLAB.

3. At the command prompt in the main MATLAB window type: ¢d
c:\rf_matlab, (here it is assumed that all files are copied to disc-drive C)

4. At the MATLAB command line type set_path. This will add all necessary paths
to the search tree of the MATLAB. If you do not wish to save this information for
future use you can stop the installation process now. In this case you will be able
1o run all programs but all path information will be deleted after closing MATLAB.
If you decide to store the path infermation for future use, continue with the next
step.

5. In the MATLAB command window go to the £ile\set path option. This will
launch the path browser.

6. In the path browser go to the file\save path option shown the main win-
dow.

7. At this step all path information is stored and you can begin to run the M-file rou-
tines from the command line.



.3.3 File Organization

All files are organized in the directory structure shown below and the content of
each folder is described in the table.
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{#8 RF_matlab
~{&R chl
@ choz
@ ch03
@ ch04
~ 48 ch05
{38 ch0G
@ chd?
o e
@ ch09
(&g ch10
= @ tools

D @ cm:les

i@l amplifiers

‘‘‘‘ @ quality
----- (@3 stabilty
(@ conversion

(38 global

@ smith

Folder name |Description
RF_matiab Root directory
) Selected examples and figures for chapiers
ch01-chl0 1 through 10.
tools Common files for simulations
Programs for computation of stability fac-
amplifiers tor and simultaneous complex-conjugate
matching for the bilateral design
circles Various circle equations
gain Constant gain circles
noise Constant noise circles
quality Constant Q, circles
stability Stability circles
. Conversion routines between different two-
conversion .
port network representations
Some useful routines for the computation
global of the input and output reftection coeffi-
cients, VSWR, etc.
Routines for the definition of matching net-
networks . .
work circuit topologies
. Programs related to the construction and
smith

plotting of various arcs in the Smith Chart

Additional information for each of the programs can be obtained by executing the
command help <program name>, where <program_name> is the name of the
particular m-file. For example, to obtain help about the program smith_chart.m,
you execute the command help smith_chart in MATLAB's main window.

Further Reading

Student Edition of MATLAB, The MathWorks, Inc., 1995,
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