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Preface

In 1997 the authors of this book, J. Machowski, J.W. Bialek and J.R. Bumby, published a book
entitled Power System Dynamics and Stability. That book was well received by readers who told
us that it was used regularly as a standard reference text both in academia and in industry. Some
10 years after publication of that book we started work on a second edition. However, we quickly
realized that the developments in the power systems industry over the intervening years required a
large amount of new material. Consequently the book has been expanded by about a third and the
word Control in the new title, Power System Dynamics: Stability and Control, reflects the fact that
a large part of the new material concerns power system control: flexible AC transmission systems
(FACTS), wide area measurement systems (WAMS), frequency control, voltage control, etc. The
new title also reflects a slight shift in focus from solely describing power system dynamics to the
means of dealing with them. For example, we believe that the new WAMS technology is likely to
revolutionize power system control. One of the main obstacles to a wider embrace of WAMS by
power system operators is an acknowledged lack of algorithms which could be utilized to control
a system in real time. This book tries to fill this gap by developing a number of algorithms for
WAMS-based real-time control.

The second reason for adding so much new material is the unprecedented change that has been
sweeping the power systems industry since the 1990s. In particular the rapid growth of renewable
generation, driven by global warming concerns, is changing the fundamental characteristics of
the system. Currently wind power is the dominant renewable energy source and wind generators
usually use induction, rather than synchronous, machines. As a significant penetration of such
generation will change the system dynamics, the new material in Chapter 7 is devoted entirely to
wind generation.

The third factor to be taken into account is the fallout from a number of highly publicized black-
outs that happened in the early years of the new millennium. Of particular concern were the autumn
2003 blackouts in the United States/Canada, Italy, Sweden/Denmark and the United Kingdom,
the 2004 blackout in Athens and the European disturbance on 4 November 2006. These blackouts
have exposed a number of critical issues, especially those regarding power system behaviour at
depressed voltages. Consequently, the book has been extended to cover these phenomena together
with an illustration of some of the blackouts.

It is important to emphasize that the new book is based on the same philosophy as the previous
one. We try to answer some of the concerns about the education of power system engineers. With
the widespread access to powerful computers running evermore sophisticated simulation packages,
there is a tendency to treat simulation as a substitute for understanding. This tendency is especially
dangerous for students and young researchers who think that simulation is a panacea for everything
and always provides a true answer. What they do not realize is that, without a physical understanding
of the underlying principles, they cannot be confident in understanding, or validating, the simulation
results. It is by no means bad practice to treat the initial results of any computer software with a
healthy pinch of scepticism.
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xvi Preface

Power system dynamics are not easy to understand. There are a number of good textbooks which
deal with this topic and some of these are reviewed in Chapter 1. As the synchronous machine
plays a decisive role in determining the dynamic response of the system, many of these books start
with a detailed mathematical treatment of the synchronous generator in order to introduce Park’s
equations and produce a mathematical model of the generator. However, it is our experience that to
begin a topic with such a detailed mathematical treatment can put many students off further study
because they often find it difficult to see any practical relevance for the mathematics. This can be
a major obstacle for those readers who are more practically inclined and who want to understand
what is happening in the system without having to refer continuously to a complicated mathematical
model of the generator.

Our approach is different. We first try to give a qualitative explanation of the underlying physical
phenomena of power system dynamics using a simple model of the generator, coupled with the basic
physical laws of electrical engineering. Having provided the student with a physical understanding
of power system dynamics, we then introduce the full mathematical model of the generator, followed
by more advanced topics such as system reduction, dynamic simulation and eigenvalue analysis. In
this way we hope that the material is made more accessible to the reader who wishes to understand
the system operation without first tackling Park’s equations.

All our considerations are richly illustrated by diagrams. We strongly believe in the old adage
that an illustration is worth a thousand words. In fact, our book contains over 400 diagrams.

The book is conveniently divided into three major parts. The first part (Chapters 1–3) reviews
the background for studying power system dynamics. The second part (Chapters 4–10) attempts
to explain the basic phenomena underlying power system dynamics using the classical model of
the generator–infinite busbar system. The third part (Chapters 11–14) tackles some of the more
advanced topics suitable for the modelling and dynamic simulation of large-scale power systems.

Examining the chapters and the new material added in more detail, Chapter 1 classifies power
system dynamics and provides a brief historical overview. The new material expands on the defini-
tions of power system stability and security assessment and introduces some important concepts
used in later chapters. Chapter 2 contains a brief description of the major power system compo-
nents, including modern FACTS devices. The main additions here provide a more comprehensive
treatment of FACTS devices and a whole new section on WAMS. Chapter 3 introduces steady-state
models and their use in analysing the performance of the power system. The new material covers
enhanced treatment of the generator as the reactive power source introducing voltage–reactive
power capability characteristics. We believe that this is a novel treatment of those concepts since we
have not seen it anywhere else. The importance of understanding how the generator and its controls
behave under depressed voltages has been emphasized by the wide area blackouts mentioned above.
The chapter also includes a new section on controlling power flows in the network.

Chapter 4 analyses the dynamics following a disturbance and introduces models suitable for
analysing the dynamic performance of the synchronous generator. Chapter 5 explains the power
system dynamics following a small disturbance (steady-state stability) while Chapter 6 examines
the system dynamics following a large disturbance (transient stability). There are new sections on
using the Lyapunov direct method to analyse the stability of a multi-machine power system and on
out-of-step relaying. Chapter 7 is all new and covers the fundamentals of wind power generation.
Chapter 8 has been greatly expanded and provides an explanation of voltage stability together with
some of the methods used for stability assessment. The new material includes examples of power
system blackouts, methods of preventing voltage collapse and a large new section on self-excitation
of the generator. Chapter 9 contains a largely enhanced treatment of frequency stability and control
including defence plans against frequency instability and quality assessment of frequency control.
There is a large new section which covers a novel treatment of interaction between automatic
generation control (AGC) and FACTS devices installed in tie-lines that control the flow of power
between systems in an interconnected network. Chapter 10 provides an overview of the main
methods of stability enhancement, both conventional and using FACTS devices. The new material
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Preface xvii

includes the use of braking resistors and a novel generalization of earlier derived stabilization
algorithms to a multi-machine power system.

Chapter 11 introduces advanced models of the different power system elements. The new material
includes models of the wind turbine and generator and models of FACTS devices. Chapter 12
contains a largely expanded treatment of the steady-state stability of multi-machine power systems
using eigenvalue analysis. We have added a comprehensive explanation of the meaning of eigenvalues
and eigenvectors including a fuller treatment of the mathematical background. As the subject
matter is highly mathematical and may be difficult to understand, we have added a large number
of numerical examples. Chapter 13 contains a description of numerical methods used for power
system dynamic simulation. Chapter 14 explains how to reduce the size of the simulation problem
by using equivalents. The chapter has been significantly expanded by adding novel material on the
modal analysis of equivalents and a number of examples.

The Appendix covers the per-unit system and new material on the mathematical fundamentals
of solving ordinary differential equations.

It is important to emphasize that, while most of the book is a teaching textbook written with final-
year undergraduate and postgraduate students in mind, there are also large parts of material which
constitute cutting-edge research, some of it never published before. This includes the use of the
Lyapunov direct method to derive algorithms for the stabilization of a multi-machine power system
(Chapters 6, 9 and 10) and derivation of modal-analysis-based power system dynamic equivalents
(Chapter 14).

J. Machowski, J.W. Bialek and J.R. Bumby
Warsaw, Edinburgh and Durham
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List of Symbols

Notation

Italic type denotes scalar physical quantity (e.g. R, L, C) or numerical variable (e.g. x, y).
Phasor or complex quantity or numerical variable is underlined (e.g. I, V, S).
Italic with arrow on top of a symbol denotes a spatial vector (e.g. �F).
Italic boldface denotes a matrix or a vector (e.g. A, B, x, y).
Unit symbols are written using roman type (e.g. Hz, A, kV).
Standard mathematical functions are written using roman type (e.g. e, sin, cos, arctan).
Numbers are written using roman type (e.g. 5, 6).
Mathematical operators are written using roman type (e.g. s, Laplace operator; T, matrix transpo-

sition; j, angular shift by 90◦; a, angular shift by 120◦).
Differentials and partial differentials are written using roman type (e.g. d f/dx, ∂ f/∂x).
Symbols describing objects are written using roman type (e.g. TRAFO, LINE).
Subscripts relating to objects are written using roman type (e.g. ITRAFO, ILINE).
Subscripts relating to physical quantities or numerical variables are written using italic type (e.g.

Ai j , xk).
Subscripts A, B, C refer to the three-phase axes of a generator.
Subscripts d, q refer to the direct- and quadrature-axis components.
Lower case symbols normally denote instantaneous values (e.g. v, i ).
Upper case symbols normally denote rms or peak values (e.g. V, I).

Symbols

a and a2 operators shifting the angle by 120◦ and 240◦, respectively.
Bµ magnetizing susceptance of a transformer.
Bsh susceptance of a shunt element.
D damping coefficient.
Ek kinetic energy of the rotor relative to the synchronous speed.
Ep potential energy of the rotor with respect to the equilibrium point.
ef field voltage referred to the fictitious q-axis armature coil.
eq steady-state emf induced in the fictitious q-axis armature coil proportional to the field

winding self-flux linkages.
e′

d transient emf induced in the fictitious d-axis armature coil proportional to the flux
linkages of the q-axis coil representing the solid steel rotor body (round-rotor generators
only).

e′
q transient emf induced in the fictitious q-axis armature coil proportional to the field

winding flux linkages.
e′′

d subtransient emf induced in the fictitious d-axis armature coil proportional to the total
q-axis rotor flux linkages (q-axis damper winding and q-axis solid steel rotor body).
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e′′
q subtransient emf induced in the fictitious q-axis armature coil proportional to

the total d-axis rotor flux linkages (d-axis damper winding and field winding).
E steady-state internal emf.
Ef excitation emf proportional to the excitation voltage Vf .
Efm peak value of the excitation emf.
Ed d-axis component of the steady-state internal emf proportional to the rotor self-

linkages due to currents induced in the q-axis solid steel rotor body (round-rotor
generators only).

Eq q-axis component of the steady-state internal emf proportional to the field
winding self-flux linkages (i.e. proportional to the field current itself).

E′ transient internal emf proportional to the flux linkages of the field winding and
solid steel rotor body (includes armature reaction).

E′
d d-axis component of the transient internal emf proportional to flux linkages in

the q-axis solid steel rotor body (round-rotor generators only).
E′

q q-axis component of the transient internal emf proportional to the field winding
flux linkages.

E′′ subtransient internal emf proportional to the total rotor flux linkages (includes
armature reaction).

E′′
d d-axis component of the subtransient internal emf proportional to the to-

tal flux linkages in the q-axis damper winding and q-axis solid steel rotor
body.

E′′
q q-axis component of the subtransient internal emf proportional to the total

flux linkages in the d-axis damper winding and the field winding.
Er resultant air-gap emf.
Erm amplitude of the resultant air-gap emf.
EG vector of the generator emfs.
f mains frequency.
fn rated frequency.
�F magnetomotive force (mmf) due to the field winding.
�Fa armature reaction mmf.
Fa AC AC armature reaction mmf (rotating).
Fa DC DC armature reaction mmf (stationary).
�Fad, �Faq d- and q-axis components of the armature reaction mmf.
�Ff resultant mmf.
GFe core loss conductance of a transformer.
Gsh conductance of a shunt element.
Hii , Hi j self- and mutual synchronizing power.
iA, iB, iC instantaneous currents in phases A, B and C.
iA DC, iB DC, iC DC DC component of the current in phases A, B, C.
iA AC, iB AC, iC AC AC component of the current in phases A, B, C.
id, iq currents flowing in the fictitious d- and q-axis armature coils.
iD, iQ instantaneous d- and q-axis damper winding current.
if instantaneous field current of a generator.
iABC vector of instantaneous phase currents.
ifDQ vector of instantaneous currents in the field winding and the d- and q-axis

damper windings.
i0dq vector of armature currents in the rotor reference frame.
I armature current.
Id, Iq d- and q-axis component of the armature current.
IS, IR currents at the sending and receiving end of a transmission line.
IR, IE vector of complex current injections to the retained and eliminated nodes.
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IG, IL vector of complex generator and load currents.
�IL vector of load corrective complex currents.
J moment of inertia.
j operator shifting the angle by 90◦.
kPV, kQV voltage sensitivities of the load (the slopes of the real and reactive power

demand characteristics as a function of voltage).
kPf , kQf frequency sensitivities of the load (the slopes of the real and reactive

power demand characteristics as a function of frequency).
KEq steady-state synchronizing power coefficient (the slope of the steady-state

power angle curve PEq (δ)).
KE′

q transient synchronizing power coefficient (the slope of the transient power
angle curve PE′

q (δ′)).
KE′ transient synchronizing power coefficient (the slope of the transient power

angle curve PE′ (δ′)).
Ki reciprocal of droop for the i th generating unit.
KL frequency sensitivity coefficient of the system real power demand.
KT reciprocal of droop for the total system generation characteristic.
l length of a transmission line.
LAA, LBB, LCC, self-inductances of the windings of the phase windings A, B, C, the field

winding, and the d-and the q-axis damper winding.Lff , LDD, LQQ

Ld, Lq inductances of the fictitious d- and q-axis armature windings.
L′

d, L′
q, L′′

d, L′′
q d- and q-axis transient and subtransient inductances.

LS minimum value of the self-inductance of a phase winding.
Lxy where x, y ∈ {A, B, C, D, Q, f} and x �= y, are the mutual inductances

between the windings denoted by the indices as described above.
�LS amplitude of the variable part of the self-inductance of a phase winding.
LR submatrix of the rotor self- and mutual inductances.
LS submatrix of the stator self- and mutual inductances.
LSR, LRS submatrices of the stator-to-rotor and rotor-to-stator mutual inductances.
M coefficient of inertia.
Mf , MD, MQ amplitude of the mutual inductance between a phase winding and, re-

spectively, the field winding and the d- and the q-axis damper winding.
N generally, number of any objects.
p number of poles.
Pacc accelerating power.
PD damping power.
Pe electromagnetic air-gap power.
PEq cr critical (pull-out) air-gap power developed by a generator.
PEq (δ), PE′ (δ′), air-gap power curves assuming Eq = constant, E′ = constant and E′

q =
constant.PE′

q (δ′)
Pg in induction machine, real power supplied from the grid (motoring mode),

or supplied to the grid (generating mode).
PL real power absorbed by a load or total system load.
Pm mechanical power supplied by a prime mover to a generator; also mechan-

ical power supplied by a motor to a load (induction machine in motoring
mode).

Pn real power demand at rated voltage.
PR real power at the receiving end of a transmission line.
PrI, PrII, PrIII, PrIV contribution of the generating units remaining in operation to covering

the real power imbalance during the first, second, third and fourth stages
of load frequency control.
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PsI, PsII, PsIII, PsIV contribution of the system to covering the real power imbalance during
the first, second, third and fourth stages of load frequency control.

Ps stator power of induction machine or power supplied by the system.
PS real power at the sending end of a transmission line or real power supplied

by a source to a load or real power supplied to an infinite busbar.
PSIL surge impedance (natural) load.
PsEq (δ) curve of real power supplied to an infinite busbar assuming Eq =

constant.
PT total power generated in a system.
Ptie net tie-line interchange power.
PVg (δ) air-gap power curve assuming Vg = constant.
PVg cr critical value of PVg (δ).
QL reactive power absorbed by a load.
QG reactive power generated by a source (the sum of QL and the reactive

power loss in the network).
Qn reactive power demand at rated voltage.
QR reactive power at the receiving end of a transmission line.
QS reactive power at the sending end of a transmission line or reactive power

supplied by a source to a load.
R resistance of the armature winding of a generator.
r total resistance between (and including) a generator and an infinite

busbar.
RA, RB, RC, RD, resistances of the phase windings A, B, C, the d- and q-axis damper

winding, and the field winding.RQ, Rf

RABC diagonal matrix of phase winding resistances.
RfDQ diagonal matrix of resistances of the field winding and the d- and q-axis

damper windings.
s Laplace operator.
s slip of induction motor.
scr critical slip of induction motor.
Sn rated apparent power.
SSHC short-circuit power.
t time.
T′

d, T′′
d short-circuit d-axis transient and subtransient time constants.

T′
do, T′′

do open-circuit d-axis transient and subtransient time constants.
T′

q, T′′
q short-circuit q-axis transient and subtransient time constants.

T′
qo, T′′

qo open-circuit q-axis transient and subtransient time constants.
Ta armature winding time constant.
T transformation matrix between network (a, b) and generator (d, q) coor-

dinates.
vA, vB, vC, vf instantaneous voltages across phases A, B, C and the field winding.
vd, vq voltages across the fictitious d- and q-axis armature coils.
vw wind speed.
vABC vector of instantaneous voltages across phases A, B, C.
vfDQ vector of instantaneous voltages across the field winding and the d- and

q-axis damper windings.
V Lyapunov function.
Vcr critical value of the voltage.
Vd, Vq direct- and quadrature-axis component of the generator terminal voltage.
Vf voltage applied to the field winding.
Vg voltage at the generator terminals.
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Vs infinite busbar voltage.
Vsd, Vsq direct- and quadrature-axis component of the infinite busbar voltage.
VS, VR voltage at the sending and receiving end of a transmission line.
Vsh local voltage at the point of installation of a shunt element.
Vi = Vi � δi complex voltage at node i .
VR, VE vector of complex voltages at the retained and eliminated nodes.
W work.
W Park’s modified transformation matrix.
W, U modal matrices of right and left eigenvectors.
Xa armature reaction reactance (round-rotor generator).
XC reactance of a series compensator.
XD reactance corresponding to the flux path around the damper winding.
Xd, X′

d, X′′
d d-axis synchronous, transient and subtransient reactance.

xd, x′
d, x′′

d total d-axis synchronous, transient and subtransient reactance between
(and including) a generator and an infinite busbar.

x′
d PRE, x′

d F, x′
d POST prefault, fault and postfault value of x′

d.
Xf reactance corresponding to the flux path around the field winding.
Xl armature leakage reactance of a generator.
Xq, X′

q, X′′
q q-axis synchronous, transient and subtransient reactance.

xq, x′
q, x′′

q total q-axis synchronous, transient and subtransient reactance between
(and including) a generator and an infinite busbar.

XSHC short-circuit reactance of a system as seen from a node.
YT admittance of a transformer.
Y admittance matrix.
YGG, YLL, YLG, YLG admittance submatrices where subscript G corresponds to fictitious gen-

erator nodes and subscript L corresponds to all the other nodes (including
generator terminal nodes).

Yi j = Gi j + jBi j element of the admittance matrix.
YRR, YEE, YRE, YER complex admittance submatrices where subscript E refers to eliminated

nodes and subscript R to retained nodes.
Zc characteristic impedance of a transmission line.
Zs = Rs + jXs internal impedance of an infinite busbar.
ZT = RT + jXT series impedance of a transformer.
β phase constant of a transmission line.
γ instantaneous position of the generator d-axis relative to phase A; prop-

agation constant of a transmission line.
γ 0 position of the generator d-axis at the instant of fault.
δ power (or rotor) angle with respect to an infinite busbar.
δg power (or rotor) angle with respect to the voltage at the generator

terminals.
δ̂s stable equilibrium value of the rotor angle.
δ′ transient power (or rotor) angle between E′ and Vs.
δfr angle between the resultant and field mmfs.
�ω rotor speed deviation equal to (ω − ωs).
ε rotor acceleration.
ζ damping ratio.
ϑ transformation ratio.
λR frequency bias factor.
λi = αi + ji eigenvalue.
ρ static droop of the turbine–governor characteristic.
ρT droop of the total system generation characteristic.



P1: OTE/OTE/SPH P2: OTE
fm JWBK257/Machowski September 22, 2008 23:7 Printer Name: Yet to Come
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τ e electromagnetic torque.
τm mechanical torque.
τω fundamental-frequency subtransient electromagnetic torque.
τ 2ω double-frequency subtransient electromagnetic torque.
τ d, τ q direct- and quadrature-axis component of the electromagnetic torque.
τR, τ r subtransient electromagnetic torque due to stator and rotor resistances.
ϕg power factor angle at the generator terminals.
�a armature reaction flux.
�ad, �aq d- and q-axis component of the armature reaction flux.
�a AC AC armature reaction flux (rotating).
�a DC DC armature reaction flux (stationary).
�f excitation (field) flux.
�A, �B, �C total flux linkage of phases A, B, C.
�AA, �BB, �B self-flux linkage of phases A, B, C.
�a AC r rotor flux linkages produced by �a AC.
�a DC r rotor flux linkages produced by �a DC.
�a r rotor flux linkages produced by the total armature reaction flux.
�D, �Q total flux linkage of damper windings in axes d and q.
�d, �q total d- and q-axis flux linkages.
�f total flux linkage of the field winding.
�fa excitation flux linkage with armature winding.
�fA, �fB, �fC excitation flux linkage with phases A, B and C.
�ABC vector of phase flux linkages.
� fDQ vector of flux linkages of the field winding and the d- and q-axis damper

windings.
�0dq vector of armature flux linkages in the rotor reference frame.
ω angular velocity of the generator (in electrical radians).
ωs synchronous angular velocity in electrical radians (equal to 2π f ).
ωT rotor speed of wind turbine (in rad/s)
 frequency of rotor swings (in rad/s)
 rotation matrix.
� reluctance.
�d, �q reluctance along the direct- and quadrature-axis.

Abbreviations

AC alternating current
ACE area control error
AGC Automatic Generation Control
AVR Automatic Voltage Regulator
BEES Battery Energy Storage System
d direct axis of a generator
DC direct current
DFIG Doubly Fed Induction Generator
DFIM Double Fed Induction Machine
DSA Dynamic Security Assessment
emf electro-motive force
EMS Energy Management System
FACTS Flexible AC Transmission Systems
HV high voltage
HAWT Horizontal-Axis Wind Turbine
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IGTB insulated gate bipolar transistor
IGTC integrated gate-commutated thyristor
LFC load frequency control
mmf magneto-motive force
MAWS mean annual wind speed
PMU Phasor Measurement Unit
PSS power system stabiliser
pu per unit
q quadrature axis of a generator
rms root-mean-square
rpm revolutions per minute
rhs right-hand-side
SCADA Supervisory Control and Data Acquisition
SIL surge impedance load
SMES superconducting magnetic energy storage
SSSC Static Synchronous Series Compensator
STATCOM static compensator
SVC Static VAR Compensator
TCBR Thyristor Controlled Braking Resistor
TCPAR Thyristor Controlled Phase Angle Regulator
TSO Transmission System Operator
VAWT Vertical-Axis Wind Turbine
UPFC unified power flow controller
WAMS Wide Area Measurement System
WAMPAC Wide Area Measurement, Protection and Control
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1
Introduction

1.1 Stability and Control of a Dynamic System

In engineering, a system is understood to be a set of physical elements acting together and realizing
a common goal. An important role in the analysis of the system is played by its mathematical
model. It is created using the system structure and fundamental physical laws governing the system
elements. In the case of complicated systems, mathematical models usually do not have a univer-
sal character but rather reflect some characteristic phenomena which are of interest. Because of
mathematical complications, practically used system models are usually a compromise between a
required accuracy of modelling and a degree of complication.

When formulating a system model, important terms are the system state and the state variables.
The system state describes the system’s operating conditions. The state variables are the minimum set
of variables x1, x2, . . . , xn uniquely defining the system state. State variables written as a vector x =
[x1, x2, . . . , xn ]T are referred to as the state vector. A normalized space of coordinates corresponding
to the state variables is referred to as the state space. In the state space, each system state corresponds
to a point defined by the state vector. Hence, a term ‘system state’ often refers also to a point in the
state space.

A system may be static, when its state variables x1, x2, . . . , xn are time invariant, or dynamic,
when they are functions of time, that is x1(t), x2(t), . . . , xn(t).

This book is devoted to the analysis of dynamic systems modelled by ordinary differential
equations of the form

ẋ = F (x) or ẋ = A x, (1.1)

where the first of the equations above describes a nonlinear system and the second describes a linear
system. F(x) is just a vector of nonlinear functions and A is a square matrix.

A curve x(t) in the state space containing system states (points) in consecutive time instants is
referred to as the system trajectory. A trivial one-point trajectory x(t) = x̂ = constant is referred to
as the equilibrium point (state), if in that point all the partial derivatives are zero (no movement), that
is ẋ = 0. According to Equation (1.1), the coordinates of the point satisfy the following equations:

F (x̂) = 0 or A x̂ = 0. (1.2)

A nonlinear system may have more than one equilibrium point because nonlinear equations
may have generally more than one solution. In the case of linear systems, according to the Cramer
theorem concerning linear equations, there exists only one uniquely specified equilibrium point
x̂ = 0 if and only if the matrix A is non-singular (det A �= 0).

Power System Dynamics: Stability and Control, Second Edition Jan Machowski, Janusz W. Bialek and James R. Bumby
C© 2008 John Wiley & Sons, Ltd
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Figure 1.1 Illustration of the definition of stability: (a) when the initial conditions are different
but close; (b) in a vicinity of the equilibrium point.

All the states of a dynamic system, apart from equilibrium states, are dynamic states because
the derivatives ẋ �= 0 for those states are non-zero, which means a movement. Disturbance means a
random (usually unintentional) event affecting the system. Disturbances affecting dynamic systems
are modelled by changes in their coefficients (parameters) or by non-zero initial conditions of
differential equations.

Let x1(t) be a trajectory of a dynamic system, see Figure 1.1a, corresponding to some initial
conditions. The system is considered stable in a Lyapunov sense if for any t0 it is possible to choose a
number η such that for all the other initial conditions satisfying the constraint ‖x2(t0) − x1(t0)‖ < η,
the expression ‖x2(t) − x1(t)‖ < ε holds for t0 ≤ t < ∞. In other words, stability means that if the
trajectory x2(t) starts close enough (as defined by η) to the trajectory x1(t) then it remains close to
it (number ε). Moreover, if the trajectory x2(t) tends with time towards the trajectory x1(t), that is
limt→∞ ‖x2(t) − x1(t)‖ = 0, then the dynamic system is asymptotically stable.

The above definition concerns any trajectory of a dynamic system. Hence it must also be valid
for a trivial trajectory such as the equilibrium point x̂. In this particular case, see Figure 1.1b, the
trajectory x1(t) is a point x̂ and the initial condition x2(t0) of trajectory x2(t) lies in the vicinity of
the point defined by η. The dynamic system is stable in the equilibrium point x̂ if for t0 ≤ t < ∞
the trajectory x2(t) does not leave an area defined by the number ε. Moreover, if the trajectory x2(t)
tends with time towards the equilibrium point x̂, that is limt→∞ ‖x2(t) − x̂‖ = 0, then the system
is said to be asymptotically stable at the equilibrium point x̂. On the other hand, if the trajectory
x2(t) tends with time to leave the area defined by ε, then the dynamic system is said to be unstable
at the equilibrium point x̂.

It can be shown that stability of a linear system does not depend on the size of a disturbance.
Hence if a linear system is stable for a small disturbance then it is also globally stable for any large
disturbance.

The situation is different with nonlinear systems as their stability generally depends on the size
of a disturbance. A nonlinear system may be stable for a small disturbance but unstable for a large
disturbance. The largest disturbance for which a nonlinear system is still stable is referred to as a
critical disturbance.

Dynamic systems are designed and constructed with a particular task in mind and assuming
that they will behave in a particular way following a disturbance. A purposeful action affecting
a dynamic system which aims to achieve a particular behaviour is referred to as a control. The
definition of control is illustrated in Figure 1.2. The following signals have been defined:

� u(t) – a control signal which affects the system to achieve a desired behaviour;
� y(t) – an output signal which serves to assess whether or not the control achieved the desired goal;
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(a)

(b)

y(t)dynamic system
x(t)

u(t)control
device

control
device

z(t)

task

task y(t)dynamic system
x(t)

u(t)

z(t)

Figure 1.2 Illustration of the definition of: (a) open-loop control; (b) closed-loop control.

� x(t) – system state variables;
� z(t) – disturbances.

Control can be open loop or closed loop. In the case of open-loop control, see Figure 1.2a,
control signals are created by a control device which tries to achieve a desired system behaviour
without obtaining any information about the output signals. Such control makes sense only when
it is possible to predict the shape of output signals from the control signals. However, if there are
additional disturbances which are not a part of the control, then their action may lead to the control
objective not being achieved.

In the case of closed-loop control, see Figure 1.2b, control signals are chosen based on the
control task and knowledge of the system output signals describing whether the control task has
been achieved. Hence the control is a function of its effects and acts until the control task has been
achieved.

Closed-loop control is referred to as feedback control or regulation. The control device is then
called a regulator and the path connecting the output signals with the control device (regulator) is
called the feedback loop.

A nonlinear dynamic system with its control can be generally described by the following set of
algebraic and differential equations:

ẋ = F (x, u) and y = G(x, u), (1.3)

while a linear dynamic system model is

ẋ = A x + B u and y = C x + D u. (1.4)

It is easy to show that, for small changes in state variables and output and control signals, Equations
(1.4) are linear approximations of nonlinear equations (1.3). In other words, linearization of (1.3)
leads to the equations

�ẋ = A�x + B � u and �y = C �x + D�u, (1.5)

where A, B, C, D are the matrices of derivatives of functions F, G with respect to x and u.

1.2 Classification of Power System Dynamics

An electrical power system consists of many individual elements connected together to form a
large, complex and dynamic system capable of generating, transmitting and distributing electrical
energy over a large geographical area. Because of this interconnection of elements, a large variety
of dynamic interactions are possible, some of which will only affect some of the elements, others
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are fragments of the system, while others may affect the system as a whole. As each dynamic effect
displays certain unique features. Power system dynamics can be conveniently divided into groups
characterized by their cause, consequence, time frame, physical character or the place in the system
where they occur.

Of prime concern is the way the power system will respond to both a changing power demand and
to various types of disturbance, the two main causes of power system dynamics. A changing power
demand introduces a wide spectrum of dynamic changes into the system each of which occurs on
a different time scale. In this context the fastest dynamics are due to sudden changes in demand
and are associated with the transfer of energy between the rotating masses in the generators and
the loads. Slightly slower are the voltage and frequency control actions needed to maintain system
operating conditions until finally the very slow dynamics corresponding to the way in which the
generation is adjusted to meet the slow daily demand variations take effect. Similarly, the way in
which the system responds to disturbances also covers a wide spectrum of dynamics and associated
time frames. In this case the fastest dynamics are those associated with the very fast wave phenomena
that occur in high-voltage transmission lines. These are followed by fast electromagnetic changes
in the electrical machines themselves before the relatively slow electromechanical rotor oscillations
occur. Finally the very slow prime mover and automatic generation control actions take effect.

Based on their physical character, the different power system dynamics may be divided into four
groups defined as: wave, electromagnetic, electromechanical and thermodynamic. This classification
also corresponds to the time frame involved and is shown in Figure 1.3. Although this broad
classification is convenient, it is by no means absolute, with some of the dynamics belonging to two or
more groups while others lie on the boundary between groups. Figure 1.3 shows the fastest dynamics
to be the wave effects, or surges, in high-voltage transmission lines and correspond to the propagation
of electromagnetic waves caused by lightning strikes or switching operations. The time frame of
these dynamics is from microseconds to milliseconds. Much slower are the electromagnetic dynamics
that take place in the machine windings following a disturbance, operation of the protection system
or the interaction between the electrical machines and the network. Their time frame is from
milliseconds to a second. Slower still are the electromechanical dynamics due to the oscillation of
the rotating masses of the generators and motors that occur following a disturbance, operation
of the protection system and voltage and prime mover control. The time frame of these dynamics
is from seconds to several seconds. The slowest dynamics are the thermodynamic changes which
result from boiler control action in steam power plants as the demands of the automatic generation
control are implemented.

Careful inspection of Figure 1.3 shows the classification of power system dynamics with respect
to time frame to be closely related to where the dynamics occur within the system. For example,
moving from the left to right along the time scale in Figure 1.3 corresponds to moving through the
power system from the electrical RLC circuits of the transmission network, through the generator

hoursminutessecondsmillisecondsmicroseconds

wave phenomena

electromagnetic
phenomena

electromechanical
phenomena

thermodynamic
phenomena

10–7 10–6 10–5 10–4 10–3 10–2 10–1 102 103 104 1051 10

Figure 1.3 Time frame of the basic power system dynamic phenomena.
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armature windings to the field and damper winding, then along the generator rotor to the turbine
until finally the boiler is reached.

The fast wave phenomena, due to lightning and switching overvoltages, occur almost exclusively in
the network and basically do not propagate beyond the transformer windings. The electromagnetic
phenomena mainly involve the generator armature and damper windings and partly the network.
These electromechanical phenomena, namely the rotor oscillations and accompanying network
power swings, mainly involve the rotor field and damper windings and the rotor inertia. As the
power system network connects the generators together, this enables interactions between swinging
generator rotors to take place. An important role is played here by the automatic voltage control and
the prime mover control. Slightly slower than the electromechanical phenomena are the frequency
oscillations, in which the rotor dynamics still play an important part, but are influenced to a much
greater extent by the action of the turbine governing systems and the automatic generation control.
Automatic generation control also influences the thermodynamic changes due to boiler control
action in steam power plants.

The fact that the time frame of the dynamic phenomena is closely related to where it occurs
within the power system has important consequences for the modelling of the system elements. In
particular, moving from left to right along Figure 1.3 corresponds to a reduction in the accuracy
required in the models used to represent the network elements, but an increase in the accuracy in the
models used first to represent the electrical components of the generating unit and then, further to
the right, the mechanical and thermal parts of the unit. This important fact is taken into account in
the general structure of this book when later chapters describe the different power system dynamic
phenomena.

1.3 Two Pairs of Important Quantities: Reactive Power/Voltage
and Real Power/Frequency

This book is devoted to the analysis of electromechanical phenomena and control processes in power
systems. The main elements of electrical power networks are transmission lines and transformers
which are usually modelled by four-terminal (two-port) RLC elements. Those models are connected
together according to the network configuration to form a network diagram.

For further use in this book, some general relationships will be derived below for a two-port
π -equivalent circuit in which the series branch consists of only an inductance and the shunt branch
is completely neglected. The equivalent circuit and the phasor diagram of such an element are
shown in Figure 1.4a. The voltages V and E are phase voltages while P and Q are single-phase
powers. The phasor E has been obtained by adding voltage drop jXI, perpendicular to I, to the
voltage V. The triangles OAD and BAC are similar. Analysing triangles BAC and OBC gives

|BC| = XI cos ϕ = E sin δ hence I cos ϕ = E
X

sin δ, (1.6)

|AC| = XI sin ϕ = E cos δ − V hence I sin ϕ = E
X

cos δ − V
X

. (1.7)

Real power leaving the element is expressed as P = VI cos ϕ. Substituting (1.6) into that equation
gives

P = EV
X

sin δ. (1.8)

This equation shows that real power P depends on the product of phase voltages and the sine of the
angle δ between their phasors. In power networks, node voltages must be within a small percentage
of their nominal values. Hence such small variations cannot influence the value of real power.
The conclusion is that large changes of real power, from negative to positive values, correspond to
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Figure 1.4 A simplified model of a network element: (a) equivalent diagram and phasor diagram;
(b) real power and reactive power characteristics.

changes in the sine of the angle δ. The characteristic P(δ) is therefore sinusoidal1 and is referred to
as the power–angle characteristic, while the angle δ is referred to as the power angle or the load angle.
Because of the stability considerations discussed in Chapter 5, the system can operate only in that
part of the characteristic which is shown by a solid line in Figure 1.4b. The smaller the reactance
X , the higher the amplitude of the characteristic.

The per-phase reactive power leaving the element is expressed as Q = VI sin ϕ. Substituting (1.7)
into that equation gives

Q = EV
X

cos δ − V2

X
. (1.9)

The term cos δ is determined by the value of real power because the relationship between the sine
and cosine is cos δ = √

1 − sin2 δ. Using that equation and (1.8) gives

Q =
√(

EV
X

)2

− P2 − V2

X
. (1.10)

The characteristic Q(V ) corresponds to an inverted parabola (Figure 1.4b). Because of the stability
considerations discussed in Chapter 8, the system can operate only in that part of the characteristic
which is shown by a solid line.

The smaller the reactance X , the steeper the parabola, and even small changes in V cause large
changes in reactive power. Obviously the inverse relationship also takes place: a change in reactive
power causes a change in voltage.

The above analysis points out that Q, V and P, δ form two pairs of strongly connected variables.
Hence one should always remember that voltage control strongly influences reactive power flows
and vice versa. Similarly, when talking about real power P one should remember that it is connected
with angle δ. That angle is also strongly connected with system frequency f , as discussed later in
the book. Hence the pair P, f is also strongly connected and important for understanding power
system operation.

1 For a real transmission line or transformer the characteristic will be approximately sinusoidal as discussed
in Chapter 3.
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Figure 1.5 Classification of power system stability (based on CIGRE Report No. 325). Reproduced
by permission of CIGRE

1.4 Stability of a Power System

Power system stability is understood as the ability to regain an equilibrium state after being subjected
to a physical disturbance. Section 1.3 showed that three quantities are important for power system
operation: (i) angles of nodal voltages δ, also called power or load angles; (ii) frequency f ; and (iii)
nodal voltage magnitudes V . These quantities are especially important from the point of view of
defining and classifying power system stability. Hence power system stability can be divided (Figure
1.5) into: (i) rotor (or power) angle stability; (ii) frequency stability; and (iii) voltage stability.

As power systems are nonlinear, their stability depends on both the initial conditions and the
size of a disturbance. Consequently, angle and voltage stability can be divided into small- and
large-disturbance stability.

Power system stability is mainly connected with electromechanical phenomena – see Figure
1.3. However, it is also affected by fast electromagnetic phenomena and slow thermodynamic
phenomena. Hence, depending on the type of phenomena, one can refer to short-term stability and
long-term stability. All of them will be discussed in detail in this book.

1.5 Security of a Power System

A set of imminent disturbances is referred to as contingencies. Power system security is understood as
the ability of the power system to survive plausible contingencies without interruption to customer
service. Power system security and power system stability are related terms. Stability is an important
factor of power system security, but security is a wider term than stability. Security not only includes
stability, but also encompasses the integrity of a power system and assessment of the equilibrium
state from the point of view of overloads, under- or overvoltages and underfrequency.

From the point of view of power system security, the operating states may be classified as in
Figure 1.6. Most authors credit Dy Liacco (1968) for defining and classifying these states.

Restorative Alert

Normal

In extremis Emergency

Figure 1.6 Classification of power system operating states (based on CIGRE Report No. 325).
Reproduced by permission of CIGRE
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In the normal state, a power system satisfies the power demand of all the customers, all the
quantities important for power system operation assume values within their technical constraints,
and the system is able to withstand any plausible contingencies.

The alert state arises when some quantities that are important for power system operation (e.g.
line currents or nodal voltages) exceed their technical constraints due to an unexpected rise in
demand or a severe contingency, but the power system is still intact and supplies its customers.
In that state a further increase in demand or another contingency may threaten power system
operation and preventive actions must be undertaken to restore the system to its normal state.

In the emergency state the power system is still intact and supplies its customers, but the violation
of constraints is more severe. The emergency state usually follows the alert state when preventive
actions have not been undertaken or have not been successful. A power system may assume the
emergency state directly from the normal state following unusually severe contingencies like multiple
faults. When a system is in the emergency state, it is necessary to undertake effective corrective
actions leading first to the alert state and then to the normal state.

A power system can transpose to the in extremis state from the emergency state if no corrective
actions have been undertaken and the system is already not intact due to a reduction of power
supply following load shedding or when generators were tripped because of a lack of synchronism.
The extreme variant of that state is a partial or complete blackout.

To return a power system from an in extremis state to an alert or normal state, a restorative state
is necessary in which power system operators perform control actions in order to reconnect all the
facilities and restore all system loads.

Assessment of power system security can be divided into static and dynamic security. Static
security assessment (SSA) includes the following computational methods:

� for the pre-contingency states, determine the available transfer capability of transmission links
and identify network congestion;

� for the post-contingency states, verify the bus voltages and line power flow limits.

Those tasks of SSA have always been the subject of great interest for power dispatching centres.
However, when the industry was still vertically integrated (see Chapter 2), security management
was relatively easy to execute because any decisions affecting the outputs or control settings of
power plants could be implemented internally within a utility controlling both generation and
transmission. Security management is not that easy to execute in the unbundled industry structure
when the system operator has no direct control of generation. Any decisions affecting outputs or
control settings of power plants have to be implemented using commercial agreements with power
plants or enforced through the Grid Code. Especially, the analysis of available transfer capacity and
congestion management have important implications for power plants as they directly affect their
outputs, and therefore revenues.

SSA methods assume that every transition from the pre- to post-contingency state takes place
without suffering any instability phenomena. Dynamic security assessment (DSA) includes methods
to evaluate stability and quality of the transition from the pre- to post-contingency state. Typical
criteria for DSA include:

(i) rotor (power) angle stability, voltage stability, frequency stability;
(ii) frequency excursion during the dynamic state (dip or rise) beyond specified threshold levels;

(iii) voltage excursion during the dynamic state (dip or rise) beyond specified threshold levels;
(iv) damping of power swings inside subsystems and between subsystems on an interconnected

network.
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Figure 1.7 Components of DSA according to CIGRE Report No. 325. Reproduced by permission
of CIGRE

Criteria (i) and (ii) are assessed using computer programs executing transient security assessment
(TSA). Criteria (iii) are assessed by programs executing voltage security assessment (VSA), and
criteria (iv) are assessed using programs executing small-signal stability assessment (SSSA).

Recent years have seen a number of total and partial blackouts in many countries of the world.
These events have spurred a renewed interest among system operators in the tools for SSA and
DSA. There are a variety of online DSA architectures. Figure 1.7 shows an example of the DSA
architecture. The main components are denoted by boxes drawn with dashed lines.

The task of the component ‘measurement’ is online data acquisition and taking a snapshot
of power system conditions. Supervisory control and data acquisition (SCADA) systems usually
collect measurements of real and reactive power in network branches, busbar voltages, frequency at
a few locations in the system, status of switchgear and the position of tap changers of transformers.
As will be shown in Section 2.6, new SCADA systems are often augmented by phasor measurement
units (PMUs) collecting synchronized voltage phasor measurements.

The ‘modelling’ component uses online data from the ‘measurement’ component and augments
them with offline data, obtained from a database, describing the parameters of power system el-
ements and contingencies to be analysed. The task of the ‘modelling’ component is to create an
online power system model using the identification of the power system configuration and state
estimation. That component may also contain computer programs for the creation of equivalent
models of neighbouring systems. Contingencies vary according to the type of security being ex-
amined and in general need to be able to cater for a variety of events like short circuits at any
location, opening any line or transformer, loss of the largest generating unit or largest load in a
region, multiple faults (when considered to be credible) and so on.

The next important component is ‘computation’. Its task is system model validation and security
assessment. The accuracy of the security assessment depends on the quality of the system model.
Offline data delivered to the ‘modelling’ component are validated through field testing of devices.
Online data of the network configuration and system state obtained from the ‘measuring’ compo-
nent are validated using bad measurement data identification and removal which is made possible
by redundancy of measurements. The best methodology for power system model validation is via
a comparison of simulation results of the dynamic response of the power system with recorded
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responses following some disturbances. To achieve this, the ‘measurement’ component sends data
from disturbance recorders to the ‘computation’ component. The tools for the security assessment
consist of a number of computer programs executing voltage stability analysis, small-signal stability
analysis, transient stability analysis by hybrid methods combining system simulation, and the Lya-
punov direct method described in the textbook by Pavella, Ernst and Ruiz-Vega (2000). Intelligent
systems are also used, employing learning from the situations previously seen.

The ‘reporting and visualization’ component is very important for a system operator employing
the described architecture. Computer programs of the ‘computation’ component process a huge
amount of data and analyse a large number of variants. On the other hand, the operator must
receive a minimum number of results displayed in the most synthetic, preferably graphic, way. Some
DSA displays have been shown in CIGRE Report No. 325. If the power system is in a normal
state, the synthetic results should report how close the system is to an insecure state to give the
operator an idea of what might happen. If the system moves to an alert state or to an emergency
state, the displayed result should also contain information about preventive or corrective action.
This information is passed on to the ‘control’ component. This component assists the operator
in preventive and corrective actions that are executed to improve power system operation. Some
information produced by security assessment programs may be used to produce remedial control
actions, which can be automatically executed by real-time control.

The description of the current state of the art in DSA can be found in CIGRE Report No. 325.

1.6 Brief Historical Overview

The first articles on power systems dynamics began to appear in conference proceedings and
technical journals at about the same time as the first interconnected power systems were constructed.
As power systems developed, interest in their behaviour grew until power system dynamics became
a scientific discipline in its own right.

Perhaps the greatest contribution in developing the theoretical foundations of power system
dynamics was made by research workers in those countries whose power systems cover large
geographical areas, most notably the United States, Canada and the former Soviet Union. However,
much excellent work has also been contributed by research workers in many other countries. With
the mountain of research papers and books now available it is difficult to attempt to give a short
historical overview of all the literature on power system dynamics, so, out of necessity, the following
overview is restricted to what the authors regard as some of the most important books dealing with
power system dynamics.

Some of the first monographs on power system dynamics published in English were the books by
Dahl (1938), a two-volume textbook by Crary (1945, 1947) and a large, three-volume, monograph
by Kimbark (1948, 1950, 1956; reprinted 1995). In all these books the main emphasis was on
electromechanical phenomena. At the same time a Russian text was published by Zdanov (1948)
also dealing mainly with electromechanical phenomena. Zdanov’s work was later continued by
Venikov, who published about a dozen books in Russian between 1958 and 1985 and one of
these books, again dealing mainly with electromechanical phenomena, was published in English by
Pergamon Press (Venikov, 1964). An extended and modified version of this book was published in
Russian in 1978 (Venikov, 1978a) and then later in the same year translated into English (Venikov,
1978b). The main feature of Venikov’s books is the emphasis placed on the physical interpretation
of the dynamic phenomena.

One of the first books devoted to the general description of power system dynamics was written in
Germany by Rüdenberg (1923). This book was later translated into many languages with an English
edition appearing in 1950. Other important books that have dealt generally with power system
dynamics have been written by Yao-nan Yu (1983), Racz and Bokay (1988) and Kundur (1994). The
comprehensive text by Kundur contains an excellent overview of modelling and analysis of power
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systems and constitutes the basic monograph on power system dynamics. Fast electromagnetic
phenomena, like wave and switching transients, are described by Greenwood (1971).

From the 1940s until the 1960s power system dynamics were generally studied using physical (ana-
logue) models of the system. However, rapid developments in computer technology brought about
an ever-increasing interest in mathematical modelling of power systems with the main monographs
on this topics being written by Anderson and Fouad (1977, 2003), Arrillaga, Arnold and Harker
(1983), Arrillaga and Arnold (1990), Kundur (1994), Ilić and Zaborszky (2000) and Saccomanno
(2003).

Another category of books uses the Lyapunov direct method to analyse the electromechanical
stability of power systems. The main texts here are those written by Pai (1981, 1989), Fouad
and Vittal (1992), Pavella and Murthy (1994) and Pavella, Ernst and Ruiz-Vega (2000). It is worth
stressing that a large number of excellent books on the Lyapunov direct method have been published
in Russia (Lyapunov’s homeland) but were not translated into English.

A brief overview of the large number of papers published over the last 20–30 years shows the main
emphasis of power system research to have been on the effective use of computers in power system
analysis. Given the rapid developments in computer technology, and its fundamental importance
in power system analysis, this is perhaps to be expected and understood. However, there is a danger
that young engineers and researchers become more concerned with the computer technology than in
understanding the difficult underlying physical principles of the power system dynamics themselves.
In time this may endanger progress in the field. To try and combat this problem, this book first
describes the underlying physical process of the particular power system dynamic phenomena and
only after a thorough understanding has been reached is a more rigorous mathematical treatment
attempted. Once the mathematical treatment has been completed, computers can then be used to
obtain the necessary quantitative results. For these reasons this book concentrates on developing a
basic analysis of the different problem areas and often refers to more specialized publications.
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2
Power System Components

2.1 Introduction

Modern-day society requires a large amount of energy for use in industry, commerce, agriculture,
transportation, communications, domestic households and so on. The total energy required during
one year is called the annual energy demand and is satisfied using naturally occurring primary energy
resources, principally fossil fuels such as coal, oil, natural gas and uranium. In the current world
energy scene these fossil fuels are also the main fuels used in the generation of electrical energy
with the renewable energy resources such as hydro, biogas, solar, wind, geothermal, wave and tidal
energy being used to a lesser extent. In the future it is likely that the share of the energy market
taken by renewables will increase as environmental issues play a more dominant role on the political
agenda.

Perhaps the most important, and unique, feature of an electrical power system is that electrical
energy cannot easily and conveniently be stored in large quantities. This means that at any instant
in time the energy demand has to be met by corresponding generation. Fortunately the combined
load pattern of a power system normally changes in a relatively predictable manner even though
individual consumer loads may vary quite rapidly and unpredictably. Such a predictable system
demand pattern goes some way in allowing the daily generation schedule to be planned and
controlled in a predetermined manner.

If a power utility is to provide an acceptable supply of electrical energy to its consumers it must
address the following issues.

2.1.1 Reliability of Supply

High reliability of supply is of fundamental importance as any major interruption of supply causes,
at the very least, major inconvenience to the consumer, can lead to life-threatening situations and,
for the industrial consumer, may pose severe technical and production problems. Invariably in such
situations the electrical supply utility also incurs a large loss in financial revenue. High reliability of
supply can be ensured by:

� high quality of installed elements;
� the provision of reserve generation;
� employing large interconnected power systems capable of supplying each consumer via alternative

routes;
� a high level of system security.

Power System Dynamics: Stability and Control, Second Edition Jan Machowski, Janusz W. Bialek and James R. Bumby
C© 2008 John Wiley & Sons, Ltd
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2.1.2 Supplying Electrical Energy of Good Quality

Electrical energy of good quality is provided by:

� regulated and defined voltage levels with low fluctuations;
� a regulated and defined value of frequency with low fluctuations;
� low harmonic content.

Two basic methods can be used to ensure a high quality of electrical supply. Firstly the proper
use of automatic voltage and frequency control methods and, secondly, by employing large, inter-
connected, power systems which, by their very nature, are less susceptible to load variations and
other disturbances.

2.1.3 Economic Generation and Transmission

The majority of electricity is generated by first converting the thermal energy stored in the fossil
fuel into mechanical energy and then converting this mechanical energy into electrical energy for
transmission through the power system to the consumer. Unfortunately the efficiency of this overall
process is relatively low, particularly the first-stage conversion of thermal energy into mechanical
energy. It is therefore vital that operation of the overall system is optimized by minimizing the
generation and the transmission costs. Once again some saving can be achieved by connecting, and
operating, a number of smaller systems as one larger, interconnected, system.

2.1.4 Environmental Issues

Modern society demands careful planning of generation and transmission to ensure as little effect
as possible on the natural environment while meeting society’s expectations for a secure electrical
supply. Consequently air and water pollution produced by power generation plants are limited to
prescribed quantities while the pathways for transmission lines are planned so as to cause minimal
disturbance to the environment. In addition, new plans for power stations and transmission lines
are subject to close public scrutiny.

Environmental issues are now playing an ever-increasing important role on the political agenda.
Power generation has always been a major sources of air pollution and much effort has been devoted
to developing cleaner generation technologies. However, the relatively recent concerns about global
warming and sustainability have started to change the way power systems operate and expand. It
is estimated that power generation contributes about one-third of the global CO2 emissions so that
many countries in the world have set a target for renewable generation to contribute 20% or more
of their total energy production by about 2020. The consequences of this for the power industry
will be discussed later in this chapter.

Another consequence of the environmental pressure is that power utilities must continually
seek ways of making better use of their existing system. Obtaining planning permission for new
transmission lines and generation sites has become more difficult and stringent.

It is within this political and operational framework that an electrical power utility generates,
transmits and distributes electrical energy to its consumers. Consequently the purpose of this
chapter is to describe how the different elements of a power system function and the effect they
have on both power system operation and control.

2.2 Structure of the Electrical Power System

The basic structure of a contemporary electrical power system is illustrated schematically in Figure
2.1 and shows the power system to be divided into three parts: generation, transmission and
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Figure 2.1 Structure of an electrical power system.

distribution. Historically the power supply industry tended to be vertically integrated with each
utility responsible for generation and transmission and, in many cases, also distribution in its
own service (or control) area. The main justification for this was economies of scale and scope.
It was also thought that in order to optimize the overall power system planning and operation, a
utility should be able to have full control of both transmission and generation, and sometimes also
distribution. This situation has changed since the 1990s. In order to improve the overall efficiency
of the industry, many countries have decided to introduce a liberalized competitive market for the
industry. That has required unbundling, that is splitting, the vertically integrated utilities. In a typical
liberalized model, the generation sector is divided into an number of private companies each owning
individual power stations and competing with each other. The transmission tends to be operated by
one monopoly company, referred to as the system operator, which is independent of the generation
and regulated by an industry regulator. The distribution is also often split into separate distribution
companies (wires businesses) which own and manage the distribution network in a given area, while
retail, that is buying power on the wholesale markets and selling it to final customers, is handled by
a number of competing supply companies. Customers are free to choose their suppliers, although
in many countries that is restricted to industrial and commercial, but not domestic, customers.

That reorganization of the industry has created many challenges to the way power systems are
being planned and operated. This book, however, focuses on the technical aspects of power system
operation and will not discuss in detail the challenges brought about by liberalization.
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Different parts of the power system operate at different voltages. Generally voltages can be
considered to be low voltages if they are below the 1 kV mark, while medium voltages, used in
distribution systems, are typically between 1 and 100 kV. The high voltages used in subtransmission
networks are between 100 and 300 kV and the extra-high voltages used in transmission networks
are above 300 kV. This classification is loose and by no means strict.

2.2.1 Generation

Traditionally power system operation has been based around a relatively small number of large
power plants connected to the transmission system. Those plants are usually thermal or hydro
plants in which electricity is produced by converting the mechanical energy appearing on the
output shaft of an engine, or more usually a turbine, into electrical energy. The main thermal
energy resources used commercially are coal, natural gas, nuclear fuel and oil.

The conversion of mechanical to electrical energy in traditional thermal or hydro plants is almost
universally achieved by the use of a synchronous generator. The synchronous generator feeds its
electrical power into the transmission system via a step-up transformer (Figure 2.1) in order to
increase the voltage from the generation level (10–20 kV) to the transmission level (hundreds of
kilovolts).

As mentioned earlier, concerns about global warming and sustainability have recently spurned
interest in renewable generation. Generally there are three main ways the industry can reduce its
CO2 emissions: (i) by moving from the traditional coal/gas/oil-based generation to renewable
generation (wind, solar, marine); (ii) by moving towards increased nuclear generation which is
largely CO2-free; (iii) by removing CO2 from exhaust gases of traditional thermal generation using
for example carbon capture and storage technology. Discussing the relative merits of those three
options is not the subject of this book. However, it is important to appreciate that the last two
options retain the traditional structure of the power system, as that based around a relatively
few large generating units, and would therefore not require major changes to the way power
systems are designed and operated. The first option, however, would require a major shift to
the current practices as generation would be increasingly based around a large number of small
renewable plants. This is because renewable energy has a low energy density so that renewable
power stations tend to be small with capacities of individual plants being between hundreds of
kilowatts and a few megawatts. Such small plants are often connected at the distribution, rather
than transmission, network due to the lower cost of connection. Such plants are referred to as
distributed, or embedded, generation. Wind plants usually use induction generators, fixed speed
or double fed, in order to transform wind energy into electricity, although sometimes inverter-fed
synchronous generators may be used. Solar plants can be either thermal or photovoltaic (PV) with
an inverter feeding a synchronous generator. Renewable generation is treated in more detail in
Chapter 7.

2.2.2 Transmission

One significant advantage of electrical energy is that large traditional plants can be constructed near
the primary fossil fuel energy resource or water reservoirs and the electrical energy produced can
be transmitted over long distances to the load centres. Since the energy lost in a transmission line is
proportional to the current squared, transmission lines operate at high or very high voltages. The
electrical network connects all the power stations into one system, and transmits and distributes
power to the load centres in an optimal way. Usually the transmission network has a mesh structure
in order to provide many possible routes for electrical power to flow from individual generators to
individual consumers thereby improving the flexibility and reliability of the system.

One cannot overemphasize the importance of transmission for overall power system integrity.
The transmission network makes the power system a highly interacting, complicated mechanism,
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in which an action of any individual component (a power plant or a load) influences all the other
components in the system. This is the main reason why transmission remains a monopoly business,
even under the liberalized market structure, and is managed by a single system operator. The
system operator is responsible for maintaining power system security and for optimizing power
system operation.

As the electrical energy gets closer to the load centre, it is directed from the transmission net-
work into a subtransmission network. When a power system expands with the addition of new,
high-voltage transmission lines some of the older, lower voltage lines may become part of the
subtransmission network. There is no strict division of the network into transmission and subtrans-
mission networks and smaller power generation plants may feed directly into the subtransmission
network while bulk power consumers may be fed directly from the transmission or subtransmission
network (Figure 2.1).

2.2.3 Distribution

Most of the electrical energy is transferred from the transmission, or subtransmission, network
to distribution high-voltage and medium-voltage networks in order to bring it directly to the
consumer. The distribution network is generally connected in a radial structure as opposed to the
mesh structure used in the transmission system. Large consumers may be supplied from a weakly
coupled, meshed, distribution network or, alternatively, they may be supplied from two radial
feeders with a possibility of automatic switching between feeders in case of a power cut. Some
industrial consumers may have their own on-site generation as a reserve or as a by-product of a
technological process (e.g. steam generation). Ultimately power is transformed to a low voltage and
distributed directly to consumers.

Traditionally, distribution networks have been passive, that is there was little generation connected
to them. Recently the rapid growth in distributed and renewable generation has changed that picture.
Power flows in distribution networks may no longer be unidirectional, that is from the point of
connection with the transmission network down to customers. In many cases the flows may reverse
direction when the wind is strong and wind generation high, with distribution networks even
becoming net exporters of power. That situation has created many technical problems with respect
to settings of protection systems, voltage drops, congestion management and so on.

Typically about 8–10% of the electrical energy appearing at the generator terminals will be lost
on its way to the consumers in the transmission and distribution level.

2.2.4 Demand

The demand for electrical power is never constant and changes continuously throughout the day
and night. The changes in demand of individual consumers may be fast and frequent, but as
one moves up the power system structure (Figure 2.1) from individual consumers, through the
distribution network, to the transmission level, the changes in demand become smaller and smoother
as individual demands are aggregated. Consequently the total power demand at the transmission
level changes in a more or less predictable way that depends on the season, weather conditions, way
of life of a particular society and so on. Fast global power demand changes on the generation level
are usually small and are referred to as load fluctuations.

2.3 Generating Units

The block diagram of a generating unit is shown in Figure 2.2. Electrical energy is produced by a
synchronous generator driven by a prime mover, usually a turbine or a diesel engine. The turbine
is equipped with a turbine governor which controls either the speed or the output power accord-
ing to a preset power–frequency characteristic. The generated power is fed into the transmission
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Figure 2.2 Block diagram of a power generation unit.

network via a step-up transformer. The DC excitation (or field) current, required to produce the
magnetic field inside the generator, is provided by the exciter. The excitation current, and conse-
quently the generator’s terminal voltage, is controlled by an automatic voltage regulator (AVR).
An additional unit transformer may be connected to the busbar between the generator and the
step-up transformer in order to supply the power station’s auxiliary services comprising motors,
pumps, the exciter and so on. The generating unit is equipped with a main circuit-breaker on the
high-voltage side and sometimes also with a generator circuit-breaker on the generator side. Such
a configuration is quite convenient because, in case of a maintenance outage or a fault, the gen-
erator circuit-breaker may be opened while the auxiliary services can be fed from the grid. On
the other hand, with the main circuit-breaker open, the generator may supply its own auxiliary
services.

2.3.1 Synchronous Generators

Synchronous generators can be loosely classified as either high-speed generators, driven by steam or
gas turbines (and often called turbogenerators), or low-speed generators, driven by water turbines.
To reduce centrifugal forces, high-speed turbogenerators have relatively low diameter but large axial
length and are mounted horizontally. Typically they will have two or four electrical poles so that in
a 50 Hz system a generator would be driven at 3000 or 1500 rpm respectively. In contrast, low-speed
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generators operate at typically 500 rpm and below, have a large number of electrical poles, large
diameter and shorter axial length. The actual number of magnetic poles depends on the required
speed and nominal frequency of the power system.

All generators have two main magnetic parts termed the stator and the rotor, both of which
are manufactured from magnetic steel. The armature winding, which carries the load current and
supplies power to the system, is placed in equidistant slots on the inner surface of the stator and
consists of three identical phase windings. The rotor of a high-speed generator also contains slots
for the DC excitation winding while the excitation winding for low-speed generators is wound on
the salient poles of the rotor. The rotor also has additional short-circuited damper, or amortisseur,
windings, to help damp mechanical oscillations of the rotor. In high-speed, non-salient pole gener-
ators the damper windings are usually in the form of conductive wedges mounted in the same slots
as the excitation winding. In low-speed generators the damper windings are mounted in axial slots
in the pole face.

The rotor excitation winding is supplied with a direct current to produce a rotating magnetic
flux the strength of which is proportional to the excitation current. This rotating magnetic flux
then induces an electromotive force (emf) in each phase of the three-phase stator armature winding
which forces alternating currents to flow out to the power system. The combined effect of these
AC armature currents is to produce their own armature reaction magnetic flux which is of constant
magnitude but rotates at the same speed as the rotor. The excitation flux and the armature reac-
tion flux then produce a resultant flux that is stationary with respect to the rotor but rotates at
synchronous speed with respect to the stator. As the resultant flux rotates relative to the stator it is
necessary to laminate the stator iron core axially in the shaft direction to limit the iron losses due
to eddy currents. However, as the magnetic flux is stationary with respect to the rotor, the rotor is
normally constructed from a solid steel forging.

If, for some reason, the rotor speed deviates from synchronous, the flux will not be stationary with
respect to the rotor and currents will be induced in the damper windings. According to Lenz’s law,
these currents will oppose the flux change that has produced them and so help restore synchronous
speed and damp the rotor oscillations.

Historically there has been a universal tendency to increase the rated power of new power
stations and individual generators as capital cost and operating cost (per-unit megawatt) decrease
with increased megawatt rating. This economy of scale results in lower generator mass per-unit
megawatt, smaller buildings and power station area, and lower auxiliary equipment and staffing
costs. However, the increased use of natural gas since the 1990s has halted the trend of increasing
rated power of power stations with combined cycle gas turbine plant utilizing air-cooled generators
up to typically 250 MW becoming the norm. Consequently, modern synchronous generators have
ratings ranging from about 100 MW to more than 1300 MW and operate at voltages of between
10 and 32 kV.

Generally a synchronous generator is connected to the transmission network via a step-up
transformer. In the case of a small unit the generator and transformer are connected by cables while
a large, high-power generator may be connected to its transformer by a number of single-phase
screened busbars. The generator transformer is usually located outdoors and is of the tank type.
Power from the transformer is fed to the substation busbars via high-voltage cables or a short
overhead line.

2.3.2 Exciters and Automatic Voltage Regulators

The generator excitation system consists of an exciter and an AVR and is necessary to supply the
generator with DC field current as shown in Figure 2.2. The power rating of the exciter is usually in
the range 0.2–0.8% of the generator’s megawatt rating. In the case of a large generator this power
is quite high, in the range of several megawatts. The voltage rating of the exciter will not normally
exceed 1000 V as any higher voltage would require additional insulation of the field winding.
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2.3.2.1 Excitation Systems

Generally exciters can be classified as either rotating or static. Figure 2.3 shows some typical systems.
In the rotating exciters of Figure 2.3a–c, the excitation current is supplied either by a DC generator
or by an AC generator with rectifiers. As DC generators usually have relatively low power ratings,
they are cascaded to obtain the necessary output, Figure 2.3a. Because of commutation problems
with DC generators this type of exciter cannot be used for large generators which require large
excitation currents.

As the number of cascaded DC generators increases, the dynamic properties of the exciter
deteriorate, resulting in an increase in the equivalent time constant. Nowadays DC generators have
been almost entirely replaced by alternators, which are simpler and more reliable. This change to
alternators has been possible because of advances in power electronics which allow cheap, high-
power rectifiers to be used in conjunction with the AC exciter.

The exciter shown in Figure 2.3b is a reluctance machine (inductor generator) operating at about
500–600 Hz so that the rectified current requires little smoothing. With this exciter both windings
(AC and DC) are on the stator side. One disadvantage of this system is that slip rings are required
to feed the rectified excitation current to the rotating field winding of the main generator. A further
disadvantage is that the exciter itself tends to be quite large. This is a direct result of the way in which
the sinusoidal flux changes, necessary to induce the alternating emf in the armature, are produced
solely by the changes in reluctance due to the rotation of the salient rotor teeth.

The exciter shown in Figure 2.3c has neither commutator nor slip rings. The principal excitation
source is an inside-out synchronous machine with the field winding on the stator and armature
winding on the rotor. The induced current is rectified by diodes, which are also mounted on the
rotor, and fed directly to the excitation winding of the main generator. One limitation of this type of
exciter is that the current supplied to the main generator can only be controlled indirectly via field
control of the exciter. This tends to introduce a time constant of about 0.5 to 1 s into the exciter
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Figure 2.3 Typical exciter systems: (a) cascaded DC generators; (b) reluctance machine with rec-
tifier; (c) inside-out synchronous generator with rotating rectifier; (d) controlled rectifier fed from
the auxiliary supply; (e) controlled rectifier fed from the generator terminals; (f) controlled rectifier
fed by the generator’s voltage and current. SG, synchronous generator; SR, slip rings; ME, main
exciter; AE, auxiliary exciter; RR, rotating rectifier; ET, excitation transformer; AS, auxiliary service
busbars; CT, current transformer; AVR, automatic voltage regulator.
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control system. One solution to this problem is to use rotating thyristors, rather than diodes, and
control the exciter output via the firing angle of the thyristors. Unfortunately, controlling the firing
angle of a rotating thyristor is not easy and the reliability of such systems tends to be compromised
by stray fields causing unscheduled thyristor firing.

Some alternative exciter systems using static thyristor converters are shown in Figure 2.3d–f.
In these exciters the thyristor rectifiers are controlled directly by a voltage regulator. The main
differences between the systems is in the type of supply used. Figure 2.3d shows an exciter supplied
by an additional auxiliary service transformer. Figure 2.3e shows an alternative, and simpler,
solution in which the exciter is fed from the generator output via a transformer. However, should a
short circuit occur, particularly one close to the generator terminals, the decrease in the generator
terminal voltage will result in a possible loss of excitation. With careful design the exciter can
operate when the short circuit is further away from the generator terminals, for example at the
high-voltage terminals of the step-up transformer. More flexibility can be obtained by modifying
the supply to the rectifier as shown in the exciter design of Figure 2.3f. In this system the generator
does not lose excitation because its supply voltage is augmented, or compounded, by a component
derived from the generator load current.

The main disadvantage of all static exciters is the necessity of using slip rings to feed current to
the rotor of the main generator. This is offset to a large extent by the rapid speed with which they
can react to control signals. As the cost of high-power rectifiers decreases, and reliability increases,
static exciters are becoming the main source of excitation for high-power generators.

2.3.2.2 Automatic Voltage Regulators

The AVR regulates the generator terminal voltage by controlling the amount of current supplied to
the generator field winding by the exciter. The general block diagram of the AVR subsystem is shown
in Figure 2.4. The measuring element senses the current, power, terminal voltage and frequency
of the generator. The measured generator terminal voltage V g is compensated for the load current
Ig and compared with the desired reference voltage V ref to produce the voltage error �V . This
error is then amplified and used to alter the exciter output, and consequently the generator field
current, so that the voltage error is eliminated. This represents a typical closed-loop control system.
The regulation process is stabilized using a negative feedback loop taken directly from either the
amplifier or the exciter.
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Figure 2.5 Load compensation element together with the comparator.

The load compensation element, together with the comparator, is shown in Figure 2.5. The
voltage drop across the compensation impedance ZC = RC + jXC due to the generator current Ig

is added to the generator voltage Vg to produce the compensated voltage VC according to the
function

VC =
∣∣∣VC

∣∣∣ =
∣∣∣Vg + (RC + jXC) Ig

∣∣∣. (2.1)

If the load compensation is not employed, ZC = 0, then VC = V g and the AVR subsystem maintains
constant generator terminal voltage. The use of load compensation (ZC �= 0) effectively means that
the point at which constant voltage is maintained is ‘pushed’ into the network by a distance that
is electrically equal to the compensation impedance. The assumed direction of the phasors in
Figure 2.5 means that moving the voltage regulation point towards the grid corresponds to a
negative compensation impedance.

In the case of parallel generators supplying a common busbar the compensation impedance must
be smaller than the impedance of the step-up transformer in order to maintain stable reactive power
dispatch between the parallel generators. Usually XC ≈ −0.85XT, where XT is the reactance of the
step-up transformer. In this case the regulator maintains a constant voltage value at a distance
of 0.85XT from the generator terminals towards the network or at a distance of 0.15XT from the
high-voltage terminal towards the generator.

The AVR subsystem also includes a number of limiters whose function is to protect the AVR,
exciter and generator from excessive voltages and currents. They do this by maintaining the AVR
signals between preset limits. Thus the amplifier is protected against excessively high input signals,
the exciter and the generator against too high a field current, and the generator against too high
an armature current and too high a power angle. The last three limiters have built-in time delays to
reflect the thermal time constant associated with the temperature rise in the winding.

A power system stabilizer (PSS) is sometimes added to the AVR subsystem to help damp power
swings in the system. PSS is typically a differentiating element with phase shifting corrective el-
ements. Its input signals may be proportional to rotor speed, generator output frequency or the
electrical real power output of the generator.

The AVR parameters have to be chosen in such a way that an appropriate quality of voltage
regulation is maintained. For small disturbances, that quality can be assessed by observing the
dynamic voltage response of a generator to a step change in the reference value. This is illustrated
in Figure 2.6 for a step change of reference value by �V = Vref+ − Vref−. Three indices assess the
quality of regulation: (i) settling time tε; (ii) overshoot εp; and (iii) rise time tr. These indices are
defined as follows:

� Settling time tε is the time necessary for the signal to reach its steady-state value with a tolerance
of ε.
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Figure 2.6 Dynamic voltage response to the step change in reference value.

� Overshoot εp is the difference between the peak value of the voltage and a reference value, usually
expressed as a percentage of the reference value.

� The time to reach the peak value is denoted as tp.
� Rise time tr is the time taken for the voltage to rise from 10 to 90% of �V = Vref+ − Vref−. In this

interval the speed at which the voltage increases is about 0.8�V/tr.

Usually it is assumed that with an accuracy of regulation ε ≤ 0.5% and with 10% step change of
the voltage reference value, the settling time is tε ≤ 0.3 s for static exciters and tε ≤ 1.0 s for rotating
exciters. The overshoot is usually required to be εp ≤ 10% for step changes of the reference value
when the generator is off load. The speed of voltage increase should not be less than 1.5U ref per
second.

2.3.3 Turbines and their Governing Systems

In a power system, the synchronous generators are normally driven by either steam turbines, gas
turbines or hydro turbines as shown in Figure 2.2. Each turbine is equipped with a governing system
to provide a means by which the turbine can be started, run up to the operating speed and operate
on load with the required power output.

2.3.3.1 Steam Turbines

In coal-burn, oil-burn and nuclear power plants the energy contained in the fuel is used to produce
high-pressure, high-temperature steam in the boiler. The energy in the steam is then converted to
mechanical energy in axial flow steam turbines. Each turbine consists of a number of stationary and
rotating blades concentrated into groups, or stages. As the high-pressure steam enters the fixed set
of stationary blades it is accelerated and acquires increased kinetic energy as it expands to a lower
pressure. The stream of fluid is then guided onto the rotating blades where it experiences a change
in momentum and direction thereby exerting a tangential force on the turbine blade and output
torque on the turbine shaft. As the steam passes axially along the turbine shaft its pressure reduces,
so its volume increases and the length of the blades must increase from the steam entrance to the
exhaust to accommodate this change. Typically a complete steam turbine will be divided into three
or more stages, with each turbine stage being connected in tandem on a common shaft. Dividing
the turbine into stages in this way allows the steam to be reheated between stages to increase its
enthalpy and consequently increase the overall efficiency of the steam cycle. Modern coal-fired
steam turbines have thermal efficiency reaching 45%.

Steam turbines can be classified as non-reheat, single-reheat or double-reheat systems. Non-reheat
turbines have one turbine stage and are usually built for use in units of below 100 MW. The most
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Figure 2.7 Steam configuration of a tandem compound single-reheat turbine.

common turbine configuration used for large steam turbines is the single tandem reheat arrangement
shown diagrammatically in Figure 2.7. In this arrangement the turbine has three sections: the high-
pressure (HP), intermediate-pressure (IP) and low-pressure (LP) stages. Steam leaving the boiler
enters the steam chest and flows through the main emergency stop valve (MSV) and the governor
control valve (GV) to the HP turbine1. After partial expansion the steam is directed back to the
boiler to be reheated in the heat-exchanger to increase its enthalpy. The steam then flows through
the reheat emergency stop valve (RSV) and the intercept control valve (IV) to the IP turbine where
it is again expanded and made to do work. On leaving the IP stage the steam flows through the
crossover piping for final expansion in the LP turbine. Finally the steam flows to the condenser to
complete the cycle. Typically the individual turbine stages contribute to the total turbine torque in
the ratio 30% (HP) : 40% (IP) : 30% (LP).

The steam flow in the turbine is controlled by the governing system (GOV). When the generator
is synchronized the emergency stop valves are kept fully open and the turbine speed and power
regulated by controlling the position of the GV and the IV. The speed signal to the governor is
provided by the speed measuring device (SD). The main amplifier of the governing system and the
valve mover is an oil servomotor controlled by the pilot valve. When the generator is synchronized
the emergency stop valves are only used to stop the generator under emergency conditions, although
they are often used to control the initial start-up of the turbine.

Besides the tandem compound single-reheat turbine shown in Figure 2.7, other turbine ar-
rangements are also used. Double-reheat turbines have their first HP section divided into the very
high-pressure (VHP) turbine and the HP turbine with reheat between them. In this arrangement
the individual turbines typically contribute to the total torque in the ratio : 20% (VHP) : 20%
(HP) : 30% (IP) : 30% (LP). Control valves are mounted after each of the reheaters and before
the VHP section. In contrast to the single-shaft arrangements just described, cross-compound,
two-shaft turbines are sometimes used where one of the shafts rotates at half the speed of the other.
These turbines may have single- or double-reheat steam cycles.

2.3.3.2 Gas Turbines

Unlike steam turbines, gas turbines do not require an intermediate working fluid and instead the
fuel thermal energy is converted into mechanical energy using the hot turbine exhaust gases. Air is

1 The governor valves are also referred to as the main control valves or the HP control valves, while the
intercept valves are also referred to as the IP intercept valves or simply the IP control valves.
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Figure 2.8 Open regenerative cycle of the gas turbine.

normally used as the working fluid with the fuel being natural gas or heavy/medium fuel oil. The
most popular system for gas turbines is the open regenerative cycle shown in Figure 2.8 and consists
of a compressor C, combustion chamber CH and turbine T. The fuel is supplied through the gover-
nor valve to the combustion chamber to be burnt in the presence of air supplied by the compressor.
The hot, compressed air, mixed with the combustion products, is then directed into the turbine
where it expands and transfers its energy to the moving blades in much the same way as in the steam
turbine. The exhaust gases are then used to heat the air delivered by the compressor. There are also
other, more complicated cycles that use either compressor intercooling and reheating, or intercool-
ing with regeneration and reheating. The typical efficiency of a gas turbine plant is about 35%.

2.3.3.3 Combined Cycle Gas Turbines

A significant technological step forward in the use of gas turbines came with the introduction of
the combined cycle gas turbine (CCGT) illustrated in Figure 2.9. In this system the exhaust heat
from the gas turbine is directed into a heat-recovery boiler (HRB) to raise steam, which is then
used to generate more electricity in a steam-driven generating unit. Generally the temperature of
the gas turbine exhaust gases is quite high, typically around 535 ◦C, so by adding a steam turbine
cycle at the bottom end of the gas cycle the otherwise wasted heat can be utilized and the overall
cycle efficiency significantly increased. Modern CCGT plant can have an efficiency approaching, or
even exceeding, 60%. Usually CCGT power stations utilize the exhaust gases from two or three gas
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Figure 2.9 Example of a combined cycle gas turbine.
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turbines to raise steam for one steam turbine with both types of turbines driving separate generators.
More recently single-shaft modes have become popular where both the gas and the steam turbines are
mounted on the same shaft and drive the same generator. In some CCGT designs the HRB may be
equipped with supplementary firing to increase the temperature of the HP steam. In addition, some
combined cycle plants are designed to produce steam for district heating or for use in the process
industry.

CCGT plants, apart from higher thermal efficiency, also have other important advantages over
more traditional coal-fired plants. They have a short construction time and low capital construction
cost, both about half that of the equivalent coal-fired plant, they are relatively clean with almost
no SO2 emission, they require little staffing, and the materials handling problem of gas versus coal
and ash is much simpler.

2.3.3.4 Hydro Turbines

The oldest form of power generation is by the use of water power. Hydraulic turbines derive power
from the force exerted by water as it falls from an upper to a lower reservoir. The vertical distance
between the upper reservoir and the level of the turbine is called the head. The size of the head is
used to classify hydroelectric power plants as high-head, medium-head and low-head (run-of-river)
plants, although there is no strict demarcation line.

Low- and medium-head hydro-electric plant is built using reaction turbines such as the Francis
turbine shown in Figure 2.10a. Because of the relatively LP head reaction, turbines typically use a
large volume of water, require large water passages and operate at low speed. Because of the low
rotational speed, the generators have a large diameter. In operation, water enters the turbine from
the intake passage or penstock through a spiral case, passes through the stay ring and the movable
wicket gates onto the runner. On leaving the runner, the water flows through the draft tube into the
tail-water reservoir. The movable wicket gates, with their axes parallel to the main shaft, control the
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Figure 2.10 Hydro turbines: (a) low- and medium-head reaction turbine; (b) high-head Pelton
wheel.
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power output of the turbine. Francis turbine runners have the upper ends of their blades attached
to a crown and the lower ends attached to a band. For low-head operation the runner has no crown
or band so that the blades are unshrouded. The blades themselves may be either fixed or adjustable.
For adjustable-blade runners the governor can change both the blade angle and the wicket gate
opening (Kaplan-type turbine). The blades are adjusted by means of an oil-operated piston located
within the main shaft.

In high-head hydro-electric power plants Pelton wheel impulse turbines, shown in Figure 2.10b,
are used. In these turbines the HP water is converted into high-velocity jets of water by a set of fixed
nozzles. The high-velocity water jets impact on a set of bowl-shaped buckets attached around the
periphery of the runner which turn back the water so impacting the full effect of the water jet to
the runner. The size of the jet, and thus the power output of the turbine, is controlled by a needle in
the centre of the nozzle. The movement of the needle is controlled by the governor. A jet deflector
is located just outside the nozzle tip to deflect the jet from the buckets in the event of sudden load
reduction.

2.3.3.5 Turbine Governing Systems

For many years turbine governing systems were of a mechanical–hydraulic type and used the Watt
centrifugal mechanism as the speed governor. The original Watt mechanism used two flyballs as
the speed-responsive device, but on new machines the Watt governor has been replaced by an
electro-hydraulic governor. However, it is useful to understand the operation of the traditional
mechanical–hydraulic system, shown in Figure 2.11, as it is still in use in various forms on older
machines and it is a good way to illustrate the general principle of turbine control.

The pair of spring-loaded weights in the centrifugal governor is driven by a motor that receives
its power from the turbine shaft such that the height of the weights depends on the speed. When
the turbine mechanical torque is equal to the counteracting generator electromagnetic torque, the
rotational speed of the turbine–generator is constant and the position of the weights does not
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Figure 2.11 Mechanical–hydraulic governing system of the steam turbine.
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change. If the electrical torque increases, due to a change in load, so that it is greater than the
mechanical driving torque, the rotational speed ω decreases and the weights move radially inwards
under centrifugal action. This causes point A on the governor floating lever to rise and the floating
lever A–B–C rotates around point C. This rotation results in point B and the pilot valve moving
upwards so allowing HP oil to flow into the upper chamber of the main servomotor. The differential
pressure across the piston now forces the piston to move downwards so partially opening the turbine
valve and increasing the turbine power. The displacement of the main servomotor piston downwards
causes points D, E, I and H to lower and the speeder gear floating lever to rotate downwards about
point G. This lowers point C, around which the lever A–B–C rotates, and partially closes the pilot
valve to reduce the oil flow into the upper chamber.

This governing system has two negative feedback loops: the main speed feedback loop through
the turbine speed measuring device and the centrifugal governor, and the second valve position
feedback loop through the steam valve, piston and points D, E, I, H and C. This latter feedback
loop ensures that the static speed–power characteristic of the turbine has a negative slope. As will be
explained later in this section, such a characteristic is fundamental to turbine control as it ensures
that any speed increase will be met by a corresponding reduction in turbine torque and vice versa.
The slope, or gain, of the characteristic may be changed by moving point E horizontally on the
lever D–E–F.

The purpose of the speeder gear is twofold. Firstly it controls the speed of the unsynchronized
generator and, secondly, it controls the power output of the synchronized generator. To see how the
speeder gear works, assume that the generator is synchronized and that it is required to increase the
power output. As the generator is synchronized its speed will be constant and equal to synchronous
speed. If the speeder gear is used to raise point G then points C and B and the pilot valve will
also rise. HP oil will then enter the upper chamber of the main servomotor, the piston will fall
and the steam valve will be opened thereby increasing the steam flow through the turbine and the
power output. As the servomotor piston falls, so too do points D, E, I and H. This movement
lowers point C and returns the pilot valve to its equilibrium position. The schematic diagram of
the mechanical–hydraulic governor is shown in Figure 2.12a with the position of the speeder gear
setting the load reference set point.

The main disadvantages of the Watt centrifugal governor are the presence of deadbands and a
relatively low accuracy. The size of the deadbands also tends to increase with time due to wear
in the moving mechanical elements. Newer solutions replace the Watt centrifugal mechanism with
an electronic regulator. In these systems the turbine rotor speed is measured electronically, with
high accuracy, using a toothed wheel and a probe. The resulting electrical signal is amplified and
acts on the pilot valve via an electro-hydraulic converter. The schematic diagram of the electro-
hydraulic system in Figure 2.12b shows that its operation does not differ much from that of the
mechanical–hydraulic system shown in Figure 2.12a, but the flexibility of electronic regulators
enables additional control loops to be introduced that link the boiler and the turbine control
systems. The dashed line in Figure 2.12b symbolizes the steam flow feedback and its function is to
prevent the valves being opened by the speed regulator when the steam inlet pressure is too low.
The reference speed is set electronically in the speed reference set point. It is also possible to change
the turbine power using an additional signal that is added to the control circuit at the load reference
set point.

Higher forces are required to move the control gates in hydro turbines than the valves in steam
turbines and, as a result, hydro turbine governing systems usually employ two cascaded servomotors.
The first, low-power, pilot servomotor operates the distributor or relay valve of the second, high-
power, main gate servomotor. Just as in the steam turbine, the pilot servomotor has a pilot valve
which is controlled either by a mechanical Watt-type governor or by an electronic regulator via an
electro-hydraulic converter. The turbine governing system is similar to that used in steam turbines
(Figure 2.12) but the number of servomotors is higher and the feedback loop has an additional
dashpot for reasons described in Chapter 11 (Section 11.3).
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Figure 2.12 Schematic diagram of the governing system: (a) mechanical–hydraulic; (b) electro-
hydraulic.

2.3.3.6 Turbine Characteristics

For stable operation the turbine must have a power–speed characteristic such that as the speed
increases the mechanical input power reduces. Similarly, a decrease in speed should result in an
increase in the mechanical power. This will restore the balance between the electrical output power
and mechanical input power.

To examine how such a characteristic can be achieved, Figure 2.13 shows the idealized
power–speed characteristics for an unregulated and a regulated turbine. Point A is the rated point
which corresponds to the optimal steam flow through the turbine, as determined by the turbine
designers. Consider first the unregulated characteristic and assume that the turbine is initially
operating at point A with the turbine control valve fully open. The generator is assumed to be
synchronized with the system and its speed can only change if the system frequency changes.
If, for some reason, the system frequency rises, then so too does the speed of the rotor. As
the main valve is fully open the speed increase causes additional losses in the turbine and the
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Figure 2.13 Turbine power–speed characteristic for the unregulated turbine (lines 1, 2) and the
regulated turbine (lines 3, 2, 4).
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efficiency of the steam flow drops (with respect to the optimal point A) with a corresponding
reduction in power as shown by the dashed curve 1. Similarly, a decrease in the system fre-
quency causes the rotor speed to drop with a corresponding drop in power as shown by curve
2. The rapid reduction in turbine power with reduction in system frequency can be explained
as follows. The steam flow through the turbine depends on the performance of the boiler and
the boiler feed pumps. As the performance of these pumps is strongly dependent on frequency,
a reduction in system frequency (and rotor speed) reduces their performance. This causes a de-
crease in the amount of steam flowing through the turbine and a further drop in the turbine
torque.

The task of the turbine governor is to set a characteristic corresponding to line 3 which has a
small droop. As explained below, such a characteristic is necessary to achieve stable operation of
the turbine.

Let us consider the governor functional diagrams in Figure 2.12. If the steam flow feedback
in the electro-hydraulic governing system is neglected and the governor response assumed to be
dominated by the time constant of the servomotor, both the mechanical–hydraulic and the electro-
hydraulic governors shown in Figure 2.12 may be represented by the simplified block diagram
shown in Figure 2.14. The coefficient KA in Figure 2.14a corresponds to the amplification gain of
the servomotor, while coefficient R corresponds to the gain of the feedback loop. Transformation
of the block diagram allows R to be eliminated from the feedback loop by moving it into the main
loop to obtain the block diagram shown in Figure 2.14b where TG = 1/(KA R) and is the effective
governor time constant.

The block diagram of Figure 2.14b allows an approximate analysis of the static and dynamic
properties of the turbine–governor system. In the steady state t → ∞, s → 0 and the turbine block
diagram can be simplified to that shown in Figure 2.14c where Pref is the load reference set point
expressed as a fraction of the nominal or rated power, Pn. If the valve position c is assumed to vary
between 0 (fully closed) and 1 (fully open) then a small change in turbine speed �ω = ω − ωref will
produce a corresponding change in valve position �c = −�ω/R. Normally �ω is expressed as a
fraction of rated speed ωn so that

�c = − 1
ρ

�ω

ωn
or

�ω

ωn
= −ρ�c, (2.2)
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Figure 2.14 Simplified model of the steam turbine governing system : (a) block diagram with
negative feedback; (b) equivalent block diagram; (c) equivalent block diagram for the steady state.
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Figure 2.15 Illustration of the definition of the speed–droop coefficient.

where ρ = R/ωn is referred to as the speed–droop coefficient or simply the droop. The reciprocal of
droop K = 1/ρ is the effective gain of the governing system. The definition of ρ is illustrated in
Figure 2.15.

Physically droop can be interpreted as the percentage change in speed required to move the valves
from fully open to fully closed. If a linear relationship is assumed between the valve position and
mechanical power then the turbine power output �Pm expressed as a fraction of the nominal or
rated power output Pn is given by �Pm/Pn = �c and

�ω

ωn
= −ρ

�Pm

Pn
or

�Pm

Pn
= −K

�ω

ωn
. (2.3)

Equation (2.3) describes an idealized turbine power–speed characteristic. In (Pm, ω) coordinates
this gives a straight line of gradient ρ shown in Figure 2.13 by line 2. However, it is important to
realize that once the steam valves are fully open, no more control can be exerted over the turbine
so that should the speed drop, the turbine would follow characteristic 4 in the same way as the
unregulated turbine.

A good control system should ensure that any load fluctuation �Pm would only produce a
small speed change �ω. This is achieved by making the droop ρ small. However, it should be
emphasized that the droop cannot be zero or negative. Figure 2.16 illustrates this point. The system
demand is dominated by electrical loads for which an increment in the active power �Pload is weakly
dependent on the change in the system frequency and therefore on the change in the rotational
speed of the synchronous generators. As a result the static load characteristic ω(Pload) is almost a
vertical line in the (P, ω) plane but with a slight positive slope that reflects the frequency dependence.
The point of intersection of the load characteristic ω(Pload) and the turbine characteristic ω(Pm)
is the equilibrium point where the opposing electromagnetic and mechanical torque acting on the
shaft are equal in magnitude and the rotational speed is constant.

Figure 2.16a shows the case where the droop is positive (ρ > 0) so that, according to Equation
(2.3), the turbine power increases when its rotational speed decreases. In this case a small disturbance
in frequency (turbine speed) causes the system to return automatically to the equilibrium point. For
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Figure 2.16 The equilibrium point between the turbine power and the load power: (a) stable point;
(b) unstable point.
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example, if there is a momentary increase in frequency, then the disturbed load power (point 2) is
greater than the disturbed turbine power (point 1). This means that the opposing electromagnetic
torque is greater than the driving torque and the system is forced to return to the equilibrium point.
Similarly, if the frequency decreases then the load power (point 3) is less than the turbine power
(point 4) and this excess mechanical power causes the turbine speed to increase and the system to
return to the equilibrium point.

On the other hand, Figure 2.16b shows a case where the droop is assumed to be negative
(ρ > 0). The situation is then reversed as any increase in frequency will cause the turbine power
(point 1) to be greater than the load power (point 2). This would result in an increase in turbine
speed and a further increase in the power imbalance. Similarly, a decrease in frequency would result
in the turbine power (point 3) being less than the load power (point 4) with further movement away
from the equilibrium point. Such a droop characteristic is not resistant to disturbances and the
system is unstable.

The case when ρ = 0 is the marginal stability case and corresponds to the absence of the negative
feedback loop on valve position. For the Watt regulator of Figure 2.11 this corresponds to the
absence of the lever H–E which realizes the position feedback between the servomotor piston
and the pilot valve. Neglecting the steady-state error, the governing system without this negative
feedback would be of the constant speed type. Such a governor cannot be used if two or more
generators are electrically connected to the same system since each generator would be required to
have precisely the same speed setting (which is technically impossible) or they would ‘fight’ each
other, each trying to pull the system frequency to its own setting. If generators connected to the
system have speed–droop characteristics with ρ > 0, then there will always be a unique frequency
at which they will share load. This will be described in Chapter 9.

Typical values of the speed–droop coefficient (per unit) are between 0.04 and 0.09 with the lower
value corresponding to turbogenerators and the higher to hydrogenerators. This is connected with
the relative ease, and speed, with which a hydro plant can accept a change in load compared with a
thermal plant.

2.3.3.7 Governor Control Functions

Having established the basic workings of the governor, it is now prudent to look at the overall control
functions required of a practical turbine governor. These control functions can be subdivided into
run-up control, load/frequency control, overspeed control and emergency overspeed trip. Run-up
control of the unsynchronized generator is not considered further other than to comment that
this is one area where control may be carried out using the main stop valves with both sets of
control valves and the interceptor stop valves fully open. Primary load/speed control and secondary
frequency/tie-line power control are achieved via the GVs with the IVs fully open. This control
action is fundamental to turbine operation and is discussed in more detail in Chapter 9. If a
severe disturbance occurs then the turbine speed may increase quickly and the aim of the overspeed
control is to limit the maximum overspeed to about 110%. If overspeed control were possible only
via the governor control valves then, depending on the droop setting, the generator speed would
increase to, say, 105% (5% droop) before the main valves were shut. Although this would quickly
reduce the HP torque, the entrapped steam in the reheater would reduce only slowly, typically
with a time constant of 5 s or more, resulting in a slow decay of both the IP and the LP torque.
As these typically contribute 70% of the torque, the turbine speed would continue to increase
until the steam flow had time to reduce. Consequently the purpose of the overspeed control is
to shut the IVs and, as these are at the inlet to the IP turbine, they have an immediate effect
on reducing the IP and LP torque so limiting the overspeed. Typically the IVs will be kept fully
open until the generator speed has reached an overspeed of, say, 104%, when the IVs will be
closed.



P1: OTA/XYZ P2: ABC
c02 JWBK257/Machowski September 22, 2008 21:30 Printer Name: Yet to Come

Power System Components 35

In addition to IV closure, electro-hydraulic governors may also be equipped with additional
fast-valving control logic which uses auxiliary control signals such as acceleration, electrical power,
generator current, and so on, to fast-close the control valves when a large disturbance close to the
generator is sensed. These fast-valving control functions are discussed in more detail in Section
10.2. The final stage of protection, the emergency overspeed trip, is independent of the overspeed
control. If this trip function is activated both sets of control valves and the emergency stop valves
are shut and the boiler tripped to ensure that the turbine is quickly stopped.

2.4 Substations

A substation can be regarded as a point of electrical connection where the transmission lines,
transformers, generating units, system monitoring and control equipment are connected together.
Consequently, it is at substations that the flow of electrical power is controlled, voltages are trans-
formed from one level to another and system security is provided by automatic protective devices.

All substations consist of a number of incoming and outgoing circuits located in bays. These
incoming and outgoing circuits are connected to a common busbar system and are equipped with
apparatus to switch electrical currents, conduct measurements and protect against lightning. Each
electrical circuit can be divided into a primary circuit and a secondary circuit. The primary circuit
includes the transmission line, power transformer, busbars, and so on, and the high-voltage side
of voltage and current transformers. The secondary circuit consists of the measurement circuits
on the low-voltage side of the voltage and current transformers and the control circuits for the
circuit-breakers and isolators, protection circuits.

The busbar constitutes a point of electrical contact for individual lines and transformers. In indoor
substations the busbar consists of flat conductors made of aluminium or copper and supported
by insulators, while in outdoor substations the busbars are stranded conductors made of steel and
aluminium and suspended on insulators. A number of different busbar arrangements are possible,
each of which differs in the flexibility of possible electrical connections and the ease with which
maintenance can be carried out without disturbing either the operation of the substation or system
security. The type of busbar system used will depend on the role and importance of the substation
in the power system, the voltage level, installed capacity and on the expected reliability of network
operation. Bigger substations tend to use more elaborate busbar systems requiring higher capital
investment and operating cost. A description of different types of substation layout can be found
in Giles (1970) and McDonald (2003).

2.5 Transmission and Distribution Network

The transmission and distribution network connects all the power stations into one supplying
system and transmits and distributes power to individual consumers. The basic elements of the
network are the overhead power lines, underground cables, transformers and substations. Auxiliary
elements are the series reactors, shunt reactors and compensators, switching elements, metering
elements and protection equipment.

2.5.1 Overhead Lines and Underground Cables

Overhead lines are universally used to transmit electrical energy in high-voltage transmission sys-
tems while underground cables are normally only used in low- and medium-voltage urban distribu-
tion networks. Because of their high cost, and the technical problems associated with the capacitive
charging current, high-voltage underground cables can only be used under special circumstances
such as in densely populated urban areas, wide river crossings or areas of major environmental
concern. For example, short-distance cables are sometimes used to connect a power station to a
substation.
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Whenever current flows through any network element, real power is lost. As this power loss
is proportional to the square of the current, transmission lines operate at high voltage and low
current. Generally the more power that is sent over a transmission line, the higher will be its voltage.
For practical reasons there is a standardization of voltage levels within different regions of the
world. Unfortunately these standard voltages tend to vary slightly between regions but are not too
dissimilar. Typical transmission voltage levels are 110, 220, 400, 750 kV for Continental Europe,
132, 275, 400 kV for the United Kingdom and 115, 230, 345, 500, 765 kV for the United States.

The maximum theoretical voltage value at which an overhead transmission line can be built is
limited by the electrical strength of air and is estimated to be about 2400 kV. Currently the maximum
voltage at which commercial lines have been built is 765 kV (Canada) and 750 kV (former Soviet
Union). Experimental lines have been built to operate at 1100 kV in Japan and 1200 kV in the
former Soviet Union (CIGRE, 1994).

Because of the high right-of-way costs associated with overhead lines, multi-circuit lines are
usually built where more than one three-phase circuit is supported on the same tower. If a large
increase in transmitted power is predicted for the future, space may be left on the transmission
towers for extra circuits to be added later.

Distribution networks generally operate at lower voltages than the transmission network. Here
the voltage standards used, both by different countries and by different areas in one country, can
be quite varied, partly because of the way the system has developed. Historically, different parts of
a network may have belonged to different private companies each of which would have followed its
own standardization procedures. For example, there are 12 different standard distribution voltages
in the United States, in the range between 2.4 and 69 kV. In the United Kingdom the distribution
voltages are 6.6, 11, 33 and 66 kV.

2.5.2 Transformers

Transformers are necessary to link parts of the power systems that operate at different voltage levels.
In addition to changing voltage levels, transformers are also used to control voltage and are almost
invariably equipped with taps on one or more windings to allow the turns ratio to be changed.
Power system transformers can be classified by their function into three general categories:

� generator step-up transformers (which connect the generator to the transmission network) and
unit transformers (which supply the auxiliary service – Figure 2.2);

� transmission transformers, which are used to connect different parts of the transmission network,
usually at different voltage levels, or connect the transmission and distribution networks;

� distribution transformers, which reduce the voltage at load centres to a low voltage level required
by the consumer.

Generator and transmission transformers have ratings from several tens of megavolt-amperes
to more than 1000 MVA and are usually oil cooled. The transformer core is placed inside a tank
filled with oil which acts as both a coolant and insulator for the transformer windings. Heat, due to
core loss and ohmic loss in the transformer windings themselves, is removed from the oil through
external radiators. The circulation of oil inside the transformer is either natural or forced. The air
circulation outside the transformer is usually forced using fans. Because of transportation problems,
large, high-power transformers are usually constructed as three separate single-phase transformers.
Smaller power transformers are usually of an integrated three-phase design.

Generator transformers step up the voltage from the generator level of typically 10–20 kV to
the transmission or subtransmission voltage. In a power station employing large generators of
typically 200–500 MW and above, each generator may have its own transformer consisting of
three interconnected two-winding transformers. In contrast to this the generators in a smaller power
station may operate with two generators connected to one three-winding, three-phase transformer.
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Figure 2.17 Transmission transformers: (a) two-winding transformer; (b) autotransformer.

Generator step-up transformers are usually �–Y connected with the neutral grounded. The
delta low-voltage winding closes the path for the circulating current resulting from asymmetrical
loading and the undesirable third-harmonic magnetizing current, caused by the nonlinear B–H
characteristic of the transformer core, so that these currents remain trapped inside it. In a large
power station with many generating units some of the transformer neutrals may not be grounded
to limit the single-phase short-circuit currents in the transmission network.

Transmission transformers connect different parts of the transmission and subtransmission net-
works operating at different voltage levels, supply distribution networks and connect large industrial
consumers directly to the transmission network as shown in Figure 2.1. The windings of the trans-
formers tying transmission and subtransmission networks are normally Y–Y connected with the
neutral grounded. These transformers often also have a low-power, medium-voltage, �-connected
tertiary winding to provide a path for the circulating current when the high-voltage winding is
asymmetrically loaded. This additional winding can also be used to supply local loads inside a
substation or to connect a reactive power compensator.

If the required transformation ratio is not too high the two-winding transformer shown in
Figure 2.17a can be replaced by the one-winding autotransformer shown in Figure 2.17b. In the
autotransformer, parts of the primary winding, w1, and the secondary winding, w2, are common
giving an obvious economy. Autotransformers are normally used to connect networks at consecutive
voltage levels: for example, 132/275, 275/400 kV in the United Kingdom, 138/230, 230/345,
345/500 kV in the United States and 110/220, 220/400 kV in Continental Europe.

Distribution networks are normally supplied from transmission and subtransmission networks by
transformers with the high-voltage side connected in star and the medium-voltage side connected in
delta to help minimize any possible load asymmetry. Autotransformers linking parts of distribution
networks operating at different, but close, voltage levels are usually star connected with the neutral
grounded.

Each of the above transformers can be made with a controllable voltage transformation ratio and
with, or without, phase shift control. The former is used for voltage or reactive power flow control
while the latter controls the flow of real power.

2.5.2.1 Tap-Changing Transformers

Controlling the voltage transformation ratio without phase shift control is used for generator step-
up transformers as well as for transmission and distribution transformers. The easiest way to achieve
this task is by using tap changers to change the transformation ratio.

Control of the transformation ratio without phase shift control is usually achieved by using
taps on one of the windings. In this way the transformation ratio is changed stepwise, rather than
continuously. Tap-changing facilities can be made to operate either off load or on load.

The off-load tap changer requires the transformer to be de-energized while tap changing takes
place. A typical range of regulation is ±5%. This method is used for low-rating transformers
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Figure 2.18 Block diagram of the transformation ratio control system.

operating in medium- and low-voltage distribution networks. Change of the transformer ratio is
usually done manually according to season – typically two times a year.

The underload tap-changing transformer (ULTC), also called the on-load tap changer (OLTC) or
load tap changer (LTC), allows the taps to be changed while the transformer is energized. A typical
range of regulation is ±20%.

A simplified block diagram of the control system of a regulating transformer is shown in Figure
2.18. The transformer is subject to disturbances z(t) which could be network loading changes
or network configuration changes. The regulator acts on the transformer via a tap changer. The
regulator receives signals of measurements of the voltage VT and current IT on a chosen side of
the transformer. By comparing these with a reference value, it forms a control signal and executes a
required control task. The regulator may additionally obtain external control signals V x from, for
example, a supervisory controller.

Depending on the point of installation of the transformer and its function in the system, the
controlled variables may be the voltage at a certain point in the network or reactive power flowing
through the transformer. When controlling the voltage at a desired location, the control signal is
obtained using current compensation: that is, by adding the voltage drop on the assumed compen-
sation impedance to the transformer voltage, as in Figure 2.5.

Transformer taps may be situated in the same tank as the main winding. The taps are usually
installed on the high-voltage side of the transformer (because of the lower current) and near the
neutral end of the winding (where the voltage with respect to ground is smallest). In autotransform-
ers taps are also on the high-voltage side but near the common part of the winding. The regulator
of the tap changer usually tries to minimize the number, or frequency, of tap changes per day in
order to prolong the life of the tap changer.

The principle of operation of the OLTC is shown in Figure 2.19. For simplicity, only five taps
and a part of the winding have been shown. The choice of taps selected for operation is done by
two tap selectors S1 and S2.

In the first solution, Figure 2.19a, both tap selectors are set on the same tap during normal
operation. The load current of the transformer flows through both parallel chokes X . This causes
an increase in the reactance by the value X/2, which is a disadvantage of the solution. When the
tap is to be changed, first selector S1 is moved while selector S2 remains at the initial position.

S1 S2

XX

(a)

S1 S2

RR

D

(b)

Figure 2.19 Principle of operation of the on-load tap changer: (a) with reactors; (b) with resistors.
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During that time, the part of the windings between the taps is short-circuited by reactance 2X . This
reactance reduces the short-circuit current and it is an advantage of the solution. Then selector
S2 is moved so that both selectors are in a new position on the chosen tap. An appropriate tap
drive system is necessary to ensure that the selectors are moved without creating a gap in the
circuit.

In the second solution, Figure 2.19b, two resistors R and a diverter switch D are used. Dur-
ing normal operation on a chosen tap, the diverter switch D is at the extreme position, that is
the left position in the diagram. The load current flows through the conductor short-circuiting
the resistor. Just before the switching sequence is started, the diverter switch D is moved to the
middle position. The current then flows through two parallel resistors and the circuit resistance is
increased by R/2. The selector S1 is moved to the new position and the part of the winding between
the taps is momentarily short-circuited by resistance 2R. This resistance limits the short-circuit
current which is an advantage of the solution. Then selector S2 is moved so that both selectors
are in a new position on the chosen tap. Finally the diverter switch D returns to its extreme left
position.

Both elements (diverter switch and the selectors) may be parts of one mechanism but they operate
in two separate compartments. Both selectors and resistors are located in the lower compartment,
which is in the transformer’s tank. The diverter switch is in the upper compartment with its own
oil, outside the transformer’s tank. Thanks to this separation, oil used during tap changes (i.e.
during breaking the circuit) does not contaminate oil in the transformer’s tank. Oil in the small
diverter compartment is replaced more often than oil in the big transformer’s tank. The resistors
are used only momentarily and if the switching mechanism blocks when the resistors are operating,
the transformer must be disconnected.

Sometimes the tap selectors and diverter switch are combined into one switch as shown in
Figure 2.20. That switch is made up of several fixed contacts spread in a circle and one triple
moving contact. For simplification, only the left side of the fixed contacts has been shown together
with corresponding taps. An important role for the switching sequence is played by the empty
space between the fixed contacts. The moving contact consist of the main (middle) contact and
two side contacts. There are resistors in the circuit of those contacts. Movement of this triple
contact is executed in the following way. The width of the contacts and of the empty space is
selected such that, before the main moving contact leaves a given fixed contact, side contacts move
from the neighbouring empty spaces into neighbouring fixed contacts. This causes a momentary
short circuit, through resistors, of the neighbouring fixed contacts. Further movement of the triple
contact causes a connection of the main contact with the fixed contact and movement of the side
contacts into empty space. The short circuit is interrupted and normal operation through a new
fixed contact, and on a new tap, is restored.

R

R

Figure 2.20 Principle of operation of the selector-type tap changer.
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MT MT

ET

ST ST(a) (b)

Figure 2.21 Two ways of supplying the series transformer: (a) from the tertiary winding of the
main transformer; (b) from a separate excitation transformer. MT, main transformer; ST, series
(booster) transformer; ET, excitation transformer.

2.5.2.2 Phase Shifting Transformer

Phase shifting transformers control the voltage transformation ratio together with voltage phase
angle in order to control real power flows in transmission networks. The regulation is executed using
a series transformer referred to as a booster transformer which is fed by an excitation transformer.
Examples of connecting booster and excitation transformers are shown in Figure 2.21.

With the transformer connections shown in Figure 2.21, the voltage can be regulated in both
magnitude and phase with the degree of regulation depending on the connection made between
the tertiary winding of the main transformer MT (or the excitation transformer ET) and the series
transformer ST. A number of possible schemes are illustrated Figure 2.22.

Figure 2.22a shows the series transformer windings where �VA, �VB, �VC are the voltages
supplied from the excitation transformer (not shown) to be injected into each phase of the main
circuit. Figure 2.22b shows the phase relationship of the phase and phase-to-phase voltages used
to supply the excitation transformer. The same voltages are also on the primary side of the series
transformer. If the excitation transformer is constructed so that the voltages �VA, �VB and �VC

are proportional to, and in phase with, the primary-side phase voltages �VA, �VB and �VC then
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Figure 2.22 Complex transformation ratio: (a) windings of the series transformer; (b) the triangle
of phase and line voltages; (c) in-phase booster voltages; (d) quadrature booster voltages.



P1: OTA/XYZ P2: ABC
c02 JWBK257/Machowski September 22, 2008 21:30 Printer Name: Yet to Come

Power System Components 41

AT

XH

Y

S

ET

BT
L

Figure 2.23 Transformer combination for independent in-phase and quadrature regulation.

the series transformer will produce a change in the voltage magnitude as shown in Figure 2.22c.
The secondary voltages of the series transformer are VA′ , VB′ and VC′ .

Alternatively, as shown in Figure 2.22d, the excitation transformer can be constructed so that
the voltages �VA, �VB and �VC are proportional to the phase-to-phase values �VBC, �VCA

and �VAB of the primary-side voltages. As the line voltage between two phases in a three-phase
system is always in quadrature with the voltage of the third phase, the series transformer will
introduce a change in the voltage angle and a small change in voltage magnitude. This type of
booster transformer is referred to as a quadrature booster transformer.

Generally the excitation transformer can be constructed so that it supplies the series transformer
with a net voltage made up of an in-phase component and a quadrature component. The voltage
change in all three phases can be then expressed as

�VA = a1VA + a2VBC, �VB = a1VB + a2VCA, �VC = a1VC + a2VAB, (2.4)

where a1 and a2 are the voltage transformation ratios associated with the in-phase component and
quadrature component respectively. Both these voltage ratios can be adjusted to allow control of
both the voltage magnitude and angle. In this case the transformation ratio is a complex number,
ϑ = VA′/V A = VB′/VB = VC′/VC = ϑejθ , where θ is a phase shift angle.

It is possible to construct a single transformer in which both in-phase and quadrature regulation
are done in the same tank. In practice, the two modes of regulation tend to be executed in separate
transformers as shown in Figure 2.23. Quadrature regulation is executed using the booster trans-
former BT and the excitation transformer ET situated in a common tank. In-phase regulation is
executed independently in the main autotransformer AT which has its own tank. The main advan-
tage of this solution is operational flexibility. In the case of a maintenance outage or failure of the
tap changer of the excitation transformer ET, the autotransformer AT may operate after a bypass
is inserted between terminals S and L – see Figure 2.23.

2.5.3 Shunt and Series Elements

Shunt and series elements, such as series capacitors and shunt compensators (static and rotating), are
used in transmission networks for a number of purposes. From the point of view of this book their
use will be considered for the purposes of reactive power compensation and stability improvement.

2.5.3.1 Shunt Elements

Section 3.1 will show how the ever-changing real and reactive power demand may cause large
variations in the network voltage profile. Generally, reactive power cannot be transmitted over long
distances and should be compensated for close to the point of consumption. The simplest, and
cheapest, way of achieving this is by providing shunt compensation, that is by installing capacitors
and/or inductors connected either directly to a busbar or to the tertiary winding of a transformer.
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Shunt elements may also be located along the transmission route to minimize losses and voltage
drops. Traditionally, static shunt elements are breaker switched either manually or automatically
by a voltage relay. Modern solutions, involving the use of thyristors, will be described in the next
subsection.

When the system power demand is low, reactive power produced by the transmission line ca-
pacitance may prevail over the reactive power consumed by the inductance and the transmission
line may be a net source of reactive power (Section 3.1.2). The effect of this may be to boost the
network voltages to unacceptably high values. In such circumstances shunt reactors can be used to
consume the surplus reactive power and depress the voltages. Usually shunt reactors are required
for transmission lines longer than about 200 km. During heavy loading conditions some of the
reactors may have to be disconnected and shunt capacitors used to supply reactive power and boost
local voltages.

Another traditional means of providing shunt compensation is by the use of a synchronous com-
pensator. This is a salient-pole synchronous motor running at no load and whose field is controlled
so as to generate or absorb reactive power. When overexcited the synchronous compensator is a
source of reactive power; when underexcited it absorbs reactive power. Although relatively expensive
synchronous compensators play an important role in the control of voltage and reactive power at
the transmission, and especially subtransmission, voltage levels. They are used in order to improve
stability and maintain voltages within desired limits under varying load conditions and contingency
situations. When used in new substations, synchronous compensators are often supplemented by
switched shunt capacitor banks and reactors so as to reduce installation and operating costs. The
majority of synchronous compensator installations are designed for outdoor operation and operate
unattended with automatic control of start-up and shutdown. Small synchronous compensators of
several megavolt-amperes are usually connected to the tertiary winding of the transmission trans-
former while larger units of up to a few hundred megavolt-amperes are connected by individual
step-up transformers to the busbars of a high-voltage substation. The small units are generally air
cooled while the bigger units are either water cooled or hydrogen cooled.

2.5.3.2 Series Elements

Series capacitors are connected in series with transmission line conductors in order to offset the
inductive reactance of the line. This tends to improve electromechanical and voltage stability, limit
voltage dips at network nodes and minimize the real and reactive power loss. Typically the inductive
reactance of a transmission line is compensated to between 25 and 70%. Full 100% compensation is
never considered as it would make the line flows extremely sensitive to changes in angle between the
voltages at the line terminals and the circuit would be series resonant at the fundamental frequency.
Moreover, high compensation increases the complexity of protection equipment and increases the
probability of subsynchronous resonance as discussed in Section 6.7.3.

Normally series capacitors are located either at the line terminals or at the middle of the line.
Although fault currents are lower, and line protection easier, when the capacitors are located at the
mid-point, the access necessary for maintenance, control and monitoring is significantly eased if the
capacitor banks are positioned at the line terminals. For this reason the compensating capacitors
and associated shunt reactors are usually split into two equal banks positioned at each end of the
line Typically each bank will be capable of compensating the line to a maximum of 30%. A detailed
discussion of the benefits and problems of locating series capacitors at different points along the
line can be found in Ashok Kumar et al. (1970) and Iliceto and Cinieri (1970).

Sometimes during power swings or heavy power transfers the line reactive current is high and
the voltage may rise excessively on one side of the series capacitor. In this case the system must be
designed to limit the voltage to acceptable levels or capacitors of appropriately high-voltage rating
must be used. Normally the voltage drop across a series capacitor is only a small percentage of the
rated line voltage. A short circuit on one side of the capacitor may, however, produce a temporary
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Figure 2.24 Series capacitor protective schemes: (a) single-gap scheme; (b) dual-gap scheme; (c)
zinc oxide scheme.

voltage across the element approximately equal to the line rated voltage. As such a fault is rare, it
is uneconomical to design the element to withstand such a high voltage so that normally provision
is made for the capacitor to be bypassed during such a fault and reinserted after fault clearing.

The traditional way of bypassing the capacitor is to include a spark gap across either the capacitor
bank itself or each module of the bank. A better solution is to use nonlinear zinc oxide resistors
which provide almost instantaneous reinsertion. Figure 2.24 shows some alternative bypass schemes
(ABB, 1991). The single-gap protective scheme in Figure 2.24a uses a single spark gap G which
bypasses the capacitor if the voltage exceeds a preset value, normally equal to about 3–4 times the
rated voltage of the capacitor. The short-circuit current flowing through the capacitor is damped in
the damper D. When the gap current is detected the bypass breaker S is closed diverting the current
from the gap. When the line current returns to normal the bypass breaker opens within 200–400 ms
and the capacitor is reinserted.

A faster reinsertion time, around 80 ms, is provided by the dual-gap scheme in Figure 2.24b.
When the fault occurs the spark gap G2, which is set lower than G1, sparks over first bypassing the
capacitor. Breaker S2, which is normally closed, opens immediately upon sensing the normal line
current and reinserts the capacitor. In this way capacitor reinsertion is not delayed by deionization
time. The other gap G1 and the bypass breaker S1 serve as back-up protection.

Due to its nonlinear properties the zinc oxide resistor shown in Figure 2.24c limits the voltage
across the capacitor bank during a fault and reinserts the bank immediately when the current
returns to normal. The spark gap G does not normally operate and is provided only as back-up
overvoltage protection for the resistor.

2.5.4 FACTS Devices

Traditionally the main control actions in a power system, such as transformer tap changers, have
been achieved using mechanical devices and were therefore rather slow. However, continuing
progress in the development of power electronics has enabled a number of devices to be devel-
oped which provide the same functions but with much faster operation and with fewer technical
problems. Transmission networks equipped with such devices are referred to as FACTS (Flexible
AC Transmission Systems) while the electronic devices themselves are referred to as FACTS devices.
At the heart of FACTS devices is a controlled semiconductor, the thyristor.

The first thyristor developed in the early 1970s was the silicon-controlled rectifier (SCR), which
had turn-on but no turn-off capability. Such a thyristor is now referred to as a conventional thyristor.
It was at the heart of a rapid expansion of power electronics. It was also used to construct the first
FACTS devices using thyristor valves. A thyristor valve is constructed using conventional thyristors
and may be a circuit-breaker or a current controller (Figure 2.25).

Figure 2.25a shows a thyristor valve consisting of two thyristors that allow regulation of the
current flowing through a shunt reactor. Regulation of alternating current is executed by cutting
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Figure 2.25 Two applications of thyristor valves: (a) thyristor-controlled reactor; (b) thyristor-
switched capacitor.

out a part of the sine waveform. The resulting alternating current contains harmonics. Hence any
FACTS device using this type of regulation must be equipped with additional harmonic filters to
help smooth the current waveform. Such filters are quite expensive and constitute a substantial part
of the overall cost.

In the case of the capacitor it is not possible to obtain smooth control of the current due to the
long time constant associated with the capacitor charge/discharge cycle so that the thyristor valve
can only switch the capacitor on or off as shown in Figure 2.25b. When the flow of the current is
blocked, the capacitor is discharged via the discharge resistor.

The next stage in the development of power electronics was the invention of the gate turn-off
thyristor (GTO), which has both turn-on and turn-off capability. GTOs have found application in
a number of more advanced FACTS devices based on voltage source converters and current source
converters. The basic principle of these converters is shown in Figure 2.26. To differentiate it from
the conventional thyristor, the GTO is denoted by an additional slanted line.

The voltage source converter (Figure 2.26) connects a DC system with an AC three-phase system
(the three slanted lines on the right denote a three-phase system). Generally, power can flow in
either direction; that is, the DC system can either send or receive power. The DC voltage always has
one polarity and power reversal takes place through reversal of the polarity of the direct current.
Therefore the converter valve has to be bidirectional and is made up of an asymmetric turn-off
GTO device with a parallel diode connected in reverse. The capacitor on the DC side must be large
enough to handle a sustained charge/discharge current that accompanies the switching sequence
of the converter valve. On the AC side, the voltage source converter is connected with the AC
system through a small reactance (usually a transformer) in order to ensure that the DC capacitor
is not short-circuited and discharged rapidly into a capacitive load such as transmission lines of
the AC system. In a particular case the DC side may consist of only a capacitor and then the
real power of the DC system is equal to zero. In that case there is only reactive power on the
AC side.

Current source converters used in low-voltage power electronic devices tend not to be used in
high-voltage power electronics as they would require AC filters on the AC side, which is expensive.
Hence they will not be discussed here.

The main disadvantages of GTOs are their bulky gate drivers, slow turn-off and costly snubbers.
Research continues to overcome those problems. It is likely that in coming years GTOs will be

VDC

VAC

active and reactive power

iDC

DC power

Figure 2.26 Basic principle of voltage source converter.
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replaced in FACTS devices by new, more advanced thyristors such as the integrated gate-commutated
thyristor (IGCT) or MOS-controlled thyristor (MCT).

Detailed description of thyristor-based FACTS devices can be found in Hingorani and Gyugyi
(2000) and Akagi, Watanabe and Aredes (2007). Below only a short description will be given,
necessary for understanding the rest of this book.

Depending on the way FACTS devices are connected to a power system, they can be divided
into shunt and series devices. Main shunt FACTS devices are reactive power compensators, energy
storage (e.g. superconducting or battery-based) and braking resistors. Among various series FACTS
devices are series compensators, phase angle regulators and power controllers.

2.5.4.1 Static VAR Compensator

Static VAR compensators (SVCs) based on conventional thyristors have been used in power systems
since the 1970s, long before the concept of FACTS was formulated. The role of the SVC is to adjust
the amount of reactive power compensation to the actual system needs. A flexible and continuous
reactive power compensation scheme that operates in both the capacitive and inductive regions can
be constructed using the thyristor-switched and/or thyristor-controlled shunt elements shown in
Figure 2.25. Using these elements it is possible to design a variety of SVC systems. Some typical
configurations are shown in Figure 2.27.

In Figure 2.27a one reactor is thyristor controlled and the other is thyristor switched. When
the inductive VAR demand is low, only the thyristor-controlled reactor operates. When demand
increases, both reactors are switched on with the thyristor-controlled reactor being used to control
the actual amount of reactive power needed.

Figure 2.27b shows a thyristor-switched bank of capacitors. The reactive power control (in
the capacitive region only) can be accomplished in steps by switching consecutive capacitors in
or out.

The SVC shown in Figure 2.27c consists of a bank of shunt capacitors connected in parallel with
a thyristor-controlled shunt reactor. The thyristor valve enables smooth control of the lagging VARs
produced by the reactor. With the reactors switched fully on, the parallel reactor–capacitor bank
appears to be net inductive, but with the reactors fully off, the bank is net capacitive. By controlling
the reactor current it is possible to achieve a full control range between these two extremes. A
similar principle is used in the system shown in Figure 2.27d which additionally contains a bank of
thyristor-switched capacitors.

Each of the above systems can be associated with a static voltage–reactive power characteristic
V (Q). This will be discussed using the TSC/TCR compensator as an example.

TCR/TSR TSC TSC/TCRTCR/FC

(a) (b) (c) (d)

Figure 2.27 Types of SVCs. TCR, thyristor-controlled reactor; TSR, thyristor-switched reactor;
TSC, thyristor-switched capacitor; FC, fixed capacitor.



P1: OTA/XYZ P2: ABC
c02 JWBK257/Machowski September 22, 2008 21:30 Printer Name: Yet to Come

46 Power System Dynamics

Σ

Bmin

BMAX

Vref

V

∆V
G(s)

–
B

th
yr

is
to

r 
fi

ri
ng

co
nt

ro
l

Figure 2.28 Simplified block diagram of SVC.

The thyristor firing circuits used in SVCs are usually controlled by a voltage regulator (Figure
2.28) which attempts to keep the busbar voltage constant by controlling the amount and polarity of
the reactive power injected into the busbar. The TSCs and the TCRs are equipped with a controller,
shown on the right hand side of the diagram, enforcing a required total value of the equivalent
compensator susceptance B. This susceptance controller executes the overall control strategy and is
very important for operation of the whole system. The regulator, shown on the left hand side of the
diagram, creates a signal dependent on the controller transfer function and a voltage error in the
node where the compensator is connected. Obviously the value of the total susceptance is between
the total susceptance of the capacitor bank and the reactor susceptance when the capacitors are
switched off. In the steady state, the regulator’s transfer function G(s) is such that for t → ∞, that
is s → 0, it is equal to

G(s)|s=0 = K, (2.5)

namely a gain. Hence in the steady state, �B = K · �U; that is, the change of susceptance is
proportional to the voltage change. For voltages close to the rated voltage it may be assumed that
V ∼= Vref , that is �Q = �B · V2 ∼= �B · V2

ref . Hence

�Q ∼= (
K · V2

ref

) · �V. (2.6)

Figure 2.29 shows a voltage–reactive power characteristic of the device. The part of the V (Q)
characteristic corresponding to (2.6) is denoted by I. This characteristic has a small droop, that
is the tangent is equal to 1/K, the reciprocal of the regulator gain. The voltage at the point of
intersection with the vertical axis is equal to V ref.

The part of the characteristic denoted by II corresponds to a parabola Q = BMAX · V2, that
is the maximum value of the capacitive susceptance when all the capacitors are switched on and
the reactors switched off. The part of the characteristic denoted by III corresponds to a parabola
Q = Bmin · V2, that is the minimum value of the susceptance when all the reactors are switched on
and all the capacitors switched off.

V

III

I

II

Q

Figure 2.29 Static characteristic of SVC equipped with voltage regulator.
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The SVC can operate in transmission networks as a voltage regulator with an additional PSS
regulator added to damp power oscillations. This will be discussed in Chapter 11.

Nowadays SVCs based on conventional thyristors are regarded as old technology. Particularly
troublesome and expensive is the necessity to smooth the current deformed by TCRs. The cost
of such an SVC is typically several times that of an uncontrolled bank of shunt reactors or fixed
capacitors and a considerable part of that cost is due to the filters. A modern solution to the
same problem of thyristor-based reactive power compensation is the static compensator based on
a voltage source converter.

2.5.4.2 Static Compensator

The static compensator (STATCOM), also called the static VAR generator (SVG), provides shunt
compensation in a similar way as the SVCs but utilizes the voltage source converter. Consequently it
incorporates a very high content of power electronics but its conventional components are reduced
to only a transformer and a capacitor.

The operating principle of the STATCOM is illustrated in Figure 2.30. On the DC side of the
voltage source converter, there is only a capacitor. Compared with the block diagram in Figure
2.26, there is no source or demand of real power. The voltage source converter is equipped with a
pulse-width modulation (PWM) controller operating with two control parameters m and ψ . The
AC voltage produced by this converter is given by

VAC = mkVDC (cos ψ + j cos ψ) . (2.7)

A change in m enables the converter to change the magnitude of the AC voltage and therefore it
influences a change of alternating current flowing through the transformer reactance X :

IAC = (
Vi − VAC

)/
jX. (2.8)

If VAC > Vi then IAC leads Vi and reactive power is delivered to the busbar. The compensator acts
like a capacitor. Conversely if VAC < Vi then IAC lags Vi and reactive power is drawn from the
busbar. The compensator acts like a reactor. For a transformer reactance of 0.1 pu, a ±10% change
in VAC produces a ±1 pu change in the inserted reactive power.

Changing ψ , responsible for the phase of AC voltage, see (2.7), makes it possible to control the
active power fed to the capacitor, which is necessary to keep a constant value of the DC voltage.

To compensate reactive power in a power system, the STATCOM must be equipped with an AVR.
Its function is to enforce appropriate reactive power changes by affecting the regulation parameters
m and ψ of the converter controller.

busbar

V i

V ac

I ac

Vdc

m

ψ

A
V

R

Figure 2.30 STATCOM based on voltage source converter.
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Figure 2.31 Static characteristics of STATCOM equipped with voltage regulator: (a) voltage vs
current; (b) voltage vs power.

The transfer function of the voltage controller, as for the SVC, enforces a required small droop
around the reference voltage V ref in the static voltage–reactive power characteristic. The regulator
has a stabilizing feedback loop fed from the compensator current. The regulator also has voltage
and current limiters. Current limiters stop regulation after a maximum value of the current is
reached. They correspond to vertical lines Imin and IMAX in Figure 2.31a, and diagonal lines Q =
VImin and Q = VIMAX in Figure 2.31b. Voltage limiters switch off the device when allowed values
have been exceeded. The limiters correspond to a break in the characteristics at values Vmin and
VMAX.

The STATCOM can operate in transmission networks as a voltage regulator with an additional
PSS regulator added to damp power oscillations. This will be discussed in Chapter 10.

2.5.4.3 Energy Storage System

Figure 2.26 shows that a voltage source converter may operate with a DC device sending or receiving
power. That power will appear on the AC side as real power sent to, or received from, a power
system.

The battery energy storage system (BESS) shown in Figure 2.32 has a chemical battery connected
to its DC side. The battery voltage VDC may be considered to be constant so that, according to
(2.7), changes in parameters m and ψ allow the magnitude and phase of the AC voltage VAC to
be regulated and therefore a regulation of real and reactive power flows. Regulation of m and ψ

is executed by a power conditioning system (PCS). That regulator enforces a required real power
flow discharging or charging the battery at an acceptable rate. Depending on needs, BESS can also
control reactive power flows just like the STATCOM.
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Figure 2.32 Battery energy storage system.
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BESSs connected at the distribution level range in size from less than 1 MW to over 20 MW
and find many applications. One of them is smoothing of power flows due to intermittent loads or
renewable generators.

In transmission networks, BESSs with ratings of several tens of megawatts or higher may poten-
tially find an application for spinning reserve or frequency control in the first instance after a large
power unit is lost – see Chapter 9. Real power of BESS could also be used for the damping of power
swings and stability enhancement (Chapter 10).

Superconducting magnetic energy storage (SMES) is functionally similar to BESS but with a
superconducting coil used to store energy in the magnetic field of the coil. The active and reactive
power available from SMES depends on the direct current stored in the coil. For a given direct
current, the SMES power can be regulated in four quadrants of the complex power domain within
a circular range limited by

[Ps(t)]
2 + [Qs(t)]

2 ≤ |SMAX|2 , (2.9)

where SMAX is the maximum available apparent power. Applications of SMES are similar to those
of BESS.

2.5.4.4 Thyristor-Controlled Braking Resistor

The braking resistor is used exclusively for transient stability enhancement. It acts as an additional
resistive load capable of absorbing some of the surplus generation in case a severe fault occurs near
a generator, thus preventing loss of synchronism.

Traditionally, braking resistors were made as cast-iron resistors switched on by a mechanical
circuit-breaker for a short time after clearing the fault. Because of the restricted lifetime of the
mechanical circuit-breaker, the resistor would be switched on and off only once after a fault.

In newer solutions, the mechanical circuit-breaker can be replaced by an electronic switch made
of conventional thyristors connected back to back – see Figure 2.33. Such a device is referred to as
a thyristor-switched braking resistor (TSBR). The number of switches allowed is no longer restricted
and it is possible to apply bang–bang control with a number of switches on and off after a fault
occurs.

Theoretically, it is possible to use voltage source converters to control the braking resistor. In that
case the resistor may be connected on the DC side, similar to BESS. The voltage source converter
may smoothly control real power absorbed by the resistor from the AC system. Such a device could
be referred to as a thyristor-controlled braking resistor (TCBR). Like BESS, reactive power could
also be controlled within the capacity of the converter.

braking
resistor

Figure 2.33 Thyristor-switched braking resistor.
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Figure 2.34 Series compensators based on conventional thyristors: (a) thyristor-switched series
capacitor; (b) thyristor-controlled series capacitor.

2.5.4.5 Series Compensators

Traditional series condensers are switched by mechanical circuit-breakers. Consequently their con-
trol properties are limited and they usually operate with a constant capacitance.

Modern FACTS series compensators, apart from traditional compensation of the series line
reactance, can also be used to regulate the total reactance of the transmission system and therefore
they can provide regulation of real power flows. Such compensators can be made using conventional
thyristors or voltage source converters.

Figure 2.34 shows two examples of series compensators based on traditional thyristors. In the first
device shown in Figure 2.34a, referred to as the switched series capacitor (SSC), the series condensers
consist of fixed capacitor CF and a bank of series capacitors C1, C2, . . . , CN. The thyristor control
system can short-circuit or open-circuit a number of capacitors. Thus the total series capacitance
inserted into the network can change stepwise with the step equal to the capacitance of one series
compensator. The thyristors are protected against overvoltages by nonlinear zinc oxide resistors as
shown in Figure 2.24.

In the second device shown in Figure 2.34b, referred to as the controlled series capacitor (CSC), a
condenser of capacitance C is bypassed using a TCR. The condenser current is compensated by the
reactor current. Consequently the reactor current control is equivalent to controlling the resultant
reactance of a parallel-connected condenser and reactor. The control is smooth but a disadvantage
is the thyristor control of the reactor current as it deforms the sine waveform by cutting out a part
of it. This leads to harmonics and the need to use smoothing filters.

Modern series compensators use thyristor converters. Figure 2.35 illustrates the static synchronous
series compensator (SSSC). The source of the AC voltage is a voltage source converter loaded
by a condenser on the DC side. The capacitance of the condenser is such that it maintains a
constant DC voltage. The converter operates as a voltage source synchronous with the AC network.
The AC voltage �V produced by the converter is inserted in the transmission link by the series
(booster) transformer ST. Construction of the SSSC is similar to the STATCOM. Hence the SSSC
is sometimes referred to as the series STATCOM.

As in the STATCOM, the voltage source converter is controlled using two parameters m and ψ

responsible for the magnitude and phase of the AC voltage. Those parameters are controlled using
PCS.

The SSSC compensates the reactance of a transmission line if its regulator ensures that the series
booster voltage is always proportional to the current flowing in that line. This can be proved using
Figure 2.36. Let us assume that the booster voltage is given by

�V ≡ −j�XI. (2.10)
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Figure 2.35 Static synchronous series compensator.

Using the equivalent diagram of the transmission link including the booster transformer (Figure
2.36a) gives

Vk − V j = jXL I, (2.11)

Vk = Vi − �V, (2.12)

or Vi − V j = jXL I + �V = jXL I − j�XI = j(XL − �X)I. Hence finally

Vi − V j = j(XL − �X)I. (2.13)

The last equation corresponds to the equivalent diagram shown in Figure 2.36b in which the
equivalent line reactance is equal to (XL − �X). This means that adding the voltage expressed by
(2.10) in parallel with the line is equivalent to compensating the line reactance XL by �X . In the
phasor diagram shown in Figure 2.36c, the voltage inserted in series with the line compensates the
voltage drop on the line reactance.

∆ XIV ≡ − j∆

j L∆ IX

(a)

(b)

(c)

XX L − ∆

V i

V i

V i

V k

∆V

V k

V j

V j

V j

XL I

I

I

Figure 2.36 Compensation of the transmission line reactance using a current-controlled voltage
source: (a) transmission line with a series-connected voltage source; (b) equivalent reactance; (c)
phasor diagram.



P1: OTA/XYZ P2: ABC
c02 JWBK257/Machowski September 22, 2008 21:30 Printer Name: Yet to Come

52 Power System Dynamics

It should be remembered that the SSSC compensates the reactance only if the voltage source is
controlled using (2.10). That condition must be enforced by the regulator of the device.

Reactive power losses on the equivalent reactance (XL − �X) are smaller than the reactive power
losses on the transmission line reactance XL. It follows then that the source �V must deliver the
capacitive reactive power necessary to compensate the difference between reactive power losses
in the transmission line reactance and the equivalent reactance. That power must come from the
condenser loading the converter on the DC side.

Series condensers may be used to regulate power flows in the steady state. Their speed of operation
may also be used for the damping of power swings and that application will be discussed in
Chapter 10.

2.5.4.6 Thyristor-Controlled Phase Angle Regulator

Mechanical tap changers for the quadrature voltage regulation previously shown in Figure 2.22 can
be replaced by FACTS technology. Figure 2.37 shows the thyristor-controlled phase angle regulator
(TCPAR) where thyristor valves are used as electronic switches to replace the traditional mechanical
tap changers. The number of electronic switches is restricted to three because the supply (excitation)
transformer ET has three sets of windings on the secondary with a turns ratio of 1 : 3 : 9. The
thyristor-switched system allows any one of these three sets of windings to be switched in series
with the series transformer ST in either a positive or negative direction. Consequently each of these
sets of windings can therefore be in one of three states giving 33 = 27 possible values of the voltage
supplying the series transformer. This corresponds to 27 taps in a traditional quadrature booster.
For example, the booster value 1 is obtained by inserting only winding 1 in the supply circuit. The
booster value 2 = 3 − 1 is obtained if winding 3 is inserted in the opposite direction to winding 1.
The booster value 4 = 3 + 1 is obtained if windings 3 and 1 are connected in the same direction.
The other ±13 values are obtained in a similar way.

2.5.4.7 Unified Power Flow Controller

The unified power flow controller (UPFC), shown in Figure 2.38, consists of a shunt and series
part. The shunt part consists of an ET and a voltage source converter CONV 1. The series part
consists of a voltage source converter CONV 2 and an ST. Both voltage source converters CONV 1
and CONV 2 are connected back to back through the common DC link with a capacitor. Each
converter has its own PWM controller which uses two control parameters, respectively m1, ψ1 and
m2, ψ2, as shown in Figure 2.38.

line

ST

139

ET

V i

V i

V k

V k

∆V

∆V

θ

Figure 2.37 Thyristor-controlled phase angle regulator.
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Figure 2.38 Unified power flow controller: (a) functional diagram and the phasor diagram; (b)
equivalent circuit.

The shunt part of the UPFC works similarly to the STATCOM (Figure 2.30). Converter CONV 1
regulates voltage VAC and thereby also the current received by the UPFC from the network. The
voltage is expressed by

VAC = m1kVDC (cos ψ1 + j cos ψ1) . (2.14)

The controller enforces a required value VAC by choosing appropriate values of m1 and ψ1.
The series part of the UPFC works similarly to the SSSC (Figure 2.35). Converter CONV 2

regulates both the magnitude and the phase of the AC voltage �V supplying the booster (series)
transformer. That voltage is expressed by

�V = m2kVDC (cos ψ2 + j cos ψ2) . (2.15)

The controller enforces the required value of �V by choosing appropriate values of m2 and ψ2.
Thanks to the control of both the magnitude and phase of the booster (series) voltage, the voltage
Vk at the beginning of the transmission line may assume any values within the circle created by the
phasor Vi . This is illustrated on the phasor diagram in Figure 2.38.

Regulation of the magnitude and phase of the booster voltage corresponds to operation of the
phase shifting transformer shown in Figure 2.23. The main constraints of the regulation are the
allowed voltage �V and the allowed current flowing through the BT.

The simplified steady-state equivalent circuit of the UPFC shown in Figure 2.38 contains a
series voltage source �V, reactance of the booster transformer XST and shunt current source I shunt

responsible for the reactive power consumption by the shunt part necessary to maintain a constant
value of the DC voltage. Obviously the model must also include the limiters described above for
both the series and shunt parts.

The UPFC can execute the following control functions:

1. Control of real power flows P by controlling the quadrature component Im (�V) of the booster
voltage in the series part.

2. Control of reactive power flows Q by controlling the direct component Re (�V) of the booster
voltage in the series part.

3. Control of the voltage Vi in the connection node by controlling the reactive current Im (I shunt)
supplied by the network to the shunt part.
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The UPFC can also work similarly as the series compensator SSSC (Figure 2.35). In this case,
the direct and quadrature components of the booster voltage must be chosen by the regulator in
such a way that the booster voltage phasor is perpendicular to the current phasor so that condition
(2.10) is satisfied and therefore the reactance of the transmission element is compensated.

As with other FACTS devices, the fast-acting UPFC can also be used for the damping of power
swings discussed in Chapter 9 and Chapter 10.

2.6 Protection

No system element is completely reliable and can be damaged by some internal or external fault.
If the damaged element is not immediately disconnected, it may suffer further damage and be
completely destroyed. A damaged element may also disturb operation of the neighbouring elements
so as to threaten the operation of the whole power system and the continuity of energy supply
to the consumer. Protective equipment is therefore needed to detect a fault and disconnect the
faulty element. Typically, power system protective equipment consists of current and/or voltage
transformers, relays, secondary circuits supplying the relays and controlling the circuit-breakers,
and auxiliary power supplies for the relays.

Operation of the protection must be fast, reliable and selective. A fast speed of response and high
reliability are vital to limit the damage that could be caused by a fault. In addition the protection
must be selective so that only the faulty element is switched off. Reliability is achieved by using
high-quality equipment and by using two different protection schemes for each element called
the main protection and the back-up protection. The main protection should operate according to
different physical principles than its back-up. If back-up protection is placed in the same substation
bay as the main protection then it is termed local back-up. If the main protection of a neighbouring
element is used as the back-up protection of the given element then it is called remote back-up.

There are a number of books available which deal in detail with power system protection (Phadke
and Thorap, 1988; Wright and Christopoulos, 1993; Ungrad, Winkler and Wisniewski, 1995). This
section will contain only a brief overview of some of the main protection schemes and will introduce
terms necessary for the remainder of the book.

2.6.1 Protection of Transmission Lines

The main faults on transmission lines are short circuits. Overhead transmission lines are shielded
from lightning stroke by ground wires, hung above the phase conductors, and surge diverters
connected to the conductors themselves. Nevertheless, lightning is still the most common cause of
faults on overhead transmission lines, with single-phase faults contributing 75–90% of all faults. In
contrast, multiple phase-to-ground faults constitute 5–15% of faults while multi-phase faults with
no ground connection are the rarest at 5–10%. Other rare causes of faults are insulator breakages,
swinging of wires caused by strong winds and temporary contact with other objects.

The majority (80–90%) of the faults on overhead lines are of a temporary nature and are caused
by flashovers between phase conductors, or between one or more of the phase conductors and
earthed metal or the ground caused by, for example, lightning stroke. The remaining 10–20% of
faults are either semi-temporary or permanent. Temporary faults can be dealt with by switching off
the line until the arc or arcs are extinguished, and then switching it on again after a certain period,
termed the dead time. The whole procedure is referred to as auto-reclosing and significantly improves
the continuity of energy supply. Obviously in the case of a permanent fault the re-energized line
will be tripped again by its protection. There may be two or three such attempts, but usually only a
single-shot reclosure is used in high-voltage transmission networks.

The oldest type of protection is the differential-current protection based on Kirchhoff’s current
law stating that the sum of currents flowing into and out of a circuit is equal to zero. Figure 2.39
shows the basic differential-current protection scheme where the current transformers installed at
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Figure 2.39 Differential-current protection. A, B, substation busbars; CB, circuit-breaker; CT,
current transformer; V>, overvoltage relay; F1, F2, internal and external faults.

both terminals of a line are connected via resistors and pilot wires so as to oppose each other. Under
healthy conditions or external faults (like F2 in Figure 2.39), no current flows in the interconnecting
cables. A fault occurring within the protected zone (fault F1) creates a potential difference between
the resistors and a small circulating current flows through the pilot wires energizing the overvoltage
relays and operating the circuit-breakers.

Because of the need to transmit signals continuously with fairly high accuracy between the ends of
the protected line, the differential scheme with pilot wires is only used to protect short transmission
lines with a maximum length of about 20–30 km. For longer lines the interlock scheme is used which
employs directional relays sited at each end of the protected zone. These relays initiate the opening
of the circuit-breakers at each end of a line if both sets of relays indicate that currents are flowing
into the line. The information which must be transmitted between the relays is a logical yes or no,
as opposed to the analogue signals used in the differential scheme. To avoid the expense of the
pilot cables, the logic signal is usually transmitted over the conductors of the protected line using
high-frequency signals and is called the power line carrier.

Another, more popular, protection scheme utilizing the power line carrier is the phase comparison
scheme in which the phase of the current at the two ends of the protected circuit is compared. Under
normal operating conditions, or in case of an external fault, the currents at the opposite ends of the
line are almost in phase with each other, whereas they are displaced by large angles when internal
faults are present.

The frequency used in the power line carriers is typically in the range 20–200 kHz. Lower
frequencies increase the cost of the carrier, while higher frequencies cause too high an attenuation
of the signal. The lines must be equipped with line traps, which are tuned circuits to block the
high-frequency signals so that they do not enter other lines.

The directional comparison protection scheme utilizes the travelling waves which accompany the
short circuit. Any short circuit produces voltage and current travelling waves which travel in both
directions from the point of fault. The fault is detected by comparing the direction of the travelling
waves at both ends of the line. An internal fault will cause the waves to travel in opposite directions,
while an external fault will result in waves travelling in the same direction through the protected
zone.

The development of optical-fibre technology has opened new possibilities for transmitting infor-
mation over long distances. Optical-fibre links placed inside ground wires of transmission lines are
currently used in directional comparison and phase comparison schemes, replacing pilot wires or
power line carriers.

The most popular scheme for protecting transmission lines is distance protection. Its main ad-
vantage is that it does not require pilot wires or power line carriers. An additional advantage is that
it may provide back-up protection for neighbouring network elements (lines and transformers).
The principle of operation recognizes that the impedance of a high-voltage transmission line is ap-
proximately proportional to its length. This means that the apparent impedance measured during
a fault by the relay is proportional to the distance between the point of fault and the relay. If this
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Figure 2.40 Distance protection zones of two neighbouring lines.

impedance is less than the series impedance of the line then it may be concluded that a fault has
occurred inside the protected zone and the line should be tripped. Unfortunately, measurement of
the apparent impedance has low accuracy due to the errors introduced by the current and voltage
transformers, the relay itself and other factors such as the impedance of the fault. Consequently
the relay must have a time characteristic with a few zones corresponding to different impedance
settings and tripping times, as shown in Figure 2.40. Distance protection of line A–B at busbar
A (marked by the small solid rectangle) has three zones, ZA1, ZA2 and ZA3, with tripping times
tA1, tA2 and tA3, respectively. To make sure that a distance relay will not overreach the protected
zone, that is unnecessarily trip for faults outside the zone, the first protection zone is usually set
between 85 and 90% of the line length. As this first zone, ZA1, cannot protect the entire line, the
distance relay is equipped with a second zone, ZA2, which deliberately reaches beyond the remote
terminal of the transmission line. The second zone is slowed down in order that, for faults in
the next line B–C, the protection of the next line (located at B) will operate before the second zone
of the distance relay at A. The second zone of A also partially backs up the distance relay of the
neighbouring line B–C. In order to extend this back-up as much as possible into neighbouring
lines, it is customary to provide yet another zone, ZA3. The third protection zone is obviously the
slowest.

Choosing the maximum reach of the third zone requires great care and analysis of the relay
operation under heavy load, especially during an emergency state with depressed voltages. With
high line currents and depressed voltages, the apparent impedance measured by the relay may
approach the characteristic of the distance relay and even encroach into the third tripping zone.
This may cause unnecessary tripping of the transmission line and further stressing of an already
weakened system, possibly leading to a blackout. Examples of such blackouts are discussed in
Chapter 8.

A distance relay may also cause unnecessary tripping of a transmission line during power swings.
To prevent this, the relays must be equipped with power swing blocking relays or power swing
blocking functions. This will be further discussed in Section 6.6.

2.6.2 Protection of Transformers

Power transformers are an important link in high-voltage transmission networks and must be
protected against both external and internal faults. Internal faults may be due to earth faults on
windings, interphase faults, interturn faults and interwinding faults. This classification is important
as it also corresponds to the different types of protection used.

The main form of transformer protection is differential-current protection. Its principle of op-
eration is similar to the current differential protection used to protect a transmission line, Figure
2.39. The transformer protection scheme has, however, some special features because the magnitude
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and phase of the current are different on the primary and the secondary sides. The transformer
protection scheme must also cope with the possible presence of a large magnetizing inrush current.
Depending on the instant when an unloaded transformer is energized, a magnetising current several
times the rated current of the transformer may flow and, because the losses in the transformer are
small, it will decay slowly with a time constant of several seconds to its normal small value. Because
of the nonlinearity of the magnetizing characteristic, this inrush current has a high second harmonic
and this distortion can be used to distinguish it from a normal fault current.

Differential protection, despite its sensitivity, is not able to detect interturn faults. The transformer
is protected against these faults by the Buchholz protection installed in the pipe between the main
tank of the oil-filled transformer and the conservator. Localized heating or arcing associated with
interturn or interwinding faults decomposes the oil and produces gases such as hydrogen and
carbon monoxide. The gases rise from the transformer and pass up the sloping pipe through the
Buchholz relay, filled with oil, towards the conservator. On their way they rise inside the Buchholz
relay and become trapped in the top of the casing, so displacing oil. As a result a pivoted float or
bucket falls and, depending on the amount of gas released, causes an alarm or trips the relay.

Large transformers are also equipped with two distance protection devices, one on each side of
the transformer. The first and third zones of both relays are directed towards the impedance of the
transformer and their tripping signals are passed to the trip-coil circuits of both circuit-breakers.
This constitutes a local back-up of the transformer’s differential protection. The second zone is
directed in the opposite direction towards the network. This constitutes the main protection from
external faults and the local back-up for busbar protection.

In addition, transformers may also be equipped with earth fault protection (supplied with zero-
sequence currents), combined differential and restricted earth fault protection, overload protection
in the form of an overcurrent relay (supplied from the current transformers) and a thermal relay
reacting to the temperature inside the transformer tank.

2.6.3 Protection of Busbars

Faults on substation busbars are relatively rare compared with those on overhead transmission
lines. The most common cause of busbar faults is flashover on the insulators, power apparatus
failure and, quite often, human error due, for example, to opening or earthing the isolator when on
load. The consequences of a fault on a substation busbar may be far more severe than for a fault
on a transmission line. The busbars of less important substations, in which all the outgoing circuits
are protected with distance protection, are themselves protected by the second zone of the distance
protection at neighbouring stations. This is illustrated in Figure 2.40 where the busbars at substation
B are protected by the distance protection at substations A and C. An obvious drawback of this
scheme is the long fault clearing time associated with second zone of the distance protection. This
cannot be tolerated for more important substations so they are normally equipped with differential-
current protection for each of their circuits, or with modern phase comparison protection schemes.
In this case the distance protection of outgoing circuits constitutes a remote back-up for the busbar
protection.

2.6.4 Protection of Generating Units

As shown in Figure 2.2, a generating unit is a complex system comprising the generator, exciter,
prime mover, step-up transformer and often a unit transformer supplying the auxiliary services. As
the generating unit may be subject to a variety of faults or disturbances, it is normally protected by a
number of protection systems. The most important is the differential protection against faults inside
the generator and transformer. This normally consists of three differential protection systems: one
for the generator, a second for the unit transformer and a third for the generator with its step-
up transformer (or for the generator with both step-up and unit transformers). Large generating
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units are protected from external faults by the distance protection directed towards the network,
in a similar manner as for transformers. The unit transformer is usually protected from external
faults by an overcurrent relay. Similar overcurrent protection is used to protect the stator winding
from both overloading and load asymmetry, and the rotor winding from overloading. Additional
protection systems are used to protect the generator from loss of excitation, loss of synchronism
(pole-slip protection), faults in stator windings (underimpedance protection), earth faults in the
rotor windings and from failure of the prime mover (motoring protection).

The generator is also equipped with protection from non-electrical disturbances due to low
vacuum, lubrication oil failure, loss of boiler fire, overspeeding, rotor distortion, excessive vibration
and difference in expansion between rotating and stationary parts.

2.7 Wide Area Measurement Systems

Wide area measurement systems (WAMS) are measurement systems based on the transmission of
analogue and/or digital information using telecommunication systems and allowing synchroniza-
tion (time stamping) of the measurements using a common time reference.

Measuring devices used by WAMS have their own clocks synchronized with the common time
reference using synchronizing devices. This concept is not new and for many years radio signals
sent from ground stations have been used. As the reference, UTC (Universal Time Coordinated)
has been used as specified by the BIMP (Bureau International des Poids et Mesures) located in
France. UTC is specified using time obtained from about 200 atomic clocks located in various
places around the globe. A number of ground radio stations have been constructed to transmit the
UTC signals. In Europe the DCF77 transmitter is used. It is located in Mainflingen near Frankfurt
in Germany. Many supervisory control and data acquisition (SCADA) systems, which are used for
monitoring and control of power system operation, utilize the DCF77 signals for synchronization.
The accuracy of the time reference obtained using DCF77 is 1–10 ms. Such accuracy is good enough
from the point of view of SCADA systems which measure magnitudes of current and voltages and
corresponding real and reactive powers. Currently much better accuracy, at least 1µs, is obtained
using satellite GPS (Global Positioning System).

2.7.1 WAMS and WAMPAC Based on GPS Signal

The satellite GPS system is the result of many years of research undertaken by US civil and
military institutions aiming to develop a very accurate navigation system. The system has been
made available for civil users around the world. The system consists of a space segment, a ground
segment and users.

The space segment comprises a constellation of 24 satellites located in six orbits, that is with
four satellites per orbit. The location of the orbits and the satellites is such that at any time 4–10
satellites can be seen from any point on the Earth. Access to a number of satellites is necessary
to determine the location of any receiver using three coordinates (longitude, latitude and altitude)
and the reference time. Each satellite transmits to the Earth a coded message about the time of
transmission and actual coordinates of the satellite with respect to the Earth. The message also
contains a pulse of 1PPS (i.e. 1 pulse per second) informing about the beginning of each second of
the universal time. That signal is very important for WAMS as it is used for synchronising WAMS
devices.

The ground segment of GPS consists of six radio stations located near the equator. One of those
stations, in Colorado Springs in the United States, is the master station while the remaining ones
are the monitoring stations. The latter monitor the correctness of operation of the satellites and
send information to the main station. The areas of observation of neighbouring monitoring stations
overlap, which makes it possible to observe the same satellite from two stations. The main station
communicates with all the monitoring stations and with the satellites. The main station sends to the
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satellites corrections to their orbits and a correction to the time of satellite clocks. As the reference
time, UTC is used and it is transmitted from a space observatory of the US Navy.

In the GPS system, the users are only receivers of satellite messages and do not send any
information to the system. Consequently the number of users is not restricted. Calculation of
the coordinates of a given receiver and the time is executed in the receiver based on messages
received from a few satellites. This means that the receiver is equipped with an algorithm solving an
equation in which the message data (the location of a satellite and the reference time) are treated as
known data while the receiver coordinates and the reference time are treated as unknown data. The
reference time is implicit in the solved equations because the equations are set up in such a way as
to eliminate the transmission time of messages from the satellites to the receiver.

The accuracy of the GPS reference time of about 1µs is good enough to measure AC phasors with
a frequency of 50 or 60 Hz. For a 50 Hz system, the period time corresponding to a full rotation
corresponding to 360◦ is 20 ms = 20 · 103 µs. The time error of 1 µs corresponds to the angle error
of 360◦/20 · 103 = 0.018◦, that is 0.005%. Such an error is small enough from the point of view of
phasor measurement.

The possibility of measuring voltage and current phasors in a power system has created new
control possibilities:

(a) Monitoring of operation of a large power system from the point of view of voltage angles and
magnitudes and frequency. This is referred to as wide area monitoring (WAM).

(b) Application of special power system protection based on measuring phasors in large parts of a
power system. Such protection is referred to as wide area protection (WAP).

(c) Application of control systems based on measuring phasors in large parts of a power system.
Such control is referred to as wide area control (WAC).

WAMS integrated with WAM, WAP and WAC is referred to as wide area measurement, protection
and control (WAMPAC).

Recent years have seen a dynamic expansion of WAMPAC systems. Measurement techniques and
telecommunication techniques have made rapid progress, but the main barrier for the expansion
of WAMPAC systems is a lack of WAP and WAC control algorithms based on the use of phasors.
There has been a lot of research devoted to that problem but the state of knowledge cannot be
regarded as satisfactory.

2.7.2 Phasors

The definition of a phasor is closely connected to the representation of a periodic waveform as a
rotating vector. This is illustrated in Figure 2.41. A vector �Vm is rotating with angular velocity ω

with respect to a stationary reference axis. Its position at any instant of time is given by

�V (t) = Vmej(ωt+δ), (2.16)

where Vm is the amplitude and δ is the phase shift with respect to the reference frame Re. This
reference frame together with an orthogonal axis Im constitute the rotating complex plane Re–Im.

Projection of vector �V(t) onto the horizontal axis is periodically time varying (see Figure 2.41b),
and is expressed as v(t) = Vm cos(ωt + δ). Frequency f of the periodic changes is related to the
angular velocity by ω = 2π f = 2π/T, where T is the period of rotation. The effective value of the
sine waveform is given by V = Vm/

√
2. Equation (2.16) can be transformed in the following way:

�V(t) = Vmej(ωt+δ) =
√

2
Vm√

2
ejδ ejωt =

√
2 Vejδ ejωt =

√
2 V ejωt. (2.17)
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Figure 2.41 Illustration of the definition of phasors: (a) a rotating vector; (b) a corresponding
time-domain signal.

Vector V = Vejδ is referred to as the phasor. Its length (magnitude) is V and it is equal to the
effective value of the periodic waveform v(t). Its angle δ is defined by the location of the rotating
vector with respect to the axis Re. The phasor components in the complex plane Re–Im can be
determined from

V = VRe + jVIm = Vejφ = V (cos φ + j sin φ) . (2.18)

The phasor contains information about both the effective value and the phase shift with respect
to the reference frame. Knowing the components VRe, VIm of the phasor, it is easy to calculate its
length V and the phase shift δ.

The above definition assumes that the reference frame Re and the complex plane Re–Im rotate
with the same velocity ω as the vector �Vm. Generally those two velocities may be different, that is
vector �Vm may rotate with velocity ω while the reference frame may rotate with velocity ωref �= ω.
In that case the phase shift δ is not constant but changes with a velocity equal to the difference
between the two velocities dδ/dt = �ω where �ω = ω − ωref . In a special case when ω oscillates
around ωref, the movement of the phasor in the complex plane is referred to as swinging.

An electrical network has generally i = 1, 2, . . . , n nodes. The phasors of all the nodal voltages
can be placed in common complex coordinates Re–Im as shown in Figure 2.42. The voltage at node
i can be then expressed as

Vi = Vi ejδi = Vi (cos δi + j sin δi ) , (2.19)

where Vi and δi are the effective value (magnitude) and the phase angle of the voltage, respectively.
Section 3.5 will show that the electrical state of a network is determined by the voltage magnitudes
and differences between the voltage angles. This means that the common coordinates can be changed

Im

Re

δi
δj

V j

V i

Figure 2.42 Two phasors in the complex plane.
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by rotating them by an angle, because adding the same value to all the phase angles does not change
the differences (δi − δj). This leads to an important conclusion that, in order to measure voltage
phasors, one can assume any, but common, coordinates (any common reference frame).

2.7.3 Phasor Measurement Unit

The freedom to choose any common coordinates for a power system is important for the method-
ology of phasor measurement using WAMS. The common coordinates for the whole WAMS are
obtained by synchronizing the measurements using the 1 PPS signal obtained from the GPS. The
GPS signal is received at any point on the Earth, and therefore at any measurement system. Thus
assuming the same 1 PPS signal as the time base ensures common coordinates for all the measure-
ments in WAMS.

A measurement system allowing measurement of the phasors of voltages and currents in a
power system is referred to as the phasor measurement unit (PMU) and is shown schematically in
Figure 2.43.

Voltages and currents for which phasors are to be determined are measured, using current and
voltage transformers, as three-phase analogue signals and delivered to the PMU. Each analogue
signal is filtered using an anti-aliasing filter and sent to an analogue–digital converter (A/C). Here
the signal is sampled: that is, converted into digital samples. The sampler impulses are generated
by an oscillator operating with the GPS receiver in the phase-locked loop system. Consequent data
samples are sent to a microprocessor together with their time stamps. The microprocessor sends to
its memory the sequence of N subsequent data samples corresponding to a whole AC period. The
samples are then used to calculate the orthogonal components of each phasor using the discrete
Fourier transform (DFT):

V = VRe + jVIm =
√

2
N

N∑
k=1

vke−jk2π/N =
√

2
N

N∑
k=1

uk

[
cos

(
k

2π

N

)
− j sin

(
k

2π

N

)]
. (2.20)

The advantage of this measurement algorithm is that, apart from calculating the orthogonal com-
ponents of a phasor, it also filters both components using two orthogonal filters based on sine and
cosine functions. Consequently the calculated orthogonal components of the phasor are those of
the first (fundamental) harmonic. The higher harmonics and the DC component are washed out.

Each phasor calculated from N samples is time stamped using the time stamp of the first sample.
Then the three-phase phasors of voltages and currents are replaced by their positive sequence
components:

V1k = 1
3

(
VL1k + a VL2k + a2VL3k

)
, (2.21)
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Figure 2.43 Functional diagram of PMU.
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where VL1k, VL2k, VL3k are the three-phase phasors and a = ej120o
is the phase shift operator used

in the theory of symmetrical components.
The positive-sequence phasor of each measured quantity is stored, together with its time stamp,

every 40 ms (25 measurements per second) or every 100 ms (10 measurements per second) depending
on the needs. For storing, a data format is used appropriate for the telecommunication port of the
PMU. Then the telecommunication port transmits data to other WAMS devices.

Some PMU devices may also calculate the frequency of the measured voltage, perform harmonic
analysis and send data to SCADA systems.

Increasingly, manufacturers of other microprocessor devices, such as disturbance recorders, equip
their devices with software functions executing PMU tasks.

2.7.4 Structures of WAMS and WAMPAC

WAMS, and constructed on their basis WAMPAC, may have different structures depending on the
telecommunication media used. With point-to-point connections, the structure may be multi-layer
when PMU data are sent to phasor data concentrators (PDCs). One concentrator may service
20–30 PMUs. Data from the concentrators are then sent to computers executing SCADA/EMS
functions or WAP/WAC phasor-based functions. An example of a three-layer structure is shown
in Figure 2.44.

In each stage of data transmission, delays are incurred. Concentrators in the lowest layer service
PMUs. As the delays are smallest at that stage, the concentrators may supply data not only for
monitoring (WAM) but also for protection (WAP) and control (WAC).

The middle-layer concentrators combine data from individual areas of a power system. The data
may be used for monitoring and for some WAP or WAC functions.

The top, central concentrator services the area concentrators. Since at that stage the delays are
longest, the central layer may be used mainly for monitoring and for those SCADA/EMS functions
that do not require a high speed of data transmission.

The main advantage of the layered structure is the lack of direct connections between area
concentrators. Such connections may make it difficult, or even impossible, to execute those WAP
or WAC functions that require data from a number of areas. The only way to get access to data
from another area is via the central concentrator, which incurs additional delays. That problem
may be solved by adding additional communication between area concentrators. This leads to more
complicated communication structures as more links are introduced.

PDC

PDC PDC

PMUPMUPMU

PDC PDC

PMUPMU PMUPMU

PDC PDC

PMUPMU

SCADA
EMS

P&C P&C

P&CP&C

Figure 2.44 An example of a three-layer structure of WAMPAC. PMU, phasor measurement unit;
PDC, phasor data concentrator; P&C, protection and control based on phasors.
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Figure 2.45 WAMPAC structure based on a flexible communication platform.

Computer networks consisting of many local area networks (LANs) and one wide area network
(WAN) offer the best possibilities of further WAMPAC development and application. Such a struc-
ture is illustrated in Figure 2.45. The digital LAN services all measurement units and protection
and control devices in individual substations. The connecting digital WAN creates a flexible com-
munication platform. Individual devices can communicate with each other directly. Such a flexible
platform may be used to create special protection and control systems locally, for each area and
centrally. The platform could also be used to provide data for local and central SCADA/EMS
systems.
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3
The Power System
in the Steady State

One of the characteristic features of power system operation is the continual need to adjust system
operating conditions in order to meet the ever-changing load demand. Although the demand from
any particular load can vary quite significantly, the total demand, consisting of a very large number
of individual loads, changes rather more slowly and in a predictable manner. This characteristic
is important as it means that within any small time period the transmission and subtransmission
systems (shown in Figure 2.1) can be regarded as being in the steady state and, as time progresses,
considered to move slowly from one steady-state condition to another.

To help describe and quantify the system behaviour under these steady-state conditions this
chapter develops steady-state mathematical models of all the main system elements such as trans-
mission lines, transmission cables, transformers, generators and so on. The behaviour of the main
types of system loads is also considered so that the way in which the demand may change with both
voltage and frequency is understood. Having established such component models, the way they can
be linked together to form the full set of network equations is described.

3.1 Transmission Lines

Figure 3.1 shows the single-phase equivalent circuit of a transmission line suitable for analysing its
symmetrical three-phase operation. In this circuit the voltages and the currents at the line terminals
are the variables while the line parameters are assumed to be uniformly distributed over the line
length.

The parameters describing this circuit are:

r series resistance per unit length per phase (�/km);
x = ωL series reactance per unit length per phase (�/km) and L is the series inductance

per phase (H/km);
g shunt conductance per unit length per phase (S/km);
b = ωC shunt susceptance per unit length per phase (S/km) and C is the shunt

capacitance per phase (F/km);
l line length (km);

Power System Dynamics: Stability and Control, Second Edition Jan Machowski, Janusz W. Bialek and James R. Bumby
C© 2008 John Wiley & Sons, Ltd
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Figure 3.1 Single-phase equivalent circuit of a transmission line with distributed parameters.

where ω = 2π f and f is the frequency. The series impedance and shunt admittance per phase per
unit length are defined as z = r + jx and y = g + jb. Each of the parameters in the equivalent circuit
has a physical meaning and is linked with a particular aspect of the transmission line behaviour.
Thus the resistance r represents the Joule (heating) loss that occurs due to current flow and depends
on the type, construction and diameter of the conductor used. The series inductance L depends on
the partial flux linkages within the conductor cross-section itself and the external flux linkages with
the other conductors. The shunt conductance g represents the corona loss and the leakage current
on the insulators. This value is not usually constant as the corona loss depends on air humidity while
the leakage current depends on dirt and salt contamination on the surface of insulators. In power
lines g is small and is usually neglected. The shunt capacitance C is due to the potential difference
between the conductors. As the voltages are AC voltages this shunt capacitance is alternately
charged and discharged resulting in the flow of the line charging current.

3.1.1 Line Equations and the π -Equivalent Circuit

For steady-state analysis the variables of interest are the voltages and currents at the line terminals
VR, IR, VS, IS where the subscripts ‘R’ and ‘S’ signify the receiving end and sending end of the
line, respectively. The voltages and currents are linked by the long-line equation:

[
VS

IS

]
=

[
cosh γ l ZC sinh γ l

sinh γ l/ZC cosh γ l

] [
VR

IR

]
, (3.1)

where ZC =
√

z/y is the characteristic (or surge) impedance of the line and γ = √zy is the propa-
gation constant. As both the constants γ and ZC are complex quantities the propagation constant
can be expressed as γ = α + jβ where α is termed the attenuation constant and β the phase con-
stant. The four elements of the matrix linking the sending-end and the receiving-end voltages and
currents are often referred to as the ABCD constants where A = D = cosh γ l, B = ZC sinh γ l and
C = sinh γ l/ZC. Interested readers are referred to Grainger and Stevenson (1994) or Gross (1986)
for the detailed derivation of Equation (3.1).

As power system networks consist of many lines, the use of Equation (3.1) for analysis purposes
is very inconvenient and a simpler way is to replace each line by its π -equivalent shown in Figure
3.2. A little circuit analysis shows that the π -equivalent parameters ZL and YL are given by

ZL = Z
sinh γ l

γ l
, YL = Y

tanh
(
γ l/2

)
γ l/2

, (3.2)

where Z = zl is the line total series impedance per phase and Y = yl the total shunt admittance per
phase.

It should be emphasized that the π -equivalent parameters ZL and YL are generally not equal to
the total impedance and admittance of the line, that is ZL �= Z = zl and YL �= Y = yl. However, for
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Figure 3.2 The π -equivalent circuit of a transmission line.

a typical power line γ l is small and the hyperbolic functions can be approximated as sinh(γ l) ≈ γ l
and tanh(γ l/2) ≈ γ l/2. Substituting these values into Equation (3.2) gives the medium-length line
(l between 80 and about 200 km) parameters

ZL = Z, YL = Y. (3.3)

For a short-length line (l < 80 km) the charging current (and the capacitance C ) may be neglected
when the parameters are

ZL = Z, YL = 0. (3.4)

Nowadays, with the wide use of computers, such approximations have limited practical value as
the parameters can be easily calculated using Equation (3.2). For manual calculations the most
convenient, and practical, formulae to use are those of the medium-length line, Equation (3.3),
when the parameters in the nominal π -equivalent circuit represent the total series impedance Z and
the total shunt admittance Y .

3.1.2 Performance of the Transmission Line

For a typical high-voltage transmission line g can be neglected while r � x. An additional insight
into line performance may be obtained by considering the lossless line, that is by neglecting r
altogether. With r and g neglected, the characteristic impedance is purely resistive

ZC = ZC =
√

z/y =
√

L/C, (3.5)

and the propagation constant γ is purely imaginary

γ = √
zy = jω

√
LC, (3.6)

so that α = 0 and β = ω
√

LC. With these values of ZC and γ the hyperbolic functions become
sinh γ l = j sin βl and cosh γ l = cos βl so that Equation (3.1) simplifies to

VS = VRcosβl + jZC IRsinβl

(3.7)
IS = IRcosβl + j

(
VR/ZC

)
sinβl,

and the voltage and current are seen to vary harmonically along the line length. The wavelength
of the full cycle can be calculated as λ = 2π/β. For 50 Hz lines the wavelength is nearly 6000 km,
while for 60 Hz lines it is 60/50 = 1.2 times shorter and is equal to about 5000 km.

Power engineers often find it convenient to compare the actual loading on the line with the natural
load, or surge impedance load (SIL), where SIL is defined as the power delivered at rated voltage to
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Table 3.1 Examples of overhead lines parameters (NGC, 1994; Kundur, 1994)

f n (Hz) Vn (kV) r (�/km)
x = ωL
(�/km)

b = ωC
(µS/km)

β

(rad/km) ZC (�)
PSIL

(MW)

50 (UK) 275 0.067 0.304 4.14 0.00112 271 279
400 0.018 0.265 5.36 0.00119 222 720
230 0.05 0.488 3.371 0.00128 380 140

60 (USA) 345 0.037 0.367 4.518 0.00129 285 420
500 0.028 0.325 5.2 0.0013 250 1000
765 0.012 0.329 4.978 0.00128 257 2280

1100 0.005 0.292 5.544 0.00127 230 5260

a load impedance equal to ZC. That is,

PSIL = V2
n

ZC
. (3.8)

Substituting IR = VR/ZC into the first, and VR = ZC IR into the second, of the equations in (3.7)
shows that when a lossless transmission line is loaded at SIL

VS = VRejβl and IS = IRejβl , (3.9)

indicating that:

� the voltage and current profiles are flat, VS = VR and IS = IR;
� the voltage and current at both ends (and at any point along the line) are in phase so that the

reactive power loss in the line is zero (in other words, the reactive power generated by C is
compensated by the reactive power absorbed by L ).

As the reactive power loss of the line is zero, the natural impedance loading is an optimum
condition with respect to voltage and reactive power control.

Table 3.1 shows typical values of SIL and other characteristic parameters of overhead lines.
Unfortunately the loading on the power line is rarely equal to the natural load. At night the

loading may be a small fraction of SIL, whereas during peak load periods the loading may be
significantly greater than SIL. To examine the effect this has on the line voltage Figure 3.3 shows
three plots of the sending-end voltage VS required to deliver power PR at rated voltage and unity
power factor at the receiving end, each plotted as a function of line length. These calculations have
been done using the full line model described by Equation (3.1) (with resistance included) assuming
the parameters of the 400 kV line given in Table 3.1. When the delivered power PR is less than SIL
then VS is smaller than VR, while PR > PSIL requires VS to be larger than VR. Delivering PR = PSIL

does not actually result in the voltage along the line being constant but it is seen to increase slightly
towards the sending end. This is due to including the line resistance in the calculation. Note the
harmonic variation of the voltage with length.

3.1.2.1 Real Power Transmission

In Chapter 1, approximate Equations (1.8) and (1.9) were derived for real and reactive power
transmission in a line represented by just its series reactance X = xl. Now the equation for real and
reactive power transmission will be derived using the full π -equivalent model of the line.

Let VR be the reference phasor and assume that VS leads VR by angle δSR, that is VR = VR and
VS = VSejδSR . The angle δSR is referred to as the load angle or transmission angle. Assuming a lossless
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Figure 3.3 Sending-end voltage required to supply a given real power load at rated voltage and at
unity power.

line, the receiving-end current can be calculated from Equation (3.7) as

IR = VS − VR cos βl
jZC sin βl

= VS

ZC sin βl
ej(δSR−π/2) − VR cos βl

ZC sin βl
e−jπ/2, (3.10)

allowing the complex apparent power at the receiving end to be calculated as

SR = VR I∗
R = VRVS

ZC sin βl
ej(π/2−δSR) − V2

R cos βl
ZC sin βl

ejπ/2. (3.11)

The real power at the receiving end PR can be now obtained as

PR = Re [S] = VSVR

ZC sin βl
sin δSR, (3.12)

showing that for sending-end and receiving-end voltages of specified magnitude, an increase in the
receiving-end power PR leads to an increase in the load angle δSR while the maximum power transfer
occurs when δSR = π/2 and is equal to

PR,max = VSVR

ZC sin βl
≈ PSIL

sin βl
. (3.13)

Table 3.1 shows that βl is small for medium-length lines (l less than about 200 km). Thus, it can
be assumed that the following simplifications hold:

sin βl ∼= βl, cos βl ≈ 1, ZC sin βl ∼=
√

L
C

ω
√

LC l = ωLl = X, (3.14)

where X is the total inductive reactance of the line. In this case Equation (3.12) simplifies to

PR
∼= VSVR

X
sin δSR, (3.15)

showing that the power transfer limit is approximately inversely proportional to the line series
inductance and the length. Any attempt to increase power transfer above PR,max will result in
instability and is connected with steady-state stability discussed in detail in Chapter 5. Note that
Equation (3.15) corresponds to Equation (1.8) derived for a simplified line model.
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It is worth noting that a transmission line constitutes only part of the transmission link that
connects a generator with the system or connects two parts of a system together. This means that it
is the equivalent voltages of the generator and the system which should be considered to be constant
and used in Equation (3.12), not the terminal voltages of the line itself. Obviously the equivalent
impedance of the generator and the system will then have to be added to the line impedance.
As a result δSR is smaller than the angle between the equivalent voltages and, in practice, the
power transfer limit occurs at δSR < π/2. In addition, when transient stability effects, discussed in
Chapter 6, are taken into account the practical limit on δSR is significantly less than π/2.

Although Equation (3.13) suggests that the maximum line loading is due to the power transfer
limit set by the load angle δSR, this is not always the case and other effects such as the thermal
rating of the line and the maximum allowable voltage drop between the ends of the line must also
be considered. For short lines, less than about 100 km, the maximum line loading is usually limited
by the thermal rating rather than the maximum power transfer limit. On the other hand, for lines
longer than about 300 km, the maximum line loading is determined by the power transfer limit
which may be substantially below the limit set by thermal considerations. Typically utilities will
give the maximum power loading of a line as a fraction (or multiple) of PSIL.

3.1.2.2 Reactive Power Considerations

If for this discussion the sending-end voltage is assumed constant, the question then arises as to
what happens to the receiving-end voltage if (i) the reactive power QR at the receiving end changes
and (ii) the real power PR at the receiving end changes.

Changes in QR will be considered first. The reactive power at the receiving end may be found
from the imaginary part of Equation (3.11) as

QR = Im
[
VR I∗

R

] = VSVR

ZC sin βl
cos δSR − V2

R cos βl
ZC sin βl

= VR

ZC sin βl
(VS cos δSR − VR cos βl) . (3.16)

The simplifications of Equation (3.14) allow Equation (3.16) to be approximated as

QR
∼= VR

X
(VS cos δSR − VR) . (3.17)

This equation corresponds to Equation (1.8) derived for a simplified line model. Normally, for the
stability reasons considered earlier, the angle δSR is kept small so that cos δSR ≈ 1. Strictly speaking,
this assumption corresponds to considering the reactive power transfer only so that PR = 0 and,
according to Equation (3.12), δSR = 0. This simplification gives

QR ≈ VR(VS − VR)
X

, (3.18)

and shows very clearly that the reactive power, QR, is strongly dependent on the magnitude of the
voltage at both the sending end and the receiving end of the line and that it flows from the higher
voltage to the lower voltage. Assuming that VS = constant and plotting the variation of QR against
the receiving-end voltage VR produces the parabolic relationship shown in Figure 3.4a with a
maximum at VR = VS/2. As system voltages must be kept close to Vn, the operating point is always
to the right of this peak with the condition VR > VS/2 always being satisfied. Thus, an increase in
QR leads to a decrease in VR while a decrease in QR leads to an increase in VR. This observation has
important repercussions regarding the introduction of reactive power compensation.

The sending-end reactive power QS can be calculated using a similar derivation as in Equation
(3.16) to give

QS = VS

ZC sin βl
(VS cos βl − VR cos δSR) , (3.19)
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Figure 3.4 The approximate effect on receiving-end voltage of: (a) changes in QR and (b) changes
in QS, when the influence of the real power flow is neglected.

which, assuming that βl is small, gives

QS
∼= VS

X
(VS − VR cos δSR) . (3.20)

Assuming δSR is also small gives

QS ≈ VS

X
(VS − VR) . (3.21)

Again the strong dependence of reactive power with voltage magnitude is apparent and, as VS is
assumed constant, the approximate variation of QS with VR is linear as shown in Figure 3.4b.

Now consider how the inclusion of the real power transfer (PR �= 0 and hence δSR �= 0) modifies
the above considerations. To investigate this, consider the reactive power loss in the line itself due
to flow of PR. Generally the reactive line loss can be positive or negative so that the line can be a
net source or sink of reactive power. The reactive power is generated in the line capacitance and
depends on the voltage which is normally kept close to the rated value. This relatively constant
reactive power generation is offset by the consumption in the line inductance. This consumption
varies as the square function of the line current (Q = I2 X) and strongly depends on the actual
loading of the line. To quantify this effect the reactive power loss 	Q = QS − QR can be calculated
from Equations (3.16) and (3.19) as

	Q = QS − QR = V2
S cos βl − 2VSVR cos δSR + V2

R cos βl
ZC sin βl

. (3.22)

Assuming VS ≈ VR ≈ Vn and eliminating cos δSR using Equation (3.12) gives

	Q(PR) ≈ 2PSIL

sin βl


cos βl −

√
1 −

(
PR sin βl

PSIL

)2

 . (3.23)

The characteristics produced by Equation (3.23) are shown in Figure 3.5 for transmission lines that
operate at different voltage levels. The reactive power loss is zero only when PR = PSIL. If PR < PSIL

then the line is a net source of reactive power and if PR > PSIL the situation is reversed and the line
is a net sink of reactive power.

The consequence of Figures 3.4 and 3.5 is profound. According to Figure 3.5, as the real power
increases, the reactive power loss in the line also increases. This loss must be supplied from the
sending end giving an increase in QS. Figure 3.4b then shows that for this to occur with VS constant
then VR must reduce. If the resulting reduction in VR is unacceptable then, according to Figure
3.4a, this can be compensated by reducing QR in some way, perhaps by the introduction of some
form of reactive power compensation, see Section 2.4.3.
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Figure 3.5 Examples of reactive power absorbed by a lossless line as a function of its real load for
various voltage ratings.

3.1.3 Underground Cables

From a mathematical point of view an underground cable can be modelled exactly the same way as
an overhead transmission line. The only difference is in the values of the characteristic parameters.
Because there are many methods of cable construction the parameters of these different cables can
also be quite different. In particular the shunt capacitance of the cable depends strongly on whether
the three-phase conductors are screened or constitute separate single-phase cables. Typically the
per-unit-length series reactance of a cable is about half that of a similarly rated overhead line. On
the other hand, the per-unit-length charging current is about 30 times more. This means that even
for a short cable run of several tens of kilometres the charging current in the cable constitutes a
substantial portion of its thermally admissible maximum current and severely limits its transmission
capacity. In the extreme case of a critically long cable the charging current would be equal to the
maximum current and there would be no capacity left for any power transmission. The charging
current barrier is the main obstacle for practical application of AC cables in power transmission
networks.

3.2 Transformers

The main types of transformers were discussed in Section 2.4.2. In this section the equivalent
circuit of the transformer will be derived together with a method for dealing with off-nominal
transformation ratio.

3.2.1 Equivalent Circuit

The equivalent circuit of a transformer is shown in Figure 3.6a. The main element of the circuit is
the ideal transformer with transformation ratio ϑ = N1/N2, where N1 and N2 are respectively the
number of turns on the primary and secondary winding. The resistances R1 and R2 account for
the I2R loss in the primary and secondary winding while the reactances X1 and X2 account for the
leakage flux, that is the flux component that does not link the two windings but only the primary or
the secondary winding. The sinusoidal changes in the supply voltage cause cyclic remagnetization of
the transformer core as determined by the hysteresis curve of the core steel. This results in the flow
of a magnetization current Iµ even at no load. Iµ is in phase with the flux and is therefore delayed
with respect to the induced emf E1 by π/2. This current is modelled by the shunt susceptance Bµ.
The cyclic changes of the core flux also dissipate a certain amount of energy in the form of heat in
the transformer core. This component of the core loss is referred to as the hysteresis loss. As the core
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Figure 3.6 Single-phase, two-winding transformer: (a) equivalent circuit; (b) equivalent circuit
with secondary referred to the primary.

itself is an electrical conductor, the flux changes induce emfs which result in the flow of circulating
eddy currents. These eddy currents produce a thermal energy loss called the eddy-current loss. The
sum of the eddy-current loss and the hysteresis loss is the core loss PFe. This energy loss in the core
is provided for by an additional current IFe flowing in the primary but this time in phase with the
induced emf. This is modelled by inserting a shunt conductance GFe in the equivalent circuit of
Figure 3.6a. At no load the primary-side current is equal to the phasor sum of the magnetization
current and the core loss current and is referred to as the excitation current IE. When the transformer
is loaded, the excitation current is superimposed on the load current.

The transformation ratio ϑ can be eliminated from the diagram if all the quantities in the
equivalent circuit are referred to either the primary or secondary side of the transformer. For
example, Figure 3.6b shows the case when all voltages, currents and impedances of the circuit of
Figure 3.6a are referred to the primary. To produce this model of the transformer, the secondary
voltage is multiplied by ϑ while the secondary current is divided by ϑ . Consequently the secondary
impedance must be multiplied by ϑ2.

The equivalent circuit shown is of the T type but it is often more convenient in network analysis
to deal with π -type circuits. If the shunt element in the transformer equivalent circuit cannot be
neglected then the circuit of Figure 3.6b can be transformed into the π form using the standard
star–delta transformation. However, the π circuit will not be symmetrical if the series impedances
of the primary and the secondary branches in Figure 3.6b are not equal. To avoid this, the following
approximations are usually made:

� the secondary series impedance referred to the primary (Z2 = R2ϑ
2 + jX2ϑ

2) is equal to the
primary series impedance (Z1 = R1 + jX1);

� the shunt impedance 1/(GFe + jBµ) is much greater than the total series impedance ZT = Z1 + Z2.

With these assumptions the parameters of the π -equivalent circuit, shown in Figure 3.7, are given
by

ZT = Z1 + Z2 = R + jX, YE = GFE + jBµ. (3.24)

The value of the parameters in the transformer equivalent circuit can be determined from the no-
load test and the short-circuit test. In both of these tests the supply voltage, current and real power
are measured. Table 3.2 shows some examples of test data.

On no load the secondary winding of the transformer is open-circuited and the primary supplied
with rated voltage V1 = Vn. In this condition the series winding impedance is small compared with
the shunt admittance and can be neglected so that the measured current and power correspond
entirely to the shunt branch and relate to the excitation current IE and iron loss PFe. Parameters of
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Table 3.2 Typical values of transformer parameters in pu on unit ratings

Sn (MVA) VSHC (pu) PCu (pu) IE, (pu) PFe (pu)

150 0.11 0.0031 0.003 0.001
240 0.15 0.0030 0.0025 0.0006
426 0.145 0.0029 0.002 0.0006
630 0.143 0.0028 0.004 0.0007

the shunt branch can then be computed, per unit to the unit rating, from

GFe = PFe(pu), YE = IE(pu), Bµ =
√

Y2
E − G2

Fe, (3.25)

where PFe(pu) and IE(pu) are also expressed in pu.
During the short-circuit test the secondary winding is short-circuited. The primary winding is

supplied with a voltage that is of sufficient magnitude to circulate a current in the short-circuited
secondary that is equal to the rated load current (I2 = In). This primary voltage is usually referred
to as the short-circuit voltage VSHC and is much smaller than the rated voltage VSHC � Vn. Small
primary voltage means that the excitation current IE is much smaller than I2 = In and can be
neglected. Hence, the parameters of the series branch, per unit to the unit rating, can be found from

ZT = VSHC(pu), RT = PCu(pu), XT =
√

Z2
T − R2

T, (3.26)

where VSHC(pu) and PCu(pu) are given in pu.
The equivalent circuit for a multi-winding transformer is formed in a similar way. For example, the

equivalent circuit of a three-winding transformer consists of three winding impedances connected
in star with the shunt admittances connected to the star point.

3.2.2 Off-Nominal Transformation Ratio

A power system usually operates at a number of voltage levels. The equivalent circuit shown in
Figure 3.7 is not very convenient as the secondary voltage must be referred to the primary, resulting
in the equivalent circuit including the transformer turns ratio. If the parameters of the equivalent
circuit are expressed in pu then, as explained in Section A.6, the transformation ratio ϑ must
be related to the nominal network voltages on both sides of the transformer. If the transformer
rated voltages are equal to the nominal network voltages then the pu nominal transformation ratio
is equal to unity, ϑ = 1, and may be neglected in the transformer equivalent circuit shown in
Figure 3.6a. However, the pu transformation ratio may not be unity for two reasons: (i) the rated
transformer voltages are slightly different to the nominal network voltages and (ii) the tap changer
adjusts the turns ratio away from the nominal setting thereby changing the transformation ratio.

A convenient way to account for the off-nominal turns ratio is to replace the actual turns ratio
by some fictitious reactive shunt elements in such a way that these elements change the voltage up

V 1
V 2

Y E

2

ZT

Y E

2
ϑ

Figure 3.7 The approximate, symmetrical, equivalent π -circuit of a two-winding transformer.
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Figure 3.8 Equivalent circuit of a two-winding transformer: (a) using the ideal transformer; (b)
using fictitious shunt elements.

or down, as required. As an example consider the transformer from Figure 3.6a with the shunt
branch neglected and the secondary series impedance referred to the primary, as shown in Figure
3.8a. The series impedance ZT has been replaced by its reciprocal YT in order to use nodal analysis.
The transformer turns ratio will be taken as a complex number since this allows the general case of
the phase shifting transformer to be considered.

For the ideal part of the transformer equivalent circuit shown in Figure 3.8a the apparent power
on both sides is the same and the current in the primary is equal to the secondary current divided by
the conjugate of the turns ratio, that is I2/ϑ

∗. The two-port network corresponding to the branch
with admittance YT can be described by the following nodal equation:[

I1

−I2/ϑ
∗

]
=

[
YT −YT

−YT YT

][
V1

ϑV2

]
. (3.27)

Eliminating the turns ratio ϑ from the voltage and current vectors gives[
I1

−I2

]
=

[
YT −ϑYT

−ϑ∗YT ϑ∗ϑYT

] [
V1
V2

]
. (3.28)

This equation can be interpreted as a nodal voltage equation I = YV describing a π -equivalent
network. The admittance of the series branch of this network is equal to the off-diagonal element
(with the sign inverted) in the nodal admittance matrix, that is

Y12 = ϑYT, Y21 = ϑ∗YT, (3.29)

while the admittances of the shunt branches are equal to the sum of elements in corresponding rows
of the nodal admittance matrix, that is

Y10 = (1 − ϑ)YT, Y20 = ϑ∗(1 − ϑ)YT. (3.30)

The equivalent network corresponding to this nodal admittance matrix is shown in Figure 3.8b.
It may not be symmetric because generally ϑ �= 1. In the case of a phase shifting transformer, the
transformer turns ratio ϑ is a complex number and the series branch of the equivalent network
is anisotropic, that is as Y12 �= Y21 it has a different impedance value depending on which side the
transformer is viewed from. The transformer ratio in the circuit diagram of Figure 3.8b is modelled
by the shunt elements. Flow of current in these elements causes a change in the voltages in the series
branch that corresponds to the voltage transformation in a real transformer.

If it is necessary to include the shunt branch corresponding to the exciting current then the
equivalent circuit must be modified slightly by the addition of two shunt admittances to the circuit
(as in Figure 3.7): shunt admittance YE/2 to the left hand side of the circuit and shunt admittance
ϑ2YE/2 to the right hand side.
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3.3 Synchronous Generators

Chapter 2 described how a synchronous generator consists of a stator, on which the three-phase
armature winding is normally wound, and a rotor, on which the DC field winding is wound.
The rotor damper windings do not affect steady-state operation of the generator and will not be
considered in this chapter. The rotor is on the same shaft as the prime mover and may have salient
or non-salient magnetic poles.

The steady-state performance of a synchronous machine with a non-salient round rotor will be
analysed first before generalizing the analysis to include the effects of rotor saliency. Of particular
importance in this analysis is the way the rotor magnetic field interacts with the stator magnetic
field to produce electromagnetic torque. An understanding of this interaction is more important
than the detailed equations themselves. Having established the mechanisms by which torque and
emf are created, the role of the generator in the power system as a source of both active and reactive
power will be analysed.

3.3.1 Round-Rotor Machines

The schematic diagram of a two-pole generator on no load is shown in Figure 3.9. For simplicity,
only the centre conductor of each of the distributed windings is shown. The beginning and end
of the field winding are denoted by f 1 and f 2, while the beginning and end of each of the phase
windings are denoted by a1 and a2 (phase A), b1 and b2 (phase B) and c1 and c2 (phase C). The stator
has three axes A, B and C, each corresponding to one of the phase windings. The rotor has two axes:
the direct axis (d-axis), which is the main magnetic axis of the field winding, and the quadrature
axis (q-axis), π/2 electrical radians behind the d-axis. The dashed lines show the path taken by the
rotating field (or excitation) flux, �f, produced by the field winding, and the field leakage flux, �fl .�Ff shows the direction (or the peak value) of the magnetomotive force (mmf) wave produced by the
field current. The angle γ = ωmt, where ωm is the rotor angular velocity, defines the instantaneous
position of the rotor d-axis with respect to the stationary reference assumed here to be along the
A-axis.

For a two-pole machine one complete mechanical revolution corresponds to one electrical cycle
and one electrical radian is equal to one mechanical radian. However, if the generator has p
poles then one mechanical revolution corresponds to p/2 electrical cycles. In this general case one
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Figure 3.9 Symbolic representation of the generator and its fluxes at no load.
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mechanical radian is equal to p/2 electrical radians and

γe = p
2

γm, (3.31)

where γ m is the angle γ expressed in mechanical radians (or degrees) and γ e is the same angle
expressed in electrical radians (or degrees). Similarly the rotor speed ωe expressed in electrical
radians per second can be related to the rotor speed in mechanical radians per second ωm by

ωe = 2π f = p
2

ωm, (3.32)

where f is the system nominal frequency (50 Hz in Europe, 60 Hz in the United States). Often the
rotor speed is expressed in revolutions per minute (rpm) when the relation between the rotor speed
n and the system frequency is n = 120 f /p.

For simplicity the generator equations will be developed by reference to the two-pole machine
shown in Figure 3.9 when both the speed and the angle are the same in electrical and mechanical
units and the subscripts ‘e’ and ‘m’ can be dropped. The generator will be analysed using only the
fundamental component of the stator and rotor spatial mmf waves. Although the equations will
be developed for a two-pole generator, they are equally applicable to a p-pole machine when all
angles and speeds are expressed in electrical units. All the equations are valid whether expressed
in SI or per-unit notation. If SI units are used it must be remembered that any power expression
refers to the power per phase. In per-unit notation they can be interpreted as generator power
(see Appendix A.1).

3.3.1.1 The Generator on No Load

To begin the analysis assume that the generator is on no load, that is it is not generating any power
and the current in the armature is zero. The DC field current if produces an mmf wave which is
approximately sinusoidally distributed around the circumference of the stator. The peak value of
the mmf

Ff = Nf if (3.33)

lies along the d-axis and is shown in Figure 3.9 by the vector �Ff . In this equation Nf is the effective
number of field winding turns per pole and is smaller than the actual number of turns NF in order to
account for the winding geometry and the actual trapezoidal mmf distribution of the field winding.
It can be shown (McPherson and Laramore, 1990) that Nf = (1/p) (4/π ) NFkwF where the winding
geometry is accounted for by the winding factor kwF and the mmf distribution by the factor 4/π .

The field winding mmf drives the excitation (or field) flux �f around the magnetic circuit. The
flux per pole is

�f = Ff

	 = Nf if

	 , (3.34)

where 	 is the reluctance of the path per pole. As the reluctance of the path in iron is negligibly
small compared with that in air, 	 is approximately directly proportional to the width of the
air gap.

The flux density produced by the field mmf is sinusoidally distributed around the circumference
of the stator and, for a round-rotor machine, its peak coincides with the peak of the mmf wave.
As the rotor rotates at synchronous speed, the excitation flux rotates with it and produces a time-
varying flux linkage with each phase of the armature winding. Each of the phase flux linkages � fA,
� fB and � fC reaches a maximum when the d-axis of the rotor aligns with the magnetic axis of the
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respective phase winding. Taking phase A as the reference gives

�fA(t) = �fa cos ωt = Nφ�f cos ωt = Nφ

Nf if

	 cos ωt = Mf if cos ωt

(3.35)
�fB(t) = Mf if cos

(
ωt − 2π

3

)
, �fC(t) = Mf if cos

(
ωt − 4π

3

)
.

In these equations �fa = Nφ�f is the amplitude of the excitation flux linkage of an armature phase
winding, Mf = Nφ Nf/	 is the mutual inductance between the field and the armature winding, and
Nφ = kw N where N is the number of turns in series in each phase winding and kw is the armature
winding factor.

The time-varying flux linkages induce an excitation emf (also called the internal voltage) in each
of the phase windings. Faraday’s law gives

efA = −d�fA(t)
dt

= ωMf if sin ωt, efB = −d�fB(t)
dt

= ωMf if sin
(

ωt − 2π

3

)
(3.36)

efC = −d�fC(t)
dt

= ωMf if sin
(

ωt − 4π

3

)
.

In the absence of any armature current these emfs appear at the generator terminals as the no-load
terminal voltage. Figure 3.10a shows the time variation of the phase flux linkages and the reference
emf efA as a function of γ = ωt while the phasor representation of the flux linkages � fA, � fB and � fC

and the emfs EfA, EfB and EfC induced by them are shown in Figure 3.10b. The root-mean-square
(rms) value of each of these emfs (or the length of the phasors EfA, EfB, EfC) is

Ef = 1√
2
ω�fa = 1√

2
ωNφ�f = 1√

2
ωMf if

∼= 4.44 f Mf if . (3.37)

This equation is the well-known transformer equation and illustrates how the primary (field) winding
current induces an emf in the secondary (armature) winding. The emf is proportional to both the
frequency and the field current if. The mutual inductance Mf is in practice not constant but depends
on the saturation of the magnetic circuit.
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Figure 3.10 The phase excitation flux linkages and the emfs induced by them shown as: (a) time-
varying waveforms; (b) rotating phasors.
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3.3.1.2 Armature Reaction and the Air-Gap Flux

Now consider the effect of loading the generator when an armature current flows in each phase of
the stator winding. As the three phase windings are magnetically coupled, Chapter 11 will show
how the equivalent circuit can be developed by considering their self- and mutual inductances. In
this chapter another, simpler, approach will be followed when the combined magnetic effect of all
three phase windings is considered. This is referred to as the armature reaction.

Generally the stator phase currents will be delayed by an angle λ with respect to the reference
flux linkages �fA(t) and may be written as

iA = Im cos (ωt − λ) , iB = Im cos
(

ωt − λ − 2π

3

)
, iC = Im cos

(
ωt − λ − 4π

3

)
, (3.38)

where Im is the maximum (peak) value of the armature current. Each of the phase currents produces
a pulsating phase mmf per pole:

FA (t) = Na Im cos (ωt − λ) , FB (t) = Na Im cos
(

ωt − λ − 2π

3

)
,

(3.39)
FC (t) = Na Im cos

(
ωt − λ − 4π

3

)
,

where Na = (1/p) (4/π ) Nφ is the effective number of turns per phase per pole and, as before,
Nφ = kw N.

Because the magnetic axes of the phase windings are shifted in space from each other by 2π/3
electrical radians, the phase mmfs are shifted in both space and time. A convenient way to account
for the shift in space is to represent the mmfs as space vectors directed along their respective phase
axes with instantaneous values given by Equations (3.39). A space vector will be denoted by an
arrow on top of the symbol. The vector of the resultant armature reaction mmf �Fa can then be
obtained by adding the component phase vectors.

A neat way to analyse the space position of the phase mmfs is to introduce a complex plane which
has its real axis directed along the A-axis and its imaginary axis π/2 ahead (counterclockwise). The
space operator ejθ then introduces a phase shift in the complex plane which, when multiplied by the
value of the phase mmf, will direct it in space along the magnetic axes of the winding. Axis B is at an
angle 2π/3 with respect to A, while axis C is at an angle 4π/3. The value of FB must be multiplied
by ej2π/3 to obtain a vector directed along the B-axis, while the value of FC must be multiplied by
ej4π/3 to obtain a vector directed along the C-axis. The vector of the resulting armature mmf per
pole �Fa is then

�Fa = �FA + �FB + �FC = NaiAej0 + NaiBej2π/3 + NaiCej4π/3

(3.40)
= Na Im

[
cos (ωt − λ) + cos

(
ωt − λ − 2π

3

)
ej2π/3 + cos

(
ωt − λ − 4π

3

)
ej4π/3

]
.

Using the identity

cos (α − β) = cos α cos β + sin α sin β (3.41)

gives

�Fa = Na Im {cos (ωt − λ) + [−0.5 cos (ωt − λ) + 0.866 sin (ωt − β)] (−0.5 + j0.866)

+ [−0.5 cos (ωt − λ) − 0.866 sin (ωt − λ)] (−0.5 − j0.866)}
(3.42)= Na Im [1.5 cos (ωt − λ) + 1.5 j sin (ωt − λ)] = 1.5Na Imej(ωt−λ).
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Figure 3.11 Resultant flux in the round-rotor generator operating at lagging power factor.

This equation shows that �Fa is a vector of constant magnitude Fa = 1.5Na Im which rotates in the
complex plane with an angular velocity ω. As this is also the rotational speed of the generator, the
rotor and stator mmfs are stationary with respect to each other. To find the relative spatial position
of the mmfs, recall that the angle λ was defined as a time delay with respect to the linkages �fA(t).
As �Ff is in phase with �fA(t) (i.e. �fA reaches the maximum when �Ff aligns with A-axis), Equation
(3.42) shows that �Fa must lag �Ff by the spatial angle λ.

As the two rotating mmfs �Fa and �Ff are stationary with respect to each other, they can be
combined to give a resultant mmf �Fr = �Ff + �Fa which drives the resultant air-gap flux �r. This is
shown in Figure 3.11. It is important to realize that the magnetic circuit does not ‘see’ �Fa or �Ff

alone but �Fr = �Ff + �Fa. The peak flux density in the air gap of a round-rotor generator coincides
with the peak of �Fr and it is in the same direction. Figure 3.11 shows the typical relative position
of the mmfs with π/2 < λ < π . It can be seen that the armature reaction field demagnetizes the
generator and the resultant mmf is smaller than the excitation mmf alone.

As the resultant mmf is the sum of two rotating, sinusoidally distributed mmfs, both the resultant
mmf per pole and the density of the air-gap flux driven by it are sinusoidally distributed around
the air gap. In practice, magnetic saturation will cause a slight flattening of the flux density wave
which results in third-harmonic voltages being induced in the armature winding. Connecting the
generator windings in 	 or Y with the star point not earthed prevents the third-harmonic currents
appearing at the generator terminals.

3.3.1.3 Equivalent Circuit and the Phasor Diagram

The rotating air-gap flux produces sinusoidally changing flux linkages with each of the stator phase
windings. The linkages with phase A, F rA, can be calculated by projecting the component rotor and
stator mmf waves onto the A-axis in order to obtain the resultant mmf along this axis. Recall that
F f is assumed to align with the A-axis at t = 0 and that Fa is delayed with respect to F f by λ. This
gives

FrA(t) = Ff cos ωt + Fa cos(ωt − λ) = Nf if cos ωt + 1.5Na Im cos(ωt − λ). (3.43)
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This resultant mmf must be divided by the reluctance, 	, and multiplied by the number of armature
turns Nφ to obtain the resultant flux linkages with phase A:

�rA(t) = Nφ

FrA(t)
	 = Mf if cos ωt + La Im cos(ωt − λ), (3.44)

where Mf = Nφ Nf/	 is the mutual inductance between the field and the armature winding and
La = 1.5Na Nφ/	 is the armature reaction inductance or magnetizing inductance. In the round-rotor
machines with a uniform air gap the reluctance 	 does not depend on the flux position.

The linkages �rA(t) induce the air-gap emf in phase A equal to

erA = −d�rA

dt
= ωMf if sin ωt + ωLa Im sin(ωt − λ) = efA(t) + eaA(t), (3.45)

where efA(t) = ωMf if sin ωt and eaA(t) = ωLa Im sin(ωt − λ). Equation (3.45) shows that the trick
in modelling the synchronous generator is to represent the resultant air-gap emf by a sum of two
fictitious emfs. The first is the excitation (or internal ) emf efA(t) due to the rotor field and is equal to
the no-load terminal voltage, Equation (3.36). The second is the armature reaction emf eaA(t) due
to the armature reaction field, which lags the A-phase current by π/2 (compare Equation (3.45)
with Equation (3.38)). Using phasor notation this corresponds to multiplying the current phasor
by −j so that the armature reaction emf phasor is Ea = −jXa I where Xa = ωLa is the armature
reaction reactance or magnetising reactance and I is the current phasor of magnitude I = Im/

√
2.

The phasor of the air-gap emf can therefore be expressed as

Er = Ef + Ea = Ef − jXa I, (3.46)

where Ef is the phasor of the internal emf with magnitude Ef given by Equation (3.37). Thus
−Ea = jXa I has the properties of a reactance drop resulting from the effect of the armature
current. When −Ea is replaced by the reactance voltage drop jXa I, the circuit model becomes that
to the left of the phasor Er in Figure 3.12.

Figure 3.12a shows how the full equivalent circuit can be obtained by accounting for electrical
and magnetic imperfections of the machine. Firstly, each armature winding has some resistance
R which produces the voltage drop RI. In the case of the synchronous generator this armature
resistance is very small and can often be neglected. Secondly, although most of the magnetic flux
produced by the armature crosses the air gap to link with the rotor winding, a part of it, called the
leakage flux, does not. This pulsating leakage flux is shown as �l in Figure 3.11 and only links with
the armature winding. The leakage flux can be accounted for by inserting a leakage reactance Xl

into the circuit. As the leakage flux closes its path largely through air, Xl � Xa.

if
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Figure 3.12 Round-rotor synchronous generator: (a) equivalent circuit diagram; (b) phasor/vector
diagram for operation at lagging power factor.



P1: OTA/XYZ P2: ABC
c03 JWBK257/Machowski September 22, 2008 21:31 Printer Name: Yet to Come

82 Power System Dynamics

Figure 3.12a shows the total equivalent circuit of the round-rotor synchronous machine with all
the imperfections included. The terminal voltage Vg is

Vg = Ef − jXa I − jXl I − RI = Ef − jXd I − RI, (3.47)

where Xd = Xa + Xl is the synchronous reactance, or more precisely the direct-axis synchronous
reactance. As Ll � La, Xl � Xa and to all practical purposes Xd ≈ Xa. The internal emf Ef is
sometimes referred to as the voltage behind the synchronous reactance. The phasor diagram resulting
from Equation (3.47) is shown in Figure 3.12b for a generator operating at lagging power factor.

The phasor diagram is normally constructed knowing only the generator voltage V g and its
per-phase active and reactive load powers P and Q. From these the current and the power factor
angle are calculated:

I =
√

P2 + Q2

Vg
, ϕg = arctan

Q
P

. (3.48)

Knowing the length and the direction of the current phasor relative to the reference voltage
V g, the length and direction of the voltage drops I R, jI Xl and jI Xa can be found and the phasor
diagram constructed.

Apart from the usual voltage and current phasors, Figure 3.12b also shows the space vectors of
the mmfs and the position of the d- and q-axes. Combining both space vectors and phasors on the
same diagram is very useful and is accomplished by drawing the voltage (and current) phasors and
the mmf vectors on the same complex plane at t = 0, taking phase A as the reference.

To find the relative displacement between the phasors and the vectors on the diagram, consider
the relative position of the armature current I and the armature mmf �Fa. At t = 0 the space angle
of �Fa is (−λ) with respect to the A-axis, Equation (3.42). At the same time the phase angle of the
A-axis current is also (−λ), Equation (3.38), indicating that the current phasor I and the mmf
vector �Fa are in phase on the phasor/vector diagram. As Ea = −jXa I, it follows that Ea lags �Fa by
π/2. A similar argument shows that all the emfs must lag their mmfs by π/2.

The phasor diagram of Figure 3.12b provides additional insight into the meaning of all the angles
on it. As all the emfs are perpendicular to their mmfs, the mmf triangle (F f, Fa, F r) is similar to
the voltage triangle (Ef, Ea, Er) and all the angles shown in Figure 3.12 have a dual meaning: they
are, at the same time, the spatial angles between the rotating mmfs and the phase shifts between the
AC voltages. For example, the angle δfr, which is the space angle between the field and the resultant
air-gap mmf, is at the same time the phase shift between Ef and Er.

3.3.1.4 The Torque Creation Mechanism

The rotor of the synchronous generator is driven by a prime mover which exerts a mechanical
torque τm on it. For the speed of the rotor to remain constant, the machine must develop an equal,
but opposing, electromagnetic torque τ e. Resolution of the air-gap mmf into the stator and rotor
component mmfs provides a means of understanding how the electromagnetic torque is developed.
The component stator and rotor mmfs can be compared with two magnets rotating at the same
speed and trying to co-align, with the north magnetic pole of one attracting the south pole of the
other and vice versa. The torque produced by these attractive forces can be calculated from the
three-phase air-gap power Pag, which in its electrical form is equal to

Pag = 3Ef I cos β, (3.49)

where β is the angle between Ef and I and is referred to as the internal power factor angle (see Figure
3.12b). Neglecting mechanical losses, Pag must be equal to the mechanical power τmωm supplied
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by the prime mover so that for a p-pole machine

τ = 1
ωm

Pag = p
2

1
ω

Pag. (3.50)

Substituting for Ef from Equation (3.37) and noting that I = Im/
√

2 gives

τ = 3
4

p�f Nφ Im cos β. (3.51)

This equation can be written in terms of the angle λ and the armature mmf Fa by noting that

Na = 1
p

4
π

Nφ

when, from Equation (3.42),

Fa = 3
2

Na Im = 3
2

(
1
p

4
π

Nφ

)
Im. (3.52)

Figure 3.12b shows that λ = π/2 + β so that sin λ = cos β and

τ = π

8
p2�f Fa sin λ = π

8
p2 Ff Fa

	 sin λ, (3.53)

where λ is the angle between F f and Fa. Inspection of Figure 3.12b shows that Fa sin λ = Fr sin δfr

and Equation (3.53) can be rewritten as

τ = π

8
p2 Fr

Ff

	 sin δfr = π

8
p2 Fr�f sin δfr, (3.54)

where the angle δfr is referred to as the torque angle. For a two-pole machine this equation simplifies
to

τ = π

2
Fr�f sin δfr. (3.55)

If the rotor field leads the air-gap field, as in Figure 3.11, then the electromagnetic torque acts in the
opposite direction to the rotation and opposes the mechanical driving torque so the machine acts
as a generator. On the other hand, if the rotor field lags the air-gap field, then the electromagnetic
torque acts in the direction of rotation and the machine acts as a motor.

3.3.2 Salient-Pole Machines

Because of the relative ease of balancing round rotors, and their ability to withstand high centrifugal
forces, round-rotor generators are normally used for turbo units driven by high-speed steam or gas
turbines. Generators operating at a lower speed, such as those driven by hydro turbines, need many
magnetic poles in order to operate at 50 or 60 Hz. As the centrifugal forces experienced by the rotors
of these low-speed machines are lower than in the corresponding turbogenerators, salient poles can
be used and the rotor diameter increased. Normally salient-pole rotors have more than two poles
and the angles (and speed) expressed in mechanical units are related to those expressed in electrical
units by Equations (3.31) and (3.32). To simplify considerations a two-pole salient generator will
be considered here so that the angles expressed in electrical and mechanical radians are the same.
The simplified cross-section of such a generator is shown in Figure 3.13.

The main problem with modelling a salient-pole machine is that the width of the air gap varies
circumferentially around the generator with the narrowest gap being along the d-axis and the widest
along the q-axis. Consequently the reluctance of the air-gap flux is not uniform but varies between
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Figure 3.13 A simplified salient-pole generator.

its minimum value 	d and its maximum value 	q as shown by the approximated function in Figure
3.14. This creates a problem as one of the fundamental assumptions for modelling the uniform-gap,
round-rotor generator was that the peak density of the flux wave coincides with the peak density
of the mmf wave or, in other words, the mmf and the flux vectors are in phase. It is important to
realize that this assumption is no longer valid for salient-rotor machines. As flux tends to take the
path of least reluctance, the flux vector is shifted towards the d-axis (where reluctance is least) when
compared with the mmf vector. The only instance when the two vectors are in phase is when the
mmf vector lies along either the d-axis (which is the position of minimum reluctance) or the q-axis
(when the attractive forces that tend to shift the flux towards the d-axis balance each other). At
any other position the flux and mmf are out of phase and the simple analysis used for the round-
rotor machine is no longer valid. To overcome this problem, A. Blondel developed his two-reaction
theory which resolves the mmfs acting in the machine along the d- and q-axes. The emfs due to
these component mmfs are then considered separately, assigning different, but constant, values of
reactances to the fluxes acting along these axes.

This concept is illustrated in Figure 3.15. The armature mmf �Fa and the armature current I are
resolved into two components, one acting along the d-axis ( �Fad, Id) and the other acting along the
q-axis ( �Faq, Iq). There is no need to resolve the excitation mmf �Ff as this always acts only along the

d-axis. The resultant mmf �Fr may then be expressed as

�Fr = �Fd + �Fq, (3.56)

where �Fd = �Ff + �Fad and �Fq = �Faq. Similarly the current I may be expressed as

I = Id + Iq. (3.57)

Similarly, as for the round-rotor generator, the resultant air-gap emf is equal to the sum of the
component emfs, each of which is due to a corresponding mmf. In this case the resultant emf is
assumed to be equal to the sum of three components due to �Ff , �Fad and �Faq respectively. Because
the excitation mmf �Ff always acts along the d-axis, the internal emf Ef due to �Ff depends only on

q qd d

rotor
circumferential
position

ℜ

ℜq
ℜd

Figure 3.14 Approximate variation of reluctance with circumferential position.
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Figure 3.15 Resolution of the mmfs and the current into d- and q-components.

the d-axis reluctance 	d and is constant for a given value of field current. As the emfs lag their
mmfs by π/2, Ef is directed along the q-axis.

The emf due to the d-axis armature mmf �Fad is proportional to Id and delayed by π/2 with
respect to it. This emf is therefore directed along the q-axis and may be expressed as

Eaq = −jXad Id (3.58)

where Xad is the direct-axis armature reaction reactance. As �Fad acts across the shortest gap, Xad is
inversely proportional to 	d.

The emf due to the q-axis armature mmf �Faq is proportional to Iq and delayed by π/2. This emf
is therefore directed along the d-axis and may be expressed as

Ead = −jXaq Iq, (3.59)

where Xaq is the quadrature-axis armature reaction reactance. As �Faq acts across the widest gap, Xaq

is inversely proportional to 	q. The resultant air-gap emf is then

Er = Ef + Eaq + Ead = Ef − jXad Id − jXaq Iq. (3.60)

The terminal voltage Vg is obtained by subtracting from this emf the voltage drops due to the
armature leakage reactance and resistance to give

Vg = Er − jXl I − RI = Ef − jXad Id − jXaq Iq − jXl (Id + Iq) − RI

(3.61)= Ef − j(Xad + Xl )Id − j(Xaq + Xl )Iq − RI,

or

Ef = Vg + jXd Id + jXq Iq + RI, (3.62)

where Xd = Xad + Xl is the direct-axis synchronous reactance and Xq = Xaq + Xl is the quadrature-
axis synchronous reactance. As the reluctance along the q-axis is the highest (because the gap is the
widest), Xd > Xq.
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Figure 3.16 Phasor diagram for a salient-pole generator.

3.3.2.1 Phasor Diagram and the Equivalent Circuit

Figure 3.16 shows the phasor diagram resulting from Equation (3.62). Its construction is more
complicated than that for the round-rotor generator shown in Figure 3.12. In order to determine
Id and Iq, it is necessary first to determine the angle δg so as to locate the q-axis relative to Vg. To
solve this problem, recall that the emf Ef lies along the q-axis. Rearranging Equation (3.62) gives

Ef = Vg + RI + jXq I + j(Xd − Xq)Id = EQ + j(Xd − Xq)Id, (3.63)

where

EQ = Vg + (R + jXq)I. (3.64)

Because multiplication of Id by j shifts the resultant phasor π/2 ahead, the second term in Equation
(3.63), equal to j(Xd − Xq)Id, is directed along the q-axis. As Ef itself lies on the q-axis, EQ must
also lie on the q-axis. Knowing Vg and I, the phasor (R+jXq)I can be added to Vg to obtain EQ.
This determines the direction of the q-axis and the angle δg. Once the location of the q-axis is
known, I can be resolved into its components Id and Iq and the phasor diagram completed. For
the round-rotor generator, Xd = Xq and EQ becomes equal to Ef (and Eq).

Resolving Equation (3.62) into its d- and q-components allows the generator equivalent circuit
to be constructed. As multiplication of a phasor by j gives a phasor shifted π/2 counterclockwise,
the phasor ( jXq Iq) is directed along the d-axis. Similarly the phasor (jXd Id) is π/2 ahead of the
d-axis; that is, it is directed in the opposite direction to the q-axis so that its q-axis component is
negative.1 Consequently, the d- and q-components of Equation (3.62) are

d-axis: Ed = Vd + RId + Xq Iq = 0

(3.65)
q-axis: Eq = Vq + RIq − Xd Id = Ef .

These equations can be written in matrix form as[
Ed

Eq

]
=

[
0
Ef

]
=

[
Vgd

Vgq

]
+

[
R +Xq

−Xd R

] [
Id

Iq

]
. (3.66)

1 Figure 3.16 shows the phasor of (jXd Id) to be along the q-axis. This is because Id is negative.
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Figure 3.17 Equivalent d- and q-axis circuit diagrams of the salient-pole generator.

It is important to realize that all the variables in each of these equations are in phase with each
other and are real (not complex) numbers. The d- and q-components of the terminal voltage and
current are

Vd = −Vg sin δg, Vq = Vg cos δg

(3.67)Id = −I sin β, Iq = I cos β

and β = δg + ϕg. The minus sign in the d-components of the voltage and the current indicates
the fact that they are directed in the opposite direction to the d-axis. The equivalent circuit for
the salient-pole generator can now be drawn in two parts, one corresponding to the d-axis and the
other to the q-axis, as shown in Figure 3.17. As all the variables in each of the Equations (3.65) are
in phase, the reactances Xd and Xq are shown using the symbol of resistance, rather than reactance,
to give a voltage drop that is in phase with the current.

A slightly misleading feature of the equivalent circuit shown in Figure 3.17 is that the d-axis
current flows into, rather than out of, the generator. This is a consequence of assuming that the
d-axis leads the q-axis. As δg is assumed to be positive for generator action, this assumption gives
negative values for the d-components of the terminal voltage and current, see Equation (3.67). The
selection of the d-axis leading the q-axis is purely arbitrary and is recommended by IEEE (1969)
on the grounds that the d-axis current usually causes demagnetization of the machine and should
be negative in the generator reference frame. Many authors, however, assume the d-axis to lag the
q-axis, which removes the minus sign from Equation (3.67) and changes the sign of the reactive
terms in Equations (3.65).

3.3.2.2 The d- and q-axis Armature Coils

As will be seen in later chapters, it is often helpful to consider the effect of the three-phase armature
winding to be produced by two equivalent windings phase displaced by 90◦. If one of these equivalent
armature coils is located along the d-axis and the other along the q-axis then the equivalent circuit
of Figure 3.17 can be seen to take on a more direct physical meaning. These two equivalent armature
coils are known as the d- and q- axis armature coils and are assumed to have the same number
of turns as an actual armature phase winding.2 To account for the DC nature of the equations
in (3.65) these two equivalent armature coils are also assumed to rotate with the generator rotor,
with the voltages Eq = Ef and Ed being injected into the respective armature coil. As Ef and Ed

are proportional to the rotational speed ω, these voltages are known as rotational voltages. This
concept of d- and q-axis armature coils will be examined in detail in Chapter 11.

2 This assumption is not strictly necessary but is the assumption made in this book. A fuller explanation of
this is given in Chapter 11.
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3.3.2.3 Torque in the Salient-Pole Machine

The mechanism by which electromagnetic torque is produced was explained earlier with regard to
the round-rotor generator when it was shown that torque was proportional to the product of the
stator mmf and rotor flux and the sine of the angle between them, Equation (3.53). In the case of
the salient-pole generator a similar torque creation mechanism applies but now the d- and q-axis
components of the mmf must be considered. Resolution of the armature mmf gives

Fad = Fa cos λ; Faq = Fa sin λ. (3.68)

As the angle between �f and Faq is π/2, application of Equation (3.53) leads to the electromagnetic
torque in a two-pole generator being equal to

τq = π

2
�f Faq. (3.69)

This equation represents only part of the tangential force on the armature as there will be other
forces due to the interaction of other components of the d-axis flux with the q-axis mmf. The effect
of these other d-axis flux components is included by algebraically adding all the d-axis fluxes before
multiplying by the q-axis mmf. In the steady state the only other flux along the d-axis is the flux
produced by the d-axis mmf itself so that the torque expression becomes

τq = π

2
(�f + �ad)Faq, (3.70)

where �ad = Fad/	d. There will also be a similar interaction between any q-axis flux and the d-axis
mmf that will produce an additional torque component

τd = π

2
(�aq)Fad, (3.71)

where �aq = Faq/	q. As Fad is produced by the d-axis current which flows into, rather than out of,
the generator (see Figure 3.17) the torque τ d acts in the opposite direction to τ q. The total torque
is equal to the difference between the two components giving

τ = τq − τd = π

2
(�f + �ad)Faq − π

2
(�aq)Fad. (3.72)

Regrouping the terms and substituting �ad = Fad/	d, �aq = Faq/	q, Faq = Fa sin λ = Fr sin δfr and
Fad = Fa cos λ = Fr cos δfr finally gives

τ = π

2
�f Fr sin δfr + π

4
F2

r

	q − 	d

	q	d
sin 2δfr. (3.73)

This equation shows that the torque developed in a salient-pole generator consists of two compo-
nents. The first component, proportional to sin δfr, is identical to the torque expressed by Equation
(3.55) for a round-rotor generator and is termed the synchronous torque. The second component,
termed the reluctance torque, arises as the rotor tries to assume a position of minimum magnetic
reluctance by moving towards the air-gap mmf. This additional torque is due to the non-uniform
air gap and is a direct consequence of the air-gap mmf and flux not being in phase. The reluctance
torque is present even without any field excitation and is proportional to sin 2δfr. It vanishes for
both δfr = 0 and δfr = π/2. In both these positions the air-gap mmf and flux are in phase and the
tangential forces acting on both poles balance each other. In the round-rotor generator, 	d = 	q

and the torque expression reverts to that given in Equation (3.55).
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3.3.3 Synchronous Generator as a Power Source

The synchronous generator is connected to the high-voltage transmission network via a step-up
transformer (Figure 2.2) and together they form a generator–transformer unit. From the power
system point of view, the unit is a source of real and reactive power. This subsection contains a
description of the mathematical model of the unit together with its main characteristics.

3.3.3.1 Equivalent Circuit of the Generator–Transformer Unit

The equivalent steady-state circuit diagram and phasor diagram of a unit consisting of a round-
rotor generator and a step-up transformer is shown in Figure 3.18. The transformer is modelled
using the impedance RT + jXT. The phasor diagram of the generator alone is the same as that
shown in Figure 3.12 but with a voltage drop on the transformer impedance added to the volt-
age Vg in order to get the terminal voltage V. The following equation can be formed similar
to (3.47):

V = Ef − jXd I − RI − jXT I − RT I = Ef − j (Xd + XT) I − (R + RT) I, (3.74)

or simply

V = Ef − jxd I − r I, (3.75)

where xd = Xd + XT is the generator reactance increased by the transformer reactance and r =
R + RT is the generator resistor increased by the transformer resistor.

In the case of a salient-pole generator, the block diagram for the generator–transformer unit is
similar to that for the generator alone (Figure 3.16) but, similar to Figure 3.18, it is necessary to
subtract a voltage drop on the transformer impedance from the generator voltage Vg in order to

(b) q

d

j dX I

j TX I

E Ef q=

V g

V

I

RI

R
T I

δgt

δg

ϕ
ϕ

g

β

λ

(a)
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RI R IT
j dX I j TX I

XT RT

E Ef q= V g V

I

Figure 3.18 Equivalent steady-state circuit diagram and phasor diagram of the round-rotor gen-
erator with a step-up transformer.
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get the voltage V on the transformer terminals. For the salient-pole generator, an equation similar
to (3.63) can be derived:

Vg = Ef − jXd Id − jXq Iq − RI − XT I − RT I

(3.76)= Ef − jXd Id − jXq Iq − RI − XT
(
Id + Iq

) − RT I.

Or in the compact form

Vg = Ef − jxd Id − jxq Iq − r I, (3.77)

where xd = Xd + XT, xq = Xq + XT and r = R + RT. Hence, as in (3.66),

Eq = Vq + r Iq − xd Id = Ef , (78a)

Ed = Vd + r Id + xq Iq = 0, (78b)

where

Id = −I sin β and Iq = I cos β, (79a)

Vd = −V sin δgt and Vq = V cos δgt, (79b)

where δgt is the angle of the generator emf with respect to the voltage at the terminals of the
generator–transformer unit.

Similar to (3.66), Equations (3.78) may be written in matrix form as[
Ed

Eq

]
=

[
Vd

Vq

]
+

[
r +xq

−xd r

] [
Id

Iq

]
=

[
0
Ef

]
. (3.80)

In the rest of the book, the total reactances and resistances of the generator–transformer unit
will be denoted by lower case letters. It should be remembered that the phase angle between the
voltage and the current is different for the generator terminal voltage Vg and the high-voltage side
of the transformer V. Consequently powers measured on both sides of the transformer differ by
the value of power losses on the transformer.

3.3.3.2 Real and Reactive Power of the Generator–Transformer Unit

From the power system point of view, the values of interest are the voltage and powers on the high-
voltage side of the generator–transformer. Single-phase power measured on the generator terminals
can be calculated from the general expression P = VI cos ϕ. Figure 3.18 shows that ϕ = β − δgt.
Hence

P = VI cos ϕ = VI cos(β − δgt) = VI sin β sin δgt + VI cos β cos δgt. (3.81)

Substituting into Equations (3.79) gives

P = Vd Id + Vq Iq. (3.82)

The current components Id and Iq can be calculated by solving Equations (3.78):

Id = 1
z2

[
r (Ed − Vd) − xq

(
Eq − Vq

)]
, Iq = 1

z2

[
r
(
Eq − Vq

) + xd (Ed − Vd)
]
, (3.83)

where z2 = r 2 + xdxq.
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Equations (3.83) can also be written in matrix form. Solving the matrix equation (3.80) yields[
Id

Iq

]
= 1

z2

[
r −xq

+xd r

] [
Ed − Vd

Eq − Vq

]
. (3.84)

Taking into account that in the steady state Ed = 0, and substituting (3.83) into (3.82), gives

P = 1
z2

[−r
(
V2

q + V2
d

) − (
xd − xq

)
VdVq + Eq

(
r Vq − xqVd

)]
. (3.85)

Substituting (3.79b) into (3.83) yields

P = EqV
z

xq

z
sin δgt + 1

2
V2

z
xd − xq

z
sin 2δgt + EqV

z
r
z

cos δgt − V 2

z
r
z
. (3.86)

The resistance of the stator and transformer windings is quite small, so for approximate calculations
the last two components may be neglected. Assuming r ∼= 0 and z2 ∼= xdxq, the above equation
simplifies to

P = EqV
xd

sin δgt + V2

2
xd − xq

xdxq
sin 2δgt. (3.87)

The first component is dominant and depends on the sine of the angle δgt between the voltage
and the generator emf. The second component, referred to as the reluctance power, exists only
in salient-pole generators (xd > xq). For round-rotor generators (xd = xq), the reluctance power
vanishes and the above equation further simplifies to

P = EqV
xd

sin δgt. (3.88)

Equations for the reactive power can be derived in a similar way. The expression ϕ = β − δgt is
substituted into the general equation Q = VI sin ϕ. Taking into account Equations (3.79) gives

Q = −Vq Id + Vd Iq. (3.89)

Using Equations (3.83) and (3.79b) gives

Q = EqV
z

xq

z
cos δgt − V 2

z
xd sin2 δgt + xq cos2 δgt

z
− EqV

z
r
z

sin δgt. (3.90)

For the round-rotor generators and when neglecting the resistance (r = 0), the above equation
simplifies to

Q = EqV
xd

cos δgt − V2

xd
. (3.91)

All the equations in this chapter are valid for per-unit calculations. If phase voltages are used in
Equations (3.88) and (3.91) then the resulting real and reactive powers are per-phase. If line voltages
(
√

3 higher than the phase voltages) are used in (3.88) and (3.91) then the resulting real and reactive
powers are totals for all three phases.

3.3.4 Reactive Power Capability Curve of a Round-Rotor Generator

The synchronous generator is a source of real and reactive power which can be conveniently
regulated over a wide range of values. This can be shown using the equations derived above for real
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and reactive power. Equations (3.88) and (3.91) show that, assuming a given value of the generator
reactance, the real and reactive power produced by the generator depends on:

� the emf Eq = Ef which is proportional to the generator field current I f;
� voltage V on the terminals of the step-up transformer;
� the power angle δgt.

The voltage of a generator operating in a power system cannot change much and must be held
within typically 10 % of the network rated voltage. Consequently a wide range of real power changes
P (see (3.88)) corresponds to changes in δgt. Note that mechanical power produced by the turbine
must appear as the electrical power P of the generator (minus small losses). Hence, in the steady
state, any change in the turbine power corresponds to an almost equal change in P and therefore
an almost proportional change in sin δgt. When the angle is δgt and the required power is P, the
field current If can be used to control the emf Eq = Ef and therefore the reactive power Q that the
generator produces (Equation (3.91)).

Limits in the real and reactive power control of the generator are the result of the following
constructional and operational constraints:

(i) Stator (armature) current I must not cause overheating of the armature winding. Hence it
must be smaller than a certain maximum value IMAX, that is I ≤ IMAX.

(ii) Rotor (field) current I f must not cause overheating of the field winding. Hence it must be
smaller than a certain maximum value IfMAX, that is If ≤ IfMAX or Eq ≤ EqMAX.

(iii) The power angle must not be higher than a maximum value due to stable generator operation
δgt ≤ δMAX (steady-state stability is explained in Chapter 5).

(iv) The temperature in the end region of the stator magnetic circuit must not exceed a maximum
value.

(v) The generator real power must be within the limits set by the turbine power, that is Pmin ≤ P ≤
PMAX.

The area of allowed generator loading due to those constraints is illustrated in Figure 3.19
Individual elements of that diagram will be discussed below.

Condition (i) concerns the stator current. In the P–Q plane, it corresponds to a circle with a
radius and centre determined as follows. The real and reactive power are given by P = VI cos ϕ and
Q = VI sin ϕ. Squaring these equations and adding gives P2 + Q2 = (VI)2, as sin2 ϕ + cos2 ϕ = 1.
In the P–Q plane, this equation corresponds to a circle with radius VI and centre at the origin.
Assuming a given voltage V and loading I = IMAX yields

P2 + Q2 = (VIMAX)2
, (3.92)

which corresponds to a circle of radius VIMAX and which is shown in Figure 3.19 using a dotted
line. All the points inside the circle correspond to powers P, Q for which the condition I ≤ IMAX is
satisfied.

Condition (ii) concerns the rotor current. In the P–Q plane, it corresponds to a circle with centre
and radius determined as follows. Equations (3.88) and (3.91) can be written as

P = EqV
xd

sin δgt and Q + V2

xd
= EqV

xd
cos δgt. (3.93)

Squaring both equations and adding gives

P2 +
(

Q + V 2

xd

)2

=
(

EqV
xd

)2

. (3.94)



P1: OTA/XYZ P2: ABC
c03 JWBK257/Machowski September 22, 2008 21:31 Printer Name: Yet to Come

The Power System in the Steady State 93

Q lag

Q lead

0
P

A B

C

D

E

F

G

− V

x

2

d

P
m

in

P
M

A
X

V
IM

A
X

VE
qM

A
X

x
d

δMAX

Figure 3.19 Reactive power capability curve assuming a given voltage.

For Eq = EqMAX, the above equation becomes

P2 +
(

Q + V 2

xd

)2

=
(

EqMAXV
xd

)2

(3.95)

which corresponds to a circle of radius EqMAXV/xd and with a centre displaced from the origin
along the reactive power axis Q by the value −V2/xd. The relevant fragment of that circle is shown
by the dashed line along points G and F in Figure 3.19.

Condition (iii), concerning the maximum value of the power angle, corresponds to a straight line.
The position and tangent of the line can be derived in the following way. Dividing both sides of
(3.93) by each other gives

P =
(

Q + V 2

xd

)
· tanδgt. (3.96)

Substituting δ = δMAX leads to

P = mQ + c where m = tan δMAX and c = V2

xd
tan δMAX. (3.97)

In the P–Q plane, this equation describes a straight line intersecting the reactive power axis at the
angle δMAX and at the point P = 0 or Q = −c/m = −V2/xd. In Figure 3.19, this line is drawn with
a dot–dashed line from A to B.

There is no simple mathematical formulation describing constraint (iv) corresponding to the end
region heating limit. The relevant curve has to be determined experimentally by the manufacturer.
This constraint manifests itself when the generator loading is high and capacitive and is shown in
Figure 3.19 by line B–C.

Constraint (iv) is concerned with turbine power and depends on the type of turbine. For steam
turbines, the upper constraint PMAX is due to the maximum (rated) output of the turbine while the
lower constraint Pmin is due to the stable operation of burners at a low turbine output. In Figure
3.19, the upper and lower limits correspond to straight vertical lines PMAX and Pmin.
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Figure 3.20 Determination of the rated operating point of the synchronous generator.

The border line of the allowed generation, that is when no constraint is breached, is shown in
Figure 3.19 by a bold line. It is the polygon ABCDEFG in which each of the sides corresponds to
one the discussed constraints.

It should be noted that all three electrical constraints (i), (ii) and (iii) depend on the terminal
generator voltage V . The value of the voltage influences the radius of the circle (3.92), the radius
and displacement of the circle (3.95) and also the position of the straight line (3.97). The higher the
value of V , the wider the area of the polygon ABCDEFG. Hence the characteristic Q(P) shown in
Figure 3.19 is always determined assuming a given voltage, usually rated.

Of particular interest is the range of allowed powers P and Q corresponding to the rated voltage
V = Vn and under the assumption that the stator and rotor windings are not overloaded, that is the
maximum currents in those windings are equal to their rated currents: IMAX = In and IfMAX = Ifn

or EqMAX = Eqn. Figure 3.20 illustrates this. The dotted line shows a circle corresponding to the
rated stator current In. The dashed line shows a circle corresponding to the rated rotor current
If = Ifn. Point F, lying on the intersection between the two circles, is the rated operating point of
the generator as at that point all the quantities are rated, that is V = Vn, I = In, If = Ifn. Figure
3.20 also shows the values of Pn, Qn and ϕn which are, respectively, the rated powers and the rated
phase angle.

Generator nameplate data are usually Vn, Pn and ϕn. For further consideration it is useful to
determine the value of EqMAX = Eqn as a function of Vn, Pn and ϕn. That relationship can be
derived from (3.95). Simple algebra gives

E2
q = V2

[(
1 + xd

Q
V2

)2

+
(

xd
P

V2

)2
]

. (3.98)

For the rated values

E2
qn = V2

n

[(
1 + xd

Qn

V2
n

)2

+
(

xd
Pn

V2
n

)2
]

. (3.99)

Substituting xd = xd puV2
n /Sn, where xd pu is in per-unit form, and using sin ϕn = Qn/Sn and cos ϕn =

Pn/Sn (see Figure 3.20), gives

E2
qn = V2

n

[(
1 + xd pu sin ϕn

)2 + (
xd pu cos ϕn

)2
]
, (3.100)
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Simple transformations result in

Eqn = kfnVn where kfn =
√

1 + xd pu(xd pu + 2 · sin ϕn). (3.101)

This means that Eqn is proportional to Vn with the reactance xd pu and sin ϕn as parameters.

3.3.5 Voltage–Reactive Power Capability Characteristic V(Q)

The capability curve Q(P ) shown in Figure 3.19 characterizes the generator–transformer unit as a
source of real and reactive power while taking into account the constraints and assuming that the
transformer terminal voltage is a parameter. When assessing the generator as a voltage and reactive
power source, it is important to consider a capability characteristic V (Q ) of the unit equipped with
the automatic voltage regulator (AVR) discussed in Section 2.2.2 and assuming that real power P
is a parameter. The task of the AVR is to maintain a required value of the voltage at a given point
in the network while observing the constraints.

According to Figure 2.5, the AVR maintains a measured voltage

VC = Vg + ZC I, (3.102)

which is the generator terminal voltage with added voltage drop on the compensator impedance
ZC = (RC + jXC). It is equal to the voltage at a fictitious point inside the transmission network
displaced from the generator terminals by the impedance ZC. The task of the AVR is to maintain
the voltage VC at that fictitious measurement point.

Figure 3.21 shows a simplified equivalent circuit and a phasor diagram to illustrate the principle
of voltage regulation. The resistance of the generator and transformer has been neglected. The com-
pensation resistance has also been neglected, RC

∼= 0, so that ZC
∼= −jXC, where XC = (1 − κ) XT.

Hence the fictitious measurement point is assumed to be located at a distance κ XT from the trans-
former terminals and at a distance Xk = (1 − κ) XT from the generator terminals, see Figure 3.21.
Vg is the generator terminal voltage and V is the transformer terminal voltage.

The characteristic V (Q ) of the generator as a reactive power source, with real power P as a
parameter, will be determined by considering four characteristic operating regimes:

(i) The field current is less that its limit, If < IfMAX, and the generator controls the voltage at a
given point in the transmission network.

(ii) The field current I f is at maximum, If = IfMAX, so that the generator operates with a constant
emf Eq = EqMAX.

1 2 3

4

5

0

(b) (c)

(a )

Xd

Eq

Eq

V g V c

V c

V

V

I

I
I Q

I P

δgt

ϕ

ϕ

(1 – κ)XT κXT

Figure 3.21 The choice of the voltage regulation point for a generator–transformer unit: (a) block
diagram; (b) simplified equivalent circuit; (c) phasor diagram.
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Figure 3.22 Characteristic V (Q ) and its elements when: (a) P = 0 and (b) P �= 0.

(iii) The power angle δ is at its maximum, δ = δMAX, and the reactive power Q is controlled within
the limits.

(iv) The stator current I is at its maximum, I = IMAX, and the reactive power Q is controlled within
the limits.

Each of the four operating conditions can be described by a separate characteristic V (Q ) which
will be combined to form the overall V (Q ) characteristic of the generator–transformer unit shown
in Figure 3.22.

3.3.5.1 If < IfMAX and AVR Controls the Voltage

For this operating regime, the characteristic V (Q ) is determined by the position of the voltage
regulation point. When κ = 1, the AVR controls the voltage at the generator terminals, and when
κ = 0, the AVR controls the voltage at the transformer terminals (Figure 3.21). In practice, a small
positive value of κ is chosen so that the voltage regulation point is located inside the transformer,
close to its high-voltage terminals.

The voltages on both sides of the transformer are VC and V, see Figure 3.21. For a reactance
κ XT between the generator transformer and the voltage regulation point, a relationship similar to
(3.94) can be derived:

P2 +
(

Q + V 2

κ XT

)2

=
(

VpV
κ XT

)2

, (3.103)

When the field current limit is not exceeded, the regulator maintains a reference voltage value
VC = VC ref , where VC ref is the set value of the voltage at the regulation point. Simple algebra
transforms the above equation to

Q =
√(

VC ref V
κ XT

)2

− P2 − V 2

κ XT
. (3.104)
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When P = 0, this equation simplifies to

Q = V
κ XT

(VC ref − V) . (3.105)

The resulting characteristic Q(V ) is denoted by Roman numeral I in Figure 3.22 and shown using
a dashed line. It is an inverted parabola crossing the V -axis at V = 0 and V = VC ref . The peak of
the parabola reaches the value QMAX = V2

C ref/4κ XT when V = VC ref/2. The smaller the value of κ,
the higher the value of QMAX and the parabola becomes slimmer. When P �= 0, the parabola moves
along the V -axis towards positive values and its peak QMAX becomes smaller.

3.3.5.2 Maximum Field Current

When the field current is maximum, If = IfMAX, the generator becomes a voltage source with
constant emf Eq = EqMAX behind the reactance xd = Xd + XT. After simple algebra, an equation
similar to (3.95) is obtained:

Q =
√(

EqMAXV
xd

)2

− P2 − V2

xd
. (3.106)

The resulting characteristic Q(V ) is denoted by Roman numeral II in Figure 3.22 and shown using a
dot–dashed line. It is also an inverted parabola. For P = 0 the parabola crosses the V -axis at V = 0
and V = EqMAX, while its peak reaches the value QMAX = E2

qMAX/4xd when V = EqMAX/2. For
P �= 0, the parabola moves along the V -axis towards positive values and its peak QMAX becomes
smaller.

3.3.5.3 Maximum Power Angle

When δgt = δMAX, Equation (3.96) can be transformed to

Q = P · arctanδMAX − V2

xd
. (3.107)

The resulting characteristic Q(V ) is denoted by Roman numeral III in Figure 3.22 and shown
using a dotted line. It is an inverted parabola symmetrical with respect to the V -axis. Its peak is at
QMAX = P · arctanδMAX while its roots are at V = ±√

P · xd · arctanδMAX.

3.3.5.4 Maximum Stator Current

Now Equation (3.91) can be transformed to

V =
√

P2 + Q2

IMAX
. (3.108)

The resulting characteristic Q(V ) is denoted by Roman numeral IV in Figure 3.22 and shown
using a double-dot–dashed line. When P = 0 the equation simplifies to V = Q/IMAX and the
characteristic V (Q ) becomes a straight line crossing the origin (V = 0, Q = 0). When P �= 0 a
curved line crosses the V -axis at V = P/IMAX.

3.3.5.5 Combined Characteristic

The combined characteristic taking into account all the constraints consists of the four segments
I, II, III, IV and is shown in Figure 3.22 using a bold line. The left hand side of the characteristic
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corresponds to a capacitive loading of the generator. In the area limited by segment III, regulator
operation is constrained by the power angle and the voltage depends strongly on reactive power.
Increasing capacitive loading causes a strong voltage rise. The middle part of the characteristic
between points A and B corresponds to segment I when the regulator can change the field current
while controlling the voltage. Changing reactive loading hardly influences the transformer terminal
voltage. The slope of the characteristic depends on how slim the characteristic is as explained below.

When point B is reached, the generator starts to operate with a maximum field current and cannot
produce more reactive power. When the voltage drops, the reactive power produced decreases
according to segment II until it reaches point C. Further reduction in the voltage results in the
stator current becoming the limiting factor as shown by segment IV.

These considerations show that a synchronous generator operating as the reactive power source
has a quite complicated nonlinear characteristic due to the limits imposed by the AVR. It is
important to appreciate the following:

1. Along segment I, when the voltage drops, the generator produces more reactive power. When
the constraints are reached the generator behaves the other way around: that is, when the voltage
drops, the generator produces less reactive power moving along segments II and IV. This may
cause worsening of the reactive power balance leading to voltage instability (Chapter 8).

2. The influence of real power on the shape of the characteristic is very strong as revealed by
comparing both diagrams in Figure 3.22. When real power production is small, the distance
between points A and B is large. When real power production increases, points A and B get
closer to each other so that the stabilizing action of the AVR is possible for only a small range
of reactive power changes. Moreover, when real power output is high, the curvature of the
characteristic is stronger, which means that falling voltage causes a faster drop in reactive power
output and therefore is more dangerous from the voltage stability point of view.

The slope of parabola (3.104) or (3.105) in the segment A–B depends on the value of κ XT, that is
on the choice of the voltage regulation point – see Figure 3.21. This can be proved by deriving the
derivative dV/dQ under a simplifying assumption that P = 0 when (3.105) holds. For the upper
part of the parabola, the voltage can be calculated from (3.105) as

V = 1
2

VC ref + 1
2

√
V2

C ref − 4κ XT Q. (3.109)

After differentiation,

dV
dQ

= − κ XT√
V2

C ref − 4κ XT Q
. (3.110)

The square root in the denominator can be eliminated using (3.109) leading to

dV
dQ

= − κ XT

2V − VC ref
. (3.111)

If V = VC ref then

dV
dQ

∣∣∣∣
V=VC ref

= − κ XT

VC ref
. (3.112)

This equation shows that the smaller is κ XT, the smaller is the slope of the voltage capability
characteristic shown in Figure 3.21, segment A–B. If κ XT is small then the parabola denoted by
I is slim and with a peak far away from the vertical axis, that is QMAX is large. When the slope
is small, the changes in reactive power hardly influence the transformer terminal voltage V . This
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is understandable because, for small values of κ XT, the voltage regulation point is close to the
transformer terminals.

The minus sign in (3.112) means that increased reactive power causes a reduction in the
voltage – see Figure 3.22.

A general equation for dV/dQ when P �= 0 could also be derived using (3.104). This is, however,
more complicated and would not illustrate so clearly the underlying mechanisms.

3.3.5.6 Voltage–Current Regulation Characteristic V(IQ)

In practice, engineers use much simpler equations to describe a voltage–current regulation charac-
teristic V(IQ) where IQ denotes the reactive component of the current. The relevant equations can be
derived using the phasor diagram shown in Figure 3.21. The distance between points 1 and 4 corre-
sponds to the voltage drop on the reactance κ XT, so it is equal to |1 − 4| = κ XT I. Hence the distance
between point 1 and 2 is |1 − 2| = κ XT I sin ϕ = κ XT IQ and the distance between points 0 and 2 is
|0 − 2| = V + κ XT IQ. It can be assumed that that the distance between points 0 and 4 is approxi-
mately the same as the distance between points 0 and 2. Hence VC = |0 − 4| ∼= |0 − 2| = V + κ XT IQ

so that

V ∼= VC − κ XT IQ. (3.113)

A similar analysis can be applied to the distances between points 1, 5, 3 and 0. Taking into
account that the distance between points 1 and 4 corresponds to the voltage drop on the reactance
xd = Xd + XT, one gets Eq = |0 − 5| ∼= |0 − 3| = V + (Xd + XT) IQ. Hence

V ∼= Eq − (Xd + XT) IQ. (3.114)

Equations (3.113) and (3.114) correspond to two characteristics shown in Figure 3.23. The
characteristic shown in Figure 3.23a is valid when the AVR is active and it is a rough approximation
of the linear characteristic I from Figure 3.22. The slope of that characteristic corresponds to an
angle α where tan α = κ XT. This matches Equation (3.112) but with an additional requirement
that VC ref is used, as (3.112) was concerned with reactive power while (3.113) is concerned with the
reactive component of the current.

The tangent of the angle α is referred to as the droop of that characteristic. It depends on the
coefficient κ defining the value κ XT and the position of the voltage regulation point.

The characteristic shown in Figure 3.23b is valid when the AVR is not active and the synchronous
emf of the generator is constant. It is a rough linear approximation of characteristic II from
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Figure 3.23 Voltage–current characteristics with: (a) acting AVR controlling VC; (b) constant
generator synchronous emf Eq.
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Figure 3.22. The slope of the characteristic corresponds to angle α for which

tan α = xd = Xd + XT. (3.115)

The slope is steeper as (Xd + XT) � κ XT. A steeper slope means that when the AVR is not acting,
changes in the generator reactive power loading cause large changes in the transformer terminal
voltage.

Generally the compensation impedance does not have to match the position of the measure-
ment point inside the step-up transformer, see Figure 3.21. When a generator is connected to the
transmission via a radial transmission line, ZC may encroach into the line.

The main aim of using current compensation in the AVR is to make the power station terminal
voltage insensitive to reactive power loading. The droop of the regulator characteristic depends on
the compensation reactance. Equations (3.112), (3.113) and Figure 3.23 show that the smaller the
droop of the characteristic, the smaller the sensitivity of the terminal voltage to the reactive power.

3.3.6 Including the Equivalent Network Impedance

Synchronous generators are rarely used to supply individual loads but are connected to a power
system that consists of a large number of other synchronous generators and loads linked by the
transmission network (Figure 2.1). The power rating of an individual generator is usually many
times smaller than the sum of the power ratings of all the remaining generators in the system.
Therefore, for a simplified analysis, these remaining generators in the system can be treated as one
equivalent, very large, generating unit with an infinite power rating. This equivalent generating unit
is referred to as the infinite busbar and can be represented on a circuit diagram as an ideal voltage
source behind an equivalent system impedance. The infinite busbar maintains a constant terminal
voltage and is capable of absorbing all the active and reactive power output of the generator in
question.

This concept is illustrated in Figure 3.24 where the generator is connected to the system via a
step-up transformer, represented by the series impedance ZT = RT + jXT (the shunt admittance is
neglected). It is assumed that the ideal transformer has been eliminated from the circuit diagram
by either using per units or recalculating all the quantities using a common voltage level. The rest
of the power system is represented by the infinite busbar, that is by the ideal voltage source Vs
behind the equivalent system impedance Zs = Rs + jXs (again the shunt admittance is neglected).
The impedance Zs combines the transmission network and remaining generators in the system.

The infinite busbar is assumed to have constant voltage and frequency, neither of which is
influenced by the action of an individual generator. This means that the voltage Vs can be used
as a reference and the phase angles of all the other voltages and currents in the circuit measured
with respect to it. Of particular importance is the power angle δ, which defines the phase shift

G T System
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IX dd

IX qq
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Figure 3.24 Equivalent circuit of the generator operating on an infinite busbar.
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between Ef and Vs. As all the angles in the phasor diagram have a dual time/space meaning, δ is
also the spatial angle between the two synchronously rotating rotors: that of the generator under
consideration and that of the fictitious generator replacing the power system. This spatial angle is
referred to as the rotor angle and has the same numerical value (in electrical radians) as the power
angle. As the ‘rotor’ of the infinite busbar is not affected by an individual generator, this ‘rotor’ also
provides a synchronously rotating reference axis with respect to which the space position of all the
rotors may be defined. This dual meaning of rotor/power angle is very important and will be used
extensively throughout this book.

The elements of the equivalent circuit may be combined to give the total parameters

xd = Xd + XT + Xs; xq = Xq + XT + Xs; r = R + RT + Rs. (3.116)

All the equations derived earlier in this chapter and the phasor diagram shown in Figure 3.16 can
still be used by replacing Xd by xd, Xq by xq, R by r and Vg by Vs. Also the angle δg must be replaced
by the phase shift δ between Ef and V s. With these modifications the round-rotor generator can be
described by the following equation (corresponding to Equation (3.47)):

Ef = Vs + r I + jxd I, (3.117)

while the salient-pole generator can be described by an equation similar to Equation (3.62):

Ef = Vs + r I + jxd Id + jxq Iq. (3.118)

This equation can be broken down into its d- and q-axes components to obtain equations similar
to Equation (3.65)

Ed = Vsd + r Id + xq Iq = 0

(3.119)Eq = Ef = Vsq + r Iq − xd Id,

which can be expressed in matrix form as[
Ed

Eq

]
=

[
0
Ef

]
=

[
Vsd

Vsq

]
+

[
r xq

−xd r

] [
Id

Iq

]
or Edq=Vsdq + Zdq Idq, (3.120)

where

Vsd = −Vs sin δ, Vsq = Vs cos δ

(3.121)
Id = −I sin β, Iq = I cos β

and β = δ + ϕ.
Equations (3.120) and (3.121) allow formulae for the active and reactive power supplied by the

generator to the system to be derived.

3.3.6.1 Real Power

Solving Equation (3.120) with respect to the currents gives[
Id

Iq

]
= 1

Z2

[
r −xq

xd r

] [
0 − Vsd

Eq − Vsq

]
, (3.122)

where Z2 = det Zdq = r 2 + xdxq.
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The real power supplied by each phase of the generator to the network (the infinite busbar in
Figure 3.24) is given by

Ps = Vs I cos ϕ = Vs I cos (β − δ) = Vs I sin β sin δ + Vs I cos β cos δ

= Vsd Id + Vsq Iq = 1
Z2

{
Vsd

[−r Vsd − xq
(
Eq − Vsq

)] + Vsq
[−xdVsd + r

(
Eq − Vsq

)]}
(3.123)

= 1
Z 2

[−r (V 2
sq + V 2

sd) − (xd − xq)VsdVsq + Eq(r Vsq − xqVsd)
]
,

which, after substituting for V sq and V sd from Equation (3.121), gives

Ps = EqVs

Z
xq

Z
sin δ + V2

s

2
xd − xq

Z2
sin 2δ + EqVs

Z
r
Z

cos δ − V2
s

Z
r
Z

. (3.124)

The second component in Equation (3.124) is referred to as the reluctance power and corresponds
to the reluctance torque in the salient-pole generator. It depends on sin 2δ, vanishes for δ = 0◦ and
δ = 90◦ and is proportional to xd − xq = Xd − Xq and inversely proportional to Z2. As xd − xq =
Xd − Xq is independent of X s the Z2 term tends to dominate this expression so that the reluctance
power of a generator connected to the system through a long transmission link (large X s and Z )
can often be neglected.

For round-rotor generators Xd = Xq and the reluctance term vanishes irrespective of the value
of the power angle δ. For such generators Z2 = r 2 + x2

d and Equation (3.124) can be rearranged as

Ps = EqVs

Z
cos µ sin δ + EqVs

Z
sin µ cos δ − V2

s

Z
sin µ

(3.125)
= EqVs

Z
sin(δ + µ) − V2

s

Z
sin µ,

where sin µ = r/Z and cos µ = xd/Z. The active power load on the generator is larger than the
real power supplied to the system because of the I 2r loss in the resistance. If the resistance of the
generator and the network is neglected (r � Z), Ps is equal to the real power load on the generator.
In this case, for the salient-pole generator

Ps = EqVs

xd
sin δ + V2

s

2
xd − xq

xdxq
sin 2δ, (3.126)

while for the round-rotor generator the real power is

Ps = EqVs

xd
sin δ. (3.127)

In per units these equations can also be used to express the generator air-gap torque.

3.3.6.2 Reactive Power

The reactive power supplied to the network is given by

Qs = Vs I sin ϕ = Vs I sin (β − δ) = Vs I sin β cos δ − Vs I cos β sin δ

= −Vsq Id + Vsd Iq = 1
Z2

{
Vsq

[
r Vsd + xq

(
Eq − Vsq

)] + Vsd
[−xdVsd + r

(
Eq − Vsq

)]}
(3.128)

= 1
Z2

(
EqVsqxq − V2

sqxq − V2
sdxd + EqVsdr

)
,
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which, after substituting for V sq and V sd from Equation (3.121), gives

Qs = EqVs

Z
xq

Z
cos δ − V2

s

Z
xd sin2 δ + xq cos2 δ

Z
− EqVs

Z
r
Z

sin δ. (3.129)

For the round-rotor generator xd = xq and the second term is independent of δ. Equation (3.129)
can then be written as

Qs = EqVs

Z
cos (δ − µ) − V2

s

Z
cos µ. (3.130)

If the resistance r is neglected then Z = xd, µ = 0, cos µ = 1 and this equation simplifies to

Qs = EqVs

xd
cos δ − V2

s

xd
. (3.131)

A generator supplies reactive power to the system, and operates at a lagging power factor, when
the field current, and consequently Eq, is high enough to make the first component in Equation
(3.131) larger than the second. This state of operation is referred to as overexcitation.

On the other hand, a low value of the field current, and Eq, will make the second component
of Equation (3.131) larger than the first; the generator will then supply negative reactive power
to the system and will operate at a leading power factor. This state of operation is referred to as
underexcitation.

As will be explained in Section 3.5, a typical power system load contains a high proportion of
induction motors. Such a load operates at a lagging power factor and consumes positive reactive
power. For this reason generators are usually overexcited, operate at lagging power factor and
supply positive reactive power to the system. Overexcited generators operate at a high value of Eq,
which is also important for stability reasons as explained in Chapters 5 and 6.

3.3.6.3 Steady-State Power–Angle Characteristic

Figure 3.16 shows the phasor diagram of a generator operating under a particular load as defined
by the length and direction of the current phasor I. Obviously the diagram will change if the
load is changed. However, the way in which the diagram will change depends on whether the
AVR is active or not. When the AVR is active it will try to maintain a constant voltage at some
point after the generator terminals by changing the excitation (see Section 2.2.2). This mode of
operation is closely related to steady-state stability and will be considered in Chapter 5. In the
present chapter, only the case when the AVR is inactive will be considered. The excitation is then
constant, Ef = Eq = constant, and any change in load will change the generator terminal voltage
V g, the angle δg and the power angle δ. If the resistance r is neglected then the real power supplied
by the generator to the system is given by Equation (3.126) which is repeated here for convenience:

PsEq = EqVs

xd
sin δ + V2

s

2
xd − xq

xdxq
sin 2δ. (3.132)

In this equation the subscript Eq in PsEq has been added to emphasize that this formula is valid for
the case Eq = constant. Note that PsEq is a function of the power angle δ only. Function PsEq (δ) is
referred to as the power–angle characteristic of the generator operating on the infinite busbar and is
shown in Figure 3.25.

The reluctance power term deforms the sinusoidal characteristic so that the maximum of PsEq (δ)
occur at δ < π/2. For the round-rotor generators the maximum of PsEq (δ) occurs at δ = π/2.
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Figure 3.25 Power–angle characteristic PsEq (δ) for Eq = constant.

3.4 Power System Loads

The word ‘load’ can have several meanings in power system engineering, including:

� a device connected to the power system that consumes power;
� the total active and/or reactive power consumed by all devices connected to the power system;
� the power output of a particular generator or plant;
� a portion of the system that is not explicitly represented in the system model, but treated as if it

were a single power-consuming device.

This section deals with loads that conform to the last definition. Chapter 2 explained that
electrical power systems are large, complex structures consisting of power sources, transmission
and subtransmission networks, distribution networks and a variety of energy consumers. As the
transmission and subtransmission networks connect the main generation and load centres, they
are quite sparse, but as the distribution networks must reach every consumer in their service area,
they are very dense. This means that a typical power system may consist of several hundred nodes
at the transmission and subtransmission levels, but there could be a hundred thousand nodes at
the distribution level. Consequently, when power systems are analysed only the transmission and
subtransmission levels are considered and the distribution networks are not usually modelled as
such, but replaced by equivalent loads, sometimes referred to as composite loads. Usually each
composite load represents a relatively large fragment of the system typically comprising low- and
medium-voltage distribution networks, small power sources operating at distribution levels, reactive
power compensators, distribution voltage regulators, and so on, and includes a large number of
different component loads such as motors, lighting and electrical appliances. Determining a simple
and valid composite load model is therefore not an easy problem and is still the subject of intensive
research (IEEE Task Force, 1995). In this chapter, only a simple static composite load model will
be described while dynamic models will be described in Chapter 11.

In the steady state the demand of the composite load depends on the busbar voltage V and
the system frequency f . The functions describing the dependence of the active and reactive load
demand on the voltage and frequency P(V, f ) and Q(V, f ) are called the static load characteristics.
The characteristics P(V ) and Q(V ), taken at constant frequency, are called the voltage character-
istics while the characteristics P(f ) and Q(f ), taken at constant voltage, are called the frequency
characteristics.

The slope of the voltage or frequency characteristic is referred to as the voltage (or frequency)
sensitivity of the load. Figure 3.26 illustrates this concept with respect to voltage sensitivities.
Frequency sensitivities are defined in a similar way.
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Figure 3.26 Illustration of the definition of voltage sensitivities.

The voltage sensitivities kPV and kQV and the frequency sensitivities kPf and kQf are usually
expressed in per units with respect to the given operating point:

kPV = 	P/P0

	V/V0
, kQV = 	Q/Q0

	V/V0
, kPf = 	P/P0

	 f/ f0
, kQf = 	Q/Q0

	 f/ f0
, (3.133)

where P0, Q0, V 0 and f 0 are the real power, reactive power, voltage and frequency at a given
operating point.

A load is considered to be stiff if, at a given operating point, its voltage sensitivities are small. If
the voltage sensitivities are equal to zero then the load is ideally stiff and the power demand of that
load does not depend on the voltage. A load is voltage sensitive if the voltage sensitivities are high
and small changes in the voltage cause high changes in the demand. Usually voltage sensitivity of
real power demand is less than voltage sensitivity of reactive power demand.

As the characteristics of the composite load depend on the characteristics of its individual
components, it is first of all necessary to examine the characteristics of some of the more important
individual loads. This will then be developed into a more general composite load model.

3.4.1 Lighting and Heating

About one-third of electricity consumption is on lighting and heating. Traditional bulb lighting
prevails in residential areas while discharge lights (fluorescent, mercury vapour, sodium vapour)
dominate in commercial and industrial premises. Traditional electric bulbs consume no reactive
power and their power demand is frequency independent but, as the temperature of the filament
depends on the voltage, the bulb cannot be treated as a constant impedance. Figure 3.27a shows
the relevant characteristic.

Fluorescent and discharge lighting depends heavily on the supply voltage. When the voltage
drops to below 65–80 % of the rated value the discharge lights extinguish and will restart with a 1–2
second delay only when the voltage recovers to a value above the extinguish level. When the voltage

P Q

P

V V

(a) (b) P,Q

Figure 3.27 Voltage characteristics of: (a) electric bulbs; (b) discharge lighting.
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Figure 3.28 Simplified equivalent circuit of induction motor.

is above the extinguish level, the real and reactive power vary nonlinearly with voltage as shown in
Figure 3.27b.

Heating loads basically constitute a constant resistance. If a heater is equipped with a thermostat,
the thermostat will maintain constant temperature and power output despite any variations in
voltage. In such cases the load can be modelled as a constant power rather than a constant resistance.

3.4.2 Induction Motors

About 50–70 % of all electricity is consumed by electric motors with about 90 % of this being used
by induction motors. Generally such motors dominate industrial loads to a far greater degree than
they do commercial or residential loads.

Figure 3.28 shows the well-known simplified equivalent circuit of the induction motor where X
is the equivalent reactance of the stator and rotor windings, R is the rotor resistance, Xm is the
magnetizing reactance and s is the motor slip defined as s = (ωs − ω)/ωs. This equivalent circuit will
be discussed in detail in Chapter 7. Here it is used to derive the reactive power–voltage characteristic
of an induction motor as the load in power system.

3.4.2.1 Power–Slip Characteristic

The square of the current flowing through the series branch is I 2 = V2/
[

X2 + (R/s)2
]

where V is

the supply voltage. The real power demand due to this current is then

Pe = I2 R
s

= V2 Rs

R2 + (Xs)2 . (3.134)

The solid lines in Figure 3.29a show the variation of Pe with slip for different values of V . By
differentiating the power expression it can be shown that the maximum loading Pmax = V 2/2X is
reached at the critical slip s = scr = R/X. Note that scr does not depend on the voltage.

The stable operating part of the induction motor characteristic is to the left of the peak, where
s < scr. To prove this, consider point 1′ lying to the right of the peak on the highest characteristic.
Ignoring for the moment any losses, if point 1′ is an equilibrium point then the electrical power
supplied Pe is equal to the mechanical power Pm shown on the diagram as P0. Now assume that
the motor experiences a momentary disturbance causing a decrease in slip (i.e. an increase in
speed). This will cause the supplied electrical power to increase. As Pm can be assumed to remain
unchanged, the motor draws more power than the load can absorb (Pe > Pm) and the excess power
accelerates the rotor so that the speed increases further. This increase in speed results in the operating
point moving further to the left away from point 1′. Now consider another momentary disturbance
causing an increase in slip (drop in speed). This will cause Pe to drop, resulting in a deficit of power
and further slowing down of the rotor. The slip increases further and the motor finally stops at
s = 1.

The situation is reversed at the stable equilibrium point 1. At this point any disturbance causing
a decrease in slip (i.e. an increase in speed) will result in a decrease in the power supplied to the
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Figure 3.29 Induction motor characteristics: (a) family of Pe (s) characteristics for different values
of V ; (b) Pe (V) characteristic of the motor loaded with a constant torque.

motor. This deficit of power (Pe < Pm) will result in the motor slowing down (increasing the slip)
until it returns to point 1. In a similar way the motor will return to point 1 when subjected to a
disturbance causing an increase in slip.

3.4.2.2 Real Power–Voltage Characteristic

The motor’s operating point corresponds to the intersection of the motor characteristic Pe(s) with
that of the mechanical load Pm(s). Mechanical loads can be categorized as either easy starting (zero
torque at starting) or heavy starting (a non-zero torque at starting). For further analysis the special
case of a heavy starting load with a constant mechanical torque τm will be considered. This type
of load will allow the voltage characteristics of the motor to be derived. These characteristics will
then be generalized to include other types of mechanical load.

If τm is constant then the mechanical power developed by the motor is Pm = τmω = τmωs(1 − s) =
P0(1 − s) where P0 = τmωs and is represented in the equivalent circuit by the power loss in the
resistance R(1 − s)/s. The total motor power demand Pd is obtained by adding Pm to the power
loss in the rotor resistance where Ploss = I 2 R, that is

Pd = Pm + Ploss = P0(1 − s) + I 2 R = P0(1 − s) + V2 Rs2

(Xs)2 + R2
. (3.135)

The value of the operating slip is given by the intersection of the Pe(s) and Pd(s) characteristics.
Equation Pe(s) = Pd(s) gives

V2 Rs
(Xs)2 + R2

= P0(1 − s) + V2 Rs2

(Xs)2 + R2
, (3.136)

which, assuming that the motor is not stalled (s �= 1), gives the following equation after some simple
algebra:

s2 − 2ascrs + s2
cr = 0, (3.137)

where a = V2/(2P0 X ) and scr = R/X. The roots of this equation are

s1,2 = scr

[
a ±

√
a2 − 1

]
. (3.138)

The roots are real only if |a| ≥ 1, that is V ≥ √
2P0 X. Hence the minimum supply voltage for

which the motor can still operate, referred to as the stalling voltage, is Vstall = √
2P0 X. For V > Vstall
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there are two different roots s1 and s2 with the smaller root corresponding to the stable operating
point (i.e. that part of the characteristic to the left of the peak). Substituting this root into Equation
(3.134) gives

Pe|s=s1,2
= V2

X

Rscr

(
a ± √

a2 − 1
)

R2 + X2s2
cr

(
a ± √

a2 − 1
)2 = V2

X
a ± √

a2 − 1

1 +
(

a ± √
a2 − 1

)2 = V2

2a X
= P0. (3.139)

This shows that for a heavy-starting load with τm = constant the real power demand is independent
of both the supply voltage and the slip. This is shown in Figure 3.29a by the dashed horizontal line
P = P0. Figure 3.29b shows the resulting Pe(V ) characteristic obtained in the following way.

Assume that the motor initially operates at rated voltage (V = Vn) so that the equilibrium point
corresponds to point 1 on the top characteristic. A decrease in the supply voltage will lower the
power–slip characteristic and shift the operating point to the right, as shown by points 2, 3 and
4 in Figure 3.29a. As real power demand is constant, the Pe(V ) characteristic corresponding to
points 1, 2, 3 and 4 is horizontal as shown in Figure 3.29b. The lowest characteristic in Figure 3.29a
corresponds to the stalling voltage V = Vstall. The operating point is at point 5 and the slip is critical
(s = scr). Any further slight decrease in voltage will result in the motor slip increasing along the
lowest, unstable, characteristic (points 6, 7 and 8) until the motor finally stalls (s = 1) at point 9.
As the motor moves along this stalling characteristic, the real power decreases while the voltage is
constant and slip increases. Consequently the Pe(V ) characteristic for points 6, 7 and 8 is vertical as
shown in Figure 3.29b. At point 9 the slip is s = 1 and the motor consumes its short-circuit power,
PSHC = V 2 R/(X2 + R2). Any further decrease in voltage will cause a decrease in the real power
demand which can be calculated from Equation (3.135) as

Pe(s)|s=1 = V2 R
X2 + R2

. (3.140)

This is shown by the parabola 9, 10, 11 in Figure 3.29b.

3.4.2.3 Reactive Power–Voltage Characteristic

The reactive power consumed by each phase of the motor is made up of two components corre-
sponding to each of the two parallel branches shown in Figure 3.28b:

Qm = V2

Xm
and Qs = I 2 X = Pes

R
X = Pe

s
scr

. (3.141)

The component Qm is associated with the motor magnetizing reactance while the component Qs

depends on the motor load. For a heavy-starting load, with τm = constant, the real power demand is

Pe = P0 and the slip corresponding to the stable operating point is s = scr

[
a − √

a2 − 1
]

(Equation

(3.138)). Substituting these values into the expression for Qs gives

Qs = V 2

2X
−

√(
V2

2X

)2

− P2
0 for V > Vstall. (3.142)

Figure 3.30 shows Qm, Qs and Q = Qm + Qs as a function of the voltage. The component Qm(V )
is a parabola starting from the origin and increasing to infinity. The component Qs(V ) tends to zero
as V → ∞. As V decreases, Qs(V ) increases until at V = Vstall it reaches a value corresponding to
point 5. Any decrease in voltage will cause Qs(V ) to move along the unstable part defined by the
vertical line 5, 6, 7, 8, 9. At point 9 the motor stalls (s = 1). Any further decrease in voltage causes
Qs(V ) to decrease along a parabola 9, 10, 11 describing the short-circuit characteristic.
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Figure 3.30 Reactive power–voltage characteristics of an induction motor.

The resulting characteristic, Q(V ) = Qm(V ) + Qs(V ), is shown by the continuous line in Figure
3.30. Inspection of this characteristic leads to the following conclusions:

� for voltages close to the rated voltage Vn the slope of the characteristic is positive;
� as voltage decreases, the characteristic first becomes flatter (indicating a reduced voltage sensitiv-

ity) and then, with a further reduction in voltage, the reactive power increases rapidly to a large
value when the motor stalls.

Although a heavy-starting load has been considered here, the actual stalling voltage depends on
the type of mechanical load that is being driven by the motor. For heavily loaded motors, driving
heavy-starting loads, it can be quite close to the rated voltage. For lightly loaded motors, especially
those driving easy-starting mechanical loads, the stalling voltage can be quite small.

3.4.2.4 Influence of Motor Protection and Starter Control

The above considerations do not take into account motor protection or starter control. Many
industrial motors have starter controls with electromechanically held AC contactors. If the voltage
is too low, such contactors immediately drop out, tripping the motor supply. The dropout voltage
ranges from about 0.3 to 0.7 per unit. The effect of this can be modelled by assuming zero real and
reactive power demand for voltages lower than the dropout voltage as shown in Figure 3.31. Only
heavily loaded motors may stall above the dropout voltage and give a large increase in the reactive
power demand, Figure 3.31a. When the stalling voltage is smaller than the dropout voltage, the
motor will not stall or exhibit a rapid increase in reactive power demand, Figure 3.31b.

When operating at a low voltage the motor may also be tripped by the overcurrent protection.
This usually involves some time delay.

P(V )

Q(V )

V

P
Q

(a)

Vdropout Vn

Q(V )

P(V )

V

P
Q

(b)

Vdropout Vn

Figure 3.31 Examples of induction motor characteristics with starter control: (a) heavy-starting
load; (b) easy-starting load.
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Figure 3.32 Examples of the voltage characteristics of a load: (a) dominated by large, heavily
loaded induction motors; (b) dominated by lighting and heating.

Motors operating under residential and commercial loads are usually oversized, operate at less
than 60 % of rated power, and therefore have characteristics similar to those shown in Figure
3.31b. On the other hand, large industrial motors are usually properly sized and, when driving
heavy-starting mechanical loads, may have characteristics similar to those shown in Figure 3.31a.

3.4.3 Static Characteristics of the Load

The aggregate characteristic of the load depends on the characteristics of its individual components.
A rough estimate of the aggregate characteristic, viewed from the medium-voltage side (the sec-
ondary of the feeder transformer), can be obtained by summing the individual load characteristics.
Figure 3.32 shows two examples of load characteristics obtained by this technique. Figure 3.32a
shows an industrial load characteristic with a predominance of heavily loaded induction motors
and discharge lighting. Near the nominal operating point (voltage Vn), the P(V ) curve is flat while
the Q(V ) curve is steeper with a positive slope. As the voltage decreases, the Q(V ) curve becomes
flatter and even rises due to the increased reactive power demand of the stalled motors. When the
voltage drops below about 0.7 per unit, the P(V ) and Q(V ) curves rapidly decrease due to tripping
of the induction motors and extinguishing of the discharge lighting.

Figure 3.32b shows an example of a residential/commercial load that is dominated by traditional
bulb lighting and heating. Near the nominal voltage both the P(V ) and Q(V ) curves are quite steep.
Again the real and reactive power demand drops rapidly at about 0.7 per unit. As the induction
motor’s stall voltage is now below the dropout voltage, dropout is not preceded by an increase in
the reactive power demand.

The curves shown in Figure 3.32 can only give an indication of the kind of shape a load voltage
characteristic may have. They cannot be treated in a general manner because the characteristic
of a particular load may be quite different. For example, reactive power compensation can cause
the Q(V ) curve to be flatter near the nominal voltage. Also relatively small, non-utility generation
embedded in the load area will significantly affect the load characteristic.

There is also a difference in the characteristic as seen from the primary and secondary sides of
the feeder transformer. Firstly, the real and reactive power loss in the transformer must be added to
the load demand. Secondly, the feeder transformer is usually equipped with an on-load tap changer
to help control the voltage in the distribution network and this also affects the characteristic as
illustrated in Figure 3.33.

In Figure 3.33 the middle dashed bold line represents the load voltage characteristic at the
nominal transformation ratio. Tap changing is controlled in discrete steps so that if the transformer
tap setting is changed, the voltage characteristic moves to the left or right in discrete steps as shown
by the dotted lines. The extreme left and right characteristics represent the tap-changer limits. A
dead zone is also present in the regulator in order to prevent any tap changes if the voltage variations
are within limits. The resulting voltage characteristic is shown by the bold line and is quite flat within
the regulation range, as can be seen by sketching an average line through the resulting characteristic.
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Figure 3.33 Influence of a tap-changing transformer on the voltage characteristic of a composite
load.

3.4.4 Load Models

The last subsection described how the real and reactive power of particular types of load depends
on the load voltage but did not explain how these could be represented by a mathematical model.
Since all power system analysis programs, for example load flow or dynamic simulation, require
such a load model, this subsection describes some of the most popular models currently in use.

3.4.4.1 Constant Power/Current/Impedance

The simplest load models assume one of the following features:

� a constant power demand (P )
� a constant current demand (I )
� a constant impedance (Z ).

A constant power model is voltage invariant and allows loads with a stiff voltage characteristics
kPV ≈ kQV ≈ 0 to be represented. This model is often used in load flow calculations, Section 3.7,
but is generally unsatisfactory for other types of analysis, like transient stability analysis, in the
presence of large voltage variations. The constant current model gives a load demand that changes
linearly with voltage kPV ≈ 1 and is a reasonable representation of the real power demand of a mix
of resistive and motor devices. When modelling the load by a constant impedance the load power
changes proportionally to the voltage squared kPV ≈ kQV ≈ 2 and represents some lighting loads
well but does not model stiff loads at all well. To obtain a more general voltage characteristic the
benefits of each of these characteristics can be combined by using the so-called polynomial or ZIP
model consisting of the sum of the constant impedance (Z ), constant current (I ) and constant
power (P ) terms:

P = P0

[
a1

(
V
V0

)2

+ a2

(
V
V0

)
+ a3

]

(3.143)

Q = Q0

[
a4

(
V
V0

)2

+ a5

(
V
V0

)
+ a6

]
,

where V 0, P0 and Q0 are normally taken as the values at the initial operating conditions. The
parameters of this polynomial model are the coefficients (a1 to a6) and the power factor of the load.
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In the absence of any detailed information on the load composition, the real power is usually
represented by the constant current model while the reactive power is represented by a constant
impedance.

3.4.4.2 Exponential Load Model

In this model the power is related to the voltage by

P = P0

(
V
V0

)np

and Q = Q0

(
V
V0

)nq

, (3.144)

where np and nq are the parameters of the model. Note that by setting the parameters to 0, 1, 2, the
load can be represented by constant power, constant current or constant impedance, respectively.

The slope of the characteristics given by Equation (3.144) depends on the parameters np and
nq. By linearizing these characteristics it can be shown that np and nq are equal to the voltage
sensitivities given by Equation (3.133), that is np = kPV and nq = kQV.

3.4.4.3 Piecewise Approximation

None of the models described so far will correctly model the rapid drop in load that occurs when
the voltage drops below about 0.7 per unit. This can be remedied by using a two-tier representation
with the exponential, or polynomial, model being used for voltages close to rated and the constant
impedance model being used at voltages below 0.3–0.7 per unit. Figure 3.34 shows an example of
such an approximation which gives similar characteristics to those shown in Figure 3.32.

3.4.4.4 Frequency-Dependent Load Model

Frequency dependence is usually represented by multiplying either a polynomial or an exponential
load model by a factor [1 + af ( f − f0)] where f is the actual frequency, f 0 is the rated frequency
and af is the model frequency sensitivity parameter. Using the exponential model this gives

P = P(V )
[

1 + kPf
	 f
f0

]
(3.145)

Q = Q(V )
[

1 + kQf
	 f
f0

)
]

,

where P(V ) and Q(V ) represent any type of the voltage characteristic and kPf, kQf are the frequency
sensitivity parameters, 	 f = f − f0.

VnVn

exponentialexponential

polynomialpolynomial

constan
conductance
constant
conductance

constan
susceptance
constant
susceptance

V V

P Q

Figure 3.34 Example of a two-tier approximation of the voltage characteristics.
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Table 3.3 Typical load model parameters (IEEE, 1993)

Type of load Power factor kPV kQV kPf kQf

Residential 0.87–0.99 0.9–1.7 2.4–3.1 0.7–1 −1.3 to −2.3
Commercial 0.85–0.9 0.5–0.8 2.4–2.5 1.2–1.7 −0.9 to −1.6
Industrial 0.8–0.9 0.1–1.8 0.6–2.2 −0.3–2.9 0.6–1.8

3.4.4.5 Test Results

A number of papers have been published that describe the results of field tests used to identify the
parameter values for different load models; a survey of such papers can be found in Concordia
and Ihara (1982) and Vaahedi et al. (1987). An alternative to having to conduct field tests is to
use a component-based approach (IEEE, 1993) where the composite load model is constructed
by aggregating individual components. With this technique the component characteristics are
determined for particular classes of loads, for example residential, commercial or industrial, either
by theoretical analysis or laboratory experiment. The composite load model is then constructed by
aggregating the fraction of the load consumed by each particular class of load. This approach has
the advantage of not requiring field measurements and of being adaptable to different systems and
conditions. Table 3.3 shows some typical voltage and frequency sensitivity coefficients obtained in
this way.

3.5 Network Equations

All electrical networks consist of interlinked transmission lines and transformers, each of which can
be modelled by the π -equivalent circuits described in Sections 3.1 and 3.2. These individual models
are combined to model the whole network by forming the nodal network equation:




I1
...
Ii
...

I N




=




Y11 · · · Y1i · · · Y1N
...

. . .
...

...
Yi1 · · · Yii · · · Yi N

...
...

...
YN1 · · · YNi · · · YNN







V1
...

Vi
...

VN




or I = YV. (3.146)

The suffices i, j represent node numbers so that Vi is the voltage at node i, Ii is the current injection
at node i and is equal to the algebraic sum of the currents in all the branches that terminate on
node i, Yi j is the mutual admittance between nodes i and j and is equal to the negative of the branch
series admittance Yi j that links nodes i and j, Yii = ∑N

i=1 Yi j is the self-admittance of node i and is
equal to the sum of all the admittances terminating on node i (including any shunt admittance Yi0)
and N is the number of nodes in the network.

The matrix Y is called the nodal admittance matrix. Within this matrix, the algebraic sum of
all the elements in any row i is equal to the shunt admittance Yi0 connecting node i to the
reference node (ground), that is Yi0 = ∑N

j=1 Yi j . The nodal admittance matrix is singular if it
does not have any shunt branches. In this case the sum of the elements in all rows is zero and
det Y = 0. If the matrix is not singular then its inverse Z = Y−1 exists and Equation (3.146) can be
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rewritten as




V1
...

Vi
...

VN




=




Z11 · · · Z1i · · · Z1N
...

. . .
...

...
Zi1 · · · Zii · · · Zi N
...

...
...

ZN1 · · · ZNi · · · ZNN







I1
...
Ii
...

I N




or V = ZI , (3.147)

where Z is the nodal impedance matrix.
Any off-diagonal element Yi j is non-zero only if there is a branch linking nodes i and j. If there

are L branches in the system then k = L/N is the ratio of the number of branches to the number
of nodes and Y has N2 elements, (2k+ 1)N of which are non-zero. The ratio of the number of
non-zero elements to the total number of elements is α = (2k + 1)/N. High-voltage transmission
networks are rather sparse so that typically k has a value of between 1 and 3. Thus, for example,
if a network has 100 nodes, then only 3 to 7 % of the elements in the admittance may be non-zero.
Such a matrix is referred to as a sparse matrix. Power network matrices are usually sparse and, to
save computer memory, only non-zero elements are stored with additional indices being used to
define their position in the matrix. All matrix manipulations are performed only on the non-zero
elements using sparse matrix techniques. The description of such techniques is beyond the scope
of this book but can be found in Tewerson (1973) or Brameller, Allan and Hamam (1976). As the
principal objective of the present text is to describe power system dynamics and stability from an
engineering point of view, full, formal matrix notation will be used.

For any node i, the current injection at the node can be extracted from Equation (3.146) as

Ii = Yii Vi +
N∑

j=1; j �=i

Yi j V j , (3.148)

where the complex voltage and admittance can be generally written as Vi = Vi∠δi and Yi = Yi j ∠θi j .
Using polar notation the apparent power injected at any node i is expressed as

Si = Pi + jQi = Vi I∗
i = Vi ejδi


Yii Vi e−j(δi +θi i ) +

N∑
j=1; j �=i

Vj Yi j e−j(δ j +θi j )




(3.149)
= V2

i Yii e−jθi i + Vi

N∑
j=1; j �=i

Vj Yi j ej(δi −δ j −θi j ).

Separating the real and imaginary parts gives

Pi = V2
i Yii cos θi i +

N∑
j=1; j �=i

Vi Vj Yi j cos(δi − δ j − θi j )

(3.150)
Qi = −V2

i Yii sin θi i +
N∑

j=1; j �=i

Vi Vj Yi j sin(δi − δ j − θi j ).

Alternatively the rectangular coordinate system (a, b) shown in Figure 3.35 can be used when
the apparent power injected at a node is written as

Si = Pi + jQi = Vi I∗
i = (Vai + jVbi )(Iai − jIbi )
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Figure 3.35 Voltage and current in the complex plane; a, b, rectangular coordinates.

and

Pi = Vai Iai + Vbi Ibi , Qi = Vbi Iai − Vai Ibi . (3.151)

Expressing the admittance in rectangular coordinates as Yi j = Gi j + jBi j , the current injection at
each node i, given by Equation (3.146), can be written as

Ii = Iai + jIbi =
N∑

j=1

Yi j V j =
N∑

j=1

(
Gi j + jBi j

) (
Va j + jVb j

)
. (3.152)

Separating real and imaginary parts gives

Iai =
N∑

j=1

(
Gi j Va j − Bi j Vb j

)
, Ibi =

N∑
j=1

(
Bi j Va j + Gi j Vb j

)
. (3.153)

With this notation the complex network Equation (3.146) can be transformed into the real-number
domain to give




I 1

...
I i
...

I N




=




Y11 · · · Y1i · · · Y1N
...

...
...

Yi1 · · · Yi i · · · Yi N
...

...
...

YN1 · · · YNi · · · YNN







V1

...
V i
...

V N




or I = Y V, (3.154)

where all the elements are now real submatrices of the form

I i =
[

Iai

Ibi

]
, V i =

[
Vai

Vbi

]
, Yi j =

[
Gi j −Bi j

Bi j Gi j

]
, (3.155)

with dimension (2 × 1) and (2 × 2), respectively.
Quite often it is convenient to ‘mix’ the coordinate systems so that the voltages are expressed in

polar coordinates as Vi = Vi ∠δi while the admittances are expressed in rectangular coordinates as
Yi j = Gi j + jBi j . Equations (3.150) then take the form

Pi = V2
i Gii +

N∑
j=1; j �=i

Vi Vj
[
Bi j sin(δi − δ j ) + Gi j cos(δi − δ j )

]
Qi = −V2

i Bii +
N∑

j=1; j �=i
Vi Vj

[
Gi j sin(δi − δ j ) − Bi j cos(δi − δ j )

]
.

(3.156)
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Because of the mixing of complex variables in both the polar and rectangular coordinate systems,
the above equations are called the hybrid network equations.

3.5.1.1 Linearization of Power Network Equations

The real and reactive power injection at each node is a nonlinear function of the system voltages,
that is P = P(V, δ) and Q = Q(V, δ), and it is often both convenient and necessary to linearize
these functions in the vicinity of the operating point. This linearization is carried out using a first-
order Taylor expansion and neglecting the higher order terms. The change in the real and reactive
power injection at all the system nodes can then be written, using matrix algebra and the hybrid
network equations, as [

	P
	 Q

]
=

[
H M
N K

] [
	δ

	V

]
, (3.157)

where 	P is the vector of the real power changes at all the system nodes, 	Q is the vector of reactive
power changes, 	V is the vector of voltage magnitude increments and 	δ is the vector of voltage
angle increments. The elements of the Jacobian submatrices H, M, N, K are the partial derivatives
of the functions in (3.156), that is

Hi j = ∂ Pi

∂δ j
, Mi j = ∂ Pi

∂Vj
, Ni j = ∂ Qi

∂δ j
, Ki j = ∂ Qi

∂Vj
. (3.158)

In order to obtain simpler and more symmetrical Jacobian submatrices, Equation (3.157) is
often modified by multiplying the submatrices M and K by the nodal voltage magnitude. This then
requires the voltage increments 	V to be divided by the voltage magnitude and Equation (3.157)
takes the form




	P1

...
	PN

- - - -

	Q1

...
	QN




=




∂ P1

∂δ1
· · · ∂ P1

∂δN
V1

∂ P1

∂V1
· · · VN

∂ P1

∂VN
...

. . .
...

...
. . .

...
∂ PN

∂δ1
· · · ∂ PN

∂δN
V1

∂ PN

∂V1
· · · VN

∂ PN

∂VN
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
∂ Q1

∂δ1
· · · ∂ Q1

∂δN
V1

∂ Q1

∂V1
· · · VN

∂ Q1

∂VN
...

. . .
...

...
. . .

...
∂ QN

∂δ1
· · · ∂ QN

∂δN
V1

∂ QN

∂V1
· · · VN

∂ QN

∂VN







	δ1

...
	δN

- - - - - - -

	V1/V1

...
	VN/VN




(3.159)

or
[

	P
	 Q

]
=

[
H M′

N K ′

] [
	δ

	V/V

]
,

with the elements of the Jacobian being

Hi j = ∂ Pi

∂δ j
= −Vi Vj

[
Bi j cos(δi − δ j ) − Gi j sin(δi − δ j )

]
for i �= j

(3.160)
Hii = ∂ Pi

∂δi
=

N∑
j=1
j �=i

Vi Vj
[
Bi j cos(δi − δ j ) − Gi j sin(δi − δ j )

] = −Qi − V2
i Bii ,
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Ni j = ∂ Qi

∂δ j
= −Vi Vj

[
Gi j cos(δi − δ j ) + Bi j sin(δi − δ j )

]
for i �= j

(3.161)
Nii = ∂ Qi

∂δi
=

N∑
j=1
j �=i

Vi Vj
[
Gi j cos(δi − δ j ) + Bi j sin(δi − δ j )

] = Pi − V2
i Gii ,

M′
i j = Vj

∂ Pi

∂Vj
= Vi Vj

[
Gi j cos(δi − δ j ) + Bi j sin(δi − δ j )

]
for i �= j

(3.162)

M′
i i = Vi

∂ Pi

∂Vi
= 2V2

i Gii +
N∑

j=1
j �=i

Vi Vj
[
Gi j cos(δi − δ j ) + Bi j sin(δi − δ j )

] = Pi + V2
i Gii ,

K ′
i j = Vj

∂ Qi

∂Vj
= Vi Vj

[
Gi j sin(δi − δ j ) − Bi j cos(δi − δ j )

]
for i �= j

(3.163)

K ′
i i = Vi

∂ Qi

∂Vi
= −2V2

i Bii +
N∑

j=1
j �=i

Vi Vj
[
Gi j sin(δi − δ j ) − Bi j cos(δi − δ j )

] = Qi − V2
i Bii .

Note that Equations (3.160) show an important property of matrices H and N. The diagonal ele-
ments of those matrices are equal to the negative sum of all the off-diagonal elements. Consequently,
the sum of all the elements in a row is equal to zero:

Hii =
N∑

j �=i

Hi j and
N∑

j=1

Hi j = 0, (3.164)

Nii =
N∑

j �=i

Ni j and
N∑

j=1

Ni j = 0. (3.165)

That property generally does not hold for the submatrices M ′ and K ′ due to the presence of shunt
admittances in the network. These admittances are added to the diagonal, but not off-diagonal,
elements of the matrices.

3.5.1.2 Change of Reference Frame

The network equations, namely Equations (3.146) and (3.154), are in network’s complex coordi-
nates (a, b) while the generator equations, namely Equations (3.120), are in the generator’s (d,
q) orthogonal coordinates. Figure 3.36 shows the relative position of the two systems of coordi-
nates. The q-axis of a given generator is shifted with respect to the network’s real axis by the rotor
angle δ. The relationship between the two systems of coordinates is[

Ea

Eb

]
=

[ − sin δ cos δ

cos δ sin δ

] [
Ed

Eq

]
or Eab = T Edq. (3.166)

The transformation matrix T is unitary because T−1 = T. The inverse transformation is governed
by the same matrix [

Ed

Eq

]
=

[ − sin δ cos δ

cos δ sin δ

] [
Ea

Eb

]
or Edq− = T Eab. (3.167)
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Figure 3.36 Relative position of the generator’s rectangular (d, q) coordinates with respect to the
network’s complex (a, b) coordinates.

All the other current and voltage phasors can be transformed in a similar way. Obviously, each
generator may operate at a different rotor angle δ which gives as many (d, q) systems of coordinates
as there are generators in the network.

3.6 Power Flows in Transmission Networks

Transmission networks have a meshed structure and there are a very large number of possible
parallel routes between generators and loads. The actual flow of power through each network
element is determined by Kirchhoff’s and Ohm’s laws and given by Equations (3.150). Generally
the flow in each line and transformer cannot be directly controlled as it is a function of generations
and demands in all network nodes. There are only limited possibilities of directly controlling the
flow of power in transmission lines as discussed later in this section.

Predicting future power flows plays a major role in planning the future expansion of a power
system as well as in helping to run the existing system in the best possible way. In this book two
problems will be discussed: (i) the power (or load) flow problem, that is calculation of power flows
determining the steady state of power system; and (ii) control of power flow in the network in both
the steady state and dynamic state.

3.6.1 Control of Power Flows

Real and reactive power flows in a network can be modified to some extent by using controllable
network elements without changing the overall generation and demand pattern. Generation control
will be discussed in Chapter 9.

Figure 1.4 and the simplified power flow equations, Equations (1.8) and (1.9), show that the
flow of real and reactive power through a network element (i.e. a line or a transformer) is mainly a
function of:

� voltage magnitudes at both ends of the element;
� the load (or power) angle, that is the difference between the terminal voltage angles;
� the series reactance of the element.

Real power and reactive power are two strongly connected quantities in AC transmission net-
works. However, as discussed in Section 1.3, real power flow is mainly affected by the load angle
while reactive power flow is mainly affected by the voltage magnitudes. Hence reactive power flow
control is executed by changing voltage magnitudes through: (i) changing generator voltages; (ii)
changing transformation ratios; and (iii) changing reactive power consumed/generated by reactive
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power compensation elements discussed in Section 2.4.3. As reactive power cannot be transmitted
over long distances, see Section 3.1.2, reactive power control is a local problem.

Control of real power flows is executed using the remaining two quantities, for example the
load angle and the series reactance. Such regulation can be implemented using: (i) quadrature
booster transformers, (ii) series compensators such as SSSCs; and (iii) series FACTS devices such
as UPFCs or TCPARs (see Section 2.4.4). The control of the load angle using a quadrature booster
transformers or a FACTS device, such as UPFC or TCPAR, will be discussed below.

The dependence of real power flow on the load angle was illustrated in Figure 1.4. It was shown
that the load angle can change a real power flow over a wide range from negative to positive
values. The way that a change in the load angle can be enforced is illustrated in Figure 3.37. To
simplify considerations, a case is considered of two parallel transmission lines I and II with identical
parameters. The terminal voltages are Vi and V j and the load angle (i.e. the difference between the
voltage angles) is δ.

The phasor diagram for line I is shown in Figure 3.37b. The line current is I I while the real power
flow is given by PI = (Vi Vj /X ) sin δ. The phasor diagram for line II is shown in Figure 3.37c. The
line has an installed quadrature booster and the terminal voltages, the same as for line I and II,
are equal to Vi and V j . The diagram shows that booster voltage 	Vk, in quadrature with Vi , is
added to Vi . Consequently the voltage at the beginning of line II but after the quadrature booster
is Vk = Vi + 	Vk. The load angle for line II is (δ + 	δ) while the line current is I II and the real
power flow is given by PII = (VkVj /X ) sin(δ + 	δ). Since (δ + 	δ) > δ, power PII is greater than
PI. The total power entering both lines is P = PI + PII.

Changing the booster voltage 	Vk causes a change in the load angle 	δ and therefore also a
change in the line flow PII. The booster voltage 	Vk can be controlled from negative to positive
values. When 	Vk is negative, the load angle is decreased and therefore the flow PII is reduced.
When 	Vk = 0, that is the quadrature booster is not acting, the power entering both lines is divided
equally between them, that is PI = PII = P/2. The conclusion is that changing the booster voltage

PP
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(b)

(c)

Vi

V i

Vi

δ

δ
δ

V k

V k

V k

V k

Vj

Vj

Vj
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PII

II

I II

jX II

jX III

Figure 3.37 Controlling the real power flow by changing the load angle: (a) circuit diagram; (b)
phasor diagram for line I; (b) phasor diagram for line II.
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	Vk changes the proportions between power flows PI and PII in parallel lines. Obviously the booster
transformer cannot change the total power flow in the network.

The discussed principle of power flow control in parallel lines can also be used for flow control
in more complicated network configurations, and in particular in parallel transmission corridors in
meshed networks. Usually quadrature boosters are used for:

� increasing loading on underloaded, or decreasing loading on overloaded, parallel transmission
corridors;

� elimination of circulating power in meshed networks;
� changing import (or export) direction in interconnected power systems;
� prevention of unwanted loop flows entering subsystems in interconnected power systems.

Each of these options will now be briefly discussed.
A transmission network is usually meshed and parallel transmission corridors are loaded in

inverse proportion to the reactances of the corridors, assuming no quadrature boosters are present.
Hence it may occur that short transmission links are overloaded while long ones are underloaded.
If that happens, a desired loading of lines can be enforced using quadrature boosters. Reducing the
flow on overloaded lines and increasing the flow on underloaded lines has the effect of increasing a
transfer capacity between areas.

Large interconnected networks may suffer from circulation of power between subsystems when
power enters a subsystem through one transmission corridor and returns through another. This
means that there may be large power transfers between regions while net power exchanges, when
circulating power is taken away, are small. Quadrature boosters may eliminate or significantly
reduce circulation of power. This usually results in reduced load on some transmission corridors at
the cost of a small increase in transmission losses.

Figure 3.38 illustrates the application of a quadrature booster to a change of import (or export)
direction in an interconnected system. It is assumed that system A has a surplus of power and
exports it to systems B and C. The operator of system A would like to enforce an increased export
to system B at the cost of reducing export to system C. This can be achieved by installing a
quadrature booster or a FACTS device in one of the tie-lines, say line A–B. The total export from
an area is equal to the difference between generation and demand, that is the total export from

System
“A”

System
“B”

System
“C”

PAC
PCB

PAB

PT
A

PT
C

PT
B

PL
BPL

A

PL
C

Figure 3.38 Power exchanges between three control areas: PT, power generation; PL, power
demand.
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system A is (PAB + PAC) = (PA
T − PA

L ). Obviously no quadrature booster or FACTS device can
change the total value of export from an area. The device only changes the distribution among
imported areas, that is it changes the proportions between PAB and PAC while keeping the total
(PAB + PAC) constant. It should be appreciated that installation of a quadrature booster has to
be agreed between all partners. Unilateral action of one system operator against the will of other
system operators may be futile since the other system operators might install a similar quadrature
booster acting in the opposite direction with the net effect of no change of flows and at a significant
cost of installation of the devices.

Section 2.1 discussed briefly the recent liberalization of electricity markets. One of the effects
of liberalization was a significant increase in cross-border (or interarea) trades in interconnected
networks. The problem with cross-border trades is that a trade does not travel along an agreed
‘contract path’ between a seller and a buyer but flows over many parallel routes, as discussed earlier
in this section. The flows outside the agreed contract path are referred to as parallel flows, or loop
flows. For example, Figure 3.39 shows the different routes through which an assumed 1000 MW
trade between northern France and Italy would flow (Haubrich and Fritz, 1999). Only 38 % of the
power would flow directly from France to Italy; the remaining 62 % would flow through different
parallel routes loading the transit networks. Note that 15 % of the power would even flow in a
round-about way via Belgium and the Netherlands.

Parallel flows did not cause major problems before 1990, as interarea exchanges were usually
agreed well in advance by system operators and were relatively small. Since 1990, interarea trades
have not only increased significantly in volume, but also started to be arranged by independent
agents, rather than system operators. Consequently, system operators often find their networks
loaded with power transfers they have little idea about as they were not notified about the trades,
causing loop flows. Such a situation endangers secure power system operation and actually led to a
few blackouts that were just avoided in Belgium in the late 1990s. In recent years the situation was
made worse by increased penetration of renewable generation, mostly wind. Wind is an intermittent
energy source and the actual wind generation may be different from the one predicted a day ahead.
A changed wind generation may strongly affect power flows in a network endangering secure
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Figure 3.39 Percentage shares through different transit routes for a trade from northern France
to Italy (Haubrich and Fritz, 1999). Reproduced by permission of H.-J. Haubrich
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operation. For example, a significant change in actual wind generation was one of the contributing
factors to a widespread disturbance leading to the shedding of 17 GW of load in a UCTE network
in November 2006 (UCTE, 2007).

System operators can prevent loop flows from entering their systems by installing quadrature
boosters in tie-lines. This solution has been implemented, or at least was being seriously considered,
by small European countries strongly affected by loop flows, such as Belgium, Switzerland and
Slovenia. Obviously such a hardware solution is quite expensive and a more cost-effective solution
would be to notify all system operators in the interconnected network about all trades in the system
and paying compensation for the utilization of transit networks. However, such a harmonization of
arrangements is quite difficult to achieve in a multinational network due to political and institutional
obstacles (Bialek, 2007).

3.6.2 Calculation of Power Flows

Basically a power flow solution predicts what the electrical state of the network will be when it
is subject to a specified loading condition. The result of the power flow is the voltage magnitude
and angle at each of the system nodes. These bus voltage magnitudes and angles are defined as the
system state variables (or independent variables) as they allow all the other system quantities, such
as the real and reactive power flows, current flows, voltage drops, power losses and so on, to be
computed.

The starting point for any power flow study is the set of generation and load data with the
electrical network being described by the nodal admittance matrix Y of Equation (3.146). Usually
the generation and load data are given in terms of the scheduled real and reactive power generation
at the generator nodes and the predicted real and reactive power demand at the load nodes, rather
than in terms of current injections. This means that the relationship between the data inputs (real
and reactive power nodal injections) and the state variables (nodal voltage magnitudes and angles)
is nonlinear, as indicated in Equations (3.150) or (3.156).

Generator nodes have a different specification to load nodes. For the load nodes, the real and
reactive power demand can be predicted and both Equations (3.150) (or (3.156)) can be used.
However, only real power generation can be specified at the generator nodes, which means that only
the first of the equations in (3.150) or (3.156) is included. To understand this, refer to Figure 2.2. A
power station has two main controllers, the turbine governor and the AVR. The turbine governor
allows the real power output to be specified and kept constant. On the other hand, the AVR
maintains the generator terminal voltage at a constant value by adjusting the generator excitation,
subject to any operating limits. This means that the reactive power generation of a power station
is controlled indirectly by specifying the voltage demanded at the station terminals. The voltage
is usually set high (around 1.05–1.1 pu) in order to support the voltages at the load nodes. As the
voltage magnitude is specified, there is no need for the power flow program to calculate it, and only
the voltage angle needs to be found.

The input data for all the nodes in the system are summarized in Table 3.4. For the generation
nodes, referred to as voltage-controlled or PV nodes, the required inputs are the net real power
injection (scheduled generation minus predicted local demand) and the magnitude of the bus
voltage, while the voltage angle is the unknown state variable. The unknown net reactive power
injection will be determined once all the system state variables are calculated. For the load nodes,
also referred to as PQ nodes, the inputs are in the form of the predicted real and reactive power
demand (negative injections) with the unknown state variables being the bus voltage magnitude
and angle. Usually one of the generator nodes is selected as the slack node. At this node the
voltage angle and magnitude are specified and the unknown values of the real and reactive power
injection (generation or demand) determined once the state variables at all the other nodes are
calculated. Any power system imbalance will then appear as the required generation from the slack
generator. Removing the row and column corresponding to the slack node from the admittance
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Table 3.4 Node types in the power flow problem

Node type
Number of

nodes
Quantities
specified

Unknown state
variables

Other unknown
variables

Slack Usually 1 δ = 0, V — P, Q

PV (source) NG P, V δ Q
PQ (load) N − NG − 1 P, Q δ, V —

Total N 2N 2N − NG − 2 NG + 2

matrix remedies the problem of the admittance matrix being singular for networks with no shunt
branches.

The power flow problem described by Equations (3.150) or (3.156) is nonlinear and therefore
must be solved iteratively. The first load flow computer programs used the Gauss–Seidel method
because this required little computer memory. Nowadays, with increased computer speed and on-
chip memory, the Newton–Raphson method is used almost exclusively. A detailed description of
these algorithms is beyond the scope of this book but can be found in a number of textbooks on
power system analysis, for example Gross (1986) and Grainger and Stevenson (1994). A detailed
description of modelling FACTS devices in load flow programs can be found in Acha, Fuerte-
Esquivel and Angeles-Camancho (2004).
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4
Electromagnetic Phenomena

Chapter 1 explained how the different types of power system dynamics can be categorized according
to their time scale. It also identified the fastest dynamics of interest to this book to be those
associated with the electromagnetic interactions that occur within the generator immediately after
a disturbance appears on the system. These dynamics lead to the generation of high currents and
torques inside the generator and typically have a time scale of several milliseconds. Over this time
period the inertia of the turbine and generator is sufficient to prevent any significant change in rotor
speed so that the speed of the rotor can be assumed constant. Later chapters will consider longer
time-scale electromechanical dynamics when the effect of rotor speed changes must be included.

To help understand how the fault currents and torques are produced this chapter will use basic
physical laws to explain the electromagnetic interactions taking place within the generator. Although
this approach requires some simplifications to be made, it does allow a physical, qualitative approach
to be adopted. These explanations are then used to produce equations that quantify the currents
and torques in a generator with a uniform air gap. Unfortunately complications arise if the air gap is
non-uniform, for example in the salient-pole generator. However, the currents, and torques, in such
generators are produced by exactly the same mechanism as in a generator with a uniform air gap,
only their effects are a little more difficult to quantify, the details of which are best left to the more ad-
vanced analysis techniques presented in Chapter 11. Nevertheless, the way in which the current and
torque expressions are modified in the salient-pole generator is discussed at the end of each section.

The chapter opens by considering the basic principles with regard to flux linkage and its appli-
cation to short circuits in single-phase circuits. These principles are then used to study short-circuit
effects in the synchronous generator where the interactions between the stator and rotor circuits
must be included. Two types of fault are considered: firstly, a three-phase short circuit on the gen-
erator terminals and, secondly, a phase-to-phase short circuit. Fortunately, terminal three-phase
short circuits are rare but, should one occur, the generator must be able to withstand the high
currents and forces produced and remain intact. From a theoretical point of view, the analysis of
such a fault allows a number of important terms and parameters to be introduced and quantified.
A more common type of fault is the phase-to-phase fault. This type of fault introduces asymmetry
into the problem and is considered later in the chapter. Finally the chapter analyses the currents
and torques developed when a generator is synchronized to the grid.

4.1 Fundamentals

The currents and fluxes inside the generator after a fault can be analysed using the law of constant
flux linkages. This law, based on the principle of conservation of energy, states that the magnetic flux
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Figure 4.1 Continuity of the flux linking a coil after a change in the circuit configuration: (a)
circuit diagram; (b) current as a function of time. �l, leakage flux; �c, core flux.

linking a closed winding cannot change instantaneously. Since the energy stored in the magnetic
field is proportional to the flux linkage, this simply says that an instantaneous change in the stored
energy is not possible.

The application of the law of constant flux linkages to a simple coil fed from a DC source is
illustrated Figure 4.1a. At time t = 0 the switch disconnects the coil from the source and, at the same
time, short-circuits the coil. Before the switching occurs the coil flux linkages are �0 = N�0 = Li0,
where L is the coil inductance, N the number of turns and i0 the current. The law of constant flux
linkages requires the coil flux linkage just before, and just after, the short circuit to be the same, that
is �(t = 0+) = �(t = 0−). If the coil resistance is zero the circuit is purely inductive and the current
will remain constant at a value i(t) = i0, as shown by the horizontal dashed line in Figure 4.1b.
Normally the coil resistance is nonzero so that the magnetic energy stored in the circuit dissipates
over a period of time and the current decays exponentially to zero with a time constant T = L/R.
This is shown by the solid line in Figure 4.1b.

The law of constant flux linkage can now be used to analyse the way in which the generator
responds to a short circuit. A natural first step is to consider the response of the simple RL
circuit shown in Figure 4.2a as this circuit contains a number of features that are similar to
the generator equivalent circuit described in Chapter 3. In this circuit the AC driving voltage is
e = Em sin(ωt + θ0) and, as the circuit is assumed to be initially open circuit, i (0+) = i (0−) = 0. If
the switch is now suddenly closed a short-circuit current i(t) will flow which can be determined by
solving the differential equation

Em sin(ωt + θ0) = L
di
dt

+ Ri, (4.1)

v
e = Emsin(ωt + θ0)

L R

(a)

(b) (c)

i

i

t t

Figure 4.2 Single phase RL circuit: (a) equivalent circuit; (b) short-circuit currents with
(θ0 − φ) = 0; (c) short-circuit currents with (θ0 − φ) = −π/2.
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with the initial condition i(0) = 0. Solving this equation gives the current as

i (t) = Em

Z
sin(ωt + θ0 − φ) − Em

Z
sin(θ0 − φ)e−Rt/L, (4.2)

where θ0 defines the point in the AC cycle where the fault occurs, φ = arctan(ωL/R) is the phase
angle and Z = √

ω2 L2 + R2. The instant of the short circuit is taken as the time origin.
The first term in Equation (4.2) gives the forced response of the circuit. This alternating current

is driven by the sinusoidal emf and will be the current remaining when the circuit settles down into
its final steady-state condition. The second term constitutes the natural response of the circuit and
is referred to as the DC offset. The AC component has a constant magnitude equal to Em/Z while
the initial magnitude of the DC offset depends on the point in the AC cycle where the fault occurs
and decays with the time constant T = L/R. Figure 4.2b shows the current waveform when (θ0 −
φ) = 0 and there is no DC offset. Figure 4.2c shows the current waveform when (θ0 − φ) = −π/2
and the initial DC offset is at its highest value.

The response of a synchronous generator to a short circuit is similar to that described above in
the sense that it also consists of an AC component (the forced response) and a DC component (the
natural response). However, Equation (4.2) must be modified to account for the three-phase nature
of the generator and the effect of a varying impedance in the emf source.

4.2 Three-Phase Short Circuit on a Synchronous Generator

4.2.1 Three-Phase Short Circuit with the Generator on No Load
and Winding Resistance Neglected

The cross-section of a basic generator in Figure 4.3 shows the relative position of all the windings.
This diagram symbolizes both the round-rotor and salient-pole generator and, compared with the
cross-section in Figure 3.13, shows the rotor to have one additional winding: the rotor d-axis damper
winding denoted as D. At any point in time the position of the rotor is defined with reference to
the axis of phase A by the angle γ . However, as a fault may occur when the rotor is at any position
γ = γ 0, the time of the fault is taken as the time origin so that the rotor position at some time
instant t after the fault is given by

γ = γ0 + ωt. (4.3)
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Figure 4.3 The generator and its windings.
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Figure 4.4 Application of the law of constant flux linkages to determine the fault currents due to
a three-phase short circuit occurring at the instant γ0 = 0: (a) phase A; (b) phase B; (c) phase C.

Before the fault occurs the generator is assumed to be running at no load with the three armature
phase windings open-circuited when the only flux present in the generator is the excitation flux
produced by the rotor field winding. This flux links with each phase of the armature winding
producing the armature flux linkages shown in Figure 3.10a and given by Equations (3.35). When
the fault occurs γ = γ 0 and the net flux linking each of the armature phase windings is

�fA0 = �fa cos γ0, �fB0 = �fa cos(γ0 − 2π/3), �fC0 = �fa cos(γ0 − 4π/3), (4.4)

where �fa = Nφ�f0 is the amplitude of the excitation flux linkage of an armature phase winding
before the fault occurs, �f0 is the prefault excitation flux per pole and Nφ = kw N. In this last
equation N is the number of turns on each of the armature phase windings and kw is the armature
winding factor. An example of these phase flux linkages is shown by the horizontal dashed lines in
Figure 4.4 which is drawn assuming that the fault occurs at γ 0 = 0.

If the resistance of the armature winding is neglected then, according to the law of constant
flux linkage, the value of the flux linking each phase must remain constant after the fault at the
value � fA0, � fB0 and � fC0 defined by the equations in (4.4). After the fault, the rotor continues to
rotate and the linkages � fA, � fB and � fC continue to change sinusoidally as shown by the solid
lines in Figure 4.4 and have an equivalent effect to the emf in Figure 4.2a. To keep the total flux
linkages of each of the phase windings constant, additional currents iA, iB and iC must be induced
in the short-circuited phase windings to produce the flux linkages �AA, �BB and �CC shown by
the sinusoidal dashed lines in Figure 4.4. The total flux linkage of each phase winding can now be
obtained by adding the two components of flux linkage together to give

�A(t) = �AA + �fA = �fA0 = constant
�B(t) = �BB + �fB = �fB0 = constant
�C(t) = �CC + �fC = �fC0 = constant,

(4.5)

which on rearranging gives the flux linkages �AA, �BB and �CC as

�AA = �fA0 − �fA, �BB = �fB0 − �fB, �CC = �fC0 − �fC. (4.6)

As the flux linkage is equal to the product of inductance and current, these flux linkages can now
be used to obtain expressions for the phase current provided that the inductance value is known.1

1 The inductance value required is not simply the winding self-inductance but an equivalent inductance that
takes into account the way the winding is coupled with all the other windings in the generator. The importance
of this coupling will be examined in Sections 4.2.3 and 4.2.4 when actual values for Leq are discussed.
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In the case of a generator with a uniform air gap the equivalent inductance of each of the phase
windings Leq is the same and does not depend on rotor position (see Section 3.3). In this case the
short-circuit phase currents iA = �AA/Leq, iB = �BB/Leq and iC = �CC/Leq have the same shape
as the flux linkages �AA, �BB and �CC and consist of both an AC and a DC component. The AC
component currents can be expressed as

iA AC = −im(t) cos(ωt + γ0), iB AC = −im(t) cos(ωt + γ0 − 2π/3)
iC AC = −im(t) cos(ωt + γ0 − 4π/3),

(4.7)

and are proportional to the flux linkages � fA, � fB and � fC, while the DC component currents can
be expressed as

iA DC = im(0) cos γ0, iB DC = im(0) cos(γ0 − 2π/3), iC DC = im(0) cos(γ0 − 4π/3), (4.8)

and are proportional to � fA0, � fB0 and � fC0. In order to generalize these two sets of equations the
maximum value of the current in Equation (4.7) has been defined as im(t) while in Equation (4.8) it
is im(0), the value of im(t) at the instant of the fault. When the winding resistance is neglected, im(t)
is constant and equal to its initial value im(0). The net current is obtained by adding the component
currents to give

iA = −im(t) cos(ωt + γ0) + im(0) cos γ0

iB = −im(t) cos(ωt + γ0 − 2π/3) + im(0) cos(γ0 − 2π/3)
iC = −im(t) cos(ωt + γ0 − 4π/3) + im(0) cos(γ0 − 4π/3),

(4.9)

where the DC offset depends on γ 0, the instant in the AC cycle when the fault occurs, and is different
for each phase of the generator.

The combined effect of the AC and the DC components of the three armature phase currents is
to produce an armature reaction mmf that drives an armature reaction flux across the air gap to
link with the rotor windings and induce currents in them. Consider first the effect of the AC phase
currents iA AC, iB AC and iC AC as shown in the upper row of diagrams in Figure 4.5. These AC phase
currents, Figure 4.5a, produce an AC armature reaction mmf Fa AC that behaves in a similar way to
the steady-state armature reaction mmf Fa discussed in Section 3.3. Recall that in the steady state
Fa rotates at the same speed as the rotor (and the excitation mmf F f), demagnetizes the machine
and produces a torque proportional to the sine of the angle between Fa and F f. During the short
circuit the developed electrical torque and power are both zero so that the angle between Fa AC and
F f is 180◦; Fa AC directly opposes F f and the flux �a AC, produced by Fa AC, takes the path shown
in Figure 4.5b. Consequently, the rotor flux linkages �a AC r produced by �a AC are constant and
negative (with respect to the excitation linkages) as shown by the solid line in Figure 4.5c. Here
the subscript ‘r’ has been added to emphasize that �a AC r is the rotor flux linkage produced by the
armature flux �a AC.

The lower row of diagrams in Figure 4.5 shows the combined effect of the DC phase currents
iA DC, iB DC and iC DC. These currents, Figure 4.5a, produce a stationary DC mmf Fa DC which
drives the stationary armature flux �a DC shown in Figure 4.5b. The space direction of Fa DC can
be obtained by adding the component mmfs due to iA DC, iB DC and iC DC in a similar way as in
Equation (3.40) when the resulting mmf Fa DC is found to be always directed at an angle γ 0 with
respect to the A-axis. As the rotor is also at angle γ 0 at the instant of the fault, Fa DC is always
aligned initially with the rotor d-axis and then counter-rotates with respect to it. This means that
the rotor flux linkage �a DC r, produced by �a DC, is initially positive (magnetizes the machine) and
then, as the rotor rotates, �a DC r changes cosinusoidally as shown in Figure 4.5c.
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Figure 4.5 Effect of the AC component (upper row) and the DC component (lower row) of the
armature currents: (a) AC and DC components of the currents; (b) path of the armature reaction
flux (rotating for the AC component, stationary for the DC component); (c) linkages with the rotor
windings. Position shown at the instant of fault γ0 = 0.

As the rotor field and damper windings are closed, their total flux linkage must remain unchanged
immediately after the fault. Consequently, additional currents must flow in these windings to
compensate the armature flux �a r = �a AC r + �a DC r that links with the rotor. Figure 4.6 shows
the rotor linkages equal to −�a r necessary for this and the field and damper currents which must
flow to set up such linkages. Both currents contain DC and AC components. Consequently, the
resulting rotor flux, as seen by the armature, can be assumed to be unchanged by the fault. These
linkages were shown as � fA, � fB and � fC in Figure 4.4.

To summarize, a three-phase fault causes short-circuit armature currents to flow which have both
an AC and a DC component. At the instant of the fault, both the AC and DC armature mmfs are
directed along the rotor d-axis but then, as the rotor rotates, the AC armature mmf rotates with it
inducing additional direct currents in the rotor, while the DC armature mmf is stationary inducing
additional alternating currents in the rotor. There is always a complementary pair of stator to rotor
currents of the form AC → DC and DC → AC. The value of the DC offset may be different for
each stator phase and depends on the instant of the fault.

i
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0 2ππ
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Ψ −Ψar

γ 2ππ γ 2ππ γ
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Figure 4.6 Application of the law of constant flux linkage to determine the currents flowing in the
rotor windings : �r, induced flux linkages necessary in the rotor windings in order to compensate the
armature reaction flux linkages; if, current in the field winding; iD, current in the damper winding.
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4.2.2 Including the Effect of Winding Resistance

A winding dissipates energy in its resistance at a rate proportional to the current squared. Conse-
quently, the stored magnetic energy decays with time and the induced direct currents maintaining
the flux linkages decay exponentially to zero at a rate determined by the circuit time constant
T = L/R.

The DC component of the armature phase current decays with the armature time constant Ta

determined by the equivalent inductance and resistance of the phase winding. To account for this
decay the direct currents in Equations (4.8) must be modified to

iA DC = im(0)e−t/Ta cos γ0, iB DC = im(0)e−t/Ta cos(γ0 − 2π/3)
iC DC = im(0)e−t/Ta cos(γ0 − 4π/3),

(4.10)

when the total phase currents become

iA = −im(t) cos(ωt + γ0)+im(0)e−t/Ta cos γ0

iB = −im(t) cos(ωt + γ0 − 2π/3) + im(0)e−t/Ta cos(γ0 − 2π/3)
iC = −im(t) cos(ωt + γ0 − 4π/3) + im(0)e−t/Ta cos(γ0 − 4π/3).

(4.11)

These equations are identical in form to that obtained for the single-phase circuit in Equation (4.2)
with γ 0 = θ 0 and a phase angle φ = π/2. However, in Equation (4.2) im(t) is constant whereas for
the synchronous generator it varies with time for reasons that will now be explained.

The currents iA AC, iB AC and iC AC induce direct currents in the rotor windings. These direct
currents decay with a time constant determined by the particular rotor circuit in which they flow.
Consequently the DC component of the damper winding current decays with the damper winding
time constant, called the d-axis subtransient short-circuit time constant T′′

d , while the DC component
of the field current decays with the field winding time constant, called the d-axis transient short-
circuit time constant T′

d. Normally the resistance of the damper winding is much higher than the
resistance of the field winding so that T′′

d � T′
d and the DC component of the damper winding

current decays much faster than the DC component of the field current. As the DC rotor currents
induce AC stator currents, the magnitude of the AC component of the stator current im(t) will decay
to its steady-state value with these two time constants. Conversely, as the DC phase currents iA DC,
iB DC and iC DC induce alternating currents in the field and the damper windings, these AC rotor
currents will also decay with the time constant Ta.

Table 4.1 summarizes the relationship between the relevant components of the stator and the
rotor currents and their decay time constants.

Figure 4.7 shows a typical time variation of the generator currents resulting from a three-phase
terminal short circuit. The diagrams constituting Figure 4.7 have been organized so that the first
row shows the currents in phase A of the stator armature winding, the second row the field winding
currents and the third row the damper winding currents. Only phase A of the armature winding is
shown because the currents in phases B and C are similar but shifted by ±2π/3. The first column in
Figure 4.7 shows the DC component of the armature current and the corresponding induced rotor
currents, the second column the AC component of the armature current and the corresponding

Table 4.1 Pairs of coupled stator–rotor currents.

Three-phase Rotor windings
stator winding (field and damper) Means of energy dissipation Time constant

DC AC Resistance of the armature winding Ta

AC DC Resistance of the damper winding T′′
d

Resistance of the field winding T′
d
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Figure 4.7 Short-circuit currents in the generator: (a) DC component of the phase current and the
corresponding AC component of the field and damper winding current; (b) AC component of the
current in phase A and the corresponding DC component of the field and damper winding current;
(c) the resulting current in phase A, the field and the damper winding as the sum of the currents
shown in (a) and (b).

induced rotor currents, and the third column the resultant currents in the armature, the field and
the damper winding made up from their AC and DC components. The dashed lines indicate the
exponential envelopes that correspond to the different time constants.

Note that the AC component of the armature current does not decay completely to zero but
to a steady-state value. The field current decays to its prefault value if0 while the damper winding
current decays completely to zero, its prefault value.

Now it is possible to compare the generator short-circuit armature current shown in the top
diagram of Figure 4.7c with the response of a short-circuited RL circuit shown in Figure 4.2c. Both
currents have a DC component that depends on the instant the short circuit is applied and that
decays with a time constant determined by the resistance and inductance of the winding. However,
while the AC component shown in Figure 4.2c has a constant amplitude, the amplitude of the
AC component of the armature current shown in Figure 4.7c is decaying with two time constants
depending on the resistance and inductance of the damper and field windings. The changing
amplitude of the alternating current suggests that the internal impedance of the generator is not
constant, as in Figure 4.2, but is changing with time due to interactions between the armature, field
and damper windings. This will be discussed further in the next section.

If Ta > T′′
d the fault current in phase A for γ0 = 0 is positive for the first few cycles and does not

cross zero until the DC offset decays. This is typical for large generators. If T′
d > Ta the field current

if will always oscillate above its steady-state value if0. If T′′
d < Ta, the damper current iD may go

negative.

4.2.3 Armature Flux Paths and the Equivalent Reactances

Section 3.3 explained how the effect of the steady-state AC armature flux on the generator per-
formance could be accounted for in the equivalent circuit model by the voltage drop across the
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Figure 4.8 The path of the armature flux in: (a) the subtransient state (screening effect of the
damper winding and the field winding); (b) the transient state (screening effect of the field winding
only); (c) the steady state. In all three cases the rotor is shown to be in the same position but
the actual rotor position corresponding to the three states will be separated by a number of
rotations.

synchronous reactances Xd and Xq. A similar approach can be adopted during the fault period,
but now the value of the armature reactance will be different as the additional currents induced in
the rotor windings force the armature flux to take a different path to that in the steady state. As the
additional rotor currents prevent the armature flux from entering the rotor windings, they have the
effect of screening the rotor from these changes in armature flux.

Figure 4.8 shows three characteristic states that correspond to three different stages of rotor
screening. Immediately after the fault, the current induced in both the rotor field and damper
windings forces the armature reaction flux completely out of the rotor to keep the rotor flux
linkages constant, Figure 4.8a, and the generator is said to be in the subtransient state. As energy
is dissipated in the resistance of the rotor windings, the currents maintaining constant rotor flux
linkages decay with time allowing flux to enter the windings. As the rotor damper winding resistance
is the largest, the damper current is the first to decay, allowing the armature flux to enter the rotor
pole face. However, it is still forced out of the field winding itself, Figure 4.8b, and the generator
is said to be in the transient state. The field current then decays with time to its steady-state value
allowing the armature reaction flux eventually to enter the whole rotor and assume the minimum
reluctance path. This steady state is illustrated in Figure 4.8c and corresponds to the flux path
shown in the top diagram of Figure 4.5b.

It is convenient to analyse the dynamics of the generator separately when it is in the subtransient,
transient and steady states. This is accomplished by assigning a different equivalent circuit to the
generator when it is in each of the above states, but in order to do this it is first necessary to consider
the generator reactances in each of the characteristic states.

The inductance of a winding is defined as the ratio of the flux linkages to the current producing
the flux. Thus, a low-reluctance path results in a large flux and a large inductance (or reactance)
and vice versa. Normally a flux path will consist of a number of parts each of which has a different
reluctance. In such circumstances it is convenient to assign a reactance to each part of the flux
path when the equivalent reactance is made up of the individual path reactances. In combining
the individual reactances it must be remembered that parallel flux paths correspond to a series
connection of reactances while series paths correspond to a parallel connection of reactances. This
is illustrated in Figure 4.9 for a simple iron-cored coil with an air gap in the iron circuit. Here the
total coil flux � consists of the leakage flux �l and the core flux �c. The reactance of the leakage
flux path is Xl, while the reactance of the core flux path has two components. The first component
corresponds to the flux path across the air gap Xag and the second component corresponds to the
flux path through the iron core XFe. In the equivalent circuit Xl is connected in series with the
parallel combination Xag and XFe. As the reluctance of a flux path in iron is very small compared
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Figure 4.9 A coil with an air gap and its equivalent circuit diagram.

with that in air XFe � Xag and the total reactance of the winding is dominated by those parts of
the path that are in air: the air gap and the flux leakage path. Consequently X ≈ Xag + Xl .

These principles are applied to the synchronous generator in Figure 4.10 for each of the three
characteristic states. It also introduces a number of different reactances, each of which corresponds
to a particular flux path:

Xl corresponds to the path that the armature leakage flux takes around the stator
windings and is referred to as the armature leakage reactance;

Xa corresponds to the flux path across the air gap and is referred to as the
armature reaction reactance;

XD corresponds to the flux path around the damper winding;
X f corresponds to the flux path around the field winding.

The reactances of the damper winding and the field winding are also proportional to the flux
path around the winding. Thus XD and X f are proportional to the actual damper and field winding
reactance respectively.

In Figure 4.10 the armature reactances in each of the characteristic states are combined to give
the following equivalent reactances:

X′′
d direct-axis subtransient reactance

X′
d direct-axis transient reactance

Xd direct-axis synchronous reactance.

In the subtransient state the flux path is almost entirely in air and so the reluctance of this path
is very high. In contrast, the flux path in the steady state is mainly through iron with the reluctance
being dominated by the length of the air gap. Consequently, the reactances, in increasing magnitude,

(a) (b) (c)
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Figure 4.10 Equivalent reactance of a synchronous generator in the: (a) subtransient state; (b)
transient state; (c) steady state.
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Figure 4.11 Three-step approximation of the generator model: (a) rms value of the AC component
of the armature current; (b) generator reactances.

are X′′
d < X′

d < Xd. In the case of large synchronous generators X′
d is about twice as large as X′′

d,
while Xd is about 10 times as large as X′′

d.
As previously discussed, following a fault the generator becomes a dynamic source that has both

a time-changing synchronous reactance X(t) and an internal voltage E(t). Dividing the generator
response into the three characteristic states with associated constant reactances makes it easier to
analyse the generator dynamics. Rather than considering one generator model with time-changing
reactances and internal voltages, it is convenient to consider the three states separately using
conventional AC circuit analysis. This is illustrated in Figure 4.11. The rms value of the AC
component of the armature current IAC(t) is shown in Figure 4.11a. This AC component was
previously shown in the top diagram of Figure 4.7b. The continuously changing synchronous
reactance X , shown in Figure 4.11b, can be calculated by dividing the open-circuit emf E by the
armature current IAC(t). In each of the three characteristic states, the generator will be represented
by a constant emf behind a constant reactance X′′

d, X′
d, Xd, respectively. Dividing the emf by the

appropriate reactance will give the subtransient, transient and steady-state currents.

4.2.3.1 Quadrature-Axis Reactances

Figure 4.8 shows the path taken by the AC armature flux in the three characteristic states and is
drawn assuming that the armature mmf is directed along the d-axis. This is true when the generator
is on no load prior to the three-phase short circuit, but generally, for other types of disturbances
or for a generator operating on load prior to a disturbance, the armature mmf will have both a d-
and a q-component. In this more general case it is necessary to analyse the influence of the two
armature mmf components separately using the two-reaction method introduced in Section 3.3.

If a generator is in the subtransient state, and the armature mmf is directed along the rotor
d-axis, then the armature reaction flux will be forced out of the rotor by the currents induced in the
field winding, the damper winding and the rotor core. This flux path corresponds to the direct-axis
subtransient reactance X′′

d. On the other hand, if the armature mmf is directed along the rotor
q-axis, then the only currents forcing the armature reaction flux out of the rotor are the rotor
core eddy currents and the currents in the q-axis damper winding. If a generator only has a d-axis
damper winding, then the q-axis screening effect is much weaker than that for the d-axis, and the
corresponding quadrature axis subtransient reactance X′′

q is greater than X′′
d. This difference between

X′′
q and X′′

d is called subtransient saliency. For a generator with a damper winding in both the d-axis
and the q-axis, the screening effect in both axes is similar, subtransient saliency is negligible and
X′′

q ≈ X′′
d.

When the generator is in the transient state, screening is provided by the field winding which is
only in the d-axis. However, in the round-rotor generator some q-axis screening will be produced by
eddy currents in the rotor iron with the effect that X′

q > X′
d. The actual value of X′

q is somewhere
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between X′
d and Xq with typically X′

q ≈ 2X′
d. In the salient-pole generator the laminated rotor

construction prevents eddy currents flowing in the rotor body, there is no screening in the q-axis
and X′

q = Xq. Because of the absence of a field winding in the q-axis, there is some degree of
transient saliency in all types of generator.

Table 4.2 summarizes the different types of saliency and the reasons for it, while typical values
for all the generator parameters are tabulated in Table 4.3.

In Table 4.3 the quadrature-axis subtransient short-circuit time constant T′′
q and the transient

short-circuit time constant T′
q are defined in the same way as for the direct-axis time constants

T′′
d , T′

d in Table 4.1. For the round-rotor generator, since there is no field winding in the q-axis, it is
assumed that rotor body eddy currents contribute to the q-axis parameters.

Values of the short-circuit time constants T′
d, T′

q, T′′
d , T′′

q correspond to the armature winding
when short-circuited. Some manufacturers may quote the time constants for the armature on open
circuit as T′

do, T′
qo, T′′

do, T′′
qo. An approximate relationship between the open- and short-circuit time

constants may be found from the equivalent circuits shown in Figure 4.10. If Xl is neglected then

X′
d

∼= Xa Xf

Xa + Xf
,

1
X′

d

∼= 1
Xa

+ 1
Xf

(4.12)

and

X′′
d

∼= 1
1

XD
+ 1

X′
d

, XD
∼= X′

d X′′
d

X′
d − X′′

d

. (4.13)

Table 4.2 Saliency in the three characteristic states of the synchronous generator.

Saliency

State Generator type Reactance Yes/no Reason

Subtransient Any type but with a
d-axis damper only

X′′
q > X′′

d Yes Weaker screening in the
q-axis because of the lack
of damper winding

Any type but with
both d- and q-axis
damper windings

X′′
q ≈ X′′

d No Similar screening in both
axes

Transient Round rotor X′
q > X′

d Yes Strong screening in the
d-axis due to the field
winding but weak
screening in the q-axis due
to the rotor body currents

Salient pole X′
q = Xq Yes No screening in the q-axis

because of the laminated
rotor core

Steady state Round rotor Xq ≈ Xd No Symmetrical air gap in
both axes

Salient pole Xq < Xd Yes Larger air gap on the
q-axis
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Table 4.3 Typical parameter values for large generators. Reactances are per unit to the rated
MVA and time constants are in seconds.

Round rotor Salient-pole rotor

Parameter 200 MVA 600 MVA 1500 MVA 150 MVA 230 MVA

Xd 1.65 2.00 2.20 0.91 0.93
Xq 1.59 1.85 2.10 0.66 0.69
X′

d 0.23 0.39 0.44 0.3 0.3
X′

q 0.38 0.52 0.64 — —
X′′

d 0.17 0.28 0.28 0.24 0.25
X′′

q 0.17 0.32 0.32 0.27 0.27
T′

d 0.83 0.85 1.21 1.10 3.30
T′

q 0.42 0.58 0.47 — —
T′′

d 0.023 0.028 0.030 0.05 0.02
T′′

q 0.023 0.058 0.049 0.06 0.02

In order to determine the time constants T′′
d , T′′

do it is necessary to insert the resistance RD into the
branch with XD in Figure 4.10a. This is illustrated in Figure 4.12. If Xl is neglected then the short
circuit in Figure 4.12a bypasses all the shunt branches and the time constant is

T′′
d = XD

ωRD
. (4.14)

When the circuit is open circuit as in Figure 4.12b, the time constant is

T′′
do =

XD + Xa Xf
Xa+Xf

ωRD

∼= XD + X′
d

ωRD
. (4.15)

Dividing Equation (4.14) by Equation (4.15), and substituting for XD from Equation (4.13), gives
T′′

d

/
T′′

do ≈ X′′
d/X′

d. Following a similar procedure for the remaining time constants in the d- and
q-axes gives the relationships

T′′
d

∼= T′′
do

X′′
d

X′
d

, T′′
q

∼= T′′
qo

X′′
q

X′
q

, T′
d

∼= T′
do

X′
d

Xd
, T′

q
∼= T′

qo

X′
q

Xq
. (4.16)

The open-circuit time constants are larger than the short-circuit ones.

(a) (b) XlXl

XDXD

RD
RD

X fX f Xa
Xa

Figure 4.12 Equivalent circuits for determining the subtransient time constants: (a) short circuit;
(b) open circuit.
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4.2.4 Generator Electromotive Forces and Equivalent Circuits

Equivalent circuits were first used in Section 3.3 to analyse the steady-state behaviour of the
generator and in this subsection their use is extended to cover all three characteristic states. As
these equivalent circuits are valid only for AC circuit analysis purposes, they can only be used to
analyse the AC component of the armature current and the DC component must be neglected.
What follows is a physical justification for using such equivalent circuits to model the synchronous
generator, with a full mathematical derivation being left until Chapter 11.

In the steady state the generator can be modelled by the equivalent circuit shown in Figure 3.17
where the generator is represented in both the d- and q-axes by constant internal emfs Eq and Ed

acting behind the synchronous reactances Xd and Xq. The emf Eq is proportional to the excitation
flux and, as the excitation flux is proportional to the field current, is also given the symbol Ef. As
there is no excitation in the q-axis, the corresponding emf Ed is zero. Consequently the total internal
emf is E = Eq + Ed = Eq = Ef .

A similar representation can be used when the generator in the subtransient and transient states.
However, as each of the three generator characteristic states is characterized by a different pair
of reactances, there are now three different equivalent circuits, each valid at the beginning of a
corresponding state, in which the generator is represented by a pair of constant internal emfs
behind the appropriate reactances. It is important to realize that in each of the states, the internal
emfs will be different and equal to that part of the rotor flux linkages that are assumed to remain
constant in that particular characteristic state.

In the steady state the three emfs E, Ef and Eq are all equal, but during a disturbance they have
a different interpretation and it is important to differentiate between them. Eq is proportional to
the field current (which produces a d-axis mmf) and will vary in proportion to the changes in the
field current. During a disturbance there are also currents induced in the q-axis rotor body so that
Ed will no longer be zero but will vary in proportion to these rotor body currents. Consequently
neither Eq nor Ed are constant during either the subtransient or transient state.

The emf Ef is defined as being proportional to the voltage V f applied to the field winding and it is
only in the steady state when the field current if = if0 = Vf

/
Rf that Ef = Eq (Rf is the field winding

resistance). In all other characteristic states if 
= Vf/Rf and Ef 
= Eq. The importance of Ef is that
it reflects the effect of excitation control.

4.2.4.1 Subtransient State

During the subtransient period the armature flux is forced into high-reluctance paths outside the
rotor circuits by currents induced in the field and damper winding. This is shown in Figure 4.8a
for the flux acting along the d-axis only, but in general the armature flux will have both d- and
q-components. In this more general case the flux path is distorted not only by the d-axis field
and damper currents but also by the q-axis damper current (if there is a q-axis damper winding)
and q-axis rotor body currents. The reactances associated with the flux path are X′′

d and X′′
q. As

the rotor flux linkages in both axes are assumed to remain constant during the subtransient state,
the internal emf corresponding to these linkages may also be assumed to remain constant and the
generator may be represented by a constant subtransient internal emf E′′ = E′′

d + E′′
q acting behind

the subtransient reactances X′′
d and X′′

q. The generator circuit equation is then

E′′ = Vg + RI + jId X′′
d + jIq X′′

q, (4.17)

where I = Id + Iq is the armature current immediately after the fault. Its value can be calculated
once E′′ is known. The emf E′′

q is proportional to the rotor flux linkages along the d-axis, that is the
sum of the field winding and the d-axis damper winding flux linkages. Similarly E′′

d is proportional
to q-axis rotor flux linkages, that is the sum of the q-axis rotor body and the q-axis damper winding
flux linkages.
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Figure 4.13 Equivalent circuit and phasor diagram of the generator in the subtransient state.

It is important to understand the difference between the steady-state and subtransient emfs.
Consider first Eq and E′′

q . Eq is proportional to the field current and therefore to the field winding
self-flux linkages. In order to screen the field winding from the change in armature flux, the field
current varies following the fault and Eq varies accordingly. The emf E′′

q is proportional to the total
rotor d-axis flux linkages (field and damper windings) and includes the linkages due to the armature
flux. This total flux linkage must remain constant and equal to its prefault value following the fault.
If the generator is on no load prior to the fault then the prefault armature current and flux are
zero. In this case the total prefault rotor flux linkages are equal to the linkages due to the excitation
flux only and the prefault values of Eq and E′′

q are the same and equal to the terminal voltage. If,
however, the generator is on load prior to the fault then the armature current is not zero and the
total rotor flux linkages will include the effect of the prefault linkages due to the armature flux. In
this case the prefault values of Eq and E′′

q will not be the same. A similar argument is valid for the
q-axis flux linkages and emfs. Thus the prefault value of E′′

d is equal to zero only when the generator
is on no load prior to the fault.

The emf E = Eq + Ed can be found by observing that

E = Vg + RI + jId Xd + jIq Xq

= Vg + RI + jId

(
Xd − X′′

d

) + jId X′′
d + jIq

(
Xq − X′′

q

) + jIq X′′
q (4.18)

= E′′ + jId

(
Xd − X′′

d

) + jIq

(
Xq − X′′

q

)
.

Figure 4.13 shows the equivalent circuit and the phasor diagram of the generator in the subtran-
sient state. E is no longer along the q-axis and has both Ed and Eq components. Usually R is small,
so the length of IR is small too. The length of IR has been exaggerated in Figure 4.13 to show
clearly its influence.

4.2.4.2 Transient State

During the transient period the armature flux is forced into high-reluctance paths outside the field
winding by currents induced in the field winding. This is shown in Figure 4.8b for the flux acting
along the d-axis only, but in general the armature flux will have both d- and q-components. In this
more general case the flux path is distorted not only by the d-axis field current, but also by the
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q-axis rotor body currents. The reactances associated with the flux path are X′
d and X′

q. As the rotor
flux linkages in both axes are assumed to remain constant during the transient state, the internal
emf corresponding to these linkages may also be assumed to remain constant and equal to their
prefault values. Thus the generator may be represented in the transient state by constant transient
internal emfs E′

q and E′
d acting behind the transient reactances X′

d and X′
q. The circuit equation of

the generator is then

E′ = E′
q + E′

d = Vg + RI + jId X′
d + jIq X′

q, (4.19)

where I = Id + Iq is the armature current at the beginning of the transient period. Its value
is different from that given by Equation (4.17) and can be calculated once E′ is known. E′

q is
proportional to the field winding flux linkages � f whilst E′

d is proportional to the flux linkage of
the q-axis rotor body. Both components include the effect of the prefault armature current and
are assumed to remain constant during the transient state. Following a similar argument as for the
subtransient state, the prefault values of the emfs are E′

q0 = Eq0 = Vg and E′
d0 = Ed0 = 0 only if

prior to the fault the generator is on no load (zero armature reaction flux). If prior to the fault the
generator is on load then E′

q and E′
d include the effect of the load current and E′

0 
= E′′
0 
= E0.

Similar to the subtransient state the emf E can be found from

E = Vg + RI + jId Xd + jIq Xq = E′ + jId

(
Xd − X′

d

) + jIq

(
Xq − X′

q

)
. (4.20)

Figure 4.14 shows the equivalent circuit and the phasor diagram of the round-rotor generator in
the transient state. The transient emf of such a generator has both d- and q-components. For the
salient-pole generator with laminated rotor there is no screening in the q-axis and X′

q = Xq so that
E′

d = 0 and E′ = E′
q.
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Figure 4.14 Equivalent circuit and phasor diagram of the round-rotor generator in the transient
state. The length of IR has been exaggerated for clarity.
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4.2.4.3 Establishing Initial emf Values

The previous discussion explained why the subtransient and transient emfs do not change during
their respective periods (neglecting the influence of resistances) and are equal to their prefault
values.

The simplest situation occurs when the generator is no load prior to the fault when the initial
values of the transient and subtransient emfs are equal to the prefault steady-state emf E (and the
generator prefault terminal voltage). When the generator is on load the influence of the prefault
armature current I0 on the internal emfs must be taken into account. Note that the three equivalent
circuits shown in Figures 3.17, 4.13 and 4.14 are valid for different states of the generator and
therefore for different values of current I. However, as the subtransient and transient emfs are
equal to their prefault values, the three equivalent circuits must also be valid for the prefault current
I0. Thus, according to Kirchhoff’s law, the three equivalent circuits can be combined for the same
current I0, as shown in Figure 4.15a.

By following a similar procedure to that described in Section 3.3 the initial values of E0, E′
0

and E′′
0 can then be found from the phasor diagram, Figure 4.15b, assuming that I0 and its phase

angle ϕg0 are known. As excitation is only in the d-axis, E0 acts along the q-axis while E′′
0 and E′

0

(a)

(b) (c)

q

d

q

d

EE   =E   = 0f q0
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Figure 4.15 Finding the initial values of the emfs: (a) equivalent circuits; (b) phasor diagram of
the round-rotor generator; (c) phasor diagram of the salient-pole generator. The length of IR has
been exaggerated for clarity.



P1: OTA/XYZ P2: ABC
c04 JWBK257/Machowski September 22, 2008 21:35 Printer Name: Yet to Come

144 Power System Dynamics

usually have nonzero direct and quadrature components. For the salient-pole generator, Figure
4.15c, Ed0 = 0 and E′

0 = E′
q0. In the phasor diagram the value of the voltage drop across the

generator resistance has been exaggerated for clarity but, in practice, the resistance is very small
and can often be neglected. Once the initial values of the transient and subtransient emfs have been
found, Equations (4.17) and (4.19) can be used to calculate the magnitude of the alternating current
component at the start of the subtransient and transient periods respectively.

Example 4.1

A 200 MVA round-rotor generator with the parameters given in Table 4.3 is loaded with 1pu
of real power and 0.5 pu of reactive power (lagging). The voltage at the generator terminals is
1.1 pu. Find the prefault values of the steady-state, transient and subtransient emfs. Assume
Xd = Xq = 1.6 and neglect the armature resistance.

Assuming the generator voltage to be the reference, the load current is

I0 =
(

S
Vg

)∗

= P − jQ
Vg

= 1 − j0.5
1.1

= 1.016∠ − 26.6◦,

so that ϕg0 = 26.6◦. The steady-state internal emf is

Eq0 = Vg + jXd I0 = 1.1 + j1.6 × 1.016∠ − 26.6◦ = 2.336∠38.5◦.

Thus Eq0 = 2.336 and δg0 = 38.5◦. The d- and q-components of the current and voltage are

Id0 = −I0 sin(ϕg0 + δg0) = −1.016 sin(26.6◦ + 38.5◦) = −0.922

Iq0 = I0 cos(ϕg0 + δg0) = 0.428

Vgd = −Vg sin δg0 = −1.1 sin 38.5◦ = −0.685, Vgq = Vg cos δg0 = 0.861.

Now the d- and q-components of the transient and subtransient emfs can be calculated from the
phasor diagram in Figure 4.15 as

E′
d0 = Vgd + X′

q Iq0 = −0.685 + 0.38 × 0.428 = −0.522

E′
q0 = Vgq − X′

d Id0 = 0.861 − 0.23 × (−0.922) = 1.073

E′′
d0 = Vgd + X′′

q Iq0 = −0.612

E′′
q0 = Vgq − X′′

d Id0 = 1.018.

Example 4.2

Solve a similar problem to that in Example 4.1 but for the 230 MVA salient-pole generator in
Table 4.3.

The main problem with the salient-pole generator is in finding the direction of the q-axis.
Equation (3.64) gives EQ = Vg + jXq I0 = 1.1 + j0.69 × 1.016∠ − 26.6◦ = 1.546∠23.9◦. Thus
δg0 = 23.9◦ and

Id0 = −1.016 sin(26.6◦ + 23.9◦) = −0.784, Iq0 = −1.016 cos(26.6◦ + 23.9◦) = 0.647

Vgd = −1.1 sin 23.9◦ = −0.446, Vgq = 1.1 cos 23.9◦ = 1.006

Eq0 = Vgq − Id0 Xd = 1.006 − (−0.784) × 0.93 = 1.735

E′
d0 = −0.446 + 0.69 × 0.647 = 0, E′

q0 = 1.006 − 0.3 × (−0.784) = 1.241,

E′′
d0 = −0.446 + 0.27 × 0.647 = −0.271, E′′

q0 = 1.006 − 0.25 × (−0.784) = 1.202.
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Lf Ld

Mfd
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Figure 4.16 Coupling between the field winding and the d-axis armature coil.

4.2.4.4 Flux Decrement Effects

Although the subtransient and transient emfs remain constant immediately after a fault, their
values change with time as the armature flux penetrates the rotor circuits. The time scale of these
changes is such that changes during the subtransient period affect the short-circuit currents and
torques, as will be discussed later in this chapter, while changes during the transient period can effect
generator stability and are discussed at length in Chapters 5 and 6. Although a full mathematical
treatment of these flux decrement effects must be left until Chapter 11, a basic understanding of the
mechanisms behind them can be obtained by considering the simple d-axis coupled circuit shown in
Figure 4.16. This circuit models the field winding and the d-axis armature coil, and the coupling
that exists between them, and gives the field flux linkage as

�f = Lf if + Mfdid, (4.21)

where Lf is the self-inductance of the field winding and Mfd is the mutual inductance between the
two windings. Chapter 11 will show that Mfd = √

3/2Mf .
According to the theorem of constant flux linkage, � f will remain constant immediately following

any change in if or id and, since E′
q ∝ �f , E′

q will also remain constant. However, as the field winding
has a resistance greater than zero this will allow some of the magnetic stored energy to be dissipated
and the winding flux linkage to change. This change in flux linkage is governed by the differential
equation

d� f

dt
= vf − Rf if , (4.22)

which, when rearranging and substituting Equation (4.21), gives

vf = Lf
dif

dt
+ Rf if + Mfd

did

dt
. (4.23)

At this point it is convenient to consider the changes 
if, 
id and 
vf rather than absolute values
when introducing the Laplace operator and writing Equation (4.23) in terms of these changes gives


vf (s) = Lf s
if (s) + Rf
if (s) + Mfds
id(s). (4.24)

This equation can then be written in transfer function form as


if (s) = 1/Rf

(1 + T′
dos)


vf (s) − Mfd/Rf

(1 + T′
dos)

s
id(s), (4.25)

where T′
do = Lf/Rf . Substituting Equation (4.25) into Equation (4.21) gives


�f (s) = Lf/Rf

(1 + T′
dos)


vf (s) + Mfd

(1 + T′
dos)


id(s). (4.26)

As 
E′
q ∝ 
�f and 
Ef ∝ 
vf , this equation can be written in terms of 
E′

q and 
Ef.
Figure 4.14 shows that for a generator Id flows into the winding while I flows out of the winding.
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Figure 4.17 Changes in E′
q (a) to a step change in excitation 
Ef and (b) to a step change in load


I .

Thus, assuming no change in the rotor angle, 
id can be replaced by a term proportional to −
I
when a more rigorous analysis similar to the above but using the relationships established in Chapter
11 to evaluate the constants of proportionality would show that


E′
q(s) = 1

(1 + T′
dos)


Ef (s) − K
(1 + T′

dos)

I(s), (4.27)

where K is a constant. As can be seen, a change in the field winding flux linkage, and hence a change
in E′

q, can be produced by either a change in the excitation voltage or a change in the armature
current. The rate at which these changes occur is determined by the transient time constant T′

do with
the field winding filtering out high-frequency changes in 
I and 
Ef. Assuming for the moment
that 
I = 0 and that a step change is made on Ef, then E′

q will change exponentially as shown in
Figure 4.17a. Similarly, a step increase in the armature current I , such as occurs during a short
circuit, would lead to an exponential reduction in E′

q as shown in Figure 4.17b.
In practice the armature will be connected to the system (a voltage source) by a transmission

line of finite reactance when the actual time constants involved will depend on the impedance in
the armature circuit. For a generator connected to an infinite busbar through a transmission link,
Anderson and Fouad (1977) show that this modifies Equation (4.27) to


E′
q(s) = B

(1 + BT′
dos)


Ef (s) − AB
(1 + BT′

dos)

δ(s), (4.28)

where a change in the generator loading is now reflected by a change in the power angle 
δ (measured
with respect to the system) and B is a constant that takes into account the effect of the impedance in
the armature circuit. If both the generator armature resistance and the resistance of the transmis-
sion link are neglected then B = (X′

d + Xs)/(X′
d + Xs) = x′

d/xd and A = [(1 − B)/B] Vs sin δ0. The
importance of Equations (4.27) and (4.28) cannot be overemphasized as they show how changes in
the excitation and generator loading alter E′

q.

4.2.5 Short-Circuit Currents with the Generator Initially on No Load

To consider the time variation of the fault current, assume the generator to be on no load prior to
the fault. In this case the prefault values of the three internal emfs E, E′ and E′′ are all equal to
the terminal voltage, that is E′′ = E′ = E = Ef = Vg, their d-components are all equal to zero, and
only the q-axis variables need to be considered. This means that the separate d and q-axis diagrams
shown in Figures 3.16, 4.13 and 4.14 can be replaced by the single d-axis equivalent circuit shown in
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Figure 4.18 Equivalent circuit for a synchronous generator in (a) the subtransient state; (b) the
transient state; (c) the steady state. The generator is assumed to be on no load prior to the fault.

Figure 4.18. The amplitude of the AC fault current component in each of the three characteristic
states can be obtained directly from these equivalent circuits by short-circuiting the generator
terminals, when

for the subtransient state: i ′′
m = Efm

Xd
, (4.29)

for the transient state: i ′
m = Efm

X′
d

, (4.30)

for the final steady state: i∞
m = Efm

Xd
, (4.31)

where Efm = √
2Ef .

As the AC component of the phase current, and its decay time constant, in all three characteristic
states is known, it is now possible to derive formulae for the short-circuit currents as a function
of time. Figure 4.19 shows the envelopes of the maximum value of the AC component of the
short-circuit current corresponding to those shown in the top diagram of Figure 4.7b. The resultant
envelope is defined by im(t) and is obtained by adding the three components, each of which decays
with a different time constant, to give

im(t) = 
i ′′e−t/T′′
d + 
i ′e−t/T′

d + 
i, (4.32)

where 
i = i∞
m = Efm/Xd is the maximum value of the AC component neglecting the screening

effect of all the rotor windings (Equation 4.31); 
i + 
i ′ = Efm/X′
d is the maximum value of the

AC component including the screening effect of the field winding but neglecting the screening effect
of the damper winding (Equation 4.30); and 
i + 
i ′ + 
i ′′ = Efm/X′′

d is the maximum value of

i

0

E

X
fm

d″ E

X
fm

d′ E

X
fm

d

i∆

∆

∆

″

i′

i

t

Figure 4.19 Envelopes of the three characteristic AC components of the short-circuit current.
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the AC component when the screening effect of both the damper winding and the field winding are
included (Equation 4.29).

Some simple algebra applied to Figure 4.19 then gives the equations for the three components of
the short-circuit current as


i = Efm
1

Xd
, 
i ′ = Efm

(
1

X′
d

− 1
Xd

)
, 
i ′′ = Efm

(
1

X′′
d

− 1
X′

d

)
. (4.33)

Substituting (4.33) into (4.32) gives the following expression for the envelope of the AC component
of the fault current:

im(t) = Efm

[(
1

X′′
d

− 1
X′

d

)
e−t/T′′

d +
(

1
X′

d

− 1
Xd

)
e−t/T′

d + 1
Xd

]
. (4.34)

The initial value of Equation (4.34) at t = 0 is

im(0) = Efm

X′′
d

. (4.35)

Substituting Equations (4.34) and (4.35) into (4.11) gives the expression for the short-circuit currents
as

iA = − Efm

X′′
d

[
g3 (t) cos (ωt + γ0) − e−t/Ta cos γ0

]
iB = − Efm

X′′
d

[
g3 (t) cos (ωt + γ0 − 2π/3) − e−t/Ta cos (γ0 − 2π/3)

]
iC = − Efm

X′′
d

[
g3 (t) cos (ωt + γ0 − 4π/3) − e−t/Ta cos (γ0 − 4π/3)

]
.

(4.36)

The function g3(t) is defined as

g3(t) = X′′
d

[(
1

X′′
d

− 1
X′

d

)
e−t/T′′

d +
(

1
X′

d

− 1
Xd

)
e−t/T′

d + 1
Xd

]
, (4.37)

and accounts for the decay of the AC component from the subtransient state to the transient state
and then to the steady state. The subscript ‘3’ relates to the three-phase short circuit.

The maximum instantaneous value of the current in each phase depends on the instant in the
AC cycle when the fault occurs. For example, the current in phase A reaches its maximum value
when the fault is applied at γ0 = 0, that is when the excitation flux linking phase A, �fA, reaches its
maximum value and the voltage EfA is zero. Figure 4.7 showed currents flowing in a large generator
after a three-phase fault assuming the armature time constant Ta to be much greater than the AC
cycle time. With such a long armature time constant, the current iA may reach a value almost equal
to 2Efm/X′′

d. On the other hand, when the fault occurs at γ0 = π/2, the excitation flux linkage � fA

is zero and the current iA is minimal because it does not contain a DC component. However, the
DC component will be evident in currents iB and iC.

4.2.5.1 Influence of the Rotor Subtransient Saliency

When saliency effects are included, the different reluctance on the d- and q-axes requires the effect
of the armature mmf on the short-circuit current to be analysed using the two-reaction theory
(Jones, 1967). However, an intuitive understanding of the effects of saliency can be obtained by
considering the AC and DC armature mmf components separately.

Section 4.2.1 explained that the armature mmf due to the stator fault currents consists of a
rotating component Fa AC directed along the d-axis and a stationary component Fa DC which is also
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initially directed along the d-axis but then counter-rotates with respect to the rotor. As Fa AC is
always directed along the d-axis, it is associated with a reactance equal to X′′

d and the AC term in
Equation (4.23) remains unaffected by rotor saliency.

On the other hand, the stationary mmf component Fa DC drives a flux across the air gap, the
width of which appears to be continuously changing. This has two effects. Firstly, the maximum
value of the DC component of the fault current, given by the second component in Equation
(4.36), has to be modified by making it dependent on the mean of the subtransient reactances and
equal to Efm

(
1/X′′

d + 1/X′′
q

)
/2. Secondly, an additional double-frequency component of magnitude

Efm
(
1/X′′

d − 1/X′′
q

)
/2 is introduced into the fault current due to Fa DC lying twice every cycle along

the d-axis (q-axis). Both the DC and the double-frequency components decay with the same time
constant equal to the mean of the d and q-axis time constants Ta = (X′′

d + X′′
q)/(2ωR) while their

values depend on the instant of the fault.
The short-circuit current in phase A described by Equation (4.36) can now be adapted to include

the modified DC component and the double-frequency AC component:

iA = − Efm

X′′
d

[g3 (t) cos (ωt + γ0)] + Efm

2
e−t/Ta

[(
1

X′′
d

+ 1
X′′

q

)
cos γ0 +

(
1

X′′
d

− 1
X′′

q

)
cos (2ωt + γ0)

]
.

(4.38)

At time t = 0 the second component in this equation is equal to Efm cos γ0/X′′
d and corresponds to

the DC component of the armature mmf always being in phase with the rotor d-axis when the fault
is applied. In the case of a generator with damper windings in both axes, X′′

q ≈ X′′
d and Equation

4.38 reduces to (4.36).

4.2.6 Short-Circuit Currents in the Loaded Generator

When the generator is on load prior to the fault, the initial values of the emfs E′′
q0, E′

q0, E′′
d0 and

E′
d0 are functions of the load current and, knowing the initial loading conditions, their values may

be determined from the phasor diagram of Figure 4.15. These emfs now further modify Equation
4.38 to account for the prefault load current. Both d- and q-axis AC emfs and currents have now
to be considered. The q-axis emfs will force the flow of d-axis alternating currents (changing as the
cosine with time) while d-axis emfs will force the flow of q-axis alternating currents (changing as
the sine with time). Denoting the angle between the q-axis and the terminal voltage V g by δg, the
following expression for the short-circuit current flowing in phase A is obtained:

iA = −
[( E′′

qm0

X′′
d

− E′
qm0

X′
d

)
e−t/T′′

d +
( E′

qm0

X′
d

− Eqm0

Xd

)
e−t/T′

d + Eqm0

Xd

]
cos (ωt + γ0)

+
[(

E′′
dm0

X′′
q

− E′
dm0

X′
q

)
e−t/T′′

q + E′
dm0

X′
q

e−t/T′
q

]
sin (ωt + γ0) (4.39)

+ Vgm0

2
e−t/Ta

[(
1

X′′
d

+ 1
X′′

q

)
cos

(
γ0 + δg

) +
(

1
X′′

d

− 1
X′′

q

)
cos

(
2ωt + γ0 + δg

)]
.

All the emfs, and the terminal voltage, include an additional subscript ‘0’ to emphasize the fact
that they are prefault quantities. The first two components represent the fundamental-frequency
alternating currents due to the direct and quadrature components of the emfs. The last component
consists of a DC term and a double-frequency term resulting from the subtransient saliency.
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Figure 4.20 Influence of the AVR on the short-circuit current: (a) rotating exciter; (b) static exciter
fed from the generator terminal voltage only; (c) static exciter fed from the generator terminal
voltage and current.

4.2.6.1 Influence of the AVR

Depending on the type of exciter used, the action of the AVR can have a considerable effect on the
shape of the short-circuit current. In the case of a rotating exciter, Figure 2.3a, the fault does not
influence the generating capabilities of the excitation unit and the large voltage error, equal to the
difference between the reference voltage and the actual value of the terminal voltage, quickly drives
up the excitation voltage. This increases the value of the short-circuit current compared with its
value without the AVR being active, as shown in Figure 4.20a. As Eq follows the field current, Eq

will not now decay to Eqo but to a higher value corresponding to the new field current. Consequently
E′

q will not decay to the same extent as when the AVR was inactive. If a static exciter is used, fed
solely from the generator terminal voltage as in Figure 2.3e, the three-phase short-circuit reduces
the excitation voltage to zero, the unit completely loses its excitation capabilities and all the emfs
will decay to zero (Figure 4.20b). If the static exciter is fed by compounding both the generator
voltage and current, as shown in Figure 2.3f, then excitation will not be lost during the short circuit
as the exciter input voltage is augmented by the fault currents. The short-circuit current will not
now vanish to zero but its shape will depend on the strength of the current component in the
compounded excitation signal. An example of this is shown in Figure 4.20c.

4.2.7 Subtransient Torque

The torque creation mechanism was discussed in Section 3.2.2, Equation (3.71), with regards to a
two-pole generator in the steady state. This mechanism is equally applicable here except that now
the d-axis and q-axis damper flux �D and �Q must be added into Equation (3.71) to give

τ = τd − τq = π

2
(�f + �D + �ad)Faq − π

2
(�Q + �aq)Fad. (4.40)

In this equation the field flux, �f, is made up from two components �f0 and 
�f where �f0 is the
flux due to the initial field current if0 and 
�f is the change in the flux due to the change in the field
current. If resistance effects are neglected, then the rotor flux produced by the damper windings �D

and �Q and the change in the field flux 
�f completely cancels the armature reaction flux so that
�D + 
�f = −�ad and �Q = −�aq. Substituting these values into Equation (4.40) shows that the
electromagnetic torque is produced solely by the interaction of the armature q-axis mmf with the
original field flux �f0. Denoting this torque as τω gives

τω(t) = π

2
�f0 Faq. (4.41)

As explained earlier, the AC component of the short-circuit armature mmf acts along the d-axis
and does not contribute to the q-axis armature mmf. In contrast the DC component of armature
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Figure 4.21 Subtransient electromagnetic torque following a three-phase fault: (a) torque creation
mechanism; (b) example of torque variation with time.

flux is directed along the d-axis at the moment when the fault occurs, but then rotates relative to the
rotor with the angle λ between the field and the armature mmfs changing as λ = ωt. The amplitude
of the DC armature mmf can be evaluated as Fa DC = 1.5Naim(0) by using a similar technique to
that used to obtain Equation (3.42). The q-axis armature mmf with respect to the rotor is then
given by

Faq = Fa DC sin λ = 3
2

Naim(0) sin ωt. (4.42)

As Faq is solely dependant on the DC component of armature fault current, the torque is created
by the initial field flux interacting with the DC component of the armature reaction mmf. This can
be compared with two magnets, one rotating and the other stationary, as shown diagrammatically
in Figure 4.21a. It is important to note that for the three-phase fault, the angle λ is independent
of the time that the fault is applied and simply varies as ωt. The torque variation is obtained by
substituting (4.42) into Equation (4.41) to give

τω(t) = π

2
�f0 Na

3
2

im(0) sin ωt. (4.43)

For the two-pole generator considered here Nφ = π Na/2, Equation (3.39), when substituting
for Ef = ωNφ�f0/

√
2 from Equation (3.37) and for im(0) from Equation (4.35), finally gives the

short-circuit torque as

τω(t) = 3
ω

E2
f

X′′
d

sin ωt N m. (4.44)

This equation shows that the short-circuit electromagnetic torque is independent of the fault instant
but varies as sin ωt. During the first half-cycle the electromagnetic torque opposes the mechanical
driving torque, while during the second half-cycle it assists the driving torque. The average value of
the torque is zero. Equation (4.44) expresses the torque in SI units but, as explained in Appendix
A.2, this can easily be changed to per unit by multiplying by ω/3 to give the per-unit form τω(t) =
E2

f sin ωt
/

X′′
d and is valid for any generator regardless of pole number.

The effect of including winding resistance is twofold. Firstly, the DC phase currents that sustain
the constant stator flux linkages �a DC decay with a time constant Ta. Secondly, the rotor currents
sustaining the constant rotor linkages decay with time constants T′′

d and T′
d allowing the armature

reaction flux to penetrate the rotor. The net effect is that the torque τω will decay to zero with
the armature time constant Ta and the subtransient and transient time constants T′′

d and T′
d which
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modify Equation (4.44) to give

τω(t) = 3
ω

E2
f

X′′
d

g3(t)e−t/Ta sin ωt N m, (4.45)

where g3(t) is defined by Equation (4.37). As the electromagnetic torque is equal to the product of
two decaying functions, it vanishes very quickly (Figure 4.21b).

Strictly, the torque expression in Equation (4.45) should be modified to take into account the
torque developed due to the power loss in the armature resistance. As this power loss is due to
the flow of AC armature currents, which decay with the subtransient and transient time constants
defined by the function g3(t) in Equation (4.37), the torque corresponding to the power loss in all
three phases τR(t) may be expressed as

τR(t) = 3
ω

[
Ef

X′′
d

g3 (t)
]2

R N m. (4.46)

Similarly, the alternating currents induced in the rotor windings (damper and field) also cause a
power loss. These currents decay with time constant Ta and the torque corresponding to the rotor
losses may be approximately expressed as

τr(t) = 3
ω

(
im(0)√

2
e−t/Ta

)2

r = 3
ω

(
Ef

X′′
d

)2

re−2t/Ta N m, (4.47)

where r is an equivalent resistance of all the rotor windings, referred to the stator (similarly as in a
transformer). The torque τ r is initially high but rapidly decays to zero.

As the armature resistance of a large generator is usually very small, the torque τR, corresponding
to the stator losses, is several times smaller than the torque τ r corresponding to the rotor losses.
However, the former decays at a much slower rate.

The resultant torque acting on the rotor during the fault is equal to the sum of the three
components τω, τR, τ r. None of these components depends on the fault instant γ 0. The function
g3(t), given by Equation (4.37), does not decay to zero so that the component, τR, decays to a
steady-state value corresponding to the losses that would be incurred by the steady-state short-
circuit currents. If the generator is on load prior to the fault then the initial value of the torque
would correspond to the prefault load torque rather than zero as shown in Figure 4.21.

Equation 4.38 suggests that there should also be an additional periodic torque component
corresponding to the double-frequency currents caused by the rotor subtransient saliency. Assuming
that the resistance of the armature windings is small, the double-frequency torque τ 2ω may be
expressed as

τ2ω(t) = −3
2

E2
f

ω

(
1

X′′
d

− 1
X′′

q

)
e−2t/Ta sin 2ωt N m. (4.48)

Typically X′′
d ≈ X′′

q and the torque τ 2ω only slightly distorts the single-frequency torque τω. In some
rare cases of high subtransient saliency the double-frequency component may produce a substantial
increase in the maximum value of the AC torque.

4.3 Phase-to-Phase Short Circuit

The phase-to-phase fault will be analysed in a similar way as the three-phase fault with the generator
initially considered to be on no load and with both winding resistance and subtransient saliency
neglected. The effect of saliency and resistance on the short-circuit current will then be considered
before finally developing expressions for the short-circuit torque. The short circuit will be assumed
to occur across phases B and C of the stator winding.
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4.3.1 Short-Circuit Current and Flux with Winding Resistance Neglected

Figure 4.22 shows the armature coils with a short circuit across phases B and C. The short circuit
connects the armature coils such that the current flows in opposite directions in the two coils and
iB = −iC. In the case of the three-phase fault, there were three closed armature circuits, one for
each of the phase windings, and the flux linkage of each of these windings could be considered
separately. In the case of the phase-to-phase short circuit there is only one closed circuit, the series
connection of the two phase windings. When the fault occurs, the total energy stored in this closed
circuit cannot change instantaneously and it is the net flux linkage �B − �C of this closed circuit
that must remain constant.

The flux linkages �B and �C of the two short-circuited windings consist of two components:
the winding self-flux linkages �BB and �CC produced by the fault currents and the flux linkages
produced by the excitation flux � fB and � fC. As the fault currents in the two short-circuited phases
are equal and opposite, �BB = −�CC and the net flux linkage �B − �C can be expressed as

�B − �C = (�BB + �fB) − (�CC + �fC) = �fB − �fC − 2�CC. (4.49)

With the generator on no load prior to the fault, �CC(0−) ∝ iC(0−) = iB(0−) = 0 and the only flux
linking the windings is the excitation flux. Thus

�B(0−) − �C(0−) = �fB0 − �fC0. (4.50)

The law of constant flux linkage requires the net flux linkage (�B − �C) just before and just after
the fault to be equal so that

�fB − �fC − 2�CC = �fB0 − � fC0. (4.51)

Rearranging gives

�CC = 1
2

[(�fB − �fC) − (�fB0 − �fC0)] . (4.52)

The variations of the flux linkages � fB and � fC are shown in Figure 4.4, with the initial values
defined by Equations (4.4), so that

�fB = �fa cos(γ − 2π/3), �fC = �fa cos(γ − 4π/3)
(4.53)

�fB0 = �fa cos(γ0 − 2π/3), �fC0 = �fa cos(γ0 − 4π/3)

which, when substituted into Equation (4.52), give

�CC =
√

3
2

�fa(sin γ − sin γ0). (4.54)

iA

iB
iC

VCVB

VA

Figure 4.22 Phase-to-phase short circuit: iB = −iC; VBC = 0; iA = 0; VA 
= 0.
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Recall from Equation (3.37) that Efm = ω�fa while immediately after the fault the subtransient
current iC = �CC/L′′

d. This allows a formula for the phase-to-phase short-circuit current to be
written as

iC = −iB =
√

3
2

Efm

X′′
d

(sin γ − sin γ0) . (4.55)

This short-circuit current consists of two components, an AC component

iC AC = −iB AC =
√

3Efm

2X′′
d

sin γ (4.56)

whose magnitude is independent of the instant of the fault, and a DC component

iC DC = −iB DC = −
√

3Efm

2X′′
d

sin γ0, (4.57)

the value of which depends on the instant of the fault. If the fault occurs at γ0 = 0, the voltage of
phase A is zero, and the fault current is purely sinusoidal with no DC component present. If, on
the other hand, the fault occurs at γ0 = −π/2, the voltage in phase A is at its negative peak, and
the DC component of the fault current will be at its maximum value.

The flux linkages for the case when γ0 = 0 and for γ0 = −π/2 are shown in Figure 4.23a and
4.23b respectively. When γ0 = 0 the flux linkages �fB0 and �fC0 are identical, the net flux link-
age (�fB0 − �fC0) is zero and no DC component is required to maintain the flux linkages. The
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Figure 4.23 Application of the law of constant flux linkages to determine the phase-to-phase fault
currents when the fault instant is: (a) γ0 = 0; (b) γ0 = −π/2.
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A

iA = 0

i BC − i=

i CB −i=

FC FB

Fa

Figure 4.24 Phase-to-phase fault currents creating a stationary armature mmf �FB perpendicular
to the axis of phase A. Generator windings are star connected.

flux linkages �BB and �CC, and hence iB and iC, simply vary sinusoidally with opposite sign
(Figure 4.23a). However, when the fault occurs at γ0 = −π/2 the voltage in phase A is a maximum
and the flux linkages �fB0 and �fC0 now have the same magnitude but opposite sign. The net flux
linkage is

√
3�fa and a large DC circulating current iC DC = −iB DC is necessary in order to maintain

constant flux linkages (Figure 4.23b).
The resultant armature mmf �Fa can be found by the vector addition of the individual mmfs �FB

and �FC produced by the stator fault currents iB and iC. Taking phase A as a reference (real axis in
the complex plane) gives

�Fa = �FB + �FC = FBej2π/3 + FCej4π/3 = FC(−ej2π/3 + ej4π/3)

= −j
√

3FC = −j
√

3NaiC = j
√

3Na

√
3

2
Efm

X′′
d

(sin γ − sin γ0). (4.58)

The result of this phasor addition is shown in Figure 4.24 where the resultant armature mmf �Fa

is at all times perpendicular to the axis of phase A and proportional to the short-circuit current iC.
Consequently, �Fa is stationary in space but pulsates at frequency ω. As the rotor position at any
instant in time is determined by the angle γ measured with respect to the A-axis, this stationary
armature mmf counter-rotates with respect to the rotor with the angle between the armature and
the field mmf changing as λ = γ + π/2. This produces mmf components along the d- and q-axes

Fad = Fa cos λ = −
√

3FC sin γ, Faq = Fa sin λ =
√

3FC cos γ, (4.59)

which, when substituting for iC from Equation (4.55), give

Fad = −3
2

Na
Efm

X′′
d

(sin γ − sin γ0) sin γ = −3
4

Na
Efm

X′′
d

(1 − 2 sin γ0 sin γ − cos 2γ )

Faq = 3
2

Na
Efm

X′′
d

(sin γ − sin γ0) cos γ.

(4.60)

The d-axis armature mmf has three components: a DC component, an AC component of fun-
damental frequency and an AC component of double frequency. The magnitudes of both the DC
component and the double-frequency component are independent of the instant of the fault while
the value of the fundamental AC component depends on γ 0.

This variation in the d-axis armature mmf also explains the changes that occur in the rotor field
current and the d-axis damper current following the fault. The d-axis armature mmf forces an
armature flux across the air gap that produces flux linkages �ar with the rotor windings. These flux
linkages are proportional to Fad and are shown in Figure 4.25. As the flux linkage of the rotor
circuits must remain constant following the fault, additional currents flow in both the field winding
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Figure 4.25 Illustration of the influence of the armature flux on the rotor currents when the fault
occurs at: (a) γ0 = 0; (b) γ0 = −π/2.

and the d-axis damper winding to produce a flux linkage that is equal and opposite to that produced
by the armature flux. These additional field and damper currents therefore have the same form as
Fad but are of opposite sign. The actual magnitude of the field current will depend on how well the
field winding is screened by the d-axis damper winding. If perfect screening is obtained then the
field current will remain constant with the armature flux being totally compensated by the d-axis
damper current. If the fault occurs at γ0 = 0 then the armature current and the resultant armature
mmf do not contain a DC component (Figure 4.25a) and the flux linkages in the field and damper
windings produced by the armature mmf simply pulsate at twice the system frequency. The induced
rotor currents are then similar to those flowing during a three-phase fault, except they are now at
twice the system frequency. If, on the other hand, the fault occurs at γ0 = −π/2 (Figure 4.25b) then
the armature mmf pulsates with a large DC component. The rotor flux linkages now contain both
fundamental and double-frequency components and the induced rotor currents have a different
shape than before in that both the field and the damper currents initially reduce their values as
shown in Figure 4.25b.

The q-axis mmf Faq will be compensated by damper currents in a similar manner to Fad and its
influence will be discussed when the torque is considered.

4.3.2 Influence of the Subtransient Saliency

The armature current Equation (4.55) is valid for a magnetically symmetrical rotor where the
magnetic reluctance encountered by the armature flux is constant and does not depend on the rotor
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Figure 4.26 Phase-to-phase fault current waveforms strongly distorted due to subtransient
saliency.

position. However, if the machine has substantial subtransient saliency then the reluctance of the
d- and q-axes will be different and the solution must be obtained using two-reaction theory (Ching
and Adkins, 1954; Kundur, 1994). The result of such an analysis shows that in Equation (4.55) X′′

d
is replaced by (X′′

d sin2 γ + X′′
q cos2 γ ) to give

iC = −iB =
√

3Efm(sin γ − sin γ0)

2
(
X′′

d sin2 γ + X′′
q cos2 γ

) =
√

3Efm(sin γ − sin γ0)

X′′
d + X′′

q − (
X′′

d − X′′
q

)
cos 2γ

. (4.61)

Generators without a q-axis damper winding may have a large value of subtransient saliency
which will distinctly distort the fault currents. Figure 4.26 shows these distorted currents for the
same γ 0 as the sinusoidal waveforms shown previously in Figure 4.23 when X′′

d was equal to X′′
q.

The harmonic content of the distorted fault current can be quantified by expanding Equation
(4.61) into a Fourier series2

iC = −iB =
√

3Efm

X′′
d + √

X′′
d X′′

q

(
sin γ − b sin 3γ + b2 sin 5γ − b3 sin 7γ + . . .

)

−
√

3Efm sin γ0√
X′′

d X′′
q

(
1
2

− b cos 2γ + b2 cos 4γ − b3 cos 6γ + . . .

)
,

(4.62)

where the asymmetry coefficient, b, is

b =
√

X′′
q − √

X′′
d√

X′′
q + √

X′′
d

=
√

X′′
d X′′ − X′′

d√
X′′

d X′′
q + X′′

d

. (4.63)

2 The Fourier series expansion of the two components in Equation (4.61) gives

sin γ
A+B−(A−B) cos 2γ

= 1
A+√

AB
(sin γ − b sin 3γ + b2 sin 5γ − b3 sin 7γ + . . .)

1
A+B−(A−B) cos 2γ

= 1√
AB

(
1
2 − b sin 2γ + b2 cos 4γ − b3 cos 6γ + . . .

)

where

b =
√

B − √
A√

B + √
A

.
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In the example shown in Figure 4.26 the generator possesses a high degree of subtransient saliency
with X′′

q = 2X′′
d, giving an asymmetry coefficient b ≈ 0.17, while the magnitude of the third, fifth

and seventh harmonics are respectively 17, 3 and 0.5% of the fundamental.
Even-numbered harmonics appear only when the fault current contains a DC component, that

is when sin γ0 
= 0 and subtransient saliency is present. However, the odd-numbered harmonics
appear whenever the generator possesses subtransient saliency, b 
= 0, regardless of the instant of
the fault. The source of the odd-numbered harmonics is the negative-sequence component of the
fault current as explained below.

4.3.2.1 Symmetrical Component Analysis of the Phase-to-Phase Fault

Symmetrical components allow any unsymmetrical set of three-phase currents to be expressed as
the phasor sum of three symmetrical AC components: the positive-sequence component i 1, the
negative-sequence component i 2 and the zero-sequence component i 0, the detailed derivation of
which can be found in any standard textbook on power system analysis such as Grainger and
Stevenson (1994).

The phase-to-phase fault currents shown in Figure 4.23a are given by iA = 0 and iB = −iC = i .
Applying the symmetrical component transformation gives


 i 0

i 1
i 2


 = 1

3


1 1 1

1 a a2

1 a2 a





 0

i
−i


 = i

3


 0

a − a2

a2 − a


 = i√

3


 0

j
−j


 , (4.64)

where a = ej2π/3. The positive-sequence component, i 1, leads the current in the B phase by π/2, while
the negative-sequence components, i 2, lags the current in the B phase by π/2. The zero-sequence
component is equal to zero. The reverse transformation from the symmetric components to phase
components gives the actual phase currents which can be conveniently written as the sum of two
three-phase systems representing the positive-sequence and negative-sequence phase currents:


 iA

i B
i C


 =


1 1 1

1 a2 a
1 a a2





 0

i 1
i 2


 =


 iA1

i B1
i C1


 +


 i A2

i B2
iC2


 , (4.65)

where iA1 = i 1, iB1 = a2i 1, i C1 = a i 1, i A2 = i 2, i B2 = a i 2 and i C2 = a2i 2.
Figure 4.27 shows the phase and symmetrical components of the phase-to-phase fault currents.

ω

ωω

(ABC) (ACB)

iiA1 = 1

iC1 a i1= iiA2 2=

ai iB2 = 2iiC2 a2
2=

iiB1 a2
1=

ii iC1C C2+= ii iB1B B2+=

Figure 4.27 The phase-to-phase fault current transformed into its positive- and negative-sequence
components rotating in opposite directions.
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4.3.2.2 Phase-to-Phase Fault Current Harmonics Explained by Symmetrical Components

The phase-to-phase fault current defined by Equation (4.61) can be decomposed into two funda-
mental parts, an AC part containing terms in sin γ and a DC part containing terms in sin γ0, each
part of which may be analysed separately using symmetrical components.

The AC part of the fault current produces an armature mmf Fa AC which is stationary with respect
to the stator but pulsates with time. By representing the AC component of the fault current by a
positive-sequence and negative-sequence current, the effect of this pulsating mmf can be replicated
by two counter-rotating mmf waves produced by the sequence currents. The positive-sequence
currents (iA1, i B1, i C1) produce an mmf �Fa AC1 which rotates with the rotor and is stationary with
respect to it. Changes in the flux linkages produced by this mmf are opposed by direct currents
flowing in the rotor windings, just as in the generator with no subtransient saliency shown in Figure
4.25. The negative-sequence currents (iA2, iB2, i C2) produce mmf �Fa AC2 which rotates in the opposite
direction to the rotor, and induces double-frequency currents in the rotor windings again as shown
in Figure 4.25 for a generator with no subtransient saliency. In turn these double-frequency rotor
currents produce a pulsating mmf which is stationary with respect to the rotor. This pulsating mmf
can be represented by two mmf waves, one rotating with respect to the rotor with velocity (−2ω)
and the other with velocity 2ω, with the relative magnitudes of these two mmf waves depending on
the degree of subtransient saliency. As the rotor itself rotates with angular velocity ω, these two
rotor mmf components rotate with respect to the stator with velocities (−ω) and 3ω and introduce a
third-harmonic component into the fault current. Analysing the effect of this third harmonic on the
rotor currents, and then the effect of the rotor currents on the armature, leads to an explanation for
the presence of the fifth harmonic in the fault current. This analysis may be continuously repeated
to account for all the odd-numbered harmonics in the armature fault current. For a generator with
no subtransient saliency the magnitude of the rotor mmf wave that rotates at 3ω relative to the
armature is zero and so no third- or higher order harmonics are present.

When sin γ0 
= 0 a DC component of the fault current appears and produces a stationary armature
mmf �Fa DC which counter-rotates with respect to the rotor. The rotor windings oppose this mmf by
inducing fundamental-frequency alternating currents. These rotor currents produce a sinusoidally
pulsating mmf which is stationary with respect to the rotor. As before, this mmf can be represented
as two counter-rotating mmfs, but in this case with angular velocities ω and (−ω) with respect to
the rotor. Again the relative magnitudes of these two mmfs depend on the degree of subtransient
saliency present. As the rotational velocity of the rotor is ω, one of these mmfs is stationary with
respect to the armature while the other rotates with velocity 2ω and induces a second-harmonic
component into the fault current. Analysing the influence of this harmonic explains the presence of
the fourth, and the other even-numbered, harmonics in the fault current when subtransient saliency
is present. The phase-to-phase fault current may be then expressed as a sum of the harmonics

iC = −iB = i(ω) + i(3ω) + i(5ω) + · · ·︸ ︷︷ ︸
induced by the negative-
sequence currents

+ iDC + i(2ω) + i(4ω) + i(6ω) + . . .︸ ︷︷ ︸
induced by the direct currents
depending on the instant of fault

. (4.66)

4.3.3 Positive- and Negative-Sequence Reactances

Equation (4.62) can now be used to determine the reactance with which the generator opposes the
flow of the negative-sequence currents. Figure 4.28a shows the representation of the generator for the
positive- and negative-sequence currents, while Figure 4.28b shows the connection of the sequence
equivalent circuits required to represent the phase-to-phase fault (Grainger and Stevenson, 1994).

Applying Ohm’s law to the circuit of Figure 4.28b gives

I ′′
1 = −I ′′

2 = E′′

j(X′′
1 + X′′

2 )
, (4.67)
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Figure 4.28 Equivalent circuits of the generator: (a) positive- and negative-sequence circuits; (b)
connection of the circuits to account for the phase-to-phase fault.

where X′′
1 is the positive-sequence subtransient reactance and X′′

2 the negative-sequence subtransient
reactance. Using the inverse symmetrical component transformation gives the phase currents

−IB = IC =
√

3E′′

X′′
1 + X′′

2

. (4.68)

The positive-sequence component of the fault current produces a rotating flux whose interaction
with the rotor is similar to that produced by the AC component of the three-phase short-circuit
current. As the generator opposes the flow of currents produced by this flux with the reactance X′′

d,
the reactance with which the generator opposes the flow of the positive-sequence currents is also
equal to X′′

d and

X′′
1 = X′′

d. (4.69)

Comparing Equation (4.68) with the first part of Equation (4.62) allows the negative-sequence
reactance X′′

2 to be evaluated as

X′′
2 =

√
X′′

d X′′
q , (4.70)

and the generator opposes the flow of the negative-sequence currents with a reactance equal to the
geometric average of the two subtransient reactances. Finally the second part of Equation (4.62)
shows that the generator opposes the flow of the DC component of the fault current with a reactance
that has the same value as the negative-sequence reactance, that is

√
X′′

d X′′
q.

4.3.4 Influence of Winding Resistance

The winding resistance dissipates the magnetic energy stored in the winding and causes a decay
in the DC component of the current flowing in that winding. As explained above, the generator
opposes the flow of the DC component of the phase-to-phase fault current with the reactance
X′′

2 = √
X′′

d X′′
q. The resistance of the phase winding will then produce a decay in this DC component

of the fault current with a time constant

Tα = X′′
2

ωR
=

√
L′′

d L′′
q

R
. (4.71)

Equation (4.61) can now be modified by multiplying the sin γ0 term by the exponential function
e−t/Tα .
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The decay of the AC component of the fault current can best be explained by considering
its positive- and negative-sequence components as derived in the previous section. The positive-
sequence component produces a rotating flux whose penetration into the rotor is opposed by DC ro-
tor currents. The resistance of the rotor windings causes this component of the current to decay, first
in the damper windings and then in the field winding, so that the armature reaction flux penetrates
deeper and deeper into the rotor. As each of these flux conditions corresponds to the subtransient,
transient and steady-state conditions, the generator effectively opposes the flow of the positive-
sequence component of the fault current with the same reactances as for the three-phase fault:

X′′
1 = X′′

d in the subtransient state
X′

1 = X′
d in the transient state

X1 = Xd in the steady state.

The armature mmf produced by the negative-sequence current rotates in the opposite direction
to the rotor. The penetration of the flux produced by this mmf into the rotor is prevented by the flow
of double-frequency rotor currents so that the same reactance opposes the flow of the negative-
sequence fault currents in all three characteristic generator states. The value of this negative-
sequence reactance is

X′′
2 = X′

2 = X2 =
√

X′′
d X′′

q. (4.72)

As the positive- and negative-sequence reactances of the generator are connected in the same
way for the transient state and the steady state as for the subtransient state, Figure 4.28, the AC
phase-to-phase transient and steady-state fault currents are respectively (X′′

d + X2)/(X′
d + X2) and

(X′′
d + X2)/(Xd + X2) times smaller than the subtransient fault currents. Equation (4.61) can be

used to express the AC component of the fault current in the three characteristic states as

i ′′
C AC(t) =

√
3Efm sin γ

2
(
X′′

d sin2 γ + X′′
q cos2 γ

)
i ′
C AC(t) = i ′′

C AC(t)
X′′

d + X2

X′
d + X2

, iC AC(t) = i ′′
C AC(t)

X′′
d + X2

Xd + X2
.

(4.73)

As with the three-phase fault, the difference
(
i ′′
C AC − i ′

C AC

)
decays at a rate determined by the sub-

transient time constant, while the difference
(
i ′
C AC − iC AC

)
decays with the transient time constant.

Following similar arguments to those used to produce Equations (4.33) and (4.36), the following
expression is obtained for the phase-to-phase fault current with the effect of winding resistance
included:

iC(t) =
√

3Efm

2
(
X′′

d sin2 γ + X′′
q cos2 γ

) [
g2(t) sin γ − e−t/Tα sin γ0

]
, (4.74)

where the function

g2(t) = (X′′
d + X2)

[(
1

X′′
d + X2

− 1
X′

d + X2

)
e−t/T′

β

+
(

1
X′

d + X2
− 1

Xd + X2

)
e−t/T′

β + 1
Xd + X2

] (4.75)

is responsible for describing the decay of the AC component of the fault current (subscript 2 denotes
the phase-to-phase fault).

As the reactances with which the generator opposes the flow of the phase-to-phase fault current
are different to those opposing the flow of the three-phase fault current, the subtransient and
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transient time constants must be changed in proportion to the ratio of the reactances

T′′
β = T′′

d

(
X′

d

X′′
d

)(
X′′

d + X2

X′
d + X2

)
, T′

β = T′
d

(
Xd

X′
d

)(
X′

d + X2

Xd + X2

)
. (4.76)

4.3.5 Subtransient Torque

As in the three-phase fault, the flux produced by the damper windings during the phase-to-phase
fault is equal and opposite to the d- and q-axis armature flux and the electromagnetic torque is
due solely to the interaction between the field flux and the quadrature component of the armature
reaction mmf. Neglecting subtransient saliency and substituting Equation (4.60) into (4.41), similar
to the three-phase fault, gives

τAC = π

2
�f0

3
2

Na
Efm

X′′
d

(sin γ − sin γ0) cos γ, (4.77)

but as

Ef = 1√
2
ω

(π

2
Na

)
�f0

the subtransient torque can be written as

τAC = 3
ω

E2
f

X′′
d

(sin γ − sin γ0) cos γ N m. (4.78)

This equation neglects winding resistance, the effect of which is to cause the rotor currents to decay
with time as determined by the function g2(t), while the decay of the stator currents is determined
by the functions g2(t) and e−t/Tβ . Multiplying the corresponding components of Equation (4.78) by
these functions gives

τAC = 3
ω

E2
f

X′′
d

[
g2(t) sin γ − e−t/Tβ sin γ0

]
g2(t) cos γ

(4.79)

= 3
ω

E2
f

X′′
d

[
1
2

g2
2(t) sin 2γ − sin γ0e−t/Tβ g2(t) cos γ

]
N m.

Unlike the torque due to the three-phase fault, the electromagnetic torque produced during
a phase-to-phase fault depends on the instant of the fault. The component of the torque that
depends on γ 0 has a periodic variation at fundamental frequency and a maximum value when the
fault occurs when the voltage in phase A reaches its negative maximum, that is when γ0 = −π/2.
In this situation the fundamental-frequency component is initially the highest and has a value twice
the double-frequency component. As time progresses, the magnitude of the fundamental-frequency
torque component reduces until, in the steady state, it vanishes completely, Figure 4.29, and the
torque varies at double frequency.

Including the effect of subtransient saliency introduces considerable complications in the formu-
lae. Firstly, the application of two-reaction theory leads to a term X′′

d sin2 γ + X′′
q cos2 γ appearing

in the denominator, similar to the expression for the current. Secondly, as in the case of the three-
phase fault, an AC component at double frequency appears that is dependent on

(
X′′

q − X′′
d

)
. The

torque is then expressed as

τAC = 3
ω

E2
f

X′′
d sin2 γ + X′′

q cos2 γ

{[
g2(t) sin γ − e−t/Tβ sin γ0

]
g2(t) cos ωt

+1
2

(
X′′

q − X′′
d

) [
g2(t) sin γ − e−t/Tβ sin γ0

]2
sin 2γ

X′′
d sin2 γ + X′′

q cos2 γ

}
Nm.

(4.80)
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Figure 4.29 Example of the changes in the electromagnetic torque during phase-to-phase fault
when γ0 = −π/2.

When the difference (X′′
q − X′′

d) is small, the torque given by Equation (4.80) is similar in both
shape and maximum value to that obtained from Equation 4.79. If subtransient saliency is high
then the second part of Equation (4.80) will distort the torque profile and may also increase the
instantaneous value of the torque. Figure 4.30 shows the variation of the torque in a case of high
subtransient saliency when X′′

q ≈ 2X′′
d.

Equation (4.80) defines one part of the electromagnetic torque occurring during a phase-to-phase
short circuit and, just as in the case of the three-phase fault, there will be other torque components
due to the power losses in the armature phase windings and the rotor field and damper windings.
However, these are usually small compared with the torque defined in Equation (4.80).

4.4 Synchronization

Synchronization is the name given to the process of connecting a generator, with its field winding
excited, to the power system. Such a synchronization process is shown schematically in Figure
4.31a where the power system is replaced by an infinite busbar of voltage Vs behind an equivalent
reactance X s. It is assumed that just before the switch is closed the generator rotates at a speed ω

close to synchronous speed ωs and that the excitation produces a no-load terminal voltage Ef close
to the system voltage V s.

–4
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pu

pu

(a)

(b)
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γ

γ

12

–8

2π

2π

4π

4π

6π

6π

18π

18π

20π

20π

tenth period steady-state

Figure 4.30 Example of torque variation during phase-to-phase fault in a case of high subtransient
saliency of X′′

q ≈ 2X′′
d when the fault instant is: (a) γ0 = −π/2; (b) γ0 = 0.
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Figure 4.31 Synchronization: (a) schematic diagram; (b) equivalent circuit in the subtransient
state; (c) phasor diagram. G, generator; Tr, transformer; bb, substation busbars; PS, power system,
CB, circuit-breaker (synchronizing switch).

Ideal synchronization occurs when ω = ωs, Ef = Vs and δ = 0 so that when the synchronizing
switch is closed no circulating current will flow. Normally a generator is connected to a power system
when these conditions are almost, but not exactly, satisfied, when closing the synchronizing switch
will result in the flow of a circulating current that contains both an AC and a DC component. If the
generator is assumed to have no local load prior to synchronization then it can be represented in the
subtransient state by the excitation emf Ef behind the subtransient reactance X′′

d. The circulating
current can then be evaluated using Thévenin’s theorem based on the voltage 
V across the
synchronizing switch and the impedance as seen from the switch terminals. For simplicity armature
resistance and rotor subtransient saliency will be neglected by assuming R = 0 and X′′

d = X′′
q.

4.4.1 Currents and Torques

The subtransient armature current can be found by resolving the voltage across the switch 
V
into two orthogonal components directed along the axes a and b as shown in Figure 4.31c. It
is important to stress that although the a- and b-axes are directed along the d- and q-axes, the
resulting (a, b) voltage and current components have a different meaning to the (d, q) components.
The (a, b) components are simply the components of the phase quantities resolved along two axes
in the complex plane while the (d, q) voltage and current components are associated with fictitious,
rotating, orthogonal armature windings as explained in Chapter 3. As the circuit is assumed to be
purely reactive, the current must lag the forcing voltage by π/2. This means that the a-component
voltage 
Va will force the flow of the b-component of current Ib and vice versa.

Applying Thévenin’s theorem gives the maximum value of the b-axis current, ibm, due to 
V a as

ibm = 
Vam

x′′
d

= Vsm cos δ − Efm

x′′
d

, (4.81)

where x′′
d = X′′

d + XT + Xs, Efm = √
2Ef and Vsm = √

2Vs. As the voltage component 
V a acts
along the q-axis its effect in the Thévenin equivalent circuit, when looking from the terminals of
the switch, is similar to that of the emf Ef during the three-phase short circuit on an unloaded
generator. As a result, alternating and direct currents will be induced in the armature windings that
are similar to those expressed by Equations (4.7) and (4.8) but with im replaced by ibm.

As in the case of the three-phase fault, the AC component of the phase currents due to Ib

produces an armature mmf which rotates with the rotor and is in phase with the excitation mmf
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F f (Figure 4.31c). Since there is no angular displacement between these two mmfs, they cannot
produce an electromagnetic torque. On the other hand, the DC component of the phase currents
produces a stationary mmf which counter-rotates with respect to the rotor. Consequently, the
angular displacement between the field flux and the armature mmf varies with time producing a
periodic torque given by Equation (4.43) as

τI = −3
2

1
ω

Efmibm sin ωt = − 3
ω

Ef

x′′
d

(Vs cos δ − Ef ) sin ωt N m. (4.82)

Compared with Equation (4.43), the minus sign is due to the voltage 
Va directly opposing Ef.
The b-axis voltage 
Vb produces the a-axis circulating current Ia. The amplitude of this current

is

iam = 
Vbm

x′′
d

= Vsm sin δ

x′′
d

. (4.83)

Ia produces an mmf which rotates with the rotor and is directed along its q-axis (Figure 4.31c).
The interaction between this component of armature mmf and the excitation flux produces a
constant driving torque given by

τII = 3
2

1
ω

Efmiam = 3
ω

Ef Vs

x′′
d

sin δ N m. (4.84)

The DC component of the phase current driven by 
Vb produces a stationary flux shifted by
π/2 with respect to the stationary flux driven by 
Va, so that the resulting periodic torque is equal
to

τIII = 3
2

1
ω

Efmiam sin
(
ωt − π

2

)
= − 3

ω

Ef Vs

x′′
d

sin δ cos ωt N m. (4.85)

At this point it is worth noting that, although the circulating current resulting from synchro-
nization has a similar shape to the three-phase fault current, the direct component can be larger,
or smaller, than the three-phase fault current depending on the actual values of XT, X s and δ. In
addition, the synchronization torque may be quite different from the three-phase fault torque due
to the influence of the voltage component 
Vb. Adding the three torque components in Equations
(4.82), (4.84) and (4.85) gives

τ = τI + τII + τIII = 3
ω

[
Ef Vs

x′′
d

sin δ (1 − cos ωt) − Ef

x′′
d

(Vs cos δ − Ef ) sin ωt
]

N m (4.86)

which can be rewritten by substituting cos δ = 1 − sin δ tan
(
δ
/

2
)

as

τ = 3
ω

[
Ef Vs

x′′
d

sin δ

(
1 − cos ωt + tan

δ

2
sin ωt

)
+ Ef (Ef − Vs)

x′′
d

sin ωt
]

N m. (4.87)

The maximum value of the torque produced on synchronization is highly dependent on the angle
δ at which the switch is closed. When Ef ≈ Vs, the second component in the above equation is zero
and the torque is determined by the trigonometric expression

Tδ (t) = sin δ

(
1 − cos ωt + tan

δ

2
sin ωt

)
. (4.88)

The variation of this expression with time for three different values of δ is shown in Figure 4.32a,
while Figure 4.32b shows the maximum value of Tδ (t) as a function of δ. From these diagrams it
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Figure 4.32 Expression (4.88): (a) as a function of time for various values of the synchronization
angle δ; (b) its maximum value as a function of the synchronization angle δ.

can be seen that when δ is large, the maximum torque is large and occurs early in the cycle with the
highest torque occurring when δ = 2π/3.

If Ef 
= Vs then according to Equation (4.87) the torque is increased by a periodic component
depending on the difference (Ef − Vs).

Example 4.3

The per-unit network data, referred to the generator unit, are: X′′
d = X′′

q = 0.18; XT = 0.11; Xs =
0.01; Ef = Vs = 1.1. The per-unit subtransient torque produced on synchronization is obtained
from Equation (4.87) by multiplying by ω/3 to obtain τ = Tδ(1.1)2/ (0.18 + 0.11 + 0.01) = 4Tδ .
The torque may be evaluated by taking Tδ(t) from Figure 4.32b for various values of the synchro-
nization angle δ. The results in the table show that the torque may exceed the rated torque:

Synchronization angle π/6 π/3 π/2 2π/3 5π/6 π

Torque (pu) 4.08 7.48 9.64 10.4 9.64 8

The equations derived in this section are valid immediately after synchronization, that is during
the subtransient period. As time progresses, magnetic energy will be dissipated in the winding
resistances, the circulating current will decay and the generator will move from the subtransient
state, through the transient state, until it eventually reaches the steady state. As the circulating
current decays, so too do the corresponding torque components.

4.5 Short-Circuit in a Network and its Clearing

Section 4.2 discussed in some detail the effect of a three-phase short circuit across the generator
terminals. Fortunately this type of fault does not occur very often and much more common are
faults some distance from the generator elsewhere in the power system. Figure 4.33 shows a general
case where the generator is connected to the power system via a transformer and two parallel lines.

When a three-phase-to-earth fault occurs at the beginning of one of the lines, point F2, then the
fault can be treated as a generator short circuit but with some of the reactances and time constants
modified to include the effect of the transformer. Firstly, the transformer reactance XT must be
added in series to the reactances X′′

d, X′
d and Xd to form the resultant reactances

x′′
d = X′′

d + XT, x′
d = X′

d + XT, xd = Xd + XT. (4.89)
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Figure 4.33 Schematic diagram of a fragment of a power system with examples of the short-circuit
points F1, F2, F3. G, generator; Tr, transformer; bb, busbar; PS, power system (infinite busbar).

This has the effect of suppressing the magnitude of the currents given by Equations 4.29 to 4.31
and the electromagnetic torque containing both periodic and aperiodic components as given by
Equations (4.45) to (4.48). Secondly, the transformer resistance RT increases the rate at which the
stored magnetic energy can be dissipated so that the DC component of the short-circuit current
decays more rapidly. The time constants have to be modified, as in Equation (4.76), to

T′′
d(network) = T′′

d

(
X′

d

X′′
d

) (
X′′

d + XT

X′
d + XT

)
, T′

d(network) = T′
d

(
Xd

X′
d

) (
X′

d + XT

Xd + XT

)
. (4.90)

As a consequence of the increase in the time constants, the instantaneous value of the short-circuit
current may pass through zero even on the first cycle.

The shapes of the currents and torques during the short circuit and following fault clearing are
shown in Figure 4.34. During the short circuit, high currents flow in all three phases and the torque
oscillates around near-zero average values. As the clearing time is usually small, the rotor angle,
shown by the dashed line on the torque diagram, increases only slightly. When the fault is cleared,
the changes in the torque and the currents are similar to those occurring during synchronization
when the rotor angle first increases and then decreases, but the torque oscillates around an average
value.

if

τ
δ

iC

iB

δτe

iA

t

t

t

t

t

Figure 4.34 Three-phase fault and its clearing in the line connecting a generator to the system:
iA, iB, iC, phase currents; τ e, electromagnetic torque; if, field current; δ, rotor angle. Adapted from
Kulicke and Webs (1975). Reproduced by permission of VDE Verlag Gmbh
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Figure 4.35 Transformation of the short-circuit current in the star–delta connection of the trans-
former: (a) phase-to-phase fault; (b) single-phase fault.

t

t

t

t

t

iA

iB

iC

if

τ
τ δ δe

Figure 4.36 Phase-to-phase fault and its clearing in the line connecting a generator to the system:
iA, iB, iC, phase currents; τ e, electromagnetic torque; if, field current; δ, rotor angle. Adapted from
Kulicke and Webs (1975). Reproduced by permission of VDE Verlag Gmbh

In the case of an unsymmetrical fault in the network, the generator currents are distorted by
the step-up transformer. This effect is illustrated in Figure 4.35 assuming the transformer to be
star–delta connected when a phase-to-phase fault on the secondary of the transformer, Figure
4.35a, is seen as a three-phase unsymmetrical current on the primary. In the case of a single-phase-
to-phase fault on the secondary, Figure 4.35b, this is seen on the primary side as a two-phase
fault.

Figure 4.36 shows the time variation of the phase currents, air-gap torque and field current during,
and after clearing, a short circuit between phases B and C in the line connecting the generator to
a system. Such an unsymmetrical fault produces negative-sequence currents and consequently the
electromagnetic torque contains a double-frequency component.

The dynamic behaviour of the generator during the short-circuit period and the importance of
the clearing time are considered in more detail in Chapter 5.
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5
Electromechanical Dynamics –
Small Disturbances

In the previous chapter the currents and torques produced in a synchronous generator as the result
of a system disturbance were discussed and, as the duration of the disturbance was very short,
the generator rotational speed could be considered constant. In this chapter a longer time scale is
considered during which the rotor speed will vary and interact with the electromagnetic changes
to produce electromechanical dynamic effects. The time scale associated with these dynamics is
sufficiently long for them to be influenced by the turbine and the generator control systems.

The aim of this chapter is both to provide an explanation of how, and why, mechanical movement
of the generator rotor is influenced by electromagnetic effects and to examine how this movement
varies depending on the operating state of the generator. During the course of this discussion some
important stability concepts will be introduced together with their basic mathematical description
and an explanation of the physical implications.

5.1 Swing Equation

Section 2.2 described the constructional features of a turbine and explained how a multi-stage
turbine drives the generator rotor through a common drive shaft. A diagram of a multi-stage turbine
consisting of high-pressure, intermediate-pressure and low-pressure stages is shown in Figure 5.1
where each turbine stage contributes a proportion of the total mechanical driving torque. The drive
system can be modelled by a series of rotational masses, to represent the inertia of each turbine stage,
connected together by springs, to represent the torsional stiffness of the drive shaft and coupling
between the stages. Such a model can be used to compute the torsional natural frequencies of the
drive system and can also be used in a detailed computer simulation to obtain information on the
actual shaft torques that occur following a major fault or disturbance. This is discussed further in
Section 6.7. One of the natural frequencies of the turbine/generator drive system will be at 0 Hz
and represents free-body rotation where the turbine and generator inertias move together with no
relative displacement of the individual rotor masses. When connected to the power system this free-
body rotation will appear as a low-frequency oscillation of typically 1 to 2 Hz. It is this free-body
rotation that is addressed in this section.

When considering free-body rotation the shaft can be assumed to be rigid when the total inertia
of the rotor J is simply the sum of the individual inertias. Any unbalanced torque acting on the
rotor will result in the acceleration or deceleration of the rotor as a complete unit according to

Power System Dynamics: Stability and Control, Second Edition Jan Machowski, Janusz W. Bialek and James R. Bumby
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Figure 5.1 Generating unit as an oscillating system: (a) division of the rotor mass into indi-
vidual sections; (b) schematic diagram; (c) torsional displacement. HP, IP, LP – high-pressure,
intermediate-pressure and low-pressure section of the turbine; G, generator; Ex, rotating exciter; J,
moment of inertia of individual sections; τ , external torque acting on a mass; k, stiffness of a shaft
section; δ, angular displacement of a mass; I, II, III, IV – shaft couplers.

Newton’s second law

J
dωm

dt
+ Dd ωm = τt − τe, (5.1)

where J is the total moment of inertia of the turbine and generator rotor (kg m2), ωm is the rotor shaft
velocity (mechanical rad/s), τ t is the torque produced by the turbine (N m), τ e is the counteracting
electromagnetic torque and Dd is the damping-torque coefficient (N m s) and accounts for the
mechanical rotational loss due to windage and friction.

Although the turbine torque τ t changes relatively slowly, due to the long thermal time constants
associated with the boiler and turbine, the electromagnetic torque τ e may change its value almost
instantaneously. In the steady state the rotor angular speed is synchronous speed ωsm while the
turbine torque τ t is equal to the sum of the electromagnetic torque τ e and the damping (or
rotational loss) torque Ddωsm

τt = τe + Ddωsm or τm = τt − Ddωsm = τe, (5.2)

where τm is the net mechanical shaft torque, that is the turbine torque less the rotational losses at
ωm = ωsm. It is this torque that is converted into electromagnetic torque. If, due to some disturbance,
τm > τ e then the rotor accelerates; if τm < τ e then it decelerates.

In Section 3.3 the rotor position with respect to a synchronously rotating reference axis was
defined by the rotor, or power, angle δ. The rotor velocity can therefore be expressed as

ωm = ωsm + �ωm = ωsm + dδm

dt
, (5.3)

where δm is the rotor angle expressed in mechanical radians and �ωm = dδm/dt is the speed deviation
in mechanical radians per second.
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Substituting Equation (5.3) into (5.1) gives

J
d2δm

dt2
+ Dd

(
ωsm + dδm

dt

)
= τt − τe or J

d2δm

dt2
+ Dd

dδm

dt
= τm − τe. (5.4)

Multiplying through by the rotor synchronous speed ωsm gives

Jωsm
d2δm

dt2
+ ωsm Dd

dδm

dt
= ωsmτm − ωsmτe. (5.5)

As power is the product of angular velocity and torque, the terms on the right hand side of this
equation can be expressed in power to give

Jωsm
d2δm

dt2
+ ωsm Dd

dδm

dt
= ωsm

ωm
Pm − ωsm

ωm
Pe, (5.6)

where Pm is the net shaft power input to the generator and Pe is the electrical air-gap power, both
expressed in watts. During a disturbance the speed of a synchronous machine is normally quite
close to synchronous speed so that ωm ≈ ωsm and Equation (5.6) becomes

Jωsm
d2δm

dt2
+ ωsm Dd

dδm

dt
= Pm − Pe. (5.7)

The coefficient Jωsm is the angular momentum of the rotor at synchronous speed and, when given
the symbol Mm, allows Equation (5.7) to be written as

Mm
d2δm

dt2
= Pm − Pe − Dm

dδm

dt
, (5.8)

where Dm = ωsmDd is the damping coefficient. Equation (5.8) is called the swing equation and is the
fundamental equation governing the rotor dynamics.

It is common practice to express the angular momentum of the rotor in terms of a normalized
inertia constant when all generators of a particular type will have similar ‘inertia’ values regardless
of their rating. The inertia constant is given the symbol H defined as the stored kinetic energy in
megajoules at synchronous speed divided by the machine rating Sn in megavolt-amperes so that

H = 0.5Jω2
sm

Sn
and Mm = 2HSn

ωsm
. (5.9)

The units of H are seconds. In effect H simply quantifies the kinetic energy of the rotor at
synchronous speed in terms of the number of seconds it would take the generator to provide an
equivalent amount of electrical energy when operating at a power output equal to its MVA rating.
In Continental Europe the symbol Tm is used for mechanical time constant where

Tm = Jω2
sm

Sn
= 2H and Mm = Tm Sn

ωsm
. (5.10)

Again the units are seconds but the physical interpretation is different. In this case, if the generator
is at rest and a mechanical torque equal to Sn/ωsm is suddenly applied to the turbine shaft, then
the rotor will accelerate, its velocity will increase linearly and it will take Tm seconds to reach
synchronous speed ωsm.
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Section 3.3 showed that the power angle and angular speed can be expressed in electrical ra-
dians and electrical radians per second respectively, rather than their mechanical equivalent, by
substituting

δ = δm

p/2
and ωs = ωsm

p/2
, (5.11)

where p is the number of poles. Introducing the inertia constant and substituting Equations (5.11)
into Equation (5.8) allows the swing equation to be written as

2HSn

ωs

d2δ

dt2
+ D

dδ

dt
= Pm − Pe or

Tm Sn

ωs

d2δ

dt2
+ D

dδ

dt
= Pm − Pe, (5.12)

where D, the damping coefficient, is D = 2Dm/p. The equations in (5.12) can be rationalized by
defining an inertia coefficient M and damping power PD such that

M = 2HSn

ωs
= Tm Sn

ωs
, PD = D

dδ

dt
, (5.13)

when the swing equation takes the common form

M
d2δ

dt2
= Pm − Pe − PD = Pacc, (5.14)

where Pacc is the net accelerating power. The time derivative of the rotor angle dδ/dt = �ω =
ω − ωs is the rotor speed deviation in electrical radians per second. Often it is more convenient to
replace the second-order differential equation (5.14) by two first-order equations:

M
d�ω

dt
= Pm − Pe − PD = Pacc

dδ

dt
= �ω.

(5.15)

It is also common power system practice to express the swing equation in a per-unit form. This
simply means normalizing Equation (5.14) to a common MVA base. Assuming that this base is the
MVA rating of the generator, then dividing both sides of Equation (5.14) by Sn does not modify
the equation structure but all parameters are now normalized to the three-phase MVA base.

5.2 Damping Power

Damping of the rotor motion by mechanical losses is small and can be neglected for all practical
considerations. The main source of damping in the synchronous generator is provided by the
damper, or amortisseur, windings described in Section 2.2.1. The damper windings have a high
resistance/reactance ratio and act in a similar way to the short-circuited squirrel-cage rotor windings
in an induction motor. In the subtransient state these windings act as a perfect screen and the changes
in the armature flux cannot penetrate them. In the transient state the air-gap flux, which rotates
at the synchronous speed, penetrates the damper windings and induces an emf and current in
them whenever the rotor speed ω is different from the synchronous speed ωs. This induced current
produces a damping torque which, according to Lenz’s law, tries to restore the synchronous speed
of the rotor. As this additional torque only appears when ω �= ωs, it is proportional to �ω = dδ/dt
and is referred to as the asynchronous torque.

Damper windings can be on both rotor axes, or on the d-axis only. In the round-rotor generator
the solid-steel rotor body provides paths for eddy currents which have the same effect as damper
windings. Machines with laminated salient poles require explicit damper windings for effective
damping.
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(a) (b)
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'

Figure 5.2 The equivalent circuit of the synchronous generator operating as an induction machine:
(a) with leakage reactances included; (b) with leakage reactances neglected.

The rigorous derivation of an expression for damping power is long and complicated but an
approximate equation for the generator–infinite busbar system can be derived if the following
assumptions are made:

(i) the resistances of both the armature and the field winding are neglected;
(ii) damping is produced only by the damper windings;

(iii) the leakage reactance of the armature winding can be neglected;
(iv) excitation does not affect the damping torque.

With these assumptions an equation for damping power can be derived using the induction motor
equivalent circuit shown in Figure 3.28.

Figure 4.10a showed that in the subtransient state the equivalent reactance of the generator,
as seen from the network, consists of the armature winding leakage reactance Xl connected in
series with the parallel-connected damper winding leakage reactance XD, the field winding leakage
reactance X f and the armature reaction reactance Xa. Figure 5.2a shows a similar equivalent circuit
of the generator–infinite busbar system with the generator operating as an induction machine. The
reactance X represents the combined reactance of the step-up transformer and the network while
Vs is the infinite busbar voltage. Due to assumption (iv) the field winding is closed but not excited.
To take the speed deviation into account the equivalent resistance in the damper branch is divided
by s = �ω/ωs in the same way as for the induction machine. Initially rotor saliency is neglected.

Assumption (iii) allows the reactance Xl to be neglected when the subtransient and transient
reactances are given approximately by the expressions in Equations (5.12) and (5.13):

X′
d

∼= 1
1

Xf
+ 1

Xa

, X′′
d

∼= 1
1

Xf
+ 1

Xa
+ 1

XD

. (5.16)

The first of these equations allows the parallel connection of X f and Xa in Figure 5.2a to be replaced
by X′

d, as shown in Figure 5.2b.
Equation (5.16) also allows the damper winding leakage reactance to be approximately expressed

as a function of the subtransient and transient reactances as

XD
∼= X′

d X′′
d

X′
d − X′′

d

. (5.17)

The subtransient short-circuit time constant T′′
d = XD/ωs RD can now be calculated as

T′′
d = XD

ωs RD

∼= X′
d X′′

d

ωs RD
(
X′

d − X′′
d

) , (5.18)

allowing the damper winding resistance (RD/s), as seen from the armature, to be written in the
form

RD

s
= X′

d X′′
d

X′
d − X′′

d

1
T′′

d ωss
= X′

d X′′
d

X′
d − X′′

d

1
T′′

d �ω
. (5.19)
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For small values of speed deviation the term RD/s is large and the current flows mostly through X′
d,

allowing the series connection of X and X′
d to be treated as a voltage divider. With this assumption

the voltage drop across X′
d is equal to Vs X′

d/
(
X + X′

d

)
. Ohm’s law applied to the damper equivalent

branch then gives

I2
D

∼= V2
s

(
X′

d

X + X′
d

)2 1

(RD/s)2 + X2
D

, (5.20)

and the damping power as

PD = I2
D

RD

s
∼= V2

s

(
X′

d

)2

(
X + X′

d

)2

RD/s( RD
s

)2 + (X′
d X′′

d)2

(X′
d−X′′

d)2

. (5.21)

Substituting RD/s from Equation (5.19) gives

PD
∼= V2

s

X′
d − X′′

d(
X + X′

d

)2

X′
d

X′′
d

T′′
d �ω

1 + (
T′′

d �ω
)2 . (5.22)

When rotor saliency is taken into account a similar formula can be derived for the quadrature
axis. The resultant damping power can be found by replacing the driving voltage Vs in both d and
q equivalent circuits by the respective voltage components, Vd = −Vs sin δ and Vq = Vs cos δ to give

PD = V2
s

[
X′

d − X′′
d(

X + X′
d

)2

X′
d

X′′
d

T′′
d �ω

1 + (
T′′

d �ω
)2 sin2 δ + X′

q − X′′
q(

X + X′
q

)2

X′
q

X′′
q

T′′
q �ω

1 + (
T′′

q �ω
)2 cos2 δ

]
. (5.23)

The damper power depends on the rotor angle δ and fluctuates with the rotor speed deviation
�ω = dδ/dt. For small speed deviations the damping power is proportional to speed deviation,
while for larger speed deviations it is a nonlinear function of speed deviation and resembles the
power–slip characteristic of the induction motor (Figure 3.29).

For a small speed deviation s = �ω/ωs � 1 and the
(
T′′

d �ω
)2

term in the denominator of
Equation (5.23) can be neglected when Equation (5.23) simplifies to

PD = V2
s

[
X′

d − X′′
d(

X + X′
d

)2

X′
d

X′′
d

T′′
d sin2 δ + X′

q − X′′
q(

X + X′
q

)2

X′
q

X′′
q

T′′
q cos2 δ

]
�ω. (5.24)

This equation is identical to the expression derived by Dahl (1938) and quoted by Kimbark (1956).
In both equations the time constants T′′

d and T′′
q are the subtransient short-circuit time constants.

When δ is large, damping is strongest in the d-axis, and when δ is small, the q-axis damper
winding produce the stronger damping. Equation (5.24) can usefully be rewritten as

PD = [Dd sin2 δ + Dq cos2 δ]�ω = D(δ)�ω, (5.25)

where D(δ) = Dd sin2 δ + Dq cos2 δ and Dd, Dq are damping coefficients in both axes. Figure 5.3
shows the variation of the damping coefficient D with δ as expressed by Equation (5.25). The
function reaches extrema for δ = 0, π or δ = π/2, 3π/2 with the corresponding extremal values
of damping coefficient being equal to Dd and Dq respectively. The average value of the damping
coefficient is Dav = (Dd + Dq)/2.

The network equivalent reactance X has a significant influence on the damping (asynchronous)
power because its squared value appears in the denominator of Equations (5.23) and (5.24). In
comparison, its influence on the synchronous power, Equation (3.150), is much less where it appears
in the denominator and is not squared.
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Figure 5.3 Damping coefficient as a function of rotor angle.

5.2.1 Damping Power at Large Speed Deviations

When analysing the damping power over a wide range of speed deviation values it is convenient to
rewrite Equation (5.23) as

PD = PD(d) sin2 δ + PD(q) cos2 δ, (5.26)

where PD(d) and PD(q) both depend on the speed deviation. Both components are proportional
to nonlinear functions of the speed deviation of the form α/(1 + α2), where α = T′′

d �ω for the
first component and α = T′′

q �ω for the second component. This function reaches a maximum for
α = 1 so that each component of the damping power will normally reach a maximum critical value
at a different critical speed deviation given by

scr(d) = �ωcr(d)

ωs
= 1

T′′
d ωs

, scr(q) = �ωcr(q)

ωs
= 1

T′′
q ωs

, (5.27)

with

PD(d)cr = V2
s

2
X′

d − X′′
d(

X + X′
d

)2

X′
d

X′′
d

, PD(q)cr = V2
s

2
X′

d − X′′
d(

X + X′
d

)2

X′
d

X′′
d

. (5.28)

Figure 5.4 shows the variation of both PD(d) and PD(q) as a function of the speed deviation. Both
factors are equal to zero when �ω = 0 and increase their value as the speed deviation increases until
the critical value is reached, after which they decrease. With changing δ the damping power PD will
assume values between PD(d) and PD(q) with the average value lying between the axes characteristics
as shown by the bold line in Figure 5.4.

1

–1

PD

∆ω
ωs

P dD(  )

PD(q)
PDav

scr(q)

scr(d)

Figure 5.4 Average value of the damping power as a function of speed deviation.
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5.3 Equilibrium Points

Section 5.1 showed how the accelerating power is dependent on the difference between the turbine
power Pm and the electrical air-gap power Pe (minus the damping power PD). The mechanical
power is supplied by the turbine and its value is controlled by the turbine governor. The electrical
air-gap power depends on the generator loading and varies depending on the generator parameters
and the power angle. It also depends on the operating state of the generator, but in this section
only the steady-state model of the generator–infinite busbar system will be considered. The infinite
busbar voltage Vs, introduced in Section 3.3 and shown in Figure 3.24, will be assumed as the datum
so that the rotor of the fictitious system’s equivalent generator will provide a reference axis rotating
at a constant speed. Expressions will be derived for Pe assuming that the combined generator and
system resistance r is small and can be neglected. However, it is important to realize that the air-gap
power is the power supplied to the system Ps plus the power loss in the equivalent resistance I2r.

Section 3.3 showed that in the steady state the generator can be represented by a constant emf
Eq behind the synchronous reactances Xd and Xq. If all the resistances and shunt admittances of
the generator–infinite busbar system shown in Figure 3.24 are neglected then the air-gap power Pe

is equal to the power delivered to the system PsEq and is given by Equation (3.132):

Pe = PEq = EqVs

xd
sin δ + V2

s

2
xd − xq

xqxd
sin 2δ, (5.29)

where xd = Xd + X, xq = Xq + X and X = XT + Xs is the combined reactance of the step-up
transformer and the equivalent network. The suffix Eq indicates that the air-gap power is calculated
with Eq assumed to be constant.

Section 3.3 showed that the angle δ is the angle between the Eq and Vs phasors (referred to as
the power angle) and, at the same time, it is the spatial angle between the generator rotor and the
fictitious system generator (referred to as the rotor angle). This is of vital importance as it allows the
swing equation, Equation (5.14), describing the dynamics of the rotor, to be linked with Equation
(5.29), describing the electrical state of the generator.

Equation (5.29) describes the steady-state, or static, power–angle characteristic of the generator.
For constant Eq and Vs the characteristic becomes a function of the power/rotor angle δ only, that
is Pe = Pe(δ), and Equation (5.14) can be rewritten as

M
d2δ

dt2
= Pm − Pe(δ) − D

dδ

dt
, (5.30)

in order to emphasize that Pe is a function of δ and that PD is proportional to dδ/dt.
When in equilibrium the generator operates at synchronous speed ω = ωs so that

dδ

dt

∣∣∣∣
δ=δ̂

= 0 and
d2δ

dt2

∣∣∣∣
δ=δ̂

= 0, (5.31)

where δ̂ is the rotor angle at the equilibrium point. Substituting the above conditions into Equation
(5.30) shows that at equilibrium Pm = Pe(δ̂). To simplify considerations the round-rotor generator
with xd = xq is assumed when the expression for the air-gap power simplifies to

Pe(δ) = PEq (δ) = EqVs

xd
sin δ. (5.32)

This characteristic is drawn in Figure 5.5. The maximum value of PEq (δ) is referred to as the
critical power PEq cr, while the corresponding value of the rotor angle is referred to as the critical angle
δcr. For the round-rotor generator described by Equation (5.32), PEq cr = EqVs/xd and δcr = π/2.

As the mechanical power depends only on the flow of the working fluid through the turbine,
and not on δ, the turbine mechanical power characteristic can be treated as a horizontal line
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Figure 5.5 Equilibrium points for various values of mechanical power.

Pm = constant in the (δ, P) plane. The intersection between the horizontal Pm characteristic and the
sine-like Pe(δ) characteristic gives the equilibrium points of the generator. Three situations, shown
in Figure 5.5, are now possible:

1. Pm > PEq cr. Clearly no equilibrium points exist and the generator cannot operate at such a
condition.

2. Pm = PEq cr. There is only one equilibrium point at δcr.
3. Pm < PEq cr. There are two equilibrium points at δ̂s and δ̂u. This condition corresponds to normal

operation and will be discussed in the next section.

5.4 Steady-State Stability of Unregulated System

Classically a system is said to be steady-state stable for a particular operating condition if, following
any small disturbance, it reaches a steady-state operating point which is identical, or close to, the
predisturbance condition. This is also known as small-disturbance, or small-signal, stability. A small
disturbance is a disturbance for which the equations that describe the dynamics of the power system
may be linearized for analytical purposes.

The dynamics of the generator, and its stability, are generally affected by automatic control of
the generator and the turbine (Figure 2.2). To simplify considerations, analysis of the generator
dynamics will be considered in two sections. In this section the unregulated system will be considered
when the mechanical power and the excitation voltage are assumed to be constant. This corresponds
to analysing the system steady-state inherent or natural stability. The influence of an AVR will be
considered in Section 5.5.

5.4.1 Pull-Out Power

Section 4.4 showed that when a generator is about to be synchronized to the system it must rotate
at synchronous speed and its terminal voltage must be equal to, and in phase with, the busbar
voltage. When the synchronizing switch is closed the steady-state equilibrium point is reached at
δ = 0 and Pm = 0 and corresponds to the origin of the power–angle characteristic shown in Figure
5.5. If now the mechanical power Pm is slowly increased by a small amount, the electrical power Pe

must follow the changes so that a new equilibrium point of Pm = Pe is reached. In other words, the
system is steady-state stable if an increase (decrease) in mechanical power causes a corresponding
increase (decrease) in electrical power.

If the system reaction is opposite to this, that is an increase in mechanical power is accompa-
nied by a decrease in electrical power, then no equilibrium point can be reached. These stability
considerations are illustrated in Figure 5.6.
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Figure 5.6 Illustration of the conditions for steady-state stability: (a) increase in mechanical power;
(b) decrease in mechanical power; (c) the generator steady-state power and synchronizing power
coefficient.

For a certain value of mechanical power, marked as ‘old’, there are two equilibrium points: 1 and
2. If mechanical power is increased to a ‘new’ value, Figure 5.6a, then this gives rise to a surplus
of power at point 1. This surplus acceleration power is equal to segment 1–3 and will, according to
Equation (5.14), accelerate the rotor and so increase the power angle and the electrical power. The
resulting motion is shown by the arrow and is towards the new equilibrium point 5.

The opposite situation occurs at equilibrium point 2. Here the acceleration power, equal to
segment 2–4, again accelerates the rotor and leads to an increase in the power angle but this now
results in a reduction in the electrical power. The motion, as shown by the arrow, is away from the
new equilibrium point 6.

A similar response is obtained if the mechanical power is reduced, Figure 5.6b. For equilibrium
points on the left hand side of the power–angle characteristic the rotor motion is from point 1
towards the new equilibrium point 5. On the other hand, when starting from equilibrium point 2,
on the right hand side of the characteristic, it is not possible to reach the new equilibrium point 6
as the rotor motion is in the opposite direction. Obviously an increase in the mechanical power to
a value exceeding Pcr results in a loss of synchronism due to the lack of any equilibrium point.

From this discussion it is apparent that the generator–infinite busbar system with constant
excitation emf Ef is steady-state stable only on the left hand side of the power–angle characteristic;
that is, when the slope KEq of the characteristic is positive

KEq = ∂PEq

∂δ

∣∣∣∣
δ=δ̂s

> 0. (5.33)

KEq is referred to as the steady-state synchronizing power coefficient and the critical power PEq cr is
often referred to as the pull-out power to emphasize the fact that a larger mechanical power will
result in the unregulated generator losing synchronism with the rest of the system. Figure 5.6c
shows the plot of KEq (δ) and PEq cr. The value of PEq cr is also referred to as the steady-state stability
limit and can be used to determine the steady-state stability margin as

cEq = PEq cr − Pm

PEq cr
, (5.34)

where Pm is the actual loading of the generator. The stability margin varies between cEq = 1 (when
the generator is unloaded) and cEq = 0 (when the generator is critically loaded).

It should be emphasized that the pull-out power is determined by the steady-state characteristic
PEq (δ) and the dynamic response of the generator to a disturbance is determined by the transient
power–angle characteristic described in the next subsection.
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5.4.2 Transient Power–Angle Characteristics

Chapter 4 explained how any disturbance acting on a generator will produce a sudden change in
the armature currents and flux. This flux change induces additional currents in the rotor windings
(field and damper) that expel the armature flux into high-reluctance paths around the rotor so as
to screen the rotor and keep the rotor flux linkage constant. As the emf Eq is proportional to the
field current, the additional induced field current will cause changes in Eq so that the assumption
of constant Eq used to derive the static power–angle characteristic (5.32) is invalid in the analysis
of postdisturbance rotor dynamics.

Chapter 4 also explained how the induced rotor currents decay with time as the armature flux
penetrates first the damper windings (subtransient period) and then the field winding (transient
period). Usually the frequency of rotor oscillations is about 1–2 Hz which corresponds to an
electromechanical swing period of about 1–0.5s. This period can be usefully compared with the
generator subtransient open-circuit time constants T′′

d0 and T′′
q0 which are in the region of few

hundredths of a second. On the other hand, the d-axis transient time constant T′
d0 is in the region

of a few seconds while the q-axis time constant T′
q0 is about a second (see Table 4.3 and Equations

(4.16)). Consequently, on the time scale associated with rotor oscillations, it may be assumed that
changes in the armature flux can penetrate the damper windings but that the field winding and the
round-rotor body act as perfect screens maintaining constant flux linkages. This corresponds to
assuming that the transient emfs E′

d and E′
q are constant. This assumption will modify the generator

power–angle characteristic as described below.

5.4.2.1 Constant Flux Linkage Model

Assume that the generator is connected to the infinite busbar as shown in Figure 3.24 and that all the
resistances and shunt impedances associated with the transformer and network can be neglected.
The corresponding equivalent circuit and phasor diagram of the round-rotor and salient-pole
generator in the transient state are then as shown in Figure 5.7. The fictitious rotor of the infinite
busbar serves as the synchronously rotating reference axis. The reactances of the step-up transformer
and the connecting network can be combined with that of the generator to give

x′
d = X′

d + X, x′
q = X′

q + X, (5.35)

where X′
d and X′

q are the d- and q-axis transient reactances of the generator, and X = XT + X s.
The voltage equations can now be constructed using Figure 5.7b to give

E′
d = Vsd + x′

q Iq, E′
q = Vsq − x′

d Id, (5.36)

where V sd and V sq are the d- and q-components of the infinite busbar voltage Vs given by V sd =
−Vs sin δ and V sq = Vs cos δ. As all resistances are neglected, the air-gap power is Pe = V sdId +
V sqIq. Substituting the values for V sd and V sq and the currents Id and Iq calculated from Equations
(5.36) gives

Pe = Ps = Vsd Id + Vsq Iq = − E′
qVsd

x′
d

+ VsdVsq

x′
d

+ E′
dVsq

x′
q

− VsdVsq

x′
q

Pe = PE′ (δ) = E′
qVs

x′
d

sin δ + E′
dVs

x′
q

cos δ − V2
s

2

x′
q − x′

d

x′
qx′

d

sin 2δ.

(5.37)

Equation (5.37) defines the air-gap power as a function of δ and the d- and q-components of
the transient emf and is valid for any generator (with or without transient saliency). The phasor
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Figure 5.7 Generator–infinite busbar system in the transient state: (a) circuit diagram; (b) phasor
diagram of the round-rotor generator; (c) phasor diagram of the salient-pole generator (x′

q = xq).

diagram in Figure 5.7b shows that E′
d= − E′ sin α, E′

q=E′ cos α and δ = δ′ + α. Substituting these
relationships into Equation (5.37) gives, after some simple but tedious algebra,

Pe = PE′ (δ′) = E′Vs

x′
d

[
sin δ′

(
cos2 α + x′

d

x′
q

sin2 α

)
+ 1

2

(
x′

q − x′
d

x′
q

)
cos δ′ sin 2α

]

− V2
s

2

x′
q − x′

d

x′
dx′

q

sin 2(δ′ + α).

(5.38)

Assuming constant rotor flux linkages, then the values of the emfs E′
d and E′

q are also con-
stant, implying that both E′ = constant and α = constant. Equation (5.38) describes the generator
power–angle characteristic Pe(E′, δ′) in terms of the transient emf and the transient power angle
and is valid for any type of generator.

A generator with a laminated salient-pole rotor cannot produce effective screening in the q-axis
with the effect that x′

q = xq. Inspection of the phasor diagram in Figure 5.7c shows that in this case
E′ lies along the q-axis so that α = 0 and δ′ = δ. Consequently, in this special case, Equation (5.38)
simplifies to

Pe = PE′
q (δ′)

∣∣∣
x′

q=xq
= E′

qVs

x′
d

sin δ′ − V2
s

2
xq − x′

d

xqx′
d

sin 2δ′. (5.39)

5.4.2.2 Classical Model

The constant flux linkage model expressed by Equation (5.38) can be simplified by ignoring transient
saliency, that is by assuming x′

d ≈ x′
q. With this assumption Equation (5.38) simplifies to

Pe = PE′ (δ′)
∣∣

x′
d≈x′

q
≈ E′Vs

x′
d

sin δ′. (5.40)

The assumption of x′
d = x′

q allows the separate d- and q-axis circuits shown in Figure 5.7b to be
replaced by one simple equivalent circuit shown in Figure 5.8. In this classical model all the voltages,
emfs and currents are phasors in the network reference frame rather than their components resolved
along the d- and q-axes.
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Figure 5.8 Classical model of the generator in the transient state: (a) circuit diagram; (b) phasor
diagram.

Generally, as Table 4.3 shows, there is always some degree of transient saliency and x′
d �= x′

q.
However, it should be noted that the generator is connected to the infinite busbar through the
reactance X = XT + X s so that x′

d = X′
d + X and x′

q = X′
q + X. The influence of X is such that, as its

magnitude increases, the closer the term x′
d/x′

q approaches unity, the closer the term
(
x′

q − x′
d

)
/x′

dx′
q

approaches zero. Consequently, when the network reactance is large the classical model, and the
constant flux linkage model defined by Equation (5.38), give very similar results even for a generator
with a laminated salient-pole rotor.

It is important to note that δ′ is the angle between Vs and E′ and not the angle between Vs and
the q-axis. However, during the transient period the emfs E′

d and E′
q are assumed to be constant

(with respect to the rotor axes) and α is also constant with

δ = δ′ + α,
dδ

dt
= dδ′

dt
and

d2δ

dt2
= d2δ′

dt2
. (5.41)

This allows δ′ to be used in the swing equation instead of δ when Equation (5.14) becomes

M
d2δ′

dt2
= Pm − E′Vs

x′
d

sin δ′ − D
dδ′

dt
. (5.42)

An important advantage of the classical model is that the generator reactance may be treated
in a similar way to the reactance of the transmission lines and other network elements. This
has particular importance for multi-machine systems when combining the algebraic equations
describing the generator and the network is not as easy as for the generator–infinite busbar system.
Due to its simplicity, the classical model will be used extensively throughout this book to analyse
and explain rotor dynamics.

5.4.2.3 Steady-State and Transient Characteristics on the Power–Angle Diagram

It is now important to understand how the dynamic characteristic of a generator is located with
respect to the static characteristic on the power–angle diagram. For a given stable equilibrium
point, when Pe = Pm, the balance of power must be held whichever characteristic is considered
so that both the static and dynamic characteristics must intersect at the stable equilibrium point.
Generally the angle α between δ0 and δ′

0 is not equal to zero and the transient characteristic is shifted
to the right. For salient-pole generators α = 0, both characteristics originate at the same point,
and the intersection between them at the equilibrium point is due to a distortion in the sine shape
of the transient characteristic.
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Example 5.1

The round-rotor generator considered in Example 4.1 is connected to the power system (infinite
busbar) via a transformer with series reactance XT = 0.13 pu and a transmission line with series
reactance XL = 0.17 pu. Find, and plot, the steady-state and the transient characteristics using
both the constant flux linkage and the classical generator model. As in Example 4.1, the generator
real power output is 1 pu, the reactive power output is 0.5 pu and the terminal voltage is 1.1 pu.

From Example 4.1, I0 = 1.016, ϕg0 = 26.6◦, Eq0 = 2.336, δg0 = 38.5◦, Id0 = −0.922, Iq0 =
0.428, E′

q = E′
q0 = 1.073, E′

d = E′
d0 = 0.522. Angle α can be found from α = arctan(E′

0/E′
q) =

26o. The total reactances are xd = xq = xd + XT + XL = 1.9, x′
d = X′

d + XT + XL = 0.53,
x′

q = X′
q + XT + XL = 0.68.

Taking V g as the reference, the phasor of the transient emf is E′ = 1.193∠12.5o. It is now
necessary to calculate the system voltage Vs and calculate the position of Eq and E′ with respect
to Vs. The system voltage can be calculated from

Vs = Vg − j(XT + XL)I = 1.1 − j0.3 × 1.016∠26.6◦ = 1.0∠−15.8◦.

The angle δ0 is therefore equal to 38.5 + 15.8 = 54.3◦, δ′
0 is 12.5 + 15.8 = 28.3◦ and ϕ0 is

26.6 − 15.8 = 10.8◦. The d- and q-components of the system voltage are
Vsd = −1 sin 54.3◦ = −0.814, Vsq = 1 cos 54.3◦ = 0.584.
The steady-state power-angle characteristic is

PEq (δ) = EdVs

xd
sin δ = 2.336 × 1

1.9
sin δ = 1.23 sin δ.

The transient characteristic (constant flux linkage model) can be calculated from Equation
(5.37) as

PE′′ (δ) = 1.07 × 1
0.53

sin δ + −0.5224 × 1
0.68

cos δ − 12

2
0.68 − 0.53
0.68 × 0.53

sin 2δ

= 2.02 sin δ − 0.768 cos δ − 0.208 sin 2δ.

The approximated transient characteristic for the classical model can be calculated assuming
x′

d = x′
q. The transient emf can be calculated with respect to Vs as E′ = Vs + jx′

d I0 = 1 + j 0.53 ×
1.016∠ − 10.8◦ = 1.223∠25.7◦. Thus E′ = 1.223, δ′

0 = 25.7◦ and α = δ − δ′ = 54.3 − 25.7 =
28.6◦. The approximated transient characteristic can now be calculated from Equation (5.40)
as

PE′ (δ′) ≈ 1.223 × 1
0.53

sin δ′ = 2.31 sin δ′.

This characteristic is shifted with respect to PEq (δ) by 28.6◦. Figure 5.9a shows all three charac-
teristics. It can be seen that the classical model gives a good approximation of the constant flux
linkage model.

Example 5.2

Recalculate all the characteristics from Example 5.1 for the salient-pole generator considered
previously in Example 4.2.

From Example 4.2, I0 = 1.016, ϕg0 = 26.6◦, Eq = Eq0 = 1.735, Id0 = −0.784, Iq0 = 0.647,
E′

q = E′
q0 = 1.241, E′

d = 0, δg0 = 23.9◦, α = 0.
The total reactances are xd = Xd + XT + XL = 1.23, xq = x′

q = Xq + XT + XL = 0.99, x′
d =

X′
d + XT + XL = 0.6.



P1: OTA/XYZ P2: ABC
c05 JWBK257/Machowski September 22, 2008 21:38 Printer Name: Yet to Come

Electromechanical Dynamics – Small Disturbances 183

Taking V g as the reference, the phasor of the transient emf is E′ = 1.241∠23.9◦. The system
voltage was calculated in Example 5.1 and is Vs = 1.0∠15.8◦. Thus δ0 = δ′

0 = 23.9 + 15.8 =
39.7◦ and δ0 + ϕ0 = 39.7 + 10.8 = 50.5◦. The d- and q-components of the system voltage are
Vsd = −1 sin 39.7◦ = −0.64, Vsq = 1 cos 39.7◦ = 0.77.

The steady-state power–angle characteristic is

PEq (δ) = EqVs

xd
sin δ + V2

s

2
xd − xq

xdxq
sin 2δ = 1.735 × 1

1.23
sin δ + 1

2
1.23 − 0.99
1.23 × 0.99

sin 2δ

= 1.41 sin δ + 0.099 sin 2δ ∼= 1.41 sin δ.

The transient characteristic (constant flux linkage model) can be calculated from Equation
(5.39) as

PE′ (δ) = 1.241 × 1
0.6

sin δ − 12

2
0.99 − 0.6
0.99 × 0.6

sin 2δ = 2.07 sin δ − 0.322 sin 2δ

The approximated transient characteristic for the classical model can be calculated as-
suming x′

d = x′
q. The transient emf, calculated with respect to Vs, is then E′ = Vs + jx′

d I =
1 + j 0.6 × 1.016∠ − 10.8◦ = 1.265∠28.3◦. Thus E′ = 1.265, δ′ = 28.3◦ and α = δ − δ′ = 39.7 −
28.3 = 11.4◦. The approximated transient characteristic can now be calculated from Equation
(5.40) as

PE′ (δ′) ≈ 1.265 × 1
0.6

sin δ′ = 2.108 sin δ′.

This characteristic is shifted with respect to PEq (δ) by α = 11.4◦. Figure 5.9b shows all three
characteristics. It can be seen that the classical model gives a good approximation of the constant
flux linkage model.

Figure 5.9 shows that by neglecting transient saliency the classical model does not generally
significantly distort the transient characteristics. As xd > x′

d, the amplitude of the transient charac-
teristic is greater than the amplitude of the steady-state characteristic. Consequently, the slope of
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Figure 5.9 Steady-state and transient characteristics: (a) round-rotor generator (α > 0); (b) lami-
nated salient-pole machine (α = 0).
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the transient characteristic at the stable equilibrium point, referred to as the transient synchronizing
power coefficient

KE′ = ∂PE′

∂δ′

∣∣∣∣
δ′=δ̂′

s

, (5.43)

is steeper than the slope of the steady-state characteristic, KEq , defined in Equation (5.33). For the
classical model KE′ = E′Vs cos δ̂′

s/x′
d.

When the generator loading is changed, Pm changes and the stable equilibrium point is shifted to
a new position on the steady-state characteristic PEq (δ), providing that Pm does not exceed the pull-
out power. This increased load modifies the transient characteristic as illustrated in Figure 5.10a
which shows three transient characteristics corresponding to three different mechanical powers Pm1,
Pm2, Pm3. The generator excitation (and therefore the amplitude of the steady-state characteristic)
is assumed to be unchanged. Each new steady-state equilibrium point corresponds to a different
value of E′ and a different transient characteristic PE′ (δ) crossing the equilibrium point. Note that
increased loading results in a smaller transient emf E′ so that the amplitude of the transient char-
acteristic is reduced. This can be verified by inspecting the predisturbance d-axis phasor diagram,
Figure 4.15, assuming Ef constant. This shows that an increase in the armature current I0 results in
a larger voltage drop across the reactances

(
xd − x′

d

)
and (xq − x′

q) and therefore a smaller E′
0 = E′

value. Figure 5.10b illustrates the same effect shown in Figure 5.10a but in a slightly different way as
it shows the steady-state electrical power PEq , the steady-state synchronizing power coefficient KEq

and the transient synchronizing power coefficient KE′ as a function of the generation loading as
expressed by the steady-state equilibrium angle δ̂s. The case of the round-rotor generator is shown.
An increase in the generator loading results in smaller steady-state and transient synchronizing
power coefficients KEq and KE′ , but nevertheless KE′ is always larger than KEq .

5.4.3 Rotor Swings and Equal Area Criterion

The generator models derived in the previous subsection can now be used to describe and analyse
the rotor dynamics assuming that the generator is subjected to a sudden disturbance. Such a

δ
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Figure 5.10 Effect of increased loading on the round-rotor generator: (a) the steady-state and
transient characteristics for three different loads; (b) the steady-state electrical power and the steady-
state and transient synchronizing power coefficients as a function of the steady-state equilibrium
rotor angle.
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disturbance will result in additional currents being induced in the rotor windings so as to maintain
constant rotor flux linkages and therefore constant E′. As the synchronous emfs Ed and Eq follow
the changes in the field winding current and the rotor body current respectively, they cannot be
assumed to be constant and any rotor swings must therefore follow the transient power–angle curve
Pe = PE′ (δ′).

Disturbances in the generator–infinite busbar system may arise due to a change in the turbine
mechanical power or a change in the equivalent system reactance. The effect of such practical
disturbances will be considered in detail later, but here it suffices to consider the effect of disturbing
the rotor angle δ from its equilibrium value δ̂s to a new value (δ̂s + �δ0). Although such a disturbance
is unlikely from a technical point of view, it does allow a number of important concepts to be
introduced that are fundamental to understanding the effects of other, more practical types of
disturbance. The initial disturbed conditions for the solution of the system differential equations are

�δ(t = 0+) = �δ0 �= 0, �ω(t = 0+) = �ω0 = 0. (5.44)

The reaction of the system to this disturbance is illustrated in Figure 5.11 which shows both
the steady-state and the transient power characteristics as a function of the rotor angle δ. As the
disturbance cannot change the rotor flux linkage, the initial (disturbed) generator operating point
will be at point 2 on the transient characteristic PE′ (δ) which crosses the predisturbance stable
equilibrium point 1.

Any movement requires work to be done so that by increasing the rotor angle from δ̂s to (δ̂s + �δ0)
the disturbance performs work on the rotor. In rotational motion work is equal to the integral of
the torque acting over the angular displacement and in this case the net torque is equal to the
difference between the electrical (transient) torque and the mechanical torque. As power is equal to
the product of torque and angular velocity, and assuming ω ≈ ωs, the work done by the disturbance
is proportional to the integral of the net power acting over the angular displacement, that is

W1−2 =
δ̂s+�δ0∫
δ̂s

[PE′ (δ) − Pm] dδ = area 1 − 2 − 4. (5.45)

Throughout this book the quantity W will be treated as energy (or work) although, strictly speaking,
it should be divided by the synchronous speed ωs. As the rotor speed deviation �ω at point 2 is
assumed to be zero (the speed is synchronous), the kinetic energy of the rotor is the same as that at
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Figure 5.11 Rotor and power swings following a disturbance.
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equilibrium point 1. This means that the work W1−2 done by the disturbance increases the system
potential energy (with respect to equilibrium point 1) by

Ep = W1−2 = area 1–2–4. (5.46)

This initial potential energy provides the impetus necessary to move the rotor back towards its
equilibrium point 1. At the disturbed rotor position 2 the mechanical driving torque (and power)
is less than the opposing electrical torque (and power), the resulting net deceleration power (equal
to segment 4–2) starts to reduce the rotor speed (with respect to synchronous speed) and the rotor
angle will decrease. At the equilibrium point 1 all the potential energy in Equation (5.46) will be
converted into kinetic energy (relative to synchronous speed) and the deceleration work done is
equal to

Ek = W1−2 = area 1–2–4 = 1
2

M�ω2. (5.47)

The kinetic energy will now push the rotor past the equilibrium point δ̂s so that it continues to move
along curve 1–3. On this part of the characteristic the mechanical driving torque is greater than the
opposing electrical torque and the rotor begins to accelerate. Acceleration will continue until the
work performed by the acceleration torque (proportional to the integral of the accelerating power)
becomes equal to the work performed previously by the deceleration torque. This happens at point
3 when

area 1–3–5 = area 1–2–4. (5.48)

At this point the generator speed is again equal to synchronous speed but, as Pm > PE′ , the rotor
will continue to accelerate, increasing its speed above synchronous, and will swing back towards
δ̂s. In the absence of any damping the rotor will continually oscillate between points 2 and 3, as
described by the swing equation, Equation (5.30). The resulting swing curve is shown in the lower
part of Figure 5.11 with the corresponding power swings being shown to the right.

Equation (5.48) defines the maximum deflection of the rotor in either direction on the basis of
equalizing the work done during deceleration and acceleration. This concept will be used later in
Chapter 6 to define the equal area criterion of stability.

5.4.4 Effect of Damper Windings

Equation (5.24) showed that for small deviations in rotor speed the damper windings produce a
damping power PD = D�ω that is proportional to the rotor speed deviation. To help explain the
effect of the damper windings on the system behaviour it is convenient to rewrite the swing equation,
Equation (5.30), as

M
d2δ

dt2
= Pm − [Pe(δ) + PD] , (5.49)

when the damping power is seen either to add to, or to subtract from, the electrical air-gap power
Pe(δ) depending on the sign of the speed deviation. If �ω < 0 then PD is negative, effectively
opposing the air-gap power and shifting the resulting (PE′ + PD) characteristic downwards. If
�ω > 0 then PD is positive, effectively assisting the air-gap power and shifting the resultant char-
acteristic upwards. The rotor will therefore move along a modified power–angle trajectory such
as that shown in Figure 5.12. To help increase clarity, this diagram shows an enlarged part of the
power–angle diagram in the vicinity of the equilibrium point.

As before, the rotor is initially disturbed from equilibrium point 1 to point 2. At point 2 the
driving mechanical power is less than the opposing electrical power and the decelerating torque will
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Figure 5.12 Rotor and power oscillations with damping included.

force the rotor back towards the equilibrium point. On deceleration the rotor speed drops and PD

becomes negative, decreasing the resulting decelerating torque. The rotor therefore moves along the
line 2–6 when the work done by the decelerating torque is equal to the area 2–4–6. This is less than
the area 2–4–1 in Figure 5.11 which represents the work that would have been done if no damping
were present. At point 6 the rotor speed reaches a minimum and, as it continues to move along the
curve 6–3, the accelerating torque counteracts further movement of the rotor and is assisted by the
negative damping term. The rotor again reaches synchronous speed when the area 6–3–5 is equal
to the area 2–4–6 which is achieved earlier than in the case without damping. The rotor then starts
to swing back, still accelerating, so that the speed increases above synchronous speed. The damping
term changes sign, becoming positive, and decreases the resulting accelerating torque. The rotor
moves along the curve 3–7 and the work performed during the acceleration is equal to the small
area 3–5–7. As a result the rotor reaches synchronous speed at point 8, much earlier than in the case
without damping. The rotor oscillations are damped and the system quickly reaches equilibrium
point 1.

5.4.5 Effect of Rotor Flux Linkage Variation

The discussion so far has assumed that the total flux linking the field winding and rotor body
remains constant during rotor oscillations so that E′ = constant. However, as the armature flux
enters the rotor windings (Chapter 4) the rotor flux linkages change with time and the effect this
has on the rotor swings must now be considered.

5.4.5.1 Linearized Form of the Generator Equations

For small-disturbance analysis, suitable for steady-state stability purposes, the equations describing
the generator behaviour can be linearized in the vicinity of the predisturbance operating point.
Assume that this operating point is defined by the transient rotor angle δ̂′

s and the transient emf
E′

0. An approximate expression for the change in power �P = Pe(δ′) − Pm with respect to the
steady-state equilibrium point can be obtained as a function of the change in the transient rotor
angle �δ = δ′(t) − δ̂′

s and a change in the transient emf �E′ = E′(t) − E′
0 as

�Pe = ∂Pe(δ′, E′)
∂δ′

∣∣∣∣
E′=E′

0

�δ′ + ∂Pe(δ′, E′)
∂E′

∣∣∣∣
δ′=δ̂′

s

�E′ = KE′�δ + Dδ′�E′, (5.50)
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where Pe(δ′,E′) is the air-gap power given by Equations (5.38), (5.39) or (5.40), KE′ = ∂Pe/∂δ′ is the
transient synchronizing power coefficient and Dδ′ = ∂Pe/∂E′ is a constant coefficient, all of which
depend on the generator load. As the angle α = δ − δ′ is assumed to be constant, �δ′ = �δ. This
allows the swing equation, Equation (5.30), to be linearized in the vicinity of the operating point as

M
d2�δ

dt2
+ D

d�δ

dt
+ KE′ �δ + Dδ′�E′ = 0. (5.51)

The transient emf can be resolved into two components E′
d and E′

q along the d and q rotor axes.
Analysing the time changes of both components is complicated as the variations take place with
different time constants. To simplify the discussion, the case of the salient-pole machine will be
considered when E′

d = 0, E′ = E′
q and E′

d = 0, and only the flux linkages of the field winding need
be considered.

Now assume that the salient-pole generator operates at a steady-state equilibrium point defined
by δ = δ̂s and E′

q = E′
q0. The incremental swing equation, Equation (5.51), is

M
d2�δ

dt2
+ D�ω + KE

′
q

�δ + Dδ′�E′
q = 0, (5.52)

where �ω = d�δ/dt and the values of the coefficients KE′
q = ∂Pe/∂δ′ and Dδ′ = ∂Pe/∂E′

q can be
obtained by differentiating the expression for the air-gap power of the salient-pole generator,
Equation (5.39). Analysis of Equation (5.52) suggests that if the changes �E′

q are in phase with
the rotor speed deviation �ω, then, just as with the damper winding, additional positive damping
power will be introduced into the system.

Chapter 4 showed that the rate at which flux can penetrate the field winding is primarily de-
termined by the field winding transient time constant T′

d0, although the generator and system
reactances and the operating point will also have some influence. Assuming that the excitation emf
Ef and the infinite busbar voltage Vs are constant, Equation (4.28) can be rewritten as

�E′
q = − AB

1 + BT′
d0s

�δ, (5.53)

where A and B are constants that depend on the operating conditions (angle δ0) and the generator
and network reactances. If both the generator armature resistance and the network resistance are
neglected then

A =
(

1 − B
B

)
Vs sin δ0 and B = (X′

d + X)/(Xd + X) = x′
d/xd.

The time constant BT′
d0 is often referred to as the effective field winding time constant.

If sinusoidal variations of �δ are considered then the frequency response of Equation (5.53) can
be obtained by setting s = j	, where 	 is the frequency of the rotor swings (in rad/s) and 2π/	

is the swing period, as discussed later in this chapter (Equation (5.67)). This allows the phase of
�E′

q to be compared with that of �δ. As T′
d0 is typically much longer than the swing period and

T′
d0 � 2π/	, it can be assumed that BT′

d0	 > 1 and

�E′
q(j�ω) ∼= − AB

BT′
d0j	

�δ(j	) = j
A

T′
d0	

�δ(j	). (5.54)

Thus, the changes �E′
q are seen to lead the changes �δ by π/2, that is they are in phase with the

rotor speed deviation �ω = d�δ/dt thereby providing some additional positive damping torque.
Equation (5.54) also shows that the magnitude of the variation in �E′

q depends, via the coefficient
A = [(1 − B)/B]Vs sin δ0, on the power angle δ0 at the linearization (operating) point. Thus the same
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variation in δ will result in higher variations in �E′
q if the system is heavily loaded (higher value of

δ0) and the assumption of constant flux linkage (E′ = constant) is more accurate when the generator
is lightly loaded (small δ0) and the variations in �E′

q are small.
The effect of variations in the rotor flux linkages will be examined for two cases using the equal

area method. In the first case the generator mechanical power Pm < PEq cr while in the second case
Pm = PEq cr. In both cases the effect of the damper winding will be neglected in the discussion in
order to see more clearly the effect that the variation in rotor flux linkage has on the damping.

5.4.5.2 Equilibrium Point for Pm < PEq cr

Figure 5.13a shows how Figure 5.11 has to be modified to include the effect of the variation in rotor
flux linkage. Again, only that part of the power–angle characteristic in the vicinity of the operating
point is shown. As before, the disturbance causes the electrical power to move from point 1 to point
2 on the predisturbance transient PE′

q0
(δ) curve as the field winding acts initially like a perfect screen

maintaining constant rotor flux linkages. As the rotor starts to decelerate, its speed drops so that the
speed deviation �ω becomes negative. The resistance of the field winding dissipates magnetic energy
and the rotor linkages start to decay, reducing the value of transient emf E′

q as shown in Figure
5.13b. Consequently, the electrical power is less than would be the case with E′

q = constant and the
rotor motion is along the curve 2–6 rather than 2–1. The resulting deceleration area 2–4–6 is smaller
than area 2–4–1 thereby reducing the kinetic energy that is responsible for providing the impetus
for the backswing. As the rotor passes point 6 it starts to accelerate, the emf E′

q starts to recover and
it reaches its predisturbance value when �ω is zero at point 3 such that area 6–3–5 is equal to area
2–4–6. The rotor then continues to accelerate and swings back towards the equilibrium point. The
speed deviation �ω increases and E′

q continues to increase so modifying the dynamic characteristic
which now lies above PE′

q0
(δ). This reduces the accelerating area and the kinetic energy, providing

the impetus for the forward swing. The accelerating area is 3–5–7, the forward swing ends at point
8 and the whole cycle is repeated with a reduced amplitude of rotor swings.

Figure 5.13b shows that the E′
q variations are in phase with �ω and lead the �δ variations

by π/2. Figure 5.13c illustrates the same effect using a phasor representation. All the increments
of quantities shown in Figure 5.13c oscillate with the swing frequency 	 discussed later in this
chapter (Equation (5.67)). Hence they can be shown on a phasor diagram in the same way as any
sinusoidally changing quantities. Obviously the phasors shown rotate with the swing frequency 	

rather than 50 or 60 Hz as is the case for AC phasors. Strictly speaking, the phasors shown represent
the phase and initial values of the quantities as their rms values decay with time. The synchronous
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2

5
61
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KP Ee(∆δ)= ′ δ

∆Eq′

Ω

∆
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Figure 5.13 Including the effect of variation in rotor flux linkage: (a) trajectory of the operating
point; (b) time variation of electrical power and transient emf oscillating with the swing frequency
	; (c) rotating phasors of increments �δ, �E′

q and �ω = dδ/dt.
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power �Pe is in phase with the rotor angle �δ while �E′
q is in phase with the rotor speed deviation

�ω. Obviously �ω is a derivative of �δ and leads it by π/2. It should be emphasized that the
changes in E′

q are very small, in the range of a small percentage.
Figure 5.13 shows that the field winding provides a similar damping action to the damper

windings, but much weaker. The combined effect of the two damping mechanisms helps to return
the rotor quickly to the equilibrium point. If the damping effect is large then the rotor motion may
be aperiodic (without oscillations).

The constants A and B in Equations (5.53) and (5.54) were stated assuming that the effect of
the network resistance could be neglected. A fuller analysis would show that A and B depend on
the network resistance (Anderson and Fouad, 1977) and that at large values of this resistance A
can change sign when, according to Equation (5.54), the term with �E′

q changes sign to negative
(with respect to �ω) and negative damping is introduced to the system. This may happen when a
generator operates in a medium-voltage distribution network (Venikov, 1978b) and such a case is
illustrated in Figure 5.14. If �E′

q lags �δ then during the backswing the rotor will move from point
2 along a characteristic, that is higher than the initial one, thereby performing deceleration work
equal to the area 2–3–2′. This area is larger than if the rotor followed the initial characteristic 2–1
(cf. Figure 5.11. To balance this deceleration work the rotor must swing back to point 4 such that
area 3–4–4′ is equal to area 2–3–2′. Consequently, the amplitude of the rotor swings increases and,
if this negative damping is larger than the positive damping introduced by the damper windings,
the generator may lose stability.

By analysing rotor swings similar to those shown in Figures 5.13 and 5.14 it can be shown that
the positive damping due to the flux linkage variation described above can only take place when the
slope of the transient characteristic is steeper than the slope of the steady-state characteristic, KE′ >

KEq (Machowski and Bernas, 1989). Consequently the steady-state stability condition defined in
Equation (5.33) must be modified to take into account the rotor dynamics as

KEq = ∂PEq

∂δ
> 0 and KE′ = ∂PE′

∂δ
> KEq . (5.55)

Another type of disturbance, consisting of a small increase in the mechanical power to
(Pm + �Pm), is shown in Figure 5.15. Again the characteristics are shown only in the vicinity
of the equilibrium point. Initially the system operates at point 1, the intersection between the char-
acteristics Pm, PEq and PE′

q0
. The increased mechanical loading produces a new, final equilibrium

point ∞. The final value of the transient emf E′
q∞ is smaller than the initial value E′

q0 as indicated
in Figure 5.10. Consequently E′

q must reduce as the rotor moves from point 1 towards point ∞.
This means that the rotor oscillations will be similar to those shown in Figure 5.13, but occurring
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Figure 5.14 Negative damping: (a) trajectory of the operating point; (b) time variation of electrical
power and transient emf; (c) relative position of phasors of oscillating increments.
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Figure 5.15 Rotor and power swings due to a disturbance in mechanical power.

along a series of dynamic characteristics of decreasing amplitude, all of them lying below the initial
characteristic PE′

q0
. Small oscillations of E′

q around its average decaying value cause some damping
similar to that shown in Figure 5.13. This damping again adds to the main damping coming from
the damper windings.

5.4.5.3 Equilibrium Point at Pm = PEq cr

If Pm = PEq cr then there is only one steady-state equilibrium point. As shown in Figure 5.10a,
the transient characteristic PE′

q (δ) crossing point (δcr, PEq cr) has a positive slope and a momentary
disturbance in the angle δ will produce oscillations around the equilibrium point that are damped
by the damper and field windings. Although this would suggest stable operation, the system is in
practice unstable as will be explained below.

Any generator will be subjected to minor disturbances resulting from vibrations, slight changes
in supplied power, switching in the network and so on. When the system operates at Pm = PEq cr any
such disturbance may cause a relative shift between the Pm and PEq (δ) characteristics. This is shown
in Figure 5.16 where it is assumed that Pm is increased by �Pm such that the new mechanical (Pm +
�Pm) characteristic lies above PEq (δ). Initially, as the transient PE′

q (δ) characteristic has a positive
slope, the rotor starts to oscillate around (Pm + �Pm) in a similar way to that shown in Figure
5.15. Gradually the armature flux penetrates the field winding, the emf E′

q decays and the rotor
follows the PE′

q (δ) characteristics of declining amplitude. Eventually the decay in E′
q is such that

the PE′
q (δ) curve lies below the new mechanical (Pm + �Pm) characteristic and the generator loses

synchronism. The behaviour of the generator during asynchronous operation will be described in
Section 6.5.

The oscillatory loss of stability shown in Figure 5.16 takes place when the influence of the
damper windings is neglected. In practice, damping at high loading can be significant when the loss
of stability may occur in an aperiodic way for the reasons discussed in the next subsection.

5.4.6 Analysis of Rotor Swings Around the Equilibrium Point

In this subsection a quantitative analysis of rotor dynamics around the equilibrium point will be
attempted. Assuming the constant flux linkage generator model with constant E′, the incremental
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Figure 5.16 Rotor, power and transient emf oscillations after a small increase in Pm at the critical
equilibrium point.

swing equation, Equation (5.51), becomes

M
d2�δ

dt2
+ D

d�δ

dt
+ KE′ �δ = 0, (5.56)

with the initial disturbed conditions being

�δ(t = 0+) = �δ0 �= 0 and �ω = �δ̇(t = 0+) = 0. (5.57)

Equation (5.56) is a second-order linear differential equation. As shown in Appendix A.3 the
solution of a linear differential equation of any order is of the form: �δ(t) = eλt. For the solution
of that form one gets

�δ = eλt,
d�δ

dt
= λeλt,

d2�δ

dt2
= λ2eλt. (5.58)

Substituting this equation into Equation (5.56) and dividing by the nonzero term eλt gives the
following algebraic equation:

λ2 + D
M

λ + KE′

M
= 0. (5.59)

This characteristic equation describes values of λ for which the assumed function �δ = eλt consti-
tutes the solution of the differential equation (5.56). The values of λ that solve the characteristic
equation are referred to as the roots of the characteristic equation.

The characteristic equation (5.59) has two roots λ1 and λ2 given by

λ1,2 = − D
2M

±
√(

D
2M

)2

− KE′

M
. (5.60)

Three cases are now possible (see Appendix A.3):

(i) The roots are real and distinct and the solution is of the form �δ (t) = A1eλ1t + A2eλ2t, where
A1 and A2 are the integration constants. This case is described in detail in Example A3.2
discussed in Appendix A.3. Substitution of the initial conditions defined in Equation (5.57)
gives the aperiodic response

�δ(t) = �δ0

λ2 − λ1

[
λ2eλ1t − λ1eλ2t] , (5.61)

where −1/λ1 and −1/λ2 are time constants.
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(ii) The roots are real and equal, λ1 =λ2 =λ, and the solution is of the form �δ(t) = eλt(A1 + A2t).
This case is described in detail in Example A.3.3 discussed in Appendix A.3. Substitution of
the initial conditions in Equation (5.57) gives the aperiodic response

�δ(t) = �δ0eλt(1 − λt), (5.62)

where −1/λ is the time constant.
(iii) The roots form a complex conjugate pair

λ1,2 = − D
2M

± j

√
KE′

M
−

(
D

2M

)2

. (5.63)

Denoting

α = − D
2M

, 	 =
√

KE′

M
−

(
D

2M

)2

, (5.64)

one gets λ1,2 = α ± j	 where 	 is the frequency of oscillations (in rad/s) while α is the
damping coefficient. The coefficient

ζ = −α√
α2 + 	2

, (5.65)

is referred to as the damping ratio. This notation allows Equation (5.56) to be rewritten as the
standard second-order differential equation

d2�δ

dt2
+ 2ζ	nat

d�δ

dt
+ 	2

nat�δ = 0, (5.66)

with the roots

λ1,2 = −ζ	nat ± j	, (5.67)

where 	nat is the undamped natural frequency (in rad/s) of rotor swings for small oscillations,
ζ is the damping ratio and 	 = 	nat

√
1 − ζ 2 where 	 is now referred to as the damped natural

frequency (in rad/s) of rotor swings. This case is described in detail in Example A3.4 and
Example A3.5 discussed in Appendix A.3. Comparing Equation (5.66) with Equation (5.56)
gives 	nat = √

KE′/M and ζ = D/2
√

KE′ M. The solution for �δ(t) is now given by

�δ(t) = �δ0√
1 − ζ 2

e−ζ	natt cos [	t − φ] , (5.68)

where φ = arcsin ζ .

The damping ratio ζ determines the amount of damping present in the system response expressing
how quickly the amplitude of rotor swings decreases during subsequent periods. Let us express time
as the multiplier of periods t = 2πN/ωnat where N is the number of oscillation periods. Then
Equation (5.68) gives

kN = �δ(N)
�δ0

= e−2π Nζ√
1 − ζ 2

, (5.69)

where �δ(N) denotes the amplitude of oscillations after N periods. For a practical assessment of
damping, it is convenient to analyse N = 5 periods. A plot of the function given by (5.69) for
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Figure 5.17 Amplitude �δ/�δ0 as a function of the damping ratio ζ after N = 5 periods.

N = 5 is shown in Figure 5.17. For example, the amplitude decreases after N = 5 periods to 39%
for ζ = 0.03, to 21% for ζ = 0.05 and to 4% for ζ = 0.10.

In practice, damping of rotor swings is considered to be satisfactory if the damping ratio ζ = 0.05.
As the values of the roots λ1,2 depends on the actual values of KE′ , D and M, so too does the type

of response. The inertia coefficient M is constant while both D and KE′ depend on the generator
loading. Figure 5.3 shows that the damping coefficient D increases with load and Figure 5.10b
shows that the transient synchronizing power coefficient KE′ decreases with load.

Equation (5.60) shows that if KE′ > 0 then, depending on the actual values of KE′ and D, the
roots of the characteristic equation can be either real or complex. For small initial values of power
angle δ̂s the damping coefficient is small, while the transient synchronizing power coefficient KE′ is
large so that (KE′/M) > (D/2M)2 and the two roots form a complex conjugate pair. In this case the
solution of the differential equation is given by Equation (5.68). The system response is oscillatory
with the amplitude of rotor oscillations decaying with time as shown schematically in the inset near
point A in Figure 5.18. The frequency of oscillations is 	 and is slightly smaller than the undamped
natural frequency 	nat.

As the initial value of the power angle δ̂s increases, the synchronizing power coefficient KE′

decreases while damping increases. Consequently 	nat decreases but the damping ratio ζ increases
with the result that the rotor oscillations become slower and more heavily damped as shown in the
inset near point B in Figure 5.18. At some point, when (KE′/M) = (D/2M)2, the damping ratio
ζ is unity and the oscillations are said to be critically damped. In this case the roots are real and
equal, λ1 = λ2 = −	nat, giving the aperiodic response expressed by Equation (5.62) and shown in
the inset near point C in Figure 5.18.
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Figure 5.18 Examples of rotor swings for different stable equilibrium points.
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As the initial power angle δ̂s is further increased, at some point it holds that (KE′/M) < (D/2M)2,
the two roots are real and negative, and the rotor swings are expressed by Equation (5.61). In this
case the damping ratio ζ > 1, the rotor swings are overdamped, and the response is sluggish and
vanishes aperiodically with time. Typically this condition may occur when the initial operating point
is near the peak of the steady-state characteristic in Figure 5.18.

When the power angle δ̂s is equal to its critical value δcr, it is not possible to analyse the system
dynamics using the constant flux linkage model (E′ = constant) because the effect of flux decrement
must be included. This was explained in Figure 5.16.

Chapter 12 will consider a similar problem but in a multi-machine system. The differential
equations will then be represented in the matrix form ẋ = Ax, where x is the state vector and A is
the state matrix. Using the matrix form, Equation (5.56) would become

[
�δ̇

�ω̇

]
=




0 1

− KE′

M
− D

M




[
�δ

�ω

]
. (5.70)

The eigenvalues of this state matrix can be determined from solving

det




−λ 1

− KE′

M
−λ − D

M


 = λ2 + D

M
λ + KE′

M
= 0.

(5.71)

Clearly this equation is identical to Equation (5.59). Hence the roots of the characteristic equation
(5.59) of the differential equation (5.56) are equal to the eigenvalues of the state matrix of the state
equation 5.70.

5.4.7 Mechanical Analogues of the Generator–Infinite Busbar System

Further insight into the generator response to a small disturbance can be obtained by comparing the
generator–infinite busbar system with the standard mass/spring/damper system shown in Figure
5.19a described by the equation

m
d2�x
dt2

+ c
d�x
dt

+ k�x = 0. (5.72)

Comparing this equation with Equation (5.56) suggests that the generator–infinite busbar system
can be treated as an ‘electromagnetic spring’ where any increase in the spring extension �x is

m

k
c

F

F

mg

mg

(a) (b)

∆δ

∆δ

Figure 5.19 Mechanical analogues of the generator–infinite busbar system: (a) mass/spring/
damper system; (b) a pendulum at stable and unstable equilibrium points.
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equivalent to an increase in the rotor angle �δ. In this analogous system the mass m is equivalent
to the inertia coefficient M, the spring damping coefficient c is equivalent to the generator damping
coefficient D and the spring stiffness k is equivalent to the synchronizing power coefficient KE′ .
This analogy allows the generator response, as expressed by Equations (5.61)–(5.68), to be directly
related to the response of the standard mass/spring/damper system. Unlike the mechanical spring,
the ‘electromagnetic spring’ is nonlinear because KE′ depends strongly on the initial value of the
power angle δ̂s (Figure 5.10b).

Another useful mechanical analogue is that of the pendulum of mass m and length l shown in
Figure 5.19b. The pendulum has an upper and lower equilibrium point as shown where the weight
of the ball is counterbalanced by the arm. When the pendulum is disturbed from its equilibrium
position, a force equal to F = −mg sin δ is developed and, neglecting damping, the motion of the
pendulum is described by the differential equation

m
d2δ

dt2
= −mg

l
sin δ. (5.73)

Near the lower (stable) equilibrium point the force F always acts towards the equilibrium point so
that the pendulum oscillates around the equilibrium point. Near the upper (unstable) equilibrium
point the force F pushes the pendulum away from the equilibrium point causing instability. The
behaviour of the pendulum at these two equilibrium points can be directly compared with the
behaviour of a generator at the stable and unstable equilibrium points shown in Figure 5.6.

The pendulum can also provide a useful analogue when analysing the generator dynamics. In
this case Equation (5.73) has to be compared with the classical generator model in Equation (5.42).
Again, both equation are of identical form.

5.5 Steady-State Stability of the Regulated System

The previous section considered the power–angle characteristics of a simple generator–infinite
busbar system and the resulting steady-state, or small-signal, stability conditions when the excitation
voltage (and therefore the excitation emf Ef) were assumed to be constant. This section considers
steady-state stability when the action of an AVR is included. The influence of the AVR will be
considered in three stages. Firstly, the modified steady-state power–angle characteristic will be
derived. Secondly, the possibility of operation beyond the critical point (as defined by the pull-out
power) will be discussed and finally the influence of the AVR on rotor swings will be analysed.

5.5.1 Steady-State Power–Angle Characteristic of Regulated Generator

The static PEq (δ) power–angle characteristic, Equation (5.29), was derived assuming that in steady
state the excitation emf Ef = Eq = constant. In practice every generator is equipped with an AVR
which tries to maintain the voltage at the generator terminals constant (or at some point behind the
terminals) by adjusting the value of the excitation voltage and, consequently, Ef. As the resulting
formulae for the active and reactive power are more complicated than when Ef = constant, the
following discussion will be restricted to the case of a round-rotor generator (xd = xq) with resistance
neglected (r = 0). For this case the steady-state equivalent circuit and phasor diagram are shown in
Figure 5.20. The formulae for the active and reactive power will be derived by resolving the voltages
and currents along the a- and b-axes, where the a-axis is located along the system voltage Vs.

The coordinates of Eq in the (a, b) reference frame are

Eqa = Eq cos δ, Eqb = Eq sin δ. (5.74)
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Figure 5.20 Generator operating on the infinite busbars: (a) schematic and equivalent circuit; (b)
phasor diagram in the (d, q) and (a, b) reference frames.

Inspection of the phasor diagram gives

Ia = Eqb

Xd + X
, Ib= Eqa − Vs

Xd + X
, (5.75)

while the coordinates of the current are Ia = I cos ϕ and Ib = −I sin ϕ. Pythagoras’s theorem
applied to the triangle OBC yields (Vs + Ib X)2 + (Ia X)2 = V2

g , which, after taking into account
Equation (5.75), gives

(
Eqa + Xd

X
Vs

)2

+ E2
qb =

[
Xd + X

X
Vg

]2

. (5.76)

This equation describes a circle of radius ρ = (Xd/X + 1) Vg with centre lying on the a-axis at a
distance A = −XdVs/X from the origin. This means that with V g = constant and Vs = constant,
the tip of Eq moves on this circle. Figure 5.21 shows the circular locus centred on the origin
made by the phasor V g = constant, and another circular locus (shifted to the left) made by
phasor Eq.

The circle defined by Equation (5.76) can be transformed into polar coordinates by substituting
Equation (5.74) to give

E2
q + 2

Xd

X
EqVs cos δ +

(
Xd

X
Vs

)2

=
[

Xd + X
X

Vg

]2

. (5.77)

One of the roots of this equation is

Eq =
√(

Xd + X
X

Vg

)2

−
(

Xd

X
Vs sin δ

)2

− Xd

X
Vs cos δ, (5.78)

which corresponds to the Ef = Eq points that lie on the upper part of the circle. Substituting
Equation (5.78) into the round-rotor power–angle equation, Equation (5.32), gives the generated
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Figure 5.21 The circle diagrams and the power–angle characteristics for the round-rotor generator
operating on the infinite busbars.

power as

PVg (δ) = Vs

Xd + X
sin δ

√(
Xd + X

X
Vg

)2

−
(

Xd

X
Vs sin δ

)2

− 1
2

Xd

X
V2

s

Xd + X
sin 2δ. (5.79)

Equation (5.79) describes the power–angle characteristic PVg (δ) with V g = constant and is shown,
together with PEq (δ), in Figure 5.21. Comparing the two shows that the AVR can significantly
increase the amplitude of the steady-state power–angle characteristic.

The maximum value of the power given by Equation (5.79) can be easily found by examining
Figure 5.21. Substituting the second of the equations in (5.74) into Equation (5.32) gives

PVg (δ) = Vs

Xd + X
Eqb, (5.80)

indicating that the generator power is proportional to the projection of Eq on the b-axis. The
function defined by Equation (5.80) reaches its maximum value when Eqb is a maximum. As can
be seen from Figure 5.21, this occurs at the point on the Eq locus that corresponds to the centre of
the circle. At this point Eq has the following coordinates:

Eqb = ρ =
(

Xd

X
+ 1

)
Vg at δM = arctan

( ρ

A

)
= arctan

(
− Xd + X

Xd

Vg

Vs

)
. (5.81)

The angle δM at which PVg (δ) reaches maximum is always greater than π/2 irrespective of the voltages
V g and Vs. This is typical of systems with active AVRs. Substituting the first of the equations in
(5.81) into (5.80) gives

PVg M = PVg (δ)
∣∣
δ=δM

= VgVs

X
, (5.82)

showing that the amplitude of the power–angle characteristic of the regulated system is independent
of the generator reactance. It does, however, depend on the equivalent reactance of the transmission
system. The steady-state synchronizing power coefficient of the regulated system is KVg = ∂PVg (δ)/∂δ

and KVg > 0 when δ < δM.
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Figure 5.22 Creation of the PVg (δ) characteristic from a family of PEq (δ) characteristics.

5.5.1.1 Physical Interpretation

The sin 2δ component in Equation (5.79) has negative sign, making the maximum of the PVg (δ)
characteristic shown in Figure 5.21 occur at δM > π/2. For small rotor angles δ � π/2 the char-
acteristic is concave, while for δ > π/2 the characteristic is very steep. The sin 2δ component has
nothing to do with the reluctance power (as was the case with PEq (δ)) because Equation (5.79) has
been derived assuming xd = xq. The distortion of the characteristic is entirely due to the influence
of the AVR.

Physically the shape of the PVg (δ) characteristic can be explained using Figure 5.22. Assume that
initially the generator operates at point 1 corresponding to the characteristic PEq1 = PEq (δ)

∣∣
Eq=Eq1

shown by the dashed curve 1. An increase in the generator load causes an increase in the armature
current, an increased voltage drop in the equivalent network reactance X , Figure 5.20, and therefore
a decrease in the generator voltage V g. The resulting voltage error forces the AVR to increase the
excitation voltage so that Eq is increased to a value Eq2 > Eq1 and a new operating point is
established on a higher characteristic PEq2 = PEq (δ)

∣∣
Eq=Eq2

denoted by 2. Subsequent increases in
load will cause the resulting PVg (δ) characteristic to cross at the points 2, 3, 4, 5 and 6 lying on
consecutive PEq (δ) characteristics of increased amplitude. Note that starting from point 5 (for δ >
π/2) the synchronizing power coefficient KEq = ∂PEq (δ)/∂δ is negative while KVg = ∂PVg (δ)/∂δ is
still positive.

5.5.1.2 Stability

If the AVR is very slow acting (i.e. it has a large time constant) then it may be assumed that
following a small disturbance the AVR will not react during the transient state and the regulated
and unregulated systems will behave in a similar manner. The stability limit then corresponds to
point 5 when δ = π/2 (for a round-rotor generator) and the stability condition is given by Equation
(5.33). If the AVR is fast acting so that it is able to react during the transient state, then the stability
limit can be moved beyond δ = π/2 to a point lying below the top of the PVg (δ) curve. In this case
stability depends on the parameters of the system and the AVR, and the system stability is referred
to as conditional stability.

A fast-acting AVR may also reverse the situation when the stability limit is lowered (with respect
to the unregulated system) to a point δ < π/2, for example to point 4, or even 3, in Figure 5.22.
In this situation the system may lose stability in an oscillatory manner because of the detrimental
effect of the AVR. Such a situation, and the conditional stability condition, will be discussed later
in this section.
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Lim
PEqMAX

PVg

P

δ

Figure 5.23 Example of the influence of the field current limiter on the steady-state power–angle
characteristic.

5.5.1.3 Effect of the Field Current Limiter

Equation (5.79) was derived, and Figure 5.21 drawn, under the assumption that the AVR may
change Eq = Ef in order to keep the terminal voltage constant without any limit being placed on
the maximum value of Eq = Ef. In practice the AVR is equipped with various limiters, described
in Chapter 2, one of which limits the field current and hence Ef. This limiter operates with a long
time delay. If the exciter reaches the maximum field current value during slow changes in operating
conditions, then any further increase in the load will not increase the field current despite a drop
in the terminal voltage V g. Any further changes will take place at Eq = EfMAX = constant and the
operating point will follow a PEq (δ)

∣∣
Eq=EqMAX

characteristic.

Whether or not the field current limiter will act before the top of the PVg (δ) characteristic is reached
depends not only on the field current limit set, but also on the equivalent network reactance X .
Equation (5.82) shows that the amplitude of the PVg (δ) characteristic depends on the reactance X .
If X is large then the amplitude is small and the field current limit may not be reached. If X is small
then the amplitude is very large and the field current limit is encountered before the peak of the
characteristic is reached. Such a situation is illustrated in Figure 5.23. The limit is reached at point
Lim. Below this point the steady-state characteristic is PVg (δ), while above this point the generator
follows the PEq (δ)

∣∣
Eq=EqMAX

curve. The resulting characteristic is shown in bold.

From the stability point of view a more interesting case is when the field current limit is not
reached. However, it is important to remember that the thermal field current limit may be reached
before the stability limit.

5.5.2 Transient Power–Angle Characteristic of the Regulated Generator

If the AVR or the exciter has a large time constant then the regulation process is slow and the rotor
swings follow the transient power–angle characteristic as discussed in Section 5.4. The transient
characteristics of both the regulated and unregulated system are the same, the only difference being
that the increased loading in the regulated system will cause an increase in the steady-state field
current and therefore a higher value of E′

q and the amplitude of the PE′ (δ′) characteristic. Moreover,
the angle δ′ will reach the critical value π/2 before δ reaches its critical value δM. This is illustrated
in Figure 5.24 which is a repetition of a fragment of the phasor diagram in Figure 5.21.

For the critical angle δ = δM the phasor of V g lies on the vertical axis, Figure 5.24a, and δ′ > π/2
because the emf E′ leads V g. This means that at the critical point δM the transient synchronizing
power coefficient KE′ = ∂PE′/∂δ is negative. When δ′ = π/2, Figure 5.24b, the emf E′ lies on the
vertical axis and δ < δM. The question now arises: at which point on the PVg (δ) curve does the
transient synchronizing power coefficient become zero?
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Figure 5.24 Phasor diagram of the regulated system with (a) δ = δM and (b) δ′ = π/2.

This question is most easily answered if the classical generator model is used with transient
saliency neglected. The following equation, similar to Equation (5.76), can be obtained for the
transient emf when the phasor diagram of Figure 5.20b is used:(

E′
a + X′

d

X
Vs

)2

+ E′
b

2 =
[

X′
d + X

X
Vg

]2

. (5.83)

This equation describes a circle on which the tip of E′ moves when the power angle and excitation
are increased. This circle is similar to the circle shown in Figure 5.21 but has a radius and horizontal
shift dependent on X′

d. Substituting E′
a = E′ cos δ′ and E′

b = E′ sin δ′ into Equation (5.83) gives

E′2 + 2
X′

d

X
E′Vs cos δ′ +

(
X′

d

X
Vs

)2

=
[

X′
d + X

X
Vg

]2

. (5.84)

Solving this equation with respect to E′ yields

E′ =
√(

X′
d + X

X
Vg

)2

−
(

X′
d

X
Vs sin δ

)2

− X′
d

X
Vs cos δ. (5.85)

For δ′ = π/2 the second component in this equation is zero and the transient emf is

E′∣∣
δ′=π/2

= Vg

X

√(
X′

d + X
)2 −

(
X′

d

Vs

Vg

)2

. (5.86)

Substituting this value in Equation (5.40) and noting that x′
d = X′

d + X gives

PVg cr = PVg (δ′)
∣∣
δ′=π/2

= VsVg

X

√
1 −

(
X′

d

X′
d + X

)2 (
Vs

Vg

)2

. (5.87)

According to Equation (5.82), the factor VsVg/X in this equation corresponds to the amplitude of
the PVg (δ) curve. This means that the ratio of power at which KE′ = 0 to the power at which KVg = 0
corresponds to the square-root expression in Equation (5.87) and is equal to

α = PVg (δ′ = π/2)

PVg (δ = δM)
= PVg cr

PVg M

=
√

1 −
(

X′
d

X′
d + X

)2 (
Vs

Vg

)2

. (5.88)

This coefficient depends strongly on the equivalent network reactance X . If X is large then α is close
to unity and the transient synchronizing power coefficient KE′ = 0. This takes place at a point close
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Figure 5.25 Power–angle characteristics of the regulated generator: (a) all synchronizing power
coefficients are positive; (b) points above the limit of natural stability (δ = π/2).

to the peak of PVg (δ) at which point KVg = 0. On the other hand, if X is small then KE′ reaches zero
at a point lying well below the peak of PVg (δ). This is illustrated in Figure 5.25.

Figure 5.25a shows the case when the power angle is small, all the characteristics have positive
slope and all the synchronizing power coefficients are positive. Figure 5.25b shows two operating
points. The lower point corresponds to the natural stability limit (δ = π/2) when KEq = 0 but
KE′ > 0. Further increasing the load (and the power angle) causes KEq < 0, while KE′ > 0 until the
top point is reached where the PE′ (δ′) curve, shown as a dashed line, intersects at its peak PVg (δ).
Above this point KE′ becomes negative despite KVg > 0. The ratio of both peaks is given by the
coefficient α defined in Equation (5.88).

5.5.2.1 Stability

After a disturbance the rotor swings follow the transient power–angle characteristic PE′ (δ′). The
system is unstable above the point PVg cr where KE′ = ∂PE′/∂δ < 0 and no deceleration area is
available. Therefore the necessary stability condition is

KE′ = ∂PE′

∂δ
> 0. (5.89)

At the point PVg cr any small increase in the mechanical power will cause asynchronous operation
because the mechanical power is greater than the electrical power. Whether or not the generator
can operate on the PVg (δ) characteristic below this point, that is when Pm < PVg cr, depends on
the generator, network and AVR parameters. Two factors are decisive: (i) the influence that the
regulator has on the variations in E′

q due to changes in the excitation flux linkage during rotor
swings; and (ii) the influence that the regulator has on damping torques due to additional currents
induced in the damper windings.

5.5.3 Effect of Rotor Flux Linkage Variation

The influence of changes in the excitation emf Ef on the transient emf E′ is given by Equation
(4.28). For the salient-pole machine when E′ = E′

q this equation can be rewritten as

�E′
q = �E′

q{�δ} + �E′
q(�Ef )

, (5.90)
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where

�E′
q(�δ) = − AB

1 + BT′
d0s

�δ, �E′
q(�Ef ) = + B

1 + BT′
d0s

�Ef , (5.91)

and �δ = �δ′. These two components are due to the rotor swings and voltage regulation, respec-
tively. The influence of �E′

q(�δ) was described in Section 5.4.5 following Equation (5.53) where it was
shown in Figure 5.13 that this component is in phase with the speed deviation �ω and introduces
an additional damping torque in Equation (5.52). A question arises as to what influence the voltage
control component �E′

q(�Ef ) has on the problem. To answer this question it is necessary to deter-
mine the phase shift of �E′

q(�Ef ) with respect to �ω (or �δ). This problem can be better understood
with the help of Figure 5.26 which shows how a change in the rotor angle influences �E′

q(�Ef ).
The first block reflects the fact that (assuming constant infinite busbar voltage) a change in �δ

causes a voltage regulation error �V. The second block is the transfer function of the AVR and the
exciter. Its effect is to convert the regulation error �V into a change in the excitation emf �Ef. The
third block reflects the changes in �E′

q due to excitation changes and corresponds to Equation (5.91).
The first block in Figure 5.26 constitutes a proportional element, as an increase in the rotor angle

by �δ causes a decrease in the generator voltage by �Vg
∼= (

∂Vg/∂δ
)
�δ so that the following voltage

error is produced:

�V = Vref − Vg = −∂Vg

∂δ
�δ = K�V/�δ�δ (5.92)

An expression for the proportionality coefficient K�V/�δ can be obtained from Equation (5.84).
Solving this equation with respect to V g gives

Vg =

√
E′2 + 2 X′

d
X E′Vs cos δ′ +

(
X′

d
X Vs

)2

X′
d

X + 1
. (5.93)

Differentiation of this expression at the linearization point defined by δ′
0, E′

0, Vg0 gives

K�V/�δ = −∂Vg

∂δ′ = X′
d X(

X′
d + X

)2

E′
0

Vg0
Vs sin δ′

0. (5.94)

This coefficient is positive over a wide range of angle changes, which means that the voltage
regulation error given by Equation (5.92) is always in phase with the angle changes �δ. The
amplitude of �V depends on the generator load. For a small load (and δ′

0) the coefficient K�V/�δ is
small and the resulting voltage error is small. As the load is increased, changes in �V caused by the
changes in �δ become bigger.

The second block in Figure 5.26 introduces a phase shift between �Ef and �V dependent on
the transfer functions of the AVR and exciter. In the case of a static exciter, Figure 2.3d–f with a
proportional regulator, the phase shift is small and it may be assumed that �Ef is in phase with
�V. In comparison a DC cascade exciter, or AC exciter with rectifier, Figure 2.3a–c, behaves like an

NETWORK AVR+EXCITER GENERATOR

∆δ ∆V ∆Ef
∆ (∆Ef )

Eq′
K

V
V/ ∆δ∆

∂

∂δ
= – g GAVR (s)

B

BT1+ dos′

Figure 5.26 Components determining the phase shift between �δ and �E′
q(�Ef ).
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Figure 5.27 Phasors of increments rotating with the swing frequency 	 for: (a) the AVR propor-
tional system; and (b) the AVR proportional system with inertia.

inertia element which introduces a phase shift of a few tens of degrees for a frequency of oscillation
of about 1 Hz.

The generator block in Figure 5.26 introduces a phase shift which, as in Equation (5.54), is equal
to π/2. However, the minus sign in Equations (5.53), (5.54) and the first of the equations in (5.91)
will cause �E′

q(�δ) to lead the variations in �δ by π/2, while the plus sign in the second of the
equations in (5.91) will cause �E′

q(�Ef ) to lag the changes in �δ by π/2.
A knowledge of all these phase shifts allows a phasor diagram similar to that shown in Figure

5.13c to be drawn but with both of the components of Equation (5.90) taken into account. This is
shown in Figure 5.27 which contains two phasor diagrams of increments rotating with the swing
frequency 	 (rad/s) drawn for two general types of AVR systems. In both diagrams the phasors
of increments �δ and �V are in phase, Equation (5.94). The component �E′

q(�δ) leads �δ in the
same was as in Figure 5.13c.

The phasor diagram shown in Figure 5.27a is valid for a proportional AVR system when �Ef and
�V are almost in phase. The component �E′

q(�Ef ) lags �Ef by π/2 and directly opposes �E′
q(�δ).

This diagram clearly shows that voltage regulation, represented by �E′
q(�Ef ), weakens the damping

introduced by the field winding and represented by �E′
q(�δ). If the magnitude of �E′

q(�Ef ) is greater
than that of �E′

q(�δ) then the voltage regulation will introduce a net negative damping into the
system. This negative damping is enhanced by:

� large generator load (large value of δ′
0) resulting in a large value of the coefficient K�V/�δ , Equation

(5.94);
� large gain |GAVR(s)| in the AVR controller determining the magnitude of �Ef ;
� large network reactance X determining the value of the coefficient K�V/�δ .1

Figure 5.27b shows an AVR system with cascaded DC exciter or an AC exciter with a rectifier
when �Ef lags �V typically by a few tens of degrees. The phasor �E′

q(�Ef ) lags �Ef by π/2
giving rise to two components with respect to the direction of �δ: (i) the quadrature component
which introduces negative damping, as in Figure 5.27a; and (ii) the in-phase component which is
in phase with �Pe and does not influence damping. The effect of the latter component is to reduce
the synchronizing power coefficient KE′

q , Equation (5.52), and therefore change the frequency of
oscillations.

The above analysis of the influence of an AVR system on the generator damping is of a qualitative
nature only, with the aim of helping the understanding of these complicated phenomena. Detailed

1 The maximum value of K�V/�δ is obtained for X = X′
d. Usually in practice X � X′

d. Under that assumption,
the higher the network reactance X , the higher the coefficient K�V/�δ .
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quantitative analysis can be found in De Mello and Concordia (1969), later enhanced in Anderson
and Fouad (1977), Yu (1983) and Kundur (1994).

5.5.4 Effect of AVR Action on the Damper Windings

Section 5.5.3 described how the AVR system can influence the damping torque due to the field
winding, that is the last component in the swing equation, Equation (5.52). The second component in
this equation, PD = D�ω, corresponds to the damping power introduced by the damper windings.
Assuming constant excitation voltage, that is Ef = constant, the damping power is given by Equation
(5.24). Recall that the mechanism by which this power is developed is similar to that on which
operation of the induction machine is based. A change in the rotor angle δ results in the speed
deviation �ω. According to Faraday’s law, an emf is induced which is proportional to the speed
deviation. The current driven by this emf interacts with the air-gap flux to produce a torque referred
to as the natural damping torque. To simplify considerations, only the d-axis damper winding will
be analysed.

Figure 5.28a shows a phasor diagram for the d-axis damper winding, similar to that shown in
Figure 5.27. The emf induced in the winding eD(�ω) is shown to be in phase with �ω. The damper
winding has a large resistance, which means that the current due to speed deviation, iD(�ω), lags
eD(�ω) by an angle less than π/2. The component of this current which is in-phase with �ω gives rise
to the natural damping torque. The quadrature component, which is in phase with �δ, enhances
the synchronizing power coefficient.

Now consider the influence of the AVR on the damper windings. The d-axis damper winding lies
along the path of the excitation flux produced by the field winding, Figure 4.3. This means that the
two windings are magnetically coupled and may be treated as a transformer, Figure 5.28b, supplied
by �Ef and loaded with the resistance RD of the damper winding. Consequently, the additional
current i D(�Ef ) induced in the damper winding must lag �Ef . Figure 5.28c shows the position of
phasors. The horizontal component of iD(�Ef ) directly opposes the horizontal component of iD(�ω).
As the former is due to the AVR while the latter is due to speed deviation and is responsible for the
natural damping, it may be concluded that voltage regulation weakens the natural damping. This
weakening effect is referred to as artificial damping.

Artificial damping is stronger for larger iD(�Ef ) currents. This current is, in turn, proportional
to the variations in�Ef and �V caused by �δ. Some of the factors influencing this effect were
described in the previous subsection and are: generator load, reactance of the transmission network
and gain of the voltage controller.

(a) (c)(b)

positive damping
component

positive
damping 

d-axis damper
winding

field winding

negative
components

i
D(∆Ef)

∆ (∆δ)P
e
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D(∆Ef)

∆E f
∆ V

∆ω ∆ω

∆δ∆δ

i
D(∆ω)i
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e

D(∆ω)
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eD

∆E f

Ω Ω

Figure 5.28 Phasor diagram of increments oscillating with the swing frequency 	 (in rad/s) for
the damper windings: (a) natural damping only; (b) field and damper windings as a transformer;
(c) natural and artificial damping.
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5.5.5 Compensating the Negative Damping Components

The main conclusion from the previous two subsections is that a voltage controller, which reacts
only to the voltage error, weakens the damping introduced by the damper and field windings. In
the extreme case of a heavily loaded generator operating on a long transmission link, a large gain
in the voltage controller gain may result in net negative damping leading to an oscillatory loss of
stability. This detrimental effect of the AVR can be compensated using a supplementary control
loop referred to as a power system stabilizer (PSS), discussed in more detail in Section 10.1. PSS is
widely used in the United States, Canada and Western Europe. Another solution, preferred in the
former Soviet Union, consists of voltage controllers with in-built feedback loops reacting to the
time derivative of the voltage error and other quantities (Glebov, 1970).
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6
Electromechanical Dynamics –
Large Disturbances

The previous chapter explained how a power system responds to a small disturbance and determined
the conditions necessary for the system to remain stable when subjected to such a disturbance.
Much more dramatic from a stability point of view is the way in which a system responds to a large
disturbance such as a short circuit or line tripping. When such a fault occurs, large currents and
torques are produced and often action must be taken quickly if system stability is to be maintained.
It is this problem of large-disturbance stability, and the effect such a disturbance has on the system
behaviour, that is addressed in this chapter.

6.1 Transient Stability

Assume that before the fault occurs, the power system is operating at some stable steady-state
condition. The power system transient stability problem is then defined as that of assessing whether
or not the system will reach an acceptable steady-state operating point following the fault.

As the subtransient period is normally very short compared with the period of the rotor swings,
the effect of the subtransient phenomena on the electromechanical dynamics can be neglected. This
allows the classical model of the generator to be used to study the transient stability problem when
the swing equation is expressed by Equation (5.15) and the air-gap power by Equation (5.40). During
a major fault, such as a short circuit, the equivalent reactance x′

d appearing in Equation (5.40) will be
subject to change so that the air-gap power Pe = PE′ will also change and the power balance within
the system will be disturbed. This will result in energy transfers between the generators producing
corresponding rotor oscillations. Usually there are three states accompanying a disturbance with
three, generally different, values of x′

d: (i) the prefault state when the reactance x′
d = x′

d PRE; (ii) the
fault state when x′

d = x′
d F; and (iii) the postfault state when x′

d = x′
d POST. This section will start by

considering a fault that is cleared without any change in the network configuration being required.
In this case x′

d POST = x′
d PRE.

6.1.1 Fault Cleared Without a Change in the Equivalent Network Impedance

Figure 6.1a shows an example of a fault which is cleared by tripping the faulty element but without
changing the equivalent network impedance. It is assumed that only line L1 of a double-circuit
connection is in use with line L2 energized but not connected at the system end. If a fault occurs on

Power System Dynamics: Stability and Control, Second Edition Jan Machowski, Janusz W. Bialek and James R. Bumby
C© 2008 John Wiley & Sons, Ltd
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Figure 6.1 Example of a fault with the same pre- and postfault impedance: (a) schematic diagram;
(b) equivalent circuit for the pre- and postfault state; (b) equivalent circuit during the fault.

the unconnected line L2, and is then cleared by opening the circuit-breaker at the generator end of
the line, the prefault and postfault impedances between the generator and the system are the same.

6.1.1.1 Reactance Values During the Prefault, Fault and Postfault Periods

The equivalent circuit for the system is shown in Figure 6.1b. The generator is represented by the
classical model with a constant transient emf E′ behind the transient reactance X′

d while the system
is represented by a constant voltage V s behind the equivalent reactance X s. The reactances of the
transformer and line L1 are XT and XL respectively. The prefault equivalent reactance x′

d PRE of the
whole transmission link is

x′
d PRE = X′

d + XT + XL + Xs. (6.1)

The use of symmetrical components allows any type of fault to be represented in the positive-
sequence network by a fault shunt reactance �xF connected between the point of the fault and the
neutral, as shown in Figure 6.1c (Gross, 1986). The value of the fault shunt depends on the type
of fault and is given in Table 6.1 where X1, X2 and X0 are respectively the positive-, negative- and
zero-sequence Thévenin equivalent reactances as seen from the fault terminals.

Using the star–delta transformation, the fault network can be transformed as shown in Figure
6.1c so that the voltages E′ and V s are directly connected by the equivalent fault reactance

x′
d F = X′

d + XT + XL + Xs +
(
X′

d + XT
)

(XL + Xs)

�xF
. (6.2)

Table 6.1 Shunt reactances representing different types of fault

Double phase to
Fault type Three phase (3ph) ground (2ph–g) Phase to phase (2ph) Single phase (1ph)

�xF 0
X2 X0

X2 + X0
X2 X1 + X2
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The value of this reactance is heavily dependent on the value of the fault shunt �xF given in Table
6.1. When the fault is cleared, by opening the circuit-breaker in line L2, the equivalent circuit is the
same as that in the prefault period so that x′

d POST = x′
d PRE.

The circuit diagram of Figure 6.1c corresponds to the positive-sequence network so that when the
reactance given in Equation (6.2) is used in the power–angle characteristic, Equation (5.40), only
the torque and power due to the flow of positive-sequence currents is accounted for. The influence
of negative- and zero-sequence fault currents and torques is neglected from further considerations
in this chapter.

6.1.1.2 Three-Phase Fault

Figure 6.2 shows how the equal area criterion, described in Section 5.4.3, can be used to analyse
the effect of a three-phase fault on the system stability. To simplify the discussion, damping will
be neglected (PD = 0) and the changes in the rotor speed will be assumed to be too small to activate
the turbine governor system. In this case the mechanical power input Pm from the turbine can be
assumed to be constant.

For a three-phase fault �xF = 0 and, according to Equation (6.2), x′
d F = ∞. Thus power transfer

from the generator to the system is completely blocked by the fault with the fault current being
purely inductive. During the fault the electrical power drops from its prefault value to zero as
illustrated by line 1–2 in Figure 6.2 and remains at zero until the fault is cleared by opening the
circuit-breaker. During this time the rotor acceleration ε can be obtained from the swing equation,
Equation (5.15), by dividing both sides by M, substituting Pe = 0, PD = 0 and writing in terms of
δ′ to give

ε = d2δ′

dt2
= Pm

M
= constant. (6.3)

Integrating Equation (6.3) twice with the initial conditions δ′(t = 0) = δ′
0 and �ω(t = 0) = 0

gives the power angle trajectory as

δ′ = δ′
0 + εt2

2
or �δ′ = δ′ − δ′

0 = εt2

2
. (6.4)
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Figure 6.2 The acceleration and deceleration areas: (a) short clearing time; (b) long clearing time.
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This corresponds to the parabola a–b–d in Figure 6.2a. Before the fault is cleared the rotor moves
from point 2 to point 3 on the power–angle diagram and acquires a kinetic energy proportional to
the shaded area 1–2–3–4.

When the fault is cleared at t = t1 by opening the circuit-breaker, the rotor again follows the
power–angle characteristic PE′ (δ′) corresponding to the reactance given by Equation (6.1) so that
the operating point jumps from point 3 to point 5. The rotor now experiences a deceleration torque,
with magnitude proportional to the length of the line 4–5, and starts to decelerate. However, due
to its momentum, the rotor continues to increase its angle until the work done during deceleration,
area 4–5–6–7, equals the kinetic energy acquired during acceleration, area 1–2–3–4. The rotor again
reaches synchronous speed at point 6 when

area 4–5–6–7 = area 1–2–3–4. (6.5)

In the absence of damping the cycle repeats and the rotor swings back and forth around point 1
performing synchronous swings. The generator does not lose synchronism and the system is stable.

Figure 6.2b shows a similar situation but with a substantially longer fault clearing time t = t2

when the kinetic energy acquired during acceleration, proportional to the area 1–2–3–4, is much
larger than in Figure 6.2a. As a result the work performed during deceleration, proportional
to the area 4–5–8, cannot absorb the kinetic energy acquired during acceleration and the speed
deviation does not become equal to zero before the rotor reaches point 8. After passing point 8
the electrical power PE′ (δ′) is less than the mechanical power Pm and the rotor experiences a net
acceleration torque which further increases its angle. The rotor makes an asynchronous rotation and
loses synchronism with the system. Further asynchronous operation is analysed in more detail in
Section 6.5.

Two important points arise from this discussion. The first is that the generator loses stability
if, during one of the swings, the operating point passes point 8 on the characteristic. This point
corresponds to the transient rotor angle being equal to (π − δ̂′

s), where δ̂′
s is the stable equilibrium

value of the transient rotor angle. Area 4–5–8 is therefore the available deceleration area with which
to stop the swinging generator rotor. The corresponding transient stability condition states that the
available deceleration area must be larger than the acceleration area forced by the fault. For the
case shown in Figure 6.2a this criterion is

area 1–2–3–4 < area 4–5–8. (6.6)

As the generator did not use the whole available decelerating area, the remaining area 6–7–8,
divided by the available deceleration area, can be used to define the transient stability margin

Karea = area 6–7–8
area 4–5–8

. (6.7)

The second important observation is that fault clearing time is a major factor in determining
the stability of the generator. This is borne out by Equation (6.4) where the accelerating area
1–2–3–4 is seen to be proportional to the clearing time squared. The longest clearing time for which
the generator will remain in synchronism is referred to as the critical clearing time. The relative
difference between the critical clearing time and the actual clearing time can be used to give another
measure of the transient stability margin:

Ktime = tcr − tf

tcr
, (6.8)

where tcr and tf are the critical and actual clearing times.
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Figure 6.3 Effect of unbalanced faults: (a) comparison of power–angle characteristics; (b) accel-
eration and deceleration areas during a three-phase fault and a single-phase fault.

6.1.1.3 Unbalanced Faults

During an unbalanced fault at least one of the phases is unaffected, allowing some power to be
transmitted to the system. The equivalent fault reactance x′

d F does not now increase to infinity,
as for the three-phase fault, but to a finite value defined by Equation (6.2). The increase in the
reactance is inversely proportional to �xF and depends on the type of fault, as shown in Table 6.1.
This allows faults to be listed in order of decreasing severity as (i) a three-phase fault (3ph), (ii) a
phase-to-phase-to-ground fault (2ph–g), (iii) a phase-to-phase fault (2ph) and (iv) a single-phase
fault (1ph).

The corresponding power–angle characteristics during the fault are illustrated in Figure 6.3a.
The effect of an unbalanced fault on system stability is examined by considering the least severe

single-phase fault. A fault clearing time is assumed that is slightly longer than the critical clearing
time for the three-phase fault. The acceleration and the deceleration areas are shown in Figure 6.3b.
In the case of the three-phase fault the acceleration area 1–2–3–4 is larger than the deceleration
area 4–5–8 and the system is unstable, as in Figure 6.2a.

For the single-phase fault the power transfer is not completely blocked and the air-gap power
drops from point 1 on the prefault characteristic to point 9 on the fault characteristic. The acceler-
ating torque, corresponding to line 1–9, is smaller than that for the three-phase fault (line 1–2), the
rotor accelerates less rapidly and, by the time that the fault is cleared, the rotor has reached point
10. At this point the rotor angle is smaller than in the case of the three-phase fault. The acceleration
area 1–9–10–12 is now much smaller than the maximum available deceleration area 11–8–12 and
the system is stable with a large stability margin. Obviously a longer clearing time would result in
the generator losing stability, but the critical clearing time for the single-phase fault is significantly
longer than that for the three-phase fault. Critical clearing times for other types of faults are of the
same order as the �xF value given in Table 6.1.

6.1.1.4 Effect of the Prefault Load

Figure 6.4 shows a generator operating at load Pm1 prior to a three-phase fault. The fault is cleared
when the acceleration area 1–2–3–4 is smaller than the available deceleration area 4–5–8. The system
is stable with stability margin 6–7–8. Increasing the prefault load by 50 % to Pm2 = 1.5Pm1 increases
the acceleration power Pacc = Pm − PE′ (δ′) = Pm by one and a half times so that, according to
Equations (6.3) and (6.4), the change in the power angle �δ′ also increases by a factor of 1.5.
Consequently, as each side of the accelerating area rectangle 1–2–3–4 has increased 1.5 times, the
acceleration area 1–2–3–4 is now much larger than the available deceleration area 4–5–8 and the
system is unstable.
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Figure 6.4 Acceleration and deceleration areas for two different prefault loads Pm1 and Pm2 =
1.5Pm1. The fault clearing time is the same for both cases.

The prefault load is an important factor with regard to determining the critical clearing time and
generator stability. The higher the load, the lower the critical clearing time.

6.1.1.5 Influence of Fault Distance

So far it has been assumed that in Figure 6.1 the fault occurs close to the busbar. If the point of
fault is further along the line, as shown in Figure 6.5a, then the impedance of the faulted line �xL

is proportional to the fault distance and the per-unit length reactance of the line. The resulting
equivalent circuit during the fault period is shown in Figure 6.5b. The equivalent series reactance
x′

d F can again be obtained from Equation (6.2) but with �xF replaced by �x = �xF + �xL.
Figure 6.5c shows a family of power–angle characteristics for a three-phase fault (�xF = 0)

occurring at increasing distances along the line. In comparison with the discussion on unbalanced
faults it can be seen that the further the distance to the fault, the less severe the fault and the longer
the critical clearing time.

In the case of unbalanced faults, �xF �= 0 and the magnitude of the power–angle characteristic
during the fault is further increased compared with the three-phase fault case. As a result the effect
of the fault is less severe. In the case of a remote single-phase fault the disturbance to the generator
may be very small.

6.1.2 Short-Circuit Cleared with/without Auto-Reclosing

The previous section described a particular situation where the network equivalent reactance does
not change when the fault is cleared. In most situations the events surrounding the fault are more

L1

L2
pre-fault

(a)

(b)

(c)

XsXLXT

∆xL+ ∆xF

X ′d

E′ V s

∆xL

ll 34 >

ll 23 >

ll 12 >

l1 0>

δ′

P

Figure 6.5 Influence of the fault distance: (a) schematic diagram; (b) equivalent circuit diagram;
(c) power–angle characteristics before the fault and for various fault distances.
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Figure 6.6 Auto-reclosing cycle: (a) schematic diagram; (b) equivalent circuit with both lines
operating; (c) short circuit on one of the lines; (d) one line operating.

complex. Firstly, the fault itself would normally be on a loaded element, for example on line L2
when it was connected at both ends. Secondly, the fault will not usually clear itself and the faulted
element must be switched out of circuit.

The majority of faults on transmission lines are intermittent so that, after clearing the fault
by opening the necessary circuit-breakers, the faulty line can be switched on again after allow-
ing sufficient time for the arc across the breaker points to extinguish. This process is known
as auto-reclosing. The sequence events in a successful auto-reclosing cycle, shown in Figure 6.6,
would be:

� both lines operate (before the fault) – Figure 6.6b;
� a short circuit – Figure 6.6c;
� the faulted line is tripped and only one line operates – Figure 6.6d;
� the faulted line is automatically reclosed and both lines again operate – Figure 6.6b.

In Figure 6.6 the fault is assumed to occur on line L2 at some distance k from the circuit-breaker.
Each state is characterized by a different equivalent reactance x′

d in Equation (5.40) and a different
power–angle characteristic corresponding to that reactance.

Figure 6.7 shows the effect of a three-phase fault with two fault clearing times, one producing a
stable response and the other an unstable one. In both cases the accelerating power 1–2 accelerates
the rotor from point 2 to point 3 during the fault. When line L2 is tripped, the operating point moves
to point 5 and, because of the acquired kinetic energy, moves further along the characteristic. After
a certain auto-reclose time required to extinguish the arc, the auto-recloser reconnects line L2 and
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Figure 6.7 Acceleration and deceleration areas for successful auto-reclosing: (a) stable case; (b)
unable case.

the system moves from point 6 to point 7. The power angle moves further along the characteristic a
to point 8 when, in the stable case, the decelerating area 4–5–6–7–8–10 is equal to the accelerating
area 1–2–3–4. The system is stable with a stability margin corresponding to the area 8–9–10. In the
unstable case, Figure 6.7b, the increased clearing time enlarges the accelerating area 1–2–3–4 and
the available decelerating area is too small to absorb this energy and stop the rotor. The generator
rotor makes an asynchronous rotation and loses stability with the system.

In the case of a solid fault the reclosed line is again tripped and the cycle is referred to as unsuc-
cessful auto-reclosing. Such a cycle poses a much greater threat to system stability than successful
auto-reclosing. In the case of unsuccessful auto-reclosing the following sequence of events occurs:

� both lines operate (before the fault);
� a short circuit;
� the faulted line is tripped and one line operates;
� a short circuit (an attempt to auto-reclose onto the solidly faulted line);
� the faulted line is permanently tripped so that only one line remains in operation.

An illustration of unstable and stable unsuccessful auto-reclosing is shown in Figure 6.8. In the
first case the rotor acquires kinetic energy during the short circuit proportional to the area 1–2–3–4.
Then, during the break in the cycle, the rotor is decelerated and loses energy proportional to the area
4–5–6–7. An attempt to switch onto the solidly faulted line results in an increase of kinetic energy
proportional to the area 7–8–9–11. When the faulted line is permanently tripped, the decelerating
area left is 10–13–11. As the sum of the accelerating areas 1–2–3–4 and 7–8–9–11 is greater than
the sum of the decelerating areas 4–5–6–7 and 10–13–11, the rotor passes point 13 and makes an
asynchronous rotation.

If now the clearing time and the auto-reclosing time are reduced and, in addition, the prefault
load on the generator is reduced from Pm1 to Pm2, the system may remain stable as shown in
Figure 6.8b. The sum of the accelerating areas 1–2–3–4 and 7–8–9–11 is now equal to the sum of
the decelerating areas 4–5–6–7 and 10–11–12–14 and the system is stable with a stability margin
corresponding to the area 12–14–13. Assuming that the oscillations are damped, then the new
equilibrium point 1′ corresponds to the power characteristic with one line switched off.
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Figure 6.8 Acceleration and deceleration areas for unsuccessful auto-reclosing: (a) unstable case;
(b) stable case.

6.1.3 Power Swings

The rotor oscillations accompanying a fault also produce oscillations in the generated power.
The shape of power variations can be a source of useful, although approximate, information on
the transient stability margin. Again consider the system shown in Figure 6.5a and assume that
the fault on line L2 is cleared by tripping the circuit-breakers at each end of the line without auto-
reclosing. If the stability margin 6–7–8, shown in Figure 6.9a, is small, the power angle oscillations
will be large and may exceed a value of π/2. The corresponding power oscillations will increase
until δ′ passes over the peak of the power–angle characteristic, when they will start to decrease.
During the rotor backswing the power will initially increase, as the rotor angle passes over the
peak of the characteristic, before again decreasing. As a result the power waveform Pe(t) exhibits
characteristic ‘humps’ which disappear as the oscillations are damped out. If the transient stability
margin 6–7–8 is large, as in Figure 6.9b, then the humps do not appear because the maximum
value of the power angle oscillation is less than π/2 and the oscillations are only on one side of the
power–angle characteristic.

It should be emphasized that power swings follow the transient power–angle characteristic PE′ (δ′)
rather than the static characteristic PEq (δ). This means that the value of power at which humps
appear is usually much higher than the critical steady-state power PEqcr (Figure 5.9).

6.1.4 Effect of Flux Decrement

The transient characteristic PE′ (δ′) used to analyse transient stability is valid assuming that the
flux linkage with the field winding is constant so that E′ = constant. In fact, as magnetic energy
is dissipated in the field winding resistance, flux decrement effects will cause E′ to decrease with
time. If the fault clearing time is short then flux decrement effects can be neglected for transient
stability considerations, but if the clearing time is long then the decay in E′ may have a considerable
effect. To understand this refer to Figure 6.2 which illustrates the case of E′ = constant. If now flux
decrement effects are included, then following the fault, the amplitude of the PE′ (δ′) characteristic
will reduce leading to a decrease in the available deceleration area 4–5–8 and a deterioration in the
transient stability. Consequently, the use of the classical model may lead to an optimistic assessment
of the critical clearing time.
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Figure 6.9 Power oscillations in the case of (a) a low stability margin and (b) a large stability
margin.

6.1.5 Effect of the AVR

Section 5.5 explained how AVR action may reduce the damping of rotor swings following a small
disturbance. In the case of large disturbances the influence of the AVR is similar. However, imme-
diately after a fault occurs and is cleared, a strong-acting AVR may prevent a loss of synchronism.
This can be explained as follows.

When a fault occurs, the generator terminal voltage drops and the large regulation error �V
forces the AVR to increase the generator field current. However, the field current will not change
immediately due to a delay depending on the gain and time constants of the AVR, and on the time
constant of the generator field winding. To examine the effect of AVR action on transient stability
the system shown in Figure 6.5a will be considered, assuming that a three-phase short circuit occurs
some distance along line L2 so that �xL �= 0 and �xF = 0.

When no AVR is present this system may lose stability as shown in Figure 6.10a. The effect
of the AVR, shown in Figure 6.10b, is to increase the field current leading to an increase in the
transient emf E′ as explained in Section 4.2.4 and illustrated in Figure 4.17a. This increase in E′

can be accounted for by drawing a family of power–angle characteristics PE′ (δ′) for different values
of E′. A fast-acting AVR and exciter can increase the excitation voltage up to its ceiling before the
fault is cleared, although the change in the field current, and E′, will lag behind this due to the time
constant of the generator field winding. This increase in field current, and hence E′, has two positive
effects. Firstly, as E′ increases, the accelerating power decreases and the accelerating area 1–2–3–4
is slightly reduced. Secondly, when the fault is cleared, the system will follow a higher power–angle
characteristic resulting from the new E′ so that a larger decelerating area is available. In this example
the rotor reaches a maximum power angle at point 6, when the decelerating area 4–5–6–6′ equals
the accelerating area 1–2–3–4, before starting to move back towards the equilibrium point.

Although a fast-acting AVR reduces the first rotor swing, it can increase the second and following
swings depending on the system parameters, the dynamic properties of the AVR and the time
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Figure 6.10 The acceleration area and the deceleration area when the influence of the voltage
regulator is: (a) neglected; (b) included.

constant of the field winding. Consider the voltage regulation error �V = Vref − Vg, created when
the fault is cleared. Equation (5.93) is now important as it shows how V g depends on δ′ and the
ratio X′

d/X. An example of such dependence is shown in Figure 6.11.
The terminal voltage V g reaches a minimum when δ′ = π . The actual value of this minimum

depends on the ratio X′
d/X:

� Vg = 0 for δ′ = π and X′
d/X = E′/Vs (curve 1);

� Vg = (E′ − Vs)/2 for δ′ = π and X′
d/X = 1 (curve 2).

As the generator reactance usually dominates other reactances in a transmission link, the case
X′

d/X = 1 corresponds to a long transmission link. For a short transmission link X′
d/X > 1 and

the minimum value of V g is higher (curve 3).
Consider first the case of a long transmission link and assume that when the fault is cleared

the angle δ′ is large. On clearing the fault, the terminal voltage will recover from a small fault
value to a somewhat small postfault value (curve 1 in Figure 6.11). Consequently, the AVR will

0 2π π

2

1

Vg

δ′

3

Figure 6.11 Generator terminal voltage as a function of δ′: 1, for X′
d/X = E′Vs; 2, for X′

d/X = 1;
3, for X′

d/X > 1.
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Figure 6.12 Rotor swing after the fault clearance in the case of: (a) a long transmission link and
(b) a short transmission link.

continue to increase the excitation current in order to try and recover the terminal voltage. In this
case the rotor backswing will occur on the highest possible transient characteristic PE′ (δ′). This
situation is illustrated in Figure 6.12a which shows the system trajectory following fault clearance.
The AVR continues to increase the field current during the backswing, increasing the deceleration
area 6–8–7–6′. This results in an increase in the amplitude of consecutive rotor swings such that, in
this case, the AVR may have a detrimental effect on the generator transient stability.

Now consider the case of a short transmission link illustrated in Figure 6.12b. In this case the
terminal voltage V g recovers well when the fault is cleared, despite the large value of δ′. As a small
increase in the transient emf E′ will be forced by the increase in the excitation current during the
fault period, the terminal voltage may recover to a value that is slightly higher than the reference
value. Subsequently this high terminal voltage will force the AVR to reduce the field current during
the rotor backswing, the amplitude of the transient power–angle characteristic will decrease and,
as a result, the deceleration area 6–8–7–6′ will be reduced. This reduction in the deceleration area
will lead to a reduction in the amplitude of subsequent rotor swings. In this case the AVR enhances
the transient stability in both forward and backward swings.

Figure 6.12 is also closely related to the damping produced by the AVR when a small disturbance
occurs. Section 5.5 concluded that the amount of negative damping produced by the AVR increases
with the length of the line as this increases the proportionality coefficient K�V/�δ between �δ′

and �V (Figure 5.26). The example shown in Figure 6.12a corresponds to the situation when this
negative damping is greater than the system positive damping, while Figure 6.12b illustrates the
reverse case.

As the influence of the AVR strongly depends on the postfault network reactance, the dynamic
system response depends on the fault location and its clearance. This is illustrated in Figure 6.13. If
fault F1 appears on line L1 and is cleared by tripping the faulted line, then the generator will operate
in the postfault state via a long transmission link that consists of lines L2 and L3. Simulation results
for this example are presented in Figure 6.14. Figure 6.14a shows the trajectory of the operating
point while Figure 6.14b shows that the terminal voltage drops during the fault and does not recover

L2

L3

F1

F2

L1B1 B2

B3

Figure 6.13 Example of a simple power system.
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Figure 6.14 Simulation results for a fault on line L1 cleared by tripping the faulted line: (a) equal
area method, (b) variation in the generator voltage, (c) power swings.

very well. This low value of terminal voltage forces the AVR to continue to increase the excitation
current so that the rotor backswing occurs along the upper characteristic in Figure 6.14a. This
repeats from cycle to cycle with the effect that the rotor swings are poorly damped (Figure 6.14c).

If the fault occurs on line L2 and is again cleared by tripping the faulted line, then the generator
operates in the postfault period via a short transmission link that consists solely of line L1. Simu-
lation results for this case are shown in Figure 6.15. Now, when the fault is cleared, the generator
voltage recovers well and stays at a high level (Figure 6.15b). Consequently, the AVR decreases the
excitation current and the rotor swings back along the lower power–angle characteristic in Figure
6.15a and the deceleration area is small. This repeats during each cycle of the rotor swings with the
result that they are well damped (Figure 6.15c).

These examples show how the rotor oscillations may increase if the transmission link is long and
the AVR keeps the excitation voltage at too high a value during the rotor backswing. Ideally the
regulator should increase the excitation when the power angle δ′ increases and lower it when δ′

decreases, no matter what the value of the regulation error �V is. Section 10.1 will show how the

δ′

δ′

t

V

P P

Pm

Figure 6.15 Simulation results for a fault on line L2 cleared by tripping the faulted line: (a) equal
area method, (b) variation in the generator voltage, (c) power swings.
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AVR can be provided with supplementary control loops to provide a regulation error that depends
on the rotor speed deviation �ω or the rate of change of real power. Such supplementary loops
coordinate the regulation process with the rotor swings in order to ensure correct damping.

6.2 Swings in Multi-Machine Systems

Although the simplification of a multi-machine power system to a single generator–infinite busbar
model enables many important conclusion to be made concerning the electromechanical dynamics
and stability of the system, this simplification is only possible when the fault affects one generator
and has little effect on other generators in the system. Contemporary power systems have a well-
developed transmission network with power stations located relatively close to each other so that
these conditions will not always be met. In these circumstances a fault near one of the power stations
will also distort the power balance at neighbouring stations. The resulting electromechanical swings
in the power system can be compared with the way that the masses swing in the mechanical system
shown in Figure 6.16.

Section 5.2 showed that a single swinging rotor can be compared with a mass/spring/damper
system. Hence a multi-machine system can be compared with a number of masses (representing the
generators) suspended from a ‘network’ consisting of elastic strings (representing the transmission
lines). In the steady state each of the strings is loaded below its breaking point (steady-state stability
limit). If one of the strings is suddenly cut (representing a line tripping) the masses will experience
coupled transient motion (swinging of the rotors) with fluctuations in the forces in the strings (line
powers).

Such a sudden disturbance may result in the system reaching a new equilibrium state characterized
by a new set of string forces (line powers) and string extensions (rotor angles) or, due to the transient
forces involved, one string may break, so weakening network and producing a chain reaction of
broken strings and eventual total system collapse.

Obviously this mechanical analogue of the power system has a number of limitations. Firstly, the
string stiffnesses should be nonlinear so as to model correctly the nonlinear synchronizing power
coefficients. Secondly, the string stiffness should be different in the steady state to the transient state
to model correctly the different steady-state and transient state models of the generators.

In practice a disturbance may affect the stability of a power system in one of four ways:

1. The generator (or generators) nearest to the fault may lose synchronism without exhibiting any
synchronous swings; other generators affected by the fault undergo a period of synchronous
oscillations until they eventually return to synchronous operation.

2. The generator (or generators) nearest to the fault lose synchronism after exhibiting synchronous
oscillations.

Figure 6.16 Mechanical analogue of swings in a multi-machine system. Based on Elgerd (1982).

Source: McGraw-Hill
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3. The generator (or generators) nearest to the fault are the first to lose synchronism and are then
followed by other generators in the system.

4. The generator (or generators) nearest to the fault exhibit synchronous swings without losing
stability but one, or more, of the other generators remote from the fault lose synchronism with
the system.

So far only the first case has been described because it may be represented by the generator–infinite
busbar system. In the other three cases instability arises due to interaction with other generators
located further from the fault. In the second case the generator initially has a chance to retain
stability but, as the rotors of the other generators start to oscillate, conditions deteriorate and the
generator loses synchronism. In the third case the generator nearest the fault is the first to lose
synchronism; this has a major affect on the other generators in the system so that they may also lose
synchronism. The fourth case is typical of the situation where some generators, located far from
the point of fault, are weakly connected to the system. As the oscillations spread, the operating
conditions of the weakly connected generators deteriorate so that they may lose stability. Another
example of this fourth instability case is when the network configuration is changed following fault
clearance. Although the tripped line may be just one of the lines that connects the nearest generator
to the system, it could also be the main connection for a neighbouring power station. Example 6.1
illustrates all the above cases (Omahen, 1994).

Example 6.1

Figure 6.17 shows a schematic diagram of a power system that comprises three subsystems
connected together at node 2. The capacity of generator 5 is large and can be considered as
an infinite busbar. Figure 6.18a–d shows the power angles of all the generators, measured with
respect to generator 5, for faults located at points a, b, c and d respectively. Each of these
points corresponds to the four cases of instability. The faults are assumed to be cleared without
auto-reclosing.

2
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Figure 6.17 Schematic diagram of the test system.

When line 1–2 is faulted, case a, generator 1 quickly loses synchronism and the rotors of the
other generators undergo a period of synchronous oscillation. When the fault is on line 3–13,
case b, then, for a given clearing time, generator 2 could remain in synchronism just as if it were
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Figure 6.18 Rotor angle variations (measured with respect to generator rotor 5) for different
fault locations. Based on Omahen (1994). Reproduced by permission of P. Omahen

operating on the infinite busbars. However, in this particular case the oscillations of the other
generator rotors increase the relative difference in the power angles and the situation regarding
generator 2 deteriorates and it loses stability on its second swing. When line 9–2 is faulted, case
c, the weakly connected generators, 2 and 3, immediately lose stability while generator 1, which
initially remains in synchronism with generator 5, loses synchronism some time later. When line
8–11 is faulted, case d, the power angles of all the generators considerably increase. After the
fault is cleared, all the system loads take power from their neighbouring generators 1, 3, 4 and 5
but as generator 2 is far from these loads it loses stability.

6.3 Direct Method for Stability Assessment

Throughout this chapter use has been made of the equal area criterion to explain and assess system
stability. This method will now be formalized using the Lyapunov direct method and an energy-type
Lyapunov function. In this section the basic concepts on which the Lyapunov direct method is based
will be described and applied to the simple generator–infinite busbar system. The Lyapunov direct
method is also known as Lyapunov’s second method.

Due to its potential in assessing power system stability, without the need to solve the system
differential equations, the Lyapunov direct method has been the subject of much intensive research.
However, the practical application of the direct method for real-time security assessment is still
some time off due to modelling limitations and the unreliability of computational techniques.
When applied to a multi-machine system, especially one operating close to its stability limits, the
direct method is vulnerable to numerical problems and may give unreliable results. Interested readers
looking for a detailed treatment of this topic are referred to Pai (1981, 1989), Fouad and Vittal
(1992) and Pavella and Murthy (1994).
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6.3.1 Mathematical Background

Dynamic systems are generally described by a set of nonlinear differential equations of the form

ẋ = F (x), (6.9)

where x is the vector of state variables. The Euclidean space determined by x is referred to as the
state space whilst the point x̂, for which F (x̂) = 0, is referred to as the equilibrium point. For an
initial point x0 �= x̂, ẋ(t = 0) = 0, Equation (6.9) has a solution x(t) in the state space and is referred
to as the system trajectory. The system is said to be asymptotically stable if the trajectory returns to
the equilibrium point as t → ∞. If the trajectory remains in a vicinity of the equilibrium point as
t → ∞ then the system is said to be stable.

Lyapunov’s stability theory, used in the direct method of stability assessment, is based on a scalar
function V(x) defined in the state space of the dynamic system. At a given point, the direction of the
largest increase in the value of V(x), is given by the gradient of the function grad V(x) = [∂V/∂xi ].
The points x̃ for which grad V(x̃) = 0 are referred to as the stationary points. Each stationary
point may correspond to a minimum, a maximum or a saddle point as illustrated in Figure 6.19.
The stationary point x̃ corresponds to a minimum, Figure 6.19a, if any small disturbance �x �= 0
causes an increase in the function, that is V(x̃ + �x) > V(x̃). Similarly a given stationary point x̃
corresponds to a maximum, Figure 6.19b, if any small disturbance �x �= 0 causes a decrease in the
function, that is V(x̃ + �x) < V(x̃). The mathematical condition for checking whether a function
has a maximum or minimum at a stationary point can be derived by expanding V(x) by a Taylor
series to give

V(x̃ + �x) ∼= V(x̃) + �xT [grad V] + 1
2
�xT H�x + · · · (6.10)

where H = [
∂2V/∂xi ∂xj

]
is the Hessian matrix. At the stationary points, grad V(x̃) = 0 and the

increment in V(x) caused by the disturbance can be found as

�V = V(x̃ + �x) − V(x̃) ∼= 1
2
�xT H�x =

N∑
i=1

N∑
j=1

hi j�xi �xj , (6.11)

where hij is the (i, j) element of matrix H. This equation shows that the increment in V is equal to
the quadratic form of the state variables constructed using the Hessian matrix. Sylvester’s theorem
(Bellman, 1970) states that such a quadratic form has a minimum at a given stationary point if, and

VV V V VV

(a) (b) (c)

∆x1

x1 x1 x1

x2 x2 x2

∆x2

∆x2 ∆x2
∆x1

∆x1

Figure 6.19 A scalar function of two variables with three types of stationary points: (a) minimum;
(b) maximum; (c) saddle point.
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Figure 6.20 Illustration of Lyapunov’s theorems on stability: (a) asymptotic stability;
(b) instability.

only if, all leading principal minors of the matrix H are positive, Figure 6.19a. The matrix is then
referred to as positive definite. If all leading principal minors of H are negative then the matrix is
negative definite and the quadratic form has a maximum at a given stationary point, Figure 6.19b.
If some leading principal minors are positive and some negative then the matrix is non-definite and
the quadratic form has a saddle point at the stationary point, Figure 6.19c. The dot–dashed line at
the bottom of Figure 6.19c shows a ridge line of the saddle going through the saddle point. As the
gradient perpendicular to the ridge line is zero for each point on the ridge, function V(x) reaches a
local maximum in that direction for each point on the ridge. The function reaches a local minimum,
in the direction along the ridge line, exactly at the saddle point.

As the scalar function V(x) is defined in the state space, each point on the system trajectory x(t)
corresponds to a value of V(x(t)). The rate of change of V(x) along the system trajectory (i.e. the
derivative dV/dt) can be expressed as

V̇ = dV
dt

= ∂V
∂x1

dx1

dt
+ ∂V

∂x2

dx2

dt
+ · · · + ∂V

∂xn

dxn

dt
= [gradV(x)]T ẋ = [gradV(x)]T F (x). (6.12)

To introduce the direct (or second) Lyapunov method, assume that a positive definite scalar
function V(x) has a stationary point (minimum) at the equilibrium point x̃ = x̂. Any disturbance
�x �= 0 will move the system trajectory to an initial point x0 �= x̂ as illustrated in Figure 6.20. If
the system is asymptotically stable, as in Figure 6.20a, then the trajectory x(t) will tend towards
the equilibrium point and V(x) will decrease along the trajectory until x(t) settles at the minimum
point x̃ = x̂. If the system is unstable, Figure 6.20b, then the trajectory will move away from the
equilibrium point and V(x) will increase along the trajectory. The essence of these considerations
is summarized in Lyapunov’s stability theorem:

Let x̂ be an equilibrium point of a dynamic system ẋ = F (x). Point x̂ is stable if there is a continuously
differentiable positive definite function V(x) such that V̇(x) ≤ 0. Point x̂ is asymptotically stable if
V̇(x) < 0.

One of the main attractions of Lyapunov’s theorem is that it can be used to obtain an assessment
of system stability without the need to solve the differential equation (6.9). The main problem is
how to find a suitable positive definite Lyapunov function V(x) for which the sign of the derivative
V̇(x) can be determined without actually determining the system trajectory.

Generally the Lyapunov function V(x) will be nonlinear and may have more than one stationary
point. Figure 6.21 illustrates this using two functions of one variable: one which has three stationary
points, Figure 6.21a, and one which has two stationary points, Figure 6.21b. Assume that in both
cases the first of the stationary points corresponds to the equilibrium point x̃1 = x̂. The Lyapunov
function determines the stability only if there is no other stationary point x̃2 between the initial
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Figure 6.21 Examples of nonlinear functions with more than one stationary point.

point x0 = x(t = 0) and the equilibrium point x̃1 = x̂. If the initial point x0 is beyond the second
stationary point x̃2 then the condition V̇(x) < 0 may mean that the system trajectory will tend
towards another stationary point, Figure 6.21a, or run away, as in Figure 6.21b. The value of V(x)
at the nearest stationary point x̃2 �= x̂ is referred to as the critical value of the Lyapunov function.
These considerations lead to the following theorem:

If there is a positive definite scalar function V(x) in the vicinity of the equilibrium point x̂ of a dynamic
system ẋ = F (x) and the time derivative of this function is negative (V̇(x) < 0), then the system is
asymptotically stable at x̂ for any initial conditions satisfying

V(x0) < Vcr, (6.13)

where Vcr = V(x̃ �= x̂) is the value of the Lyapunov function at the nearest stationary point.

It is important to realize that the stability conditions due to Lyapunov’s theorems are only sufficient.
Failure of the candidate Lyapunov function to satisfy the stability conditions does not mean that
the equilibrium point is not stable. Moreover, for any given dynamic system there are usually many
possible Lyapunov functions each of which gives a larger, or smaller, area of initial conditions that
satisfies the stability theorems. This means that a particular Lyapunov function usually gives a
pessimistic assessment of stability because it covers only a portion of the actual stability area. The
function giving the largest area, and at the same time being closest to the actual stability area, is
referred to as a good Lyapunov function. Usually good Lyapunov functions have a physical meaning.

6.3.2 Energy-Type Lyapunov Function

In Section 5.4, Equation (5.45) showed that the integral of the acceleration power is proportional
to the work done by the acceleration torque. The proportionality constant ωs was neglected and
the integral of power was treated as ‘work’ or ‘energy’. A similar approach will be adopted here.

6.3.2.1 Energy Function

Assume that the generator can be represented by the classical model defined by Equations (5.15)
and (5.40) when the equation describing the generator–infinite busbar system is

M
d�ω

dt
= Pm − b sin δ′ − D

dδ′

dt
, (6.14)

where b = E′Vs/x′
d is the amplitude of the transient power–angle curve PE′ (δ′) and �ω = dδ′/dt =

dδ/dt is the speed deviation. This equation has two equilibrium points:

(δ̂′
s; �ω̂ = 0) and (δ̂′

u = π − δ̂′
s; �ω̂ = 0). (6.15)
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Multiplying Equation (6.14) by �ω, neglecting the damping term and moving the right hand side
to the left gives

M�ω
d�ω

dt
− (Pm − b sin δ′)

dδ′

dt
= 0. (6.16)

As the function on the left hand side of this equation is equal to zero, its integral must be constant.
Integrating the function from the first of the equilibrium points defined in Equation (6.15) to any
point on the system transient trajectory gives

V =
�ω∫
0

(M�ω) d�ω −
δ′∫

δ̂′
s

(Pm − b sin δ′)dδ′ = constant. (6.17)

Evaluating the integrals gives the following form of the function:

V = 1
2

M�ω2 − [Pm(δ′ − δ̂′
s) + b(cos δ′ − cos δ̂′

s)] = Ek + Ep = E, (6.18)

where

Ek = 1
2

M�ω2, Ep = −[Pm(δ′ − δ̂′
s) + b(cos δ′ − cos δ̂′

s)]. (6.19)

Ek is a measure of the system kinetic energy while Ep is a measure of potential energy, both taken
with respect to the first equilibrium point (δ̂′

s, �ω̂ = 0) and, for the remainder of this chapter, will
be treated as energy. By neglecting damping, Equation (6.17) shows that the sum of potential and
kinetic energy V = Ek + Ep is constant.

It is now necessary to check whether the function V, defined by Equation (6.18), satisfies the
definition of a Lyapunov function, that is whether: (i) it has stationary points at the equilibrium
points defined in Equation (6.15); (ii) it is positive definite in the vicinity of one of the equilibrium
points; and (iii) its derivative is not positive (V̇ ≤ 0).

The first of the conditions can be checked by calculating the gradient of V. Differentiating
Equation (6.18) gives

grad V =




∂V
∂�ω

∂V
∂δ′


 =




∂Ek

∂�ω

∂Ep

∂δ′


 =

[
M�ω

− (Pm − b sin δ′)

]
. (6.20)

This gradient is equal to zero at the stationary points where �ω̃ = 0 and the electrical power is
equal to mechanical power given by

δ̃′
1 = δ̂′

s, δ̃′
2 = π − δ̂′

s. (6.21)

Both these points are the equilibrium points of Equation (6.14).
The second condition can be checked by determining the Hessian matrix given by

H =




∂2V
∂�ω2

∂2V
∂�ω ∂δ′

∂2V
∂δ′ ∂�ω

∂2V
∂δ′2


 =

[
M 0
0 b cos δ′

]
. (6.22)
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Sylvester’s theorem says that this matrix is positive definite when M > 0 (which is always true) and
when b cos δ′ > 0, which is true for |δ′| < π/2 and holds for the first stationary point δ̃′

1 = δ̂′
s. Thus

the function V is positive definite at the first equilibrium point δ̂′
s.

The third condition can be checked by determining V̇ = dV/dt along the trajectory of Equation
(6.14). As V represents the total system energy, its derivative V̇ = dV/dt corresponds to the rate at
which energy is dissipated by the damping. This can be proved by expressing the derivative of V as

V̇ = dV
dt

= dEk

dt
+ dEp

dt
. (6.23)

The derivative of the kinetic energy can be calculated from Equation (6.18) as

dEk

dt
= ∂Ek

∂�ω

d�ω

dt
= M�ω

d�ω

dt
=

[
M

d�ω

dt

]
�ω. (6.24)

The factor in the square brackets corresponds to left hand side of Equation (6.14). Replacing it by
the right hand side gives

dEk

dt
= ∂Ek

∂�ω

d�ω

dt
= +[Pm − b sin δ′]�ω − D�ω2. (6.25)

Differentiating the potential energy defined by Equation (6.18) gives

dEp

dt
= ∂Ep

∂δ′
dδ′

dt
= −[Pm − b sin δ′]�ω. (6.26)

Substituting Equations (6.25) and (6.26) into Equation (6.14) yields

V̇ = dV
dt

= −D�ω2, (6.27)

which illustrates how the total system energy decays at a rate proportional to the damping coefficient
(D > 0) and the square of the speed deviation (�ω2). As V̇ < 0, the function V(δ′, �ω) is a Lyapunov
function and the first equilibrium point δ̂′

s is asymptotically stable.
The second equilibrium point δ̂′

u = π − δ̂′
s is unstable because the matrix H, Equation (6.22),

calculated at this point is not positive definite.

6.3.3 Transient Stability Area

The critical value of the Lyapunov function V introduced in Equation (6.13) corresponds to the
value of V at the nearest stationary point which, for the system considered here, is equal to the
second equilibrium point (π − δ̂′

s, �ω̂ = 0). Substituting these values into Equation (6.18) gives

Vcr = 2b cos δ̂′
s − Pm(π − 2δ̂′

s). (6.28)

According to Equation (6.13), the generator–infinite busbar system is stable for all initial condi-
tions (δ′

0, �ω0) satisfying the condition

V(δ′
0, �ω0) < Vcr. (6.29)

In this context the initial conditions are the values of the transient rotor angle and the rotor speed
deviation at the instant of fault clearance when the generator starts to swing freely.

Careful examination of Equation (6.28) shows that the critical value of the Lyapunov function
(total system energy) depends on the stable equilibrium point δ̂′

s which, in turn, depends on the
generator load Pm. At no load, when δ̂′

s = 0, the value of Vcr is greatest. Increasing the load on
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Figure 6.22 Equiscalar contours of the total system energy for the two equilibrium points: (a)
δ̂′

s = 0; (b) δ̂′
s < π/2.

the generator, and hence δ̂′
s, reduces Vcr until, for δ̂′

s = π/2, its value is Vcr = 0. Figure 6.22 shows
equiscalar contours V(δ′, �ω) = constant on the phase plane �ω vs δ′.

Figure 6.22a shows the case δ̂′
s = 0. For small values of V(δ′,�ω) < Vcr the equiscalar contours

V(δ′, �ω) = constant are closed around the equilibrium point δ̂′
s = 0. The critical value V(δ′, �ω) =

Vcr corresponds to the closed contour shown in bold crossing the stationary points ±π equal to the
unstable equilibrium points. As the equiscalar energy increases, the contours start to open up. The
equilibrium point δ̂′

s = 0 is the point of minimum total energy while the stationary points ±π are
the saddle points. Now assume that at the instant of fault clearance (i.e. at the initial point δ′

0, �ω0)
the system trajectory is inside the contour V(δ′, �ω) < Vcr. If damping is neglected then, according
to Equation (6.27), the value of V(δ′, �ω) remains constant and the trajectory will be a closed
curve with V(δ′,�ω) = V(δ′

0, �ω0) = constant. If damping is included, D > 0, then V(δ′, �ω) will
decrease with time and the trajectory will tend to spiral in towards the equilibrium point δ̂′

s = 0.
Figure 6.22b shows the case of δ̂′

s > 0 but less than π/2. In this case the curve V(δ′, �ω) = Vcr =
constant corresponds to a contour crossing the stationary point (π − δ̂′

s) equal to the unstable
equilibrium point. The area enclosed by this boundary contour is now much smaller than before.

If, at the instant of fault clearance, the transient stability condition (6.29) is satisfied then the
calculated value of the total energy V0 = V(δ′

0, �ω0) can be used to calculate a transient stability
margin

Kenergy = Vcr − V0

Vcr
, (6.30)

which describes the relative difference between the critical value of the total energy (transient
stability boundary) and the energy released by the disturbance. Kenergy determines the distance from
the actual contour to the boundary contour of the transient stability area in terms of energy.

6.3.4 Equal Area Criterion

The equal area criterion was introduced in Equation (6.6) as a means of assessing transient stability
and, like the Lyapunov stability condition in Equation (6.29), is also based on energy considerations.
Both approaches can be shown to be equivalent by considering Figure 6.23 which shows the same
three-phase fault as that illustrated in Figures 6.1 and 6.2a.

The first term of the energy-based Lyapunov function defined in Equation (6.18) corresponds to
the kinetic energy

1
2

M�ω2 = area 1–2–3–4 = area A. (6.31)
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Figure 6.23 Equivalence between the Lyapunov direct method and the equal area criterion: (a)
schematic diagram of the system; (b) transient power–angle characteristics with acceleration and
deceleration areas; (c) angle variation; (d) stability area and trajectory of rotor motion.

The second component, equal to potential energy, can be expressed as

−
δ′∫

δ̂′
s

(Pm − b sin δ′)dδ′ = − [area 1–7–8–4 − area 1–7–8–5] = area B. (6.32)

The Lyapunov function is equal to the sum of the two components:

V(δ′, �ω) = area A + area B. (6.33)

The critical value of the Lyapunov function is equal to the value of the potential energy at the
unstable equilibrium point, that is

Vcr = −
π−δ̂′

s∫
δ̂′

s

(Pm − b sin δ′)dδ′ = area 1–7–9–6–5 − area 1–7–9–6 = area B + area C.

(6.34)

Thus, the stability condition V(δ′
0,�ω0) < Vcr can be expressed as

area A + area B < area B + area C or area A < area C, (6.35)

which is equivalent to the equal area criterion.
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The equiscalar contour V(δ′, �ω) = Vcr in the (δ′, �ω) plane determines the stability area, Figure
6.23c. If, during the short circuit, the trajectory x(t) is contained within the area then, after clearing
the fault, the trajectory will remain within the area and the system is stable. When D > 0 the
trajectory tends towards the equilibrium point and the system is asymptotically stable. As the
clearing time increases, the initial point approaches the critical contour and reaches it when the fault
time is equal to the critical clearing time. If the clearing time is longer than this then area A > area C,
the trajectory leaves the stability area and the system is unstable.

For the case considered here the transient stability margin defined in Equation (6.30) is equal to

Kenergy = Vcr − V0

Vcr
= area B + area C − area A

area B + area C
= area 10–6–11

area 1–5–6
= Karea, (6.36)

which is exactly the same as the transient stability margin defined by the equal area criterion in
Equation (6.7). Consequently, for the generator–infinite busbar system, the equal area criterion is
equivalent to the Lyapunov direct method based on an energy-type Lyapunov function.

6.3.5 Lyapunov Direct Method for a Multi-Machine System

In a simplified stability analysis each generator is modelled by employing the classical model, that is
by using the swing equation and constant emf behind the transient reactance. The swing equations
for all generators can be written as

dδ′
i

dt
= �ωi , (6.37a)

Mi
d�ωi

dt
= Pmi − Pi (δ′) − Di �ωi , (6.37b)

where δ′
i and �ωi are the transient power angle and rotor speed deviation respectively, Pmi and

Pi (δ′) are the mechanical and electrical power, δ′ is the vector of all transient power angles in the
system, Di is the damping coefficient and Mi is the inertia coefficient (Section 5.1), i = 1, . . . , N.

Transient reactances of generators are included in the network model. All the network elements
(lines and transformers) are modelled by their π equivalents. For the simplified power system
transient stability analysis, the transmission network is modelled explicitly while power injected
from/to the distribution network is modelled as a load. Each such load is replaced by a constant
nodal shunt admittance. The load nodes are denoted as {L}. Fictitious generator nodes behind
generator transient reactances are denoted as {G}.

The resulting network model of a multi-machine system is described by the nodal admittance
equation (Section 3.6). That model is then reduced by eliminating the {L} nodes using the elimina-
tion method described in Section 12.2. Once the load nodes {L} have been eliminated, the reduced
network contains only the fictitious generator nodes {G}. The reduced network is described by the
following nodal admittance equation:

IG = YG EG . (6.38)

Expanding this equation for the ith generator gives

Ii =
N∑

j=1

Yi j E j , (6.39)

where E j = Ej e
jδ′

j and Yi j = Gi j + jBi j are the elements of the reduced admittance matrix. It
should be remembered that the off-diagonal elements of the nodal admittance matrix are taken
with a minus sign and correspond to admittances of branches linking the nodes. Hence y

i j
= −Yi j is

the admittance of the equivalent branch linking nodes i, j. Such a branch linking fictitious generator
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nodes i and j is referred to as the transfer branch while the corresponding admittance y
i j

is referred
to as the transfer admittance.

Equations expressing nodal injections (here also power generated) corresponding to the currents
expressed by (6.39) are analogous to Equations (3.156) described in Section 3.6, that is

Pi = E2
i Gii +

N∑
j �=i

Ei Ej Gi j cos(δ′
i − δ′

j ) +
N∑

j �=i

Ei Ej Bi j sin(δ′
i − δ′

j ), (6.40)

or

Pi = P0i +
N∑

j=1

bi j sin δ′
i j , (6.41)

where bi j = Ei Ej Bi j is the magnitude of the power–angle characteristic for the transfer equivalent
branch and

P0i = E2
i Gii +

N∑
j �=i

Ei Ej Gi j cos(δ′
i − δ′

j ). (6.42)

Generally P0i depends on power angles δ′
i and is not constant during the transient period when

the rotors are swinging. Stability analysis of the multi-machine system by the Lyapunov direct
method is straightforward assuming that P0i

∼= P0i (δ̂
′
) = constant, that is the power is constant and

equal to its value at the stable equilibrium point, where

P0i (δ̂′) = E2
i Gii +

N∑
j �=i

Ei Ej Gi j cos(δ̂′
i − δ̂′

j ). (6.43)

That assumption in practice means that transmission losses in transfer branches are assumed to be
constant and added to the equivalent loads connected at the fictitious generator nodes.

The simplified power system model resulting from Equations (6.37) and (6.41) can be summarized
in the following set of state-space equations:

dδ′
i

dt
= �ωi , (6.44a)

Mi
d�ωi

dt
= (Pmi − P0i ) −

n∑
j=1

bi j sin δ′
i j − Di �ωi . (6.44b)

The third component on the right hand side of Equation (6.44b) dissipates energy. No energy is
dissipated in the transmission network because power losses on transfer conductances have been
added to the equivalent loads as constant values. Such a model is referred to as the conservative
model.

Neglecting rotor damping, Equation (6.44b) can be written as

Mi
d�ωi

dt
− (Pmi − P0i ) +

N∑
j=1

bi j sin δ′
i j = 0. (6.45)
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As the right hand side of this equation is equal to zero, integrating gives a constant value V(δ̂
′
, �ω) =

Ek + Ep equal to the system energy, where

Ek =
N∑

i=1

ωi∫
0

Mi�ωi dωi = 1
2

N∑
i=1

Mi�ω2
i , (6.46)

Ep = −
N∑

i=1

δ′
i∫

δ̂′
i

(Pmi − P0i )dδ′
i +

N∑
i=1

δ′
i∫

δ̂′
i


 N∑

j=1

bi j sin δ′
i j


dδ′

i , (6.47)

where δ̂′
i is the power angle at the postfault stable equilibrium point, while Ek and Ep are the kinetic

and potential energy of the power system conservative model. As damping has been neglected, the
model does not dissipate energy and the total energy, equal to the sum of the kinetic and potential
energy, is constant (the conservative model).

There is a double summation in (6.47) that corresponds to a summation of elements of the square
matrix

i j

i

j




. . .
...

...
- - - - - - - - - - - - - - - - - - - - - - - - - -
. . . 0 bi j sin δ′

i j · · ·
- - - - - - - - - - - - - - - - - - - - - - - - - -
. . . b ji sin δ′

j i 0 · · ·
- - - - - - - - - - - - - - - - - - - - - - - - - -

...
...

. . .




. (6.48)

The diagonal elements of the matrix are equal to zero because sin δ′
i i = sin(δ′

i − δ′
i ) = sin 0 = 0. The

lower off-diagonal elements have the same value as the upper elements but with an inverted sign
because sin δ′

i j = − sin δ′
j i . Hence

∫
sin δ′

i j dδ′
i +

∫
sin δ′

j i dδ′
j =

∫
sin δ′

i j dδ′
i −

∫
sin δ′

i j dδ′
j =

∫
sin δ′

i j dδ′
i j = − cos δ′

i j . (6.49)

Thus instead of integrating both the upper and lower off-diagonal elements of the matrix with
respect to dδ′

i , it is enough to integrate only the upper elements with respect to dδ′
i j . Consequently,

the second component on the right hand side of (6.47) can be written as

N∑
i=1

δ′
i∫

δ̂′
i


 n∑

j=1

bi j sin δ′
i j


 dδ′

i = −
N−1∑
i=1

N∑
j=i+1

bi j [cos δ′
i j − cos δ̂′

i j ]. (6.50)

Let us now consider indices in the sums on the right hand side of (6.50). As only the upper off-
diagonal elements are summed, the summation is for j > i . Moreover, the last row may be neglected
since it contains no upper off-diagonal elements. Hence the summation is for i ≤ (N − 1).

Finally, Equation (6.47) gives

Ep =
N∑

i=1

(Pmi − P0i ) (δ′
i − δ̂′

i ) −
N−1∑
i=1

N∑
j=i+1

bi j [cos δ′
i j − cos δ̂′

i j ]. (6.51)
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The total system energy is equal to the sum of the kinetic and potential energy:

V(δ′, �ω) = Ek + Ep. (6.52)

The necessary condition for this function to be a Lyapunov function is that it is positive definite and
with a minimum (Figure 6.20) at the stationary point δ̂

′
; �ω̂ = 0. That point is also the equilibrium

point of differential equations (6.44a) and (6.44b). Following considerations similar to those related
to Equations (6.10) and (6.11), the condition is satisfied if the Hessian matrix of function (6.52) is
positive definite. Hence it is necessary to investigate the Hessian matrices of the kinetic and potential
energy.

The Hessian matrix of the kinetic energy Hk = [∂E2
k/∂�ωi ∂�ω j ] = diag [Mi ] is a positive definite

diagonal matrix. Therefore function Vk given by Equation (6.46) is positive definite.
The Hessian matrix of the potential energy Hp = [∂E2

p/∂δ′
i N∂δ′

i N] is a square matrix that consists
of the generator’s self- and mutual synchronizing powers:

Hii =
N−1∑
j=1

bi j cos δ′
i j , Hi j = −bi j cos δ′

i j . (6.53)

It will be shown in Section 12.2.2 that this matrix is positive definite for any stable equilibrium point
such that, for all generator pairs,

∣∣δ′
i j

∣∣ < π/2. Therefore, in the vicinity of the postfault equilibrium
point, the potential energy Vp given by Equation (6.51) is positive definite.

Since the total system energy V(δ̂
′
, �ω) is the sum of two positive definite functions, it is also

positive definite. It can be treated as a Lyapunov function for the system model defined in Equations
(6.44a) and (6.44b) providing the time derivative dV/dt along the system trajectory is negative. The
time derivative dV/dt of the function in (6.52) along any system trajectory can be expressed as

V̇ = dV
dt

= dEk

dt
+ dEp

dt
, (6.54)

where

dEk

dt
=

N∑
i=1

∂Ek

∂�ωi

d�ωi

dt
, (6.55)

dEp

dt
=

N∑
i=1

∂Ep

∂δ′
i

dδ′
i

dt
=

N∑
i=1

∂Ep

∂δ′
i
�ωi . (6.56)

Differentiating Equations (6.46) and (6.47) gives

∂Ek

∂�ωi
= Mi�ωi , (6.57)

∂Ep

∂δ′
i

= − (Pmi − P0i ) −
N∑

j �=i

bi j sin δ′
i j . (6.58)

Substituting Equation (6.57) into (6.55) gives

dEk

dt
=

N∑
i=1

∂Ek

∂�ωi

d�ωi

dt
=

N∑
i=1

�ωi Mi
d�ωi

dt
. (6.59)
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Finally, substituting Equation (6.44b) into (6.59) gives the time derivative of Vk as

dEk

dt
=

N∑
i=1

�ωi (Pmi − P0i ) −
N∑

i=1

�ωi

N∑
j=1

bi j sin δ′
i j −

N∑
i=1

Di �ω2
i . (6.60)

Similarly the time derivative of the potential energy is obtained by substituting the relevant
components in Equation (6.56) by (6.58) to give

dEp

dt
= −

N∑
i=1

�ωi (Pmi − P0i ) +
N∑

i=1

�ωi

N∑
j �=i

bi j sin δ′
i j . (6.61)

The derivative of the potential energy expressed by this equation and the first two components of
(6.60) are the same but with opposite sign. This indicates that there is a continuous exchange of
energy between the potential and kinetic energy terms. Adding the two equations as required by
Equation (6.54) gives

V̇ = dV
dt

= dEk

dt
+ dEp

dt
= −

N∑
i=1

Di �ω2
i . (6.62)

That concludes the proof that function V(δ′, �ω) given by (6.52) and (6.46), (6.51) is a Lyapunov
function and may be used to investigate the transient stability of a power system. The function
was originally proposed by Gless (1966). There are also other functions which could be used for
transient stability analysis of a multi-machine power system but their detailed treatment is beyond
the scope of this book.

Similar to the generator–infinite busbar system discussed in Section 6.3.3, the stability condition
for a given postfault state in a multi-machine power system is given by

V(δ′
0, �ω0) < Vcr, (6.63)

where Vcr is the critical value of a Lyapunov function and δ′
0 and �ω0 are the initial conditions at

the postfault state.
The critical value of a given Lyapunov function for the generator–infinite busbar system is

calculated at the unstable equilibrium point (6.28). The main difficulty with the multi-machine
system is that the number of unstable equilibrium points is very large. If a system has N generators
then there is (N − 1) relative power angles and there may even be 2N−1 equilibrium points, that is
one stable equilibrium point and (2N−1 − 1) unstable equilibrium points. For example, if N = 11
then 210 = 1024, that is over a thousand equilibrium points. If N = 21 then 220 = 1 048 576, that is
over a million equilibrium points.

Although 2N−1 is the maximum number of equilibrium points that may exist, the actual number
of equilibrium points depends on the system load. Figure 5.5 showed that, for the generator–infinite
busbar system (i.e. for N = 2), there are 22−1 = 21 = 2 equilibrium points when the load is small.
As the load increases, the equilibrium points tend towards each other and, for the pull-out power
(steady-state stability limit), they become a single unstable equilibrium point. As the load increases
further, there are no equilibrium points. Similarly, in a multi-machine power system, there may be
a maximum number of 2N−1 equilibrium points when the load is small. As the load increases, the
pairs of neighbouring stable and unstable equilibrium points tend towards each other until they
become single points at the steady-state stability limit. When the load increases even further, the
system loses stability and the equilibrium points vanish.

The choice of a proper unstable equilibrium point determining Vcr is difficult. Choosing the lowest
unstable equilibrium point in which V(δ′) is smallest requires searching a large number of points
and usually leads to a very pessimistic transient stability assessment. A more realistic transient
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Figure 6.24 Illustration of potential boundary surface method.

stability assessment is obtained if Vcr is calculated assuming an unstable equilibrium point lying
on the trajectory δ′(t) enforced by a given disturbance. There are many methods of selecting such
a point, each of them having their own advantages and disadvantages. Figure 6.24 illustrates the
potential boundary surface method proposed by Athay, Podmore and Virmani (1979).

The solid lines in Figure 6.24a correspond to equiscalar lines of the potential energy for a three-
machine system under certain loading conditions. The stable equilibrium point is denoted by the
letters. There are three unstable equilibrium (saddle) points u1, u2, u3. Dot–dashed lines show the
ridge lines of the saddles (see also Figure 6.19c). The ridge line of each saddle point corresponds to
a different mode of losing the stability. The bold line shows the trajectory δ′(t) following a sustained
fault. The ridge line of saddle u3 is exceeded and that corresponds to generator 3 losing synchronism
with respect to generators 1 and 2. If the trajectory exceeded the ridge line of saddle u2, it would
mean that generator 2 had lost synchronism with respect to generators 1 and 2. If the trajectory
exceeded the ridge line of saddle u1, it would mean that generator 1 had lost synchronism with
respect to generators 2 and 3.

The potential energy increases on the way from the stable equilibrium point towards the ridge line
of the saddle due to increased rotor angles. After the ridge line has been exceeded, the potential en-
ergy decreases. Figure 6.24b shows changes in the potential, kinetic and total energy corresponding
to the trajectory δ′(t) exceeding the ridge line of saddle u3 shown in Figure 6.24a. As the trajectory
δ′(t) corresponds to a sustained short circuit, the kinetic energy continues to increase during the
fault because of rotor acceleration. The potential energy reaches its maximum at point 1 which
corresponds to Ep(max) in Figure 6.24b. The ridge line is usually flat in the vicinity of a saddle point.
Hence it may be assumed that Ep(u3) ∼= Ep(max); that is, the potential energy at the saddle point
u3 is equal to the maximum potential energy along the trajectory δ′(t). Hence u3 is the sought
unstable equilibrium point and it may be assumed that Vcr = Ep(u3) ∼= Ep(max). The system is stable
for V(δ′

0, �ω0) < Ep(max) which corresponds to the clearing time t < t2 in Figure 6.24b. For clearing
time t = t2 the total energy (kinetic and potential) is slightly higher than the potential energy in u3
and the trajectory exceeds the ridge line of the saddle point u3. This is shown in Figure 6.24a by the
dashed line from clearing point 2. For t < t2 the total energy is too small to exceed the ridge line
of the saddle point u3. The trajectory then changes direction and returns to the stable equilibrium
point. This is shown in Figure 6.24a by the dashed line from clearing point 3. The conclusion is
that the critical clearing time is slightly smaller than t2.
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Figure 6.25 Example of a power system.

The potential boundary surface method is used to find the critical value of a Lyapunov function
as the maximum value of potential energy along a trajectory following a sustained short circuit.
The disadvantage of assuming a sustained fault is that the transient stability assessment may be
misleading when the trajectory dramatically changes its direction after the fault is cleared. Consider,
for example, a sustained fault in line L1 near generator G1 in Figure 6.25. The trajectory δ′(t) tends
towards the saddle point that corresponds to the loss of synchronism by generator G1. The rotor
of G2 does not accelerate rapidly during the fault because the fault is remote and the generator
is loaded by neighbouring loads. Generator G1 is strongly connected with the system so that the
potential energy in the corresponding saddle point is high. Therefore the value of Vcr determined
using the trajectory during the sustained fault is high and results in a large critical clearing time.
Unfortunately this is not a correct transient stability assessment in the considered case. Right after
the faulted line L1 is tripped, the swings of generator G1 are quickly damped. However, generator
G2 loses synchronism because the tripped line L1 played a crucial role in the system. Once the line is
tripped, G2 is connected to the system via a long transmission link L2, L3, L4, L5 and starts to lose
synchronism. Trajectory δ′(t) dramatically changes its direction and tends towards the saddle point
corresponding to the loss of synchronism of generator G2. The potential energy at that point is
small and the trajectory δ′(t) will easily exceed the ridge line. This would correspond to the situation
in Figure 6.24a when the trajectory starting at point 3 moves towards the ridge of saddle point u2
where the potential energy is small.

The critical value of a Lyapunov function that takes into account a dramatic change of trajectory
direction can be determined using methods based on coherency recognition discussed in more detail
in Chapter 14. A group of generators that have a similar dynamic response and rotor swings after
a given disturbance are referred to as a coherent group. Finding groups of generators that are
approximately coherent limits the number of unstable equilibrium points for which the ridge lines
could be exceeded following a given disturbance. This could be explained using the example shown
in Figure 6.25. Coherency recognition would show that generators G1 and G2 are not coherent with
any other generator for the disturbance considered. Hence three possibilities of losing synchronism
can be investigated: (1) generator G1 loses synchronism while G2 remains in synchronism with the
rest of the system; (ii) generator G2 loses synchronism while G1 remains in synchronism with the
rest of the system; (iii) generators G1 and G2 lose synchronism together. These three ways of losing
synchronism correspond to three saddle points and their three ridge lines can be exceeded by the
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trajectory δ′(t). The value of Vcr is determined from those three saddle points by choosing a point at
which Ep is smallest. Such a choice, proposed by Machowski et al. (1986), gives a prudent transient
stability assessment.

Application of the Lyapunov direct method for transient stability assessment has been discussed
in a number of books, for example Pai (1981, 1989) or Pavella and Murthy (1994).

6.4 Synchronization

Section 4.4 described the electromagnetic dynamics occurring when a generator is synchronized
to the system. This section expands this discussion to include the effect of the electromechani-
cal dynamics that accompany synchronization and in determining those conditions necessary for
resynchronization.

Consider the circuit shown in Figure 4.31. When the synchronizing switch is closed the resulting
electromagnetic torque will attempt to pull the rotor into synchronization with the power system
by either slowing down or accelerating the rotor until eventually the generator reaches its final
equilibrium position defined by the steady-state rotor angle δ̂s = 0 and the rotor speed ω = ωs.
To analyse these rotor dynamics, only the transient aperiodic component of the torque will be
considered because the subtransient interval is normally too short to have any significant effect on
the rotor swings. However, the subtransient torques are vital when determining shaft torque rating
and fatigue strength as described in Section 4.2.7.

The generator is represented by the classical model, Equations (5.15) and (5.40). As the generator
is on no load prior to synchronization, both E′ = Ef and δ = δ′ hold. Now consider the case
illustrated in Figure 6.26 when all the synchronization conditions are satisfied apart from the
phasors Vs and Ef being slightly out of phase, that is Pm ≈ 0, ω0 ≈ ωs and δ′(t = 0+) = δ′

0 > 0.
When the synchronizing switch is closed the initial operating point lies at point 1 in Figure 6.26. The
equilibrium point is defined by Pm = Pe and δ̂′

s = 0, that is point 3. At the instant of synchronization
Pe(δ′) > 0, the right hand side of the swing equation is negative, the rotor decelerates and the rotor
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Figure 6.26 Synchronization when δ′
0 > 0, ω0 ≈ ωs: (a) power–angle characteristic and the swing

curve; (b) time variation of the torque and current.
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angle δ′ decreases. This causes the average value of the electrical torque and power to decrease
with the energy used to decelerate the rotor being proportional to the shaded area 1–2–3. At the
equilibrium point 3, rotor inertia effects ensure that the rotor angle continues to decrease towards
negative δ′ until it reaches point 4, where area 3–4–5 equals area 1–3–2. At point 4 the accelerating
power is positive and the rotor swings back towards δ′

0. The oscillations continue until the damping
torques cause the rotor to settle at its equilibrium angle δ̂′

s = 0.
Changes in δ′ due to the swinging rotor produce corresponding oscillations in the torque and

current as shown in Figure 6.26b. Initially, as δ′ is large, the average value of the torque, shown
by the dashed line, and the amplitude of the current are both large. As energy is dissipated in the
windings, the generator changes from the subtransient state to the transient state and then to the
steady state, and both the periodic components of the torque and the amplitude of the current
vanish with time.

If at the instant of synchronization δ′
0 �= 0 and ω0 �= ωs, then the changes in δ′ may be much

greater than those discussed above. Figure 6.27 shows a case when ω0 > ωs and the rotor has an
excess of kinetic energy. On closing the synchronizing switch, this excess kinetic energy will drive
the rotor towards an increasing δ′ along line 1–2 until the shaded area is equal to the excess kinetic
energy. The rotor then swings back towards the equilibrium point δ̂′

s. The conditions necessary to
achieve successful synchronization can be determined using the equal area criterion. At the instant
of synchronization the rotor has an excess kinetic energy relative to the rotating reference frame
(infinite busbar). This energy is equal to

Ek = 1
2

M�ω2
0, (6.64)

where M is the inertia coefficient and �ω0 = δ̇′(t = 0+) = ω0 − ωs.
The maximum deceleration work that can be done by the generator Wmax is proportional to the

area 4–1–2–3 in Figure 6.27:

Wmax =
π−δ̂′

s∫
δ′

0

[
E′Vs

x′
d

sin δ′ − Pm

]
dδ′ = E′Vs

x′
d

(cos δ̂′
s + cos δ′

0) − Pm[(π − δ̂′
s) − δ′

0]. (6.65)
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Figure 6.28 The trajectory of the operating point and the synchronization areas on the phase
plane for: (a) Pm = 0; (b) Pm = 0.5E′Vs/x′

d.

The equal area criterion stipulates that the generator can be synchronized only if Ek < Wmax.
Using Equations (6.64) and (6.65), this gives

�ω2
0 <

2
M

[
E′Vs

x′
d

(cos δ̂′
s + cos δ′

0) − Pm(π − δ̂′
s − δ′

0)
]

. (6.66)

The maximum permissible value of �ω0 depends on the synchronization angle δ′
0, the turbine

power Pm and the parameters of the generator and transmission system as expressed by x′
d. Figure

6.28 shows two example areas on the phase plane diagram (�ω, δ) that satisfy the condition for
successful synchronization as defined by Equation (6.66): one when Pm = 0 and the other when
Pm = 0.5E′Vs/x′

d. The dashed lines show the trajectory of the operating point and the solid lines
show the critical energy contours obtained from Equation (6.66) for the limiting conditions on δ′

0
and ω0. Figure 6.28 shows that an increase in Pm has a detrimental effect on synchronization because
the available decelerating area, defined by the area between Pm and Pe for δ′

0 < δ′ < π − δ̂′
s, reduces

as Pm increases. For Pm > E′Vs/x′
d the system has no equilibrium point. Although it is unusual to

synchronize a generator with the turbine developing large values of torque, similar conditions must
be considered when synchronizing certain types of wind turbine (Westlake, Bumby and Spooner,
1996).

The condition defined by Equation (6.66) contains useful information regarding possible resyn-
chronization after a fault is cleared by automatic reclosing action, Figures 6.7 and 6.8. In this case
the value of the rotor angle and the speed deviation at the moment when the last switching occurs
can be treated as the initial values δ0 and �ω0 in the synchronization process.

Section 6.3 showed that the equal area criterion is equivalent to the Lyapunov direct method
when an energy-type Lyapunov function is used. The synchronization condition in Equation (6.66)
can therefore be derived from the stability condition in Equation (6.29). The stability area shown in
Figure 6.22 is the same as the synchronization area shown in Figure 6.28. When the synchronization
condition in Equation (6.66) is not satisfied, and the point (δ0, �ω0) lies outside the synchronization
area, then the generator will start to show asynchronous operation. This type of operation will be
considered in the next section.

6.5 Asynchronous Operation and Resynchronization

The previous section explained how a generator may lose synchronism with the rest of the system
when it makes asynchronous rotations at a slip frequency a few hertz above synchronous speed.
With such high-speed changes the field winding time constant ensures that the net field winding flux
linkage remains approximately constant so that the classical, constant flux linkage, generator model
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Figure 6.29 Static characteristics of the turbine power and damping power.

is valid with the synchronous power of the generator being given by PE′ , Equation (5.40). However,
as PE′ changes as sin δ′ and over one asynchronous rotation δ′ goes through 360◦, the average
value of PE′ over one rotation is zero. Furthermore, as the speed increases above synchronous the
action of the turbine governing system comes into play, while the asynchronous damping torques,
proportional to �ω, are also significant. Indeed, it is the interaction between the turbine–governor
characteristic and the asynchronous damping torques that will determine the generator operating
point.

As explained in Section 2.2.3, the turbine static characteristic Pm(�ω) is a straight line of droop
ρ which crosses the vertical power axis in Figure 6.29 at point Pm0 and the horizontal speed
deviation axis at point ρωs. The form of the average asynchronous, damping, power characteristic
PDav(�ω) was discussed in Section 5.2 and is also shown in Figure 6.29. As the average value of
synchronous power PE′ over each asynchronous rotation is zero, the intersection between the static
turbine characteristic and the damping power characteristic will define the generator operating
point during asynchronous operation.

6.5.1 Transition to Asynchronous Operation

In order to explain what happens when a generator loses synchronism with a system, consider the
system shown in Figure 6.6. Now assume that a three-phase fault occurs on line L2 and is then
cleared by tripping the faulted line (without auto-reclosing) after a time such that the acceleration
area 1–2–3–4 shown in Figure 6.30a is larger than the available deceleration area 4–5–6. The
dashed PE′ (δ′) curve is valid for the prefault state while the solid P(δ′) curve is valid for the
postfault state. During the fault the rotor speed deviation increases, but when the fault is cleared it
starts to fall. Synchronism is lost when the rotor passes point 6 and follows the lower part of the
power–angle characteristic. The speed deviation quickly increases because of the large difference
between the turbine power and the synchronous power, shown by the shaded area in Figure 6.30a. As
the speed deviation increases, the turbine governing system starts to close the valves and the turbine
mechanical power starts to decrease. Due to the long time constant of the turbine governing system,
the dynamic turbine power Pm(t) does not follow the static characteristic in Figure 6.30b but moves
above it. With increased speed deviation the average damping power PDav increases, according to the
characteristic shown in Figure 6.29. As PDav increases and Pm decreases, these two powers become
equal at point B. Because of the delay introduced by the turbine time constants the mechanical
power continues to decrease after passing point B and is now less than PDav. Consequently, the
speed deviation starts to decrease and the turbine governor opens the valves to increase the turbine
power until, at point C, the mechanical power and the asynchronous power are again equal. Again,
because of the time delay in the turbine, the mechanical power continues to increase and is now
greater than the asynchronous power. The speed deviation begins to increase, the governor valves
close and the cycle repeats until eventually the system operates at point D corresponding to the
intersection of the static turbine characteristic and the asynchronous power characteristic. This
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Figure 6.30 Transition to asynchronous operation: (a) development of high-speed deviation and
high asynchronous power; (b) settling down of the asynchronous operating point. Based on Venikov
(1978b).

point defines the average turbine speed deviation �ωav and power during asynchronous operation
and is shown in Figure 6.29.

The effect of the synchronous power PE′ is to produce speed deviation oscillations around the
mean value as shown in the lower part of Figure 6.30b. The dashed lines in Figure 6.30b depict the
envelopes of the power changes and the speed deviation changes due to the periodic acceleration
and deceleration of the rotor caused by the synchronous power.

6.5.2 Asynchronous Operation

Assuming that the generator is allowed to settle at the asynchronous operating point, then typical
variations in some of the electrical quantities are as shown in Figure 6.31. The voltage drop �V
across the equivalent reactance x′

d can be calculated from the phasor diagram shown in Figure 5.8b.
The cosine theorem gives

�V2 = (Ix′
d)2 = (E′)2 + (Vs)2 − 2E′Vs cos δ′. (6.67)

Accordingly, the stator current is seen to change as the rotor angle changes, with its maximum
value being when δ′ = π and its minimum when δ′ = 0, while the generator terminal voltage,
Equation (5.93), is obtained by adding the voltage drop across the system equivalent reactance to
the infinite busbar voltage. Accounting for the variations in angle δ′ shown in Figure 6.11 allows
typical time variations of the current and voltage to be obtained as shown in Figure 6.31a.
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Figure 6.31 Changes in the electrical quantities of a generator operating at the asynchronous
operating point: (a) current and terminal voltage; (b) internal emf and transient emf; (c) synchronous
and asynchronous power; (d) speed deviation.

As the armature current changes, so too does the armature reaction flux linking the closed
rotor circuits and, according to the law of constant flux linkage, currents must be induced in the
rotor windings to maintain this flux linkage constant. Consequently, the field current will follow
the armature current fluctuations thereby inducing large fluctuations in the internal emf Eq, and
smaller variations in E′, as shown in Figure 6.31b. As the transient emf E′ is almost constant, the
synchronous power PE′ is given by Equation (5.40) and varies as sin δ′ (Figure 6.31c). The average
value of the asynchronous damping power PDav is shown in Figure 6.31c and can be added to
the synchronous power to obtain the resulting air-gap electrical power Pe = PE′ + PD. This has the
shape of a distorted sinusoid.

Figure 6.29 showed that the average speed deviation �ωav is determined by the intersection
between the turbine characteristic Pm(�ω) and the average asynchronous damping power charac-
teristic PDav(�ω). However, due to the sinusoidal changes in the synchronous power PE′ , the actual
speed deviation will oscillate around �ωav in the way shown in Figure 6.31d.

6.5.3 Possibility of Resynchronization

In order to resynchronize with the system, the generator must fulfil the normal requirements for
synchronization, that is its speed deviation and power angle must be small, condition (6.66). This
subsection will investigate under what conditions these two requirements may be met.

Figure 6.30 was constructed assuming that the changes in the speed deviation produced by
the synchronous power are small when compared with the average value �ωav, while �ωav itself
depends on the asynchronous power characteristic PDav(�ω) shown in Figure 6.29. As the maximum
value of PDav(�ω) is inversely proportional to the square of the reactances x′

d = X′
d + X and

x′
q = X′

q + X, Equation (5.24), then if the equivalent reactance X is small, the intersection between
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Figure 6.32 Resynchronization of a generator before the speed deviation reaches the average value
�ωav: (a) instantaneous value of the speed deviation approaches zero; (b) equal area criterion
applied to check the condition for resynchronization. Based on Venikov (1978b).

the PDav(�ω) characteristic and the Pm(�ω) characteristic may occur at a small value of speed
deviation. Moreover, a small value of X produces a large amplitude in the synchronous power
PE′ characteristic, Equation (5.40), so that large variations of PE′ during asynchronous operation
produce large variations of speed deviation around the average value �ωav. Large speed deviation
variations, combined with a small average value, may at some point in time result in the speed
deviation approaching zero as shown in Figure 6.32a. As the speed deviation approaches zero, the
rotor loses its excess kinetic energy, the asynchronous power is zero and the rotor behaviour is
determined by the acceleration and deceleration work performed by the synchronous power PE′ . If
the speed deviation reaches zero when PE′ is sufficiently small then the generator may resynchronize
with the system.

Figure 6.32b shows two cases. In the first case, the speed deviation becomes zero at point 1 when
the synchronous power is large and negative. The synchronous power performs work proportional
to area 1′–2–4 which is larger than the available deceleration area 4–5–6. Resynchronization is
not possible and the rotor makes another asynchronous rotation. In the second case, the speed
deviation reaches zero when the synchronous power is much smaller. The acceleration area 1′–2–4
is now much smaller than the available deceleration area 4–5–6 and, after reaching point 5, the
decelerating power prevails and the rotor starts to swing back towards smaller values of the rotor
angle. After a number of oscillations the rotor will settle at the synchronous equilibrium point 4.
Resynchronization has been achieved but whether or not the generator remains stable depends on
the subsequent action of the turbine governing system and the voltage regulator.

6.5.3.1 Influence of the Voltage Regulator

Figure 6.31 showed that during each asynchronous rotation the voltage at the generator terminals
drops quite significantly before recovering to a higher value. This means that the regulator error
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Figure 6.33 Effect of the AVR on resynchronization: (a) examples of the changes in the generator
terminal voltage, excitation voltage and the field current during asynchronous operation following
a fault; (b) increase in the amplitude of the synchronous power oscillations and the speed deviation
oscillations as a result of voltage regulation.

will oscillate at the frequency of the speed deviation oscillations. Normally this frequency is too
high for even a fast AVR to follow. Consequently, the AVR reacts, more or less, to the average value
of the error signal, so maintaining a high value of excitation voltage as shown in Figure 6.33a. As
the average voltage value is lower than the prefault value, the AVR increases the excitation voltage
V f almost to its ceiling value so that the amplitude of the PE′ (δ′) characteristic increases.

It has already been explained that the larger the magnitude of the speed deviation oscillations
around the average value, the greater the possibility that the speed deviation will reach zero value. By
increasing the excitation voltage, the AVR increases the amplitude of the PE′ (δ′) characteristic and
so produces larger changes in the speed deviation. This increases the chance of the speed deviation
reaching a zero value as shown in Figure 6.33b. Moreover, as the amplitude of the synchronous
power increases, the available deceleration area in Figure 6.32b increases and the range of rotor
angles which are acceptable for resynchronization also increases.

Obviously resynchronization will be followed by a period of large rotor swings which may be
damped or aggravated by the action of the AVR for the reasons described in Section 6.1.5.

6.5.3.2 Other Possibilities of Resynchronization

Successful resynchronization depends on the action of the AVR and the turbine governing system.
Turbine governors can be equipped with supplementary control loops which allow the turbine power
to be quickly reduced after a fault in order to protect the generator from loss of synchronism and/or
assist in resynchronization. This is referred to as fast valving and is discussed in detail in Section 10.2.
If a generator is not equipped with such a governor, the operating staff may try to resynchronize the
asynchronously rotating generator by manually reducing the turbine power to reduce the average
speed deviation value. However, in order to avoid large power swings in the system, and possible
damage to the generator, generators are usually tripped after a few asynchronous rotations.

6.6 Out-of-Step Protection Systems

Deep synchronous or asynchronous power swings are accompanied by large changes in voltages
and currents which pose a serious threat to power system operation. They may cause maloperation
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of some protection systems, especially distance protection and underimpedance protection (Section
2.5), which in turn may lead to cascaded outages and blackouts.

To avoid these consequences, power system protection is usually augmented by additional devices
and functions making up the out-of-step protection system. The main elements of out-of-step
protection are:

� special protection and supplementary control;
� power swing blocking (PSB) of distance and underimpedance protection;
� pole-slip protection (PSP) of synchronous generators;
� out-of-step tripping (OST) in transmission networks.

The task of special protection and supplementary control is to prevent loss of synchronism and
the onset of asynchronous operation as well as rapid damping of power swings. These problems are
treated in Chapter 10 which deals with stability enhancement methods.

If, despite special protection and supplementary control systems, there is an onset of asyn-
chronous operation or deep synchronous power swings, then the apparent impedance measured
by the distance or underimpedance protection can move away from the normal load area into the
distance protection zone causing unnecessary tripping. The task of the PSB relays (or functions)
is to detect that the changes in the measured impedance are due to power swings rather than
short circuits. PSB should be used for distance protection of transmission lines and transformers
and also for distance and underimpedance protection of synchronous generators and their step-up
transformers.

OST tripping relays (or functions) may be installed either as part of the generator protection
system or as part of the transmission network protection. When installed in the generator protection
system, they isolate the generator in the event of asynchronous operation. The PSP relay (or
function) operates after a set number of asynchronous cycles. OST relays (or functions) can also be
used inside the transmission network in order to split the system at predetermined points should
asynchronous power swings occur.

It is important for a power system operator to have a logical strategy of using PSB, PSP and
OST. Examples have been discussed in the IEEE Report to the Power System Relaying Committee
(1977). Generally speaking, protection of a power system against the consequences of power swings
should consist of efficient blocking of impedance relays during synchronous and asynchronous
swings using PSB relays (or functions). Efficient protection against long-lasting asynchronous
operation should be achieved by using PSP relays (or functions) for generators and OST for the
network.

6.6.1 Impedance Loci During Power Swings

The effect of power swings on the impedance loci can be studied using the simple equivalent
circuit shown in Figure 6.34 in which two equivalent synchronous generators are linked via
impedances Z′

a and Z′
b. The voltage and current are measured at the relay point between these

V

I

E a
′ E b

′

Z b
′Z a

′

Figure 6.34 Equivalent circuit of the system with a relay point.
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impedances to obtain the apparent impedance Z(t). The current and voltage at the relay point are
given by

I = E ′
a − E ′

b

Z′
a + Z′

b

, V = E ′
a − I Z′

a, (6.68)

where E ′
a, E ′

b are the equivalent generator transient emfs and Z′
a, Z′

b are the equivalent impedances
that include the impedance of the transmission network and the generator transient reactances. If
the magnitudes of the equivalent transient emfs are assumed to be constant then

E ′
a

E ′
b

=
∣∣E ′

a

∣∣∣∣E ′
b

∣∣ ejδ′ = kejδ′
, (6.69)

where k = ∣∣E ′
a

∣∣ / ∣∣E ′
b

∣∣ = constant and the transient power angle δ′ is the difference between the
arguments of the emfs.

The apparent impedance measured by the relay is Z(t) = V/I which, when substituting for V
and I from the equations in (6.68) and including (6.69), gives

Z (t) = V
I

= Z′
a + Z′

bkejδ
′
(t)

kejδ′ (t) − 1
. (6.70)

Note that during power swings the power angle and the apparent impedance are both time
dependent. Solving Equation (6.70) with respect to the power angle gives

kejδ
′
(t) = Z (t) − (−Z′

a

)
Z (t) − Z′

b

. (6.71)

With the exception of the coefficient k, all the variables in this equation are complex. Taking the
absolute value of both sides of (6.71) and recognizing that

∣∣ejδ′ ∣∣ = 1 gives

∣∣∣∣∣ Z (t) − (−Z′
a

)
Z (t) − Z′

b

∣∣∣∣∣ = k = constant =
∣∣E ′

a

∣∣∣∣E ′
b

∣∣ . (6.72)

Equation (6.72) determines the locus in the complex plane of all points with the same value
of k. This is illustrated in Figure 6.35. The impedances (−Z′

a) and Z′
b determine the points A

and B respectively while the apparent impedance Z(t) determines point C (Figure 6.35a). As∣∣Z(t) − (−Z′
a)

∣∣ = AC and
∣∣Z(t) − Z′

b

∣∣ = BC, the ratio k = AC/BC = constant. As Z(t) varies, a
locus of constant value k will be traced out by point C. The locus for a given value of k is a
circle that surrounds either point A or point B. The diameter of this circle, and the location of its
centre, depend on the value of k and the impedances Z′

a, Z′
b. The centre of each circle lies on the

straight line that passes through points A and B and is shown dashed in Figure 6.35b. For k = 1
the diameter of the circle tends to infinity and the circle becomes a straight line that bisects AB. For
k < 1,

∣∣E ′
a

∣∣ <
∣∣E ′

b

∣∣, the circle lies in the lower part of the complex plane and encircles point A. For
k > 1,

∣∣E ′
a

∣∣ >
∣∣E ′

b

∣∣, the circle lies in the upper part of the complex plane and encircles point B.
Now consider the effect of a power swing on the trajectory of Z(t). For the prefault operating

conditions the voltage V is close to the rated voltage and the current I is small when compared with
the fault current. Consequently Z(t) is high and predominantly resistive (since normally the power
factor is close to unity). A fault results in a significant drop in voltage and an increase in current so
that Z(t) drops in value. Assuming that k = ∣∣E ′

a

∣∣ / ∣∣E ′
b

∣∣ = constant, then, when the fault is cleared,
the value of Z rises again. Further changes in Z are solely due to the variation of the power angle
δ′ and must follow one of the circles shown in Figure 6.35.
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Figure 6.35 Graphical interpretation of Equation (6.72): (a) impedances on the complex plane:
(b) circles determining the impedance loci.

Figure 6.36a illustrates the trajectory of Z(t) in the case of an asynchronous power swing, and
Figure 6.36b in the case of a synchronous power swing, following a fault outside the relay protection
zone. In both cases the trajectory starts from point O in the normal load area and, when the fault
occurs, jumps to point F lying outside protection zones 1 and 2. During the short circuit the
impedance trajectory moves to point C where the fault is cleared. On fault clearance the trajectory
jumps to point P which does not quite lie on the same circle as point O because the emfs change
their values slightly during the fault. Further changes in δ′ will cause Z(t) to follow a circle of a
constant ratio k or, more precisely, a family of closed circles corresponding to slightly varying emfs
and hence ratios k.

When δ′(t) increases, Z(t) decreases and may encroach into the distance relay tripping zone. For
the asynchronous power swing, shown in Figure 6.36a, the trajectory will trace a full circle as δ′(t)
completes a full 360◦ cycle. For a synchronous power swing, shown in Figure 6.36b, the trajectory
will reach point B1 on an impedance circle and then move back towards point B2 as δ′(t) decreases
on the backswing. For constant

∣∣E ′
a

∣∣ / ∣∣E ′
b

∣∣ the trajectory always lies on one circle. A change in the
transient emfs due to AVR control will move the trajectory from circle to circle so that when power
swings are damped, the trajectory tends towards a postfault equilibrium point in the load area.

OO OO
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X X
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Figure 6.36 Example of the impedance trajectory for (a) asynchronous power swing and (b)
synchronous power swing: 1, 2, tripping zones of the distance relay; load area is shaded.
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6.6.2 Power Swing Blocking

A power swing can be detected by monitoring the speed at which the impedance locus Z(t) ap-
proaches the characteristic of the distance relay. If the fault is applied so that point F lies outside the
relay protection zone (as in Figure 6.36) then the protection zones are approached by Z(t) with a
finite speed. On the other hand, if the fault is applied so that point F lies inside one of the protection
zones shown in Figure 6.36 then the impedance locus jumps from point O to a point inside the
protection zone almost instantaneously.

Figure 6.37 illustrates the operation of a distance relay with an offset mho-type characteristic.
The PSB relay (or function) has the same type of characteristic as the distance relay and surrounds
the distance relay characteristic. A timer measures the time �t taken for the trajectory to pass
between the two characteristics. If the fault is inside the protection zone then the power swing
relay and the fault detection relay will operate practically simultaneously and a blocking command
is not generated. If the fault is outside the protection zone then, during a resulting power swing,
the trajectory will take a finite time to move between the two relay characteristics and a blocking
command is generated to hold up operation of the circuit-breaker for the time when the impedance
locus stays inside the fault detection zone. To avoid blocking of relays during remote unbalanced
faults and the dead time of single-phase auto-reclosing, the zero-sequence component of the current
is monitored. If the zero-sequence component is present, the blocking command is not generated.

The above blocking principle is also used in distance relays with other types of characteristic
such as quadrilateral, rhombus and oval. Obviously the power swing relay must have the same type
of characteristic as the distance relay.

This method of detecting power swings was widely used in electromechanical relays. Modern
digital protection is augmented by additional decision criteria. These criteria are checked by the
power swing detection (PSD) function. Additional decision criteria in PSB functions of digital
protection consist of monitoring other signals. When trajectories of the signals are smooth and
have an expected shape, the blocking command is not generated. Decision criteria in PSD are used
because measuring only the time when the measured impedance passes between the two zones is
not a reliable method. There are instances when the relay does not operate when it should and vice
versa.

One example of unnecessary activation of the blocking relay based on measuring the time of
passing between zones Z(t) alone is a high-impedance developing fault. The changes of impedance
value during the fault may be so slow that the relay activates and unnecessarily blocks the distance
protection. That would be dangerous for both the short-circuited network element and the whole
power system.

An example of an out-of-step relay, based on measuring the time of passing Z(t) alone, that does
not operate, is shown in Figure 6.38. The trajectory of the impedance is shown for a case when the
relay is placed at the beginning of line L2 while the short circuit occurs in line L1. At the instant

X

R

1

2

power swing relay

fault detector relay

tZ ( )
∆t

Figure 6.37 Power swing blocking and distance relay characteristics of the offset mho type.
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Figure 6.38 Example of the out-of step relay not operating: (a) block diagram of a simple system;
(b) example of impedance changes during synchronous swings.

of the short circuit, the trajectory jumps to point F1 in the fourth quadrant and moves during the
short circuit towards point F2. When the short circuit is cleared, the trajectory jumps to point P
which lies inside the second tripping zone. Then the trajectory moves towards point M inside the
first tripping zone. The protection activates with the tripping time of the first zone and the healthy
line L2 is unnecessarily tripped. The out-of-step relay did not operate because, following the fault
clearing, the trajectory did not move outside characteristic B. Hence there was no passing between
characteristics B and F which is essential for operation of the relay. Thus augmenting the principle
of operation by other decision criteria is clearly necessary.

A description of a number of reasons for unnecessary blocking of distance protection and its
unwanted operation is given, for example, by Troskie and de Villiers (2004).

6.6.3 Pole-Slip Protection of Synchronous Generator

The purpose of this protection is to detect the loss of synchronism of a synchronous generator. The
measurement points for the relay are the generator terminals as shown in Figure 6.39. The impedance
Za to the left of the measurement point corresponds to the generator transient reactance Za

∼= jX′
d.

The impedance Zb to the right of the measurement point consists of the step-up transformer
impedance ZT and the system equivalent impedance ZS. The whole transmission system can be
divided into two zones. Zone 1 consists of the generator and the step-up transformer while zone 2
is the rest of the system. At completion of the first half of an asynchronous rotation, that is when
δ′ = 180◦, the equivalent voltages oppose each other so that the voltage at a certain point of the
transmission link must be equal to zero. That point is referred to as the centre of power swing or
simply the electrical centre. Depending on how big the equivalent system impedance ZS is for a
given value of Za and ZT, the centre of power swing may be inside zone 1 or 2. In Figure 6.39, the
centre is inside zone 1 and inside the impedance of the step-up transformer. Equation (6.70) shows
that when δ′ = 180◦ the apparent impedance seen by the relay is proportional to the difference
between the equivalent impedances, that is

Z (δ′ = 180◦) = Za − kZb

−k − 1
= kZb − Za

k + 1
. (6.73)

Because k is real, this equation shows that at δ′ = 180◦ the trajectory Z(t) intersects the line crossing
points A and B in Figure 6.39. This means that an asynchronous rotation can be identified by a
relay with an impedance characteristic that surrounds line AB based on (−Za) and Zb respectively.
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Figure 6.39 Pole-slip protection of synchronous generator: (a) block diagram; (b) equivalent cir-
cuit; (c) illustration of the centre of power swing.

Three such characteristics are shown in Figure 6.40. The first type (Figure 6.40a) has an offset
mho characteristic 3 with the left and right parts cut off by two directional relays 1 and 2. The
second type (Figure 6.40b) has a symmetrical lenticular characteristic and is obtained by using two
impedance relays with offset mho characteristics shown by the dashed circles 1 and 2. The third
type (Figure 6.40c) has an asymmetrical lenticular characteristic.

PSP usually has an additional impedance characteristic that divides Z(t) into two zones as shown
by line 4 in Figure 6.40. The relay identifies an asynchronous rotation if the impedance locus
passes completely through the relay characteristic. If the impedance locus Z(t) passes through
the impedance characteristic below line 4, it means that the centre of power swing (Figure 6.39) is
inside zone 1. In that case the generator should be disconnected right after the impedance Z(t) leaves
the impedance characteristic, that is during the first asynchronous rotation. On the other hand, if
the impedance locus Z(t) passes through the impedance characteristic above line 4, it means that the
centre of power swings (Figure 6.39) is inside zone 2, that is inside the transmission network. In that
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Figure 6.40 Three types of pole-slip protection characteristics: (a) offset mho type; (b) symmetrical
lenticular type; (c) asymmetrical lenticular type.
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case the generator may be disconnected after 2–4 asynchronous rotations. Such a delay is introduced
in order to give a chance of operation for the OST relays installed in the transmission network and
splitting the network into islands (as described in the next section). The delay is acceptable only if the
generator can withhold a thermal and dynamic overload caused by a set number of asynchronous
rotations. If there are no OST relays in the network, then there is no reason for the delay and the
generator may be tripped after one asynchronous rotation independently of where the centre of
power swing is.

The way that a generator is tripped depends on the configuration of the unit described in Section
2.2. For generating units containing a step-up transformer, the generator is tripped by opening
its main circuit-breaker on the high-voltage side (Figure 2.2). The turbine is not disconnected but
reduces its power output to the level necessary to supply the unit’s auxiliary services. This makes it
possible to resynchronize the generator quickly with the system.

6.6.4 Out-of-Step Tripping in a Network

It has already been mentioned that, during an asynchronous rotation, the impedance Z(t) measured
by the distance protection of transmission lines close to the centre of power swing may encroach
into the tripping zone of the distance protection. If PSB relays (or functions) are not used, a number
of transmission lines may be tripped leading to a random network splitting into unbalanced zones.
Generators in islands with a large surplus of generation will be disconnected by overfrequency
protection while load shedding will be activated in islands with a large deficit of generation. These
problems will be discussed in Chapter 9.

To prevent a random network splitting during asynchronous operation, it is necessary to use the
earlier described PSB of distance protection in the network and PSP of generators. Additionally,
OST relays (or functions) may be installed at locations selected for controlled network splitting in
order to trip selected transmission lines once asynchronous operation has been detected. The lines
are selected according to the following criteria:

1. The lines must be so close to the centre of power swings that the impedance loci encroach into
the tripping zone of distance protection of those lines. Otherwise, the relays will not be able to
issue tripping commands.

2. After the network has been split, the islands must have roughly balanced generation and demand.
Otherwise, generators may be tripped or load shedding activated.

3. Islands have to be internally stable, that is further splitting should not occur.

Obviously it is not easy to find places in a meshed network that would satisfy all those conditions
and at the same time ensure that the controlled network splitting would be satisfactory for all
possible locations of short circuits leading to asynchronous operation. Hence controlled splitting in
real systems is often restricted to tie-lines which naturally divide the network into strongly connected
islands. An example of such structures is shown in Figure 6.41.

The network shown in Figure 6.41a has a longitudinal structure and consists of two weakly
connected subsystems. Any disturbance leading to the loss of synchronism will lead to a natural
split of the network into two subsystems operating asynchronously. Clearly the best place for placing
OST is in the distance protection of the tie-lines. Once an asynchronous rotation has been identified,
the relays will open circuit-breakers in the lines splitting the network into two subsystems.

The second network shown in Figure 6.41b consists of a number of internally well-meshed sub-
systems connected by relatively weak tie-lines. This situation is typical of an interconnected system.
Weakness of connections may lead to asynchronous rotations in tie-lines following a disturbance.
Relays installed in the tie-lines will separate the subsystems after a set number of asynchronous
rotations. In both cases shown in Figure 6.41, automatic generation control (Chapter 9) supported
by automatic load shedding should lead to balancing of generation and demand in each subsystem.
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(a) (b)

Figure 6.41 Network structures naturally amenable to splitting: (a) longitudinal system; (b) weakly
connected subsystems.

Resynchronization must be preceded by matching frequencies in the subsystems and a check on
synchronization.

It is important to appreciate that there is no natural way of splitting a tightly meshed network.
Splitting such a network into islands usually leads to worsening stability conditions of generators
operating inside separate islands and further splitting which may lead eventually to a total blackout.
Hence it is not recommended to install OST relays (or functions) in tightly meshed transmission
networks. Unfortunately some authors suggest that OST may be more widely used and that it is
better to split the network into islands than trip generators. This view is valid only with respect
to the weakly connected structures shown in Figure 6.41. In tightly meshed networks, keeping
the network connected is most important and worth the sacrifice of tripping some generators.
When the network is still connected, generators can be easily resynchronized and the power supply
restored. On the other hand, when a tightly meshed large network has been split, reconnection
is difficult and may take hours, requiring complicated action from system operators. Often some
lines may be difficult to connect due to very large differences in voltages or angles in neighbouring
subsystems.

Splitting a network into islands in predetermined places is achieved by the OST relay or, in newer
digital solutions, the OST function added to distance relays. Figure 6.42 shows the impedance
characteristic of such a function. To differentiate between power swings and short circuits, two
polygon-shaped characteristics are used, the external and internal ones, denoted by 1 and 2 respec-
tively in Figure 6.42. A short circuit is detected when the trajectory crosses one of the polygonal
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3
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B

Figure 6.42 Characteristic of out-of-step tripping function.
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areas in a time shorter than a set one. If the crossing time is longer than the set one, the impedance
change is deemed to be due to power swings.

Detected power swings are deemed to be asynchronous if the impedance trajectory enters one
side of the polygon, crosses line AB (corresponding to the angle δ′ = 180◦) and then leaves on the
other side of the polygon. The protection divides the area of reach into close and remote ones,
just as in PSP. This is achieved by two lines dividing the internal area into two areas denoted by
3 and 4, respectively. If the trajectory crosses area 3, the power swing is deemed to be close. If the
trajectory crosses line 4, the swing is deemed to be remote. Each of the areas has its own counter of
asynchronous rotations. Tripping of the lines is activated only when the number of identified cycles
in a given area reaches a set value.

6.6.5 Example of a Blackout

There have been many papers and reports published describing actual power system disturbances
when the lack, or maloperation, of PSB of distance protection caused unwanted line tripping. Most
of the cases ended up with an alert state and a return to the normal state (see Section 1.5). There
were cases, however, when a power system moved from a normal state to an emergency state or
even in extremis ended up with a partial or total blackout. Troskie and de Villiers (2004) describe
an interesting case of a blackout caused by out-of-step relaying that happened in ESCOM (South
Africa).

On 14 September 2001 heavy snowfall in the Drakensberg area resulted in overhead line failures
followed by a trip command from zone 3 of the distance protection. This caused a deep power
swing in the network. There was no unified concept of using an out-of-step protection system.
Some relays had blockades only for tripping zone 1 and others only for tripping zone 2 or 3. The
lack of a unified concept and inefficient PSB functionality resulted in more lines tripping and finally
a loss of the entire network. Detailed post-mortem analysis and simulation have shown the need to
modify the out-of-step protection system and for more careful selection of the settings.

6.7 Torsional Oscillations in the Drive Shaft

In this section the effect that system faults can have on the torques in the shafts and couplings
connecting each turbine stage, the turbine to the generator and the generator to the exciter is
discussed. In the previous sections of this chapter these shafts and couplings, shown in Figure 5.1,
were assumed to be very stiff when the total drive system moves as a rigid body and can be
represented by a single inertia. In practice the drive shafts and couplings have a finite stiffness so
that each turbine mass will be slightly displaced relative to the others. Consequently, any change in
the external torque on any of the rotor components initiates a movement of the equivalent mass. The
shaft connecting this element to its neighbours twists slightly and the resulting torsion transmits
torque to the neighbouring element(s). This process is repeated down the shaft creating torsional
oscillations in the shaft. These torsional oscillations are superimposed on the external torque which
may either increase or reduce the torque in the shaft sections, depending on the direction of twist
and the phase and frequency of the changes in the external torque, so that under certain conditions
the shaft torques can become very large. Such large shaft torques can result in a reduction in the
shaft fatigue life and possibly shaft failure. It is therefore important to understand the mechanisms
leading to these high shaft torques and in what situations they might arise.

6.7.1 The Torsional Natural Frequencies of the Turbine–Generator Rotor

As the turbine–generator rotor can be considered as a number of discrete masses connected together
by springs a lumped-mass model of the rotor can be developed in order to calculate the natural
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Figure 6.43 Torques acting on mass l; τ l is the applied torque, τl,l−1 and τl,l+1 are the shaft torques,
δml the displacement of the mass and Jl the inertia.

frequencies of the rotor system. At each of these natural frequencies the rotor system will vibrate
in a particular way defined by the mode shape.

Figure 6.43 shows the torques acting on each rotor mass when applying Newton’s second law
gives the equation of motion for the general mass l as

Jl
d2δml

dt2
= τl + τl,l+1 − τl,l−1, (6.74)

where Jl is its moment of inertia, τ l is the external applied torque to mass l and τl,l+1 and τl,l−1 are
the torques in the two shafts (l, l + 1) and (l, l − 1). These shaft torques are respectively

τl,l+1(t) = kl,l+1 (δml+1 − δml ) + Dl,l+1

(
dδml+1

dt
− dδml

dt

)
, (6.75)

τl,l−1 (t) = kl,l−1 (δml − δml−1) + Dl,l−1

(
dδml

dt
− dδml−1

dt

)
, (6.76)

where kl,l−1 is the stiffness of the shaft section between masses l and l − 1, δml is the angle of the lth
mass in mechanical radians and Dl,l−1 is the shaft damping coefficient. The shaft damping is due
to the energy lost in the shaft as it oscillates and goes through a stress/strain hysteresis cycle. The
above two equations can now be substituted into Equation (6.74) to give the equation of motion

Jl
d2δml

dt2
= τl (t) − kl,l−1 (δml − δml−1) − kl,l+1 (δml − δml+1)

(6.77)

− Dl,l+1

(
dδml

dt
− dδml+1

dt

)
− Dl,l−1

(
dδml

dt
− dδml−1

dt

)
− Dl,l

dδml

dt
.

In this equation Dl,l is an additional damping term used to represent the damping effect arising at
each turbine stage due to the flow of steam through the turbine. Generally both the shaft damping
and the steam damping mechanisms are small. Equation (6.77) is in SI units but a per-unit version
can be obtained by following a similar procedure as in Section 5.1.1

Now consider a simple turbine–generator rotor consisting of three turbine stages and a generator
as shown in Figure 6.44. A static exciter is assumed to act with this system so that no rotational

1 In per-unit form J becomes 2H/ωs while τ and k are expressed in per units obtained by dividing the SI
values by

Tbase = Sbase

ωsm
= Sbase

ωs

p2

4
and kbase = Tbase

p
2

= Sbase

ωs

p2

4

respectively. δl is now expressed in electrical radians.
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Figure 6.44 Four-mass turbine–generator rotor model.

mass is required to represent this component. Applying Equation (6.77) to each rotor mass in turn
gives a set of four second-order differential equations

J1
dδ2

m1

dt2
= τ1 − k12(δm1 − δm2) − D12

(
dδm1

dt
− dδm2

dt

)
− D11

dδm1

dt

J2
dδ2

m2

dt2
= τ2 − k12(δm2 − δm1) − k23(δm2 − δm3) − D12

(
dδm2

dt
− dδm1

dt

)
− D23

(
dδm2

dt
− dδm3

dt

)

− D22
dδm2

dt

J3
dδ2

m3

dt2
= τ3 − k23(δm3 − δm2) − k34(δm3 − δm4) − D23

(
dδm3

dt
− dδm2

dt

)
− D34

(
dδm3

dt
− dδm4

dt

)

− D33
dδm3

dt

J4
dδ2

m4

dt2
= τ4 − k34(δm4 − δm3) − D34

(
dδm4

dt
− dδm3

dt

)
− D44

dδm4

dt
. (6.78)

This set of second-order equations is then written as a series of eight first-order equations by noting
that for mass I ,

dδmi

dt
= ωmi − ωsm = �ωmi ,

d2δmi

dt2
= d�ωmi

dt
. (6.79)

Using this substitution, and taking mass l as an example, gives

J1
d�ωm1

dt
= τ1 − k12(δm1 − δm2) − D11�ωm1 − D12(�ωm1 − �ωm2)

(6.80)
dδm1

dt
= �ωm1.

By considering small perturbations and defining a set of state variables x so that

x1 = �δm1, x2 = �δm2, x3 = �δm3, x4 = �δm4 and x5 = �ωm1, x6 = �ωm2, x7 = �ωm3,

x8 = �ωm4,

substituting into Equations (6.80) gives a linearized matrix equation of the form

ẋ = Ax + Bu, (6.81)

where A is called the plant or state matrix, B the driving matrix, x a vector of state variables and u a
vector of inputs, in this case the change in the external torque �τ applied to each mass. A general
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solution of the state equation (6.82) will be discussed in Chapter 12 and Appendix A.3. The plant
matrix is given by

A =
[

0 1
K D

]
, (6.82)

where 0 is a null matrix, 1 the identity matrix, K the stiffness matrix and D the damping matrix. For
the four-mass problem being considered these matrices are

K =




−k12

J1

k12

J1

k12

J2

−k12 − k23

J2

k23

J2

k23

J3

−k23 − k34

J3

k34

J3

k34

J4

−k34

J4




, (6.83)

D =




−D12 − D11

J1

D12

J1

D12

J2

−D12 − D23 − D22

J2

D23

J2

D23

J3

−D23 − D34 − D33

J3

D34

J3

D34

J4

−D34 − D44

J4




, (6.84)

while the driving matrix B = [
0 J−1 ]T

, where J−1 is simply a (4 × 4) diagonal matrix with entries
1/J1, 1/J2, 1/J3 and 1/J4. The structure of all these matrices is very clear, allowing more inertia
elements to be easily added if required.

The rotor natural frequencies are found from Equation (6.81) by assuming that there is no change
in the applied torque when the input vector u = 0 gives

ẋ = Ax. (6.85)

Section 12.1 will show that the solution of this equation is of the form

xk(t) =
n∑

i=1

wki eλi t
n∑

j=1

ui j xj0, (6.86)

where λi is the eigenvalue of matrix A, wki and uij are the elements of a matrix made up of eigenvectors
of matrix A, and xj0 is the initial condition of state variable xj (t).

The eigenvalues λi correspond to the rotor natural frequencies. As the damping is small the
system will be underdamped and complex conjugate pairs of eigenvalues will be returned of the
form

λi,i+1 = −ζi �nati ± j�i , (6.87)

where ζ i is the damping ratio associated with the particular oscillation mode, �i is its damped
natural frequency of oscillations (in rad/s) and �nat i is its undamped natural frequency (in rad/s).
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The damped, and the undamped, natural frequencies are related by the standard expression � =
�nat

√
1 − ζ 2.

To obtain the mode shapes (see Section 12.1) all the damping coefficients are set to zero when
the eigenvalues are purely imaginary and give the undamped natural frequencies. The eigenvector
corresponding to each of these undamped natural frequencies is now real and defines how the
different rotor masses will be displaced relative to each other if excited at this particular frequency.
This is the mode shape and either the elements of the eigenvector associated with the speed deviation
or the angle deviation can be used. It is also normal practice to normalize the eigenvectors so that
the maximum displacement is set to unity.

The sensitivity of any particular shaft to a harmonic forcing torque on the generator can also be
found via Equation (6.81) by defining an output equation

y = Cx, (6.88)

where y is the output required, in this case the torque in a particular shaft or shafts, with the
elements of the output matrix C following directly from Equations (6.75) or (6.76). If all the forcing
torques are set to zero, except the generator torque which is assumed to be sinusoidal, the transfer
function relating the shaft torque y to the input u can be found by substituting Equation (6.88) into
(6.81) to give the standard transfer function matrix equation

G(s) = C(s1 − A)−1 B, (6.89)

where B now simply becomes [0 0 0 0 0 1/J1 0 0 0] and G11(s) = y1/u, G12(s) = y2/u
and so on. The inertia entry in B is that of the generator so that its position in the matrix will
depend on which mass represents the generator.

The evaluation of the frequency response associated with Equation (6.89) is best achieved using
some standard software package such as MATLAB (Hicklin and Grace, 1992) when the matrices
A, B, C and D need only be defined and standard subroutines used to do the rest of the work.

Example 6.2

The shaft configuration for a 577 MVA, 3000 rpm thermal power plant is shown in Figure 6.45
with the parameters detailed in Table 6.2.

The plant matrix, Equation (6.82), is formed using the submatrices defined in Equations (6.83)
and (6.84) and the eigenvectors and eigenvalues found using standard MATLAB routines. Figure
6.45 shows the undamped natural frequencies and mode shapes. As in standard practice, all the
mode shapes have been normalized with the maximum deflection set to 1.0. Mode 0 represents
free-body rotation and, when the generator is connected to the system, the frequency of this
mode would increase and become the rotor frequency of oscillations. This can easily be shown
by connecting the generator to the infinite system through an ‘electromagnetic spring’ of stiffness
KE′ where KE′ is the transient synchronizing power coefficient. This concept was introduced in
Section 5.4. As the value of KE′ depends on the system loading condition, a figure of KE′ = 2.0 pu
has been assumed. This ‘electromagnetic spring’ will replace the change in generator torque. As
�τ2 = −KE′�δ2, KE′ must now be included in the stiffness matrix so that element K[2, 2] becomes
K[2, 2] = −(k12 + k23 + KE′ )/J2. The eigenvalues now give the rotor frequency of oscillations as
1.14 Hz but the rotor system continues to rotate as a rigid body as shown by the mode shape at
the bottom of Figure 6.45.

Following the mode shapes through for each individual shaft indicates some degree of move-
ment in the generator–exciter shaft at all the natural frequencies. In mode 1, at 5.6 Hz, the turbine
and the generator components remain stationary and the exciter moves relative to them. Mode 4
shows a large amount of movement in the HP–LP1 shaft while the LP3–generator shaft displays
movement in all modes except mode 1.
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Figure 6.45 The 577 MVA, 3000 rpm, turbine–generator torsional natural frequencies and as-
sociated mode shapes.

Table 6.2 The 577 MVA, 3000 rpm, turbine–generator parameters (Ahlgren, Johansson and
Gadhammar, 1978)

Node Hi (s) kij (pu torque/rad) Dii (pu torque/rad/s) Dij (pu torque/rad/s)

1 0.09 — 0.0 —
1–2 — 0.7 — 0.000 07
2 0.74 — 0.0 —
2–3 — 110 — 0.001
3 1.63 — 0.001 —
3–4 — 95 — 0.001
4 1.63 — 0.001 —
4–5 — 87 0 0.001
5 1.63 — 0.001 —
5–6 — 40 — 0.001
6 0.208 — 0.001 —

To study further the frequency sensitivity of the generator–exciter shaft and the LP3–generator
shaft, the frequency response of these two shafts to a sinusoidal generator torque is shown in
Figure 6.46. To obtain this frequency response the B and C matrices are defined as

B =
[

0, 0, 0, 0, 0, 0, 0,
1
J2

, 0, 0, 0, 0
]

C =
[ −k12 k12

0 −k23

0 0
k23 0

0 0
0 0

−D12 D12

0 −D23

0 0
D23 0

0 0
0 0

]
.
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Figure 6.46 Frequency sensitivity of the LP3–generator and the generator–exciter drive shafts
for the 577 MVA, 3000 rpm generator.

As expected the generator–exciter shaft is sensitive to all five modes but the torque is somewhat
less than that in the LP3–generator shaft which is particularly sensitive to frequencies around
31.7 Hz but is insensitive to the mode 1 type of oscillation. The distinct nature of these curves is
due to the low degree of damping present in the system. Additional damping would reduce the
peak values of these curves but unfortunately is not usually available, although a small amount
of additional damping may be introduced by the electrical system.

Note that the natural frequencies are substantially removed from 50 and 100 Hz so that the
periodic changes in external torque at fundamental or double frequency which occurs under fault
conditions (Chapter 4) induce a relatively low value of shaft torque.

Such eigenvalue techniques can readily be extended to include details of the power system and
are invaluable when conducting full system stability studies or when assessing the feasibility of
new generator designs (Bumby, 1982; Bumby and Wilson, 1983; Westlake, Bumby and Spooner,
1996).

6.7.2 Effect of System Faults

When a system fault occurs, the highest shaft torque is usually in the main shaft connecting the
generator and the turbine because the applied torque on these two rotor components is in opposing
directions. The shaft between the last two turbine stages, the LP and the IP sections shown in
Figure 5.1, can also experience high torques. Figure 6.47a–c shows typical changes in the shaft
torque which may occur in the LP–generator shaft (denoted as I in Figure 5.1) when a generator
is subjected to three different electromagnetic torques: a step change, a 50 Hz variation and a
100 Hz variation. The highest momentary values of shaft torque occur when the rotor is subject
to an aperiodic external torque and are due to the oscillatory shaft torque being reinforced by
the external torque on each backswing of the rotor masses. As a result the shaft torque oscillates
around the average value of the external torque at a frequency determined by the different torsional
natural frequencies. In this example a frequency response similar to that in Figure 6.46 showed
the LP–generator shaft to be particularly sensitive to 12 and 24 Hz oscillations and these two
frequencies can be observed to dominate the time response.

The above considerations lead to the conclusion that the highest shaft torque corresponds to
an electromagnetic torque with a high aperiodic component which, as was shown in the previous
sections, appears either after synchronization of a generator when the synchronizing angle is high,
or after clearing a fault in the network. Figure 6.48 shows examples of the torque in the main
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Figure 6.47 Examples of the changes in the torque in the main coupler due to: (a) aperiodic com-
ponent of the electromagnetic torque; (b) fundamental-frequency component; (c) double-frequency
component. Based on Bölderl, Kulig and Lambrecht (1975).

Source: VDE Verlag Gmbh

coupler I during a phase-to-phase short circuit on the generator terminals, after synchronization at
a large angle and after clearing a three-phase short circuit in the network.

It is interesting to compare the last two cases. The average value of the shaft torque shown by the
dashed line is the same in both cases, but the maximum value is much higher in case (c). This is a
direct result of the shaft already being twisted when the fault is cleared, this twist being such that the
aperiodic electromagnetic torque appearing on fault clearance reinforces the twist. The influence
of the degree of shaft twist on the shaft torque, after the fault is cleared, is shown in Figure 6.49
where it can seen that, when the shaft torque has a negative value at the instant of clearing, the
resulting shaft torque is substantially increased. This effect may be compounded by unsuccessful
auto-reclosing.

The example shown in Figure 6.48a corresponded to a phase-to-phase short circuit on the gen-
erator terminals applied when the generator torque loading was high. However, the corresponding
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Figure 6.48 Torque acting on the main coupler for the case of: (a) phase-to-phase short circuit on
the generator terminals; (b) synchronization when δ = 2π/3; (c) fault in the network cleared after
0.187 s. Based on Läge and Lambrecht (1974).

Source: VDE Verlag Gmbh
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Figure 6.49 Influence of the initial shaft twist on the shaft torque when the fault is cleared after
1 : t2 = 80 ms, 2 : t2 = 110 ms, 3 : t2 = 187 ms, 4 : t2 = 213 ms. Based on Kulicke and Webs (1975).

Source: VDE Verlag Gmbh

torque in the main coupler is much smaller than that occurring after clearing a three-phase system
fault, Figure 6.48c. This is characteristic of big machines, whereas in medium- and low-power
machines the highest shaft torques generally accompany faults on the generator terminals. An
approximate relationship between the maximum torque in the main coupler and the clearing time
is shown in Figure 6.50. The greater susceptibility of large machines to short circuits in the network
is primarily due to the lower per-unit impedance of the generator transformer associated with these
large machines so that its influence in the transfer reactance is less than for smaller rated generators.
Also the per-unit rotor inertia decreases as unit rating increases so that with large units even short
clearing times may result in a relatively large angle increase and a high value of aperiodic torque
when the fault is cleared.

6.7.3 Subsynchronous Resonance

Section 4.2 explained how, when a fault occurs in a power system, large currents are produced that
consist of a DC offset and an AC term. The AC term depends on the type of fault and, in the case of a
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Figure 6.50 Approximate relationship between the maximum torque in the main coupler and
the clearing time when the rating of the generator is: 1 : S 
 500 MVA; 2 : S < 500 MVA; 3 : S <

300 MVA. The value of τ I is relative to the value of torque accompanying a phase-to-phase fault
on the generator terminals. Based on Bölderl, Kulig and Lambrecht (1975).

Source: VDE Verlag Gmbh
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Figure 6.51 Series-compensated transmission line: (a) schematic diagram; (b) simple equivalent
circuit to calculate the form of the current when shorting the line.

symmetrical fault, will consist of a positive-sequence component, while with unsymmetrical faults
both positive-sequence and negative-sequence components will be present. Due to the relative
speed of the rotor with respect to the stator, and the space distribution of the stator armature
windings, these different current components produce rotor torques at f s, 0 and 2f s Hz respectively.
Such observations assume that the transmission system is purely inductive and no capacitance
compensation is present in the system. Such a system is often referred to as uncompensated.

If now the transmission line reactance is compensated by a series capacitor SC as shown in Figure
6.51a, then, depending on the relative magnitude of the total circuit resistance R, inductance L and
capacitance C, the transient component of any current may now be an oscillation at a frequency
f d that decays slowly with time. This oscillation frequency is closely related to the undamped
natural frequency of the line, fn = 1/2π

√
LC Hz. Such oscillations produce rotor currents and

torques at a frequency ( fs − fn) which, if close to one of the rotor torsional natural frequencies,
can produce very high shaft torques and ultimate shaft failure. The frequency ( fs − fn) is known as
the frequency complement of the line natural frequency f n as both these frequencies sum to f s, the
system frequency.

The way that such a damped oscillatory current is produced can be understood by considering
the equivalent circuit in Figure 6.51b and calculating the current when the switch S is suddenly
closed. The differential equation governing the flow of current is

L
di
dt

+ Ri + 1
C

∫
i dt = Em sin(ωst + θ0). (6.90)

Differentiating gives

d2i
dt2

+ R
L

di
dt

+ 1
LC

i = ωEm cos(ωst + θ0), (6.91)

the solution of which is of the form

i (t) = itrans(t) + Em

Z
sin(ωst + θ0 + ψ), (6.92)

where Z = √
R2 + (XL − XC)2, XL = ωs L, XC = 1/(ωsC), ψ = arctan [(XC − XL)/R]. The left

hand side of Equation (6.91) is of the standard second-order form (see Appendix A.3)

d2x
dt2

+ 2ζ�n
dx
dt

+ �2
n = 0, (6.93)

the solution of which determines the form of transient current. Equation (6.93) will have a different
type of solution depending on the value of the damping ratio ζ . Of particular interest is the
underdamped solution obtained when 0 < ζ < 1, which is of the form

itrans(t) = Ae−ζ �n sin(�t + ψ2), (6.94)
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Table 6.3 Line natural frequency as a function of the degree of compensation

Degree of compensation Line natural frequency Frequency complement
XC/XL fn = �n/2π (Hz) (50 − fn) (Hz)

0.1 15.8 34.2
0.2 22.4 27.6
0.3 27.4 22.6
0.4 31.6 18.4
0.5 35.4 14.6

where A and ψ2 are constants and the damped natural frequency � = �n

√
1 − ζ 2 (in rad/s). The

undamped natural frequency �n (in rad/s) and the damping ratio, ζ , can be found in terms of the
circuit parameters by comparing Equation (6.93) with the left hand side of Equation (6.91) to give

�n =
√

1
LC

= ωs

√
XC

XL
and ζ = R

2

√
C
L

. (6.95)

Substituting Equation (6.94) into (6.93) gives the total current for the underdamped condition
as

i (t) = Ae−ζ�n sin(�t + ψ2) + Em

Z
sin(ωst + θ0 + ψ). (6.96)

With currents flowing in each armature phase at frequencies � and ωs, torques are induced in
the rotor at the sum and difference of these frequencies to produce rotor currents and torques
at frequencies below (subsynchronous) and above (supersynchronous) system frequency given by
(ωs − �) and (ωs + �) respectively. Of particular importance are the subsynchronous torques and
the way in which they interact with the turbine and generator rotor. If any subsynchronous torques
appear on the rotor at, or near to, any of the rotor torsional natural frequencies, additional energy
can be fed into the mechanical vibrations producing a resonance effect in the mechanical system and
large shaft torques. Such large shaft torques produce high shaft stresses, a reduction in shaft fatigue
life and, possibly, shaft failure. To avoid such subsynchronous resonance effects it is important
to ensure that no subsynchronous torques are present at, or near to, any of the shaft torsional
natural frequencies. Typically these torsional natural frequencies will be in the range 10–40 Hz for
a 3000 rpm, 50 Hz generator.

For the simple system shown in Figure 6.51a the subsynchronous frequencies can be estimated
using �n = ωs

√
XC/XL, Equation (6.95), assuming that the degree of compensation employed is

known. The results of such a calculation are shown in Table 6.3 for a 50 Hz system. Assuming the
generator used in Example 6.2 to be operating in a simple system such as that shown in Figure 6.51
with ∼30 % compensation, the results of Table 6.3 would suggest that subsynchronous resonance
with the 23.3 Hz, mode 3, torsional natural frequency might be a problem.

A fuller analysis of subsynchronous resonance problems that includes all the system damping
mechanisms would require the use of a full system eigenvalue study such as that conducted by
Ahlgren, Johansson and Gadhammar (1978). This and other techniques can be used to study more
practical, interconnected, power systems where a number of subsynchronous resonant frequencies
may be present (Anderson, Agrawal and Van Ness, 1990).
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7
Wind Power

The previous two chapters discussed the problems of steady-state stability (Chapter 5) and transient
stability (Chapter 6) and were concerned mostly with system operation of synchronous generators
driven by steam or hydro turbines. However, environmental pressures discussed in Chapter 2 have
caused many countries to set ambitious targets of renewable generation often exceeding 20 % of
energy production. Currently wind energy is the dominant renewable energy source and wind
generators usually use induction, rather than synchronous, machines. As a significant penetration
of such generation will change the system dynamics, this chapter is devoted to a discussion of the
induction generator and its influence on power system operation.

7.1 Wind Turbines

The power in the wind can be extracted using a wind turbine. Wind turbines can either rotate
about a horizontal axis, horizontal axis wind turbines (HAWTs), or a vertical axis, vertical axis
wind turbines (VAWTs). General practice is to use horizontal axis wind turbines with three blades.
Although any number of blades can be used, if too many are used they tend to interfere with each
other aerodynamically, while using only two blades tends to lead to large power pulsations as the
blades pass by the tower; three blades reduce these power pulsations and are also generally deemed
aesthetically more pleasing. Three-bladed HAWTs are therefore generally favoured. Modern wind
turbines extract energy from the wind by using aerodynamic blades that produce a lift force along
the length of the blade. This aerodynamic force integrated along the length of the blade produces
the torque on the turbine shaft. The tip speed of the turbine is limited to typically 80–100 m/s
so that as turbines get bigger their rotational speed reduces such that large multi-megawatt turbines
rotate slowly at about 15–20 rpm.

Although a number of generator drive arrangements can be used, described later in this section,
generally the wind turbine drives a generator through a gearbox that steps up the speed from about
20 rpm at the turbine shaft to 1500 rpm at the generator. The generator is then connected through a
transformer to the main electricity supply. The generator and gearbox, along with other associated
equipment, are placed at the top of the turbine tower in a nacelle. The layout of a typical turbine
is shown in Figure 7.1. Besides the generation system other subsystems are required that will turn
the turbine into the wind, the yaw system, and provide braking. On the turbine side of the gearbox,
power is delivered at low speed and very high torque so that a large-diameter drive shaft is necessary.
On the generator side the power is delivered at relatively high speed and low torque so that a thinner
shaft can be used. Typically the generator will operate at 690 V and the transformer will be placed

Power System Dynamics: Stability and Control, Second Edition Jan Machowski, Janusz W. Bialek and James R. Bumby
C© 2008 John Wiley & Sons, Ltd
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Figure 7.1 Typical arrangement for a wind turbine: G/B, gearbox; Gen, generator; T, transformer.

at the bottom of the tower or in a separate building close to the turbine. It is only in offshore wind
turbines that the transformer will be located in the nacelle.

The power in the wind varies as the cube of wind speed, but unfortunately the wind turbine can
only extract a fraction of this given by

P = 1
2
ρ Acpv3

w W, (7.1)

where ρ is the density of air, A the turbine swept area, vw the wind speed and cp the coefficient of
performance of the turbine. If the turbine were to extract all the kinetic energy from the wind this
would mean that the wind velocity behind the turbine was zero. This is not possible as the air flow
must be continuous so that the theoretical maximum energy that can be extracted is with cp = 0.599
and is termed the Betz limit. In practice the coefficient of performance is less than this and also
varies with the tip speed ratio λ as shown in Figure 7.2. The tip speed ratio λ is a non-dimensionless
quantity defined as the ratio of the rotor tip speed to the wind speed vw, that is

λ = ωTr
vw

, (7.2)

where ωT is the rotor rotational speed and r is the rotor radius.
The cp/λ curve is unique to a particular design of wind turbine and to extract maximum power

the turbine must be operated at the peak of this curve; referred to as peak power tracking. For any

cp

0.42

8 λ

Figure 7.2 Typical cp/λ curve for a wind turbine.
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Figure 7.3 Turbine power (a) as a function of shaft speed (b) as a function of wind speed: vw1,
cut-in wind speed; vwr, rated wind speed, vw2, shutdown wind speed.

given wind speed, Equations (7.1) and (7.2) and the cp/λ characteristic can be used to calculate the
turbine power as a function of shaft speed as shown in Figure 7.3a.

For a given cp the turbine power as a function of wind speed can be calculated from Equation
(7.1) and is shown schematically in Figure 7.3b. At very low wind speeds the power is very small
and the turbine will not operate until the wind speed is above the cut-in speed, typically about
3–4 m/s. Above this speed the turbine will produce increasing levels of power until rated wind speed
is reached when the power is limited to its rated value. The power now remains constant until the
wind speed reaches the shutdown or furling wind speed, typically 25 m/s, when the turbine is shut
down and turned out of the wind to prevent damage. Turbines are designed to survive to winds of
about 50 m/s, referred to as the survival wind speed.

As the power increases as the cube of wind speed, at high wind speeds the power can be very
large and must be curtailed in some way to prevent damage to the turbine and power conversion
equipment. Turbines are generally rated for a wind speed of 12.5 m/s and above this the power is
limited in some way to the rated power to give the typical power output curve of Figure 7.3. At
these high wind speeds the power content may be large but the number of hours that this occurs per
year is small, so the energy content is small compared with the energy available in the mid-speed
range. This effect is well represented in Figure 7.4 for a site with a mean annual wind speed (MAWS)
of 7 m/s. This figure shows the number of hours per year that winds of a certain speed occur; it also
shows the energy content associated with these winds in 1 m/s ‘bins’. The data are for a turbine
of 60 m diameter and show the total energy available at each wind speed and the energy extracted
when the power output is limited to the rated value above rated wind speed.

The diameter and rotational speed of a wind turbine are readily calculated for a range of turbine
ratings using Equations (7.1) and (7.2) as shown in Table 7.1. The rated wind speed is assumed to

Table 7.1 Diameter and operating speed of wind turbines in a 12.5 m/s wind

Power P (kWe) Area A (m2) cp λ Diameter 2r (m) Rotational speed ωT (rpm)

1 2.5 0.3 4.5 1.8 629
10 24.8 0.3 4.5 5.6 199

100 247.7 0.3 5 17.8 70
500 1 238.5 0.3 6 39.7 38

1000 2 477.1 0.3 6 56.2 27
2000 4 954.2 0.3 7 79.4 22
5000 12 385.5 0.3 8 125.6 16
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Figure 7.4 Annual energy production by a turbine of 60 m diameter in MAWS of 7 m/s.

be 12.5 m/s. Although a typical cp value for a large wind turbine is about 0.42, the values used here
have been reduced to account for losses in the electrical system so that the power output is electrical
power output.

These turbines must be supported on a tower where the height of the nacelle is typically about
the same as the blade diameter, but often the actual height of the tower used depends on location
and is a manufacturing option.

The energy data in Figure 7.4 show how the energy capture is distributed through the range of
wind speeds. Although the data on wind speed distribution are often measured, a good estimate
of the distribution can be generated from knowledge of the MAWS at the site using the Weibull
distribution

F(v) = exp
[
−

( v
c

)m]
. (7.3)

This equation gives the probability that the wind speed vw is greater than v. In this equation m is
the shape factor and c is the scaling factor and depends on the MAWS.

Shape factor varies with location, but for flat terrain in Western Europe a shape factor of two is
generally used when the scaling factor can be linked to the MAWS. This special case of the Weibull
distribution is sometimes called the Rayleigh distribution and the probability that the wind speed is
greater than v becomes

F(v) = exp

[
−π

4

(
v

vmean

)2
]

. (7.4)
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This equation can be converted to the number of hours per year that the wind speed is greater
than v as

hours = 8760 × exp

[
−π

4

(
v

vmean

)2
]

= 8760

exp
[

π

4

(
v

vmean

)2
] . (7.5)

The number of hours that the wind speed is in a (say) 1 m/s bin at v m/s is now easily found by
calculating the number of hours at v − 0.5 and v + 0.5 and subtracting. Such an approach generates
a curve similar to that in Figure 7.4. Of particular importance is the capacity factor cf which is
defined as the ratio of the actual energy produced over a designated time to the energy that would
have been produced if the plant had operated continuously at maximum rating. The time period
often used is one year (8760 h)

cf = actual annual energy production
maximum plant rating × 8760

. (7.6)

For a site with a MAWS of about 7 m/s the capacity factor is about 30 %, but if situated on a site
where the MAWS is 5 m/s the capacity factor will drop to about 12 %.

The energy carried in the wind is transferred at discrete frequencies with three major energy peaks
occurring at approximately 100 h, 12 h and 1 min, caused by the passing of large-scale weather sys-
tems, diurnal variations and atmospheric turbulence, respectively (Van der Hoven, 1957). The longer
time variations are relatively predictable while the short-term fluctuations can have a significant
effect on the turbine’s aerodynamic performance and the power can, and does, fluctuate quite widely
due to the turbulent nature of the wind. Although the power output of an individual turbine can
vary on a second-by-second basis, the aggregation of the output of a number of turbines soon
results in a smooth energy flow. Nevertheless, these fluctuations must be accommodated by the
power system.

7.1.1 Generator Systems

A number of generator configurations are used in the conversion of wind energy and these are
summarized in Figures 7.5–7.11. In all those diagrams 1 : n denotes the gear ratio. Most drive
systems for large wind turbines use a gearbox to step up the speed from 15 to 30 rpm at the turbine
itself to typically 1200–1500 rpm at the generator for a 50 Hz system. Of the generator systems
shown, the synchronous generator of Figure 7.5 runs at constant speed and the induction generator
system of Figure 7.6 operates at a speed that is very nearly constant and may vary by 2–4 % from
no load to full load. Because the change of speed of the induction generator is small, it is often
referred to as a fixed-speed generator.

The other generator configurations in Figures 7.7–7.11 have different degrees of speed variation.
As described earlier in Section 2.2.1, synchronous generators are normally used for power generation

1:n G

T

Distribution system
400V, 11kV, 33kV, 66kV

Figure 7.5 Synchronous generator.
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Figure 7.6 Squirrel-cage induction generator.

with conventional gas, steam or water turbines. For completeness Figure 7.5 shows the use of such
a generator with a wind turbine but synchronous generators are not normally used for grid-
connected wind turbines. The main reason for this is that as the generator runs at a constant speed,
the coupling between the generator and the grid for this system is very stiff (see Section 5.4) with
the result that all the transient torques produced in the turbine drive shaft due to wind turbulence
produce significant mechanical stress on the gears reducing the system reliability. Generator systems
with more compliance are therefore favoured. All the other systems shown have this compliance
to varying degrees as the speed of the drive system can change when subject to transient torques.
However, it is important to realize that synchronous generators may be used to advantage in some
stand-alone turbine systems where the frequency of the system can change.

Traditionally the fixed-speed induction generator of Figure 7.6 has been used with the speed
geared up to 1500 rpm in land-based turbines of up to about 750 kW. This arrangement is often
referred to as the Danish concept with the power generated naturally changing as the wind speed
changes (Section 7.2). When the turbine is subjected to a wind gust its speed can change slightly
and transient torques are reduced compared with the stiff synchronous system. As this genera-
tor arrangement operates at a nominally fixed speed, energy capture cannot be maximized but
improvements can be made by using an induction generator with a four-pole and six-pole stator
winding. This allows the generator to be operated at two speeds, 1000 and 1500 rpm for a 50 Hz
system, with a corresponding increase in energy captured. Figure 7.7 shows a modification of the
fixed-speed induction machine where the squirrel-cage rotor of the fixed-speed machine has been
replaced with a wound rotor. By controlling the resistance of the wound rotor, the speed range over
which the turbine operates can be increased slightly, providing yet more compliance in the system
(Section 7.4). All induction machines must be supplied with reactive power in order to produce
the magnetizing flux in the machine. This reactive power must be supplied from the system and
to try and reduce this demand, power factor correction capacitors are often fitted at the generator
terminals. In operation the wind turbine system generates whatever power it can and has therefore

1:n IG

T

Distribution system
400V, 11kV, 33kV, 66kV

Capacitor bank

Rotor resistance

Figure 7.7 Wound-rotor induction generator.
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Figure 7.8 Squirrel-cage induction generator with fully rated converter.

traditionally been regarded as negative load. As turbine technology develops, network operators
are requiring more control of the turbine so that the generator can contribute to a greater, or lesser,
extent to voltage control (control of reactive power) and frequency control (control of real power).

By introducing power electronic control into the generator systems as in Figures 7.8–7.11 the
speed range over which the generator operates can be increased, so increasing energy capture.
As the speed may now change quite significantly as the turbine power changes, the system has a
significant degree of compliance and transient torques are further reduced. In addition, the power
electronic control allows the power factor at the generator terminals to be varied as required by the
network operator. The induction generator with a fully rated converter, Figure 7.8, allows a great
degree of control but the power electronic converter must be rated at the full MVA output of the
turbine and carry the full output of the generator. Such fully rated converters are expensive and
one way of reducing the cost is to use a partially rated converter and a doubly fed induction generator
(DFIG). This generator arrangement is shown in Figure 7.9 and is currently the system favoured
by many manufacturers for multi-megawatt turbine systems. The DFIG is an induction machine
with a wound rotor and with the stator connected directly into the system at system frequency. The
rotor is fed from a power converter at slip frequency and, as such, is usually rated at 25–30 % of the
generator rating. A converter of this rating allows the speed to vary by a similar amount, that is
±25–30 %, with correct control of the converter allowing both the speed and output power factor
of the generator to be controlled (Section 7.5). However, slip rings are necessary with this system
to allow the power converter to feed the rotor circuit.

The final two systems in Figures 7.10 and 7.11 have some similar features in that both use fully
rated converters and both use synchronous machines. As these generators are decoupled from the
network by the converter, they do not suffer the problems of the directly connected synchronous
generator of Figure 7.5. Both systems can be used with, or without, a gearbox and both can operate
at variable speed. Because of the fully rated power converter, both have full control of the real and

Stator

Rotor
Converter

1:n

Rotor
inverter

Grid side
inverter

Transformer

T

Figure 7.9 Doubly fed induction generator.
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Figure 7.10 Permanent magnet generator with fully rated converter (gearbox optional).

reactive power they generate. Figure 7.10 shows a scheme using a permanent magnet generator
where the magnetic field inside the generator is produced by permanent magnets on the rotor.
Because there is no field winding in this generator, there is no associated I2R loss so that this type
of generator has a very high efficiency, well above 90 %. The output of the generator is first rectified
before being inverted and connected into the network. Although passive rectifiers could be used,
normally on large machines an active rectifier using IGBT technology is used to give full control
over the power delivered to the DC link and also to improve the generator form factor and reduce
generator losses and harmonic forces. One special feature of this arrangement is that the permanent
magnets always ensure the magnetic field is active so that if the generator is turning it will always
induce an emf in the armature windings. This feature can be taken advantage of because, if the
generator windings are short-circuited (perhaps through a small resistance to limit the current), a
large electromagnetic torque will be produced that will prevent the turbine rotating; that is, it can
be used as a braking system.

The arrangement of Figure 7.11 shows a direct-drive synchronous machine. Removing the gear-
box is seen to remove one source of failure in the system but requires a low-speed generator.
Although a permanent magnet generator is sometimes used without a gearbox, an alternative is to
use a wound field machine as shown in Figure 7.11. By using a wound field machine the strength
of the magnetic field inside the generator can be controlled by adjusting the current in the field
winding. This allows the magnitude of the induced emf to be controlled as the speed of the gener-
ator changes. A thyristor converter or an active IGBT rectifier can be used to rectify the variable
frequency-generated AC power to DC power before being finally inverted to fixed-frequency AC
power for connection to the network. The fully rated converter allows full control of the real and
reactive power at the inverter terminals.

Figure 7.3 showed the need for some form of power control at high wind speeds that limits the
turbine power output to the rated value so that the rotational speed of the turbine does not exceed
its rated speed. In general two forms of power control are possible. The first is to design the turbine
blades so that as the wind speed increases, the lift force on the turbine blade reduces and the turbine

If

Converter

SM

Rectifier Inverter
Transformer

T

Figure 7.11 Wound field generator with fully rated converter.
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Figure 7.12 Typical power-out curves for a stall-controlled and active pitch-controlled turbine.

blade progressively goes into stall along its length. This is termed passive stall control. As stall is
determined by the relative angle at which the wind attacks the blade, the angle of attack, such power
control is normally used only on fixed-speed turbines. An alternative form of control is active pitch
control where the pitch of the blades is changed to reduce the power output. This type of control
requires an active control system that changes the pitch of the blades based on some feedback
parameter such as rotational speed or output power and is similar in function to the conventional
governing systems of Figure 2.12. A third possible control strategy is to pitch the blades in the
opposite direction to the conventional pitch-controlled machine when the blades go into stall: this
is sometimes termed active stall. Table 7.2 classifies the different generation systems of Figures
7.5–7.11 along with the type of power control in a similar way to Hansen, in Ackermann (2005).

The typical variations of power output for a fixed-speed wind turbine with stall control and for
a variable speed turbine with pitch control are compared in Figure 7.12. As the rotational speed of
a fixed-speed wind turbine does not change significantly, the tip speed ratio cannot be maintained
constant as the wind speed varies, Equation (7.2), and the cp value changes, Figure 7.2. Above rated
conditions the blades are designed to stall progressively so that the change in cp keeps the generated
power sensibly constant. However, at lower wind speeds this means that the energy captured is
reduced compared with operating at a fixed tip speed ratio and maximum value of cp. To achieve
maximum power output the tip speed ratio must be allowed to vary as wind speed varies so that
cp can be maintained at its peak value; this is called peak power tracking. Consequently, allowing
the speed of the turbine to vary has a number of advantages over fixed-speed operation including
allowing the turbine to operate at the peak of its cp/λ curve and thereby maximizing energy capture.
Also, above rated wind speed the actively controlled machines can maintain a more constant power
output as shown in Figure 7.12. To try and improve energy capture, some fixed-speed turbines can
operate at two speeds by using an induction generator with both a four-pole and six-pole winding.

Besides increasing the energy capture, allowing the speed of the wind turbine to vary as the
wind speed changes also ensures a much softer coupling to the grid than for a fixed-speed turbine,
particularly a directly coupled synchronous machine. This has important consequences because
introducing compliance into the system by allowing the speed to vary reduces the stress loading on
the drive shaft and in the gearbox, thereby increasing its reliability.

Table 7.2 Generator options

Speed range Passive stall control Pitch control

Fixed Figure 7.6 Figure 7.6
Small — Figure 7.7
Limited (±30 %) – partially rated converter — Figure 7.9
Large – fully rated converter — Figures 7.8, 7.10 and 7.11



P1: OTA/XYZ P2: ABC
c07 JWBK257/Machowski September 22, 2008 21:45 Printer Name: Yet to Come

274 Power System Dynamics

7.2 Induction Machine Equivalent Circuit

Induction machines are widely used in many applications due to their simple construction and
ease of operation. They are mainly used as motors, so, from the power system point of view,
they constitute loads. This was discussed in Section 3.5. However, induction machines are also
often used as generators in wind farms. To consider how the induction machine can operate as a
generator, it is necessary to consider its equivalent circuit in some detail. The induction machine
consists of a three-phase stator winding and a rotor. This rotor can either have a squirrel-cage rotor
where the rotor windings are simply connected to large shorting rings at either end of the rotor,
or a fully wound rotor with the end of the windings brought out to slip rings. In the case of the
wound-rotor machine, the winding is a three-phase winding connected in star with the end of each
phase connected to one of three slip rings. These slip rings can then be shorted to form effectively
a squirrel cage winding or connected into some other external circuit to help form the required
machine characteristic. Some of the different connection options are described in this section.

The induction machine is essentially a transformer with a rotating secondary winding and can be
represented by the equivalent circuit in Figure 7.13a. In this circuit I1 and I r are the stator and rotor
currents, respectively, and V is the terminal voltage. Current I2 is a fictitious current obtained after
subtracting the magnetizing current Im from the stator current I1. Current I2 flows through the
equivalent primary winding of the transformer and is the rotor current I r referred to the stator, or
primary winding of the machine. Current I1 is seen to flow from the terminal voltage V towards the
rotor, which is the convention used for motoring, rather than generating. Although the discussion
in this section is concerned mainly with induction generators, rather than motors, the motoring
convention of signs has been retained mainly because it is the convention that the reader is likely to
be more used to.

In Figure 7.13a R1 and X1 are the resistance and leakage reactance of a stator phase winding
while R2 and L2 are the rotor resistance and leakage inductance per phase. Xm is the magnetizing
reactance and it is the current Im flowing through this reactance that sets up the rotating magnetic
field. Sometimes a resistance is connected in parallel with the magnetizing reactance to represent
the stator iron loss: that is, the hysteresis loss and eddy-current loss in the stator core. However, the
iron loss is generally small so that the equivalent iron loss resistance is very large compared with the
magnetizing reactance and is therefore often omitted from the equivalent circuit. The three-phase
stator winding produces a magnetic field that rotates at synchronous speed ωsm and if the rotor is
rotating at a speed ωrm slightly different to this, an emf will be induced in the rotor at a frequency
proportional to the difference between these speeds and inversely proportional to the pole number,
the slip frequency f slip. The slip speed is defined as the difference between these two speeds while the
per-unit slip, or slip, is normalized to the synchronous speed, that is

s = (ωsm − ωrm)
ωsm

= (ωs − ωr)
ωs

, (7.7)

where ωs = 2π f = ωsm p is the angular electrical synchronous frequency, ωr = ωrm p is the rotor
electrical angular frequency and p is the number of pole pairs.

In the equivalent circuit of Figure 7.13a the frequency of the currents in the primary winding
is the grid frequency f while the current induced in the rotor is at slip frequency f slip. The rotor
current is given by

Ir =
s

nT
E1

R2 + jωslip L2
, (7.8)

where E1 is the air-gap emf, nT the turns ratio between the rotor winding and the stator winding,
and ωslip = 2π fslip is the slip angular electrical frequency. As the currents in the stator and rotor
are at different frequencies, simplifying the equivalent circuit as it stands is not possible. However,
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Figure 7.13 Development of the induction machine equivalent circuit (motoring positive).

if the top and bottom of Equation (7.8) are divided by the slip s, noting that the slip electrical
frequency is the difference between the stator and rotor electrical frequencies, ωslip = ωs − ωr = sω,
then referring to the primary stator winding by dividing by the turns ratio gives the rotor current
I2 referred to the stator as

I2 = E1
R′

2
s + jωL′

2

. (7.9)

In this equation R′
2 and L′

2 are the rotor resistance and leakage inductance referred to the stator.
Equation (7.9) expresses the rotor current referred to the stator at the grid frequency so allowing
the equivalent circuit to be simplified to that of Figure 7.13b. In Figure 7.13c the slip-dependent
resistance element is conveniently separated into a fixed resistance R′

2 and a variable resistance



P1: OTA/XYZ P2: ABC
c07 JWBK257/Machowski September 22, 2008 21:45 Printer Name: Yet to Come

276 Power System Dynamics

R′
2(1 − s)/s that respectively represent the rotor resistance and the mechanical power. This equiv-

alent circuit, Figure 7.13c, is referred to as the accurate equivalent circuit. The final simplification
is to recognize that the magnetizing current is small compared with the main rotor current and
moves the stator resistance and leakage reactance to the rotor side of the magnetizing reactance as
in Figure 7.13d to produce the approximate equivalent circuit. R1 and R′

2 along with X1 and X′
2 can

be usefully combined into an equivalent resistance Req and equivalent reactance X eq respectively
to give the final approximate equivalent circuit of Figure 7.13e. Both the accurate and approximate
equivalent circuits are necessary to understand fully the operation of the induction machine as a
generator.

Because of its power system implications it is important to realize that the rotating magnetic field
in the induction machine is always produced by drawing a magnetizing current Im from the supply
regardless of whether the machine acts a motor or generator. This magnetizing current is shown
in Figure 7.13a and is represented by the magnetizing reactance Xm. As the magnetizing current
must be drawn from the supply, the induction machine always absorbs reactive power and must
be connected to a power system that can supply this reactive power if it is to function; only under
exceptional circumstances can an induction machine be made to self-excite and this is not relevant
to the subject of this book.

Analysis of the simplified circuit of Figure 7.13d gives

I2 = V√(
R1 + R′

2
s

)2
+ (

X1 + X′
2

)2

. (7.10)

This equivalent circuit also defines the power flow through the machine and, if the losses in the
stator resistance and the iron core are neglected, then the power supplied to the machine from the
grid is the same as the power supplied to the rotor and is given by

Ps ≈ Prot = 3I2
2

R′
2

s
= τmωsm, (7.11a)

while the power loss in the rotor resistance and the mechanical power delivered are

�Prot = 3I2
2 R′

2 = sPs (7.11b)

Pm = 3I2
2

R2(1 − s)
s

= Ps(1 − s) = τmωrm. (7.11c)

As the mechanical power output is equal to the product of the torque and the rotor angular speed
ωrm, and noting that slip s is given by Equation (7.7), the power supplied to the rotor can be written
in terms of the torque and angular synchronous speed ωsm as Ps ≈ Prot = τmωsm. This is noted in
Equation (7.11a).

Equations (7.11a) allow the efficiency of the machine to be expressed as

ηmotor = Pm

Ps
= (1 − s), ηgen = Ps

Pm
= 1

(1 − s)
. (7.12)

The shaft torque produced by the machine is obtained from Equation (7.11c) as

τm = Pm

ωrm
= Pm

ωsm(1 − s)
= 3

ωsm

V2[(
R1 + R′

2
s

)2
+ (

X1 + X′
2

)2
] R′

2

s
. (7.13)
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Figure 7.14 Torque–speed characteristics of an induction machine showing both motor and gen-
erator action (motoring positive).

The variation of torque with slip is shown in Figure 7.14 for both positive and negative slip.
Positive slip is when the rotor speed is less than synchronous speed and corresponds to motor
action, and has been discussed in Section 3.5, while negative slip is when the rotor speed is greater
than synchronous speed and corresponds to generator action. Similarly, positive torque corresponds
to motor action and negative torque to generator action. If the machine is driven at a speed greater
than synchronous speed it will naturally generate electrical power into the grid. If the speed drops
below synchronous speed then the machine will naturally motor.

The power flow described by Equations (7.11a) is shown diagrammatically in Figure 7.15 where
Pg is the power from, or supplied to, the electricity grid. In this diagram the directions are shown
as positive for motor action. If power is now supplied to the grid, that is generator action, Pm and
Ps reverse direction and slip s becomes negative. As expected, the direction of the rotor loss �Prot

remains unchanged regardless of motor or generator action.

7.3 Induction Generator Coupled to the Grid

Section 5.4.7 explained how, when a synchronous generator is connected to the grid, it behaves
in a similar way to a mechanical mass/spring/damper system where the effective spring stiffness
is equivalent to the synchronizing power coefficient KE′ . This creates a very stiff coupling to the
grid (Figure 7.16a) which, for a wind turbine system, can result in large stresses in the drive shaft
and gearbox due to the way the system responds through the dynamic torques produced by wind
turbulence. A coupling to the system that is much ‘softer’ and allows a degree of movement at
the generator would help reduce these shock torques. Such a coupling is provided by an induction
generator as described below.

If the slip is small the induction machine torque, given by Equation (7.13), can be approximated as

τm = 3
ωsm

V2[(
R1 + R′

2
s

)2
+ (

X1 + X′
2

)2
] R′

2

s
≈ 3V2

ωsm

1
R′

2

s = Dc�ω, (7.14)

PP s)sm −= (1 Ps Pg

∆ sPProt s=

Mechanical
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Figure 7.15 Power flow in an induction machine (motoring positive).
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Figure 7.16 Effective system coupling of (a) synchronous and (b) induction generators.

where �ω = ωs − ωr is the rotor speed deviation with respect to the synchronous speed and Dc

is an equivalent ‘damper constant’. Equation (7.14) shows that the induction machine torque
is proportional to speed deviation, implying that the coupling of the induction machine to the
grid is analogous to a mechanical damper as shown in Figure 7.16b. Such a coupling introduces
a substantial degree of compliance, or ‘give’, into the system and is much softer than the stiff
coupling associated with the synchronous generator. This has important advantages for some
energy conversion systems, such as large wind turbines, because the additional compliance helps
reduce the stress in the drive shaft due to the dynamic torques produced by wind gusting and wind
turbulence. Equation (7.14) also shows that the ‘damper constant’ Dc determines the effective
compliance and that this can be controlled by changing the rotor resistance.

Generally when an induction machine is connected to the grid, and used as a generator, it will
be within the distribution network rather than the main transmission network. Used in this way,
such generation is termed embedded generation and is typical of wind generators and other forms
of renewable energy generation.

When assessing the performance of an induction generator embedded within the system, the
system reactance X s and resistance Rs impact on the operation of the induction generator and
modify the equivalent circuit as shown in Figure 7.17 (Holdsworth, Jenkins and Strbac, 2001). The
system impedance as seen by the induction generator is affected by a number of factors:

1. The ‘strength’ of the network. If the network is strong the reactance between the generator and
the system will be small, leading to a large short-circuit level. The short-circuit level being defined
at the point of common connection as V s/X s. On the other hand, a weak system will have a large
reactance and low short-circuit level.

2. For distribution networks, resistance affects are more apparent than at the transmission or
subtransmission level with the X/R ratio changing from typically 10 for transmission networks
to 2 for distribution networks.

V PCC XPFCV s V

Rs Xs XT R1

Xm

′X2X1

sR′2

System Transformer
Induction
machine

Figure 7.17 Induction machine equivalent circuit including system reactance and resistance (VPCC,
voltage at the point of common connection; XPFC, power factor correction capacitance).
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Figure 7.18 Steady-state stability of an induction generator (motoring positive).

Also impacting on the system behaviour is the need for power factor correction at the terminals of
the induction generator. Whether motoring or generating, the power system must always supply the
magnetizing current to the induction machine, therefore the induction machine always consumes
reactive power and the system must supply this. The magnetizing current is represented by the
magnetizing reactance in the equivalent circuits of Figure 7.13. The amount of reactive power
varies depending on the loading condition, being a maximum at no load and reducing at full
load.

The induction machine torque slip curve determines the steady-state stability of the generator.
Figure 7.18 shows what happens if the applied mechanical driving torque increases. Initially the
induction generator is operating at point 1 with a mechanical applied torque (−τm1). The mechanical
torque is now increased to τm2. As the applied mechanical torque is now greater than the electrical
torque, the generator speeds up (slip increases) and operates at a slightly higher slip s2 at point 2.
If the applied torque is now increased to τm3 the applied torque and the electrical torque curves
do not intersect and there is no steady-state operating point so the system will be unstable. The
peak of the torque/slip curve determines the pull-out torque and the system steady-state stability
limit.

Equation (7.13) can be used to see the way in which system reactance modifies the torque/slip
characteristic if the equivalent circuit is modified to a very approximate one as in Figure 7.13d
with the network resistance Rs incorporated into R1, the network reactance X s and transformer
reactance XT incorporated into X1, and the stator voltage becoming the system supply voltage V s.
However, accurate calculation must use the accurate equivalent circuit of Figure 7.13. Peak torque
occurs when dτm/ds is a maximum and occurs when

smax = R′
2√

R2
1 + (X1 + X′

2)2
≈ R′

2

X1 + X′
2

, (7.15)

giving the pull-out torque

τmmax = 3
2ωsm

V2
s[

R1 +
√

R2
1 + (X1 + X′

2)2

] . (7.16)

This equation shows that the pull-out torque is independent of the rotor resistance, but as the system
reactance increases, X1 increases and the pull-out torque reduces, so reducing the generator steady-
state stability. This will be most apparent on a weak system where system reactance is greatest,
Figure 7.19a. Also the pull-out torque will reduce if the system voltage is reduced for any reason,
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Figure 7.19 Effect of system reactance and voltage on pull-out torque: (a) system reactance; (b)
system voltage; (c) rotor resistance (motoring positive).

Figure 7.19b, but the slip at which the pull-out torque occurs is not affected. In contrast Equation
(7.15) shows that the slip at which the maximum torque occurs is determined by the rotor resistance;
increasing the rotor resistance increases the maximum slip. This effect is shown in Figure 7.19c.
Not only will increased rotor resistance make the system connection more compliant, as described
by Equation (7.14), but also it increases the speed at which the pull-out torque occurs; this can have
implications on the transient stability of induction machines (Section 7.9).

Typically the slip range that the induction generator will operate over will be 0.02 indicating a
maximum speed change of 2 %, that is 30 rpm for a 1500 rpm generator. As this is a relatively small
speed range, turbines using this type of induction generator are often referred to as fixed-speed
machines.

7.4 Induction Generators with Slightly Increased Speed Range
via External Rotor Resistance

In some instances it is required to increase the speed range over which the induction generator
operates. For example, in the case of a wind turbine, allowing the speed to vary may increase the
energy capture while allowing the speed to vary will also reduce the shock torques on the turbine
and gearbox due to wind turbulence. Equation (7.15) shows that the maximum slip increases as
the rotor resistance increases but the actual pull-out torque is not affected, Figure 7.19c. To achieve
this a wound-rotor induction is normally used with the three-phase rotor winding connected to a
variable resistor bank through slip rings, Figure 7.20, although the use of resistors rotating on the
shaft is possible in order to avoid the use of slip rings. Such arrangements tend to increase the speed
range by about 5–10 %.

Rotor

Rext

ωrm

Stator

Figure 7.20 Induction generator with variable rotor resistance.
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Figure 7.21 Equivalent circuit for induction machine with external rotor resistance: (a) accurate
and (b) approximate equivalent circuits (motoring positive).

The equivalent circuit must now be modified as shown in Figure 7.21 with R′
ext being the external

rotor resistance Rext referred to the stator. Using the approximate equivalent circuit of Figure 7.21b,
the current and torque expressions of Equations (7.10) and (7.13) now become

I2 = V√(
R1 + (R′

2+R′
ext)

s

)2
+ (

X1 + X′
2

)2

, (7.17)

τm = Pm

ωrm
= Pm

ωsm(1 − s)
= 3

ωsm

V2[(
R1 + (R′

2+R′
ext)

s

)2

+ (
X1 + X′

2

)2

]
(
R′

2 + R′
ext

)
s

, (7.18)

and Equations (7.11) change to

Power supplied Ps ≈ Prot = 3I2
2

(R′
2 + R′

ext)
s

= τmωsm, (7.19a)

Power loss in rotor �Prot = 3I2
2 (R′

2 + R′
ext) = sPs, (7.19b)

Mechanical power Pm = 3I2
2

(R′
2 + R′

ext)(1 − s)
s

= Ps(1 − s) = τsmωrm. (7.19c)

Equations (7.17) and (7.19) show that if the ratio (R′
2 + R′

ext)/s is held constant then the current
and the torque do not change. That is, if the effective total rotor resistance is doubled then the
same torque and current will occur at twice the slip. Thus rated torque will always occur at rated
current and only the slip (speed) will be different, the slip being scaled by the factor (R′

2 + R′
ext)/R′

2
(O’Kelly, 1991).

The efficiency is again given by Equation (7.12) but as the slip is now greater than for a generator
with no external rotor resistance the efficiency is less due to the additional loss in the external rotor
resistors. However, in the case of a wind turbine generator the gain in energy capture achieved by
allowing speed variation coupled with the more compliant grid coupling must be balanced against
the loss in efficiency in the generator itself. The power flow is shown in Figure 7.22.
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Figure 7.22 Power flow in an induction machine with additional external resistance (motoring
positive).

7.5 Induction Generators with Significantly Increased Speed Range: DFIGs

Adding external resistance into the rotor circuit has been shown to allow a small increase in the
speed range over which the induction machine can operate but at the cost of reduced efficiency due
to the losses in the external rotor resistance. The beneficial features of an increased operating speed
range can be retained (and expanded) if rather than dissipating the energy into external resistors, it is
fed back into the power system using a power electronic converter such as that shown in Figure 7.23.
This converter consists of two fully controlled IGBT bridge circuits: one, the machine-side inverter,
connected to rotor slip rings; and the other, the grid-side inverter, connected to the grid. Together
these two inverters produce a four-quadrant converter that can feed power at any frequency or
voltage to or from the rotor. The machine-side inverter injects a voltage into the slip rings Vs at
a slip frequency that is controlled in both magnitude and phase and allows both the torque and
the power factor of the machine to be controlled over a large speed range. The grid-side inverter is
typically controlled to maintain a constant DC link voltage. As the machine now has power ‘feeds’
to both the stator and rotor from the grid, this type of system is commonly referred to as a doubly
fed induction machine (DFIM). This arrangement is commonly used as a generator with large wind
turbines when it is known as a doubly fed induction generator (DFIG) and tends to increase the
speed range by about 30 %.

The DFIM system shown in Figure 7.23 is very similar to the static Kramer and Scherbius
schemes used in the past to control the speed of induction motors (O’Kelly, 1991). It differs from
the static Kramer scheme in that it uses an IGBT inverter as the machine-side converter instead
of a passive rectifier, thereby allowing the injected voltage to be fully controlled in both phase and
magnitude. It also allows power flow in both directions to the rotor. In concept it is the same as
the static Scherbius system but with the three-phase to three-phase cycloconverter of the Scherbius
system replaced by the two fully controlled IGBT bridges.

As the voltage and current injected into the rotor are at slip frequency, the DFIM can be thought
of as either an induction machine or a synchronous machine. When the machine operates at
synchronous speed the slip frequency is zero, injected rotor current is at DC level and the machine

sPs

Pm
Ps

PgDFIM

Machine
-side

inverter

Grid
-side

inverter

Figure 7.23 Doubly fed induction machine system.
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Figure 7.24 DFIM equivalent circuit: (a) stator and rotor; (b) and (c) rotor referred to stator –
accurate equivalent circuit; (d) rotor referred to stator – approximate equivalent circuit (motoring
positive).

behaves exactly as a synchronous machine. At other speeds the synchronous machine analogy can
still be used but the injected rotor current is now at slip frequency. Analysing the machine as both
an induction machine and a synchronous machine gives a valuable insight into its operation.

The equivalent circuit for the DFIM is shown in Figure 7.24a with Vs being the rotor injected
voltage. Following the same procedure as in Section 7.2 for the standard squirrel-cage induction
motor allows the rotor circuit, operating at slip frequency, to be referred to the stator at grid
frequency to give the equivalent circuit of Figure 7.24b. The effect of the transfer is to have, as
before, a rotor resistance that varies with slip but now also with an injected voltage that also varies
with slip. These two components can be divided into a fixed value and a variable value as shown in
Figure 7.24c. The fixed values reflect the actual rotor resistance R2 and the actual injected voltage
Vs while the variable terms represent the mechanical power. If required, the accurate equivalent
circuit can again be modified to an approximate one by moving the magnetizing reactance in front
of the stator components R1 and X1, Figure 7.24d.
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7.5.1 Operation with the Injected Voltage in Phase with the Rotor Current

Assume that the injected voltage Vs is in phase with the rotor current. This is equivalent to adding
an external resistance, equal to the ratio of the injected voltage to the rotor current, into the rotor
circuit. Comparing the equivalent circuit in Figure 7.24c with that in Figure 7.21a, they are clearly
the same if

V′
s = I2 R′

ext or R′
ext = V′

2

I2
. (7.20)

Substituting for R′
ext into Equations (7.17) and (7.18) allows the current and the torque to be written

in terms of the injected voltage as

I2 = V√[
R1 +

(
R′

2 + V′
s

I2

)
1
s

]2
+ (

X1 + X′
2

)2

, (7.21)

and

τm = Pm

ωrm
= Pm

ωsm(1 − s)
= 3

ωsm

V2{[
R1 +

(
R′

2 + V′
s

I2

)
1
s

]2
+ (

X1 + X′
2

)2
} (

R′
2 + V′

s

I2

)
1
s
. (7.22)

Rearranging Equation (7.21) with Xeq = X1 + X′
2 gives slip as a function of current and injected

voltage as

s = I2 R′
2 + V′

s√
V2 − [I2 Xeq]2 − I2 R1

. (7.23)

The torque and current for a given slip can be calculated from Equations (7.21) and (7.22) but
the equations are cumbersome and it easier to consider a range of values for I2 and calculate the
resulting torque and slip from Equations (7.22) and (7.23) respectively (O’Kelly, 1991). At no load
I2 = 0 and Equation (7.23) reduces to

s0 = V′
s

V
, (7.24)

and the machine operates with a slip that depends on the magnitude and polarity of the injected
voltage V s:

� V s positive, slip increases and the speed reduces: subsynchronous operation;
� V s negative, slip becomes negative and the speed increases: supersynchronous operation.

Operation over a wide speed range both above and below synchronous speed is now possible by
controlling the magnitude and polarity of the injected voltage.

The slip range over which the machine can operate depends on the magnitude of the injected
voltage and that is controlled by the inverter. The greater the no-load slip, the greater the injected
voltage. For example, if a speed range of ±30 % is required the injected voltage must be 30 % of the
nominal supply value. It is this speed range that also determines the rating of the inverter system.
The volt-amperes passing through the converter system is

V Ainv = 3V′
s I2 = 3s0VI2 ≈ s0 Srat, (7.25)

where Srat is the volt-ampere rating of the machine.
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So for a ±30 % speed range the rating of the converter must be 30 % of the machine rating.
It is this range of speed control with a partially rated converter that makes this type of machine
economically attractive as opposed to an induction generator or permanent magnet generator with
all the machine output passing through an expensive, fully rated converter (Section 7.1).

Substituting for R′
ext from Equation (7.20) into the power flow equations (7.19) allows the power

supplied by the machine to be written (neglecting the loss in armature resistance) as

Ps ≈ Prot = 3I2
2

R′
2

s
+ 3

V′
2

s
I2 = τmωsm. (7.26)

Expanding and rewriting this expression gives

Ps ≈ Prot = 3I2
2 R2 + 3Vs I2 + 3I2(Vs + I2 R2)

(1 − s)
s

= τmωsm

(7.27)
≡ rotor loss + injected power + mechanical power.

The first term in this expression is the power lost in the rotor resistance, the second the power that is
extracted or injected into the rotor by the converter, and the third the mechanical power produced.
Depending on the polarity of the injected voltage, power can be either:

� extracted from the rotor and fed back to the supply; or
� injected into the rotor from the supply.

In Equation (7.27) the first two terms are associated with the power lost or transferred in the
rotor circuit while the third represents the mechanical power, that is

Power transfer �Prot = 3I2
2 R′

2 + 3V′
s I2 = sPs, (7.28a)

Mechanical power Pm = 3I2(V′
s + I2 R′

2)
(1 − s)

s
= Ps(1 − s) = τmωrm, (7.28b)

with the stator and supply powers respectively being

Stator power Ps ≈ τmωsm, (7.28c)

Supply power Pg = Ps − �Prot = Ps(1 − s). (7.28d)

This power flow is shown in Figure 7.25 and, if the rotor resistance loss is assumed to be negligible,
the regenerated power sPs is added algebraically to the stator power to obtain the supply power.
As loss in both the armature resistance and rotor resistance has been neglected, the power from or
to the supply is the same as the mechanical power and the efficiency is a nominal 100 %; that is, it

sPs
sPs

03I2
2

2R′ ≅

Ps PP sP s)Psg ss−= −− (1

Converter

PP s)sm −= (1

Recovery

Mechanical
power

Electrical
power

Loss

Figure 7.25 Power flow in a DFIM (motoring positive).
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Figure 7.26 Power flow in a DFIM: (a) motoring; (b) generating.

is not slip dependent as occurs with external rotor resistance control, because now any additional
‘loss’ in the rotor circuit is fed back to the supply.

Assuming a constant stator power Ps (constant mechanical torque), Equations (7.28) explain
how this type of machine can be controlled. Figure 7.26 sketches the power flow through the rotor
for both motoring (a) and generating (b) over a slip range of about ±30 %.

The following observations can be made:

� Rotor speed above synchronous (supersynchronous operation) – slip negative:
– acts as a motor if power is injected into the rotor from the supply;
– acts as a generator if power is extracted from the rotor and fed back to the supply.

� Rotor speed below synchronous (subsynchronous operation) – slip positive:
– acts as a motor if power is extracted from the rotor and fed back to the supply;
– acts as a generator if power is injected into the rotor from the supply.

� For a constant slip the amount of power injected or extracted from the rotor determines the stator
power and machine torque; increasing the amount of injected or extracted power increases the
torque.

This is the basis for a control strategy that can be implemented in the two inverters of Figure 7.23
that supply the rotor circuit and will be examined further later in this section.

7.5.2 Operation with the Injected Voltage out of Phase with the Rotor Current

Equation (7.20) assumed that the voltage Vs was injected at slip frequency in phase with the rotor
current. If, however, the voltage was injected at some arbitrary controlled phase angle to the rotor
current then Equation (7.20) becomes

V′
s

I2

= R′
ext + jX′

ext, (7.29)

and it appears as though the injected voltage is introducing a fictitious impedance R′
ext + jX′

ext. The
effect of R′

ext has already been discussed, while the influence of X′
ext is to increase or decrease the

effective rotor impedance depending on the sign and value of X′
ext (and will be determined by the
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relative phase of the injected voltage). This will control the rotor and hence the machine power
factor. So, by controlling the magnitude and phase of the injected voltage both the speed or torque
and the power factor of the machine can potentially be controlled.

7.5.3 The DFIG as a Synchronous Generator

The previous discussion has considered the DFIM as an induction machine but it can usefully be
considered as a synchronous machine. A synchronous machine rotates at synchronous speed and
the current is fed into the rotor field circuit at DC level to produce the synchronously rotating field.
In contrast, in the DFIG the speed can vary and the current is fed into the rotor at slip frequency
in order to produce the synchronously rotating field.

Figure 7.23 shows that the rotor power converter comprises a grid-side and a machine-side
inverter. A common control scheme is to operate both inverters using pulse width modulation
(PWM) in a current control mode with the grid-side inverter being controlled to keep the DC
link voltage constant. The machine-side inverter is then controlled to achieve the required torque
loading and the required reactive power at the machine terminals. This is achieved by controlling
the magnitude of the real and imaginary parts of the rotor current. To understand this control
scheme the accurate equivalent circuit of Figure 7.24(c) is redrawn as in Figure 7.27 by noting that
the current through the magnetizing reactance can be written in terms of the rotor I2 and stator I1

current as

Im = I2 − I1, (7.30)

(a)

I1 I 2

I m

R1 X1

XmV

(c)

(b)

I1
R1 X1

Xs

EmV

Xm

E EX jE== +jI am b2

I1
Xs

V EE += ba jE

Figure 7.27 DFIG equivalent circuit as a synchronous machine: (a) stator and rotor current as
induction machine; (b) rotor current as a voltage source; (c) equivalent circuit as a synchronous
machine (generating positive).
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when the voltage across the magnetizing reactance Em can be written as

Em = jIm Xm = jI2 Xm − jI1 Xm = E − jI1 Xm. (7.31)

This allows the magnetizing reactance to be split between the rotor and stator currents and the
equivalent circuit modified to that in Figure 7.27b with the synchronous reactance being the
sum of the stator leakage reactance X1 and the magnetizing reactance Xm (Section 4.2.3). If
stator resistance is assumed negligible then the equivalent circuit simplifies to that of the standard
synchronous generator shown in Figure 7.27c. Importantly now both the magnitude and phase of
the induced emf relative to the stator voltage can be fully controlled by controlling the real and
imaginary components of the induced emf E. To conform with previous discussions on synchronous
machines elsewhere in this book, generator action is taken as positive.

From Equation (7.31) the emf E induced by the rotor current is

E = jI2 Xm. (7.32)

The rotor current can be expressed in its real and imaginary components

I2 = I2a + jI2b, (7.33)

so that

E = Ea + jEb = −Xm I2b + jXm I2a, (7.34)

and the induced emf E is controllable in both magnitude and phase by controlling the in-phase and
out-of-phase components of the rotor current I2a and I2b respectively.

This is shown in the phasor diagrams of Figure 7.28. The first phasor diagram in Figure 7.28a
shows how the real and imaginary rotor current components contribute to the emf E. If the system
voltage V is assumed to act along the real axis then Figure 7.28b shows a phasor diagram very
similar to that for the standard synchronous generator, only now the current I2 will fully control the
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Figure 7.28 Phasor diagrams of DFIG as a synchronous machine. (a) showing how rotor current
controls the induced emf; (b) phasor diagram; (c) operating chart.
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magnitude and phase of E. In contrast, in the standard synchronous machine, the emf is induced
by a direct current in the rotor so that only the magnitude of the induced emf can be controlled;
this allows the control of one output variable only, namely reactive power.

With the stator voltage acting along the real axis and defined as

V = Va + j0, (7.35)

and neglecting stator resistance,

I s = E − Vs

jXs
= Ea + jEb − Va

jXs
= Eb

Xs
− j

(Ea − Va)
Xs

. (7.36)

The stator power is then given by

Ss = 3VI∗
s = Ps + jQs = 3

Va Eb

Xs
+ j3

Va(Ea − Va)
Xs

. (7.37)

Substituting for Ea and Eb from Equation (7.34) gives the important expression

Ss =
[

3Va
Xm

Xs

]
I2a + j

[
3Va

Xs

]
[−Xm I2b − Va] . (7.38)

This equation allows the phasor diagram of Figure 7.28(b) to be redrawn as in Figure 7.28c to
produce an operating chart similar to that for a synchronous machine (see Section 3.3.4) but note
that the direction of the P- and Q-axes are now swapped compared with Figure 3.19. This operating
chart clearly shows the control options with this type of generator:

� controlling the magnitude of I2a, the component of rotor current in phase with the stator voltage,
controls the real power (along aa′);

� controlling the magnitude of I2b, the component of rotor current out of phase with the stator
voltage, controls the reactive power (along bb

′
).

7.5.4 Control Strategy for a DFIG

The normal control strategy with this type of generator is to control both I2a and I2b independently
in order to control both the generator torque (I2a) and the reactive power (I2b). Normally all
calculations are done in a synchronous reference frame that uses the stator voltage space vector as
the reference (as in Equation (7.35) and is termed a vector controller. In comparison many motor
drive systems use the machine flux vector as the reference and are termed field-orientated controllers
(Muller, Deicke and De Donker, 2002). In this stator voltage space vector reference frame Ia would
become Iq and Ib would become Id and so on.

When used with a wind turbine the power output required from the DFIG is defined as a function
of rotational speed in order to maximize power output from the wind turbine system as described in
Section 7.1. If the required power Pd (or torque) is known, and the required reactive power output
Qd is defined, the real and imaginary parts of Equation (7.38) define the demand values of the rotor
current components I2ad and I2bd respectively, that is

I2ad = Pd

3Va

Xs

Xm
and I2bd = −

[
Qd

3Va
+ Va

Xs

]
Xs

Xm
. (7.39)

This control is implemented in the machine-side converter of Figure 7.23 while the grid-side con-
verter is controlled to maintain the DC link voltage constant. Such a control scheme is shown in
the schematic of Figure 7.29. This is a complex control structure using fast conversion algorithms
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Figure 7.29 DFIG control implementation.

to convert from phase values to d and q space vector quantities. Proportional plus integral (PI) con-
trollers determine the PWM variables that control the injected rotor currents to obtain the required
reactive power and torque. Interested readers are referred to articles by Ekanayake, Holdsworth
and Jenkins (2003a), Ekanayake et al. (2003b), Holdsworth et al. (2003), Muller, Deicke and De
Donker (2002), Slootweg, Polinder and Kling (2001) and Xiang et al. (2006).

7.6 Fully Rated Converter Systems: Wide Speed Control

Instead of using a partially rated converter, fully rated converters can be used to control the real
and reactive power injected into the system from either an induction generator or a synchronous
generator as described in Section 7.1. The synchronous generator can have a wound field or can use
permanent magnets to provide the rotating magnetic field. Such schemes are used with renewable
energy systems and give the widest range of speed control but at the expense of a converter that
must be rated to cope with the full power output of the generator. Such a power conversion scheme
is shown schematically in Figure 7.30 and differs only in detail on the machine-side inverter for use
with induction or synchronous machines. One attraction of the permanent magnet machine is its
high efficiency since no magnetizing or field current is necessary to provide the magnetic field and it
also allows new generator topologies to be devised to suit a specific application. As developments
in power electronics progress, it is likely that the use of fully rated converter systems will replace the
partially rated converters and DFIGs.

The fully rated converter system allows full control of real and reactive power. Although a
number of control schemes are possible, the machine-side converter is normally operated to control
the generator torque loading while the grid-side inverter is controlled to maintain constant voltage
on the DC link and, at the same time, controlling the reactive power output in a similar way to a
static compensator (Section 2.4.4).

Both converters will normally be current controlled to achieve their control objectives. However,
it must be realized that the PWM converters can only adjust the phase and magnitude of the injected
phase voltage. So, for example, the grid-side converter can only adjust the phase and magnitude of



P1: OTA/XYZ P2: ABC
c07 JWBK257/Machowski September 22, 2008 21:45 Printer Name: Yet to Come

Wind Power 291

IV ,

PWM
Control

PWM
Control

ω

P, Q

E

Qd

Idd
Iqd

Vdc

IbIa

τφ

I

V

X

Figure 7.30 Fully rated converter system.

the injected voltage E relative to the system voltage V. It is these two quantities of phase and mag-
nitude that are adjusted via PI controllers to control the current to its set value, see also Figure 7.29.

7.6.1 Machine-Side Inverter

The machine-side inverter is normally controlled to give the required torque loading at any particular
speed so as to maximize energy capture. This is achieved by controlling the quadrature-axis current
Iq. To show this consider a permanent magnet machine when the voltage equations are given by
Equations (3.65) but note that the induced emf Ef is related to the flux linkage per pole produced
by the permanent magnets, that is

Ef = ωψpm. (7.40)

With this change the voltage Equation (3.65) becomes

Vd = −RId − Xq Iq and Vq = ωψpm − RIq + Xd Id. (7.41)

The terminal power is then given by Equation (3.82) as

P = Vd Id + Vq Iq = Id Iq(Xd − Xq) + ωψpm Iq − R
(

I2
d + I2

q

)
. (7.42)

The first two terms in this expression define the shaft power and the third term the power lost in
the armature resistance so that the machine torque is given by

τm = Id Iq(Xd − Xq)
ωrm

+ pψpm Iq. (7.43)

With permanent magnet machines the reactances Xd and Xq depend on how the magnets are
mounted on the rotor; for surface-mounted magnets Xd ≈ Xq as the relative permeability of rare
earth permanent magnet material is approximately 1. In this case Equation (7.43) reduces to

τm = pψpm Iq. (7.44)

That is, the torque loading can be adjusted by controlling the quadrature-axis current Iq.
In the induction machine torque can be controlled in a very similar way but now the magnetizing

flux must also be produced from the armature and it is important that the flux level in the machine



P1: OTA/XYZ P2: ABC
c07 JWBK257/Machowski September 22, 2008 21:45 Printer Name: Yet to Come

292 Power System Dynamics

is maintained at the correct value all the time. Equation (3.37) shows how flux, emf and frequency
are related and that to operate at speeds below rated the voltage must be reduced in proportion if
the machine is not to be overfluxed (saturated). This means operating at constant volts per hertz
at speeds below rated speed and at constant rated voltage, reduced flux, above rated speed. This is
achieved by controlling the direct-axis current Id.

7.6.2 Grid-Side Inverter

The grid-side inverter is normally controlled to transfer power so as to maintain a constant voltage
on the DC link capacitor. If the charge on the capacitor increases, the control loop will increase
the power transfer to reduce the voltage and vice versa. The grid-side converter also controls the
reactive power delivered to the system. A vital part of this converter is the line reactor X shown in
Figure 7.30.

Assume that the system voltage V = Va + j0 acts along the real axis, that the voltage injected
by the converter is E = Ea + jEb and that the current injected into the system is I = Ia + jIb. The
phasor diagram for this system is shown in Figure 7.31. The current through the line reactance is
given by

I = Ia + jIb = E − V
jX

= Eb

X
− j

(Ea − Va)
X

, (7.45)

that is

Ia = Eb

X
and Ib = − (Ea − Va)

X
, (7.46)

while the apparent power injected into the system is

S = 3Va I∗ = 3Va Ia + 3jVa Ib = 3
Va Eb

X
+ 3j

Va(Ea − Va)
X

. (7.47)

From the phasor diagram the emf components Ea and Eb can be written in terms of the magnitude
of the emf E and its phase δ as

Ea = E cos δ and Eb = E sin δ. (7.48)

Substituting into Equation (7.47) gives

S = 3
Va E sin δ

X
+ 3j

Va(E cos δ − Va)
X

. (7.49)
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Figure 7.31 Phasor diagram describing the operation of the grid-side inverter.
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Generally δ is small when Equation (7.49) becomes

S ≈ 3
Va E

X
δ + 3j

Va(E − Va)
X

, (7.50)

demonstrating how real power can be controlled by the phase angle δ and reactive power by the
magnitude of E. Although there is some cross-coupling between the terms, this can be taken into
account in the control structure.

7.7 Peak Power Tracking of Variable Speed Wind Turbines

The discussion in the previous sections has explained how an induction machine can be used
to generate electrical power and how, with the aid of power electronics, it can be operated over
a large speed range. To optimize energy capture from the wind turbine, the electrical torque is
generally controlled as a function of rotational speed while the speed of the generator will increase,
or decrease, depending on the mechanical torque produced by the turbine. This change in speed
is determined by the equation of motion, Equation (5.1). The rate at which the speed will change
depends on the magnitude of the torque imbalance and the moment of inertia of the turbine and
generator system including the effect of the gearbox.

For example, consider the situation shown in Figure 7.32 for a wind turbine where the generator is
operating at point p1 at rotational speed ω1 producing power P1. The wind speed is vw1. At this point
the mechanical power (and torque) produced by the turbine is balanced by the electrical power.
The line ab is the operating line that the generator is controlled to follow for optimum loading, see
Figure 7.3. If now the wind speed increases to vw2 the new optimum steady-state operating point is
at p2. Initially the speed and electrical power loading of the turbine do not change but the increase
in wind speed leads to an increase in the mechanical shaft power �P and hence mechanical torque,
point c. This increase in mechanical power accelerates the turbine system and the speed changes
from ω1 towards ω2. As the speed changes, the electrical power also changes until the speed settles
at the new equilibrium point p2 when the electrical power again balances the mechanical power. It
is important to realize that in practice the wind is turbulent and speed and power changes such as
this will be continually taking place (Stannard and Bumby, 2007).
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∆P c

b

a

P

ω

ω

ω1

ω1

ω2

ω2

νw1

νw2

t

Figure 7.32 Speed changes in a wind turbine system (generating positive).
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7.8 Connections of Wind Farms

Although the majority of wind turbines are situated on land, there is a growing demand for wind
turbines to be placed offshore with some large wind farms now operational (Christiansen, 2003).
The reasons for developing offshore sites are both technical and political with offshore turbines
seen to pose fewer planning issues and offshore winds tending to be stronger and more consistent
than those onshore. This does not mean that offshore sites are always better than those onshore, as
some onshore sites have better wind regimes than sites offshore.

A common problem to all offshore energy conversion systems is the electrical cable connection
to the onshore substation. This must be by a buried undersea cable and this then raises distance
issues because all AC cables have high capacitance and the line charging current for long cable
runs can be very high (Section 3.1). Some form of reactive power compensation may be required
at the offshore end to help combat the large cable capacitance while a number of independent
cable runs may be necessary in order to transmit the required power from an offshore wind farm.
Because of the large cable capacitance AC cables are currently limited to a distance under the sea of
about 100–150 km with the maximum rating of three-core submarine cables currently being about
200 MW at 145 kV (Kirby et al., 2002), although larger ratings are under development. Generally
the outputs of a number of turbines are collected together at an offshore substation for onward
transmission to shore. Once the output of a number of turbines has been collected, an alternative to
AC transmission to shore is to use DC transmission. New DC transmission technology uses IGBT
voltage source converters at the sending end (and possibly also at the receiving end) allowing total
control at the sending end. For higher powers, conventional DC technology using GTOs can be
used. Interested readers are referred to Kirby et al. (2002).

Currently offshore wind farms are sufficiently close to shore that AC cables can be used, although
a number of cables may be necessary to transmit the required power. One practical point to note is
that the distance to shore also includes the shore-based cable run to the shore substation. In some
situations this can be substantial.

The problems associated with transferring electrical power to shore from offshore wind farms
is also faced by tidal stream generators and wave generators. Tidal stream generators tend to be
relatively close to shore, although laying cables in the strong currents where these turbines are
situated is not straightforward. Wave energy is in its infancy with the large amounts of resource
available some way offshore. Harnessing this energy and transferring it to shore poses a significant
challenge.

7.9 Fault Behaviour of Induction Generators

Section 7.7 described the steady-state behaviour of induction generators and how their power output
might change when used with wind turbines and subjected to changes in wind speed. However, as
with any generator, the wind turbine generator connected to the power system will be subjected to
system faults and its behaviour during and after these faults is important with regard to system
stability. This is examined here.

7.9.1 Fixed-Speed Induction Generators

Fixed-speed induction generators are normally regarded as ‘negative load’. That is, they generate
power whenever they can and do not contribute to system voltage or frequency support. Section
7.2 explained how these generators always consume reactive power and how this increases as slip
increases so that when a fault does occur and is subsequently cleared, these generators can have a
detrimental effect on the recovery of system voltage. To avoid this it is normal practice to disconnect
these generators from the system as soon as a drop in voltage is detected. The generators are then
reconnected once the system is restored to normal operation.
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G/box IG

Figure 7.33 Example turbine and fixed-speed induction generator system: G/box, gearbox; IG,
induction generator.

Notwithstanding this normal operation, it is instructive to examine the stability of an induction
generator following a fault assuming that it remains connected to the system. Consider the system
shown in Figure 7.33 where the turbine and induction generator are connected to the system through
a transformer and a short line. The effective impedance of the line and transformer will impact
on the generator torque–slip curve as described in Section 7.3. The sequence of events following
a three-phase-to-earth fault is shown in Figure 7.34 by reference to the torque–slip curve of the
generator. In Figure 7.34 the torque–slip curve has been inverted so that generator torque is now
positive. The torque produced by the turbine as the rotor speed changes is shown by the line τm.

Initially the electrical generator torque and the mechanical turbine torque are balanced
and the generator and turbine operate at a rotational speed ωr1 with a negative slip s1.
When the fault occurs at t = t0 the electrical torque drops to zero, point 2, and the me-
chanical torque accelerates the rotor and the speed increases. The fault is cleared at time
t = t1 when the rotor speed has increased to ωr3 and the slip to s3. At this point the system

τe
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s1 s3
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τ
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ωr
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Figure 7.34 Transient stability of a fixed-speed induction generator turbine system (generating
positive).
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voltage is restored and the electrical torque increases from zero to τ 5. The electrical torque is now
greater than the mechanical torque τ 4 and this acts like a braking torque reducing the speed of the
rotor until once again the steady operating point 1 is reached. This system is stable.

If the fault were on for a longer period and not cleared until time t = t2 the rotor speed would have
increased to ωr6 so that when the electrical torque is restored the electrical torque and the mechan-
ical torque are the same; this is the transient stability limit. If the fault were cleared at time t < t2

the system would be stable, at t > t2 the system would be unstable. This is shown in Figure 7.34.
Note that although a reasoning somewhat similar to that of the equal area criterion (see Chapter 5)

was applied above, the equal area criterion could not be applied to Figure 7.34 because the integral of
torque with speed is not energy but power. Moreover, re-establishing the flux requires time, so what
the diagram does is to show the main effect with regard to stability and that is the relative magnitudes
of the electrical and mechanical torques. Anything else would require detailed simulation.

A number of other factors described in Section 7.3 influence the above discussion. Firstly, when
the fault is removed the torque–slip curve will take a finite time to re-establish itself because the
flux inside the machine must be restored. This in turn will draw significant reactive power from
the network. This reactive power draw can depress the system voltage, so reducing the peak of
the torque–slip curve. It is for these reasons that detailed modelling of the induction machine as
described in Section 11.4 is required. Finally the transient stability limit could be increased by
changing the rotor resistance because this has the effect of moving the peak of the torque–slip curve
further to the left (Section 7.3).

7.9.2 Variable-Speed Induction Generators

Large, variable speed induction generators such as the DFIG, described in Section 7.5, and the
induction generator with a fully rated converter, Section 7.6, are both able to contribute to system
voltage and frequency control by controlling their reactive power output and, to some extent, their
real power output respectively. Such generators are required to ‘ride through’ a fault so that they can
contribute to system stability once the fault is removed. To achieve this requires complex control of
the power converters and interested readers are referred to Muller, Deicke and De Donker (2002),
Slootweg, Polinder and Kling (2001), Ekanayake, Holdsworth and Jenkins (2003a), Holdsworth
et al. (2003) and Xiang et al. (2006).

7.10 Influence of Wind Generators on Power System Stability

As discussed in Chapter 5, the synchronous generator is stiffly connected to the power system and
exhibits an inherently oscillatory response to a disturbance because its power output is approxi-
mately proportional to the sine of the rotor angle. For small values of the rotor angle, power is
proportional to the angle itself which produces spring-like oscillations – see Section 5.4.7 and also
Figure 7.16a. On the other hand, Section 7.3 explained that squirrel-cage (fixed-speed) induction
generators are coupled to the grid less stiffly than synchronous generators. Figure 7.16b shows
that the torque of a fixed-speed induction generator is proportional to the speed deviation (slip)
hence providing inherent damping of oscillations. This positive influence is counteracted by the
vulnerability of fixed-speed induction generators to system faults – see Section 7.9.

Damping due to variable speed DFIGs depends very much on the particular control strategy
employed. Section 7.5 explained that DFIGs have good control capabilities due to the possibility of
controlling both the magnitude and phase of the injected voltage. This makes it possible to design a
power system stabilizer that improves the damping of power swings without degrading the quality of
voltage control provided (Hughes et al., 2006). Fully rated converter systems effectively decouple the
generator from the grid, so they offer a very good possibility of improving the damping of power
swings. Hence the general conclusion is that a partial replacement of traditional thermal plants
employing synchronous generators, which exhibit a relative poor natural damping, by renewable
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generators, which exhibit a better damping, will improve the damping of electromechanical swings.
This effect will be counterbalanced to some extent by the highly variable nature of renewable sources
themselves, such as wind, marine or solar, but their variability may be effectively managed by either
using energy storage or part loading one of the turbines in a farm and using its spare capacity to
smooth power oscillations (Lubosny and Bialek, 2007).

The network effect of replacing large traditional generators by renewable ones will largely depend
on the system in question. Recall that the stability of synchronous generators deteriorates if they
are highly loaded, remote and operate with a low, or even leading, power factor. If renewable
plants are connected closer to the loads, then the transmission networks will be less loaded, which
will reduce reactive power consumption by the system and the voltages will rise. This effect can be
compensated by reactive power devices, such as reactors or static VAR compensators, but this would
require additional investment. If that is deemed uneconomical and the remaining synchronous
generators are used for reactive power compensation, their operating points would move towards
capacitive loading (leading power factor) so their dynamic properties might deteriorate. As the
number of synchronous generators remaining in operation is reduced due to increased penetration
of renewables, their overall compensation capabilities will also be reduced. Hence the overall effect
might be a deterioration of the dynamic properties of the system (Wilson, Bialek and Lubosny, 2006).

On the other hand, if the renewable sources are located further away from the main load centres,
as is the case for example in the United Kingdom, then power transfers over the transmission
network will increase. Higher transfers will mean larger voltage angle differences between network
nodes and deteriorated system dynamic properties (smaller stability margins).

Increased penetration of renewables might also affect frequency stability. Due to its construction,
a wind plant has smaller inertia and speed so that kinetic energy stored in it is reduced by a factor
of approximately 1.5 when compared with a traditional plant of the same rating. The reduction in
stored kinetic energy will have an effect on system operation and security because the amplitude of
frequency variations, discussed in Chapter 9, will increase.



P1: OTA/XYZ P2: ABC
c07 JWBK257/Machowski September 22, 2008 21:45 Printer Name: Yet to Come



P1: OTA/XYZ P2: ABC
c08 JWBK257/Machowski September 22, 2008 21:45 Printer Name: Yet to Come

8
Voltage Stability

Chapter 2 explained how an electrical power network is made up from many different elements, is
divided into transmission, subtransmission and distribution levels, and is often organized in such a
way that each level belongs to a different company. Because of its immense size, analysing a complete
power system is not possible, even using supercomputers, and normally the system is divided into
sensible parts some of which are modelled in detail and others more superficially. Obviously the
system model used must represent the problem being studied so that when analysing distribution
networks the transmission or subtransmission networks are treated as sources operating at a given
voltage. On the other hand, when analysing the transmission or subtransmission networks, the
distribution networks are treated (Section 3.5) as sinks of real and reactive power and referred to
as composite loads or simply loads.

A distribution network is connected to the transmission network at the grid supply point where
a change in voltage may cause complicated dynamic interactions inside the distribution network
itself due to:

� voltage control action arising from transformer tap changing;
� control action associated with reactive power compensation and/or small embedded generators;
� a low supply voltage causing changes in the power demand as a result of induction motors stalling

and/or the extinguishing of discharge lighting;
� operation of protective equipment by overcurrent or undervoltage relays, electromechanically

held contactors and so on;
� reignition of discharge lighting and self-start induction motors when the supply voltage recovers.

In this chapter the effect that actions such as these can have on voltage stability is examined using
the static characteristics of the composite loads introduced in Section 3.5. This simplified analysis
will help to give an understanding of both the different mechanisms that may ultimately lead to
voltage collapse and the techniques that may be used to assess the voltage stability of a particular
system. These techniques can then be extended to the analysis of large systems using computer
simulation methods (Taylor, 1994; Kundur, 1994; Van Cutsem and Vournas, 1998).

8.1 Network Feasibility

The system shown in Figure 8.1 is representative of the general power supply problem in that it
shows a generator supplying some composite load. Generally there will be some limits on the power
that can be supplied to the load and this will determine how stable the supply is. To analyse this

Power System Dynamics: Stability and Control, Second Edition Jan Machowski, Janusz W. Bialek and James R. Bumby
C© 2008 John Wiley & Sons, Ltd
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Figure 8.1 Equivalent circuit of the transmission link and its phasor diagram.

stability problem the composite load will be represented by its static voltage characteristics when
the problem becomes that of determining the solutions to the power network equations, if they
exist, and, if they do, determining what limits are placed on the solutions. This process is often
referred to as determining the network feasibility or determining the network loadability.

The network feasibility problem can be explained by using the simple system shown in
Figure 8.1. In this system the network is represented by an equivalent generator that can be
modelled in the steady state by an equivalent voltage source E behind an equivalent reactance Xg.
Under normal operating conditions the generator AVR will keep the terminal voltage constant
when the equivalent voltage source has a value equal to the terminal voltage V g and the equivalent
reactance is zero. However, if the AVR is not operative, or the equivalent generator is operating near
its excitation limit, then the field voltage will remain constant and the equivalent generator must
be modelled by its synchronous emf Ef acting behind its synchronous reactance Xd. In general the
resistance of the generator and transmission link is small and can be neglected, while the equivalent
reactance X must combine the source reactance with that of the transformer and the transmission
line. The real and reactive power absorbed by the load, PL(V ) and QL(V ), can be calculated from
the phasor diagram in Figure 8.1 by noting that IX cos ϕ = E sin δ and IX sin ϕ = E cos δ − V. This
gives

PL(V) = VI cos ϕ = V
IX cos ϕ

X
= EV

X
sin δ

QL(V) = VI sin ϕ = V
IX sin ϕ

X
= EV

X
cos δ − V2

X
.

(8.1)

The angle δ between the E and V phasors can be eliminated using the identity sin2 δ + cos2 δ = 1
to give

(
EV
X

)2

= [PL(V)]2 +
[

QL(V) + V2

X

]2

. (8.2)

This static power–voltage equation determines all the possible network solutions when the voltage
characteristics PL(V ) and QL(V ) are taken into account.

8.1.1 Ideally Stiff Load

For an ideally stiff load (Section 3.5) the power demand of the load is independent of voltage and
is constant:

PL(V) = Pn and QL(V) = Qn, (8.3)
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where Pn and Qn are the real and reactive power demand of the load at the rated voltage Vn.
Equation (8.2) can now be rewritten as

(
EV
X

)2

= P2
n +

[
Qn + V2

X

]2

. (8.4)

Substituting (8.4) into the equation Qn = Pn tan ϕ gives

P2
n + P2

n tan2 ϕ + 2Pn
V2

X
=

(
EV
X

)2

−
(

V2

X

)2

. (8.5)

After taking into account that tan ϕ = sin ϕ/ cos ϕ and sin2 ϕ + cos2 ϕ = 1 and after some simple
maths one gets

P2
n + 2Pn

V2

X
sin ϕ cos ϕ = V2

X2
(E2 − V2) cos2 ϕ. (8.6)

The left hand side of this equation is an incomplete square of a sum. Hence the equation can be
transformed to

(
Pn + V2

X
sin ϕ cos ϕ

)2

−
(

V2

X

)2

sin2 ϕ cos2 ϕ = V2

X2
(E2 − V2) cos2 ϕ

or

Pn + V2

X
sin ϕ cos ϕ = V

X
cos ϕ

√
E2 − V2 cos2 ϕ. (8.7)

The voltage at the load bus can be expressed per unit as V/E. The above equation can be
expressed as

Pn = − E2

X

(
V
E

)2

sin ϕ cos ϕ + E2

X
V
E

cos ϕ

√
1 −

(
V
E

)2

cos2 ϕ

or

p = −v2 sin ϕ cos ϕ + v cos ϕ
√

1 − v2 cos2 ϕ, (8.8)

where

v = V
E

, p = Pn

E2

X

. (8.9)

Equation (8.8) describes a family of curves with ϕ as a parameter. Figure 8.2 shows such a family
of curves for four values of ϕ. Because of their characteristic shape, the curves are referred to as nose
curves. For a lagging power factor (curves 1 and 2) the voltage decreases as the real load increases.
For a low lagging power factor (curve 4) the voltage initially increases and then decreases.

It will be shown later in this chapter that in the considered generator–load system shown in
Figure 8.1 the upper part of the nose curve (i.e. when the voltages are higher) is stable. The system
is unstable in the lower part of the characteristic. It should be emphasized that a condition of
the positive derivative dv/dp > 0 cannot be a criterion of stability as the curve v(p) has a positive
derivative in the upper part of the characteristic for a leading power factor (curve 4 in Figure 8.2).
Nevertheless, the usefulness of the nose curve is high in practice as the difference between a current
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Figure 8.2 A family of nose curves with ϕ as a parameter: (1) ϕ = 45◦ lag; (2) ϕ = 30◦ lag; (3)
ϕ = 0; (4) ϕ = 30◦ lead.

load and the maximum load determined by the peak of the characteristic is equal to the stability
margin for a given power factor.

It should be noted that for Qn = 0, that is for ϕ = 0, the peak of the nose curve occurs at p = 0.5,
that is for Pn = 0.5E2/X = E2/2X.

Nose curves V (P) illustrate the dependency of the voltage on real power of a composite load
assuming that the power factor is a parameter. The curves Q(P) discussed below are derived
assuming that the voltage is a parameter.

For a given value of V , Equation (8.4) describes a circle in the (Pn, Qn) plane as shown in
Figure 8.3a. The centre of the circle lies on the Qn-axis and is shifted vertically down from the
origin by V 2/X . Increasing the voltage V produces a family of circles of increasing radius and
downward shift, bounded by an envelope as shown in Figure 8.3b.

For each point inside the envelope, for example point A, there are two possible solutions to
Equation (8.4) at voltage values V 1 and V 2, as defined by the two circles, whereas for any point B
on the envelope there is only one value of V for which Equation (8.4) is satisfied. An equation for
this envelope can therefore be obtained by determining those values of Pn and Qn for which there
is only one solution of Equation (8.4) with respect to V . Rearranging Equation (8.4) gives

(
V2

X

)2

+
(

2Qn − E2

X

)(
V2

X

)
+ (

P2
n + Q2

n

) = 0. (8.10)
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Figure 8.3 Circles determining the power that can be delivered to an ideally stiff load: (a) one
circle for a given voltage V ; (b) a family of circles and their envelope.
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This is a quadratic equation in (V 2/X) and has only one solution when

� =
(

2Qn − E2

X

)2

− 4
(
P2

n + Q2
n

) = 0. (8.11)

Solving for Qn gives

Qn = E2

4X
− P2

n
E2

X

, (8.12)

which is the equation of an inverted parabola that crosses the Pn-axis at Pn = E2/2X and has its
maximum at

Pn = 0 and Qn MAX = E2

4X
. (8.13)

A point with coordinates Pn = E2/2X and Qn = 0 shown in Figure 8.3 corresponds to the peak
of the nose curve in Figure 8.2 when ϕ = 0, that is when Qn = 0.

The parabola described by Equation (8.12) is important as it defines the shape of the envelope
in Figure 8.3b that encloses all the possible solutions to the network equation (8.4). Each point
(Pn, Qn) inside the parabola satisfies two network solutions corresponding to two different values
of the load voltage V while each point on the parabola satisfies one network solution corresponding
to only one value of voltage. There are no network solutions outside the parabola. In other words,
it is not possible to deliver power equal to Pn and Qn corresponding to any point outside the
parabola.

8.1.2 Influence of the Load Characteristics

For the more general case the power demand will depend on the voltage as described by the voltage
characteristics PL(V ) and QL(V ). The possible solutions to Equation (8.2) will not now be bounded
by a simple parabola, as for PL(V ) = Pn, QL(V ) = Qn, but the shape of the solution area will vary
depending on the actual voltage characteristics as shown in Figure 8.4. In general the less stiff the
load, the more open the solution area. For the constant load discussed above, the solution area
corresponds to a parabola, Figure 8.4a. If the reactive power characteristic is a square function of
the voltage, QL(V) = (V/Vn)2 Qn, then the solution area opens up from the top, Figure 8.4b, so
that for Pn = 0 there is no limit on Qn. If the real power characteristic is linear PL(V) = (V/Vn)2 Pn

as in Figure 8.4c, then the solution area is bounded by two parallel, vertical lines. If both real
and reactive power characteristics are square functions of the voltage, PL(V) = (V/Vn)2 Pn and
QL(V) = (V/Vn)2 Qn, then there are no limits on the values of Pn and Qn as shown in Figure 8.4d.

Consider again the characteristics of Figure 8.4d where there are no limits on the real and reactive
power. This can be proved by expressing

PL(V) = Pn

(
V
Vn

)2

= Pn

V2
n

V2 = GnV2, QL(V) = Qn

(
V
Vn

)2

= Qn

V2
n

V2 = BnV2, (8.14)

which shows that the load is represented by an equivalent admittance Yn = Gn + jBn shown in
Figure 8.5. Varying the value of Pn and Qn from zero to infinity corresponds to changing the
equivalent admittance from zero (open circuit) to infinity (short circuit). As current will flow in the
circuit of Figure 8.5 for any value of Yn, so a solution of Equation (8.2) exists for any Pn and Qn.
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Figure 8.4 Dependence of the network solution area on the shape of the load characteristics.

This can be proved mathematically by substituting Equation (8.14) into Equation (8.2) when the
following formula is obtained

V = E√
(Gn X)2 + (Bn X + 1)2

, (8.15)

confirming that for any Gn, Bn a network solution for V always exists.

P  + LL jQ

Yn

X

VE

I

Figure 8.5 Transmission link loaded with an equivalent variable admittance.
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Figure 8.6 Equivalent circuit for determining the reactive power characteristic of the system.

8.2 Stability Criteria

For each point inside the envelope of network solutions, for example point A in Figure 8.3, there
are two solutions with respect to the voltage V : one with a higher and one with a lower value of
voltage. It is now necessary to examine which of these solutions corresponds to a stable equilibrium
point. This problem of voltage stability is considered in this section when different, but equivalent,
voltage stability criteria are derived.

8.2.1 The d�Q/dV Criterion

This classic voltage stability criterion (Venikov, 1978b; Weedy, 1987) is based on the capability of
the system to supply the load with reactive power for a given real power demand. To explain this
criterion it is convenient to separate notionally the reactive power demand from the real power
demand as shown in Figure 8.6. To distinguish between the power supplied by the source at the
load node and the load demand itself, let PL(V ) and QL(V ) be the load demand and PS(V ) and
QS(V ) be the powers supplied by the source to the load.

As the real power is always connected to the transmission link, then it holds that PL(V) = PS(V).
Similarly, during normal operation QL(V) = QS(V) but, for the purposes of stability analysis,
the link between QL(V ) and QS(V ) is notionally separated. QS(V ) is treated as the reactive
power supplied by the source and is assumed not to be determined by the reactive power de-
mand of the load. The real and reactive load powers are given by expressions similar to those in
Equation (8.1):

PL(V) = PS(V) = EV
X

sin δ and QS(V) = EV
X

cos δ − V2

X
. (8.16)

Eliminating the trigonometric functions using the identity sin2 δ + cos2 δ = 1 gives

(
EV
X

)2

= P2
L(V) +

[
QS(V) + V2

X

]2

, (8.17)

and solving for QS(V ) gives

QS(V) =
√[

EV
X

]2

− [PL(V)]2 − V2

X
. (8.18)

This equation determines the reactive power–voltage characteristic and shows how much reactive
power will be supplied by the source if the system is loaded only with the real power PL(V ) and
the load voltage is treated as a variable. For an ideally stiff real power load PL(V) = PL = constant
and Equation (8.18) takes the form of an inverted parabola as shown in Figure 8.7. The first
term in Equation (8.18) depends on the equivalent system reactance X and the load real power
PL and has the effect of shifting the parabola downwards and towards the right as illustrated in
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Figure 8.7 QS(V ) characteristic for PL = 0 and PL > 0.

Figure 8.7. For PL = 0 the parabola crosses the horizontal axis at V = E and V = 0 and has
a maximum at QMAX = E2/4X and V = E/2. For PL > 0 the maximum value of QS occurs at a
voltage

V =
√

[E/2]2 + [PL(V)X/E]2

which is greater than E/2.
If the reactive power of the notionally separated load is now reconnected to the system then

both the QS(V ) and QL(V ) characteristics can be drawn on the same diagram as in Figure 8.8a. At
equilibrium the supply must be equal to the demand, that is QS(V) = QL(V), and is satisfied by the
two equilibrium points V s and Vu. This corresponds to the situation shown in Figure 8.3b where
for one value of power demand, point A, there are two possible, but different, values of voltage
V1 �= V2.

The stability of both equilibrium points can be tested using the small-disturbance method. Recall
from Section 3.1.2, Figure 3.4, that an excess of reactive power was shown to produce an increase in
voltage while a deficit of reactive power resulted in a decrease in voltage. Now consider equilibrium
points in Figure 8.8a and assume that there is a small negative voltage disturbance �V . This will
result in the supplied reactive power QS(V ) being greater than the reactive power demand QL(V ).
This excess of reactive power will tend to increase the voltage and therefore force the voltage to return
to point s. If the disturbance produces an increase in voltage, the resulting deficit in reactive power
will force the voltage to decrease and again return to point s. The conclusion is that equilibrium
point s is stable.

QQ

uu

(b)(a)

ss

Q (V )L

Q (V )S

Q (V )L

Q (V )S

Q Q QS LV
V

VV

V u V uV s V sVx

Figure 8.8 QS(V ) and QL(V ) characteristics: (a) two equilibrium points; (b) illustration of the
classic stability criterion.
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On the other hand, a disturbance in the vicinity of the second equilibrium point u which decreases
the voltage will produce a deficit of reactive power with QS(V) < QL(V) which will force a further
decrease in voltage. As the disturbed system does not return to the equilibrium point, the equilibrium
point u is unstable.

The classic voltage stability criterion is obtained by noting from Figure 8.8b that the derivative
of the surplus of reactive power d(QS − QL)/dV is of opposite sign at the two equilibrium points: it
is negative at the stable point s and positive at the unstable point u. This is the essence of the classic
d�Q

/
dV stability criterion:

d(QS − QL)
dV

< 0 or
dQS

dV
<

dQL

dV
. (8.19)

In the simple system shown in Figure 8.6 the supplied real and reactive powers, expressed by
Equations (8.16), are functions of the two variables V and δ with increments given by

�QS = ∂QS

∂V
�V + ∂QS

∂δ
�δ

�PL = �PS = ∂PS

∂V
�V + ∂PS

∂δ
�δ.

(8.20)

Eliminating �δ from these two equations, and dividing the result by �V , gives

�QS

�V
= ∂QS

∂V
+ ∂QS

∂δ

(
∂PS

∂δ

)−1 [
�PL

�V
− ∂PS

∂V

]
, (8.21)

or

dQS

dV
≈ ∂QS

∂V
+ ∂QS

∂δ

(
∂PS

∂δ

)−1 [
dPL

dV
− ∂PS

∂V

]
, (8.22)

where the partial derivatives are obtained from the equations in (8.16) as

∂PS

∂δ
= EV

X
cos δ,

∂PS

∂V
= E

X
sin δ,

∂QS

∂δ
= −EV

X
sin δ,

∂QS

∂V
= E

X
cos δ − 2

V
X

. (8.23)

Substituting these partial derivatives into Equation (8.22) gives

dQS

dV
≈ E

X
cos δ − 2V

X
− EV

X
sin δ

X
EV cos δ

[
dPL

dV
− E

X
sin δ

]
= E

X cos δ
−

(
2V
X

+ dPL

dV
tanδ

)
.

(8.24)

This allows the stability condition defined in Equation (8.19) to be expressed as

dQL

dV
>

E
X cos δ

−
(

2V
X

+ dPL

dV
tan δ

)
, (8.25)

where the derivatives dQL/dV and dPL/dV are calculated from the functions used to approximate
the load characteristics.

Generally, for a multi-machine system, it is not possible to derive an analytical formula for the
stability criterion. However, by using a load flow program it is possible to obtain the system supply
characteristic QS(V ) by defining the load node under investigation as a PV node and executing the
program several times for different values of the node voltage V . The resulting QS(V ) characteristic
can then be compared with the load characteristic QL(V ) to check the stability condition.
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8.2.2 The dE/dV Criterion

The system equivalent emf E can be expressed as a function of the load voltage by solving
Equation (8.2) for E to give

E(V) =
√(

V + QL(V)X
V

)2

+
(

PL(V)X
V

)2

, (8.26)

where QL(V)X/V is the in-phase and PL(V)X/V the quadrature component of the voltage drop
I X shown in Figure 8.1.

An example of an E(V ) characteristic is shown in Figure 8.9 with the load normally operating at
a high voltage corresponding to the right hand side of the characteristic. As V is large, and much
greater than both the in-phase and quadrature components of the voltage drop, then, according to
Equation (8.26), a decrease in voltage will cause the emf E(V ) to fall. As V continues to decrease,
the QL(V)X/V and PL(V)X/V components become more important and below a certain value of
V , they will cause E(V ) to rise. Consequently, each value of E(V ) may correspond to two possible
solutions of the network equations with respect to V . As before, the stability of these solutions can
be examined using the small-disturbance method.

First consider the system behaviour at point s lying on the right hand side of the characteristic
E(V ) in Figure 8.9 and assume that the source emf E is maintained at a constant value. A decrease
in the load voltage by �V will produce a reduction in the emf E(V ) that is less than the source
emf E. As E is too large to maintain the lowered load, voltage V is forced to return to the initial
equilibrium value. Similarly, a voltage increase by �V results in the source emf E being smaller
than the emf required to maintain the increased load voltage V so that the source emf E again
forces the voltage to return to its initial value.

Now consider a disturbance that produces a voltage decrease by �V from the equilibrium point
u on the left hand side of the characteristic. This disturbance results in the source emf E being less
than the emf E(V ) required to maintain the lowered voltage. As E is too small, the load voltage
further declines and does not return to its initial value. The conclusion is that point u is unstable.

From these discussions it is apparent that the system is stable if the equilibrium point lies on the
right hand side of the characteristic, that is when

dE
dV

> 0. (8.27)

Venikov (1978b) and Abe and Isono (1983) have both shown this condition to be equivalent to
the classic stability condition defined in Equation (8.19).

Using the stability condition defined in Equation (8.27) to study the stability of a multi-node
system is rather inconvenient when a load flow program is used. The derivative dE/dV is based

0

u s

V V
V

∆

∆ ∆

∆

E

E

(V)E

E = const

E

Figure 8.9 Illustration to the stability criterion dE/dV > 0.
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on the equivalent circuit of Figure 8.1. In the load flow program, the load node should be of the
PQ type (specified PL and QL, unknown V and δ) which does not allow the voltage to be set.
Consequently, the voltage increase necessary to obtain the derivative dE/dV has to be enforced
from the generator nodes (PV type) for which the voltage can be set. As there is normally a large
number of generator nodes in the system, a large number of load flows would have to be run to
account for all the possible combinations of changes in the voltage settings.

8.2.3 The dQG/dQL Criterion

To understand this criterion it is necessary to analyse the behaviour of the reactive power generation
QG(V ) as the load reactive demand QL(V ) varies. This approach is somewhat different to that taken
in the two previous subsections in that QG(V ) now includes the reactive power demand of both the
load, QL(V ), and the network, I2X , whereas previously only the reactive power QS(V ) supplied by
the source at the load node was considered.

The equation determining QG(V ) is similar to Equation (8.1) but with E and V interchanged,
that is

QG(V) = E2

X
− EV

X
cos δ, (8.28)

where both V and δ depend on the demand PL(V ) and QL(V ). Equation (8.1) allows the second
component in this equation to be substituted to give

QG(V) = E2

X
− V2

X
− QL(V) or

V2

X
= E2

X
− QL(V) − QG(V). (8.29)

Substituting this expression into Equation (8.2) and performing some simple algebra gives

Q2
G(V) − E2

X
QG(V) + P2

L(V) + E2

X
QL(V) = 0, (8.30)

or

QL(V) = − Q2
G(V)
E2

X

+ QG(V) − P2
L(V)
E2

X

. (8.31)

For the case of the ideally stiff real power load with PL(V) = PL = constant, this equation describes
a horizontal parabola in the (QG, QL) plane as shown in Figure 8.10a. The vertex of the parabola
is at a constant QG value equal to E2/2X while the maximum value of QL depends on PL and for
PL = 0 the maximum is at E2

/
4X. Increasing PL shifts the parabola to the left along the QL-axis

but without any corresponding shift with respect to the QG-axis.
It is worth noting that the vertex of the parabola (the maximum value of QL for a given PL)

corresponds to a point on the envelope of the QL(PL) characteristics shown in Figure 8.3b and to
the vertex of the QS(V ) characteristic in Figure 8.7. Obviously for PL = 0 all three characteristics
give the same maximum value Qn MAX = E2/4X corresponding to Equation (8.13).

Figure 8.10b shows how the QG(QL) characteristic can be used to analyse the system stability.
Assuming that the reactive load demand QL is lower than its maximum value, there are always two
equilibrium points, that is two values of reactive generation corresponding to a given demand. At
the lower point s, a momentary disturbance �QL that increases the load reactive power demand
results in an increase in the generated reactive power while a disturbance that reduces the demand
results in a corresponding drop in the reactive power generation. As the generation follows the
demand, the lower equilibrium point s is stable. The situation is reversed at the upper equilibrium
point u. Here an increase in QL produces a reduction in QG while a reduction in QL produces
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Figure 8.10 Generation and load characteristics: (a) QG (QL) with PL as a parameter; (b) the
small-disturbance method applied to the QG (QL) characteristic.

an increase in QG. As the changes in reactive generation are now in the opposite direction to the
changes in demand, the upper equilibrium point u is unstable.

Consequently, the system is stable if a small change in reactive load demand produces a change
in the generation which has the same sign or, in other words, the derivative dQG/dQL is positive:

dQG

dQL

> 0. (8.32)

It is worth noting that at the maximum loading point at the nose of the QG(QL) characteristic
the derivative dQG/dQL tends to infinity.

The characteristic defined by Equation (8.31), and shown in Figure 8.10, is a parabola only for the
ideally stiff real power load, PL(V) = PL = constant. For a voltage-dependent load characteristic
PL(V ) will vary with voltage when it is not possible to obtain an explicit expression for QL(QG) with
PL(V ) as a parameter. However, the QL(QG) characteristic can be obtained iteratively by solving
the network equations for given values of load demand, PL and QL, and emf E at the generator
node.

The main advantage of the dQG/dQL criterion is the ease with which it can be used with a load
flow program to analyse a multi-node system (Carpentier, Girard and Scano, 1984; Taylor, 1994).
The generated reactive power QG is replaced by the sum of all the generated reactive powers at all
the generator nodes, while the derivative is replaced by the quotient of the sum of all the generated
reactive power increments over the increment of the reactive load demand at the examined load
node, that is

∑
�QGi

/
�Q

L
.

8.3 Critical Load Demand and Voltage Collapse

Figure 8.4 showed how the network solution area depends on the shape of the load characteristic and
Figure 8.8 illustrated the classical d�Q/dV stability criterion. Figure 8.11 extends this discussion
and shows how the network equations may have two solutions, one solution or no solution at all
depending on the relative position and shape of the QL(V ) and QS(V ) characteristics.

In Figure 8.11a there are two equilibrium points, corresponding to the intersection of the QL(V )
and QS(V ) characteristics, of which only point s is stable. For the special case of QL(V) = constant
and PL(V) = constant these two voltage values correspond to the voltages V 1 and V 2 designated
by point A in Figure 8.3b, only one of which will be stable. For the more general case of QL(V) �=
constant and PL(V) �= constant shown in Figure 8.4b–d, then a point equivalent to A in Figure
8.3b will exist somewhere inside the envelope with two voltage solutions depicted by the general
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Figure 8.11 Relative position of the generation and load characteristics: (a) two equilibrium points;
(b) a single critical equilibrium point; (c) no equilibrium points.

points u and s in Figure 8.11a. If the point lies on the envelope then there is only one equilibrium
point and this corresponds to the one intersection point shown in Figure 8.11b. The power system
is then in a critical state, the point is referred to as the critical point and its coordinates are the
critical power and the critical voltage. Outside the network solution area in Figure 8.4 there are no
equilibrium points and this corresponds to the QL(V ) and QS(V ) characteristics having no point of
intersection as in Figure 8.11c where the QL(V ) characteristic lies above the QS(V ) characteristic.
In general the area of network solution shown in Figure 8.4 is known as the steady-state voltage
stability area.

Remember that Figure 8.11 has been drawn for the special case of the ideally stiff load with
respect to real power, PL(V) = PL = constant, so that the critical power Qcr, Pcr is defined by the
coordinates (Qcr, PL) and only Qcr and V cr are marked on Figure 8.11b.

8.3.1 Effects of Increasing Demand

A slow increase in the system demand, such as that due to the normal daily load variations, can
have two detrimental effects on the voltage stability. According to Equation (8.18) an increase in
the real power lowers the QS(V ) characteristic as shown in Figure 8.7, while an increase in the
reactive power raises the QL(V ) characteristic. As a consequence the stable equilibrium point s
moves towards smaller values of voltage and the unstable equilibrium point u moves towards larger
values of voltage. As the demand further increases, the equilibrium points move closer together
until they finally merge at the critical equilibrium point shown in Figure 8.11b.

When a load operates at this critical point, then any small increase in the reactive power demand
will produce a deficit in the reactive power, the reactive power demand will be greater than supply,
and the voltage will reduce. As the voltage reduces, the deficit in reactive power increases and the
voltage falls even further until it eventually falls to a very small value. This phenomenon is generally
known as voltage collapse although in some countries the more graphic term of voltage avalanche
is used. Two forms of voltage collapse are identified in the literature. When the voltage collapse is
permanent some authors refer to it as a total voltage collapse (Taylor, 1994). On the other hand,
the term partial voltage collapse is used when a large increase in demand causes the voltage to fall
below some technically acceptable limit. As a partial voltage collapse does not correspond to system
instability, it is perhaps better to consider the system as being in an emergency state since the system
still operates, albeit at a reduced voltage.

An example of an actual voltage collapse is shown in Figure 8.12 (Nagao, 1975). In this figure
curve 2 represents a typical morning period when the voltage drops slightly as the power demand
increases but then recovers by a small percentage during the lunch break as the power demand
reduces. At about 13:00, after the lunch break, the power demand again builds up and the voltage
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Figure 8.12 An example of the voltage collapse (Nagao, 1975): (1) voltage variations during the
day of the voltage collapse; (2) voltage variations during the previous day.

drops. However, on one particular day, curve 1, the overall system load is greater, and the local
voltage smaller, than normal so that as the load starts to increase after the lunch break, the voltage
reaches its critical value and then collapses. The system operators then intervene and, after a long
interruption, manually restore the normal operating conditions.

From the power system security point of view, knowledge of the critical power and voltage is
very important as the operating voltage, and power, at the system nodes should be kept as far
as possible from their critical values. Unfortunately the nonlinearity of the voltage characteristics
makes it impossible to derive a general formula for the critical voltage that is valid for any type of
active and reactive power variations even assuming a simple power system model. However, some
simple iterative formula can be developed if the following three assumptions are made:

1. That when the load demand increases, the power factor is maintained constant by reactive power
compensation in the consumer load so that

Pn(t)
P0

= Qn(t)
Q0

= ξ, (8.33)

where Pn(t) and Qn(t) are the nominal values of the load demand at the time instant t, P0 and
Q0 are the initial values of the demand and ξ is the coefficient of demand increase.

2. That the power characteristic of an industrial composite load, with a large number of induction
motors, can be approximated by the polynomials (Section 3.5.4)

QL

Qn
= a2

(
V
Vn

)2

− a1

(
V
Vn

)
+ a0,

PL

Pn
= b1

(
V
Vn

)
, (8.34)

that is by a parabola and a straight line respectively.
3. That the load composition is constant thereby making the coefficients a0, a1, a2 and b1 constant.

Equation (8.33) allows the characteristics defined in Equation (8.34) to be converted to the
following form:

QL = ξ [α2V2 − α1V + α0], PL = ξβ1V, (8.35)

where

α2 = Q0

V2
n

a2, α1 = Q0

Vn
a1, α0 = Q0a0 β1 = P0

Vn
b1.
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Substituting the second of the equations in (8.35) into Equation (8.18) gives

QS(V) = V

√(
E
X

)2

− ξ 2β2
1 − V2

X
. (8.36)

Figure 8.11b shows how, at the critical point, the supply characteristic and the demand power
characteristic are tangential to each other, which allows the value of the critical voltage V cr to be
found by solving the following two equations:

QS(Vcr) = QL(Vcr), (8.37)

dQS

dV

∣∣∣∣
V=Vcr

= dQL

dV

∣∣∣∣
V=Vcr

. (8.38)

Substituting for QS and QL from Equations (8.35) and (8.36) gives

Vcr

√(
E
X

)2

− ξ 2
crβ

2
1 − V2

cr

X
= ξcr

(
α2V2

cr − α1Vcr + α0
)
, (8.39)

√(
E
X

)2

− ξ 2
crβ

2
1 − 2

Vcr

X
= ξcr (2α2Vcr − α1) . (8.40)

Equation (8.40) determines the critical voltage as a function of the system parameters and an
unknown coefficient ξ cr of the demand increase as

Vcr =

√(
E

β1 X

)2
− ξ 2

cr + α1
β1

ξcr

2 α2
β1

ξcr + 2
β1 X

. (8.41)

Multiplying Equation (8.40) by (−V cr) and adding the result to Equation (8.39) gives

V2
cr

X
= ξcr

[
α0 − α2V2

cr

]
, (8.42)

from which finally

ξcr = 1
α0 X
V2

cr
− α2 X

. (8.43)

Equations (8.41) and (8.43) can now be used in an iterative calculation to find the critical voltage
V cr and the critical demand increase ξ cr.

Example 8.1

A composite load of rating Sn = (150 + j100) MVA and Vn = 110 kV is supplied from the network
by a 130 km, 220 kV transmission line with a reactance of 0.4 �/km via two parallel 160 MVA
transformers, each with a reactance of 0.132 pu. Assume that the system can be replaced by
a 251 kV voltage source with a reactance of 13 � and that the load characteristics in kV and
MVA are PL = 0.682ξV and QL = ξ (0.0122V2 − 4.318V + 460). Find the critical voltage and
the critical coefficient of the load demand increase.
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Simple calculation leads to the parameter values shown in Figure 8.13. Equations (8.41) and
(8.43) then give

Vcr =
√

18.747 − ξ 2
cr + 6.331ξcr

0.035 78ξcr + 0.0345
, ξcr = 1

39100
V2

cr
− 1.037

. (8.44)
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=
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Figure 8.13 Illustration for Example 8.1: (a) equivalent circuit with parameters calculated at
220 kV; (b) initial characteristics; (c) characteristics at the critical state.

The initial substitution of ξ cr = 1 into the first of these equations gives V cr = 151.69. Substi-
tuting this value into the second equation gives ξ cr = 1.51. After five such iterations, the final
solution of ξ cr = 1.66 and V cr = 154.5 kV is obtained indicating that the system would lose
stability if the demand increased 1.66 times. The primary voltage V cr = 154.5 kV referred to
the transformer secondary winding gives 77.25 kV, that is 70 % of the rated voltage of 110 kV.
Figure 8.13b and c shows the system and the load characteristic in the initial and critical states.
Initially the system operated at point s at a voltage of 208 or 104 kV at the transformer secondary,
that is at 94.5 % of the rated voltage.

8.3.2 Effect of Network Outages

The relative position of the supply characteristic defined in Equation (8.18) depends on the equiv-
alent system reactance. Large changes in this reactance, such as those caused by network outages,
may lower the generation characteristic and cause voltage stability problems.
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Example 8.2

A composite load of Sn = (240 + j160) MVA and Vn = 110 kV is supplied from the network
by a double-circuit transmission line of length 130 km and reactance 0.4 �/km via two parallel
160 MVA transformers each with a reactance of 0.132 pu. The power system may be represented
by an emf of 251 kV acting behind an equivalent reactance of 13�. The load characteristics are:
PL = 1.09V and QL = 0.0195V2 − 6.9V + 736. Check the system stability after one of the lines
is tripped.

Figure 8.14 shows the load characteristic and the generation characteristic before, Q′
S, and

after, Q′′
S, the line is tripped. Tripping the line causes a reduction in the load voltage to about 170

or 85 kV on the secondaries of the transformers, that is to about 77 % of the rated voltage. The
system is on the verge of losing stability. Calculations similar to those in Example 8.1 show that
a demand increase by 3.8 % will result in the system losing stability. Due to the unacceptably low
voltage, the system is now in an emergency state with a high risk of instability.
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Figure 8.14 Illustration for Example 8.2: (a) equivalent circuit with parameters calculated at
220 kV; (b) voltage characteristics.

8.3.3 Influence of the Shape of the Load Characteristics

Figure 8.7 and Equation (8.18) demonstrate how an increase in the real power demand shifts
the vertex of the reactive power supply characteristic downwards. This observation has important
implications with regard to the voltage stability of systems where the real power varies with voltage.
For example, if the real power demand reduces with reducing voltage then the stability of the system
will be improved compared with when the real power characteristics is independent of voltage. This
situation is examined further in Example 8.3.

Example 8.3

For the system in Example 8.2 determine the supply characteristics after one of the transmission
lines is tripped assuming that the real power characteristics of the load (in MW) are as follows:

(1) PL = 240 = constant, (2) PL = 16.18
√

V, (3) PL = 1.09V, (4) PL = 0.004859V2.

The four real power characteristics are shown graphically in Figure 8.15a with curve 1 representing
an ideally stiff load. Curves 2, 3 and 4 represent voltage-sensitive loads. The corresponding
reactive power supply characteristics can be easily determined using Equation (8.18) and are
shown in Figure 8.15b. For the ideally stiff load, curve 1, the system has no equilibrium points
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and line tripping results in immediate voltage collapse. The slightly less stiff load 2 is in the critical
state and will also lose stability should the line trip. Load 3 is close to the critical state and will
lose stability when the demand increases by 3.8 % (see Example 8.2) while load 4 is more voltage
sensitive and operates with a greater safety margin. In this case stability will be lost if the demand
increases by about 15 %.

(a) (b)
P Q

V V

0 0100 100

100 100

200 200
1

1

2 2

3

3

4

4

200 200kV kV

MW MVAR QL
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Figure 8.15 Real and reactive power characteristics for Example 8.3.

8.3.3.1 Absolutely Stable Loads

Figure 8.4 showed how the network solution area depends on the shape of the load characteristic
with Figure 8.4d corresponding to a constant admittance load. The equivalent circuit for such a
load was shown in Figure 8.5 and Section 8.1 explained how for a load with such a characteristic
every equilibrium point for V > 0 is stable and the system cannot suffer voltage collapse. This can
also be proved using the classical dQ/dV criterion.

For a constant admittance load the PL(V ) characteristic is given by Equation (8.14) which, when
substituted into Equation (8.18), gives the reactive power supply characteristic as

QS = V




√(
E
X

)2

− (GnV)2 − V
X


 . (8.45)

The resulting characteristic is drawn in Figure 8.16 and shows that for any value of the load
conductance Gn the supply characteristic always crosses the origin at V = 0. Again from Equation
(8.14) the reactive power demand is given as QL = BnV2 so that the origin is always one of the
equilibrium points for any value of the load susceptance Bn. As the load susceptance increases, the

Q
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Bn
Q (4)L

Q (3)L

Q (2)L

Q (1)L

QS

s(4)
s(3)

s(2)
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Figure 8.16 A family of reactive demand characteristics for a fixed-load conductance Gn and
increased load susceptance Bn.
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parabola defined by QL = BnV2 becomes steeper but the stability condition (8.19) is satisfied for
all equilibrium points when V > 0. This is true even for the equilibrium point S(4) on the left hand
side of the supply parabola. The constant admittance load is therefore absolutely stable because no
value of Y L can cause the voltage to collapse, although a large value of the load admittance Y L will
result in an inadmissible low operating voltage.

8.3.4 Influence of the Voltage Control

Section 8.1 showed that the reactance of the equivalent system generator, and therefore the point of
constant voltage in the network model, depends on the voltage control capability of the generator.
Provided that neither the excitation limits nor the stator current limit are exceeded, then the AVR will
keep the generator terminal voltage constant and there is no need to add the generator synchronous
reactance Xd to the network equivalent reactance X in Figure 8.1. However, if any of the generator
current limits are met then the field voltage will be maintained constant and the generator must be
modelled by and emf Ef behind Xd. The modelling reactance must now be increased to include the
effect of Xd. Consequently, as the equivalent system reactance in the generator–line–load model
depends significantly on the voltage control capability of the generator so too will the voltage
stability.

Both the area of network feasibility, Section 8.1, and the characteristics used to analyse the
voltage stability, Section 8.2, depend on the equivalent reactance of the system. This reactance
occurs in two terms in Equation (8.18), the −V2/X term and the EV/X term, both of which
determine the steepness of the parabola and the position of its vertex. If X is large then the supply
characteristic parabola is shallow and its vertex is lowered as shown in Figure 8.7. This results in a
reduction in the maximum reactive power and hence the critical power.

Example 8.4

For the system in Example 8.2 determine the supply characteristic when the system is operating
with only one transmission line. Assume that the equivalent system generator is capable of keeping
the voltage at the sending end of the line constant.

Before the line is tripped the load operated at 208 kV (referred to the primaries of the trans-
formers). Figure 8.14 shows that the voltage drop across the source reactance gives the terminal
voltage V g = 245 kV. Assuming that the AVR keeps this voltage constant, the system can now
be represented by a voltage E = Vg = 245 kV = constant with zero internal reactance. The reac-
tance of one line, and two parallel transformers, give a total X = 52 + 40/2 = 72 �. Figure 8.17
shows that the supply characteristic is now much higher compared with when voltage control was
neglected. Calculations similar to those in Example 8.1 show that the system would lose stability
when the demand increases by about 12 %. Neglecting voltage control gave the critical demand
increase as 3.8 %.
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Figure 8.17 Generation and load characteristics analysed in Example 8.4. Q′
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It was assumed in the above example that the voltage regulator of the source supplying the
load was able to keep the terminal voltage constant. This is an idealized situation. In practice,
every source has a limited regulation range. For the synchronous generator, limitations of voltage
regulators were discussed in Section 3.3.4. The characteristic of the generator as the source of
reactive power was shown in Figure 3.22. That diagram shows that, after the limiting value of
the field (rotor) current or the armature (stator) current is reached, the reactive power capability is
quickly reduced as the voltage declines. The generator can no longer be treated as a constant voltage
source but rather as a source with a large internal reactance equal to the synchronous reactance.
For such a source, the generation characteristic QS is significantly lowered (curve Q′′

S in Figure 8.17)
and voltage stability may be lost via voltage collapse.

8.4 Static Analysis

The analysis so far has concerned the simple generator–infinite busbar system. Voltage stability
analysis of a more realistic representation of a multi-machine system supplying many composite
loads via a meshed network is much more complicated.

For network planning purposes the critical load power can be calculated offline using a modified
load flow computer program and the dQ/dV or dQG/dQL stability criterion (Van Cutsem, 1991;
Ajjarapu and Christy, 1992; Taylor, 1994; Van Cutsem and Vournas, 1998). The procedure is similar
to that described in Section 8.3 for the simple generator–line–load system and the idea is to bring
the system to a critical state by increasing the power demand of a chosen load or a group of
loads. The use of a load flow program allows a variety of effects such as generator voltage control,
reactive power compensation, the distribution of real power among the generation units with active
governors, the voltage characteristics of the loads, and so on, to be included.

Unfortunately the method is computationally time consuming and cannot be used for online
applications, such as steady-state security assessment, which require a fast assessment of the voltage
stability conditions and an estimation of how far a given operating point is from the critical state.
The distance from the critical state is usually quantified by one of the so-called voltage stability
indices (Kessel and Glavitsch, 1986; Tiranuchit and Thomas, 1987; Löf et al., 1992 among others).
A number of different indices are discussed by Taylor (1994).

8.4.1 Voltage Stability and Load Flow

Section 8.3 showed that when power demand increases to the critical value, there is only one solution
of the network equation and it corresponds to the intersection of the demand characteristic QL(V )
with the system characteristic QS(V ). If the demand depends on voltage then its characteristic
QL(V ) is bent at an angle corresponding to the coefficient kQV referred to as the voltage sensitivity
(Figure 3.26). In that case (Figures 8.11 and 8.13) the critical point is near the peak of the system
characteristic QS(V ). On the other hand, the voltage characteristic of an ideally stiff load is a
horizontal line, QL(V) = Qn = constant, and the critical point corresponds exactly to the peak of
the system characteristic QS(V ), that is the point at which dQS/dV = 0.

Real and reactive power of an ideally stiff load are correlated by the equation Qn = Pn tan ϕ.
Hence, for a given tan ϕ, real power reaches a maximum when reactive power reaches a maximum.
This means that at the critical state when dQS/dV = 0 then also dPn/dV = 0. This corresponds
to the peak of the nose on the nose curve (Figure 8.2). Hence, when the demand approaches the
critical value of the ideally stiff load, the following holds:

dP/dV → 0 and dQ/dV → 0, (8.46)

that is the derivatives of real and reactive power calculated from the network equations tend to zero.
This observation is the basis for determining the critical power demand using load flow programs.
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8.4.1.1 Critical Power Demand

Section 3.6 explained that the network equations can be linearized at a given operating point using
 �P

- - - - -
� Q


 =


 H M

- - - - - - -
N K





 �δ

- - - -
�V


 or �y = J�x, (8.47)

where J is the Jacobi matrix. In the critical state for nonzero voltage changes (i.e. for �x �= 0) the
power changes are equal to zero (i.e. �y = 0). Hence the equation J�x = 0 is obtained and has a
non-trivial solution �x �= 0 if and only if det J = 0. Thus, when the demand is critical

det J = det


 H M

- - - - - - -
N K


 = 0, (8.48)

that is the determinant of the Jacobi matrix is zero and the matrix is singular. Such a point is
referred to as the bifurcation point.

The critical state can be reached for different scenarios of power demand increase. Demand may
be assumed to increase at a single load or in a given area or a subsystem. Starting from a base
(typical) load flow, demand at chosen loads is increased stepwise and a new load flow is calculated.
At each step, the determinant of the Jacobi matrix is calculated and its variation is monitored. If
det J approaches zero, it can be concluded that the system approaches the critical state. Obviously
the closer it is to the critical state, the less convergent the iterative process of solving the network
equations becomes. At the critical state the iterative process of solving the network equations based
on the Newton method stops converging.

At each step, when consecutive load flows are determined, additional factors affecting voltage
stability can be taken into account, such as the voltage characteristics of the loads, transformer tap
ratio control, generator voltage control and its limits. This obviously requires that the load flow
program is equipped with appropriate procedures. Nose curves can be determined at each step of
increasing demand so that the simulation results can be shown graphically as in Figure 8.2.

Nose curves can be determined for individual composite loads or for load areas containing
electrically close composite loads. The tip of a nose curve determines the critical real power demand.
Obviously, when determining the real power nose curve, it is necessary to model in such a reasonable
way that when real demand increases in each simulation step, reactive power increases too.

If, similar to (8.33), ξ denotes the coefficient of demand increase, then the critical value of this
coefficient is given by ξcr = Pn MAX/P0, where P0 is power demand at given operating conditions
while pnMAX is the critical power demand corresponding to the tip of the determined nose curve. An
example of the application of that methodology will be discussed in Section 8.5.2 (see Figure 8.20).

8.4.1.2 V– Q Sensitivity Analysis

In Figure 8.6 the system characteristic QS(V ) was obtained assuming that the voltage at the load
node is variable and that the source voltage and the real power of the load are constant parameters.
Similar assumptions can be made when considering the network equation (8.47). The assumption
that real powers are constant corresponds to �P = 0. Now, using the partial inversion described
in Appendix A.2, Equation (8.47) gives

� Q = (K − NH−1 M)�V, (8.49)

or

�V = W� Q, (8.50)
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where

W = (K − NH−1 M)−1. (8.51)

Equation (8.50) describes the sensitivity of nodal voltages to the changes in reactive power in system
nodes. It can be used to assess the influence of reactive power compensation at a given node, or
changes in reactive power produced by a generator, on nodal voltages. This type of investigation is
referred to as V −Q sensitivity analysis. The diagonal elements of (8.51) determine the slope of the
characteristic QS(V ) at a given linearization point of the network equations.

8.4.2 Voltage Stability Indices

The discussed coefficient ξcr = Pn MAX/P0 may be treated as a measure of voltage stability margin
from the point of view of demand increase. Voltage stability criteria discussed in Section 8.2 may
also be used to determine voltage stability indices.

A voltage stability index based on the classical dQ/dV criterion can be constructed by ob-
serving that as the load demand gets closer to the critical value, both the equilibrium points
shown in Figure 8.11 move towards each other until they become one unstable point. As shown in
Figure 8.8b, there is always a point between the equilibrium points, of voltage V x, such that

d(QS − QL)
dV

∣∣∣∣
V=Vx

= 0. (8.52)

As the power demand of the composite load increases, the voltage V x tends towards the critical
voltage V cr. A voltage proximity index can be therefore defined as (Venikov, 1978b)

kV = Vs − Vx

Vs
, (8.53)

where V x must satisfy Equation (8.52). In practice, calculating the proximity index defined by
Equation (8.53) is quite cumbersome as it requires a fragment of the generation characteristic
QS(V ) to be determined by means of a load flow program. An alternative proximity index that is
easier to determine is the value of the derivative

k�Q = d(QS − QL)
dV

Vs

Qs
(8.54)

calculated near a given equilibrium point. As the load demand tends towards the critical value, the
index (8.54) tends towards zero.

Yet another voltage proximity index can be derived directly from the dQG/dQL criterion as

kQ = dQG

dQL
. (8.55)

When the network is lightly loaded the reactive power absorbed by the network is small so that
the increment in the generation caused by the increment in the load demand is almost equal to the
increment in the load demand itself and the index defined in Equation (8.55) is near unity. When
the system approaches the critical state, the index tends to infinity (Figure 8.10). The value of this
index can be calculated for a multi-node system using a load flow program.

Currently the problem of voltage stability is a rapidly developing research area with many new
papers appearing either proposing new proximity indices and improved methods of calculation, or
suggesting how proximity indices can be identified online using local measurements.
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8.5 Dynamic Analysis

The voltage stability analysis presented so far in this chapter has assumed that the loads can be
represented by their static voltage characteristics. Although this is useful to help understand the
principles of voltage stability, and its relation to the network feasibility problem, the static load
voltage characteristics can only approximate the real behaviour of the composite load for slow
voltage variations. In practice the actual behaviour of both the composite load and the system is a
tightly coupled dynamic process that is influenced by the load dynamics, especially induction motor
dynamics, the automatic voltage and frequency control equipment, and by the operation of the
protection systems. Any, or all, of these factors may speed up, slow down, or even prevent voltage
collapse.

8.5.1 The Dynamics of Voltage Collapse

To complement the static considerations of the previous sections a few examples of some typical
voltage collapse scenarios will now be briefly discussed (Taylor, 1994; Bourgin et al., 1993).

8.5.1.1 Scenario 1: Load Build-Up

Section 8.3 explained how voltage collapse can result from a very large build-up of load, particularly
during periods of heavy demand, so that the power demand exceeds the critical value as determined
by the network parameters. In this scenario the main factors contributing to voltage collapse
are:

1. The stiffness of the load characteristics continuing to demand high values of active and reactive
power despite voltage dips in the load area. As Chapter 3 explained, induction motors are mainly
responsible for producing a stiff load characteristic.

2. The control of tap-changing transformers in distribution and subtransmission networks main-
taining constant voltage, and therefore high active and reactive power demand, when the supply
voltage dips. High demand is undesirable in the emergency state.

3. The limited ability for reactive power control by the generators. Due to field and armature current
limits, a high reactive power demand by the system loads may cause the generators to lose their
ability to act as a constant voltage source. The generator then behaves like a voltage source
behind the synchronous reactance and its terminal voltage reduces.

A voltage collapse due to load build-up may be caused by some, or all, of the above factors.
The dynamics of the various voltage control devices (generators, compensators, transformers)
may interact in such a way that the actual voltage collapse is different to that predicted by static
considerations.

Voltage changes during voltage collapse were shown in Figure 8.12. The dynamics contain a
long-term drift of voltage caused by a slow increase in the system load.

8.5.1.2 Scenario 2: Network Outages

As seen in previous sections of this chapter, the network parameters play a crucial role in deter-
mining the maximum power that can be delivered to the load areas. Tripping one of the lines in
the power grid increases the equivalent reactance between the equivalent voltage source and the
load thus increasing voltage drops in lines and therefore depressing network voltages. Reduced
voltages and increased equivalent reactance reduce the critical power and increase the probability
of voltage collapse. Generator tripping has a similar effect in that it not only increases the equiva-
lent system reactance, but also reduces the systems capability to generate real and reactive power.
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Figure 8.18 An example of voltage collapse initialized by network outage.

The dynamics of the various voltage control devices in the system can again influence the actual
scenario.

Typical voltage changes during voltage collapse are shown in Figure 8.18. The dynamics contain
about 10 seconds of transient oscillations caused by the outage and a drift of voltage caused by a
slow increase in reactive power deficit in the system while taking into account the actions of various
control devices and their limiters.

8.5.1.3 Scenario 3: Voltage Collapse and Asynchronous Operation

Voltage collapse at one, or a few, of the network nodes may cause the voltage to dip at neighbouring
nodes leading to voltage collapse at these nodes. The voltage then dips at other nodes so propagating
throughout the network and affecting the synchronous generators. If the affected generators are
weakly connected with the system they may lose synchronism.

A voltage dip, accompanied by a reduction in the real power demand and an increase in the
reactive power demand, has a similar effect on the synchronous generator as a short circuit in the
network. An example of just such behaviour is shown in Figure 8.19 where the tripping of line L2
results in the generator and the load operating through one, quite long, line. The load is in the
critical state and a small increase in the load demand results in voltage collapse and the generator
losing synchronism with the rest of the system. The load voltage then undergoes periodic voltage
variations characteristic of asynchronous operation. The asynchronously operating generator must
now be tripped from the system, which further deteriorates the situation at the load node leading
to an eventual total voltage collapse.
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Figure 8.19 Loss of synchronism caused by the voltage collapse: (a) schematic diagram of the
system; (b) voltage variations. Based on Venikov (1978b).

Source: VA Venikov
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8.5.1.4 Scenario 4: Phenomena Inside the Composite Load

As already mentioned, the stiffness of the load characteristics is one of the dominant factors
contributing to voltage collapse. However, the dynamic response of the composite load may result
in the dynamic and static load characteristics being different. This difference is mainly attributed to
induction motors and may result in a reduction in the system stability ultimately leading to voltage
collapse. For example, a rapid, severe voltage dip, such as that which occurs during a slowly cleared
short circuit, can cause a reduction in the motor torque and consequent motor stalling. As shown in
Section 3.5, a stalled induction motor demands reactive power further reducing the voltage stability
conditions. This may lead to other nearby motors stalling. In this scenario the voltage continues to
fall until the protective equipment, or the electromechanically held contactors, trip the motors from
the system thereby reducing the reactive power demand. The voltage will then start to recover but an
uncontrolled restoration of the composite load by, for example, heavy induction motor self-starts,
can again reduce the voltage and lead to a total voltage collapse.

8.5.2 Examples of Power System Blackouts

There have been a number of well-publicized blackouts in Europe and North America in the early
years of this millennium. Although in each case the blackout was caused by a specific technical
problem, the unprecedented concentration of blackouts has caused many observers to argue that
there are underlying systemic reasons for such a large number of disturbances occurring at more
or less the same time (Bialek, 2007). Increased liberalization of electricity supply industry in the
1990s has resulted in a significant increase in interarea (or cross-border) trades in interconnected
networks of North America and Europe. This means that the interconnected systems are used for
purposes they were not designed for. Interconnections grew by connecting self-sustained areas so
that tie-lines tend to be relatively weak and require a careful monitoring of tie-line flows (this will be
further discussed in Chapter 9). It should be emphasized that any transaction in a meshed network
may affect all the network flows, sometimes quite far away from the direct contract path linking
the source and the sink of a transaction. This is referred to as the loop flow effect (Section 3.7).
Loop flows may be a problem because interarea transactions are often not properly accounted
for when assessing system security by a TSO (Transmission System Operator) that does not know
about all the transactions affecting its area. That effect is compounded by increased penetration
of wind generation. Large changes of wind power due to changing weather patterns mean that
actual network flows may be quite different from predicted ones. All this means that the traditional
decentralized way of operating systems by TSOs, with each TSO looking after its own control
area and with little real-time information exchange, resulted in inadequate and slow responses
to contingencies. Bialek (2007) argues that a new mode of coordinated operation with real-time
exchange of information for real-time security assessment and control is needed in order to maintain
security of interconnected networks.

The remainder of this section is devoted to a description of blackouts related to voltage problems.
The first blackout discussed in this section was a textbook case of a voltage collapse due to a
combination of load growth and loss of power plants. In the other blackouts the voltage collapsed
due to cascaded tripping of transmission lines.

8.5.2.1 Athens Blackout in 2004

The blackout affecting over 5 million people in southern Greece, including Athens, has been
described by Vournas, Nikolaidis and Tassoulis (2006). It was well known that the Hellenic system
was prone to voltage instability due to long transmission distance between the main generation in
the north and west of Greece and the main load centre in Athens. Consequently, a number of system
reinforcements, such as new transmission lines, autotransformers and capacitor banks, were ordered
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Figure 8.20 PV curves: (1) before Athens blackout; (2) after the second unit tripped (Vournas,
Nikolaidis and Tassoulis 2006). Reproduced by permission of IEEE

in the run-up to the 2004 Olympic Games. The blackout happened when those reinforcements were
not fully commissioned.

The disturbance started just after midday on a hot July day when the load was on the increase
due to air-conditioning. A generating unit near Athens was lost and that brought the system to an
emergency state. Load shedding was initiated but it had not been fully implemented when another
unit at the same plant tripped. Curve 1 in Figure 8.20 shows the PV nose curve, simulated post-
mortem, just before the second unit tripped. The load was 9320 MW, which is slightly less than the
peak of the PV curve equal to about 9390 MW. Curve 2 in Figure 8.20 shows the simulated PV
curve after the second unit tripped. Clearly the PV curve moved left with the critical load of about
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Figure 8.21 Cascaded line trips depressing voltages during US/Canada blackout (US–Canada
Power System Outage Task Force, 2004).

Source: Final Report on the August 14, 2003 Blackout in the United States and Canada. US-Canada Power
System Outage Task Force, 2004
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9230 MW, which was about 90 MW less than the actual load. With no equilibrium point, voltage
collapse was inevitable. When voltages started to collapse, the undervoltage element of distance
relays in the north–south 400 kV lines opened, separating the southern part of the Greek system
from the northern part. The remaining generation in the southern part of Greece was tripped by
undervoltage protection leading to a blackout.
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Figure 8.23 The grid 10 s after the substation fault. Tripped transmission lines are shown by
dashed lines. Karlshamn Power Station was out of operation (Elkraft Systems, 2003).

Source: Elkraft Systems
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Figure 8.24 Voltage (solid line) and frequency (dashed line) measured at 400 kV connection be-
tween Sweden and Denmark (Elkraft Systems, 2003).

Source: Elkraft Systems

8.5.2.2 US/Canada Blackout in 2003

This widespread blackout affecting about 50 million customers in the United States/Canada has
been described in the report by the US–Canada Power System Outage Task Force (2004). The
direct cause of the disturbance was due to undetected cascaded tripping of transmission lines. Each
line trip caused increased loading on the remaining lines and the resulting lowering of voltages,
see Figure 8.21. Subsequent analysis has shown that the blackout was inevitable when a crucial
Sammis–Star transmission line was unnecessarily tripped by zone 3 of the distance protection (see
Section 2.5). The locus of a constant impedance determining a tripping threshold is a circle, see
Figure 8.22. The normal point of operation is shown by a cross outside the circle. However, high
currents and depressed voltages caused by earlier outages of other transmission lines caused a
lowering of the measured value of the apparent impedance measured by the relay as shown by a
cross inside the circle. The relay tripped the line causing rapid cascaded tripping of other lines and
generators and resulting in the blacking out of a large part of the United States and Canada.

8.5.2.3 Scandinavian Blackout in 2003

This blackout affected 2.4 million customers in eastern Denmark and southern Sweden and has
been described in the report by Elkraft Systems (2003). First a 1200 MW unit at Oskarshamn
Power Station tripped due to problems with a valve in the feedwater circuit and 15 min later a
double-busbar fault occurred at a substation in southern Sweden, which caused four 400 kV lines
and two units (1800 MW) at Ringhals Nuclear Power Station to trip, see Figure 8.23. Such a
heavy loss of generation and transmission caused heavy flows on the remaining transmission lines
supplying southern Sweden. Consequently, voltages started to fall heavily in southern Sweden,
where there was no generation left, but less so in eastern Denmark (Zealand) where local power
plants were able to keep up voltages, see Figure 8.24. Overloading caused further tripping of a
number of 130 and 220 kV transmission lines in southern Sweden and a consequent halving of
voltage there. The combination of heavy flows and low voltages caused, as during the US/Canada
blackout, tripping of zone 3 distance relays on a number of 400 kV lines in central and eastern
Sweden so that these areas were no longer electrically connected. Finally, 90 s after the substation
fault, the voltage fell to zero and a full blackout ensued.

8.5.3 Computer Simulation of Voltage Collapse

As mentioned above, voltage collapse is a dynamic process. The creation of a mathematical model
of a large-scale power system while taking into account detailed models of structure and dynamics
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of composite loads is practically impossible. It is, however, possible to create various task-oriented
dynamic models devoted to the investigation of some scenarios of voltage collapse.

Voltage collapse caused by load build-up (scenario 1) is a long-term process. The slow drift
of voltage may take many minutes or even hours, see Figure 8.12. Using dynamic simulation to
investigate such a process is not required. It is much easier to investigate a number of snapshots as
the disturbance progresses, using the static methods described in Section 8.4. The influence of all
reactive power compensation devices, voltage regulators and limiters of relevant regulators should
be taken into account.

Voltage collapse caused by network outages (scenario 2) and voltage collapse combined with
asynchronous operation (scenario 3) can be simulated using computer programs devoted to short-
and mid-term dynamic simulation. Such programs should include models of excitation and voltage
control systems of synchronous generators, with their limiters, as well as models of all shunt and
series FACTS devices and specialized reactive power compensation devices such as STATCOM.
Composite loads should be modelled using their dynamic equivalent models.

The simulation of voltage collapse due to phenomena inside the composite load (scenario 3)
requires the employment of specialized computer programs in which the transmission system is
modelled using dynamic equivalents but the distribution network is modelled in detail. In particular,
the on-load tap-changing transformers and their regulators should be modelled and dynamic models
should be used for groups of induction motors.

Examples of such models used for short- and mid-term dynamic simulation are described in
Chapter 11. Computer algorithms are described in Chapter 13.

8.6 Prevention of Voltage Collapse

Voltage collapse is a dangerous disturbance which may lead to a system blackout. Preventing voltage
instability requires action from personnel responsible for power system security at every stage:

� at the network planning stage;
� at the system operational planning stage;
� at the system operation monitoring and control stage.

During the network planning stage, reliability criteria must be satisfied for all possible contin-
gencies of at least N − 1 type. It should be ensured that for each contingency:

� maximum allowable voltage drops are not exceeded;
� stability margins for real and reactive power are large enough for each composite load and load

area.

Satisfying these criteria can be ensured by an appropriate expansion of the network in response
to the demand growth and by installing appropriate reactive power compensation and voltage
regulation devices in the system.

During operational planning and real-time monitoring and control, a desired voltage profile
should be continuously maintained and appropriate reactive power compensation devices activated.
An adequate reserve of real and reactive power should be maintained at the generators. Reserve is
the amount of power by which generators in operation can be additionally loaded without exceeding
the reactive power capability curve shown in Figure 3.19 and described in Section 3.3.4. For the
prevention of voltage collapse, the reserve of reactive power is more important. Such a reserve
provided by synchronous generators is necessary to cover quickly a reactive power deficit when
voltage collapse symptoms are detected.

The power capability curve (Figure 3.19) and the voltage characteristic (Figure 3.22) of a generat-
ing unit clearly show that a unit can support the system with additional reactive power if, at a given
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operating point, the reactive power output is within the area determined by the power capability
curve (curve G–F–E in Figure 3.19) and the unit operates within the voltage regulation range (curve
A–B in Figure 3.22) and with an adequate margin (point B in Figure 3.22).

Apart from satisfying the reliability criteria during the operational planning and real-time moni-
toring and control stages, each system should be equipped with additional defence facilities in order
to prevent a voltage collapse following extreme disturbances. The most commonly used methods
include the following:

1. Using emergency back-up reactive power reserve not used during normal operation.
2. Automatic fast start-up of back-up generation (hydro and gas turbines) when a growing power

imbalance appears.
3. Emergency increase of reactive power produced by generators in the areas of depressed voltages

at the expense of reduction of real power outputs, if there is a possibility of increased imports to
make up the resulting real power imbalance. This may be explained as follows. Covering reactive
power imbalance in a given area is most easily done locally. If local generators operate at the
limit of their power capability curves then any additional reactive power can be obtained only
by reducing their real power output (Figure 3.22). This results in a real power imbalance which
can be covered by increased imports (if possible).

4. Reduction of power demand in a given area by reducing voltages at load buses using on-load
tap-changing transformers. When reactive power imbalance appears in a given area and it is
not possible to increase reactive power generation, then real power demand may be reduced by
reducing voltages at load buses. This makes use of the characteristics of a typical composite
load (Figure 3.32) which show that the reactive power demand reduces with reduced voltages.
The method can be executed using an auxiliary control loop in the controller of the on-load
tap-changing transformer that controls the primary (supply) and secondary (load) side voltage.
Normally, if the primary voltage is higher than a threshold value, then when the secondary voltage
is dropping, the regulator changes the taps in order to increase the load voltage. However,
if there is a deficit of reactive power in the transmission network and the primary voltage
of the transformer supplying a distribution network is smaller than a threshold value, then
when the secondary voltage drops, the regulator should act in the opposite direction. It should
reduce voltage at the load bus and therefore reduce power demand. This could be referred to as
the reverse action of the on-load tap-changing regulator. Reverse action of the regulator is justified
only if a reduction in the voltage is accompanied by a reduction in reactive power demand. For
some consumers operating at reduced voltages (Figure 3.32a) a further reduction of voltages may
cause an increase in reactive power demand. If that happens, the reverse action of the regulator
must be blocked so that the situation does not deteriorate further.

5. With deep voltage sags, when the described prevention methods are not sufficient, customers can
be disconnected when a threshold voltage value is reached. This is referred to as undervoltage
load shedding. Threshold values should be chosen such that the shedding is activated only in
extreme situations caused, for example, by N − 2 or N − 3 contingencies.

Choosing the threshold values for the reverse action of the on-load tap-changing regulator
or undervoltage load shedding is a delicate matter. Those values can be determined based on
offline voltage stability analyses. In practice, when actual operating conditions are different from
the assumed ones, the calculated threshold values can be too optimistic, with a resulting voltage
collapse, or too pessimistic, with resulting unnecessary voltage reductions or load shedding. These
disadvantages of simple algorithms based on threshold values require further research on new
methods of voltage control in the vicinity of voltage collapse.

Two different approaches can be identified here. The first one is based on improving decision
methods based on local signals. One example is the application of a very sophisticated method
based on Hopf bifurcation theory and the Lyapunov exponents and entropy of the system (i.e. the
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a-eberle CPR-D Collapse Prediction Relay). The second approach uses measurements from a large
area, using WAMS or WAMPAC systems (described in Chapter 2 and CIGRE Report No. 316) in
order to take a decision.

8.7 Self-Excitation of a Generator Operating on a Capacitive Load

Voltage instability may also arise due to self-excitation, that is a spontaneous rise in the voltage. The
phenomenon is connected with the parametric resonance of RLC circuits and may appear when a
generator supplies a capacitive load.

8.7.1 Parametric Resonance in RLC Circuits

Figure 8.25 shows an RLC series circuit that has been connected to a voltage source for sufficient
time to fully charge the capacitor. The power source is then disconnected instantaneously allowing
the capacitor to discharge through resistance R and inductance L. The resulting current is periodic.
Its amplitude depends on whether the inductance is constant or periodic. When inductance L is
constant, the resulting current will be periodic (curve 1) and decays with time as the energy is
transferred back and forth from the capacitor to the coil with some of the energy being dissipated
in the resistance.

Now assume that during this process an external action is applied to the coil so as to produce a
periodic change in its inductance. This could be achieved by changing the length of the air gap in
the core. It will also be assumed that the inductance increases when the current reaches a maximum
and decreases when the current crosses zero. As the magnetic energy stored in the inductance is
Li2/2, the effect of the external force is to increase the stored magnetic energy by an amount
that is proportional to the increase in the inductance. This energy is not transferred back to the
external force when the inductance is decreased because the decrease in inductance takes place at
zero current when all the energy has already been transferred to the capacitor. This increase in the
stored energy results in an increase in the current when the energy is transferred back to the coil in
the next period (curve 2). If the changes in L are large, then the increase of the energy in the circuit
may be greater than the energy lost in the resistance and the current increases every period (curve
2). This increase in the current produces a cyclic increase in the voltage across the capacitor. This
phenomenon, known as parametric resonance, may also occur when the inductance of the coil is
changed sinusoidally as in the self-excitation of the synchronous generator described below.
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Figure 8.25 Current oscillations in RLC circuit depending on the changes in the inductance: (1)
constant inductance; (2) small variations in the inductance; (3) large variations in the inductance.
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8.7.2 Self-Excitation of a Generator with Open-Circuited Field Winding

Consider a salient-pole generator, shown in Figure 8.26, with open-circuited field winding and
loaded by an RC series circuit. The arrangement is rather unusual for a synchronous generator but
it will help to understand self-excitation.

For the salient-pole generator the air gap seen by the armature winding changes periodically
(Figure 8.26a) so that the reactance of the generator fluctuates between Xd and Xq. The phasor
diagram is shown in Figure 8.26b. If the generator has an open-circuited field winding then its
synchronous electromotive force is very small, Eq

∼= 0, and is due to the remnant magnetism.
Hence the generator current is initially very small because it is driven by a small emf induced by
remnant magnetism. Generator voltage V is delayed with respect to the current by angle ϕ and with
respect to the q-axis by angle δ = ϕ − β. Hence the real power can be expressed by

P = VI cos ϕ = VI cos(δ + β)

= VI cos δ cos β − VI sin δ sin β = VIq cos δ − VId sin δ. (8.56)

Inspection of the phasor diagram shown in Figure 8.26b yields

Iq Xq = V sin δ, Eq + Id Xd = V cos δ. (8.57)

Now Equation (8.56) can be transformed to

P = EqV
Xd

sin δ + V2

2
Xd − Xq

Xd Xq
sin 2δ. (8.58)

This equation is analogous to Equation (3.126) derived in Section 3.3.6. Real power consists of
two components, namely the synchronous power and the reluctance power. The former is due to
the interaction between the stator and rotor magnetic fields, while the latter is due to magnetic
asymmetry of the rotor and may be developed without any field excitation. In the considered case
of the generator with open-circuited field winding, that is for Eq

∼= 0, the synchronous power can
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Figure 8.26 Salient-pole generator supplying a capacitive load: (a) periodic changes of the syn-
chronous reactance; (b) block diagram and phasor diagram. For a generator with open-circuited
field winding OC = Eq

∼= 0.



P1: OTA/XYZ P2: ABC
c08 JWBK257/Machowski September 22, 2008 21:45 Printer Name: Yet to Come

Voltage Stability 331

be neglected and (8.58) simplifies to

P ∼= V2

2
Xd − Xq

Xd Xq
sin 2δ, (8.59)

which corresponds to the reluctance power only.
When the generator is loaded as in Figure 8.26, it may happen that real power I2R consumed by

the resistor R is smaller than the generated reluctance power so that a surplus of energy is created
which causes the generator current to increase. This happens when

V2

2
Xd − Xq

Xd Xq
sin 2δ > I2 R, (8.60)

or

V2

I2

Xd − Xq

Xd Xq
sin δ cos δ > R. (8.61)

In the case considered Eq
∼= 0 so that applying (8.57) gives sin δ = Iq Xq/V and cos δ ∼= Id Xd/V.

Substituting these equations into (8.61) gives

(Xd − Xq)
Id

I
Iq

I
> R, (8.62)

where Id = I sin β and Iq = I cos β. Consequently one gets

(Xd − Xq) sin β cos β > R. (8.63)

Angle β of the current phase shift can be determined using the phasor diagram:

tan β = AC

OA
= AB − BC

OA
= V sin ϕ − IXq

Vcos ϕ
=

V
I sin ϕ − Xq

V
I cos ϕ

= Zsin ϕ − Xq

Zcos ϕ
. (8.64)

The impedance triangle in Figure 8.26 gives Zsin ϕ = XC and Zcos ϕ = R. Now Equation (8.64)
yields

tan β = XC − Xq

R
. (8.65)

Noting that sin β cos β = tanβ/(tan2β + 1), and substituting from the above equation for tanβ into
(8.63), gives the condition for self-excitation:

(XC − Xq)(XC − Xd) + R2 < 0. (8.66)

This inequality is satisfied for all the points inside the circle in the impedance plane shown in
Figure 8.27. Self-excitation arises for all the parameters inside that circle.

Physically self-excitation can be explained by recognizing that the self-inductance of each phase of
the stator winding changes sinusoidally, due to the variable air-gap width, as the rotor rotates. These
periodic changes produce parametric resonance, and the resulting increase in the current. If R and
XC are constant, self-excitation also results in an increase in the generator terminal voltage. Outside
the circle shown in Figure 8.27, the energy supplied by the generator is too small to overcome the
resistance loss and self-excitation cannot happen.

If the generator had a linear magnetization characteristic, then self-excitation would lead to
an unlimited increase in the current and the terminal voltage of the generator. In reality both
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Figure 8.27 Synchronous self-excitation: (a) condition for self-excitation; (b) magnetization char-
acteristic and voltage changes.

reactances Xd and Xq decrease as the current increases. Figure 8.27b shows four characteristics.
The bold curve shows the generator voltage–current characteristic with saturation included. The
dashed lines Xd and Xq show the idealized characteristics when the generator opposes the cur-
rent with unsaturated reactances Xd and Xq, respectively. Line XC corresponds to the capacitor
voltage–current characteristic. As XC is between Xd and Xq, condition (8.66) is satisfied and self-
excitation occurs. However, as the voltage and the current increase, the armature saturates and
both Xd and Xq start to decrease. The voltage rise stops at point 1 where the saturated reactance
becomes equal to XC. Beyond point 1 the reactance XC is greater than the saturated reactance
Xd and condition (8.66) is not satisfied. Any momentary increase of the voltage above this point
results in the resistance loss exceeding the reluctance power, then the current drops and the sys-
tem returns to point 1. As a result the generator voltage settles down to a level corresponding to
point 1.

As the angle β between the current and q-axis (Figure 8.26) remains constant, self-excitation is
referred to the as synchronous self-excitation. In practice, synchronous self-excitation is rare but may
arise when a salient-pole generator, operating with a small field current, is connected to a lightly
loaded long transmission line. In such a situation the terminal voltage will increase but at a slower
rate than that shown in Figure 8.27.

8.7.3 Self-Excitation of a Generator with Closed Field Winding

Self-excitation can also occur when the excitation circuit is closed, but will be different in character
to the synchronous self-excitation described above. If the resistance of the field winding is neglected,
the field winding may be treated as a perfect magnetic screen and any change in the armature current
will induce an additional field current which completely compensates the change in the armature flux
linking with the rotor. This corresponds to the transient state of operation in which the generator
opposes the armature current with transient reactance X′

d (see Chapter 4). There is no q-axis in the
field winding so that X′

q �= X′
d. This is referred to as the transient saliency (see Table 4.2 and 4.3).

Real power generated per phase may be expressed by an equation similar to (8.59) as

P′ = V2

2

X′
q − X′

d

X′
d X′

q

sin 2δ, (8.67)

and is referred to as the dynamic reluctance power. As before, parametric resonance will only occur
if the dynamic reluctance power is greater than the real power I2R consumed by the resistor R.
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Similarly, as in Equations (8.60) and (8.66), the condition for dynamic self-excitation is satisfied
when

(XC − X′
q)(XC − X′

d) + R2 < 0. (8.68)

The condition (8.68) is satisfied inside a circle based on X′
d and X′

q as shown in Figure 8.28. If
magnetic saturation is neglected, then both the stator current and the field current, which opposes
the changes in the stator field, will increase to infinity, as energy is continuously supplied in every
cycle by the dynamic reluctance torque. Magnetic saturation limits the current increase but in a
different way than when the excitation circuit was open.

Initially the relative position of the phasors is as shown in Figure 8.28a and the dynamic reluctance
power causes a rapid increase in the armature current. This, according to the law of constant flux
linkage, is accompanied by an increase in the field current, segment OA in Figure 8.28b. As the
rotor iron saturates, the emf induced in the closed field winding decreases until the field current
experiences no further increase. The resistance of the closed field circuit now plays a deciding role
as the magnetic energy stored in the field winding starts to dissipate. This causes the field current
to decay and allows the armature flux to enter the rotor iron resulting in an increase in the d-axis
reactance. As a result the dynamic reluctance power decreases producing a corresponding decrease
in the armature current – segment AB in Figure 8.28b. At the same time the stator field begins
to slip behind the rotor field as the angle β changes, with the result that the machine operates as
an induction generator with its armature current sustained by the asynchronous induction power.
This continues until the resulting generator flux reaches a small shift with respect to the d-axis.
The conditions sustaining the asynchronous operation now cease to exist and the armature current
quickly vanishes – segment CO in Figure 8.28b. The whole cycle then repeats itself as denoted
by letters O′A′B′C′O in Figure 8.28b. The described resonance is referred to as the repulsive self-
excitation or asynchronous self-excitation.
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Figure 8.28 Repulsive self-excitation: (a) circuit diagram, area of self-excitation, phasor diagram;
(b) changes in the phasor of the armature current, the envelope of the armature current, the field
current.
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S

Figure 8.29 Possible cases of self-excitation: (a) connecting a generator to a no-load line; (b) a
fault at a neighbouring substation; (c) a close fault in a line with series capacitive compensation.

8.7.4 Practical Possibility of Self-Excitation

From a technical point of view, the possibility of a generator meeting the conditions for either
synchronous or asynchronous self-excitation is limited. Three possible situations are shown in
Figure 8.29.

Figure 8.29a depicts a case when a disconnected long transmission line is first connected to the
generating plant. This situation is similar to that shown in Figure 8.26 and may lead to synchronous
self-excitation. To prevent this, a transmission line should be connected first to the rest of the network
before connecting the generating plant.

Figure 8.29b shows a situation which may occur after a short circuit in a neighbouring substation.
The fault on the substation busbars is cleared by opening the circuit-breakers so that the generator
operates onto open-circuited lines. The sudden drop in real power load on the generator results in
an increase in the angular speed and frequency of the generator. This increase in frequency produces
a corresponding increase in the inductive reactances and a drop in the capacitive reactances. With
such reactance changes the likelihood of the condition for self-excitation being met is increased.

Figure 8.29c shows the case of a nearby short circuit in a line with series capacitive compensation.
A closed circuit is formed which has a high capacitance and a low reactance. This situation may
also lead to subsynchronous resonance as described in Section 6.7.3 and in Anderson, Agrawal and
Van Ness (1990).
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9
Frequency Stability and Control

Previous chapters have described how the generators in a power system respond when there is a
momentary disturbance in the power balance between the electrical power consumed in the system
and the mechanical power delivered by the turbines. Such disturbances are caused by short circuits
in the transmission network and are normally cleared without the need to reduce the generated or
consumed power. However, if a large load is suddenly connected (or disconnected) to the system, or
if a generating unit is suddenly disconnected by the protection equipment, there will be a long-term
distortion in the power balance between that delivered by the turbines and that consumed by the
loads. This imbalance is initially covered from the kinetic energy of rotating rotors of turbines,
generators and motors and, as a result, the frequency in the system will change. This frequency
change can be conveniently divided into a number of stages allowing the dynamics associated with
each of these stages to be described separately. This helps illustrate how the different dynamics
develop in the system. However, it is first necessary to describe the operation of the automatic
generation control (AGC) as this is fundamental in determining the way in which the frequency
will change in response to a change in load.

The general framework of frequency control described in this chapter was originally developed
under the framework of traditional vertically integrated utilities which used to control generation,
transmission and often distribution in their own service areas and where power interchanges between
control areas were scheduled in advance and strictly adhered to. Chapter 2 described liberalization
of the industry taking place in many countries in the world since the 1990s whereby utilities are
no longer vertically integrated generation companies that compete against each other and the
coordination necessary for reliable system operation, including frequency control, is undertaken by
Transmission System Operators (TSOs). The framework of frequency control had to be adapted to
the market environment in the sense that TSOs have to procure, and pay for, frequency support from
individual power plants. The way those services are procured differs from country to country so
the commercial arrangements will not be discussed in this book. However, the overall hierarchical
control framework has been largely retained, with only some changes in the tertiary control level,
as discussed later in this chapter.

The discussion will concentrate on frequency control in an interconnected power system, using
the European UCTE as the example. It is worth adding that the framework of frequency control in
an islanded system, such as in the United Kingdom, may be different. Also, the meaning of some
of the terms may differ from country to country.

Power System Dynamics: Stability and Control, Second Edition Jan Machowski, Janusz W. Bialek and James R. Bumby
C© 2008 John Wiley & Sons, Ltd
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9.1 Automatic Generation Control

Section 2.1 explained how an electrical power system consists of many generating units and many
loads while its total power demand varies continuously throughout the day in a more or less
anticipated manner. The large, slow changes in demand are met centrally by deciding at regular
intervals which generating units will be operating, shut down or in an intermediate hot reserve
state. This process of unit commitment may be conducted once per day to give the daily operating
schedule, while at shorter intervals, typically every 30 min, economic dispatch determines the actual
power output required from each of the committed generators. Smaller, but faster, load changes are
dealt with by AGC so as to:

� maintain frequency at the scheduled value (frequency control);
� maintain the net power interchanges with neighbouring control areas at their scheduled values

(tie-line control);
� maintain power allocation among the units in accordance with area dispatching needs (energy

market, security or emergency).

In some systems the role of AGC may be restricted to one or two of the above objectives.
For example, tie-line power control is only used where a number of separate power systems are
interconnected and operate under mutually beneficial contractual agreements.

9.1.1 Generation Characteristic

Section 2.2.3 discussed the operation of turbines and their governing systems. In the steady state the
idealized power–speed characteristic of a single generating unit is given by Equation (2.3). As the
rotational speed is proportional to frequency, Equation (2.3) may be rewritten for the ith generating
unit as

� f
fn

= −ρi
�Pmi

Pni
,

�Pmi

Pni
= −Ki

� f
fn

. (9.1)

In the steady state all the generating units operate synchronously at the same frequency when
the overall change in the total power �PT generated in the system can be calculated as the sum of
changes at all generators:

�PT =
NG∑
i=1

�Pmi = −� f
fn

NG∑
i=1

Ki Pni = −� f
NG∑
i=1

Ki Pni

fn
, (9.2)

where NG is the number of generating units in the system. The subscript ‘T’ indicates that �PT is the
change in generated power as supplied by the turbines. Figure 9.1 illustrates how the characteristics
of individual generating units can be added according to Equation (9.2) to obtain the equivalent

∆f

f f f

∆f ∆f+ =
Pm1 Pm2

∆Pm1 ∆Pm2 ∆PT

PT

Figure 9.1 Generation characteristic as the sum of the speed–droop characteristics of all the
generation units.
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Figure 9.2 Speed–droop characteristic of a turbine with an upper limit.

generation characteristic. This characteristic defines the ability of the system to compensate for a
power imbalance at the cost of a deviation in frequency. For a power system with a large number of
generating units, the generation characteristic is almost horizontal such that even a relatively large
power change only results in a very small frequency deviation. This is one of the benefits accruing
from combining generating units into one large system.

To obtain the equivalent generation characteristic of Figure 9.1 it has been assumed that the
speed–droop characteristics of the individual turbine generator units are linear over the full range
of power and frequency variations. In practice the output power of each turbine is limited by
its technical parameters. For example, coal-burn steam turbines have a lower power limit due to
the need to maintain operational stability of the burners and an upper power limit that is set by
thermal and mechanical considerations. In the remainder of this section only the upper limit will
be considered, so the turbine characteristic will be as shown in Figure 9.2.

If a turbine is operating at its upper power limit then a decrease in the system frequency will
not produce a corresponding increase in its power output. At the limit ρ = ∞ or K = 0 and the
turbine does not contribute to the equivalent system characteristic. Consequently the generation
characteristic of the system will be dependent on the number of units operating away from their
limit at part load; that is, it will depend on the spinning reserve, where the spinning reserve is the
difference between the sum of the power ratings of all the operating units and their actual load. The
allocation of spinning reserve is an important factor in power system operation as it determines
the shape of the generation characteristic. This is demonstrated in Figure 9.3 which shows a simple
case of two generating units. In Figure 9.3a the spinning reserve is allocated proportionally to both
units so that they both reach their upper power limits at the same frequency f 1. In this case the
equivalent characteristic, obtained from Equation (9.2), is linear until the upper power limit for
the whole system is reached. In Figure 9.3b the same amount of spinning reserve is available but
is allocated solely to the second generator with the first unit operating at full load. The generation
characteristic is now nonlinear and consists of two sections of different slope.
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Figure 9.3 Influence of the turbine upper power limit and the spinning reserve allocation on the
generation characteristic.
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Similarly, the generation characteristic of an actual power system is nonlinear and consists of
many short sections of increasing slope as more and more generating units reach their operating
limits as the total load increases until, at maximum system load, there is no more spinning reserve
available. The generation characteristic then becomes a vertical line. For small power and frequency
disturbances it is convenient to approximate this nonlinear generation characteristic in the vicinity
of the operation point by a linear characteristic with a local droop value. The total system generation
is equal to the total system load PL (including transmission losses)

NG∑
i=1

Pmi = PL, (9.3)

where NG is the number of generating units. Dividing Equation (9.2) by PL gives

�PT

PL
= −KT

� f
fn

or
� f
fn

= −ρT
�PT

PL
, (9.4)

where

KT =

NG∑
i=1

Ki Pni

PL
, ρT = 1

KT
. (9.5)

Equation (9.4) describes the linear approximation of the generation characteristic calculated for
a given total system demand. Consequently, the coefficients in Equation (9.5) are calculated with
respect to the total demand, not the sum of the power ratings, so that ρT is the local speed droop of
the generation characteristic and depends on the spinning reserve and its allocation in the system
as shown in Figure 9.3.

In the first case, shown in Figure 9.3a, it was assumed that the spinning reserve is allocated
uniformly between both generators, that is both generators are underloaded by the same amount
at the operating point (frequency f 0) and the maximum power of both generators is reached at the
same point (frequency f 1). The sum of both characteristics is then a straight line up to the maximum
power PMAX = PMAX 1 + PMAX 2 . In the second case, shown in Figure 9.3b, the total system reserve
is the same but it is allocated to the second generator only. That generator is loaded up to its
maximum at the operating point (frequency f 2). The resulting total generation characteristic is
nonlinear and consists of two lines of different slope. The first line is formed by adding both inverse
droops, KT1 �= 0 and KT2 �= 0 , in Equation (9.5). The second line is formed noting that the first
generator operates at maximum load and KT1 = 0 so that only KT2 �= 0 appears in the sum in
Equation (9.5). Hence the slope of that characteristic is higher.

The number of units operating in a real system is large. Some of them are loaded to the maximum
but others are partly loaded, generally in a non-uniform way, to maintain a spinning reserve. Adding
up all the individual characteristics would give a nonlinear resulting characteristic consisting of
short segments with increasingly steeper slopes. That characteristic can be approximated by a curve
shown in Figure 9.4. The higher the system load, the higher the droop until it becomes infinite
ρT = ∞ , and its inverse KT = 0 , when the maximum power PMAX is reached. If the dependence of
a power station’s auxiliary requirements on frequency were neglected, that part of the characteristic
would be vertical (shown as a dashed line in Figure 9.4). However, power stations tends to have a
curled-back characteristic – see curve 4 in Figure 2.13. Similarly curled is the system characteristic
shown in Figure 9.4.

For further considerations, the nonlinear generation characteristic shown in Figure 9.4 will be
linearized at a given operating point, that is the linear approximation (9.4) will be assumed with the
droop ρT given by (9.5).
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Figure 9.4 Static system generation characteristic.

9.1.2 Primary Control

When the total generation is equal to the total system demand (including losses) then the frequency
is constant, the system is in equilibrium, and the generation characteristic is approximated by
Equation (9.4). However, as discussed in Section 3.5, system loads are also frequency dependent
and an expression similar to Equation (9.4) can be used to obtain a linear approximation of the
frequency response characteristic of the total system load as

�PL

PL
= KL

� f
fn

, (9.6)

where KL is the frequency sensitivity coefficient of the power demand. A similar coefficient kPf was
defined in Equation (3.133) and referred to as the frequency sensitivity of a single composite
load and should not be confused with KL above, which relates to the total system demand. Tests
conducted on actual systems indicate that the generation response characteristic is much more
frequency dependent than the demand response characteristic. Typically KL is between 0.5 and 3
(see Table 3.3) while KT ≈ 20 (ρ = 0.05 ). In Equations (9.4) and (9.6) the coefficients KT and KL

have opposite sign so that an increase in frequency corresponds to a drop in generation and an
increase in electrical load.

In the (P, f ) plane the intersection of the generation and the load characteristic, Equations
(9.4) and (9.6), defines the system equilibrium point. A change in the total power demand �PL

corresponds to a shift of the load characteristic in the way shown in Figure 9.5 so that the equilibrium
point is moved from point 1 to point 2. The increase in the system load is compensated in two ways:
firstly, by the turbines increasing the generation by �PT; and secondly, by the system loads reducing
the demand by �PL from that required at point 3 to that required at point 2. Figure 9.5 shows that
taking both increments into account gives

�Pdemand = �PT − �PL = −(KT + KL)PL
� f
fn

= −K f PL
� f
fn

. (9.7)
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Figure 9.5 Equilibrium points for an increase in the power demand.
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The new operating point of the system corresponds to a new demand and a new frequency. The
new value of the system frequency f 2 is lower than the old one f 1. Equation (9.7) represents the
frequency response of the system while the coefficient Kf = KT + KL is referred to as the stiffness.
It should be emphasized that �PT � �PL .

A reduction of the demand by �PL is due to the frequency sensitivity of demand. An increase of
generation by �PT is due to turbine governors. The action of turbine governors due to frequency
changes when reference values of regulators are kept constant is referred to as primary frequency
control.

When the system demand increases, primary control is activated, obviously only if there are any
units which are operating but are not fully loaded. Figure 9.3b shows that if any of the units operate
at maximum output, a reduction in frequency cannot increase a unit’s output. Only those units that
are partly loaded and carry a spinning reserve can be loaded more.

In order to secure safe system operation and a possibility of activating the primary control, the
system operator must have an adequate spinning reserve at its disposal. Spinning reserve to be
utilized by the primary control should be uniformly distributed around the system, that is at power
stations evenly located around the system. Then the reserve will come from a variety of locations
and the risk of overloading some transmission corridors will be minimized. Locating the spinning
reserve in one region may be dangerous from the point of view of security of the transmission
network. If one or more power stations suffer outages, the missing power would come from just
one region, some transmission corridors might get overloaded and the disturbance might spread.

An interconnected system requires coordination so the requirements regarding the primary con-
trol are normally the subject of agreements between partners cooperating in a given interconnected
network. For the European UCTE system, the requirements are defined in document ‘UCTE –
Ground Rules – Supervision of the application of rules concerning primary and secondary control
of frequency and active power in UCTE’.

For the purposes of primary frequency control, each subsystem in the UCTE system has to
ensure a large enough spinning reserve proportional to a given subsystem’s share in the overall
UCTE energy production. This is referred to as the solidarity principle. It is required that the
spinning reserve is uniformly located within each subsystem and the operating points of individual
units providing the reserve are such that the whole reserve in the system is activated when the
frequency deviation is not more than 200 mHz. The required time of activation of the reserve

∆Pm

∆fmHz

%−200

200 5

−5

+10 mHz

1300

−1300

(a ) (b)

∆Pm
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Figure 9.6 Example of speed – droop characteristics: (a) with small dead zones; (b) with large
dead zones.
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should not be longer than 15–23 s. To satisfy this condition, the units participating in the primary
reserve should be able to regulate power quickly within ±5 % of their rated power. Turbine governors
of those units have typically speed–droop characteristics with dead zones as in Figure 9.6a. The
first dead zone has the width ±10 mHz which makes the unit operate with constant set power
Pref in the presence of small frequency error |� f | < 10 mHz . When a frequency error |� f | >

10 mHz appears, the unit operates in the primary control with a fast regulation range ±5 %.
The whole range of the reserve is released when the frequency error is about ±200 mHz. These
requirements mean the whole primary reserve is released in the system when the frequency error
is not greater than 200 mHz. The droop can be calculated in the fast regulation range from (9.1).
Substituting � f = (200 − 10) mHz = 190 mHz = 0.190 Hz , that is � f/ fn = 0.190/50 = 0.0038
and �Pm/Pn = −0.05, results in ρ = 0.0038/0.05 = 0.076 = 7.6 % . This is a typical value as,
according to Section 2.2.3, the droop ρ is typically assumed to be between 4 and 9 %. For the range
beyond fast regulation ±5 % the turbine governor maintains constant power until the frequency
error reaches |� f | > 1300 mHz = 1.3 Hz when the governor is switched from the power control
regime to speed control.

Governors of units that do not participate in the primary frequency control have the first dead
zone of the speed – droop characteristic set at ±200 mHz (Figure 9.6b). They form an additional
primary reserve that activates only for large disturbances. This is necessary to defend the system
against blackouts (details in Section 9.1.6).

9.1.3 Secondary Control

If the turbine–generators are equipped with governing systems, such as those described in Section
2.2.3, then, following a change in the total power demand, the system will not be able to return to
the initial frequency on its own, without any additional action. According to Figure 9.5, in order to
return to the initial frequency the generation characteristic must be shifted to the position shown
by the dashed line. Such a shift can be enforced by changing the Pref setting in the turbine governing
system (the load reference set point in Figure 2.14). As shown in Figure 9.7, changes in the settings
Pref(1), Pref(2) and Pref(3) enforce a corresponding shift of the characteristic to the positions Pm(1),
Pm(2) and Pm(3). To simplify, the first dead zone around Pref, which was shown in Figure 9.6, has been
neglected in Figure 9.7. Obviously no change of settings can force a turbine to exceed its maximum
power rating PMAX. Changing more settings Pref of individual governors will move upwards the
overall generation characteristic of the system. Eventually this will lead to the restoration of the
rated frequency but now at the required increased value of power demand. Such control action on
the governing systems of individual turbines is referred to as secondary control.

In an isolated power system, automatic secondary control may be implemented as a decentralized
control function by adding a supplementary control loop to the turbine–governor system. This
modifies the block diagram of the turbine governor, Figure 2.14, to that shown in Figure 9.8 where
Pref and Pm are expressed as a fraction of the rated power Pn. The supplementary control loop,

f

f0

PMAX Pm

Pm(1)

Pm(2)

Pm(3)

Pref(2) Pref(3)Pref(1)

Figure 9.7 Turbine speed–droop characteristics for various settings of Pref.
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Figure 9.8 Supplementary control added to the turbine governing system.

shown by the dashed line, consists of an integrating element which adds a control signal �Pω that is
proportional to the integral of the speed (or frequency) error to the load reference point. This signal
modifies the value of the setting in the Pref circuit thereby shifting the speed–droop characteristic
in the way shown in Figure 9.7.

Not all the generating units in a system that implements decentralized control need be equipped
with supplementary loops and participate in secondary control. Usually medium-sized units are
used for frequency regulation while large base load units are independent and set to operate at a pre-
scribed generation level. In combined cycle gas and steam turbine power plants the supplementary
control may affect only the gas turbine or both the steam and the gas turbines.

In an interconnected power system consisting of a number of different control areas, secondary
control cannot be decentralized because the supplementary control loops have no information as to
where the power imbalance occurs so that a change in the power demand in one area would result
in regulator action in all the other areas. Such decentralized control action would cause undesirable
changes in the power flows in the tie-lines linking the systems and the consequent violation of the
contracts between the cooperating systems. To avoid this, centralized secondary control is used.

In interconnected power systems, AGC is implemented in such a way that each area, or subsystem,
has its own central regulator. As shown in Figure 9.9, the power system is in equilibrium if, for each
area, the total power generation PT, the total power demand PL and the net tie-line interchange
power Ptie satisfy the condition

PT − (PL + Ptie) = 0. (9.8)

The objective of each area regulator is to maintain frequency at the scheduled level (frequency
control) and to maintain net tie-line interchanges from the given area at the scheduled values (tie-
line control). If there is a large power balance disturbance in one subsystem (caused for example by
the tripping of a generating unit), then regulators in each area should try to restore the frequency
and net tie-line interchanges. This is achieved when the regulator in the area where the imbalance
originated enforces an increase in generation equal to the power deficit. In other words, each
area regulator should enforce an increased generation covering its own area power imbalance and
maintain planned net tie-line interchanges. This is referred to as the non-intervention rule.

control
area

remainder
control
areas

PT

PL

Ptie

Figure 9.9 Power balance of a control area.
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Figure 9.10 Functional diagram of a central regulator.

The regulation is executed by changing the power output of turbines in the area through varying
Pref in their governing systems. Figure 9.10 shows a functional diagram of the central regulator.
Frequency is measured in the local low-voltage network and compared with the reference frequency
to produce a signal that is proportional to the frequency deviation �f . The information on power
flows in the tie-lines is sent via telecommunication lines to the central regulator which compares it
with the reference value in order to produce a signal proportional to the tie-line interchange error
�Ptie. Before adding these two signals together, the frequency deviation is amplified by the factor
λR, called the frequency bias factor, to obtain

�Pf = λR� f. (9.9)

This represents a change in the generation power which must be forced upon the controlled area in
order to compensate for the frequency deviation resulting from the power imbalance in this area.

The choice of the bias factor λR plays an important role in the non-intervention rule. According
to this rule, each subsystem should cover its own power imbalance and try to maintain planned
power interchanges. If the frequency drops following a generation deficit, then applying (9.7)
gives �Pdemand = − (Kf PL/ fn) � f . The central regulator should enforce an increased generation
�Pf = λR� f covering the deficit, that is �Pf = −�Pdemand . Hence λR� f = (Kf PL/ fn) � f or

λR = Kf PL

fn
= Kf MW/Hz. (9.10)

This equation indicates that the value of the bias λR can be assessed providing that the stiffness K f

of a given area and its total demand are known. Kf MW/Hz denotes the frequency stiffness of the
power system expressed in MW/Hz.

Clearly the non-intervention rule requires that the value of the bias set in the central regulator
is equal to the area stiffness expressed in MW/Hz. In practice it is difficult to evaluate the exact
value of the stiffness so that imprecise setting of the bias λR in the central regulator may have some
undesirable effects on the regulation process. This will be discussed later in this chapter.

The signal �Pf is added to the net tie-line interchange error �Ptie so that the area control error
(ACE) is created:

ACE = −�Ptie − λR� f. (9.11)

Similarly, as in the decentralized regulator shown in Figure 9.8, the central regulator must have an
integrating element in order to remove any error and this may be supplemented by a proportional
element. For such a PI regulator the output signal is

�Pref = βR(ACE) + 1
TR

t∫
0

(ACE) dt, (9.12)
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where βR and TR are the regulator parameters. Usually a regulator with a small, or even zero,
participation of the proportional element is used, that is an integral element.

ACE corresponds to the power by which the total area power generation must be changed in
order to maintain both the frequency and the tie-line flows at their scheduled values. The regulator
output signal �Pref is then multiplied by the participation factors α1, α2, . . ., αn which define the
contribution of the individual generating units to the total generation control, Figure 9.10. The
control signals �Pref1 , �Pref2 , . . ., �Prefn obtained in this way are then transmitted to the power
plants and delivered to the reference set points of the turbine governing systems (Figure 2.11). As
with decentralized control, not all generating units need participate in generation control.

It is worth noting that regulation based on ACE defined by (9.11) does not always finish with
the removal of both errors �f and �Ptie. According to (9.11), zeroing of ACE can be generally
achieved in two ways:

1. Zeroing of both errors, that is achieving �Ptie = 0 and � f = 0 . This is a more desirable outcome.
When the available regulation power in a given subsystem is large enough to cover its own power
deficit, then the non-intervention rule enforces a return of the interchange power to a reference
value and both frequency and power interchange errors are removed.

2. Achieving a compromise between the errors �Ptie + λR� f = 0 or �Ptie = −λR� f . When all the
available regulation power in a given subsystem is not large enough to cover its own power im-
balance, then the regulating units in that subsystem exhaust their capability before the errors are
removed and the regulation ends with the violation of a reference value of power interchange. The
missing power must be delivered from neighbouring networks. In that case the non-intervention
rule will be violated and the following errors arise: �Ptie∞ = −λR� f∞, where �PW∞ is power
which the subsystem must additionally import to cover the power deficit.

Both cases will be illustrated in Section 9.2 using the results of computer simulation.
The exact determination of the actual stiffness KfMW/Hz in real time is a difficult task as the

stiffness is continuously varying due to changes in the demand, its structure and the composition
of power stations. Determination of KfMW/Hz in real time is the subject of on-going research.
Generally, it would require a sophisticated dynamic identification methodology. In practice, the
frequency bias factors λR are set in central regulators in the European UCTE system using a
simplified methodology. In each year, the share of a given control area in the total energy production
is determined. Then the value of KfMW/Hz is estimated for the whole interconnected system. This
estimate of KfMW/Hz is divided between the control areas in proportion to their annual energy share
and that value is set to be the frequency bias factor for each area.

For example, let KfMW/Hz = 20 000 MW/Hz be the estimate of stiffness of the whole intercon-
nected system. Let the shares of the kth and jth control areas in the annual energy production be
respectively αk = 0.05 and α j = 0.20. According to the approximate method, the frequency bias
factors set in the central regulators are

λRk = αkKf MW/Hz = 0.05 · 20 000 = 1000 MW/Hz

λR j = α j Kf MW/Hz = 0.02 · 20 000 = 4000 MW/Hz.

The described method is simple and results in an approximate fulfilment of the non-interven-
tion rule.

Secondary frequency control is much slower than the primary one. As an example, given below
is a description of requirements agreed by members of the European UCTE system.

Tie-line flow measurements have to be sent to the central regulator either cyclically or whenever
the flow exceeds a certain value, with a delay not exceeding 1–5 s. Instructions to change the
reference values are sent from the central regulator (Figure 9.10) to area regulators approximately
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every 10 min. For the maximum speed of secondary control, activation of the whole range of
secondary reserve must be done within 15 min.

Power stations contributing to secondary control, that is those controlled by the central regulator,
must operate with a wide range of power regulation. This range depends on the type of the power
station. For thermal plants, the typical range of power regulation operated within primary control
(Figure 2.13) is from 40 % (technical minimum) to 100 % (maximum). Usually secondary control
uses about ±5 % of the maximum power from within that range. The speed of regulation depends
on the type of a unit. It is required that the speed of regulation is not less than:

� for gas or oil units: 8 % of rated power per minute;
� for coal and lignite units: 2–4 % of rated power per minute;
� for nuclear units: 1–5 % of rated power per minute;
� for hydro units: 30 % of rated power per minute.

The sum of regulation ranges, up and down, of all the generating units active in secondary control
is referred to as the bandwidth of secondary control. The positive value of the bandwidth, that is
from the maximum to the actual operating point, forms the reserve of secondary control. In the
European UCTE system, the required value of the secondary reserve for each control area is in
the range of 1 % of the power generated in the area. It is additionally required that the secondary
reserve is equal at least to the size of the largest unit operating in the area. This requirement is due
to the non-intervention rule if the largest unit is suddenly lost. If that happens, secondary control
in the area must quickly, in no longer than 15 min, increase the power generated in the area by the
value of the lost power.

The schedule of required values of power interchange Ptie ref is sent to the central regulator based
on a schedule for the whole interconnection. In order to prevent power swings between control
areas due to rapid changes in the reference values, changes in the values of Ptie ref are phased in as
shown in Figure 9.11. The ramp of phasing in starts 5 min before, and finishes 5 min after, the set
time of the change.

9.1.4 Tertiary Control

Tertiary control is additional to, and slower than, primary and secondary frequency control. The
task of tertiary control depends on the organizational structure of a given power system and the
role that power plants play in this structure.

Under the vertically integrated industry structure (see Chapter 2), the system operator sets the
operating points of individual power plants based on the economic dispatch, or more generally
optimal power flow (OPF), which minimizes the overall cost of operating plants subject to network
constraints. Hence tertiary control sets the reference values of power in individual generating units
to the values calculated by optimal dispatch in such a way that the overall demand is satisfied
together with the schedule of power interchanges.

10 min

t

86 97 10 h

Ptie ref

Figure 9.11 A schedule of changes in the required value of power interchange.
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In many parts of the world, electricity supply systems have been liberalized and privately owned
power plants are not directly controlled by the system operator. Economic dispatch is then executed
via an energy market. Depending on the actual market structure in place, power plants either bid
their prices to a centralized pool or arrange bilateral contracts directly with companies supplying
power to individual customers. The main task of the system operator is then to adjust the supplied
bids or contracts to make sure that the network constraints are satisfied and to procure the required
amount of primary and secondary reserve from individual power plants. In such a market structure
the task of tertiary control is to adjust, manually or automatically, the set points of individual
turbine governors in order to ensure the following:

1. Adequate spinning reserve in the units participating in primary control.
2. Optimal dispatch of units participating in secondary control.
3. Restoration of the bandwidth of secondary control in a given cycle.

Tertiary control is supervisory with respect to the secondary control that corrects the loading of
individual units within an area. Tertiary control is executed via the following:

1. Automatic change of the reference value of the generated power in individual units.
2. Automatic or manual connection or disconnection of units that are on the reserve of the tertiary

control.

The reserve of the tertiary control is made up of those units that can be manually or automatically
connected within 15 min of a request being made. The reserve should be utilized in such a way that
the bandwidth of the secondary control is restored.

9.1.5 AGC as a Multi-Level Control

AGC is an excellent example of a multi-level control system whose overall structure is shown in
Figure 9.12.
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Figure 9.12 Levels of automatic generation control.
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The turbine governing system with its load reference point is at the lowest primary control
level and all the commands from the upper levels are executed at this level. Primary control is
decentralized because it is installed in power plants situated at different geographical sites.

Frequency control and tie-line control constitute secondary control and force primary control
to eliminate the frequency and net tie-line interchange deviations. In isolated systems secondary
control is limited to frequency control and could be implemented locally without the need for
coordination by the central regulator. In interconnected systems secondary control of frequency
and tie-line flows is implemented using a central computer. Secondary control should be slower
than primary control.

The task of tertiary control is to ensure an appropriate bandwidth of secondary control. Obviously
tertiary control must be slower than both primary and secondary control. Hence it may be neglected
when considering the dynamics of coordination between primary and secondary control.

Modern solutions execute the tasks of secondary and tertiary control using a function LFC (Load
and Frequency Controller) in control algorithms of SCADA–EMS (Energy Management System)
that supports the system operator. Apart from controlling frequency and power interchanges,
SCADA–EMS contains a number of other optimization and security management functions. A
detailed description is beyond the scope of this book but interested readers are referred to Wood
and Wollenberg (1996).

The hierarchical structure shown in Figure 9.12 also contains a block UTC corresponding to
control of the synchronous time, that is time measured by synchronous clocks based on the system
frequency. Power system frequency varies continuously, so synchronous clocks tend to have an
error proportional to the integral of the system frequency. This error is eliminated by occasionally
changing the reference value of the frequency.

In the European UCTE system the nominal frequency is fn = 50 Hz . The synchronous time
deviation is calculated at the control centre in Laufenberg (Switzerland) using the UTC time
standard. On certain days of each month, the centre broadcasts a value of frequency correction
to be inserted in secondary control systems in order to eliminate the synchronous time deviation.
If synchronous clocks are delayed then the frequency correction is set to 0.01 Hz, that is the set
frequency is fref = 50.01 Hz . If synchronous clocks are ahead then the frequency correction is
set to −0.01 Hz, that is the set frequency is fref = 49.99 Hz. Usually the system operates for a few
tens of days with a correction of −0.01 Hz, for a few days with +0.01 Hz and then without any
correction for the remainder of the year.

Usually control areas are grouped in large interconnected systems with the central regulator of
one area (usually the largest) regulating power interchanges in the given area with respect to other
areas. In such a structure the central controller of each area regulates its own power interchanges
while the central controller of the main area additionally regulates power interchanges of the
whole group.

9.1.6 Defence Plan Against Frequency Instability

The system of frequency and power control discussed above is adequate for typical disturbances
of a real power balance consisting of the unplanned outage of a large generating unit. The largest
disturbance which can be handled by the system is referred to as the reference incident. In the
European UCTE system, the reference incident consists of losing units with a total power of
3000 MW. Larger incidences have to handled by each system operator using its own defence plan
together with appropriate facilities that defend the power system from the disturbance spreading
out. Examples of such a defence plan are shown in Tables 9.1 and 9.2.

The defence plan described in these tables should be treated as an example. It is based on a paper
by Kuczyński, Paprocki and Strzelbicki (2005) and also includes updates resulting from experience
gained from the wide area disturbance in UCTE interconnected power systems on 4 November
2006. The interested reader is advised to check the UCTE Master Plan document at www.ucte.org.
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Table 9.1 Example of a defence plan against a frequency drop

f (Hz) �f (Hz) Type of defence action

50.000 <0.200 Normal operation with primary control with small dead zones (Figure 9.6a)
and secondary control of frequency and tie-line power:
ACE = −�Ptie − λR� f

49.800 0.200 Central secondary controllers of subsystems are blocked. Generating units
operate only with primary control and manual setting of reference power

Primary control hidden in units operating with large dead zones ± 200 mHz
(Figure 9.6b) is automatically activated

Switching of pumped storage plants from the pump mode to the generation
mode

Starting of fast-start units (diesel and open-cycle gas units)

49.000 1.000 Underfrequency load shedding (first two stages)
48.700 1.300

48.700 1.300 Turbine governors (primary control) switch from power regulation
according to droop characteristic to speed control (Figure 9.6)

48.500 1.500 Underfrequency load shedding (next three stages)
48.300 1.700
48.100 1.900

47.500 2.500 Generating units are allowed to trip by turbine protection. The units supply
their own ancillary services and demand of their islands (if they survived).
System operators start system restoration by reconnecting the islands and
lost generating units

Table 9.2 Example of a defence plan against frequency rise.

f (Hz) �f (Hz) Type of defence action

51.500 1.500 Generating units are allowed to trip by turbine protection. The units supply
their own ancillary services

51.300 1.300 Turbine governors (primary control) switch from power regulation
according to droop characteristic to speed control (Figure 9.6)

50.200 0.200 Switching of pumped storage plants from the generation mode to the pump
mode

Stopping of fast-start units (diesel and open-cycle gas units)

Primary control hidden in units operating with large dead zones ±200 mHz
(Figure 9.6b) is automatically activated

Central secondary controllers of subsystems are blocked. Generating units
operate only with primary control and manual setting of reference power

50.000 <0.200 Normal operation with primary control with small dead zones (Figure 9.6a)
and secondary control of frequency and the tie-line power:
ACE = −�Ptie − λR� f
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9.1.7 Quality Assessment of Frequency Control

The quality assessment of frequency and power interchange control can be divided into two types:

1. Quality assessment of the control during normal system operation.
2. Quality assessment during large disturbances such as unplanned outages of a generating unit.

Quality assessment during normal system operation is executed using the standard deviation of
the frequency error:

σ =
√√√√ 1

n

n∑
i=1

( f − fref )2, (9.13)

where n is the number of measurements. The measurements are taken every 15 min in a month.
Additionally, a percentage share of frequency deviations higher than 50 mHz is calculated together
with the times of their appearance.

Quality assessment of frequency control following a large disturbance is shown in Figure 9.13.
The bold line shows an example of frequency changes following an unplanned outage of a large
generating unit. There was a frequency error of �f 0 just before the disturbance. The disturbance
happened during a correction to the synchronous time when fref = 50.01 Hz . Following the distur-
bance, the frequency dropped by a maximum of �f 2. Frequency control restored the frequency to
the reference value within the allowed error. The whole range of frequency variations was limited to
within an area shown by the dashed lines and referred to as the trumpet characteristic. The trumpet
characteristic is made up of two exponential curves defined by

H(t) = fref ± Ae−t/T for t ≤ 900 s

H(t) = ±20 mHz for t ≥ 900 s,
(9.14)

where the ± signs correspond to the upper and lower parts of the characteristic and A is the ini-
tial width. The exponential characteristic finishes when t = 900 s , that is t = 15 min . Then the
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Figure 9.13 Illustration of the quality assessment of frequency control using a trumpet charac-
teristic. Based on the document ‘UCTE – Ground Rules – Supervision of the application of rules
concerning primary and secondary control of frequency and active power in UCTE’. Reproduced
by permission of UCTE.
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characteristic consists of two horizontal lines limiting the frequency error to ±20 mHz correspond-
ing to the required accuracy of frequency control during normal operation. The exponential curves
must descend smoothly to the horizontal lines. For that to happen, the time constant of the expo-
nential curves must be equal to

T = 900
ln (A/d)

. (9.15)

The initial width A depends on the disturbance size �P0 according to

A = 1.2
( |�P0|

λR
+ 0.030

)
, (9.16)

where λR is the frequency stiffness of the power system. As an example, if a unit of several hundred
megawatts is tripped, the width of the trump characteristic, and therefore also the varying frequency
error, is a few hundred millihertz.

If variations of frequency following a disturbance �P0 are inside the trump characteristic then
the frequency control is deemed to be satisfactory.

9.2 Stage I – Rotor Swings in the Generators

Having described the AGC, it is now possible to analyse the response of a power system to a power
imbalance caused, for example, by the tripping of a generating unit. This response can be divided
into four stages depending on the duration of the dynamics involved:

Stage I Rotor swings in the generators (first few seconds)
Stage II Frequency drop (a few seconds to several seconds)
Stage III Primary control by the turbine governing systems (several seconds)
Stage IV Secondary control by the central regulators (several seconds to a minute).

The dynamics associated with each of these four stages will be described separately in order to
illustrate how they develop in the system. To begin the discussion the power system shown schemat-
ically in Figure 9.14a will be considered where a power station transmits its power to the system
via two parallel transmission lines. The power station itself is assumed to consist of two identical
generating units operating onto the same busbar. The disturbance considered will be the discon-
nection of one of the generating units. In Stage I of the disturbance the way in which the remaining
generating unit contributes to the production of the lost power will be given special attention.

The sudden disconnection of one of the generators will initially produce large rotor swings in
the remaining generating unit and much smaller rotor swings in the other generators within the
system. For simplicity these small oscillations will be neglected to allow the rest of the system to
be replaced by an infinite busbar. The time scale of the rotor swings is such that the generator
transient model applies and the mechanical power supplied by the turbine remains constant. To
simplify considerations, the classical model representation of the generator will be used, Equations
(5.15) and (5.40). Figure 9.14b shows the equivalent predisturbance circuit diagram for the system.
As both generators are identical they can be represented by the same transient emf E′ behind an
equivalent reactance that combines the generator transient reactance X′

d , the transformer reactance
XT and the system reactance X s.

Figure 9.15 shows how the equal area criterion can be applied to this problem. In this dia-
gram P−(δ′) and P+(δ′) are the transient power–angle characteristics, and Pm− and Pm+ the
mechanical powers, before and after the disturbance occurs. Initially the plant operates at point
1 and the equivalent power angle with respect to the infinite busbar is δ′

0 . Disconnection of
one of the generators has two effects. Firstly, the equivalent reactance of the system increases
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Figure 9.14 Parallel generating units operating onto an infinite busbar: (a) schematic diagram; (b)
equivalent circuit.

so that the amplitude of the power–angle characteristic decreases. Consequently the pre- and
postdisturbance power–angle characteristics are

P−(δ′
0) = E′Vs

X′
d+XT

2 + Xs

sin δ′
0, P+(δ′

0) = E′Vs

X′
d + XT + Xs

sin δ′
0. (9.17)

Secondly, the mechanical power delivered to the system drops by an amount equal to the power of
the lost unit, that is Pm+ = 0.5Pm− .

As the rotor angle of the remaining generator cannot change immediately after the disturbance
occurs, the electrical power of the generator is greater than the mechanical power delivered by
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Figure 9.15 Application of the equal area criterion to determine the first stage of the dynamics.
Duration of the phenomena – first few seconds.
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its prime mover, point 2. The rotor is decelerated and loses kinetic energy corresponding to the
area 2–2′–4. Due to its momentum the rotor continues to decrease its angle past point 4 until it
stops at point 3 when the area 4–3–3′ equals the area 2–2′–4. The damping torques then damp out
subsequent oscillations and the rotor tends towards its equilibrium point 4.

The amplitude of the rotor oscillations of any given generator will depend on the amount of lost
generation it picks up immediately after the disturbance occurs. Using the notation of Figure 9.15
gives

�P0 = P−(δ′
0) − Pm+ = Pm− − Pm+

�PrI = P+(δ′
0) − Pm+

�PsI = �P0 − �PrI,

(9.18)

where �P0 is the lost generating power and �PrI and �PsI are the contributions of the generating
units remaining in operation and of the system, respectively, in meeting the power imbalance �P0 at
the very beginning of the disturbance. The subscript ‘I’ indicates that these equations apply to Stage
I of the disturbance. Using the first of the equations in (9.18), a formula for �PrI can be rewritten as

�PrI = P+(δ′
0) − Pm+ = [

P+(δ′
0) − Pm+

] 1
P−(δ′

0) − Pm+
�P0. (9.19)

Substituting (9.17) into (9.19) and noting that Pm+ = 0.5Pm− gives

�PrI = 1
1 + β

�P0, (9.20)

where β = (X′
d + XT)/Xs . The amount that the system contributes in order to meet the lost

generation can now be calculated as

�PsI = �P0 − �PrI = β

β + 1
�P0, (9.21)

with the ratio of the contributions (9.20) and (9.21) being

�PrI

�PsI
= 1

β
= Xs

X′
d + XT

. (9.22)

This equation shows that �Pr, the contribution of the unit remaining in operation in meeting
the lost power, is proportional to the system equivalent reactance X s. Both contributions �Pr

and �Ps are depicted in Figure 9.15. Due to the fact that the inertia of the unit is much smaller
than that of the power system, the generator quickly decelerates, loses kinetic energy, and both its
rotor angle and generated power decrease (Figure 9.15b). As a consequence the power imbalance
starts to increase and is met by the system which starts to increase its contribution �Ps. This
power delivered by the system has been shaded in Figure 9.15 and, when added to the generator’s
share Pr(t), must equal the load existing before the disturbance. As can be seen from this figure,
the proportion of lost generation picked up by the system changes with time so that the system
contributes more and more as time progresses.

Although the formula in Equation (9.22) has been derived for two parallel generating units
operating in the system, a similar expression can be derived for the general multi-machine case.
This expression would lead to a conclusion that is similar to the two-machine case in that at the
beginning of Stage I of the dynamics the share of any given generator in meeting the lost load will
depend on its electrical distance from the disturbance (coefficient β). In the case of Figure 9.14 the
imbalance appeared at the power plant busbar. Thus Xs is a measure of the electrical distance of
the system from the disturbance and (X′

d + XT) is a measure of the electrical distance of the unit
remaining in operation.
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9.3 Stage II – Frequency Drop

The situation shown in Figure 9.15 can only last for a few seconds before the power imbalance
causes all the generators in the system to slow down and the system frequency to drop. Thus begins
Stage II of the dynamics. During this stage the share of any one generator in meeting the power
imbalance depends solely on its inertia and not on its electrical distance from the disturbance.
Assuming that all the generators remain in synchronism, they will slow down at approximately the
same rate after a few rotor swings in Stage I of the dynamics. This may be written as

d�ω1

dt
≈ d�ω2

dt
≈ · · · ≈ d�ωNG

dt
= ε, (9.23)

where �ωi is the speed deviation of the ith generator, ε is the average acceleration and NG is the
number of generators.

According to the swing equation, Equation (5.14), the derivative of the speed deviation can be
replaced by the ratio of the accelerating power �Pi of the ith unit over the inertia coefficient Mi.
This modifies Equation (9.23) to

�P1

M1
≈ �P2

M2
≈ · · · ≈ �Pn

Mn
≈ ε. (9.24)

If the change in the system load due to the frequency change is neglected, then the sum of the extra
load taken by each generator must be equal to the power lost �P0

�P0 =
NG∑
i=1

�Pi . (9.25)

Substituting the increment �Pi in this equation with �Pi = Mi ε gives

�P0 = ε

NG∑
i=1

Mi or ε = �P0

NG∑
i=1

Mi

so that �Pi = Mi ε = Mi

NG∑
k=1

Mk

�P0. (9.26)

This equation determines the contribution of the ith generator in meeting the lost power in Stage
II of the dynamics when each generator contributes an amount of power proportional to its
inertia. In practice the inertia constant Hi is similar for all the generators so that substituting for
Mi = 2Hi Sni/ωs from Equation (5.13), then Equation (9.26) can be written as

�Pi ≈ Sni

NG∑
i=1

Sni

�P0. (9.27)

During Stage II the contribution of the generator remaining in operation and the rest of the
power system in meeting the lost power can be expressed, using (9.26), as

�PrII = Mr

Mr + Ms
�P0 and �PsII = Ms

Mr + Ms
�P0. (9.28)

Subscript II has been added here to emphasize that these equations are valid during Stage II. In a
similar way as in Equation (9.22), the ratio of the contributions is

�PrII

�PsII
= Mr

Ms
≈ Snr

Sns
, (9.29)
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Figure 9.16 Examples of changes in the rotor angles in the case of a real power disturbance: (a)
disconnection of generator 2; (b) sudden increase of the load at node 4. The duration of Stage II is
a few to several seconds.

and is equal to the ratio of the inertia coefficients or, approximately, to the ratio of the rated
powers. As Sns � Snr (infinite busbar), the contribution by the generator remaining in operation in
covering the lost power is very small. The assumption made when preparing Figure 9.15 was that
�PrII ≈ �P0 Snr/Sns ≈ 0 .

Figure 9.16a illustrates the case when the system has a finite equivalent inertia and the rotor angle
of both the remaining generator and the system equivalent generator decreases as the frequency
drops. The initial rotor angle oscillations are the same as those shown for the first stage of the
dynamics in Figure 9.15. The angles then decrease together as the generators operate synchronously.

Figure 9.16b shows the case of a three-generator system where the load at node 4 suddenly
increases. Generators 1 and 2 are close to the disturbance, so they participate more strongly in
the first stage of the oscillations than does generator 3. During the second stage the power angles
synchronously decrease and the system frequency drops.

9.4 Stage III – Primary Control

Stage III of the dynamics depends on how the generating units and the loads react to the drop in
frequency. Section 2.2.3 explained how, as frequency (speed) drops, the turbine governor opens the
main control valves to increase the flow of working fluid through the turbine and so increase the
turbine mechanical power output. In the steady state, and during very slow changes of frequency,
the increase in mechanical power for each generating unit is inversely proportional to the droop of
the static turbine characteristic. Equations (9.4) and (9.6) can be rewritten as

PT = PT0 + �PT = PT0 − KT� f
PT0

fn

PL = PL0 + �PL = PL0 + KL� f
PL0

fn
.

(9.30)

The operating frequency of the system is determined by the point of intersection of these two
characteristics.

Typical generation and load characteristics are shown in Figure 9.17 where the generation char-
acteristic before the disturbance is denoted by PT− and after by PT+. If a generating unit is lost
the system generation characteristic PT moves to the left by the value of the lost power �P0 and,
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Figure 9.17 Stage III of the dynamics caused by an imbalance in real power: (a) the generation
characteristic and the frequency response characteristic; (b) frequency changes; (c) power changes.
The duration of Stage III is several seconds.

according to Equation (9.4), the slope of the characteristic increases slightly as a the value of KT

decreases.
Before the disturbance occurs, the system operates at point 1 corresponding to the intersection of

the PL and PT− characteristics. After the generator is disconnected the frequency initially remains
unchanged and the generation operating point is shifted to point 2. Then the generation tends to
move towards point III which corresponds to the intersection of the PL and PT+ characteristics
but, because of the delay introduced by the time constants of the turbines and their governors, this
point cannot be reached immediately. Initially the difference between the generated power, point
2, and the load power, point 1, is large and the frequency starts to drop as described in Stage I
and Stage II of the dynamics. In Stage III the turbine reacts to the drop in frequency by increasing
its power output but, because of the aforementioned time delays in the turbine regulator system,
the trajectory of the turbine power f (PT) lies below the static generation characteristic PT+. As the
frequency drops, the generated power increases while the power taken by the load decreases. The
difference between the load and the generation is zero at point 3. According to the swing equation,
a zero value of deceleration power means

d�ω

dt
= 2π

d� f
dt

= 0, (9.31)

and the frequency f (t) reaches a local minimum, Figure 9.17b.
Because of the inherent inertia of the turbine regulation process, the mechanical power continues

to increases after point 3 so that the generated power exceeds the load power and the frequency
starts to rise. At point 4 the balance of power is again zero and corresponds to the local maximum
in the frequency shown in Figure 9.17b. The oscillations continue until the steady-state value of
the frequency f III is reached at point III corresponding to the intersection of the PL and PT+ static
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characteristics. The value of f III can be determined from Figure 9.17a

�P0 = �PTIII − �PLIII = −KT
PL

fn
� fIII − KL

PL

fn
� fIII = −PL (KT + KL)

� fIII

fn
, (9.32)

with the frequency error f III being

� fIII

fn
= −1

KT + KL

�P0

PL
or

� fIII

fn
= −1

Kf

�P0

PL
, (9.33)

where the coefficient Kf = KT + KL is the system stiffness introduced in Equation (9.7). Figure 9.17c
shows how the generated power and the load power change during this period. The difference
between the two is shaded and corresponds to the power that decelerates (PT < PL ) or accelerates
(PT > PL ) the rotor.

For the system shown in Figure 9.14 the contributions of the generator remaining in operation
and that of the system in covering the lost generation in Stage III of the dynamics can be obtained
from Equation (9.4) as

�PrIII = −KTr
� fIII

fn
Pnr, �PsIII = −KTs

� fIII

fn
Pns, (9.34)

where the subscript III is added to emphasize that these equations are valid during Stage III of the
dynamics. The ratio of contributions resulting from these equations is

�PrIII

�PsIII
= KTr

KTs

Pnr

Pns
≈ Pnr

Pns
. (9.35)

The approximate equality in this equation is valid when the droop of all the turbine characteristics
is approximately the same. In practice the ratios (9.35) and (9.29) are very similar. This physically
corresponds to the fact that, during the transition period between the second and third stages, the
generator is in synchronism with the system and there are no mutual oscillations between them.

9.4.1 The Importance of the Spinning Reserve

The discussion so far has assumed that, within the range of frequency variations, each of the
generating units has a linear turbine characteristic and that the overall generation characteristic
is also linear. In practice each generating unit must operate within the limits that are placed on
its thermal and mechanical performance. To ensure that these limits are adhered to, its governing
system is equipped with the necessary facilities to make certain that the unit does not exceed its
maximum power limit or the limit placed on the speed at which it can take up power. These limits
can have a substantial impact on how a unit behaves when the system frequency changes.

Figure 9.3 showed how the spinning reserve, and its allocation in the system, influences the shape
of the generation characteristic. In order to help quantify the influence of spinning reserve, the
following coefficients are defined:

r =

NG∑
i=1

Pni − PL

PL
, p =

R∑
i=1

Pni

NG∑
i=1

Pni

, (9.36)

where
∑NG

i=1 Pni is the sum of the power ratings of all the generating units connected to the system
and

∑R
i=1 Pni is the sum of the power ratings of all the units operating on the linear part of their

characteristics; that is, loaded below their power limit. The coefficient r is the spinning reserve



P1: OTA/XYZ P2: ABC
c09 JWBK257/Machowski September 22, 2008 21:46 Printer Name: Yet to Come

Frequency Stability and Control 357

coefficient and defines the relative difference between the maximum power capacity of the system
and the actual load.

A simple expression for the local droop of the generation characteristic can be obtained by
assuming that the droop of all the units which are not fully loaded are approximately identical, that
is ρi = ρ and Ki = K = 1/ρ . For the units operating at their limits, ρi = ∞ and Ki = 0. Under
these conditions

�PT = −
NG∑
i=1

Ki Pni
� f
fn

= −
R∑

i=1

Ki Pni
� f
fn

∼= −K
R∑

i=1

Pni
� f
fn

= −Kp
NG∑
i=1

Pni
� f
fn

= −Kp (r + 1) PL
� f
fn

.

(9.37)

Dividing by PL gives

�PT

PL
= −KT

� f
fn

, (9.38)

where

KT = p (r + 1) K and ρT = ρ

p (r + 1)
. (9.39)

Equation (9.38) is similar to Equation (9.4) and describes the linear approximation of the nonlinear
generation characteristic for a given load. The local droop ρT increases as the spinning reserve
decreases. At the limit, when the load PL is equal to the system generating capacity, both the
coefficients r and p are zero and ρT = ∞ . This corresponds to all the generating units being fully
loaded.

The influence of the spinning reserve on the frequency drop in Stage III of the dynamics can
now be determined. For the linear approximation to the generator characteristic given in Equation
(9.38) the drop in frequency can be determined from Equation (9.33) as

� fIII

fn
= −1

p (r + 1) K + KL

�P0

PL
, (9.40)

indicating that the smaller the spinning reserve coefficient r, the bigger the drop in frequency due
to the loss of power �P0. With a large spinning reserve the static characteristic PT(1) shown in
Figure 9.18 has a shallow slope and the drop in frequency is small. On the other hand, when the
spinning reserve is small, the PT(2) characteristic is steep, and the frequency drop is increased for
the same power disturbance �P0. In the extreme case when no spinning reserve is available, the

P

1

2

t

f f

PT( )1

PT( )2

PL
∆P0

Figure 9.18 The influence of spinning reserve on the frequency drop due to a power imbalance: 1,
large spinning reserve; 2, small spinning reserve.
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generating units would be unable to increase their generation and the whole power imbalance �P0

could only be covered by the frequency effect of the loads. As the frequency sensitivity KL of the
loads is generally small, the frequency drop would be very high.

Equation (9.37) defines the way in which each of the generating units contributes to the power
imbalance at the end of Stage III with Equation (9.38) quantifying the net effect of the primary
turbine control in meeting the lost load.

Example 9.1

Consider a 50 Hz system with a total load PL = 10 000 MW in which p = 60 % of the units give
r = 15 % of the spinning reserve. The remaining 40 % of the units are fully loaded. The average
droop of the units with spinning reserve is ρ = 7 % and the frequency sensitivity coefficient of
the loads is KL = 1 . If the system suddenly loses a large generating unit of �P0 = 500 MW,
calculate the frequency drop and the amount of power contributed by the primary control.

From Equation (9.39) KT = 0.6(1 + 0.15)1/0.07 = 9.687 and, according to Equation (9.33),
primary control will give the frequency drop in Stage III as

� fIII = −1
9.867 + 1

×
[

500
10 000

]
× 50 ≈ 0.23 Hz,

where the turbine governor primary control contributes

�PT III = 9.867 × 0.23
50

× 10 000 = 454 MW,

with the remaining deficit of

�PL III = 1 × 0.23
50

× 10 000 = 46 MW,

being covered by the frequency effect of the loads. If there were no spinning reserve, the deficit
would be covered entirely by the frequency effect of the loads giving a frequency drop of

� fIII = −1
0 + 1

×
[

500
10 000

]
× 50 = 2.5 Hz,

which is about 10 times greater than in the case with (only) 15 % spinning reserve.

9.4.2 Frequency Collapse

Spinning reserve is much more important than is suggested by the approximate formula in Equation
(9.40). In practice the power output of the turbine is frequency dependent so that if the frequency is
much lower than the nominal frequency the turbine power will be less than that given by Equation
(9.38) and the frequency may drop further and further until the system suffers a frequency collapse.

The hidden assumption made in the generation characteristics of Figure 9.18 is that when a
unit is fully loaded the mechanical driving power delivered by the turbine does not depend on the
frequency deviation. This assumption is only true for small frequency deviations while a larger
frequency drop reduces mechanical power due to a deterioration in the performance of boiler feed
pumps, see Section 2.2.3. In this case the static generation characteristic takes the form shown in
Figure 9.13. Adding the power–frequency characteristics of individual generating units now gives
the system generation characteristic PT shown in Figure 9.19.

On the upper part of the generation characteristic the local droop at each point is positive
and depends on the system load according to the formulae given in (9.39). The lower part of
the characteristic corresponds to the decrease in the power output due to the deterioration in the
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Figure 9.19 The static generation and load characteristics of the power system and the equilibrium
points: s, locally stable equilibrium point; u, locally unstable equilibrium point.

performance of the boiler feed pumps. For a given load frequency characteristic PL the inflexion
in the generation characteristic produces two equilibrium points. At the upper point s any small
disturbance that produces an increase in the frequency � f > 0 will result in the load power
exceeding the generation power; the generators are decelerated and the system returns to the
equilibrium point s. Similarly, any small disturbance that causes a decrease in frequency will result
in the generation power exceeding the load power, the rotors accelerate, the frequency increases and
the system again returns to the equilibrium point. Point s is therefore locally stable because for any
small disturbance within the vicinity of this point the system returns to point s. The region in which
this condition holds is referred to as the area of attraction.

In contrast the lower point u is locally unstable because any disturbance within the vicinity of this
point will result in the system moving away from the equilibrium point. The region in which this
happens is referred to as the area of repulsion. For example, if a disturbance reduces the frequency
� f < 0 then the system moves into the shaded area below point u, the generated power is reduced
so that the system load is greater than the system generation, the rotors decelerate and the frequency
drops further.

With these qualifications of turbine performance in mind, assume that the system operates with
a low spinning reserve at point 1 on Figure 9.20. A loss �P0 in generation now occurs and the
operating point moves from point 1 to point 2. The excess load over generation is large and produces
an initial rapid drop in frequency. As the difference between the load and generation reduces, the rate
at which the frequency drops slows down and the system generation trajectory f (PT) approaches
the equilibrium point u. When the trajectory f (PT) enters the area of repulsion of point u it is forced
away and the system suffers a frequency collapse.
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Figure 9.20 An example of frequency collapse.
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Figure 9.21 Two-stage load shedding to protect against frequency collapse.

The frequency collapse illustrated in Figure 9.20 occurred following the sudden appearance of the
power imbalance �P0. Had the system generation characteristic changed slowly from PT+ to PT− by
gradually reducing the generation, then it would have met the locally stable points and stayed there.
Obviously if the power imbalance �P0 is greater than the spinning reserve then the postdisturbance
demand characteristic PL lies to the right of the nose of the generation characteristic PT+ and the
frequency would collapse regardless of how sudden the power change was.

9.4.3 Underfrequency Load Shedding

Many systems can be protected from frequency collapse by importing large blocks of power from
neighbouring systems to make up for the lost generation. However, in an islanded system, or in an
interconnected system with a shortage of tie-line capacity, this will not be possible and the only way
to prevent a frequency collapse following a large disturbance is to employ automatic load shedding.

Automatic load shedding is implemented using underfrequency relays. These relays detect the
onset of decay in the system frequency and shed appropriate amounts of system load until the
generation and load are once again in balance and the power system can return to its normal op-
erating frequency. Load shedding relays are normally installed in distribution and subtransmission
substations as it is from here that the feeder loads can be controlled.

As load shedding is a somewhat drastic control measure, it is usually implemented in stages with
each stage triggered at a different frequency level to allow the least important loads to be shed first.
Figure 9.21 shows the effect of load shedding when a power imbalance �P0 appears on a system
with a low spinning reserve. Without load shedding the system would suffer a frequency collapse
as shown by the dotted line. The first stage of load shedding is activated at point 3 and limits the
load to a value corresponding to characteristic PL1 . The rate of frequency drop is now much slower
as the difference between the load and generation is smaller. At point 4 the second stage of load
shedding is triggered, further reducing the load to a value corresponding to characteristic PL2 .
Generation is now higher than the load, the frequency increases, and the system trajectory tends
towards point s2 where the PL2 and PT+ characteristics intersect.

Besides protecting against frequency collapse, load shedding may also be used to prevent deep
drops in system frequency.

9.5 Stage IV – Secondary Control

In Stage IV of the dynamics, the drop in system frequency and the deviation in the tie-line power
flows activate the central AGC, the basic operation of which has been described in Section 9.1.
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Figure 9.22 Stepped shifting of the generation characteristic by a slow-acting central regulator.

9.5.1 Islanded Systems

In an islanded system there are no tie-line connections to neighbouring systems so that the central
regulator controls only the system frequency. As the frequency drops, the central regulator transmits
control signals to the participating generating units to force them to increase their power output.
This lifts the system generation characteristic in the (f , P) plane.

Figure 9.22 illustrates the action of a very slow-acting central regulator which transmits its first
control signal at the end of Stage III corresponding to point III. This first control signal shifts the
generation characteristic upwards a small amount so that at a given frequency, point 5, there is
an excess of generation over load. The generators start to accelerate and the frequency increases
until point 6 is reached. The central regulator now sends a further signal to increase power output
and the generation characteristic is shifted further up. After a few such steps point IV is reached at
which the frequency returns to its reference value and the central regulator ceases operating.

Although the zigzag line in Figure 9.22 is only a rough approximation to the actual trajectory,
it illustrates the interaction between the secondary control action of the central regulator, which
shifts the generation characteristic upwards, and the primary control action of the turbine governing
systems, which moves the operating point along the static generation characteristic. In a real power
system the inertia within the power regulation process ensures smooth changes in the power around
the zigzag line to produce the type of response shown in Figure 9.23. Stages I, II and III of the
frequency change are as described in the previous sections and, at the end of Stage III, the trajectory
tends to wrap itself around the temporary equilibrium point III, Figure 9.23a, but does not settle
at this point. The AGC of Stage IV now comes into operation and the trajectory tends towards the
new equilibrium point IV. Although the difference between the frequency at points III and IV is
small, the central regulator acts slowly so that correction of the frequency drop during Stage IV of
the dynamics may take a long time as shown by the broken curves in Figure 9.23b and c.

If the central frequency control acts faster than as shown in Figure 9.23, it will come into
operation before the end of Stage III. The trajectory f (PT) does not now wrap around point III and
the frequency starts to increase earlier as shown by curve 2 in Figure 9.24.

The way in which the frequency is returned to its nominal value depends on the dynamics of
the central regulator shown in Figure 9.10 and defined by Equation (9.12). The regulator dynamics
consist of proportional and integral action, both of which increase the regulator output signal
�Pref as the frequency drops. The amount of integral action is determined by the integral time
constant TR while the proportional action is dependent on the coefficient βR. Careful selection of
these two coefficients ensures that the frequency returns smoothly to its reference value as shown in
Figure 9.24. Particularly problematic is a small integral time constant, because the smaller is this
time constant, the faster the regulation signal increases. This can be compensated to some extent by
the coefficient βR which will start to decrease the signal �Pref as soon as the frequency starts to rise.
In the extreme case of small values of βR and TR the response is underdamped and the reference
frequency value will be reached in an oscillatory way.
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Figure 9.23 Stages III and IV of the frequency variations produced by a disturbance in the balance
of real power: (a) generation and load characteristics and the system trajectory; (b) changes in
frequency; (c) changes in power. The time duration of Stage IV is several seconds to a minute.

Section 9.1 explained how not all the generating units necessarily participate in AGC. This means
that only a part of the spinning reserve can be activated by the central regulator during secondary
control. That part of the spinning reserve that belongs to the generators participating in secondary
control is referred to as the available regulation power.

If the available regulation power is less than the lost power, then Stage IV of the dynamics will
terminate when all the available regulation power has been used. This corresponds to the system
trajectory settling at an equilibrium point somewhere between points III and IV on Figure 9.23 at
a frequency that is lower than the reference value. The system operators may now verbally instruct
other generating stations not on central control to increase their power output to help remove the
frequency offset. In the case of a large power deficit, further action would consist of connecting new
generating units from the cold reserve which, when connected, will release the capacity controlled
by the central regulator. The frequency changes associated with this process are very slow and are
not considered here.

f

t
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2

f0

Figure 9.24 Examples of changes in frequency: 1, with a slow central regulator; 2, with a fast
central regulator.
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Figure 9.25 An example of the frequency variations when �P0 = 10 %�PL. Curve 1 corresponds
to r = 16 % ; 2 corresponds to r = 14 % ; 3 corresponds to r = 12 % ; and 4 corresponds to r = 8 %.

Equation (9.35) defines the contribution of each of the generating units in covering the power
imbalance at the end of Stage III. In Stage IV the increase in generation is enforced by the central
regulator and the contribution of each unit, and the ratio �PrIV/�PsIV , will depend on whether or
not the particular generating unit participates in central control.

Provided that the spinning reserve and the available regulation power are large enough, then
in many cases they can prevent the system suffering a frequency collapse. Figure 9.25 shows an
example of how the frequency variations depend on the value of the spinning reserve coefficient.
The disturbance consists of losing generation �P0 equivalent to 10 % of the total load power PL. In
the first two cases r ≥ 14 % and the frequency returns to its reference value thanks to the operation
of primary and secondary control. The third case corresponds to the frequency collapse shown in
Figure 9.20. In the fourth case there is no intersection point between the generation and the load
characteristic and the frequency quickly collapses.

9.5.1.1 The Energy Balance over the Four Stages

When a power system loses a generating unit it loses a source of both electrical and mechanical
energy. By the end of the power system dynamic response, this lost energy has been recovered as
illustrated in Figure 9.26. The upper bold curve shows the variations of the mechanical power
provided by the system while the lower bold curve shows the variations of electrical power of the
loads due to frequency variations. All these variations are similar to those shown in Figure 9.23c.
Initially the energy shortfall is produced by converting the kinetic energy of the rotating masses of
the generating units and the loads to electrical energy, area 1 and area 2. This reduction in kinetic

P

t

2

1 3
4

∆P
0

Figure 9.26 Share of the individual components in covering the power imbalance: 1, rotating
masses of the generating units; 2, rotating masses of the loads; 3, primary control; 4, secondary
control. Based on Welfonder (1980). Reproduced by permission of E. Welfoner.
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Figure 9.27 The functional diagram of an interconnected system consisting of two subsystems: a
big system A and a small system B.

energy causes a drop in frequency which activates the turbine governor primary control so that
the mechanical energy supplied to the system is increased but at a lower frequency, area 3. This
energy is used partially to generate the required energy shortfall, and partially to return the kinetic
energy borrowed from the rotating masses. Secondary control then further increases the mechanical
energy, area 4, which is used to generate the required additional electrical energy and to increase
the kinetic energy of the rotating masses so restoring the system frequency.

9.5.2 Interconnected Systems and Tie-Line Oscillations

This discussion will be limited to the interconnected system shown in Figure 9.27 consisting of two
subsystems of disproportionate size, system A and system B, referred to as the big system and the
small system respectively. The tie-line interchange power Ptie will be assumed to flow from the big
system to the small system and an imbalance of power �P0 assumed to arise in the small system.
During the first three stages of the dynamics the influence of the central regulators in both system
A and system B may be neglected.

Both systems are replaced by an equivalent generator, as in Figure 9.14b, to obtain the equivalent
circuit of Figure 9.28a. In this circuit the reactance X combines the reactances of the tie-line
connecting the two systems, the equivalent network reactance of both systems and the transient
reactances of all the generators. As one of the subsystems is large compared with the other, the
generator–infinite busbar model and the equal area criterion can be used to analyse Stage I of the
dynamics.

The power–angle characteristic PB(δ′) of the small system is a sinusoid, corresponding to a power
transfer between the systems, shifted by a constant value corresponding to the power demand in
the small system PLB. It is assumed that system B imports power from A so that PTB < PLB and
its power angle is negative with respect to system A. Before the disturbance occurs, the system
operates at point 1 corresponding to the intersection of the PB(δ′) characteristic and the horizontal
line representing the mechanical power PTB− . The small system now loses generation equal to �P0

and the power generated in this system drops to PTB+ . The electrical power exceeds the mechanical
power and the rotors of the generators in system B slow down. The equivalent system rotor moves
from point 1 to point 2 and then to point 3 in Figure 9.28b. Along this motion the electrical power
generated in system B decreases and, as a result, additional power starts to flow from system A,
Figure 9.28d. The maximum change in the value of the instantaneous power in the tie-lines increases
to almost double the value of the lost power, the difference between points 1 and 3. Oscillations in
the power begin during which kinetic energy in both systems is used to cover the lost generation.
The angular velocities of the generator rotors drop and the system enters Stage II of the dynamics.

Stage I of the dynamics is dangerous from a stability point of view in that if the area 1–1′–2
is greater than the area 2–3–4 then the system loses stability and the small system will operate
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Figure 9.28 Application of the equal area criterion to determine the tie-line power during the first
stage of the dynamics: (a) equivalent circuit; (b) the power–angle characteristic taking into account
equivalent loads; (c) changes in the tie-line power; (d) changes in the generated power. The time
duration of the phenomena is a few seconds.

asynchronously with respect to the big system with ωB < ωA. Such a situation may occur when
the tie-line capacity is small and the disturbance in power balance large. During asynchronous
operation large oscillations in the power tie-line power will occur with the difference between the
maximum and the minimum value being twice the amplitude of the sinusoid shown in Figure 9.28b.
As the possibility of resynchronizing the systems is small, they would usually be disconnected to
avoid damaging equipment in either system.

In Stage II the power imbalance is covered in proportion to the inertia coefficients of the equivalent
systems as determined by Equations (9.28), that is

�PAII = MA

MA + MB
�P0 and �PBII = MB

MA + MB
�P0, (9.41)

where MA = ∑NGA
i=1 Mi and MB = ∑NGB

i=1 Mi are the sums of the inertia coefficients of the rotating
masses in each system. Equations (9.41) suggest that the big system A will almost entirely cover the
power imbalance since MA � MB , so in Stage II of the frequency variations �PtieII ≈ �P0 and
the tie-lines will be additionally loaded with a value of the power lost in system B.

At the end of Stage III the frequency drops by a value �f III that can be calculated from the
system stiffness K f defined in Equation (9.33). �P0 is given by

�P0 = (�PTAIII − �PLAIII) + (�PTBIII − �PLBIII) , (9.42)

and, when substituting the values for KTA, KLA, KTB andKLB obtained from Equations (9.39) and
(9.6), a similar formula to that in Equation (9.33) for the frequency drop in Stage III is obtained:

� fIII

fn
= −1

KfA PLA + KfB PLB
�P0, (9.43)

where KfA = KTA + KLA and KfB = KTB + KLB are the stiffnesses of the big and the small system
respectively. The increase in the tie-line interchange can be determined from a power balance on
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one of the systems, in this case the big system A, when

�PtieIII = �PTAIII − �PLAIII = − (KTA + KLA) PLA
� fIII

fn

= −KfA PLA
� fIII

fn
= KfA PLA

KfA PLA + KfB PLB
�P0.

(9.44)

Under the assumption that PLA � PLB this formula simplifies to �PtieIII ≈ �P0 when, during Stage
III, the tie-line power interchange is increased by the value of the lost power, as during Stage II.
Such an increase in the power flow may result in system instability when the interconnected systems
split into two asynchronously operating subsystems. Also, with such a large power transfer the
thermal limit on the line may be exceeded when the overcurrent relays trip the line, again leading
to asynchronous operation of both systems.

Assuming that the tie-line remains intact, the increase in the tie-line interchange power, combined
with the drop of frequency, will force the central regulators in both systems to intervene. The ACE
at the end of Stage III can be calculated from Equation (9.11) using the formulae given in Equations
(9.43) and (9.44) as

ACEA = −�PtieIII − λRA� fIII and ACEB = +�PtieIII − λRB� fIII. (9.45)

As explained in Section 9.1 (Equation (9.10)), the ideal regulator bias settings are

λRA = KfA
PLA

fn
and λRB = KfB

PLB

fn
, (9.46)

but this is difficult to achieve in practice as the values of the stiffnesses K fA and K fB can only be
estimated. Consequently, assuming that KRA and KRB are estimates of K fA and K fB respectively,
then the bias settings are

λRA = KRA
PLA

fn
and λRB = KRB

PLB

fn
, (9.47)

and Equations (9.45) become

ACEA = −�PtieIII − λRA� fIII = −KfA PLA + KRA PLA

KfA PLA + KfB PLB
�P0, (9.48)

ACEB = +�PtieIII − λRB� fIII = KfA PLA + KRB PLB

KfA PLA + KfB PLB
�P0. (9.49)

9.5.2.1 Ideal Settings of the Regulators

Assume that the stiffnesses K fA and K fB of both systems are known and that the central regulator
bias settings λRA and λRB are selected such that

KRA = KfA, KRB = KfB. (9.50)

In this case, Equations (9.48) and (9.49) give

ACEA = 0 and ACEB = �P0, (9.51)

and the central regulator of the big system, system A, will not demand an increase in the power
generation in its area. Only the small system will increase its generation in order to cover its own
power imbalance. If the available regulation power in the small system is high enough to cover
the lost generation then the big system will not intervene at all and, as the generation in the small
system is increased, the tie-line power interchange will drop to its scheduled value.
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The value of the system stiffness Kf = KT + KL is never constant because it depends on the
composition of the system load and generation and on the spinning reserve. Consequently, the
condition defined by Equation (9.50) is almost never satisfied and the central regulator of the bigger
system will take part in the secondary control to an amount defined by Equation (9.48).

Example 9.2

An interconnected system consists of two subsystems of different size. The data of the subsystems
are: fn= 50 Hz, PLA=37 500 MW, KTA = 8 (ρTA= 0.125 ), KLA ≈ 0 , KRA = KTA , PLB = 4000
MW, KTB = 10 (ρTB = 0.1 ), KLB ≈ 0 , KRB = KTB .

Two large generating units are suddenly lost in the smaller system producing a power deficit of
�P0 = 1300 MW, that is 32.5 % of the total generation in this subsystem. The resulting frequency
and power variations for both subsystems, assuming no limits on the power generation (linear
generation characteristics), are shown in Figure 9.29.
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Figure 9.29 Illustration for Example 9.2: (a) the static characteristics of both systems and the
trajectory f (PTA); (b) frequency variations; (c) tie-line power interchange oscillations and the
change of power demanded by the central regulators of both subsystems; (d) change in the
mechanical power supplied by the turbines.
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The characteristic PTA has a small slope corresponding to KTA PLA/ fn = 6000 MW/Hz. The
slope of the characteristic of the smaller system is much higher and corresponds to KTB PLB/ fn =
800 MW/Hz. The characteristic PTB+ is inverted and shifted by �P0 = 1300 MW, so that
intersection of the characteristics PTB+ and PTA determines the frequency deviation �f III at
point III. The central regulator of the small system acts fast enough for the PTB characteristic
to move so that point III is not reached. Further action due to the integral term in the regulator
shifts the characteristic PTB slowly to the position PTB∞ corresponding to nominal frequency.

It is worth noting the small frequency oscillations characteristic of the third stage of the dynamics.
Because of the fast-acting central regulator, these oscillations take place above the value �f III, Figure
9.29b. The tie-line power flow initially increases very quickly in Stage I of the dynamics, and then
oscillates around the scheduled value increased by the value of the lost generation. The period of
oscillations is around 3 s. Then, as the central regulator in the small system enforces an increase in
the generation, the tie-line flow slowly decreases to its scheduled value.

The central PI regulator quite quickly creates the output signal �PrefB as shown in Figure 9.29c.
The generating units respond to this increased power demand by increasing the generation by �PTB,
Figure 9.29d. Because of the primary turbine control, the mechanical power of the big system PTA

initially increases to cover the power imbalance and then quickly drops to the instantaneous
equilibrium point corresponding to the end of Stage III. After that PTA slowly decreases as the
generation PTB, forced by secondary control, increases. At the same time the frequency increases
so that the frequency error of the central regulator of the big system becomes negligibly small and
the regulator becomes inactive.

9.5.2.2 Non-Ideal Settings of the Central Regulator

If KRA > KfA , then the signal λRA� f is initially larger than the signal �Ptie and the regulator
tries to increase the generation in system A. Although the increased generation speeds up the rate
at which the frequency increases, it slows down the rate at which the tie-line error �Ptie decreases
and in some cases can lead to a temporary increase in this error. Consequently, the signal �Ptie

becomes greater than the signal λRA� f and the central regulator starts to reduce the generation in
system A, so essentially withdrawing this subsystem from secondary control.

If KRA < KfA , then the signal �Ptie is initially higher than the signal λRA� f and the regulator
of the big system tries to reduce its generation despite the fact that the frequency is smaller than
nominal. This drop in generation is not desirable from the frequency regulation point of view but
does reduce the tie-line flows. When λRA� f becomes larger than �Ptie the regulator will start to
increase the recently reduced generation so as to re-establish the required power in system A.

In both the above cases the inaccuracy of the frequency bias setting causes unnecessary interven-
tion of the bigger system in covering the generation loss in the smaller system. In the above example
a large amount of regulation power was available so that use of the non-ideal regulator settings was
not dangerous. However, should the amount of regulation power available be insufficient to cover
the lost power then the consequence of non-ideal regulator settings becomes more significant as
described below.

9.5.2.3 Insufficient Available Regulation Power

When the available regulation power �PregB in the small system is less than the generation loss �P0

then system B is unable to cover the power loss on its own and the big system A must intervene to
cover part of the lost power. Initially the dynamics are identical to the case in which the regulation
power in the small system was unlimited. The difference between the two cases appears when the
small system has used up all its available regulation power. Further changes can only take place via
regulation of the big system. Its central regulator is now subject to two error signals of opposite
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sign (Figure 9.12). The signal λRA� f generated by the frequency error demands an increase in the
generation while the signal �Ptie generated by the tie-line power deviation demands a decrease in
the generation. The regulation process terminates when the signals balance each other and the total
error signal is zero. Denoting the final steady-state values of the error signals as � f∞ and �Ptie∞ ,
the regulation equation is

ACEA = −�Ptie ∞ − KRA PLA
� f∞

fn
= 0. (9.52)

On the other hand, the tie-line power interchange must satisfy the overall power balance of the
small system

�P0 − �PregB = �Ptie ∞ − (KTB + KLB) PLB
� f∞

fn
. (9.53)

Physically this means that the power imbalance in the small system B may be covered partly by an
increase in the power imported from the big system A, partly by a change in internal generation
and partly by a decreased demand resulting from the frequency drop in the whole interconnected
system. Solving Equations (9.52) and (9.53) gives

�Ptie∞ = KRA PLA

KRA PLA + KfB PLB

(
�P0 − �PregB

)
, (9.54)

� f∞
fn

= − 1
KRA PLA + KfB PLB

(
�P0 − �PregB

)
. (9.55)

Under the assumption that PLA � PLB Equations (9.54) and (9.55) may be simplified to

�Ptie ∞ ∼= (
�P0 − �PregB

)
, (9.56)

� f∞
fn

∼= − 1
KRA PLA

(�P0 − �PregB). (9.57)

Additional validity is given to this simplification if the small system is fully loaded (�PregB = 0 and
KTB = 0 ) when the stiffness KfB = KTB + KLB has a small value corresponding to the frequency
sensitivity of the loads KLB. In this situation the whole power imbalance is covered by the tie-line
interchange.

The frequency deviation � f∞ is inversely proportional to the coefficient λRA = KRA PLA/ fn set
at the central regulator. If the available regulation power is not large enough then too low a setting
of the central regulator produces a steady-state frequency error. If KRA = KfA then the final value
of the frequency will correspond to the frequency level at which the available regulation power of
the small system has run out. If KRA > KfA then the regulator of the big system will increase its
generation, decreasing the frequency error and allowing the tie-line interchange error to increase.
If KRA < KfA , then the regulator of the big system will decrease its generation, increasing the
frequency error, and the tie-line interchange error will not be allowed to increase. This can be
illustrated by the following example.

Example 9.3

The available regulating power of the small subsystem considered in Example 9.2 is �PregB = 500
MW. The settings of the central regulators are KRA = 5.55 < KTA and KRB = 12.5 > KTB.
Neglecting the frequency sensitivity of the load, Equations (9.56) and (9.57) give: �Ptie∞ =
800 MW and � f∞ = −0.16 Hz. The power and frequency variations are illustrated in Figure
9.30. During the first 20 s of the disturbance the trajectory is the same as the one shown in
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Figure 9.30 Illustration for Example 9.3.

Figure 9.29, but now the characteristic PTB eventually settles at PTB∞ . Trajectory f (PTA) begins
to wrap around the instantaneous equilibrium point IV, but the big system regulator decreases its
generation shifting the characteristic from position PTA+ to position PTA∞ . The dynamics end up
at point ∞ where the frequency of the interconnected system is lower, by about � f∞ = −0.16 Hz,
than the required value. A small portion of the trajectory f (PTA) , between point IV and
∞, corresponds to a slow reduction of frequency over several tens of seconds. The varia-
tions in the tie-line power interchange are similar to those shown in Figure 9.29, but settle
down at a level corresponding to point ∞, that is �Ptie∞ = 800 MW (the generation lost was
�P0 = 1300 MW).

If the tie-line power interchange determined by Equation (9.54) is greater than the maximal
thermal capacity of the tie-line, then the line will be tripped and the systems separated. The
imbalance of power in the small system will cause a further drop in frequency which, in the absence
of automatic load shedding, may lead to frequency collapse in that subsystem.

9.6 FACTS Devices in Tie-Lines

Series FACTS devices, described in Section 2.4.4, may be installed in tie-lines linking control areas in
an interconnected power system. Their main function is execution of steady-state control functions
described in Section 3.6. During the transient state caused by a sudden disturbance of a power
balance in one of the subsystems, series FACTS devices installed in the tie-lines may affect the
values of tie-line power interchanges Ptie and therefore also the value of the ACE given by (9.11)
and the dynamics of secondary control executed by the central regulator shown in Figure 9.10.
Hence a proper control algorithm and proper parameter selection have to be implemented at the
regulator of the series FACTS device so that the control does not deteriorate the frequency and
tie-line power interchange regulation process. This problem will be discussed in detail using as an
example a thyristor-controlled phase angle regulator (TCPAR) which, from the power system point
of view, acts as a fast phase shifting transformer.

A schematic diagram of a TCPAR regulator is shown in Figure 9.31. An integral-type regulator
with negative feedback is placed in the main control path. The task of the regulator is to regulate
real power flow in the line in which the FACTS device is installed. The reference value is supplied
from the supervisory control system. A supplementary control loop devoted to damping of power
swings and improving power stability is shown in the lower part of the diagram.

From the point of view of power system dynamics, an important problem for a series FACTS
device installed in a tie-line is the control algorithm executing the supplementary control loop
ensuring damping of interarea power swings in such a way that the frequency control executed by
the central LFC regulator is not disturbed. The control algorithm described in this section is based
on Nogal (2008).
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Figure 9.31 Power flow controller installed in a tie-line of an interconnected power system.

9.6.1 Incremental Model of a Multi-Machine System

Figure 9.32 illustrates the stages of developing a model of a phase shifting transformer installed
in a tie-line. A booster voltage, which is in quadrature to the supply voltage, is injected in the
transmission line using a booster transformer:

�VP = γ Va, (9.58)

where γ is the controlled variable. The booster transformer reactance has been added to the
equivalent line reactance. To simplify considerations, the line and transformer resistances have been
neglected.

The following relationships can be derived using the phasor diagram of Figure 9.32:

sin θ = �VP

Vc
= γ Va

Vc
; cos θ = Va

Vc
; δcb = δab + θ. (9.59)

According to Equation (3.15), real power flowing through a transmission line is given by

Pab = Pcb = VcVb

X
sin δcb. (9.60)

Substituting (9.59) gives

Pab = VcVb

X
sin (δab + θ ) = VcVb

X
(sin δab cos θ + cos δab sin θ)

= VaVb

X
sin δab + γ

VaVb

X
cos δab.

(9.61)

(a)

(b)

(c)

(d)

a b
cPab Pab

a b∆Pab ∆Pab

a b
cPab PabXγ

h́ab ab∆δ

h́ab∆γ −h́ab∆γ

V a

V c

∆V p

V b

Θ
δab δcb

Figure 9.32 Stages of developing an incremental model of a transmission line with a phase shift-
ing transformer: (a) one-line diagram; (b) admittance model with ideal transformation ratio; (c)
incremental model; (d) phasor diagram.
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This equation can also be written as

Pab = bab sin δab − bab cos δabγ (t), (9.62)

where bab = VaVb/X is the amplitude of the power–angle characteristic of the transmission line.
The values of variables at a given operating point are (P̂ab,δ̂,γ̂ ) . Using these values, Equation

(9.62) gives

P̂ab = bab sin δ̂ab − bab cos δ̂ab γ̂ . (9.63)

The tie-line flow in (9.62) depends on both the power angle δab and the quadrature transformation
ratio γ (t). Taking that into account and differentiating (9.62) in the vicinity of the operating point
gives

�Pab = ∂ Pab

∂δab

∣∣∣∣
δab=δ̂ab

�δab + ∂ Pab

∂γ

∣∣∣∣
γ=γ̂

�γ. (9.64)

Hence, taking into account (9.62),

�Pab =
(

bab cos δ̂ab + γ̂ bab sin δ̂ab

)
�δ −

(
bab cos δ̂ab

)
�γ. (9.65)

The coefficients bab cos δ̂ab and bab sin δ̂ab in this equation are the same as those in (9.63). Com-
ponent bab sin δ̂ab can be eliminated from (9.65) using (9.63) in the following way. Equation (9.63)
gives

bab sin δ̂ab = P̂ab + γ̂ bab cos δ̂ab, (9.66)

or

γ̂ bab sin δ̂ab = γ̂ P̂ab + γ̂ 2bab cos δ̂ab. (9.67)

Substituting this equation into (9.65) gives

�Pab =
[(

1 + γ̂ 2
) (

bab cos δ̂ab

)
+ γ̂ P̂w

]
�δab −

(
bab cos δ̂ab

)
�γ. (9.68)

The following notation is now introduced:

hab = ∂ Pab

∂δab

∣∣∣∣
δab=δ̂ab, γ̂=0

= bab cos δ̂ab, (9.69)

h′
ab = (

1 + γ̂ 2
) (

bab cos δ̂ab

)
+ γ̂ P̂ab = (

1 + γ̂ 2
)

hab + γ̂ P̂ab. (9.70)

The variable hab given by (9.69) corresponds to the mutual synchronizing power for the line ab
calculated neglecting the booster transformer. On the other hand, h′

ab given by (9.70) corresponds
to the synchronizing power when the booster transformer has been taken into account. Using that
notation, Equation (9.68) takes the form

�Pab = h′
ab �δab − hab �γ. (9.71)

Equation (9.71) describes the incremental model of the transmission line shown in Figure 9.32c.
There is an equivalent transmission line between nodes ‘a’ and ‘b’. A change in the flow in that line
corresponds to a change in the voltage angles at both nodes. Nodal power injections correspond to
flow changes due to regulation of the quadrature transformation ratio γ (t). The power injections
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−hab∆γ −hab∆γ

+hab∆γ +hab∆γ

Figure 9.33 Stages of developing the incremental model: (a) admittance model with a phase
shifting transformer; (b) incremental model; (c) incremental model after elimination of nodes {L}.

in nodes ‘a’ and ‘b’ are +hab �γ and −hab �γ , respectively. To understand this, note that (9.71)
holds for node ‘a’ while the same equation for node ‘b’ is

h′
ab �δab = �Pab + hab �γ. (9.72)

It will be shown later that the derived incremental model of a branch with a phase shifting
transformer is convenient for network analysis, especially for large networks, because it models
changes in the quadrature transformation ratio by changes in power injections without changing
the parameters of the branches.

Equation (3.157) derived in Section 3.6 modelled the effect of small changes of nodal voltages
in a network. In analysing system frequency regulation, one can assume that changes in voltage
magnitudes can be neglected and only changes in voltage angles are considered. Then Equation
(3.157) takes the form

�P ∼= H�δ, (9.73)

where �P and �δ are the vectors of changes in real power injections and voltage angles, respectively.
Matrix H is the Jacobi matrix and consists of the partial derivatives Hi j = ∂ Pi/∂δ j . Equation (9.73)
describes the incremental model of a network. Including a phase shifting transformer in incremental
model of a network is illustrated in Figure 9.33. There are the following node types:

� {G} – generator nodes behind transient generator reactances;
� (L} – load nodes;
� a,b – terminal nodes of a line with a phase shifting transformer (as in Figure 9.32).

The line with the phase shifting transformer, Figure 9.33, is modelled using a transformation
ratio and a branch. In the incremental model shown in Figure 9.33 this line is modelled in the
same way as shown in Figure 9.32. Matrix H describing that network includes branch h′

ab from
the incremental line model with the phase shifting transformer. There are real power injections in
nodes ‘a’ and ‘b’, similar to Figure 9.32c, corresponding to flow changes due to transformation
ratio regulation γ (t).

Now Equation (9.73) describing the model shown in Figure 9.33b can be expanded as

{G}
a

b

{L}




�PG
- - - - - - -
+hab�γ
- - - - - - -
−hab�γ

0


 ∼=


 H







�δG
- - - - -
�δa

- - - - -
�δb

�δL


 . (9.74)
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Substitution �PL = 0 has been made on the left hand side of (9.74) because loads at {L} nodes are
modelled as constant powers. Eliminating variables related to load nodes {L} in (9.74) by using the
partial inversion method shown in Appendix A.2 makes it possible to transform Equation (9.74) to
the following form:

{G}
a

b




�PG
- - - - - - -
+hab�γ
- - - - - - -
−hab�γ


 ∼=




HGG HGa HGb
- - - - - - - - - - - - - - - -
HaG Haa Hab
- - - - - - - - - - - - - - - -
HbG Hba Hbb







�δG
- - - - -
�δa

- - - - -
�δb


 . (9.75)

This equation can be further transformed by partial inversion to the following equations:

�PG
∼= HG�δG + [

KGa KGb

] [+hab �γ
- - - - - - -

−hab �γ

]
, (9.76)

[
�δa

- - - - -
�δb

]
∼= −

[
KaG

- - - - -
KbG

]
�δG +

[
Haa Hab
- - - - - - -

Hba Hba

]−1 [ +hab �γ
- - - - - - -

−hab �γ

]
, (9.77)

where

HG = HGG − [
HGa HGb

] [
Haa Hab
- - - - - - -

Hba Hba

]−1 [
HaG

- - - - -
HbG

]
, (9.78)

[
KGa KGb

] = [
HGa HGb

] [
Haa Hab
- - - - - - -

Hba Hba

]−1

(9.79)

[
KaG

- - - - -
KbG

]
=

[
Haa Hab
- - - - - - -

Hba Hba

]−1 [
HaG

- - - - -
HbG

]
. (9.80)

Equations (9.76) and (9.77) describe the incremental model shown in Figure 9.33c. The former
describes how a change in the transformation ratio of a phase shifting transformer affects power
changes in all power system generators. The latter describes the influence of changes in the transfor-
mation ratio on the voltage angle changes in the terminal nodes of the line with the phase shifting
transformer.

Equation (9.76) can be transformed to

�PG
∼= HG �δG + �Kab hab �γ, (9.81)

where

�Kab = KGa − KGb. (9.82)

Hence a power change in the ith generator can be expressed as

�Pi
∼=

∑
j∈{G}

Hi j �δ j + �Ki hab �γ, (9.83)

where �Ki = Kia − Kib . Thus, if Kia
∼= Kib then changes in �γ cannot influence power changes

in the ith generator. In other words, that generator cannot be controlled using that phase shifting
transformer. Coefficients Kia , Kib can be treated as measures of the distance from nodes ‘a’ and
‘b’ to the ith generator. This means that if nodes ‘a’ and ‘b’ are at the same distance from the ith
generator then the device cannot influence the generator. This can be checked using Figure 9.33c,
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since power injections in nodes ‘a’ and ‘b’ have opposite signs. Hence if the distances are the same,
then the influences on that generator cancel each other out.

The swing equation describing increments of rotor angles, Equation (5.15) in Section 5.1, is

d�δi

dt
= �ωi

Mi
d�ωi

dt
= −�Pi − Di �ωi ,

(9.84)

for i ∈ {G} . As the network equations were derived in matrix form, it is convenient to write the
above equation in matrix form too:

�δ̇G = �ωG

M�ω̇G = −�PG − D�ωG,
(9.85)

where M and D are diagonal matrices of the inertia and damping coefficients, and �δG , �ωG

and �PG are column matrices of changes in rotor angles, rotor speed deviations and real power
generations respectively.

Substituting (9.81) into the second equation of (9.85) gives the following state equation:

M �ω̇G = −HG �δG − D �ωG − �Kab hab �γ (t). (9.86)

Here �γ (t) is the control function corresponding to the transformation ratio change of the phase
shifting transformer. Function �γ (t) affects rotor motions in proportional to the coefficients
�Ki hab = (Kia − Kib)hab .

The main question is how �γ (t) should be changed so that control of a given phase shifting
transformer improves damping of oscillations. The control algorithm of �γ (t) will be derived using
the Lyapunov direct method.

9.6.2 State-Variable Control Based on Lyapunov Method

In Section 6.3, the total system energy V(δ, ω) = Ek + Ep was used as the Lyapunov function in
the nonlinear system model (with line conductances neglected). In the considered linear model
(9.86) the total system energy can be expressed as the sum of rotor speed and angle increments. This
corresponds to expanding V(δ, ω) = Ek + Ep in a Taylor series in the vicinity of an operating point,
as in (6.11). This equation shows that V (x) can be approximated in the vicinity of an operating
point using a quadratic form based on the Hessian matrix of function V (x) .

For the potential energy Ep given by (6.47), the Hessian matrix corresponds to the gradient of
real power generations and therefore also the Jacobi matrix used in the above incremental model:[

∂2Ep

∂δi ∂δ j

]
=

[
∂ Pi

∂δ j

]
= HG. (9.87)

Equations (6.11) and (9.85) lead to

�Ep = 1
2
�δT

G HG�δG (9.88)

It will be shown in Chapter 12 that if the network conductances are neglected, matrix HG is
positive definite at an operating point (stable equilibrium point). Hence the quadratic form (9.88)
is also positive definite.

Using (6.11), the kinetic energy Ek given by (6.46) can be expressed as

�Ek = 1
2
�ωT

G M�ωG. (9.89)
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This is a quadratic form made up of the vector of speed changes and a diagonal matrix of inertia
coefficients. Matrix M is positive definite so the above quadratic form is also positive definite.

The total energy increment �V(δ, ω) = �Ek + �Ep is given by

�V = �Ek + �Ep = 1
2
�ωT

G M�ωG + 1
2

�δT
G HG�δG (9.90)

This function is positive definite as the sum of positive definite functions and therefore can be used
as a Lyapunov function provided its time derivative at the operating point is negative definite.

Differentiating (9.88) and (9.89) gives

�Ėp = 1
2
�ωT

G HG�δG + 1
2
�δT

G HG�ωG (9.91)

�Ėk = 1
2
�ω̇T

G M�ωG + 1
2
�ωT

G M�ω̇G. (9.92)

Now, it is useful to transpose Equation (9.86):

�ω̇T
G M = −�δT

GHG − �ωT
GD − �KT

ab hab �γ (t). (9.93)

Substituting the right hand side of (9.93) for �ω̇T
G M in the first component of (9.92) gives

�Ėk = −1
2
�δT

G HG �ωG − 1
2
�ωT

G HG �δG − �ωT
G D�ωG

−1
2

(
�KT

ab�ωG + �ωT
G�Kab

)
hab �γ (t).

(9.94)

It can be easily checked that both expressions in the last component of (9.94) are identical scalars
as

�KT
ab �ωG = �ωT

G �Kab =
∑
i∈{G}

�Ki �ωi . (9.95)

Hence Equation (9.94) can be rewritten as

�Ėk = −1
2
�δT

G HG�ωG − 1
2
�ωT

G HG�δG − �ωT
G D�ωG − �KT

ab�ωGhab�γ (t). (9.96)

Adding both sides of (9.96) and (9.91) gives

�V̇ = �Ėk + �Ėp = −�ωT
G D�ωG − �KT

ab�ωGhab�γ (t). (9.97)

In a particular case when there is no control, that is when �γ (t) = 0 , the equation in (9.97) gives

�V̇ = �Ėk + �Ėp = −�ωT
G D�ωG. (9.98)

As matrix D is positive definite, the function above is negative definite. Hence function (9.90) can
be treated as the Lyapunov function for the system described by (9.86).

In order for the considered system to be stable when �γ (t) �= 0 changes, the second component
in (9.97) should always be positive:

�KT
ab �ωG hab �γ (t) ≥ 0. (9.99)

This can be ensured using the following control law:

�γ (t) = κhab �KT
ab �ωG. (9.100)
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Figure 9.34 Block diagram of the stabilizing control loop of a power flow controller installed in a
tie-line of an interconnected power system.

With this control law the derivative (9.97) of the Lyapunov function is given by

�V̇ = −�ωT
G D�ωG − κ

(
hab�KT

ab�ωG
)2 ≤ 0, (9.101)

where κ is the control gain. Taking into account (9.95), the control law (9.100) can be written as

�γ (t) = κhab

∑
i∈{G}

�Ki �ωi (9.102)

where �Ki = Kia − Kib This control law is valid for any location of the phase shifting transformer.
For the particular case when the phase shifting transformer is located in a tie-line, the control law
can be simplified as described below.

The generator set {G} in an interconnected system can be divided into a number of subsets
corresponding to subsystems. Let us consider three subsystems as in Figure 9.34, that is {G} =
{GA} + {GB} + {GC}. Now the summation in Equation (9.102) can be divided into three sums:

�γ (t) = κhab


 ∑

i∈{GA}
�Ki �ωi +

∑
i∈{GB}

�Ki �ωi +
∑

i∈{GC}
�Ki �ωi


 . (9.103)

Following a disturbance in one of the subsystems, there are local swings of generator rotors inside
each subsystem and interarea swings of subsystems with respect to each other. The frequency of
local swings is about 1 Hz while the frequency of interarea swings is much lower, usually about
0.25 Hz. Hence, when investigating the interarea swings, the local swings can be approximately
neglected. Therefore it can be assumed that

�ω1
∼= · · · = �ωi

∼= · · · ∼= �ωnA
∼= 2π� fA for i ∈ {GA}

�ω1
∼= · · · = �ωi

∼= · · · ∼= �ωnB
∼= 2π� fB for i ∈ {GB}

�ω1
∼= · · · = �ωi

∼= · · · ∼= �ωnC
∼= 2π� fC for i ∈ {GC}.

(9.104)

Now Equation (9.103) can be expressed as

�γ (t) = κ2πhab


� fA

∑
i∈{GA}

�Ki + � fB

∑
i∈{GB}

�Ki + � fC

∑
i∈{GC}

�Ki


 , (9.105)

or, after summing the coefficients,

�γ (t) = κ2πhab (�KA � fA + �KB � fB + �KC � fC) , (9.106)
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where

�KA =
∑

i∈{GA}
�Ki , �KB =

∑
i∈{GB}

�Ki , �KC =
∑

i∈{GC}
�Ki . (9.107)

Equation (9.106) shows that the control of a phase shifting transformer should employ the signals
of frequency deviations weighted by coefficients (9.107).

A block diagram of the supplementary control loop based on (9.106) is shown in Figure 9.34. The
way in which the supplementary control loop is added to the overall regulator was shown earlier in
Figure 9.31.

The input signals to the supplementary control are frequency deviations �f in each subsystem.
These signals should be transmitted to the regulator using telecommunication links or WAMS
discussed in Section 2.6. For the frequency of interarea swings of about 0.25 Hz, the period of
oscillation is about 4 s and the speed of signal transmission to the regulator does not have to be
high. It is enough if the signals are transmitted every 0.1 s, which is not a tall order for modern
telecom systems.

The coefficients hab, �KA , �KB , �KC in (9.106) have to be calculated by an appropriate
SCADA/EMS function using current state estimation results and the system configuration. Obvi-
ously those calculations do not have to be repeated frequently. Modifications have to be done only
after system configuration changes or after a significant change of power system loading.

When deriving Equation (9.106), for simplicity only one phase shifting transformer was assumed.
Similar considerations can be taken for any number of phase shifting transformers installed in any
number of tie-lines. For each transformer, identical control laws are obtained but obviously with
different coefficients calculated for the respective tie-lines.

9.6.3 Example of Simulation Results

Neglecting local swings within the subsystems of an interconnected system, Equations (9.104), a
simplified system model can be created using the incremental network model. This model, described
by Rasolomampionona (2007), can take into account frequency and tie-line control and include
models of phase shifting transformers installed in tie-lines. An example of the influence of phase
shifting transformer regulation will be described below using simulation results.

Figure 9.35 shows a test system with parameters. All three tie-lines contain TCPAR-type de-
vices controlled by the regulators shown in Figure 9.34. The stabilizing controllers use frequency
deviations as their input signals.

Figure 9.36 shows the simulation results for a power balance disturbance �P0 = 200 MW con-
sisting of an outage of a generating unit in system A. A thick line shows the responses when a
TCPAR device was active and a thin line the responses when the device was not active. Frequency
changes in the subsystems are shown in Figure 9.36a. When TCPAR devices are not active, fre-
quency responses are affected by interarea oscillations (the thin line). Active TCPAR devices quickly
damp out the interarea oscillations and the remaining slow frequency changes are due to the fre-
quency and tie-line flow control (the thick line). The maximum frequency deviation in subsystems
B and C is reduced due to the action of the TCPAR.

Tie-line flow changes are shown in Figure 9.36b. When TCPAR devices are not acting, changes
due to frequency and tie-line flow control are superimposed on interarea swings (the thin line).
Acting TCPAR devices quickly damp out the interarea swings. The remaining tie-line deviations
tend to zero with time, which shows that the non-intervention rule is fulfilled. Fulfilment of the rule
is also visible in Figure 9.36b showing generation changes. Following the power balance disturbance
in subsystem A, subsystems B and C support A for a short time by means of a power injection. As
the frequency returns to its reference value and subsystem A increases its generation, generation



P1: OTA/XYZ P2: ABC
c09 JWBK257/Machowski September 22, 2008 21:46 Printer Name: Yet to Come

Frequency Stability and Control 379

150 km
A

B

C

100 km
40 Ω

60 Ω

200 km
80 Ω

500 MW

300 MW

200 MW

20 500 MW

19 700 MW

99 500 MW

100 200 MW

15 000 MW

15 100 MW

SSHC = 7 000 MVA

SSHC = 7 000 MVA

SSHC = 10 000 MVA
XA = 39,6 Ω

XC = 39,6 Ω

EA = 440 kV

EC = 430 kV

Tm = 8 s Tm = 7 s

Tm = 8 s

XB = 27,7 Ω
EB = 420 kV 

Figure 9.35 A test system.

in B and C returns to its initial value. The diagram also shows interarea oscillations in generation
(especially in subsystem C) when the TCPAR device was not active.

9.6.4 Coordination Between AGC and Series FACTS Devices in Tie-Lines

The power flow controller shown in Figure 9.31 can be treated as a multi-level controller consisting
of three control paths:

level 1: supplementary control loop with frequency deviations � fA , � fB , � fC as the input
signals (Figure 9.34);

level 2: main control path with real power Ptie as the input signal;
level 3: supervisory control at SCADA/EMS level setting Ptie ref .

The actions of these three control loops are superimposed on top of each other and, through
changes in γ (t) , influence tie-line flows and therefore also operation of AGC in individual subsys-
tems of an interconnected power system. In order for both FACTS and AGC controls to be effective
and beneficial for the power system, there must be appropriate coordination. This coordination has
to be achieved by adjusting the speed of operation of the three control paths of the FACTS devices
to the speed of operation of the three levels of AGC (primary, secondary, tertiary). The three control
loops of AGC (Figure 9.12) differ widely in their speed of operation. The three control levels of
the FACTS device installed in the tie-line of an interconnected power system must also exhibit a
similarly differing speed of operation.

Referring to the description of four stages of power system dynamics due to AGC after a large
power imbalance (Sections 9.2–9.5) and the description of operation of a TCPAR-type FACTS
device (Section 9.6.4), the following conclusions can be drawn about time coordination of individual
control levels.

Supplementary loop control (level 1) should respond quickly, according to the control law (9.106),
to frequency changes due to interarea swings. Hence the speed of reaction of that control level must
be the fastest, similar to that of primary control performed by AGC (prime mover control).

Control executed in the main path (level 2) cannot be fast and must be slower than secondary
control performed by AGC (frequency and tie-line flow control). This can be explained in the
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following way. Following a real power imbalance in a given subsystem, a power injection, lasting
several tens of seconds, may flow to that subsystem from the other subsystems (Figure 9.36b).
This power injection causes Ptie to be different from Ptie ref and a control error appears in that
control path. If the controller reacted too quickly, then the FACTS device could affect the power
injection which would adversely affect the frequency control of the secondary level of AGC. The
maximum frequency deviation would increase and the quality of regulation would decrease (Figure
9.13). To prevent this, the discussed control level should act with a long time constant. Figure
9.31 shows that the main control path contains an integrator with a feedback loop. The transfer
function of the element is G(s) = 1/(ρP + TPs) , which means that the speed of operation of the
element is determined by the time constant TP/ρP If this time constant is several times higher than
the duration time of power injection then the discussed control level should not adversely affect
secondary control executed by AGC.

The supervisory control (level 3) setting Ptie ref executed by SCADA/EMS must be the slowest.
Especially important for the dynamic performance is the case shown in Figure 9.36d when insuf-
ficient regulation power in the subsystem where the power imbalance occurred must result in a
permanent deviation in exchanged power. The FACTS device controlled by the regulator shown
in Figure 9.31 will try to regulate Ptie to a value Ptie ref It may turn out that such regulation is
not beneficial for the system and result in, for example, overloading of other transmission lines.
Regulation at that level must be centrally executed by SCADA/EMS based on the analysis of the
whole network.
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10
Stability Enhancement

The stability of a power system is understood as its ability to return to the equilibrium state after
being subjected to a physical disturbance. Important variables at power system equilibrium are
rotor (power) angles, nodal voltages and frequency. Hence power system stability can be divided
into: (i) rotor (power) angle stability, (ii) voltage stability and (iii) frequency stability. These terms
were introduced in Chapter 1 when discussing Figure 1.5. Prevention of voltage instability (voltage
collapse) was discussed in Section 8.6. A defence plan against frequency instability was discussed
in Section 9.1.6. This chapter will deal with the possibilities of counteracting rotor (power) angle
instability.

The rotor (power) angle stability of a power system can be enhanced, and its dynamic response
improved, by correct system design and operation. For example, the following features help to
improve stability:

� the use of protective equipment and circuit-breakers that ensure the fastest possible fault clearing;
� the use of single-pole circuit-breakers so that during single-phase faults only the faulted phase is

cleared and the unfaulted phases remain intact;
� the use of a system configuration that is suitable for the particular operating conditions (e.g.

avoiding long, heavily loaded transmission links);
� ensuring an appropriate reserve in transmission capability;
� avoiding operation of the system at low frequency and/or voltage;
� avoiding weakening the network by the simultaneous outage of a large number of lines and

transformers.

In practice, financial considerations determine the extent to which any of these features can
be implemented and there must always be a compromise between operating a system near to its
stability limit and operating a system with an excessive reserve of generation and transmission. The
risk of losing stability can be reduced by using additional elements inserted into the system to help
smooth the system dynamic response. This is commonly referred to as stability enhancement and is
the subject of this chapter.

10.1 Power System Stabilizers

A power system stabilizer (PSS) is a device which provides additional supplementary control loops to
the automatic voltage regulator (AVR) system and/or the turbine-governing system of a generating
unit. A PSS is also one of the most cost-effective methods of enhancing power system stability.

Power System Dynamics: Stability and Control, Second Edition Jan Machowski, Janusz W. Bialek and James R. Bumby
C© 2008 John Wiley & Sons, Ltd
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10.1.1 PSS Applied to the Excitation System

Adding supplementary control loops to the generator AVR is one of the most common ways of
enhancing both small-signal (steady-state) stability and large-signal (transient) stability. Adding
such additional control loops must be done with great care; Section 5.5 explained how an AVR
(without supplementary control loops) can weaken the damping provided by the damper and field
windings. This reduction in the damping torque is primarily due to the voltage regulation effects
inducing additional currents in the rotor circuits that oppose the currents induced by the rotor
speed deviation �ω. This phase relationship was illustrated in Figure 5.27 for the field winding (and
in Figure 5.28 for the d-axis damper winding) and gives an immediate insight into what is required
from the PSS.

The main idea of power system stabilization is to recognize that in the steady state, that is when
the speed deviation is zero or nearly zero, the voltage controller should be driven by the voltage
error �V only. However, in the transient state the generator speed is not constant, the rotor swings
and �V undergoes oscillations caused by the change in rotor angle. The task of the PSS is to add an
additional signal which compensates for the �V oscillations and provides a damping component
that is in phase with �ω. This is illustrated in Figure 10.1a where the signal VPSS is added to the
main voltage error signal �V . In the steady state VPSS must be equal to zero so that it does not
distort the voltage regulation process. Figure 10.1b shows the phasor diagram of the signals in
the transient state. As in Section 5.5.3, it is assumed that each signal varies sinusoidally with the
frequency of rotor swings and may therefore be represented by a phasor. The phasor VPSS directly
opposes �V and is larger than it. The net voltage error phasor �V� now leads the speed deviation
phasor �ω instead of lagging it as in Figure 5.27b. As explained in Section 5.5.3, the phasor of the
incremental excitation emf �Ef lags �V� by an angle introduced by the AVR and the exciter so that
the quadrature component (with respect to �δ) of the phasor �E′

q(�Ef ) due to the excitation control
is now in phase with �ω. This, together with �E′

q(�δ), introduces a large damping torque into the
system. However, if the magnitude of VPSS is less than that of �V then only partial compensation
of the negative damping component introduced by the AVR is achieved.

The general structure of the PSS is shown in Figure 10.2 where the PSS signal VPSS can be provided
from a number of different input signals measured at the generator terminals. The measured quantity
(or quantities) is passed through low- and high-pass filters. The filtered signal is then passed through
a lead and/or lag element in order to obtain the required phase shift and, finally, the signal is
amplified and passed to a limiter. When designing the phase compensation it is necessary to take
into account the phase shift of the input signal itself and that introduced by the low- and high- pass

+

–

(a) (b)

AVR

PSS

exciter

q

Vref Ef

VPSS

∆ω
∆V

∆V

VPSS

∆Ef

∆δΩ

Σ
∆E′q(∆δ)

∆E′

∆V ∆VΣ

q ∆E′ (∆Ef)q

∆Pe(∆δ)

Σ Σ

Figure 10.1 Supplementary control loop for the AVR system: (a) block diagram; (b) phasor dia-
gram.
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Figure 10.2 The major elements of a PSS.

filters. Sometimes the filters are designed in such a way that they give a net zero phase shift for the
frequency of rotor oscillations (Huwer, 1992). The mathematical model of the PSS will be described
in more detail in Section 11.2.

Typically the measured quantities used as input signals to the PSS are the rotor speed deviation,
the generator active power or the frequency of the generator terminal voltage. There are a number
of possible ways of constructing a PSS depending on the signal chosen.

10.1.1.1 PSS Based on �ω

The oldest types of PSSs use a measurement of the speed deviation of the generator shaft. Obviously
this signal must be processed in order to filter out all the measurement noise. The main problem
with this method, when applied to turbogenerators with long shafts prone to torsional oscillations,
relates to selecting a measurement position on the shaft that properly represents the speed deviation
of the rotor magnetic poles. For long shafts it is necessary to measure the speed deviation at a
number of points along the shaft and use this information to calculate the average speed deviation.
Moreover, the stabilizer gain is constrained by the influence that the PSS has on the torsional
oscillations. These problems are described by Watson and Coultes (1973) and Kundur, Lee and
Zein El-Din (1981).

10.1.1.2 PSS Based on �ω and Pe

The need to measure the speed deviation at a number of points along the shaft can be avoided by
calculating the average speed deviation from measured electrical quantities. The method calculates
the equivalent speed deviation �ωeq indirectly from the integral of the accelerating power:

�ωeq = 1
M

∫
(�Pm − �Pe) dt, (10.1)

and �Pe is calculated from measurements of the generated real power Pe. The integral of the change
in the mechanical power �Pm can be obtained from∫

�Pm dt = M�ωmeasured +
∫

�Pe dt, (10.2)

where ωmeasured is based on the end-of-shaft speed sensing system. Because the mechanical power
changes are relatively slow, the derived integral of the mechanical power can be passed through
a low-pass filter to remove the torsional frequencies from the speed measurement. The resulting
PSS contains two input signals, �ωmeasured and �Pe, which are used to calculate �ωeq. The final
VPSS signal is designed to lead �ωeq. The block diagram of the system is shown in Figure 10.3
(Kundur, 1994) where G(s) is the transfer function of the torsional filter. This type of PSS with two
input signals allows a large gain to be used so that good damping of power swings is obtained (Lee,
Beaulieu and Service, 1981).
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Figure 10.3 Block diagram of a PSS using speed deviation and real power as input signals.

10.1.1.3 PSS Based on Pe

A simplified form of the PSS shown in Figure 10.3 can be obtained by neglecting the shaft speed
measurement and only measuring the generator real power Pe. With this arrangement only one
input signal is required but can only be used when the mechanical power can be assumed to be
constant. If the mechanical power does change, for example due to secondary frequency control,
this solution produces transient oscillations in the voltage and reactive power that are unnecessarily
forced by the PSS because it sees the change in the mechanical power as a power swing.

10.1.1.4 PSS Based on fVg and fE′

The measurement of shaft speed can be replaced by a measurement of the generator terminal
voltage frequency fVg (Larsen and Swan, 1981). A disadvantage of this solution is that the terminal
voltage waveform can contain noise produced by large industrial loads such as arc furnaces. The
accuracy of this measured speed signal can be improved by adding the voltage drop across the
transient reactance to the generator voltage to obtain the transient emf E′ and its frequency fE′ .
The PSS now receives two signals, the generator current and voltage. Similar to the case of the
PSS utilizing the measured shaft speed deviation, the PSS gain is limited by the effect of shaft
torsional oscillations. The advantage of this solution compared with other types of stabilizers is
that it improves the damping of interarea oscillations in interconnected power systems.

10.1.1.5 PSS Design

Designing and applying the PSS is not simple and requires a thorough analysis of the regulator
structure and its parameters. A badly designed PSS can become the source of a variety of undesired
oscillations. It should be remembered that the phasor diagrams in Figures 5.27, 5.28 and 10.1 are
valid only for a simple generator–infinite busbar system with all the resistances and local loads
neglected. A more detailed analysis shows that the phase shift between �Ef and �E′

q(�Ef ) is not
exactly π/2 and depends on the loading and system parameters (De Mello and Concordia, 1969).
This requires a more precise matching of the phase compensation to the actual loading and system
parameters.

The parameters of a PSS are usually optimized with respect to the damping of small-disturbance
power swings. However, a properly designed PSS also improves the damping under large-disturbance
conditions. In order to enhance the first-swing transient stability, an additional control loop can
be added to the PSS that acts in a similar way as the forced excitation in old electromechanical
AVR systems. Such forced excitation was executed by short-circuiting resistors in the excitation
winding in order to increase Ef to its ceiling value for about 0.5 s. The resistors were then reinserted
and Ef decreased. A similar solution is used in so-called discontinuous excitation control systems.
In the solution described by Kundur (1994) an additional element is switched in by a relay which
supplies, in parallel with the PSS, a signal to force the excitation to an increased value. This element
is switched off when the sign of the speed deviation changes (i.e. the rotor decelerates).
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In the former Soviet Union a separate supplementary PSS control loop was not used in the AVR
but instead a multi-variable AVR with internal feedback loops performing the stabilizing function
(Glebov, 1970).

10.1.2 PSS Applied to the Turbine Governor

Since all the generators in the power system are linked by the transmission network, voltage control
on one of the generators influences the dynamic response of all the other generators. Consequently,
a PSS that improves the damping of one generator does not necessarily improve the damping of
the other generators. Therefore a local design may not provide the global optimal solution and a
coordinated synthesis procedure is desirable. This coordination increases the design computation
and is usually valid only for typical network configurations and loading conditions. When a severe
fault occurs, the postfault network configuration, and load, may be significantly different from the
prefault conditions and poorly damped swings may result. Because of these factors, interest has
focused on utilizing the turbine governor for the damping of local and interarea oscillations.

Including a PSS signal in the turbine governing systems with the aim of improving damping is
not new. Moussa and Yu (1972) describe some solutions regarding hydro turbines. The principle
of providing an additional damping torque from the turbine governor is similar to that used when
adding a PSS loop to the excitation system. The time constants in the turbine governor introduce
a phase shift between the oscillations in the speed deviation �ω and the turbine mechanical power.
As the input signal to the supplementary PSS control loop is equal to �ω, the PSS transfer function
must be chosen in such a way that at the frequency of rotor oscillations it compensates the phase shift
introduced by the turbine governor. Consequently the PSS will force changes in the mechanical
power �Pm that are in phase with �ω and, according to the swing equation, Equation (5.15),
provide positive damping.

The main advantage of applying a PSS loop to the turbine governor lies in the fact that the
turbine governor dynamics are weakly coupled with those of the rest of the system. Consequently
the parameters of the PSS do not depend on the network parameters. Wang et al. (1993) show
interesting simulation results for systems equipped with a PSS applied to the governors of steam
turbines. Although this type of PSS is not currently used in practice, such solutions should not be
ruled out in the future.

10.2 Fast Valving

Chapter 6 explained how a large disturbance near to a generator (e.g. a sudden short circuit) will
produce a sudden drop in the generator output power followed by rapid acceleration of the generator
rotor. The natural action to counteract this drop in electrical power would be to reduce rapidly the
mechanical input power, thereby limiting the acceleration torque. The effect of such action can be
explained by considering Figure 10.4 which shows the equal area criterion applied to the system
shown in Figure 6.6 when a fault appears on line L2 and is cleared without auto-reclosure. If it is
assumed that the accelerating area 1–2–3–4 in Figure 10.4a is greater than the maximum possible
decelerating area 4–5–7 then, when the line is tripped, the rotor will make an asynchronous rotation
and the system will lose stability. Now assume that the mechanical power Pm is reduced immediately
after the disturbance occurs. The technical possibilities of providing such a fast power reduction will
be discussed later. Figure 10.4b shows that reduction of Pm during the forward swing reduces the
accelerating area 1–2–3–4 and increases the decelerating area to area 4–5–6–6′. The system remains
stable with the stability margin being proportional to area 6–7–6′. The maximum improvement in
stability is obtained when the reduction in Pm takes place as early, and as fast, as possible.

Figure 10.4c shows the situation to be somewhat different during the backswing. With the
mechanical input power reduced, the system returns towards a rotor angle δ′ that is smaller than
the initial value and performs deceleration work equal to the integral of the difference between the
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Figure 10.4 Equal area criterion with: (a) constant mechanical power; (b) fast reduction of the
mechanical power during the forward swing; (c) influence of the mechanical power on the backswing.

electrical and mechanical power. In this phase a further decrease in the mechanical power, shown
by the solid line 6′–8–10, has a detrimental effect on the system dynamics because the deceleration
work 6′–6–5–8 performed during the backswing can only be balanced by a large accelerating area
8–9–10 giving a large rotor deflection towards negative δ′. The backswing is increased by the drop
in Pm. The dashed line in Figure 10.4c shows how the amplitude of the backswing could be reduced
by increasing Pm during the backswing. This would result in a smaller decelerating area 6′–6–5–11
which is then balanced by the smaller accelerating area 11–13–12.

After a disturbance, the system shown in Figure 10.4c recovers to the prefault value of the
mechanical power. In systems operating near to their steady-state stability limit it may happen that
the fault clearance increases the system equivalent reactance to a value that would correspond to
steady-state instability; that is, when the mechanical power is greater than the amplitude of the
postfault characteristic. In order to ensure steady-state stability in such situations it is necessary to
reduce the final, postfault value of the mechanical power. This is illustrated in Figure 10.5a where, on
fault clearance, the postfault power–angle characteristic lies below the dashed line Pm0 = constant
and the system would lose stability even if the fault were cleared instantaneously. To prevent such
an instability, the final, postfault value of mechanical power must be reduced to Pm∞ as illustrated
in Figure 10.5b.

Fast changes in the mechanical power as shown in Figures 10.4 and 10.5 require a very fast
response from the turbine. The examples shown above indicate that the decrease in the turbine
power should take place within the first third of the swing period, that is during the first few tenths
of a second following a disturbance. Restoring the power to the required postfault value should
take about half of the swing period, that is less than a second. Such fast control is not possible with
hydro turbines due to the large change in pressure, and huge torques, necessary to move the control
gates. However, a steam turbine can be used for stability enhancement because it can be made to
respond almost as quickly as required. The control action required within the turbine to produce
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Figure 10.5 Equal area criterion with fast changes of mechanical power in a system operating near
its steady-state stability limit: (a) forward swing; (b) backswing.

this rapid response is referred to as fast valving. When the mechanical power is restored to a final
value that is equal to the prefault value, the fast valving is said to be momentary fast valving. When
the final value of mechanical power is smaller than the prefault value, the fast valving is said to be
sustained fast valving. Power variations corresponding to both these cases are shown in Figure 10.6.

Steam turbine fast valving cannot be achieved using the standard closed-loop turbine governor
shown in Figure 2.12 because a change in the valve setting only occurs after a speed error appears
at the controller input. Due to the large inertia of the turbine–generator rotor the speed can only
change slowly so that the response of the closed-loop arrangement, with speed as the control
variable, is too slow. As control action is required immediately when the fault is detected, open-loop
control systems are normally used.

In a modern steam turbine fast valving is executed using the existing control valves. Consider,
for example, the single reheat unit shown in Figure 2.7. Here rapid closure of the main governor
control valves will not produce a large reduction in the turbine power because the high-pressure
stage produces only about 30 % of the power. The reheater stores a large volume of steam and,
even with the main governor valve closed, the turbine still supplies about 70 % of power through
the intermediate- and low-pressure stages. A large, rapid reduction of power can only be obtained
by closing the intercept control valves because it is these which control the steam flow to the
intermediate- and low-pressure parts of the turbine.

Momentary fast valving, shown in Figure 10.7a, is achieved by rapid closing of the intercept
control valves, holding them closed for a short time and then reopening them in order to restore
the power to its initial, prefault value. During the short time when the intercept valves are shut, the
steam flows from the boiler through the high-pressure turbine and is accumulated in the reheater.

Sustained fast valving can be provided by a rapid closing of the intercept valves, Figure 10.7b,
followed by slow partial closing of the main governor valve. After a short period the intercept valves

Pm0

Pm

t

1

2Pm∞

Figure 10.6 Mechanical power variations in the case of: 1, momentary fast valving; 2, sustained
fast valving.
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Figure 10.7 Variations in the valve position and output power of a single-reheat steam turbine
due to: (a) momentary fast valving; (b) sustained fast valving. cGV, position of the main governor
control valve; cIV, position of the intercept control valve.

are again reopened. This guarantees a rapid initial reduction in the mechanical power followed by
its restoration to a value smaller than the initial one.

Fast valving of modern turbines equipped with the electro-hydraulic governing systems shown
in Figure 2.12b can be achieved by feeding a fast-valving signal VFV(t) directly to the coil of the
electro-hydraulic converter. The signal is produced by an additional controller FV operating in
open-loop mode. In the case of momentary fast valving the signal VFV(t) consists of two parts
as shown in Figure 10.7a. The first part is a rectangular pulse necessary for rapid closing of the
valves. The height of the rectangular signal determines the magnitude of the voltage applied to the
converter coil and, if large enough, the servomotor will close the valve in about 0.1–0.4 s. The width
of the rectangular pulse tFV determines the duration of the power reduction. The second part of
the signal is a pulse that decays with a time constant TFV, where TFV is selected so that the speed at
which the valves are reopened does not exceed a preset maximum value. This limit on the speed of
valve reopening is mainly set by the strength of the rotor blades so that when reopening the valves
a 100 % change in the valve position cannot normally be completed in less than about 1 s.

Generally the fast-valving controller FV operates with a predetermined set of control parameters
that are prepared offline, by performing a large number of power system simulations, that take into
account:

� the prefault network configuration;
� the prefault loading condition;
� the location of the fault, that is in which line it occurs;
� the distance and the type of fault measured by, for example, the accelerating power or voltage

drop;
� if the fault clearance is with, or without, auto-reclosure.

A control signal is then prepared offline for a large number of possible fault scenarios. When a
fault occurs, the controller is fed real-time information on all the above factors so that it can pick
a control strategy from its predetermined set of signals that most closely matches the actual fault
condition.

In practice the reduction, and restoration, of power shown in Figure 10.7 tends to be slower than
that required from the stability enhancement point of view described in Figure 10.4. If the control
valves are reopened too late the backswing will increase and may lead to second-swing instability.
When a generator is equipped with a fast AVR and a PSS, the situation can be improved as illustrated
in Figure 10.8. Fast power reduction takes place within the first few tenths of a second after the fault
so that the rotor does not lose stability but swings over the peak of the power–angle characteristic
as indicated by the two humps in the first power swing (cf. Figure 6.9a). Restoration of the turbine
power takes a few seconds, which is too slow and so causes two deep rotor backswings that reach the
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Figure 10.8 Influence of fast valving and PSS on the transient state: (a) mechanical and electrical
power variations; (b) excitation voltage variations. Based on Brown et al. (1970).

Source: © IEEE 1970

motoring range of operation (negative electrical power). The depth of these backswings is reduced
by rapid control of the excitation voltage enforced by the AVR equipped with PSS. The average
value of Ef is decreased and the average value of Pe follows the mechanical power Pm.

Although the cost of implementing fast valving is usually small, the adverse effect on the turbine
and boiler may be serious. Generally fast valving is only used in difficult situations where the AVR
and PSS cannot, on their own, prevent instability.

10.3 Braking Resistors

One of the possibilities of affecting the rotor motion following a disturbance is by connecting a
braking resistor (BR) at the generator or substation terminals. Such an action amounts to electrical
braking of the accelerating rotor.

The BR may be switched on using a mechanical circuit-breaker, which is discussed in this section,
or it may be controlled using FACTS devices, which will be discussed in Section 10.5.

The influence of connecting a BR in the generator–infinite busbar system is illustrated in Figure
10.9. To simplify considerations, a short circuit in a radial network was assumed similar to Figure
6.1. The system is unstable without the BR and with the assumed fault duration and prefault system
loading. This was shown previously in Figure 6.2b and is repeated here in Figure 10.9b.

Using considerations similar to those accompanying Figure 6.1 but for a shunt resistor, it can
be shown that inserting BR causes an increase in the amplitude of the power–angle characteristic
P(δ′) and a shift to the left of the intersection point of that characteristic with the δ′-axis. In Figure
10.9, the power–angle characteristic with the BR inserted is shown using a dashed line.

A signal to insert the BR is obtained from the protection of the transmission line. This protection
gives a signal to trip the short-circuited line and to close the circuit-breaker of the BR. In the
characteristic shown in Figure 10.9c, the BR is inserted at the instant when the faulted line is
tripped. After disconnecting the line and inserting the BR, the electrical power corresponds to
point 5. At that point, the generator power is greater than when the BR was absent (Figure 10.9b).
The rotor swings to point 6 where the area 4–5–6–6′ is equal to area 1–2–3–4. The system is now
stable with a stability margin corresponding to the area 6′–6–8.

Keeping the BR connected during the rotor backswing is not appropriate as the rotor would do
a large amount of deceleration work and would swing deeply in the direction of motor operation of
the generator. To avoid this, the BR should be disconnected when the rotor speed deviation changes
its sign from positive to negative. In the discussed case (Figure 10.9c) this happens at point 6. After
the BR has been disconnected, the system moves to point 9 on the characteristic without the BR
and then returns towards the equilibrium point doing deceleration work corresponding to the area
9–1–6′.

During the second rotor swing, when the speed deviation becomes positive again, the BR can be
inserted again. This type of control is of bang–bang type and consists of inserting the BR when
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Figure 10.9 Influence of braking resistor: (a) circuit diagram; (b) situation without braking resis-
tor; (c) situation with braking resistor.

the speed deviation is positive and disconnecting it when the speed deviation is negative. To avoid
excessive wear of the circuit-breaker, a maximum of two or three BR insertions are usually made
following a fault. When the measurement of rotor speed deviation is not available, a simpler control
is used consisting of a single BR insertion for a predetermined period of about 0.3–0.5 s (Kundur,
1994).

BRs operate only for a short period of time so they can be made cheaply and volume-efficiently
using cast-iron wire strung on towers. They can withstand strong heating up to several hundred
degrees centigrade. The mass of the BR is relatively small at about 150 kg per 100 MW of power
consumption.

BRs are a relatively cheap and efficient means of preventing loss of synchronism. They are used
in hydro-electric power plants where, due to heavy control gates, fast valving discussed in Section
10.2 cannot be used.

10.4 Generator Tripping

Tripping one or more generators from a group of generators that are operating in parallel on a
common busbar is perhaps the simplest, and most effective, means of rapidly changing the torque
balance on the generator rotors. Historically, generator tripping was confined to hydro power
stations where fast valving could not be used, but now many power companies have extended its use
to both fossil fuel and nuclear power generating units in order to try and prevent system instability
after severe disturbances.
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When a generator is tripped it will normally go through a standard shutdown and start-up cycle
which can take several hours. To avoid this long procedure the generator is usually disconnected
from the network but still used to supply the station auxiliary demand. This allows the generator
to be resynchronized to the system and brought back to full or partial load in several minutes.

The main disadvantage of generator tripping is that it creates a long-term power imbalance
characterized by variations in frequency and power interchange between interconnected systems as
shown in Chapter 9. Moreover, generator tripping results in a sudden increase in the electromagnetic
torque acting on a generator rotor which can lead to a reduction in the shaft fatigue life. Although
unlikely, if two or more units are tripped at exactly the same time, then the shaft loading on the
remaining generators can become very severe indeed.

Generator tripping falls into two different categories. Preventive tripping is when tripping is
coordinated with fault clearing to ensure that the generators remaining in operation maintain
synchronism. Restitutive tripping is when one, or more, generators are tripped from a group of
generators that have already lost synchronism. The objective here is to make resynchronization of
the remaining generators easier.

10.4.1 Preventive Tripping

Preventive generator tripping is illustrated in Figure 10.10. In this example both generators are
assumed to be identical and, since they are connected in parallel, may be treated as one equiva-
lent generator. This means that the equivalent generator will have a reactance half that of each
individual generator but an input power twice that of an individual generator. The prefault, fault
and postfault power–angle characteristics are denoted as I, II and III, respectively. In the case
without tripping, Figure 10.10b, the acceleration area 1–2–3–4 is larger than the available decel-
eration area 4–5–6. The system is unstable and both generators lose synchronism. In the second
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Figure 10.10 Illustration of generator tripping: (a) schematic diagram of the system; (b) acceler-
ation and deceleration area when no generator is tripped; (b) deceleration area when one of the
generators is tripped.



P1: OTA/XYZ P2: ABC
c10 JWBK257/Machowski September 22, 2008 21:49 Printer Name: Yet to Come

394 Power System Dynamics

case, Figure 10.10c, one of the generators is assumed to be tripped at the same instant as the
fault is cleared. The postfault characteristic III now has a smaller amplitude than in Figure 10.10b
as the tripping of one of the generators increases the system equivalent reactance. However, the
mechanical power of one generator is half that of the equivalent generator so that the acceleration
area corresponding to one generator is half the acceleration area 1–2–3–4 shown in Figure 10.10b.
The rotor now reaches synchronous speed (speed deviation equal to zero) at point 6 when area
8–5–6–7 is half of area 1–2–3–4. The system remains stable with a stability margin equal to the area
6–9–7. The new stable equilibrium point ∞ corresponds to the intersection between the electrical
characteristic III and the mechanical power Pm, and will be reached after a number of deep rotor
swings. In this example the synchronism of one generator has been saved at the cost of tripping
the other.

As the objective of generator tripping is to maintain the stability of a number of generators
operating in parallel on the same busbar, tripping one generator may be insufficient and multi-
tripping may be necessary. The number of generators that must be tripped depends on a number
of factors including the prefault loading conditions, fault type and location, and the fault clearing
time. The control system that executes the tripping must be able to take into account all of these
factors in order to prevent asynchronous operation while minimizing the number of generators
tripped.

Broadly, there are two types of control system that can be used to achieve the above objective.
The first is similar to that used to select the fast-valving control signal described in the previous
section. Central to such a control scheme is the logic predetermined offline on the basis of a detailed
stability analysis of the system. Just as in the fast-valving control scheme, the control system obtains
real-time information about the fault and from this information selects the number of generators to
be tripped. As the predetermined logic cannot always accurately assess the actual fault condition an
overpessimistic assessment may be made resulting in more generators than necessary being tripped.
This is the main drawback of preventive generator tripping.

The second type of control system is more sophisticated and is based on real-time simulation
by fast microcomputer systems (Kumano et al., 1994). Briefly this system consists of a number of
microcomputers connected by a fast telecommunications network. Each microcomputer obtains
real-time measurements from the power plant and information about the disturbance. The micro-
computers then simulate the dynamic process faster than real time in order to predict instability
and compute the minimum number of generators that must be tripped to maintain stability.

10.4.2 Restitutive Tripping

As explained above, preventive tripping systems can be too pessimistic and trip too many generators
while the more sophisticated control schemes using faster than real-time simulation are very new
and expensive. An alternative solution is to use restitutive tripping and utilize signals from the
out-of-step relays described in Section 6.6.3. When a group of generators operating in parallel on
the same busbars loses synchronism, one of the generators is tripped to make resynchronization
of the remaining generators easier. However, if, after a set number of asynchronous rotations,
resynchronization is unsuccessful another generator in the group is tripped and the process repeated
until resynchronization is successful.

The main disadvantage of restitutive tripping is in allowing momentary asynchronous operation.
The main advantage, when compared with preventive tripping, is that it never disconnects more
generators than necessary.

Careful study of Figure 6.30a shows that the optimum instant for restitutive tripping is when the
rotor angle passes through the unstable equilibrium point when the large acceleration area (shaded)
behind point 6 is reduced by a sudden change in Pm. The unstable equilibrium point is close to
π/2 so that when the system trajectory passes through it, the apparent impedance measured by the
out-of-step relay crosses the lenticular or offset mho characteristic of the relay shown in Figure 6.40.
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The signal from the relay can therefore be used to trigger the generator tripping. The circuit-breakers
have a certain operating time so that the generator is tripped after a short delay. In order to avoid
this delay, and provide for earlier tripping, the relay can be extended with the measurement of the
derivative of the apparent resistance dR/dt (Taylor et al., 1983; Taylor, 1986).

10.5 Shunt FACTS Devices

Power swings can also be damped by changing the parameters in the transmission network that
links the generator with the system. Such a parameter change can be accomplished by using addi-
tional network elements, such as shunt capacitors and reactors switched on and off at appropriate
moments. Optimal system performance can be achieved by correct control of the switching instants
and has been the subject of a large number of publications. Rather than describing such control
schemes here, the aim in this section is to explain how a proper switching strategy can force damp-
ing of power swings and what control signals can be used to execute the switching sequence. The
following explanations are based on publications by Machowski and Nelles (1992a, 1992b, 1993,
1994) and Machowski and Bialek (2008).

10.5.1 Power–Angle Characteristic

Figure 10.11 shows the situation where a shunt element is connected at a point along a transmission
link. The generator is represented by Eg = E′ = constant behind the transient reactance and by the
swing equation (the classical model). The shunt element is modelled by admittance Ysh = Gsh + jBsh.
Depending on the type of shunt element used, the admittance is calculated from the current or power
of the shunt element and the actual value of V sh. For example, for SMES or BESS, the admittance
is calculated from Ysh = Gsh + jBsh = S∗

sh/V2
sh. Similarly, as was the case with Equation (2.9), the

following constraint has to be satisfied:

[Gsh(t)]2 + [Bsh(t)]2 ≤ |Ymax|2 where
∣∣Ymax

∣∣ =
∣∣Smax

∣∣∣∣Vsh

∣∣2 . (10.3)

Obviously for SVC or STATCOM the real power is zero and Gsh(t) = 0. For the BR the reactive
power is zero and Bsh(t) = 0. To emphasize that the admittance is not constant, the following
notation was assumed: Ysh(t) = Gsh(t) + jBsh(t).

The reactance to the left of the shunt element (including the reactance of the generator) is denoted
as Xg. The reactance to the right of the shunt element (including the reactance of the system) is
denoted as X s.

Zg0 Z s0

Xg ZgsXs

Eg EgV s V s

I g I gI s I s

(a)

(b) (c)

(t)Y sh

(t)Y sh

Figure 10.11 Generator–infinite busbar system with the shunt element and its equivalent circuits.
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Using the star–delta transformation a π -equivalent is obtained which contains a resistance in its
equivalent series branch if the shunt element, Ysh = Gsh + jBsh, contains a non-zero conductance.
The resulting values of the π -equivalent circuit are

Zgs = (
Xg + Xs

)
[−XSHCGsh + j (1 − XSHC Bsh)]

tanµgs = ReZgs

ImZgs

= − XSHCGsh

1 − XSHC Bsh

(10.4)
Yg0 = 1

Zg0

= 1
Xg

XSHCGsh + jXSHC Bsh

(1 − XSHC Bsh) + jXSHCGsh
,

where XSHC = Xg Xs/
(
Xg + Xs

)
is the short-circuit reactance of the system as seen from the node

where the shunt element is installed. Normally the short-circuit power SSHC = V 2
n /XSHC tends to

be between a few thousand and up to about 20 000 MVA while the rated power of the shunt element
Pn sh = GshV 2

n and Qn sh = BshV 2
n tends to be less than 100 MVA. Therefore, as Pn sh and Qn sh are

at least 10 times less than SSHC, it can be safely assumed that

XSHCGsh � 1, XSHC Bsh � 1. (10.5)

Now consider the real number α such that for α � 1 it can be assumed, with good accuracy, that

1
1 − α

∼= 1 + α and
1

1 + α
∼= 1 − α. (10.6)

Equations (10.5), and the identity in Equation (10.6), now allow the equations in (10.4) to be
simplified to give

Ygs = Ggs + jBgs = 1
Zgs

∼= 1
Xg + Xs

[−XSHCGsh − j (1 + XSHC Bsh)] , (10.7)

Ygs
∼= 1

Xg + Xs
(1 + XSHC Bsh) , (10.8)

tan µgs
∼= −XSHCGsh (1 + XSHC Bsh) = −XSHCGsh, (10.9)

Yg0 = Gg0 + jBg0
∼= 1

Xg
(XSHCGsh + jXSHC Bsh) , (10.10)

Ggg = Gg0 + Ggs
∼= 1

Xg + Xs

Xs

Xg
XSHCGsh. (10.11)

Diligent readers may find the plus sign in Equation (10.7) rather surprising but it is correct and
arises from the use of the small-value approximations in Equation (10.6). These derived parameters
now allow a formula for the generator real power to be determined using the general formula given
in Equation (3.150)1 adapted to the π -equivalent circuit of Figure 10.11c to give

P(δ′) = Gg0 E2
g + Ygs EgVs sin(δ′ − µgs), (10.12)

1 Equation (3.150) used the angle θ = arg(Y) but it is more convenient to use here the angle µ = π/2 − θ .
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where Eg = E′ = constant and δ′ is the transient rotor angle measured with respect to the infinite
busbar. The sine function can be expressed as

sin(δ′ − µgs) = sin δ′ cos µgs − cos δ′ sin µgs = cos µgs
(
sin δ′ − tan µgs cos δ′) . (10.13)

According to Equations (10.5) and (10.9), the angle µgs is small and cos µgs ≈ 1. Making this
approximation, and substituting Equation (10.9) into (10.13), gives

sin(δ′ − µgs) ∼= sin δ′ − XSHCGsh cos δ′. (10.14)

This equation, and the expressions in Equations (10.8) and (10.10), can now be substituted into
Equation (10.12) to give

P(δ′) ∼= b sin δ′ + b (ξ + cos δ′) XSHCGsh + (b sin δ′) XSHC Bsh, (10.15)

where b = EgVs/(Xg + Xs) and ξ = (Eg/Vs)/(Xs/Xg). Careful examination of this equation shows
that the coefficient b is the amplitude of the power–angle characteristic without the shunt element,
while the coefficient ξ depends on the location of the shunt element along the transmission link.
With the shunt element disconnected, the characteristic defined by Equation (10.15) is the transient
power–angle characteristic defined in Equation (5.40).

Figure 10.12 shows the influence of both Gsh and Bsh on the transient power–angle characteristic.
Inserting a purely resistive shunt element, Gsh 	= 0, Bsh = 0, shifts the characteristic to the left, or the
right, by the angle µGS depending on the sign of Gsh, Figure 10.12a. This shift by the angle µGS, and
controlled by Gsh, is clearly demonstrated in Equation (10.12). Figure 10.12b shows how inserting
a pure reactive shunt element, Gsh = 0, Bsh 	= 0, increases the amplitude of the characteristic by
XSHC Bsh.

Further examination of Figure 10.12 shows that the main influence of Gsh is at small values of δ′

before the peak of the characteristic is reached. For large values of δ′, beyond the peak, the influence
of the conductance is negligible. In contrast the influence of Bsh is mostly at large values of δ′, near
the peak of the characteristic.

10.5.2 State-Variable Control

Since the shunt element influences the shape of the power–angle characteristic, it can be used to
damp rotor swings either by switching it on and off at appropriate moments (bang–bang control)
or by suitable continuous control action (provided continuous control of the shunt element is

PmPm

δ′s
BMAXGMAX

BminGmin

(b)(a)

G = 0 B = 0

δ′s(π−δ′s) (π−δ′s)

δ′δ′

P(δ′) P(δ′)

Figure 10.12 Influence of the shunt element on the power–angle characteristic: (a) pure conduc-
tance Gsh; (b) pure susceptance Bsh.
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possible). The method used to control the shunt element is called the control strategy. Control using
the system state variables is referred to as state-variable control.

The system state equations can be obtained by substituting the generator real power given by
Equation (10.15) into the swing equation, Equation (5.15), to give

dδ′

dt
= �ω

M
d�ω

dt
= (Pm − b sin δ′) − D

dδ′

dt
(10.16)

− b (ξ + cos δ′) XSHCGsh(t) − (b sin δ′) XSHC Bsh(t).

The last two terms in the second equation depend on the conductance and susceptance of the
controlled shunt element. Both these parameters are shown as functions of time to emphasize that
they are the time-varying control variables.

10.5.2.1 Energy Dissipation

In order to derive the required control strategy, the energy approach described in Section 6.3 will be
used. When a disturbance occurs in a power system, part of the kinetic energy stored in the rotating
masses of generators and loads is released and undergoes oscillatory conversions from kinetic to
potential energy and then back again during subsequent rotor swings. The oscillations continue
until the damping torques dissipate all the released energy and the system trajectory returns to the
equilibrium point. The goal is to control Gsh(t) and Bsh(t) in such a way as to maximize the speed
of energy dissipation. This can be accomplished by maximizing the value of the derivative of the
total system energy with time along the trajectory of the differential equations (10.16).

The total system energy V = Ek + Ep for the generator–infinite busbar system is determined by
Equation (6.18). The speed of energy changes is

dV
dt

= ∂V
∂δ′

dδ′

dt
+ ∂V

∂�ω

d�ω

dt
. (10.17)

The partial derivatives ∂V/∂δ′ and ∂V/∂�ω can be calculated by differentiating the total energy
given by Equation (6.18). The ordinary time derivatives dδ′/dt and d�ω/dt can now be substituted
for using Equation (10.16) to give

dV
dt

= − [
D�ω2 + �ωb(ξ + cos δ′)XSHCGsh(t) + �ω(b sin δ′)XSHC Bsh(t)

]
. (10.18)

The first term in this equation corresponds to the energy dissipated by the natural damping torques
(coefficient D) while the next two terms are contributed by the shunt element. Proper control of this
element can contribute to a faster dissipation of energy. This will happen if Gsh(t) and Bsh(t) are
varied so that the signs of the two last terms in (10.18) are always positive. This requires the signs
of Gsh(t) and Bsh(t) to vary depending on the sign of the two state variables �ω and δ′. This can be
realized using either bang–bang control or continuous control.

10.5.2.2 Continuous Control

The aim of the control is firstly to ensure that the last two terms in Equation (10.18) are of positive
sign and, secondly, to maximize their sum. This can be achieved by enforcing the following values
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on the control variables:

Gsh(t) = K �ω [b(ξ + cos δ′)] XSHC

Bsh(t) = K �ω [b sin δ′] XSHC,

(10.19)

where K is the gain of the controller. Substituting this equation into Equation (10.18) gives

dV
dt

= −D�ω2 − Dsh�ω2, (10.20)

where

Dsh = K
{
[b(ξ + cos δ′)]2 + (b sin δ′)2

}
X 2

SHC, (10.21)

is the equivalent damping coefficient introduced by the shunt element control. For the control
strategy in Equation (10.19), the swing equation then becomes

dδ′

dt
= �ω

(10.22)
M

d�ω

dt
= (Pm − b sin δ′) − D

dδ′

dt
− Dsh

dδ′

dt
.

In the first of the two equations in (10.19) the expression (ξ + cos δ′) is positive over a large range
of δ′ (−π/2 < δ′ < π/2) so that the sign of Gsh(t) will change at the same time as the rotor speed
deviation �ω. On the other hand, the sign of Bsh(t) depends on both �ω and sin δ′ and changes
sign whenever the angle crosses through zero.

Figure 10.13 shows the changes in the sign of Gsh(t) and Bsh(t) that must occur along the system
trajectory in order to produce positive damping. Whenever the trajectory crosses the horizontal
axis, �ω changes its sign and this will be accompanied by a change in sign of both Gsh(t) and Bsh(t).
These points of sign changes have been denoted by small squares on the trajectory. Whenever the
trajectory crosses the vertical axis, δ′ changes its sign and this is accompanied by a sign change
of Bsh(t) only. These points of sign changes have been denoted by the small solid circles on the
trajectory.

In Figure 10.13 the characteristic states of the shunt element have been illustrated schematically in
each quadrant in the phase plane. Negative susceptance is denoted by a coil symbol while positive
susceptance is denoted by a capacitor symbol. Positive conductance is denoted by a resistance
symbol while negative resistance (i.e. a source of real power) is denoted by an arrow. This obviously
corresponds to the general case when the power of the shunt element can be adjusted in all four
quadrants of the complex power plane.
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37 π − δ′δ′s s

δ′
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Figure 10.13 Stability area and the system trajectory.
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10.5.2.3 Bang–Bang Control

The term bang–bang control refers to a control mode in which the element is switched on and off
at appropriate moments. This type of control can be used with a shunt element whose parameters
cannot be smoothly controlled. The switching then takes place at instants when the system trajectory
crosses one of the phase axes shown in Figure 10.13 and passes into the next quadrant.

Equation (10.19) leads to the following bang–bang control strategies:

Gsh(t) =



GMAX for [b(ξ + cos δ′)�ω] ≥ +ε

0 for + ε > [b(ξ + cos δ′)�ω] > −ε

Gmin for [b(ξ + cos δ′)�ω] ≤ −ε

(10.23)

Bsh(t) =



BMAX for [�ω(b sin δ′)] ≥ +ε

0 for + ε < [�ω(b sin δ′)] > −ε

Bmin for [�ω(b sin δ′)] ≤ −ε

(10.24)

where GMAX and BMAX are the maximum, and Gmin and Bmin the minimum, values of the switching
element. If the element cannot assume a negative value then the minimum value will be zero. The
small positive number determines the dead zone (±ε) where the control variables are set to zero.
The dead zone is necessary in order to avoid unstable operation of the controller for small signals.

As (ξ + cos δ′) > 0 for a wide range of δ′, the strategy for controlling the conductance Gsh(t) can
be simplified to

Gsh(t) =



GMAX for �ω ≥ +ε

0 for + ε > �ω > −ε

Gmin for �ω ≤ −ε

(10.25)

and the conductance switching is triggered by a change in sign of the speed deviation.

10.5.2.4 Interpretation of Shunt Element Control Using the Equal Area Criterion

As the energy approach is directly related to the equal area criterion (Section 6.3.4) the control
strategies derived above can be usefully interpreted using the equal area criterion.

Figure 10.14 shows how the bang–bang control strategy enlarges the available deceleration area
and reduces the acceleration area during every rotor forward swing, while during the backward
swing the control reduces the deceleration area and enlarges the available acceleration area. The
initial prefault state is point 1. The fault reduces the electrical real power to a value corresponding
to point 2 and the rotor accelerates. The rotor angle increases until the fault is cleared at point
3 giving the first acceleration area 1–2–3–4. After clearing the fault, �ω and δ′ are positive so
that GMAX and BMAX are switched in and the electrical power follows the higher P(δ′) curve. As the
maximum available decelerating area is 4–5–6–7, the generator remains stable with a stability margin
proportional to area 6–7–8. At point 6 the speed deviation changes sign, the shunt admittance values
switch to Gmin and Bmin, and the electrical power follows the lower P(δ′) curve. This reduces the
deceleration area during the backward swing and enlarges the available acceleration area so that the
amplitude of the backward swing is reduced. The cycle then repeats and helps damp consecutive
rotor swings.

10.5.3 Control Based on Local Measurements

The control strategy given by Equation (10.19) is based on the state variables δ′ and �ω. As these
quantities are not normally available at the shunt element busbar, the practical implementation of
the control must be based on other signals that can be measured locally. How exactly such a local
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Figure 10.14 Interpretation of the control strategy using the equal area criterion.

control emulates the state-variable control depends on the choice of the measured quantities and
the structure of the controller.

10.5.3.1 Dynamic Properties of Local Measurements

Let qG and qB be some quantities used as input signals to the shunt element controller. In the control
strategy given by Equation (10.19) the shunt admittance depends on the rotor speed deviation �ω.
If the magnitude of the transient emf is assumed constant (classical model), the derivative with
respect to time of any electric quantity qG can be expressed as

dqG

dt
= ∂qG

∂δ′ �ω + αGG
dGsh

dt
+ αGB

dBsh

dt
, (10.26)

where the coefficients

αGG = ∂qG

∂Gsh
, αGB = ∂qG

∂ Bsh
, (10.27)

determine the sensitivity of qG to a change in the control variables Gsh(t) and Bsh(t). Equation
(10.26) gives

�ω
∂qG

∂δ′ = dqG

dt
− αGG

dGsh

dt
− αGB

dBsh

dt
. (10.28)

If the sensitivity coefficients αGG and αGB are known, the right hand side of Equation (10.28)
can be computed in real time and used to determine a signal proportional to the rotor speed
deviation necessary for the control of Gsh(t). Comparing the right hand side of the first of the
equations in (10.19) with the left hand side of Equation (10.28) shows that the signal obtained from
Equation (10.28) is the same as the state-variable control signal if

∂qG

∂δ′ = [
b (ξ + cos δ′)

]
XSHC. (10.29)

Substitution of the right hand side of the first equation in (10.19) by Equation (10.28) gives the
following control principle:

Gsh(t) = K
[

dqG

dt
− αGG

dGsh

dt
− αGB

dBsh

dt

]
. (10.30)

This means that if a measured quantity qG satisfies the condition in Equation (10.29) then the
modulation controller need simply differentiate qG with respect to time and subtract from the result
values proportional to the rate of change of the controlled variables Bsh(t) and Gsh(t).
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The control principle for the shunt susceptance can be obtained in a similar way as

Bsh(t) = K
[

dqB

dt
− αBG

dGsh

dt
− αBB

dBsh

dt

]
, (10.31)

where the coefficients

αBG = ∂qB

∂Gsh
, αBB = ∂qB

∂ Bsh
, (10.32)

determine the sensitivity of qB to changes in the control variables Bsh(t) and Gsh(t). Comparison
with the second of the equations in (10.19) shows that the input quantity qB should satisfy the
following condition:

∂qB

∂δ′ = [
b sin δ′] XSHC. (10.33)

It now remains to determine what locally measurable quantities qB and qG will satisfy the
conditions defined in Equations (10.29) and (10.33).

10.5.3.2 Voltage-Based Quantities

The current flowing from the network to the shunt element in Figure 10.11 is given by

I sh = VshYsh = Eg − Vsh

jXg
+ Vs − Vsh

jXs
, (10.34)

where Ysh = Gsh(t) + jBsh(t) and Xg and X s are the equivalent reactances denoted in Figure 10.11.
Multiplying the current by the short-circuit reactance XSHC and moving Vsh to the left hand side
gives

Vsh {[XSHCGsh(t)] + j [1 − XSHC Bsh(t)]} = Eg Xs + Vs Xg

j
(
Xg + Xs

) . (10.35)

Substituting for the complex voltages

Eg = Eg (cos δ′ + j sin δ′) and Vs = Vs, (10.36)

and multiplying the resulting equation by its conjugate gives, after a little algebra,

V2
sh =

bXSHC

(
ξ + 1

ξ
+ 2 cos δ′

)
[XSHCGsh(t)]2 + [1 − XSHC Bsh(t)]2 , (10.37)

where ξ is the coefficient defined in Equation (10.15). When deriving Equation (10.37), it is also
possible to find the phase angle θ of the shunt element voltage measured with respect to the infinite
bus:

tan θ =
(

1
ξ

+ cos δ′
)

XSHCGsh(t) + sin δ′ [1 − XSHC Bsh(t)]

sin δ′ XSHCGsh(t) +
(

1
ξ

+ cos δ′
)

[1 − XSHC Bsh(t)]
. (10.38)

The inequalities in Equation (10.5) allow Equations (10.37) and (10.38) to be simplified to

V2
sh

∼= b
(

ξ + 1
ξ

+ 2 cos δ′
)

XSHC; tan θ ∼= sin δ′
1
ξ

+ cos δ′ . (10.39)
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Using the first of Equations (10.39), and after differentiating with respect to δ′, gives

∂V 2
sh

∂δ′ = −2
[
b sin δ′] XSHC. (10.40)

Calculation of the derivative ∂θ/∂δ′ is slightly more difficult. The second of Equations (10.39)
may be written as f (θ, δ′) = 0. Hence θ is an implicit function of δ′. The derivative of that function
can be calculated from

∂θ

∂δ′ = −
∂ f
∂δ′
∂ f
∂θ

. (10.41)

Using this equation gives

∂θ

∂δ′ = ξ + cos δ′

ξ + 1
ξ

+ 2 cos δ′ . (10.42)

The expression in the denominator of Equation (10.42) is the same as the expression in brackets in
the first of the equations in (10.39). Substitution gives

V 2
sh

∂θ

∂δ′ = [
b (ξ + cos δ′)

]
XSHC. (10.43)

Equations (10.40) and (10.43) show that local measurements of the squared magnitude of the
shunt element voltage and its phase angle can give good signals for controlling the shunt ele-
ment. Comparing Equations (10.40) and (10.33) shows that the signal V 2

sh satisfies the condition in
Equation (10.33) for the control strategy of the shunt susceptance. Similarly, comparing Equations
(10.43) and (10.29) shows that θ satisfies the condition in (10.29) for the required control of the
shunt conductance provided that the derivative is multiplied by V 2

sh.
A sensitivity analysis of the effect of changes in V 2

sh and θ on the changes in the controlled
variables Bsh(t) and Gsh(t) can be conducted by evaluating the derivatives in Equations (10.27) and
(10.32) using Equations (10.37) and (10.38). This involves a lot of simple, but arduous, algebraic
and trigonometric transformations which finally lead to the following simplified formulae:

αGG = ∂qG

∂Gsh

∼= −XSHC, αGB = ∂qG

∂ Bsh

∼= 0

(10.44)
αBG = ∂qB

∂Gsh

∼= 0, αBB = ∂qB

∂ Bsh

∼= −V 2
sh XSHC.

Zero values of αGB and αBG signify that changes in the shunt susceptance/conductance have a
negligibly small effect on the given quantity.

10.5.3.3 Control Schemes

Substituting Equations (10.44) into Equations (10.30) and (10.31) and taking the squared voltage
magnitude and the voltage phase angle as control signals yields

Gsh(t) = KV 2
sh

[
dθ

dt
+ XSHC

dGsh

dt

]
, (45a)

Bsh(t) = K

[
−1

2

d
(
V 2

sh

)
dt

+ XSHCV 2
sh

dBsh

dt

]
. (45b)
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Figure 10.15 Modulation controller employing the frequency–voltage control scheme for: (a)
Gsh(t); (b) Bsh(t).

The rotor angle δ′ and the voltage phase angle θ are measured with respect to the infinite
busbar voltage or the synchronous reference frame. As the derivative of θ with time is equal to the
deviation of the local frequency, that is dθ/dt= 2π� f , control (10.45) is referred to as frequency-
and voltage-based control.

Figure 10.15 shows the block diagram of the appropriate control circuits. Differentiation has
been replaced by a real differentiating element with a small time constant T . The shunt susceptance
controller is nonlinear because the output signal in the main feedback loop is multiplied by the
main input signal. The shunt conductance controller is linear but its effective gain is modulated
by the squared voltage magnitude which is also the main input signal for the shunt susceptance
controller. The short-circuit reactance XSHC plays only a corrective role and its value may be set
with a large error. For practical applications its value can be assessed offline and set as a constant
parameter.

It is worth noting that the time derivative of the voltage angle dθ/dt is equal to the deviation of
the local frequency �f . Thus the proposed shunt element controller is a frequency- and voltage-
orientated controller. The input signals for the control system may be measured using digital
techniques described by Phadke, Thorap and Adamiak (1983) or Kamwa and Grondin (1992).

10.5.4 Examples of Controllable Shunt Elements

Continuous state-variable control, and its practical implementation based on locally measurable
quantities, is possible assuming that both Gsh(t) and Bsh(t) can be changed smoothly over a range
of negative and positive values. Some of the different types of shunt elements that can be thyristor
controlled have been described in Section 2.4.4 where the ability to change Gsh(t) and Bsh(t) was
seen to depend on the particular device in question. When using a particular shunt element, any
such limitation must be taken into account in the control structure by inserting appropriate limiters
into the control circuits shown in Figure 10.15.

10.5.4.1 Supplementary Control of SVC and STATCOM

SVC based on conventional thyristors (Figure 2.27) is equipped with a voltage regulator (Figure
2.28) giving the static characteristic (Figure 2.29) with a small droop in the regulation area. In the
steady state such regulation is very effective in forcing the steady-state voltage error to zero. In the
transient state the regulator is incapable of providing enough damping because the voltage error
does not carry proper information about the system dynamic response. A more robust control can
be obtained when the voltage regulator is equipped with the supplementary control loop as shown
in Figure 10.16. This additional supplementary loop can be used to force a control signal for Bsh(t)
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Figure 10.16 Voltage regulator of the SVC with supplementary control loop.

to enhance damping of power swings. This control loop acts much faster than the main voltage
controller. The controller in the supplementary control loop will be based on Equations (10.45) and
is shown in Figure 10.15b.

In a similar way the supplementary control loop may be also equipped with the voltage regulator
of STATCOM (Figure 2.30).

10.5.4.2 Control of BR

Application of BRs switched by a mechanical circuit-breaker was described in Section 10.3. Another,
more expensive possibility is to switch or control the BR using thyristors as described in Section
2.4.4.

Thyristor-switched BRs (Figure 2.33) may be equipped with a bang–bang controller to implement
the strategy defined in Equation (10.25) with Gmin = 0. Alternatively, the resistors may be equipped
with a continuous controller to implement the strategy defined in Equation (10.23) with Gmin = 0.
If the rotor speed deviation signal �ω is not available, it may be replaced by the local frequency
deviation 2π � f = dθ/dt, as in the shunt controller shown in Figure 10.15a. Obviously an output
limiter and a dead zone would have to be added before the output in the block diagram, as in Figure
10.16. In the steady state the BRs are switched off and the modulation controller (Figure 10.15a) is
their only control circuit.

10.5.4.3 STATCOM + BR as a More Effective Device

The influence of an active and reactive shunt element on real power of a generator was shown in
Figure 10.12. When power angle δ′ is small, the influence of a shunt reactive element is quite small.
Consequently, when the generator operates at a small power angle, little damping of the power
swings using STATCOM alone can be obtained. This can be improved by adding to STATCOM
a thyristor-controlled BR. Such a resistor may be included in the DC circuit of STATCOM in the
same way as a battery is included with BESS (Figure 2.32). STATCOM would then act alone during
the steady-state operation providing a return on investment from the voltage control and reactive
compensation. The additional BR would support STATCOM in the transient state by providing
additional damping of power swings.

10.5.4.4 Modulation of Energy Storage SMES or BESS

The schematic diagram of energy storage systems BESS or SMES utilizing voltage source converters
was shown in Figure 2.32. The voltage source converter is controlled using a power conditioning
system (PCS). The PCS allows BESS or SMES to generate power, for a short time, from any
quadrant of the complex power plane assuming that the apparent power (or equivalent admittance)
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satisfies the limits described by Equation (2.9). The frequency- and voltage-based controller shown
in Figure 10.15 can be used as the modulation controller of an SMES system by forcing the required
values of the real and reactive power to be proportional to signals Gsh(t) and Bsh(t). If the values of
these signals are too large then they can be proportionally reduced to satisfy the limits.

10.5.5 Generalization to Multi-Machine Systems

The control strategy given by Equations (10.19) and (10.45) was derived for the generator–infinite
busbar system. These equations can be generalized to a multi-machine system regardless of where
the shunt element is located within the system. A detailed proof can be found in Machowski and
Bialek (2008). Here only the general framework of the proof and the final equations will be shown.

10.5.5.1 Mathematical Model

All the lines and transformers belonging to the modelled network are represented by π -equivalent
circuits. Power flowing from the transmission to the distribution network is treated as a load and
replaced by a constant admittance included in the network model. All nodes of the network model
can be divided into three types:

{G} – internal generator nodes (behind the transient reactances);
k – a chosen node where the considered shunt FACTS device is installed;
{L} – remaining network nodes.

Similar to Figure 10.11, the shunt FACTS device is included in the network model as the varying
shunt admittance Ysh(t) = Gsh(t) + jBsh(t). In the first step of the proof, all the load nodes {L} are
eliminated from the network model using the network transformation method described in Section
14.2. Consequently, an equivalent network is obtained that is shown schematically in Figure 10.17.
The equivalent network connects all generator nodes {G} with node k in which the considered
shunt FACTS device is installed.

As in Figure 10.11, conductances Gij of the equivalent network are neglected and only suscep-
tances Bij are included in the equivalent network model. To retain the balance of power between
generation and demand, fictitious loads responsible for real power losses on the conductances Gij

of the equivalent network are added in {G} nodes. This is obviously a simplified method of treating
conductances and real power losses.

After long and tedious algebraic transformations the following equation for real power at a
generator node is obtained:

Pi = P0
0i +

n∑
j=1

bi j sin δi j +

 n∑

j=1

βikβkj cos δi j


 Gsh(t) +


 n∑

j=1

βikβkj sin δi j


 Bsh(t), (10.46)

k

{G}

V sh
Y sh (t)

EQUIVALENT
NETWORK

Figure 10.17 Schematic illustration of equivalent network.
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where P0
0i is real power of the equivalent load at a generator node and bi j = ∣∣Ei

∣∣ ∣∣E j

∣∣ Bi j is the
magnitude of the power–angle characteristic for an equivalent branch connecting a given pair of
internal generator nodes {i, j}. Coefficients β ik, β jk constitute electrical measures of the distance
between node k and internal generator nodes {i, j}, respectively. These coefficients are given by

βik = XSHC Bik

∣∣Ei

∣∣ , β jk = XSHC Bjk

∣∣E j

∣∣ , (10.47)

where Bik, Bjk are susceptances of the equivalent branches connecting a given pair of internal
generator nodes {i, j} with node k, and XSHC is the short-circuit reactance of the system seen from
node k in which the shunt FACTS device is installed. Equation (10.46) is important in the sense
that it shows that a shunt FACTS device introduces two components proportional to Gsh(t) and
Bsh(t), respectively, into the equation expressing real power of a generator. Note the similarity of
Equations (10.15) and (10.46).

10.5.5.2 Control Strategy

Using Equation (10.46), the swing equations can be formed for all generators, as in Equation
(10.16):

dδi

dt
= �ω

d�ωi

dt
= 1

Mi

[
Pmi − P0

0i

] − 1
Mi

n∑
j=1

bi j sin δi j − Di

Mi
�ωi

(10.48)

− 1
Mi


 n∑

j=1

βikβkj cos δi j


 Gsh(t) − 1

Mi


 n∑

j=1

βikβkj sin δi j


 Bsh(t),

where rotor angles δi and speed deviations �ωi are the state variables of the system. Equations
(10.48) form the nonlinear state-space model describing a dynamic response of the system when
changes in the equivalent admittance of the shunt FACTS device are considered.

As a Lyapunov function, the total system energy equal to the sum of the kinetic and potential
energy may be used:

V(δ, ω) = Ek + Ep, (10.49)

where Ek and Ep are given by Equations (6.46) and (6.47). Using Equations (6.55) and (6.56) and
the state-space equations (10.48), it can be shown that time derivatives of the kinetic and potential
energy are given by

dEk

dt
=

n∑
i=1

�ωi
[
Pmi − P0

0i

] −
n∑

i=1

�ωi

n∑
j=1

bi j sin δi j −
n∑

i=1

Di �ω2
i

(10.50)

−

 n∑

i=1

�ωi

n∑
j=1

βikβkj cos δi j


 Gsh(t) −


 n∑

i=1

�ωi

n∑
j=1

βikβkj sin δi j


 Bsh(t),

dEp

dt
= −

n∑
i=1

�ωi
(
Pmi − P0

0i

) +
n∑

i=1

�ωi

n∑
j 	=i

bi j sin δi j . (10.51)

Note that the first two components of (10.50) are equal to (10.51) but with opposite signs. This
means that there is a continuous exchange of energy in the transient state between the potential
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and kinetic energy terms. Moreover, as shown in Equation (10.50), the shunt FACTS element has
a direct influence on the rate of change of the kinetic energy.

Adding (10.50) and (10.51) gives

V̇ = dV
dt

= dEk

dt
+ dEp

dt
= −

n∑
i=1

Di �ω2
i + V̇(sh), (10.52)

where

V̇(sh) = −

 n∑

i=1

�ωiβik

n∑
j=1

βkj cos δi j


 Gsh(t) −


 n∑

i=1

�ωi

n∑
j=1

βikβkj sin δi j


 Bsh(t). (10.53)

The first component of (10.52) is due to natural damping of generator swings and is always negative
for Di > 0. The second component of (10.52) represents damping introduced by the supplementary
control of the shunt FACTS device.

The shunt FACTS device contributes to the system damping if V̇(sh) is negative. Inspection of
(10.53) shows that it is possible to make V̇(sh) always negative by making the values of Gsh(t) and
Bsh(t) always have the same sign as the relevant values in the square brackets in (10.53). Hence
the stabilizing control based on the measurement of the state variables should follow the following
control strategies:

Gsh(t) = K ·
n∑

i=1

�ωiβik

n∑
j=1

βkj cos δi j , (10.54)

Bsh(t) = K ·
n∑

i=1

�ωi βik

n∑
j=1

βkj sin δi j , (10.55)

where K is the control gain.
State-variable control based on the above strategies can be treated as multi-loop control with the

speed deviations of generators as the input signals and dynamic gains dependent on power angles.
This can be shown by expressing Equations (10.54) and (10.55) as

Gsh(t) = K ·
n∑

i=1

�ωiβikgi (δ) , (10.56)

Bsh(t) = K ·
n∑

i=1

�ωiβikbi (δ) , (10.57)

where

gi (δ) =
n∑

j=1

βkj cos δi j and bi (δ) =
n∑

j=1

βkj sin δi j , (10.58)

are dynamic gains dependent on the current values of the power angles δ = [δ1, δ2, . . . , δn ] and
distance measures β ik, β jk are given by Equations (10.47). A block diagram of such multi-loop
control of Gsh(t) is shown in Figure 10.18. For Bsh(t) control, the block diagram is identical but
gi (δ) is replaced by bi (δ).

Application of dynamic gains gi (δ) and bi (δ) significantly influences the dynamic properties of
the control process in two ways:
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Figure 10.18 Schematic illustration of the multi-loop control of Gsh(t).

1. Remote generators (small β ik) have little influence on the output signal. The output signal
is influenced mostly by generators close to the node k where the shunt device is installed
(big β ik). Such dependence of gains on distance measures is justified because shunt FACTS
devices have little influence on power produced by remote generators. Hence there would
be no point in making control of the device dependent on the state variables of remote
generators.

2. Current values of power angles change dynamic gains. In the case of Gsh(t), dynamic gains gi (δ)
decrease as the power angles increase (cosine function). In the case of Bsh(t), dynamic gains bi (δ)
increase as the power angles increase (sine function). Such dynamic changes of gains are justified
because the influence of reactive elements Bsh(t) on generated power is significant only when the
power angle is high (Figure 10.12b). On the other hand, the influence of active elements Gsh(t) is
reduced when the power angle increases (Figure 10.12a).

The control algorithm satisfying the above properties 1 and 2 is therefore intelligent in the
sense that it does not act when the control does not bring the required effects in the sys-
tem dynamic response. Obviously the effectiveness of the proposed controller in damping a
particular mode of oscillation will depend on its location in the system. This would be re-
vealed by observability and controllability analysis but such analysis is beyond the scope of this
book.

The double summation in (10.55) corresponds to the sum of elements of a square matrix with
elements equal to �ωiβikβkj sin δi j . The diagonal elements of the matrix are zero because sin δi i =
sin 0 = 0 while the sign of the elements in the upper triangle of the matrix is opposite to that in the
lower triangle because sin δi j = − sin δ j i . Hence

n∑
i=1

�ωi

n∑
j=1

βikβkj sin δi j =
n∑

i=1

n∑
j>i

�ωi j βikβkj sin δi j , (10.59)

where �ωi j = �ωi − �ω j . Equation (10.59) allows the control strategy (10.57) to be expressed as

Bsh(t) = K ·
n∑

i=1

n∑
j>i

βikβkj �ωi j sin δi j , (10.60)

which means that Bsh(t) depends on the relative speed deviations �ωij. This property is very
important for the response of the supplementary control when disturbances lead to changes in the
system frequency. In that case all rotors of all the generators change their speed coherently and the
signal produced by (10.60) or (10.57) is equal to zero, Bsh(t) = 0. This makes sense because reactive
shunt elements cannot influence the frequency.

In the case of Gsh(t) control, it is not possible to transform the strategy (10.54) in such a way
that a relationship similar to (10.59) is obtained because cos δi j = cos δ j i . Hence the value of Gsh(t)
is determined by individual �ωi rather than relative values �ωij. This makes sense because, when
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there is a surplus of energy in the system, frequency increases and all the loops in Figure 10.18
produce a positive signal. The controlled SMES or BR will then absorb energy reducing the surplus.
On the other hand, when there is an energy deficit in the system, the frequency decreases and all
the loops shown in Figure 10.18 produce a negative signal. The SMES will then inject real power
into the system thereby reducing the energy deficit.

It is also worth noticing that the coordinates of the postfault equilibrium point δs
i , which were

present in the energy-type Lyapunov function, are not present in the control strategies described by
(10.54) and (10.55). This means that it is not necessary to calculate the coordinates of δs

i following
a disturbance. Control strategies described by (10.54) and (10.55) utilize only the values of angles
δi in the transient state.

10.5.5.3 Wide Area Control System WAMPAC

Each loop of the supplementary stabilizing control contains a coefficient β ik corresponding to
the measures of the distance between a given ith generator and a given node k where the shunt
FACTS device is installed. When the distance is long, the distance measure β ik is small and it
may be approximately assumed that βik

∼= 0 so that the corresponding loop can be neglected.
Hence, in practice, the proposed multi-loop controller will contain only a few loops correspond-
ing to generators in a small area surrounding the shunt FACTS device. Hence, from the point
of view of the state-variable stabilizing control of shunt FACTS devices, it is not necessary
to measure phasors Ei = Ei e jδi in the whole power system. It is sufficient to measure pha-
sors only in a small area around the shunt FACTS device. Such control may be referred to as
area control.

Control strategies (10.56) and (10.57) simplified to area control could be utilized in a WAMPAC-
type (Section 2.6) control system making use of phasor measurements. A possible structure of
such a system is shown in Figure 10.19. The main steady-state control loop (the upper part of
Figure 10.19) is based on measuring a locally observable signal to be controlled by a FACTS
device. For example, in the case of STATCOM, it is the voltage at a given node of the system.
The supplementary stabilizing loop (the lower part of Figure 10.19) utilizes state variables as input
signals and, from the point of view of the whole system, it is a state-variable control. The main
problem for such a closed-loop control is the speed of data transmission. Current modern flexible
communication platforms (Figure 2.45) cannot transmit data fast enough in order to damp power
swings. However, it may be expected that the speed of data transmission will increase in the near
future so that practical implementation of a WAMPAC system similar to that shown in Figure
10.19 will be possible.
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Figure 10.19 Schematic illustration of the local control and state-variable stabilizing control.
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10.5.5.4 Emulation of State-Variable Control by Local Control

As the speed of data transmission is not fast enough to implement the WAMPAC shown in Figure
10.19, it is necessary to look for controllers using local measurements and which are able to emulate
the control strategy (10.54) and (10.55). How exactly such local control will emulate optimal control
depends on the choice of local signals used and the structure of the regulator. A detailed analysis
of the choice of signals can be found in EPRI (1999). Here an analysis will be presented based on
Machowski and Nelles (1994). Equations derived in their paper show that the controller of Figure
10.15 implementing Equation (10.45) is also valid for the multi-machine system regardless of where
the shunt FACTS device is located within the system.

For the multi-machine system, an equation similar to (10.26) can be written as

dqG

dt
=

n∑
i=1

�ωi
∂qG

∂δi
+ αGG

dGsh

dt
+ αGB

dBsh

dt
, (10.61)

where αGG, αGB are sensitivity factors determined by Equations (10.27). Equation (10.61) can be
transformed to give

n∑
i=1

�ωi
∂qG

∂δi
= dqG

dt
− αGG

dGsh

dt
− αGB

dBsh

dt
. (10.62)

The left hand side of Equation (10.62) depends on �ωi . It is exactly the same as in the theoretically
optimal strategy determined by Equation (10.54) if the following condition is satisfied:

∂qG

∂δi
=

n∑
j=1

βikβkj cos δi j . (10.63)

Substituting the partial derivative on the left hand side of Equation (10.62) by the right hand side
of Equation (10.63) and inserting the result into Equation (10.54) gives the local control (10.30).

In the control strategy given by Equation (10.60) the shunt susceptance depends on the relative
speed deviations �ωij. The time derivative of qB, expressed in terms of the relative speed deviations,
is given by

dqB

dt
=

n∑
i=1

n∑
j>i

�ωi j
∂qB

∂δi j
+ αBG

dGsh

dt
+ αBB

dBsh

dt
, (10.64)

where αGG, αGB are sensitivity factors determined by Equations (10.32). Rearranging Equation
(10.64) gives

n∑
i=1

n∑
j>i

�ωi j
∂qB

∂δi j
= dqB

dt
− αBG

dGsh

dt
− αBB

dBsh

dt
. (10.65)

The left hand side of this equation depends on �ωij. It is exactly the same as in the theoretically
optimal strategy given by Equation (10.60) if the following condition is satisfied:

∂qB

∂δi j
= βikβkj sin δi j . (10.66)

Substituting the partial derivative on the left hand side of Equation (10.65) by the right hand side
of Equation (10.66), and inserting the result into Equation (10.60), gives the local control (10.31).

The conditions defined by Equations (10.63) and (10.66) are the basic conditions under which the
local control defined by Equations (10.30) and (10.31) can emulate the theoretical optimal control
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defined by Equations (10.54) and (10.60). An additional condition is that for the given input
variables the sensitivity factors defined by Equations (10.27) and (10.32) must be either known or
negligible.

In the considered model shown in Figure 10.17, when the network conductances are neglected it
can be shown that the magnitude and angle of voltage Vk at node k are given by

Vk
∼= ϕ(sh)ϕ(δ), (10.67)

where

ϕ(sh) = (1 + XSHC Bsh) − jXSHCGsh, (10.68)

ϕ(δ) = −
n∑

j=1

βkj
[
cos δ j + j sin δ j

]
. (10.69)

Both functions ϕ(sh) and ϕ(δ) are complex.
Using (10.5) for a simplified analysis of voltage Vk, it may be assumed that both components

XSHC Bsh and XSHCGsh in Equation (10.68) are negligible. Consequently, the following simplifications
are obtained which are important for further considerations:

ϕ(sh) ∼= 1 and Vk
∼= ϕ(δ). (10.70)

Using the simplifications above, Equations (10.67) and (10.69) give

Vk
∼= ϕ(δ) = −

n∑
j=1

βkj
[
cos δ j + j sin δ j

]
. (10.71)

Symbol θ denotes the phase angle of voltage Vk measured with respect to the reference frame
common for all nodes of the network model. Thus Equation (10.71) gives

∣∣Vk

∣∣ cos θ = −
n∑

j=1

βkj cos δ j and
∣∣Vk

∣∣ sin θ = −
n∑

j=1

βkj sin δ j . (10.72)

Hence

tan θ ∼=

n∑
j=1

βkj sin δ j

n∑
j=1

βkj cos δ j

, (10.73)

∣∣Vk

∣∣2 =

 n∑

j=1

βkj sin δ j




2

+

 n∑

j=1

βkj cos δ j




2

. (10.74)

Similar to the second of Equations (10.39), Equation (10.73) allows θ to be treated as an implicit
function of δ, that is f (θ, δ) = 0. Using Equations (10.41), (10.73) and (10.74) gives

∣∣Vk

∣∣2 ∂θ

∂δi
= βki cos δi

n∑
j=1

βkj cos δ j + βki sin δi

n∑
j=1

βkj sin δ j

(10.75)
=

n∑
j=1

βki βkj
[
cos δi cos δ j + sin δi sin δ j

] =
n∑

j=1

βki βkj cos δi j .
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Comparison of Equations (10.75) and (10.63) leads to

∣∣Vk

∣∣2 ∂θ

∂δi
=

n∑
j=1

βikβkj cos δi j = ∂qG

∂δi
. (10.76)

The conclusion from this equation is that the time derivative of the voltage phase angle θ multiplied
by the voltage squared

∣∣Vk

∣∣2
satisfies the conditions of a good input signal for local control of

Gsh(t).
When the sensitivity of θ with respect to Gsh(t) and Bsh(t) is considered it is necessary to take

into account Equation (10.67) with ϕ(sh) given by Equation (10.68). Calculating the derivative of
the implicit function and further simplifying the result gives

∣∣Vk

∣∣2 ∂θ

∂Gsh
= − ∣∣Vk

∣∣2 XSHC and
∣∣Vk

∣∣2 ∂θ

∂ Bsh

∼= 0. (10.77)

This means that the phase angle θ of the voltage Vk is mainly sensitive to the changes of Gsh(t) and
its sensitivity factor can be assessed on the basis of the expected value of the short-circuit reactance
XSHC.

Substituting the relevant sensitivity factors in Equation (10.30) by Equations (10.77) and (10.76)
gives the same control scheme as (10.45a).

The signal depending on the magnitude of the squared voltage can be expressed, using Equations
(10.67)–(10.69), as

qB = −1
2

∣∣Vk

∣∣2 = −1
2

V∗
kVk = −1

2
|ϕ(sh)|2 |ϕ(δ)|2 , (10.78)

where

|ϕ(sh)|2 = [1 + XSHC Bsh(t)]2 + [XSHCGsh(t)]2
, (10.79)

|ϕ(δ)|2 =
n∑

i=1

n∑
j=1

βikβkj cos δi j =
n∑

i=1

β2
ik+2

n∑
i=1

n∑
j>1

βikβkj cos δi j . (10.80)

In order to calculate the sensitivity of signal (10.78) with respect to power angles, it may be
assumed as in (10.70) that ϕ(sh) ∼= 1. Then Equations (10.78) and (10.80) give

∂qB

∂δi j
= −1

2

∂
∣∣Vk

∣∣2

∂δi j

∼= −1
2

∂ |ϕ(δ)|2
∂δi j

= βikβkj sin δi j . (10.81)

Equations (10.81) and (10.66) are the same, showing that the signal given by Equation (10.78)
satisfies the condition of a good input signal for control of the shunt susceptance Bsh(t).

Sensitivity factors αGG, αGB determined by Equations (10.32) can be easily found assuming that
Vk

∼= ϕ(δ). Under this assumption, differentiation of Equation (10.78) gives

∂qB

∂Gsh

∼= − ∣∣Vk

∣∣2 XSHC [XSHCGsh(t)] ∼= 0, (82a)

∂qB

∂ Bsh

∼= − ∣∣Vk

∣∣2 XSHC [1 + XSHC Bsh(t)] ∼= − ∣∣Vk

∣∣2 XSHC. (82b)
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This means that the magnitude of the squared voltage is sensitive mainly to the changes of Bsh(t).
Its sensitivity factor can be assessed on the basis of the expected value of the short-circuit reactance
and the measured voltage magnitude.

Substituting the relevant sensitivity factors in Equation (10.31) by Equations (10.82) and (10.81),
and the local signal by (10.78), gives the same control formula as (10.45b).

10.5.6 Example of Simulation Results

Simulation results of the considered controller of a shunt FACTS device based on local measure-
ments can be found in publications by Machowski and Nelles (1992a, 1992b, 1993, 1994). Here only
the simulations of the state-variable stabilizing control using the WAMPAC-type structure shown
in Figure 10.19 will be presented. The time delay introduced by the telecommunication system of
WAMPAC has been modelled using a first-order block with a time constant of 30 ms. Currently
typical delays recorded in WAMPAC systems are about 100 ms. Such a big delay would significantly
worsen the control process.

Simulations have been executed for the CIGRE test system (Figure 10.20). Generator G4 in this
system has very high inertia constituting effectively the infinite busbar and providing a reference.
The considered test system experiences transient stability problems mainly for generators G7 and
G6, especially as a result of a short circuit in line L7 without reclosing. Such a case has been chosen
to illustrate the robustness of the proposed control algorithm.

Table 10.1 shows the values of distance measures β ik for nodes B6, B7, B8 and all internal
generator nodes behind transient reactances of the generator. Symbols ‘on’ and ‘off’ in column L7
in Table 10.1 correspond to appropriate ‘on’ and ‘off’ states of line L7. The results show that only
generators G4, G6 and G7 are important for shunt FACTS devices installed at each of the three
chosen nodes B6, B7 and B8. For the remaining generators, the distance measures are an order
of magnitude smaller and it may be safely assumed that βik

∼= 0. Consequently, control of shunt
FACTS devices in nodes B6, B7 and B8 can be based only on state variables ωi, δi for generators
G4, G6 and G7. A corresponding multi-loop supplementary controller (Figure 10.18) will then
contain only three loops with [ω4, ω6, ω7] as input signals.

Figure 10.21 shows the simulation results when one SMES (rated 40 MVA) at bus B8 was
controlled using state-variable stabilizing control limited to the closest generators G4, G6 and G7
(local area control). The two lower graphs illustrate the changes in the values of Gsh B8 and Bsh B8
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Figure 10.20 Schematic diagram of the CIGRE test system.
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Table 10.1 Distance measures βik for Sbase = 100 MVA.

— L7 G1 G2 G3 G4 G5 G6 G7

B6
On 0.024 0.006 0.034 0.406 0.008 0.538 0.134
Off 0.023 0.005 0.038 0.147 0.003 0.762 0.188

B7
On 0.024 0.006 0.037 0.283 0.005 0.279 0.552
Off 0.015 0.003 0.025 0.094 0.002 0.121 0.482

B8
On 0.034 0.008 0.053 0.397 0.008 0.387 0.229
Off 0.034 0.008 0.056 0.214 0.004 0.547 0.268

which correspond to real and reactive power of the SMES. The apparent power absorbed from the
network or injected into the network is limited as shown by Equation (10.3). Consequently, the con-
trol algorithm uses more active power (conductance Gsh B8) than reactive power (susceptance Bsh B8).
The two upper graphs show the changes in the values of rotor angles of generators G6 and G7.
For comparison dashed lines show the case without SMES.
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Figure 10.21 Simulation results for one SMES installed at bus B8.



P1: OTA/XYZ P2: ABC
c10 JWBK257/Machowski September 22, 2008 21:49 Printer Name: Yet to Come

416 Power System Dynamics

rad

-0.5

0.5

1.0

1.5

2.0

21 3 4 65 87 109 s

t

rad

-0.5

0.5

1.0

1.5

2.0

2.5

21 3 4 65 87 109 s

t

p.u.

0.5

1.0

21 3 4 65 87 109 s

t

0

p.u.

0.5

0

1.0

21 3 4 65 87 109 s

t

δG6

δG7

Gsh B6

Gsh B7

Figure 10.22 Simulation results for two BRs installed at bus B6 and bus B7.

Very good damping can be obtained by using thyristor-controlled BRs connected at generator
busbars. Simulation results for such a case are shown in Figure 10.22 when two BRs (each rated
40 MW) are installed at bus B6 and bus B7. In this case rotor swings are damped very quickly.

10.6 Series Compensators

Section 3.1.2 showed how the power transfer capability of a long transmission line depends on its
inductive reactance and how this reactance can be offset by inserting a series capacitor. Besides being
useful in the steady state, such a reduction in the line reactance is also useful in the transient state as it
increases the amplitude of the transient power–angle characteristic thereby increasing the available
deceleration area. By proper control of a switched series capacitor this change in amplitude can be
used to provide additional damping of power swings. In particular the conventional series capacitor,
equipped with a zinc oxide protective scheme (Figure 2.24) and thyristor-switched series capacitor
(Figure 2.34a), can be used in a bang–bang control mode as it can be almost instantaneously
bypassed and reinserted at appropriate moments. The thyristor-controlled series capacitor (Figure
2.34b) and the static synchronous series compensator (Figure 2.35) allow the equivalent reactance
to be smoothly controlled so that they can be used in a continuous control mode.
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Figure 10.23 System with a shunt capacitor: (a) network diagram; (b) phasor diagram; (c)
power–angle characteristic with and without series compensation.

10.6.1 State-Variable Control

Consider the simple generator–infinite busbar system shown in Figure 10.23a. Line L2 is assumed
to be open-circuited before a fault occurs. The fault results in tripping the line after some clearing
time. The generator is represented by the classical model, that is constant transient emf E′ behind
the transient reactance X ′

d. Neglecting the resistance and shunt capacitance, the generated real
power is

P(δ′) = E′Vs

X�

sin δ′, (10.83)

where V s is the infinite busbar voltage, δ′ is the transient power angle between V s and E′ and

X� = (
X ′

d + XT + XL1 + Xs
) − XC(t) = X − XC(t) (10.84)

is the equivalent reactance of the transmission link where XT is the reactance of the transformer,
XL1 is the reactance of the line, X s is the equivalent reactance of the infinite busbar, and X is the
equivalent reactance of the transmission link without the compensator. A positive value of XC(t)
corresponds to a capacitance while a negative XC(t) corresponds to an inductance.

A change in the compensator reactance XC(t) causes a change in X� and therefore a change in the
amplitude of the power–angle characteristic. Figure 10.23c shows the power–angle characteristics
corresponding to the maximum and minimum values of X� .

To simplify considerations further, it is worth separating the system reactance into components
with and without the series compensator. This can be done in the following way:

1
X�

= 1
X − XC(t)

= 1
X

+ 1
X�

XC

X
(10.85)

so that Equation (10.83) takes the following form:

P(δ′) = E′Vs

X
sin δ′ + E′Vs

X�

XC(t)
X

sin δ′ = b sin δ′ + b�

XC(t)
X

sin δ′, (10.86)

where b� = E′Vs/X� and b = E′Vs/X are the amplitudes of the power–angle characteristic with
and without the series compensator, respectively. The first component in Equation (10.86) defines
power which would flow in the system if the series compensator was not used, that is for XC(t) = 0.
The second component is responsible for a change in the power flow due to the variation in the
compensator reactance. As series compensation is normally less than 100 % of the line reactance, it
can be assumed that X� is always positive, which is important for further considerations.
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Taking into account Equation (10.86), the swing equation of the system can now be written as

dδ′

dt
= �ω

(10.87)
M

d�ω

dt
= Pm − b sin δ′ − D

dδ′

dt
− (b� sin δ′)

XC(t)
X

,

where �ω is the speed deviation, M is the inertia coefficient, Pm is the mechanical power input
from the prime mover and D is the damping coefficient. The equilibrium point of this equation has
coordinates (δ̂′, �ω̂ = 0). The control variable is XC(t).

The system described by Equation (10.87) is nonlinear. A standard approach to derive the optimal
state-variable control of such a system would be to linearize the system around its operating point.
Here, as before in this book, the optimal state-variable control will be derived from the nonlinear
model using the Lyapunov direct method.

The Lyapunov function for the system is equal to the sum of the potential and kinetic energy
V = Ek + Ep, where

Ek = 1
2 M�ω2

Ep = −
[

Pm

(
δ′ − δ̂′

)
+ b

(
cos δ′ − cos δ̂′

)]
.

(10.88)

At the equilibrium point (δ̂′, �ω̂ = 0) the total energy given by Equation (10.88) is zero. A fault
releases some energy, that is it causes an increase in the total energy expressed by Equation (10.88),
which results initially in acceleration of the rotor and an increase in δ′ and �ω. The goal of a
control strategy is to enforce such changes in the equivalent reactance of the transmission link so
that the system is brought back as fast as possible to the equilibrium point (δ̂′, �ω̂ = 0) where
V = 0. This is equivalent to a fast dissipation of the energy released by the fault and quick damping
of rotor swings. The control strategy must therefore maximize the value of the derivative V̇ = dV/dt
calculated along the trajectory of the differential equation (10.87).

It can be easily proved that, for functions given by Equation (10.88), the following hold:

dEk

dt
= ∂Ek

∂ω

d�ω

dt
= M

d�ω

dt
�ω, (10.89)

dEp

dt
= ∂Ep

∂δ′
dδ′

dt
= ∂Ep

∂δ′ �ω = − [
Pm − b sin δ′] �ω. (10.90)

Substituting the left hand side of the second of Equations (10.87) into the right hand side of
Equation (10.89) gives

dEk

dt
= + [

Pm − b sin δ′] �ω − D�ω2 − (b� sin δ′)
XC(t)

X
�ω. (10.91)

Adding Equations (10.90) and (10.91) gives a time derivative of the Lyapunov function:

V̇ = dV
dt

= dEk

dt
+ dEp

dt
= −D�ω2 − (b� sin δ′)

XC(t)
X

�ω. (10.92)

The system is stable if this derivative is negative. Moreover, the speed with which the system returns
to the equilibrium point is proportional to V̇, that is the greater the negative value of V̇, the faster
the dissipation of energy released by the fault and the faster the damping of the swings.

The second component of Equation (10.92) depends on the control variable XC(t) and the state
variables (δ′, �ω). This component will be negative if the control strategy of the series compensator
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is such that

XC(t) = K X (sin δ′) �ω, (10.93)

where K is the gain of the regulator. Recall that X = constant is the link reactance without the
compensator. Substituting Equation (10.93) into (10.92) gives

dV
dt

= dEk

dt
+ dEp

dt
= −D�ω2 − K b� (sin δ′)2

�ω2, (10.94)

which means that assuming the control strategy given by Equation (10.93), the derivative V̇ is always
negative. At any moment during the transient state such control will improve the damping. This
can be additionally shown by substituting XC(t) from Equation (10.93) into the swing equation,
Equation (10.87). The swing equation will then take the form

dδ′

dt
= �ω

(10.95)
M

d�ω

dt
= Pm − b sin δ′ − D

dδ′

dt
− Dser

dδ′

dt
,

where

Dser = Kb� (sin δ′)2 ≥ 0 (10.96)

is a positive damping coefficient due to control of the series compensator.

10.6.2 Interpretation Using the Equal Area Criterion

The influence of the control given by Equation (10.93) on the transient stability can be simply
explained by assuming that the FACTS device is a thyristor-switched series capacitor (Figure
2.47a). In that case the control given by Equation (10.93) can be implemented only as bang–bang
control:

XC(t) =
{

XCMAX for (sin δ′) �ω ≥ +ε

0 for (sin δ′) �ω < +ε,
(10.97)

where ε determines the dead zone.
Consider again the simple generator–infinite busbar system of Figure 10.23 with the fault occur-

ring on line L2. Figure 10.24 shows the power–angle curves with XC = 0, the lower characteristic,
and with XC = XCMAX, the upper characteristic. The fault causes the generator power to drop so
that kinetic energy proportional to area 1–2–3–4 is released. At the instant of fault clearance the
expression (�ω sin δ′) is positive so that the signal XC(t) is set to its maximal value XC = XCMAX and
the whole capacitor is inserted. The available declaration area is 4–5–6–10. The rotor reaches speed
deviation �ω = 0 at point 6 when area 4–5–6–7 becomes equal to area 1–2–3–4 and then starts
to swing back. The expression (�ω sin δ′) becomes negative and the control strategy in Equation
(10.93) causes the capacitor to be bypassed XC(t) = 0. The rotor follows the lower P(δ′) char-
acteristic. The power jumps from point 6 to point 8 and the rotor swings back along path 8–9
performing deceleration work proportional to area 8–9–7. This backswing deceleration area is now
much smaller than area 6–7–1, the deceleration area available when XC = XCMAX. When the rotor
starts to swing forward, the speed deviation changes sign, XC(t) is increased and the acceleration
area is reduced. The complete switching cycle is then repeated but with rotor swings of reduced
amplitude. Thus the control principle is established. During the forward swing the acceleration area
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Figure 10.24 Interpretation of series capacitor control using the equal area criterion.

should be minimized and the available deceleration area maximized, while during the backward
swing the deceleration area should be minimized and the available acceleration area maximized.

In some circumstances bang–bang control with a small dead zone can lead to large power angle
swings and instability. To explain this, again consider Figure 10.24 and assume that the rotor reaches
point 11 during its forward swing. Sudden bypassing of the capacitor causes the system trajectory
to jump to point 12 from which the rotor would be further accelerated causing a subsequent
asynchronous operation. This would not happen with continuous control because both the control
signal and XC(t) change smoothly. Such control can be implemented using the thyristor-controlled
series capacitor (Figure 2.34b) or the static synchronous series compensator (Figure 2.35). The
next section will describe a state-variable stabilizing control of the series compensator, based on
Equation (10.93), which can be emulated using local measurements.

10.6.3 Control Strategy Based on the Squared Current

The control strategy (10.93) utilizes state variables (δ′, �ω) which are not readily available at the
point of installation of the series compensator. Therefore it is convenient to emulate this optimal
strategy using another strategy based on locally available measurements. Similar considerations
were used in Section 10.5.3 but with regard to the shunt compensation.

For the case considered, the cosine theorem applied to the voltage triangle from Figure 10.23b
gives

(I X�)2 = (E′)2 + V2
s − 2E′Vs cos δ′ (10.98)

so that

I2 = 1

X 2
�

[
(E′)2 + V2

s − 2E′Vs cos δ′
]
. (10.99)

Assuming constant values of E ′ and V s, the signal given by Equation (10.99) depends on X� and
δ′. Hence the speed of the signal changes can be expressed as

d
(
I2

)
dt

= ∂
(
I2

)
∂δ′

dδ′

dt
+ ∂

(
I2

)
∂ X�

dX�

dt
, (10.100)

and the partial derivatives are given by

∂
(
I2

)
∂δ′ = 2

X2
�

E′Vs sin δ′ and
∂

(
I2

)
∂ X�

= − 2
X�

I2. (10.101)
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Figure 10.25 Supplementary control of XC(t).

As X� = X − XC(t) and X = constatnt, it holds that dX�/dt = −dXC/dt. Substituting the expres-
sions given by Equation (10.101) into (10.100) gives

d
(
I2

)
dt

= 2

X 2
�

E′Vs (sin δ′) �ω + 2
X�

I2 dXC

dt
, (10.102)

which, after reordering the terms, gives

(sin δ′) �ω = X 2
�

2E′Vs

[
d

(
I2

)
dt

− 2
X�

I2 dXC

dt

]
. (10.103)

Substituting Equation (10.103) into Equation (10.93) gives

XC(t) = KC

[
d

(
I2

)
dt

− 2
X�

I2 dXC

dt

]
, (10.104)

where KC is the equivalent gain of the controller.
Figure 10.25 shows the block diagram of a controller executing the control strategy (10.104).

Derivation is executed by a real differentiator with a small time constant T . The limiter at the
output of the controller limits the output signal to that applicable for a particular type of series
compensator. The controller is nonlinear because it contains a product of the input signal and the
derivative of the output signal. Sensitivity of the squared current I2 to the changes in the control
variable XC(t) is compensated by using a feedback loop with a gain inversely proportional to X� .
This feedback plays a secondary role when compared with the main feedback loop. Consequently,
the gain in the corrective loop can be determined approximately using an estimate of the equivalent
reactance X� .

If the series compensator is equipped with a steady-state power flow controller then the considered
controller can be attached as a supplementary control loop for damping of power swings.

10.6.4 Control Based on Other Local Measurements

It was shown above that control based on the squared current allows the optimal control strategy
to be executed. Some authors suggest that other locally measured signals such as real power or the
current magnitude (but not squared) can be used as input signals for the regulator. A question then
arises as to what the differences are between the controllers using these three input signals in the
case of large disturbances involving large changes of the power angle.

When the sensitivity of the given signal q(t) to the changes in X� is neglected, then as in Equation
(10.100) the control signal can be expressed as

dq
dt

∼= ∂q
∂δ′

dδ′

dt
= ∂q

∂δ′ �ω. (10.105)
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Figure 10.26 Electrical quantities and their partial derivatives: (a) real power; (b) squared current
magnitude; (c) current magnitude.

For a given speed deviation �ω, the value of the control signal dq/dt is determined by the value of
the partial derivative ∂q/∂δ′. A comparison with Equation (10.93) shows that the partial derivative
∂q/∂δ′ should ideally be of a sine type, that is it should be positive for δ′ > 0 and negative for δ′ < 0.
Figure 10.26 shows the partial derivative ∂q/∂δ′ for the real power P, current I and squared current
magnitude I2.

The partial derivative of the real power, ∂ P/∂δ′, is largest at δ′ = 0 and then it decreases taking
negative values for δ′ > π/2. The derivative of the current magnitude is large and discontinuous,
changing its sign around δ′ = 0. The derivative of the squared current magnitude has a sine shape,
that is it is zero at δ′ = 0 and it reaches a maximum at δ′ = π/2. This leads to conclusions described
in Sections 10.6.4.1 to 10.6.4.3.

10.6.4.1 Controller Based on Real Power

In the vicinity of δ′ = 0, when the control is not effective because it does not influence damping in a
significant way, the produced control signal is unnecessarily large. When the power angle increases
and the control action starts to influence damping, the control signal decreases. Around δ′ = π/2,
when the control is the most effective, the control signal is zero. For δ′ > π/2 the control signal
changes sign and becomes negative, causing negative damping which harms the system. Similarly,
negative damping occurs for δ′ < −π/2, that is for a large power angle during backswing. Obviously
at any operating point when −π/2 < δ′ < π/2 a small disturbance will produce a correct control
signal and positive damping. Hence the linearized analysis of the controller in the vicinity of the
operating point does not expose the disadvantages of using real power as an input signal for the
regulator.

10.6.4.2 Controller Based on Current

The produced control signal has the correct sign over the whole range of power angle changes.
However, the controller produces an unnecessarily large signal in the vicinity of δ′ = 0, when the
control is ineffective. Moreover, when crossing the value δ′ = 0, the control signal is discontinuous.
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Figure 10.27 Simulation results for the generator–infinite busbar system.

10.6.4.3 Controller Based on Squared Current

The control signal has the correct sign and shape over the whole range of power angle changes. In
the vicinity of δ′ = 0, when the control is ineffective, the signal is small but increases with angle,
reaching a maximum at δ′ = π/2, when the control is the most effective. Also, note that the control
signal is continuous.

10.6.5 Simulation Results

The proposed controller has been tested using a variety of systems. Due to the lack of space, the
simulation results for the simple generator–infinite busbar system only will be presented. A short
circuit was assumed at the end of the line, beyond the series compensator. The considered case was
stable. Without the series compensator the resulting power swings vanished after about 10 s. The
regulation process when the series compensator was used is shown in Figure 10.27.

Figure 10.27a shows the system trajectory in the (P, δ) plane. One can see a sudden change in
the value of real power following the fault and then its clearance. The system trajectory during the
backswing lies below the trajectory corresponding to the forward swing. Good damping of power
swings may be observed as the oscillations vanish after about 3 s (Figure 10.27b and c). After the
disturbance the first two changes in XC(t) are large (Figure 10.27d) and as the swings disappear the
controller enforces smaller changes in XC(t).

10.7 Unified Power Flow Controller

As discussed in Section 2.4.4, series FACTS devices also include, apart from the controlled series
capacitor, the phase angle regulator (TCPAR, Figure 2.37) and the unified power flow controller
UPFC (Figure 2.38). The UPFC can control three signals: (i) the quadrature component of the
booster voltage; (ii) the direct component of the booster voltage; and (iii) the reactive shunt current.
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Figure 10.28 Generator–infinite busbar system to investigate UPFC control: (a) block diagram;
(b) equivalent network; (c) phasor diagram.

The TCPAR can control only the first signal, that is the quadrature component of the booster
voltage. Hence this section will discuss the more general case, that is supplementary stabilizing
control of the UPFC.

10.7.1 Power–Angle Characteristic

To simplify considerations, the generator–infinite busbar system will be discussed as shown in
Figure 10.28. The generator is represented by the classical model. The shunt part of the UPFC is
modelled by a variable susceptance Bsh(t). The series part, inserting the booster voltage, is modelled
by a complex transformation ratio defined as

η = Va

Vb

= |η| ejθ and
Ib

Ia

= η∗ = |η| e−jθ . (10.106)

Booster transformer reactance is added, on the generator side, to the equivalent reactance of the
network.

The phasor diagram shown in Figure 10.28c breaks down the booster voltage into its direct �VQ

and quadrature �VP components. These components can be expressed as a fraction of the busbar
voltage

�VP = γ Vb and �VQ = βVb, (10.107)

where β and γ are the output variables of the supplementary control of the UPFC. To emphasize
the time dependency, the variables will be denoted as β(t) and γ (t). The voltage triangle in Figure
10.28c gives

sin θ = �VP

Va
= γ Vb

Va
= γ

|η| , (10.108)
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cos θ = Vb + �VQ

Va
= Vb + βVb

Va
= 1 + β

|η| , (10.109)

(1 + β)2 + γ 2 = |η|2 or |η| =
√

(1 + β)2 + γ 2. (10.110)

Derivation of a formula for the generator power that includes all three control variables Bsh(t) 	= 0,
γ (t) 	= 0 and β(t) 	= 0 takes over three pages of algebraic transformations even for the simple
generator–infinite busbar system. To illustrate the problem, only a simplified case of neglected
shunt compensation, that is Bsh(t) = 0, will be discussed here.

When the shunt susceptance Bsh(t) is neglected, the equivalent system reactance as seen by the
generator is equal to X� = Xa + |η|2 Xb, where the second component corresponds to reactance
Xb transformed by the transformation ratio to the generator side. The angle between the generator
emf and the infinite busbar voltage is δ′. The angle between the voltages on both sides of the booster
transformer is θ , see (10.106). This means that the phase angle of the voltage drop on reactance
X� is (δ′ − θ ). The infinite busbar voltage transformed to the generator side is Vs |η|. Hence, taking
into account the general equation (1.8), one can write

P = EgVs |η|
X�

sin(δ′ − θ ) = EgVs

X�

|η| (sin δ′ cos θ − cos δ′ sin θ ) . (10.111)

Substituting (10.108) and (10.109) into (10.111) gives

P = b� sin δ′ − b� cos δ′γ (t) + b� sin δ′β(t), (10.112)

where b� = EgVs/X� is the amplitude of the power–angle characteristic when the transformation
ratio given by Equation (10.110) is included. When the booster voltage is absent, that is when
γ (t) = 0 and β(t) = 0, the characteristic corresponds to the first component of (10.112). The second
and third components correspond to the direct and quadrature components of the booster voltage
(10.107), respectively.

The influence of the booster voltages on the power–angle characteristic is illustrated in Figure
10.29. The quadrature component enforces a non-zero value of the angle θ and, according to
(10.111), causes a shift in the power–angle characteristic to the left if γ > 0, or to the right if γ < 0.
The direct component changes the amplitude of the characteristic, increasing it when β > 0 and
reducing it when β < 0.

Figure 10.12b showed that the shunt compensation Bsh(t) of reactive power also affects the
amplitude of the power–angle characteristic. Hence the shunt element Bsh(t) neglected in (10.111)

P

′

= 0

> 0

< 0

P

= 0

 0

0

(a) (b)

′

Figure 10.29 Influence of the booster voltages on the power–angle characteristic: (a) influence of
the quadrature component; (b) influence of the direct component.
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will also have an influence on the amplitude of the characteristic just like the direct component of
the booster voltage.

Januszewski (2001) has derived a similar equation to (10.112) but including simultaneous control
of all three quantities:

P ∼= b� sin δ′

− b� sin δ′ XSHC Bsh(t)

(10.113)+ b� sin δ′ (1 − XSHC Bsh) β(t) − b� cos δ′ (1 − XSHC Bsh) γ (t).

It is worth remembering that, as in Equation (10.5), XSHC Bsh � 1 holds. This means that expression
(1 − XSHC Bsh) is positive and (1 − XSHC Bsh) ∼= 1.

10.7.2 State-Variable Control

Taking into account Equation (10.113), the swing equation of the system can now be written as

M
d�ω

dt
= Pm − b� sin δ′ − D

dδ′

dt
(10.114)+ b� XSHC Bsh sin δ′ − (1 − XSHC Bsh)

[
βb� sin δ′ − γ b� cos δ′] ,

where �ω, δ′ are the state variables and XC(t) is the controlled variable. The control law will be
derived, similar to the shunt devices, using the Lyapunov direct method.

The total system energy V = Ek + Ep is chosen as the Lyapunov function, as for the shunt devices
and the series capacitor:

V = 1
2

M�ω2 −
[

Pm

(
δ′ − δ̂′

)
+ b�

(
cos δ′ − cos δ̂′

)]
. (10.115)

Calculating the partial derivative along the system trajectory of Equation (10.114) gives

V̇ = dEk

dt
+ dEp

dt
= − D�ω2 + �ω (b� sin δ′) XSHC Bsh(t)

+�ω (1 − XSHC Bsh) (b� cos δ′) γ (t) − �ω (1 − XSHC Bsh) (b� sin δ′) β(t). (10.116)

Taking into account that (1 − XSHC Bsh) > 0, it can be concluded that controlling each of the three
quantities will introduce a negative term in the derivative (10.116) if the control is according to the
following three equations:

β (t) = + Kβ

[
b� sin δ′]�ω, (10.117)

γ (t) = − Kγ

[
b� cos δ′] �ω, (10.118)

Bsh (t) = − KB
[
b� sin δ′]�ω, (10.119)
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where Kβ, Kγ , KB are the control gains. With that control, the system energy will change according
to

V̇ = − D�ω2 −
[

Kβ (sin δ′)2 + Kγ (cos δ′)2
]

b2
��ω2 + KB XSHC (sin δ′)2 b2

��ω2. (10.120)

For Kβ = Kγ = Kη, controlling both booster voltage components gives a constant damping
independent of the power angle, because the expression in the square brackets in (10.120) is equal
to Kη, and Equation (10.120) becomes

V̇ = − D�ω2 − Kηb2
��ω2 + KB XSHC (sin δ′)2 b2

��ω2. (10.121)

Control using the direct booster voltage component (signal β) and controlling the shunt compen-
sation (signal Bsh) is executed in the same way as controlling the shunt reactive power compensator,
Equation (10.45). Control action is proportional to the speed deviation �ω and the sine of the
power angle sin δ′. When the power angle is positive and when �ω > 0, Figure 10.29b, the control
chooses values β > 0 such that the amplitude of the power–angle characteristic is increased and
therefore the available deceleration area is increased. During the backswing when �ω < 0, the con-
trol chooses such values β < 0 that the amplitude of the characteristic is reduced, Figure 10.29b,
causing a reduction in the deceleration work during the backswing and a reduction of the maximum
rotor displacement.

Control of the quadrature voltage component (signal γ (t)) is proportional to the speed deviation
�ω and cosine of the power angle cos δ′. The influence of such control is illustrated in Figure 10.30.
During the short circuit, the rotor gains energy corresponding to the acceleration area 1–2–3–4. At
the same time, the control system applies control γ > 0 such that the power–angle characteristic is
moved to the left. As a result, electrical power at point 5 is higher than it would otherwise have been
(the middle bold line). Power then changes along line 5–6 on the characteristic; that is, shifted to the
left. At the peak of the characteristic cos δ′ tends to zero and signal γ (t) tends to zero too. Hence
power changes along the middle characteristic corresponding to the lack of control. Then cos δ′

changes sign, the signal γ (t) changes sign too and power changes according to the characteristic
shifted to the right. The available deceleration area is 4–5–6–7–8. In the case considered, this area
is bigger than the area 1–2–3–4 and the system is stable. The rotor does not move beyond point 8
because, immediately after moving past point 7, the speed deviation decreases significantly so that
the signal γ (t) decreases too. Hence the movement is no longer along line 7–8 but along the middle
characteristic. After reaching �ω = 0 the rotor starts the backswing and the control signal γ (t) > 0
appears as long as cos δ′ < 0. The backswing is along the characteristic shifted to the left. Based
on that description a trajectory of the rotor motion could be constructed, similar to that shown in
Figure 10.14 for the braking resistor.

P

Pm
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2 3
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6 7

8

5

Figure 10.30 Influence of the control strategy in the generator–infinite busbar system.
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Control based on Equations (10.117)–(10.119) is state-variable control and requires measure-
ments of both the speed deviation and the rotor angle, which are difficult to measure in a multi-
machine system. Hence, similar to the case for the shunt FACTS devices and the series capacitor,
Equations (10.117)–(10.119) have to be replaced by equations making it possible to control the
UPFC using local measurements.

10.7.3 Control Based on Local Measurements

In order to obtain a signal proportional to the speed deviation, a locally available signal q(t) should
be used. As in Equations (10.61) and (10.64) discussed earlier, one can write

q̇ = dq
dt

= ∂q
∂δ′

dδ′

dt
+ ∂q

∂β

dβ

dt
+ ∂q

∂γ

dγ

dt
+ ∂q

∂ Bsh

dBsh

dt
. (10.122)

In this equation only the first component is proportional to the speed deviation and can be used
for state-variable control. The other components should have as small an influence as possible on
the value of the derivative. The equation can be rewritten as follows:

q̇ = dq
dt

= ∂q
∂δ′ �ω + ε(t), (10.123)

where �ω = dδ′/dt and ε(t) are functions of variables β, γ, Bsh. If a local measurement q(t) is to
emulate well state-variable control, two conditions must be satisfied:

1. For the control of β(t) and Bsh(t), partial derivatives ∂q/∂δ′ should be proportional to sin δ′. For
the control of γ (t), the partial derivative ∂q/∂δ′ should be proportional to cos δ′.

2. The first component, proportional to the speed deviation, should dominate on the right hand
side of Equation (10.123). The second component should be negligible, that is a given signal
should not be sensitive to the changes in β, γ, Bsh.

Januszewski (2001) showed that the above conditions are reasonably well satisfied for the reactive
power Q and real power P measured in a line where a booster transformer is connected (Figure
10.28). Hence state-variable control defined by Equations (10.117)–(10.119) can be approximately
replaced by a control that uses local measurements and is defined by

γ (t) ∼= + Kγ

dP
dt

, (10.124)

β (t) ∼= + Kβ

dQ
dt

, (10.125)

Bsh (t) ∼= − KB
dQ
dt

, (10.126)

where Kγ , Kβ , KB are appropriately chosen control gains.
According to Equations (10.120) and (10.121), booster voltage control through control of γ (t),

β(t) gives a strong damping independent of the actual value of the power angle. Compared with
that, damping introduced by the regulation of shunt compensation Bsh(t) is quite weak. Hence the
UPFC could be used only to control its nodal voltage without introducing shunt compensation
supplementary control.
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Figure 10.31 Block diagram of the booster voltage controller.

The series controller may have the structure shown in Figure 10.31. Control of the booster
voltage components is achieved by using an integral regulator with a feedback loop and a PSS
acting according to Equations (10.124) and (10.125). There is an output limiter common for both
components of the booster voltage limiting its value �V where (see Figure 10.28c)

(�V)2 = (�VP)2 + (�VQ)2. (10.127)

This limit is shown schematically in Figure 10.31 as a circle.

10.7.4 Examples of Simulation Results

Stability enhancement using supplementary UPFC control will now be illustrated using the simple
test system shown in Figure 10.32. A UPFC device has been installed to control the flow of power
in a transmission link consisting of lines L4 and L5 that is parallel to a link consisting of lines L3
and L2. The UPFC has the structure shown in Figure 10.31. It was assumed that there was a short
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Figure 10.32 Three-machine test system.
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Figure 10.33 Examples of simulation results: (a) real power of generator G1; (b) real power of
generator G2.

circuit in line L6 and the fault was cleared by tripping the line. The resulting simulation results are
shown in Figure 10.33.

The fault caused swinging of both generators. Because of their different parameters, the fre-
quencies of rotor swings are also quite different, which makes damping difficult. However, Figure
10.33 shows that the swings are quickly damped and a new steady state is achieved after a few
seconds.
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11
Advanced Power System
Modelling

In Chapter 4 the dynamic interactions taking place inside a generator following a disturbance were
explained by considering the changes in the armature and rotor mmf and flux linkage. Although
this type of approach allows the mechanisms by which the currents and torques are produced to be
explained, it is difficult to quantify the behaviour of the generator under all operating conditions.
In this chapter a more general mathematical approach is adopted that can be used to quantify the
changes in the currents and the torque but is slightly more removed from the physics. To produce this
mathematical model the generator will be represented by a number of electrical circuits, each with
its own inductance and resistance and with mutual coupling between the circuits. By making some
judicious assumptions with regard to the dominant changes taking place inside the generator during
a particular type of disturbance, this detailed mathematical model can be simplified to produce a
series of generator models. These simplified models can then be used in the appropriate situation.

To utilize fully these mathematical models of the generator it is also necessary to produce
mathematical models of the turbine and its governor, as well as the AVR. These aspects are covered
in the second part of the chapter. The chapter ends by considering suitable models of power system
loads and FACTS devices.

11.1 Synchronous Generator

In order to examine what happens inside a synchronous machine when it is subjected to an abrupt
change in operating conditions, Section 4.2 described the behaviour of the generator following a
sudden short circuit on the machine terminals. The effect of the fault is to cause the current in, and
the flux linking, the different windings to change in such a way that three characteristic states can
be identified. These characteristic states are termed the subtransient state, the transient state and
the steady state. In each of these three characteristic states the generator may be represented by
an emf behind a reactance, the value of which is linked to the reluctance of the armature reaction
flux path as explained in Section 4.2.4. In reality the transition from one state to another takes
place smoothly so that the values of the fictitious internal emfs also change smoothly with time.
In previous chapters these smooth changes were neglected and the emfs assumed to be constant in
each of the characteristic states. In this chapter the flux changes occurring within the synchronous
machine will be analysed more rigorously with the resulting algebraic and differential equations
constituting an advanced, dynamic, mathematical model of the synchronous generator.

Power System Dynamics: Stability and Control, Second Edition Jan Machowski, Janusz W. Bialek and James R. Bumby
C© 2008 John Wiley & Sons, Ltd
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Figure 11.1 The windings in the synchronous generator and their axes.

11.1.1 Assumptions

A schematic cross-section of a generator is shown in Figure 11.1. The generator is assumed to have
a three-phase stator armature winding (A, B, C), a rotor field winding (F) and two rotor damper
windings – one in the d-axis (D) and one in the q-axis (Q). Figure 11.1 also shows the relative position
of the windings, and their axes, with the centre of phase A taken as the reference. The notation is
the same as that used in Figure 4.3 and follows the normal IEEE convention (IEEE Committee
Report, 1969). In developing the mathematical model the following assumptions are made:

1. The three-phase stator winding is symmetrical.
2. The capacitance of all the windings can be neglected.
3. Each of the distributed windings may be represented by a concentrated winding.
4. The change in the inductance of the stator windings due to rotor position is sinusoidal and does

not contain higher harmonics.
5. Hysteresis loss is negligible but the influence of eddy currents can be included in the model of

the damper windings.
6. In the transient and subtransient states the rotor speed is near synchronous speed (ω ≈ ωs).
7. The magnetic circuits are linear (not saturated) and the inductance values do not depend on the

current.

11.1.2 The Flux Linkage Equations in the Stator Reference Frame

All the generator windings are magnetically coupled so that the flux in each winding depends on
the currents in all the other windings. This is represented by the following matrix equation:



�A

�B

�C
- - -
�f

�D

�Q




=




LAA LAB LAC

LBA LBB LBC

LCA LCB LCC

LAf LAD LAQ

LBf LBD LBQ

LCf LCD LCQ
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

LfA LfB LfC

LDA LDB LDC

LQA LQB LQC

Lff LfD LfQ

LDf LDD LDQ

LQf LQD LQQ







iA

iB

iC
- - -
if

iD

iQ




,

or [
�ABC
- - - -
�fDQ

]
=

[
LS LSR
- - - - - - - -
LT

SR LR

] [
iABC
- - - -
i fDQ

]
, (11.1)
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where LS is a submatrix of the stator self- and mutual inductances, LR is a submatrix of the rotor
self- and mutual inductances and LSR is a submatrix of the rotor to stator mutual inductances. Most
of these inductances are subject to periodic changes due to both the saliency and rotation of the
rotor. Consistent with the assumptions outlined above, the higher harmonics of these inductance
changes will be neglected and the inductances represented by a constant component and a single
periodic component.

In the case of the two-pole machine shown in Figure 11.1 the self-inductance of each stator phase
winding will reach a maximum value whenever the rotor d-axis aligns with the axis of the phase
winding because, with the rotor in this position, the reluctance of the flux path is a minimum. This
minimum reluctance condition occurs twice during each rotation of the rotor so that the stator
self-inductances are of the form

LAA = LS + �LS cos 2γ, LBB = LS + �LS cos
(

2γ − 2
3
π

)
, LCC = LS + �LS cos

(
2γ + 2

3
π

)
.

(11.2)

Both LS and �LS are constant and LS > �LS.
As each of the stator windings is shifted in space relative to the others by 120◦ the mutual

inductance between each of the stator windings is negative. The magnitude of the inductance is a
maximum when the rotor d-axis is midway between the axes of two of the windings. Referring to
Figure 11.1 gives

LAB = LBA = −MS − �LS cos 2
(

γ + 1
6
π

)

LBC = LCB = −MS − �LS cos 2
(

γ − 1
2
π

)

LCA = LAC = −MS − �LS cos 2
(

γ + 5
6
π

)
,

(11.3)

where Ms > �Ls.
The mutual inductances between the stator and rotor windings change with rotor position and

have a positive maximum value when the axes of a stator winding and the rotor winding align
and have the same positive flux direction. When the flux directions are in opposition the value of
the inductance is a negative minimum and when the axes are perpendicular the inductance is zero.
Referring again to Figure 11.1 gives

LAf = LfA = Mf cos γ

LAD = LDA = MD cos γ

LAQ = LQA = MQ sin γ

LBf = LfB = Mf cos
(

γ − 2
3
π

)
,

LBD = LDB = MD cos
(

γ − 2
3
π

)
,

LBQ = LQB = MQ sin
(

γ − 2
3
π

)
,

LCf = LfC = Mf cos
(

γ + 2
3
π

)

LCD = LDC = MD cos
(

γ + 2
3
π

)

LCQ = LQC = MQ sin
(

γ + 2
3
π

)
.

(11.4)

The self- and mutual inductances of the rotor windings are constant and do not depend on rotor
position. As the d- and q-axis windings are perpendicular to each other, their mutual inductances
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are zero

LfQ = LQf = 0 and LDQ = LQD = 0. (11.5)

Most of the elements forming the inductance matrix L in the flux linkage equation (11.1) depend
on rotor position and are therefore functions of time.

11.1.3 The Flux Linkage Equations in the Rotor Reference Frame

At any instant in time the position of the rotor relative to the stator reference axis is defined by the
angle γ shown in Figure 11.1. Each phasor, whether voltage, current or flux linkage, in the stator
reference frame (A, B, C) can be transformed into the (d, q) reference frame by projecting one
reference frame onto the other using trigonometric functions of the angle γ . Using the notation of
Figure 11.1, the current vectors are

id = βd

[
iA cos γ + iB cos

(
γ − 2

3
π

)
+ iC cos

(
γ + 2

3
π

)]

iq = βq

[
iA sin γ + iB sin

(
γ − 2

3
π

)
+ iC sin

(
γ + 2

3
π

)]
,

(11.6)

where βd and βq are arbitrary non-zero coefficients introduced due to the change of reference
frame. Equation (11.6) describes a unique transformation from the stator (A, B, C) to the rotor
(d, q) reference axis. The reverse transformation from (d, q) to (A, B, C) is not unique as the two
equations in Equation (11.6) have three unknowns iA, iB, iC. A unique transformation may be
achieved by supplementing the (d, q) coordinates by an additional coordinate. It is convenient to
assume this additional coordinate to be the zero-sequence coordinate defined in the same way as in
the method of symmetrical components

i0 = β0 (iA + iB + iC) , (11.7)

where β0 is again an arbitrary coefficient introduced due to the change in reference frame. Com-
bining Equations (11.6) and (11.7) gives the following matrix equation:


i0

id

iq


 =




β0 β0 β0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

βd cos γ βd cos
(

γ − 2
3
π

)
βd cos

(
γ + 2

3
π

)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

βq sin γ βq sin
(

γ − 2
3
π

)
βq sin

(
γ + 2

3
π

)





iA

iB

iC


 or i 0dq = WiABC.

(11.8)
The coefficients β0, βd and βq are non-zero. Matrix W is non-singular and the inverse transformation
is uniquely determined by

iABC = W−1 i 0dq. (11.9)

A similar transformation can be defined for the phasors of stator voltage and flux linkage.
The rotor currents, voltages and flux linkages are already in the (d, q) reference frame and no

transformation is necessary, allowing the transformation of all the winding currents to be written
as [

i 0dq

i fDQ

]
=

[
W 0
0 1

] [
iABC

i fDQ

]
. (11.10)
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In this equation ifDQ is a column vector of the currents if, iD and iQ, and 1 is a diagonal unit
matrix. A similar transformation can be defined for the rotor voltages and flux linkages. The inverse
transformation of Equation (11.10) is[

iABC

i fDQ

]
=

[
W−1 0

0 1

] [
i 0dq

i fDQ

]
. (11.11)

Substituting this inverse transformation, along with a similar transformation for the fluxes, into the
flux linkage equation (11.1) gives[

�0dq

� fDQ

]
=

[
W 0
0 1

] [
LS LSR

LT
SR LW

] [
W−1 0

0 1

] [
i 0dq

i fDQ

]
, (11.12)

which, after multiplying the three square matrices by each other, yields[
�0dq
- - - -
� fDQ

]
=


WLSW−1 WLSR

- - - - - - - - - - - - - - - - - -
LT

SRW−1 LW


[

i 0dq
- - -
i fDQ

]
. (11.13)

The coefficients introduced due to the change in the reference frame are now chosen as β0 = 1/
√

3
and βd = βq = √

2/3 to give the following transformation matrix:

W =
√

2
3




1√
2

1√
2

1√
2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

cos γ cos
(

γ − 2
3
π

)
cos

(
γ + 2

3
π

)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

sin γ sin
(

γ − 2
3
π

)
sin

(
γ + 2

3
π

)




. (11.14)

With this choice of transformation coefficients W−1 = WT where W−1 and WT are respectively the
inverse and the transpose of W. For a matrix that satisfies the condition W−1 = WT, then WWT = 1
and the matrix is said to be orthogonal. As will be seen later, such an orthogonal transformation
is necessary to ensure that the power calculated in both the (A, B, C) and (d, q) reference frames
is identical and the transformation is said to be power invariant. The transformation matrix W
transforms the submatrix of self- and mutual inductances of the stator windings LS into

WLSW−1 = W


LAA LAB LAC

LBA LBB LBC

LCA LCB LCC


 W−1 =


L0

Ld

Lq


 . (11.15)

This is a diagonal matrix in which L0 = LS − 2MS, Ld = LS + MS + 3�LS/2 and Lq = LS + MS −
3�LS/2. Similarly the submatrix of the mutual inductances between the stator and the rotor
windings is transformed into

WLSR = W


LAf LAB LAQ

LBf LBD LBQ

LCf LCD LCQ


 =


kMf kMD

kMQ


 ,

where k = √
3/2. The submatrix of the mutual inductances between the rotor and the stator windings

is transformed into the same form, because W−1 = WT and

LT
SRW−1 = LT

SRWT = (WLSR)T
.
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The matrix of the self- and mutual inductances of the rotor windings is not changed. As a result
of these transformations Equation (11.13) becomes




�0
- - - -
�d

- - - -
�q

- - - -
�f

- - - -
�D
- - - -
�Q




=




L0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Ld kMf kMD
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Lq kMQ
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

kMf Lf LfD
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

kMD LfD LD
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

kMQ LQ







i0
- - - -

id
- - - -

iq
- - - -

if
- - - -
iD

- - - -
iQ




. (11.16)

An important feature of this equation is that the matrix of inductances is symmetrical. This is due
to the correct choice of the transformation coefficients β0, βd and βq ensuring orthogonality of the
transformation matrix, W.

The transformation of all the generator windings into the rotor reference frame is referred to as
the 0dq transformation or Park’s transformation. The original transformation matrix proposed by
Park (Concordia, 1951) was not orthogonal and consequently the resulting matrix of equivalent
inductances was not symmetrical. Concordia corrected this but customarily the transformation is
still referred to as Park’s, or the modified Park’s transformation. All the elements of the inductance
matrix in Equation (11.16) are constant and independent of time. This is the main advantage of
Park’s transformation.

After reordering the variables Equation (11.16) can be written as three independent sets of
equations

�0 = L0i0, (11.17)


�d

�f

�D


 =


 Ld kMf kMD

kMf Lf LfD

kMD LfD LD





 id

if

iD


 , (11.18)

[
�q

�Q

]
=

[
Lq kMQ

kMQ LQ

] [
iq

iQ

]
. (11.19)

These equations describe three sets of magnetically coupled windings as shown in Figure 11.2.
Each set of windings is independent of the others in that there is no magnetic coupling between the
different winding sets. Figure 11.2 reflects this by showing the three winding sets perpendicular to
each other. The first set of windings, represented by Equation (11.18), consists of three windings in

d

D

0
qQ

q-axis

d-axis

f
ω

Figure 11.2 Three sets of fictitious perpendicular windings representing the synchronous
generator.



P1: OTA/XYZ P2: ABC
c11 JWBK257/Machowski September 22, 2008 21:49 Printer Name: Yet to Come

Advanced Power System Modelling 439

the d-axis. Two of these, f and D, correspond to the real field and damper windings of the rotor. The
third winding, denoted as d, is fictitious and represents the effect of the three-phase stator winding
in the d-axis of the rotor. This fictitious d-axis winding rotates with the rotor.

The second set of windings, represented by Equation (11.19), consists of two windings. The first
one, denoted by Q, corresponds to the real damper winding in the rotor q-axis, while the second,
denoted by q, is a fictitious winding representing the effect of the three-phase stator winding in the
q-axis. Obviously both windings rotate with the rotor.

Equation (11.17) represents the third winding set which consists of a single winding which is
magnetically separate from both of the other two sets. This winding is shown in Figure 11.2 to be
perpendicular to the both the d- and q-axes and to be along the axis of rotation of the equivalent
rotor. This winding can be omitted if the three-phase stator winding is connected in star with the
neutral point isolated, that is not earthed. With this winding connection the sum of the stator phase
currents must be zero and, as i0 = (iA + iB + iC)/

√
3 = 0, the current flowing in this third winding

is also zero.
A physical interpretation of the d- and q-axes coils can be obtained by considering Equation

(11.16). This equation defines the flux linkages within the generator but with the actual three-phase
stator armature winding replaced by one winding in the d-axis and another in the q-axis. As shown
in Chapter 3, currents in the three-phase stator armature winding produce a rotating armature
reaction flux which enters the rotor at an angle that depends on the armature loading condition. In
the rotor (d, q) reference frame this rotating flux is simply represented by two DC flux components,
one acting along the d-axis and the other along the q-axis. These (d, q) component fluxes are
produced by the currents flowing in the two fictitious (d, q) armature windings. In light of this,
selecting the transformation coefficients βd = βq = √

2/3 has important implications with regard to
the number of turns on the fictitious d and q armature windings. For balanced three-phase currents
in the armature, Equation (3.42) showed that the value of the armature mmf rotating with the rotor
was equal to 3/2NaIm where Na is the effective number of turns in series per phase and Im = √

2Ig.
However, as will be shown in Equation (11.82), the same balanced three-phase current gives the
maximum values of id and iq as

√
3/2Im. Consequently, if id and iq are to produce the same mmf

as the actual three-phase armature winding the d and q armature windings must each have
√

3/2
more turns than an actual armature phase winding. This effect is reflected by the factor k = √

3/2
which appears in the mutual inductance between the d-axis armature winding and both d-axis rotor
windings. The same factor is present in the mutual inductance between the q-axis armature winding
and the q-axis damper winding.

Other values of transformation coefficient can be used to produce an orthogonal transformation.
In particular, a transformation coefficient of 2/3 is favoured by a number of authors, for example
Adkins (1957). The reason for this is discussed by Harris, Lawrenson and Stephenson (1970)
who compare different transformation systems. In their discussion these authors argue that a
transformation coefficient of 2/3 is more closely related to flux conditions in the generator than a
transformation coefficient of

√
2/3. With a current transformation coefficient of 2/3 both the d-

and q-axis armature coils have the same number of turns as an individual phase winding. However,
in order to maintain a power-invariant transformation, the transformation coefficient used for
voltages is different from that used for currents unless a per-unit system is used. In such a system it
is necessary to have a different value of base current in the phase windings to the d, q windings; the
(d, q) base current differs by a factor of 3/2 to the (A, B, C) base current.

11.1.3.1 Power in the (0dq) Reference Frame

The three-phase power output of the generator is equal to the scalar product of the stator voltages
and currents

pg = vAiA + vBiB + vCiC = vT
ABC iABC. (11.20)
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The orthogonal transformation from the (A, B, C) to the (0, d, q) reference frame ensures that
the transformation is power invariant so that the power is also given by

pg = v0i0 + vdid + vqiq = vT
0dq i 0dq. (11.21)

Equation (11.21) can be verified by substituting the voltage and current transformations vABC =
W−1v0dq and iABC = W−1 i 0dq into Equation (11.20) to give

pg = vT
ABC iABC = (

W−1v0dq
)T

W−1 i 0dq = vT
0dq(W−1)TW−1 i 0dq

= vT
0dq(WT)TW−1 i 0dq = vT

0dqWW−1 i 0dq = vT
0dq i 0dq

and noting that, as the matrix W is orthogonal, W−1 = WT.

11.1.4 Voltage Equations

The winding circuits shown in Figure 11.1 can be divided into two characteristic types. The first type,
consisting of the stator windings (A, B, C) and the damper windings (D, Q), are circuits in which
the emf induced in the winding drives the current in the winding. The application of Kirchhoff’s
voltage law to such a circuit is shown in Figure 11.3a. The second type of circuit is represented by
the rotor field winding f in which the current is supplied by an external voltage source. In this case
an emf is induced in the winding which opposes the current. The equivalent circuit for this circuit
is shown in Figure 11.3b. The convention for the direction of the voltages is the same as that used
in Figure 11.1.

Using this convention, the voltage equation in the (A, B, C) reference frame follows as




vA

vB

vC

−vf

0
0




= −




RA

RB

RC

Rf

RD

RQ







iA

iB

iC

if

iD

iQ




− d
dt




�A

�B

�C

�f

�D

�Q




, (11.22)

or, when written in compact matrix form,

[
vABC

v fDQ

]
= −

[
RABC

RfDQ

] [
iABC

i fDQ

]
− d

dt

[
�ABC

� fDQ

]
, (11.23)

where RABC and RfDQ are diagonal resistance matrices. These equations can be transformed into
the rotating reference frame using the transformation equation (11.11) for currents, voltages and

i i

e = − d

dt

Ψ
e = d

dt

Ψ

= v + ri− d

dt

Ψ
riv += d

dt

Ψ

∆v = ri ∆v = rivv

rr(a) (b)

Figure 11.3 Kirchhoff’s voltage law applied to the two types of circuits: (a) generator circuit; (b)
motor circuit.
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flux linkages. After some algebra this gives[
W−1

1

] [
v0dq

v fDQ

]
= −

[
RABC

RfDQ

] [
W−1

1

] [
i 0dq

i fDQ

]
− d

dt

[
W−1

1

] [
�0dq

� fDQ

]
,

which, when left-multiplied by the transformation matrix W, becomes[
v0dq

v fDQ

]
= −

[
W

1

] [
RABC

RfDQ

] [
W−1

1

] [
i 0dq

i fDQ

]
−

[
W

1

]
d
dt

{[
W−1

1

] [
�0dq

� fDQ

]}
.

(11.24)
If the resistance of each of the stator phases is identical, RA = RB = RC = R, and the product of
the first three matrices on the right is a diagonal matrix, then

WRABCW−1 = RABC. (11.25)

According to Equation (11.14), the transformation matrix W is a function of time and the derivative
of the last term on the right in Equation (11.24) must be calculated as the derivative of a product
of two functions

d
dt

(W−1 �0dq) = Ẇ−1 �0dq + W−1�̇0dq

where the dot on the top of a symbol denotes a derivative with respect to time. Multiplication by
the transformation matrix gives

W
d
dt

(W−1 �0dq) = (WẆ−1)�0dq + �̇0dq = −(ẆW−1)�0dq + �̇0dq, (11.26)

as the derivative of the product WW−1 = 1 is ẆW−1 + WẆ−1 = 0 and ẆW−1 = −WẆ−1. Cal-
culating Ẇ as Ẇ = dW/dt and multiplying by W−1 = WT gives ẆW−1 as

� = ẆW−1 = ω


0 0 0

0 0 −1
0 1 0


 . (11.27)

This matrix is referred to as the rotation matrix as it introduces terms into the voltage equations
which are dependent on the speed of rotation.

The voltage equations in the (d, q) reference frame can be obtained after substituting the formulae
(11.25)–(11.27) into Equation (11.24) to give[

v0dq

v fDQ

]
= −

[
RABC

RfDQ

] [
i 0dq

i fDQ

]
−

[
�̇0dq

�̇ fDQ

]
+

[
�

0

] [
�0dq

� fDQ

]
. (11.28)

This equation, without the term ��0dq, describes Kirchhoff’s voltage law for the equivalent gen-
erator circuits shown in Figure 11.2. The rotational term represents the emfs induced in the stator
windings due to the rotation of the magnetic field. These rotational emfs are represented as

��0dq = ω


0 0 0

0 0 −1
0 1 0





�0

�d

�q


 =


 0

−ω�q

+ω�d


 . (11.29)

Importantly this equation shows that the d-axis rotational emf is induced by the q-axis flux, while
the q-axis rotational emf is induced by the d-axis flux. The plus and minus signs are a result of the
assumed direction, and rotation, of the rotor axes and the fact that an induced emf must lag the
flux which produces it by 90◦.
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The armature emfs proportional to the rate of change of the flux, that is the �̇ terms, are referred
to as the transformer emfs and are due to changing currents in coils on the same axis as the one
being considered. They would be present even if the machine was stationary.

Equation (11.28) may be expanded to give

v0 = −Ri0 − �̇0

vd = −Rid − �̇d − ω�q

vq = −Riq − �̇q + ω�d


 stator, (11.30)

vf = Rf if + �̇f

0 = RDiD + �̇D

0 = RQiQ + �̇Q


 rotor. (11.31)

If balanced operation only is considered then there are no zero-sequence currents and the first
of the stator equations, corresponding to the zero sequence, can be omitted.1 Generally, changes
in the generator speed are small (ω ≈ ωs) while the transformer emfs (�̇d and �̇q) are also small
when compared with the rotation emfs (−ω�q and +ω�d), whose values are close to the corre-
sponding components of the generator voltage. Neglecting the transformer emfs allows the differ-
ential equations (11.30) describing the stator voltage to be replaced by the following two algebraic
equations: [

vd

vq

]
≈ −

[
R 0
0 R

] [
id

iq

]
+ ω

[−�q

+�d

]
. (11.32)

The differential voltage equations of the rotor windings (11.31) remain unchanged and can be
rewritten as 

 �̇f

�̇D

�̇Q


 = −


Rf 0 0

0 RD 0
0 0 RQ





 if

iD

iQ


 +


vf

0
0


 . (11.33)

The differential equations (11.32) and (11.33) together with the algebraic flux linkage equations
(11.18) and (11.19) constitute the full model of the synchronous generator with the transformer
emfs neglected.

To be used for power system studies the generator equations must be interfaced to the equations
describing the power system transmission network. If the armature transformer emfs are included
in the model then the implication of having two differential equations to describe the armature
voltage is that the power system transmission network equations themselves must be differential
equations. For all but the simplest systems this introduces significant complexity into the system
equations, requires a large amount of computation time, implies a parameter accuracy that is often
unrealistic and is usually not necessary when studying electromechanical dynamics, other than shaft
torques. By neglecting the transformer emfs the armature differential equations are replaced by two
algebraic equations which permits the power system to be modelled by a set of algebraic equations
as described in Chapter 3, Equation (3.146). This significantly simplifies the generator to power
system interface.

For many power system studies it is possible, and highly desirable, to rephrase and simplify
the full set of generator equations, Equations (11.32), (11.33), (11.18) and (11.19), so that they are
in a more acceptable form and easier to interface to the power system network equations. Before
examining how these changes can be made it is necessary to relate these circuit equations to the

1 As the zero-axis voltage and flux equations are decoupled from the other two axes, these equations can be
solved separately for the unbalanced operation.
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flux conditions inside the generator when it is in the steady state, transient state or the subtransient
state. These flux conditions and characteristic states were extensively described and discussed in
Chapter 4.

11.1.5 Generator Reactances in Terms of Circuit Quantities

The d-axis consists of three RL coupled circuits, one each for the d-axis armature coil, the field coil
and the d-axis damper as shown in Figure 11.4a. Only two coils are on the q-axis, one each for the
q-axis armature winding and the q-axis damper, Figure 11.4b. When viewed from the terminals of
the armature, the effective impedance of the armature coil to any current change will depend on
the parameters of the different circuits, their mutual coupling and whether or not the circuits are
open or closed.

11.1.5.1 Steady State

When in the steady state the armature flux has penetrated through all the rotor circuits, the field
and damper winding currents are constant and the armature current simply sees the synchronous
inductance Ld in the direct axis and Lq in the quadrature axis.

11.1.5.2 Transient State

In the transient state the armature flux has penetrated the damper circuits and the field winding
screens the rotor body from the armature flux. The damper circuits are no longer effective and
can be removed from the model, while the screening behaviour of the field winding is modelled by
short-circuiting the field winding and setting its resistance to zero, Figure 11.5a. This effectively
represents the current changes that would occur in the field winding in order to maintain the flux
linkage of this winding constant, the definition of the transient state. The circuit equations for the
d-axis can be written as

vd = Rid + Ld
did

dt
+ kMf

d�if

dt
(11.34)

�vf = 0 = Lf
d�if

dt
+ kMf

did

dt
.

At this point it is convenient to use Laplace transform techniques to simplify these simultaneous
differential equations. As the initial conditions are all zero, then d/dt can be replaced by the Laplace

vd

id

Ld

R

kMD

kMf

LfD

Lf

LD
RD

Rf

iD

if

vf

vq

iq R
kMQ

Lq LQ

RQ iQ

(a) (b)

Figure 11.4 The d- and q-axis coupled circuits: (a) d-axis: (b) q-axis.
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d-axis

q-axis d-coil closed
d-coil open

id if

if

iq

vd

vq

R

R

= LL′q q

R

vdLd

Ld

L′ d

T ′ d

T′d

Ld Lf

Lf

T ′do

T′ do

kMf kMf

kMf

Rf Rfif

if
if0

t

(a)

(b)

∆
∆

∆

∆ ∆

Figure 11.5 The d- and q-axis coupled circuits in the transient state: (a) for determining transient
inductance; (b) for determining the field winding time constants.

operator and the differential equations written in matrix form as

[
vd

0

]
=

[
R + sLd skMf

skMf sLf

] [
id

�if

]
. (11.35)

This equation2 can be solved for vd by eliminating �if and writing

vd = (R + sL′
d)id, (11.36)

where the d-axis transient inductance

L′
d = Ld − k2 M2

f

Lf
, X′

d = ωL′
d. (11.37)

As there is no field winding in the quadrature axis

L′
q = Lq, X′

q = ωL′
q = Xq. (11.38)

However, in many cases it is convenient to represent the rotor body of a turbogenerator by an
additional q-axis rotor coil when an equation for L′

q, similar to that for L′
d with appropriate

parameter changes, will result. This important point will arise again later when generator models
are considered.

It is also useful to define the decay time constant of the induced field current. This time constant
will depend on whether the d-axis armature coil is open circuit or short circuit, Figure 11.5b. The
circuit situation is very similar to that used to establish the relationship for the transient inductance,
but now viewed from the field winding, so that the same equation can be used for the effective

2 The general matrix equation [
v1

0

]
=

[
z11 z12

z21 z22

] [
i1

i2

]

has the solution v1 = zeq i1 where zeq = [z11 − z12 z−1
22 z21].
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field winding inductance, with appropriate symbol changes. When the direct-axis armature circuit
is open circuit the d-axis transient open-circuit time constantT ′

do is obtained as

T ′
do = Lf

Rf
, (11.39)

and, when the armature circuit is short circuit, the time constant becomes the d-axis transient
short-circuit time constant T ′

d

T ′
d =

(
Lf − k2 M2

f

Ld

)
1
Rf

= T ′
do

L′
d

Ld
. (11.40)

As there is no quadrature-axis field circuit there are no q-axis transient time constants.

11.1.5.3 Subtransient State

In the subtransient state the armature flux is deflected around the damper winding screening the
field winding from the armature flux. The circuit configurations that reflect this flux condition are
shown in Figure 11.6a. All the rotor circuits are now represented by short-circuited coils with zero
resistance.

q-axis

d-axis

(a)

(b)

kMD

t

d-coil open
d-coil closed

Lf

LfDLd

kMf

kMD
LD

R R

L″d

L″q

RR

LQLq

kMQ

Lf

Ld LfD

T ″do
LD

RD iD
iDRD

LD

T ″d

kMf Lf

LfD
Ld

T ″do T ″qoT ″d

iD

LQ

RQ

Lq

iQ iQ

LQLq

kMQ

T ″q

RQ

Figure 11.6 The d- and q-axis coupled circuits in the subtransient state: (a) for determining sub-
transient inductance; (b) for determining the damper winding time constants.
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In the d-axis the matrix equation for the coupled circuits becomes
vd

0
0


 =


R + sLd skMf skMD

skMf sLf sLfD

skMD sLfD LD





 id

�if

iD


 , (11.41)

with

vd = (R + sL′′
d)id. (11.42)

Eliminating the second two rows and columns using the same matrix procedure as before gives

L′′
d = Ld −

[
k2 M2

f LD + k2 M2
D Lf − 2kMf kMD LfD

LD Lf − L2
fD

]
and X′′

d = ωL′′
d, (11.43)

while in the quadrature axis an equation similar to Equation (11.37) for the d-axis transient reactance
gives

L′′
q = Lq − k2 M2

Q

LQ
, X′′

q = ωL′′
q. (11.44)

Similarly as for the transient state, direct-axis time constants can be established for the decay of
current in the damper winding using the equivalent circuits of Figure 11.6b as

T′′
do =

(
LD − L2

fD

Lf

)
1

RD

(11.45)
T′′

d =
[

LD −
(

L2
fD Ld + k2 M2

D Lf − 2LfDkMDkMf

Ld Lf − k2 M2
f

)]
1

RD
= T′′

do

L′′
d

L′
d

,

where T′′
do is the d-axis subtransient open-circuit time constant and T′′

d the d-axis subtransient
short-circuit time constant.

If there are no rotor body screening effects in the q-axis then the equivalent quadrature-axis time
constants are

T′′
qo = LQ

RQ
, T′′

q =
(

LQ − k2 M2
Q

Lq

)
1

RQ
= T′′

qo

L′′
q

L′
q

. (11.46)

Recall that similar relations between open- and short-circuit time constants were derived in a less
precise way in Chapter 4, Equation (4.16).

11.1.6 Synchronous Generator Equations

Having established how the parameters of the coupled circuits are related to the generator reactances
and time constants, the set of equations that constitute the full generator model, with the armature
transformer emfs neglected, can now be examined more closely with a view to establishing more
meaningful expressions.

11.1.6.1 Steady-State Operation

In the steady state the field winding current is constant and the damper winding currents iD = iQ = 0
so that the armature flux linkages �d and �q in Equations (11.18) and (11.19) become

�d = Ldid + kMf if , �q = Lqiq. (11.47)



P1: OTA/XYZ P2: ABC
c11 JWBK257/Machowski September 22, 2008 21:49 Printer Name: Yet to Come

Advanced Power System Modelling 447

Substituting for these flux linkages into the armature voltage Equations (11.32) gives

vd = −Rid − Xqiq, vq = −Riq + Xdid + eq, (11.48)

where eq = ωkMf if is the open-circuit armature voltage induced by the field current if. When on
open circuit the armature current is zero and the field current can be related to the self-flux linkage
�f(id=0) from the flux equation (11.18) to give

eq = ωkMf if = ω
kMf

Lf
�f(id=0). (11.49)

11.1.6.2 Transient Operation

When the generator is in the transient state the armature flux has penetrated the damper coils and
the damper currents have decayed to a relatively small value. This allows the circuits representing
the damper windings to be removed from the equation set so that the flux equations become[

�d

�f

]
=

[
Ld kMf

kMf Lf

] [
id

if

]
, �q = Lqiq, (11.50)

while

�̇f = vf − Rf if , (11.51)

vd = −Rid − ω�q

vq = −Riq + ω�d.
(11.52)

These equations can be considered in two parts. Firstly, the way in which the armature voltage
equations (11.52) are influenced by the presence of the field winding and, secondly, how the differ-
ential equation (11.51) determines the way in which the armature flux penetrates the field winding.
Consider first the armature voltage equations and in particular the voltage on the quadrature axis.

The flux linkage equation allows �d to be written in terms of id and � f so that, when substituted
into the quadrature-axis voltage equation, this gives

vq = −Riq + ω

[
id

(
Ld − k2 M2

f

Lf

)
+ kMf

Lf
�f

]
. (11.53)

This equation is readily simplified by noting that the coefficient of the first term in the square
brackets is L′

d while the second term represents a voltage proportional to the field flux linkage � f.
This voltage is given the symbol e′

q and is called the quadrature-axis transient emf where

e′
q = ω

(
kMf

Lf

)
�f . (11.54)

This emf can be usefully compared with the q-axis steady-state emf

eq = ω
kMf

Lf
�f(id=0).

Here �f(id=0) is the field winding self-flux linkages in the steady state and eq the emf that the
corresponding field current would induce in the armature. This emf is equal to the armature open-
circuit voltage. In contrast, in the transient state � f is the field flux linkages that include the effect
of armature reaction. The voltage e′

q is the equivalent armature emf that would be induced by a
field current proportional to these flux linkages. As these field flux linkages must remain constant
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in the short period after the disturbance, � f only changes its value slowly. Making the substitutions
for the transient inductance and transient emf, and assuming that ω ≈ ωs, gives

vq = −Riq + X′
did + e′

q. (11.55)

As there is no field winding on the quadrature axis X′
q = Xq and

vd = −Rid − X′
qiq. (11.56)

Although Equation (11.56) is correct for the rotor model assumed, many generators, and in
particular turbogenerators, have a solid-steel rotor body which acts as a screen in the q-axis. It is
convenient to represent this by an additional q-axis, short-circuited coil, given the symbol g, when
the q-axis flux equation becomes [

�q

�g

]
=

[
Lq kMg

kMg Lg

] [
iq

ig

]
, (11.57)

with the change of flux linking this coil defined by the additional differential equation

�̇g = vg − Rgig = −Rgig (vg = 0). (11.58)

The similarity with the d-axis rotor coils is immediately apparent and the voltage in the d-axis
armature coil becomes

vd = −Rid − X′
qiq + e′

d, (11.59)

where X′
q �= Xq and

e′
d = −ω

(
kMg

Lg

)
�g (11.60)

The flux linking the field winding � f does not remain constant during the entire period but
changes slowly as the armature flux penetrates through the winding. This change in the field flux
linkage is determined from the differential equation (11.51). Although this equation, along with
Equation (11.54) for e′

q, can be used directly to evaluate how e′
q changes with time, it is usually more

convenient to rephrase the flux linkage differential equation so that it can be more easily related to
the armature. This modification can be accomplished by substituting into the differential equation
(11.51) for if obtained from the flux linkage equation (11.50) to give

vf = �̇f + Rf

Lf
�f − Rf

kMf

Lf
id. (11.61)

Differentiating Equation (11.54) gives

ė′
q = ω

kMf

Lf
�̇f , (11.62)

which, when rearranged and substituted into Equation (11.61), gives after some simplification

ef = ė′
qT ′

do + e′
q − (Xd − X′

d)id, (11.63)

where ef is the field voltage vf referred to the armature given by

ef = ωkMf vf/Rf , (11.64)
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and ef is also the output voltage of the exciter referred to the armature. Rearranging Equation
(11.63) gives

ė′
q = ef − e′

q + id(Xd − X′
d)

T ′
do

. (11.65)

This analysis can be repeated for the quadrature axis when, assuming an additional rotor coil to
represent the rotor body,

ė′
d = −iq(Xq − X′

q) − e′
d

T ′
qo

, X′
q �= Xq. (11.66)

If no additional coil is present X′
q = Xq and e′

d = 0.

11.1.6.3 Subtransient Operation

During the subtransient period the rotor damper coils screens both the field winding and the rotor
body from changes in the armature flux. The field flux linkages � f remain constant during this period
while the damper winding flux linkages are constant immediately after the fault or disturbance but
then decay with time as the generator moves towards the transient state. These changes can be
quantified using a similar procedure as for the transient period. Now the full equation set for the
flux linkages, Equations (11.18) and (11.19), and the flux decay equation (11.33) apply.

The armature voltage equations (11.32) are now modified due to their coupling with the rotor
circuits in both the d- and q-axes. The d-axis flux linkage equations allow the armature flux �d to
be written in terms of id, �D and � f as

�d = L′′
did + (k1�f + k2�D) , (11.67)

where

k1 = kMf LD − kMD LfD

Lf LD − L2
fD

, k2 = kMD Lf − kMf LfD

Lf LD − L2
fD

, (11.68)

which, when substituted into the armature voltage equation (11.32), gives

vq = −Riq + X′′
did + e′′

q, (11.69)

where

e′′
q = ω(k1�f + k2�D), (11.70)

and represents an armature voltage proportional to the d-axis rotor flux linkages. These flux linkages
remain constant immediately after the fault and only change as �D changes.

A similar analysis for the quadrature-axis armature voltage yields

vd = −Rid − X′′
qiq + e′′

d. (11.71)

The way in which the subtransient voltage decays can be found using a similar approach as for
the transient period. The differential equation governing the decay of the flux through the d-axis
damper is given in Equation (11.33) as

�̇D = −RDiD. (11.72)



P1: OTA/XYZ P2: ABC
c11 JWBK257/Machowski September 22, 2008 21:49 Printer Name: Yet to Come

450 Power System Dynamics

From the d-axis flux linkage equations (11.18) iD can be written in terms of id, �D and � f when

�̇D = k2id + 1
T′′

do

LfD

Lf
�f − 1

T′′
do

�D. (11.73)

Differentiating e′′
q, Equation (11.70) gives

ė′′
q = ωk2�̇D, (11.74)

as the field flux linkages � f are constant during the subtransient period. The relationships for e′′
q

and ė′′
q can now be substituted into Equation (11.73) to give, after some simplification,

ė′′
q = e′

q + (X′
d − X′′

d)id − e′′
q

T′′
do

. (11.75)

A similar analysis for the q-axis armature coil gives

ė′′
d = e′

d − (X′
q − X′′

q)iq − e′′
d

T′′
qo

. (11.76)

11.1.6.4 The Generator (d, q) Reference Frame and the System (a, b) Reference Frame

All the generator equations so far developed have been expressed in the (d, q) reference frame,
whereas the network equations developed in Chapter 3 are expressed in phase quantities in the
system (a, b) reference frame. It is now necessary to examine how the two reference frames can be
linked together. This is most conveniently done by considering the steady-state operation of the
generator when the instantaneous phase voltages and currents constitute a balanced set given by

vA = √
2Vg sin(ωt), iA = √

2Ig sin(ωt + φ)

vB = √
2Vg sin(ωt − 2π/3), iB = √

2Ig sin(ωt − 2π/3 + φ)

vC = √
2Vg sin(ωt − 4π/3), iC = √

2Ig sin(ωt − 4π/3 + φ).

(11.77)

At time t = 0 the terminal voltage of phase A is zero and the angle between the axis of phase A
and the rotor d-axis is the rotor angle δg. As the rotational speed of the generator is δωt, the position
of the rotor, relative to the axis of phase A, at any instant in time is given by γ = ωt + δg. Applying
the transformation of Equation (11.8) to the phase voltages in Equation (11.77) then gives

vd = −
√

3Vg sin δg, vq =
√

3Vg cos δg. (11.78)

The phasor diagram in Figure 11.7 is similar to that in Figure 3.30 and shows how the rms
terminal phase voltage V g can be resolved into two orthogonal components, Vd and Vq, along the
d- and q-axes where

Vq = Vg cos δg, Vd = −Vg sin δg and Vg = Vq + jVd. (11.79)

Substituting Equation (11.79) into (11.78) allows the instantaneous generator voltages vd and vq to
be related to the orthogonal rms terminal voltage components Vd and Vd by the relationship

vd =
√

3Vd, vq =
√

3Vq. (11.80)

This same process can also be applied to the currents to give

Iq = Ig cos(δg + φ), Id = −Ig sin(δg + φ), (11.81)
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bd
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I q V q

V g
I

δg

Figure 11.7 Phasor diagram in the (d, q) reference frame showing how the terminal voltage and
current can be resolved into two components in quadrature. Also shown is the relative position of
the system (a, b) reference frame.

with the instantaneous currents being

id = −
√

3Ig sin(δg + φ) =
√

3Id, iq =
√

3Ig cos(δg + φ) =
√

3Iq. (11.82)

The identities in Equations (11.80) and (11.82) show that the instantaneous (d, q) currents and
voltages are DC variables that are proportional to the orthogonal components of the rms phase
currents and voltages. Consequently, the instantaneous voltages and currents in the steady-state
armature voltage equations (11.48) can be replaced by the orthogonal components of the phase
currents and voltages to give

Vd = −RId − Xq Iq

Vq = −RIq + Xd Id + Eq,
(11.83)

which can be expressed in matrix form as

[
Vd

Vq

]
=

[
0

Eq

]
−

[
R Xq

−Xd R

] [
Id

Iq

]
, (11.84)

and

Eq = ωMf if/
√

2. (11.85)

The meaning of Eq is now much clearer as it is the rms voltage that would be induced in each of
the armature phases by the field current if when the generator is on open circuit. Equation (11.83)
is identical to Equation (3.65) derived in Chapter 3 and the equivalent circuit and phasor diagram
corresponding to this equation were shown in Figure 3.17 and Figure 3.24.

This concept can now be extended to the generator in the transient and subtransient states by
recognizing that by neglecting the transformer emf terms in the armature voltage equations, the
effect of asymmetric armature currents (DC offset) has been omitted so that the armature currents
are always AC quantities of varying magnitude. The effect of the transformation of Equation (11.8)
is therefore to produce (d, q) currents that are solely DC quantities; they have no AC component.
The DC (d, q) currents and voltages, (id, iq, vd, vq), are related to the armature rms values (Ig, V g)
by the identities in Equations (11.80) and (11.82). This allows the generator to be represented in
the (d, q) reference frame by slowly changing DC quantities in all three characteristic states. All the
emf equations and armature voltage equations developed in the previous section maintain the same
form except that the instantaneous values id, iq, ed, eq and so on are replaced by orthogonal phase
values Id, Iq, Ed, Eq and so on. This then allows equivalent circuits and phasor diagrams similar to
those developed in Section 4.2 to be used to model the generator in the different operating states.
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As the network equations are all expressed in the system (a, b) reference frame, the current and
voltage equations for each generator must be transformed from its own (d, q) reference frame to the
system reference. The two reference frames are linked through the terminal voltage which appears
explicitly in the generator equations, (d, q) reference frame, and the system equations (a, b) reference
frame. Although Figure 11.7 correctly shows the relationship between the generator (d, q) and the
system (a, b) reference frames, the necessary transformation is more clearly seen by reference to
Figure 3.36. A phasor E can be defined in either the (d, q) or (a, b) reference frame with the two
related by the T transformation defined by Equations (3.166) and (3.167).

11.1.6.5 Power, Torque and the Swing Equation

To complete the set of equations necessary to describe the generator, expressions are required for
the three-phase terminal electrical power and the air-gap power. With transformer emfs neglected,
the terminal power can be obtained by substituting for vd, vq, id, iq from Equations (11.80) and
(11.82) into the instantaneous terminal power Equation (11.21) to obtain

Pg = 3(Vd Id + Vq Iq) W. (11.86)

This equation is consistent with the normal three-phase power output expression Vd Id + Vq Iq =
VI cos φ and the generator terminal power is, as would be expected, three times the phase power.

The air-gap power is obtained from the terminal power, Equation (11.86), by adding the resistance
loss

Pe = 3
[
Vd Id + Vq Iq + (

I2
d + I2

q

)
R
]

W. (11.87)

As P = ωτ the air-gap torque is given by

τ = 3
ω

[
Vd Id + Vq Iq + (

I2
d + I2

q

)
R
]

Nm. (11.88)

The final equation required to complete the equation set is the swing equation derived in Chapter
5, Equation (5.15), as

d�ω

dt
= 1

M
(Pm − Pe − D�ω) , �ω = ω − ωs = dδ

dt
, (11.89)

where Pe is the air-gap electrical power, Pm is the mechanical turbine power, D is the damping power
coefficient, ω is the generator rotational speed, ωs is the synchronous speed and �ω is the speed
deviation.

11.1.6.6 Per-Unit Notation

It is standard practice in power system analysis to normalize all quantities to a common MVA
base and, in the per-unit system used here (see Appendix A.1), this is taken as the generator rated
MVA/phase S1φ . A base voltage Vb is also defined equal to the rated generator phase voltage. This
allows the base current and the base impedance to be defined as

Ib = S1φ

Vb
, Zb = Vb

Ib
. (11.90)

Every parameter and equation can now be normalized by dividing by the appropriate base value
as described in the Appendix. Of particular importance is the impact that normalization has on
power and torque as these are normalized to the total three-phase rated generator output S3φ .
As shown in the Appendix, when currents, voltages and flux linkages are all expressed in per unit



P1: OTA/XYZ P2: ABC
c11 JWBK257/Machowski September 22, 2008 21:49 Printer Name: Yet to Come

Advanced Power System Modelling 453

notation the three-phase power expressions (11.86) and (11.87) normalized to the three-phase MVA
base become

Pg = (Vd Id + Vq Iq)

Pe = [
Vd Id + Vq Iq + (

I2
d + I2

q

)
R
] per unit , (11.91)

while the per-unit notation adopted requires τpu = Ppu so that Equation (11.88) becomes

τ = ωs

ω

[
Vd Id + Vq Iq + (

I2
d + I2

q

)
R
]

per unit. (11.92)

A full explanation of the per-unit system is given in the Appendix. In general all voltage, current
and flux linkage equations retain the same form whether or not they are expressed in SI or in per-unit
notation. It is only the power and torque equations that change their form with the introduction
of a 1/3 factor into the power expressions and a ωs/3 factor into the torque expressions. The
introduction of the 1/3 factor into the total power expression carries the implication that the total
generator power output, normalized to the S3φ base, is the same as the power output per phase,
normalized to S1φ , where S1φ = S3φ/3.

One of the advantages of referring all the rotor quantities to the armature winding, as in Section
11.1.5, is that only base quantities for the armature circuit need be considered. If the rotor equations
had not been referred to the armature then additional base quantities for the rotor circuits would
be necessary. Such a per-unit system based on the concept of equal mutual flux linkages (Anderson
and Fouad, 1977) is described in the Appendix and ensures that all the equations developed earlier
in this chapter retain exactly the same form whether in per unit or SI. This per-unit system also has
the effect that the per-unit value of all the mutual inductances on one axis are equal and, in per-unit
notation, are given the symbol Lad on the d-axis and Laq on the q-axis, that is

kMf = kMD = LfD ≡ Lad, kMQ ≡ Laq. (11.93)

The self-inductances are also expressed as being equal to the sum of a magnetizing inductance
and a leakage component so that

Ld = Lmd + ll , Lf = Lmf + lf , LD = LmD + lD

Lq = Lmq + ll , LQ = LmQ + lQ
(11.94)

and, in per-unit notation,

Lmd = Lmf = LmD ≡ Lad, Lmq = LmQ ≡ Laq. (11.95)

It is common to use these substitutions when expressing all the reactance and time constant
expressions and so on derived in Section 11.1.4 in per-unit notation.

11.1.7 Synchronous Generator Models

The equations derived in the previous subsection can now be used to model the behaviour of a
synchronous generator. A number of different models will be developed where the generator is
modelled by either its subtransient or transient emfs acting behind appropriate reactances. The
way that the armature flux gradually penetrates into the rotor during a fault and affects these emfs
is quantified by the differential equations (11.75), (11.76), (11.65) and (11.66). These differential
equations are gathered here and expressed in orthogonal phase quantities as

T′′
do Ė′′

q = E ′
q − E′′

q + Id(X′
d − X′′

d), (11.96)

T′′
qo Ė′′

d = E ′
d − E′′

d − Iq(X′
q − X′′

q), (11.97)
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Vq Vd

IqId

Ef E′q E ″q E ″dE′d

X ″d X ″qX ″X ′d d−( )X′Xd d−( ) X′X qq −( )( X ″X′q q− )

(a) (b)

Figure 11.8 Generator equivalent circuits with resistances neglected: (a) d-axis; (b) q-axis.

T ′
do Ė ′

q = Ef − E ′
q + Id(Xd − X′

d), (11.98)

T ′
qo Ė ′

d = −E ′
d − Iq(Xq − X′

q). (11.99)

It is worth noting the similar structure of these equations. On the left hand side is the time derivative
of the emf multiplied by the relevant time constant and the right hand side relates to the equivalent
d- or q-axis armature circuit, with resistance neglected, shown in Figure 11.8. These armature
circuits were initially introduced in Chapter 4, Figure 4.15. The first component on the right hand
side in the equations constitutes a driving voltage while the final component constitutes a voltage
drop in the relevant reactance.

The right hand side of Equation (11.96) constitutes Kirchhoff’s voltage law for the middle part
of the circuit shown in Figure 11.8a, that is for the driving voltage E ′

q, the voltage drop Id(X′
d − X′′

d)
and the emf E′′

q . Similarly, the right hand side of Equation (11.97) constitutes Kirchhoff’s voltage
law for the middle part of Figure 11.8b while Equation (11.98) corresponds to the left part of Figure
11.8a with the driving voltage Ef, the voltage drop Id(Xd − X′

d) and the emf E ′
q. In Equation (11.99),

corresponding to the left hand part of Figure 11.8b, there is no driving voltage due to the lack of
excitation in the q-axis.

Equations (11.96)–(11.99) allow five different generator models of decreasing complexity and
accuracy to be developed. Each model is given a model number that indicates the number of
differential equations required in the model. The larger the number, the greater the model complexity
and the greater the time required to solve the differential equations. The model number is then
followed by a number of terms enclosed in brackets which define the differential equations used
by the model. In developing the generator models it is assumed that all quantities are expressed in
per-unit notation.

11.1.7.1 Sixth-Order Model – (δ̇, ω̇, Ė′′
d , Ė′′

q , Ė ′
d, Ė ′

q)

In this model the generator is represented by the subtransient emfs E′′
q and E′′

d behind the sub-
transient reactances X′′

d and X′′
q as defined by the modified armature voltage equations (11.69) and

(11.71)

[
Vd

Vq

]
=

[
E′′

d

E′′
q

]
−

[
R X′′

q

−X′′
d R

] [
Id

Iq

]
. (11.100)

This equation corresponds to Equation (4.17) derived in Chapter 4. The corresponding equivalent
circuit and phasor diagram are shown in Figure 4.12.

The differential equations (11.96)–(11.99) describe the change in these emfs as the flux linking
the rotor circuits decays. To these must be added Equations (11.89) in order to include the speed
deviation and angle change of the rotor. As the differential equations (11.96) and (11.97) include
the influence of the damper windings, the damping coefficient in the swing equation need only
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quantify the mechanical damping due to windage and friction and, as this is usually small, it may
be neglected (D ≈ 0).

Under these assumptions, the full set of six differential equations describing the generator is

M�ω̇ = Pm − Pe

δ̇ = �ω

T ′
do Ė ′

q = Ef − E ′
q + Id(Xd − X′

d)

T ′
qo Ė ′

d = −E ′
d − Iq(Xq − X′

q) (11.101)

T′′
do Ė′′

q = E ′
q − E′′

q + Id(X′
d − X′′

d)

T′′
qo Ė′′

d = E ′
d − E′′

d − Iq(X′
q − X′′

q).

Changes in the mechanical power Pm in the first equation should be calculated from differential
equations describing the models of turbines and their governing systems discussed in Section 11.3.
Changes in emf Ef in the third equation should be calculated from the differential equations
describing the models of excitation systems discussed in Section 11.2.

The air-gap power of the generator can be calculated using Equation (11.91) which, after substi-
tuting for the armature voltages from Equation (11.100), gives

Pe = (E′′
d Id + E′′

q Iq) + (X′′
d − X′′

q)Id Iq. (11.102)

The second term in this power equation defines the subtransient saliency power discussed in
Chapter 4.

11.1.7.2 Fifth-Order Model – (δ̇, ω̇, Ė′′
d , Ė′′

q , Ė ′
q)

In this model the screening effect of the rotor body eddy currents in the q-axis is neglected so
that X′

q = Xq and E ′
d = 0. This model reverts to the classical fifth-order model with armature

transformer emfs neglected. Equation (11.99) from the equation set of the sixth-order model is
eliminated to give a set of five differential equations:

M�ω̇ = Pm − Pe

δ̇ = �ω

T ′
do Ė ′

q = Ef − E ′
q + Id(Xd − X′

d)
(11.103)

T′′
do Ė′′

q = E ′
q − E′′

q + Id(X′
d − X′′

d)

T′′
qo Ė′′

d = E ′
d − E′′

d − Iq(X′
q − X′′

q).

Changes in mechanical power Pm and emf Ef should be calculated as in the sixth-order model.

11.1.7.3 Fourth-Order Model – (δ̇, ω̇, Ė ′
d, Ė ′

q)

In this model the effect of the damper windings in the sixth-order model are neglected and Equations
(11.96) and (11.97) are removed from the equation set. The generator is now represented by the
transient emfs E ′

q and E ′
d behind the transient reactances X′

d and X′
q as defined by the equation

[
Vd

Vq

]
=

[
E ′

d

E ′
q

]
−

[
R X′

q

−X′
d R

] [
Id

Iq

]
. (11.104)

This equation is identical to Equation (4.19) derived in Chapter 4. The corresponding equivalent
circuit and phasor diagram were shown in Figure 4.14.
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The changes in the emfs E ′
q and E ′

d are determined from differential equations (11.98) and (11.99)
while the electrical air-gap power is

Pe = E ′
q Iq + E ′

d Id + (X′
d − X′

q)Id Iq, (11.105)

with the second part of the equation defining the transient saliency power.
As the damper windings are ignored, the air-gap power calculated by this equation neglects the

asynchronous torque produced by the damper windings. Consequently, the damping coefficient in
the swing equation should be increased by an amount corresponding to the average asynchronous
torque, or power, calculated using the simplified formulae in Equation (5.25).

Under these assumptions, the model is described by the following four differential equations:

M�ω̇ = Pm − Pe − D�ω

δ̇ = �ω

(11.106)T ′
do Ė ′

q = Ef − E ′
q + Id(Xd − X′

d)

T′′
qo Ė ′

d = −E ′
d − Iq(Xq − X′

q).

Changes in mechanical power Pm and emf Ef should be calculated as in the sixth-order model.
This simplified model of the synchronous generator is widely considered to be sufficiently accurate

to analyse electromechanical dynamics (Stott, 1979). Experience has shown that including the
second differential equation to account for rotor body effects in the q-axis improves the accuracy
of the model. The main disadvantage of this model is that the equivalent damping coefficient,
appearing in the swing equation, can only be calculated approximately.

11.1.7.4 Third-Order Model – (δ̇, ω̇, Ė ′
q)

This model is similar to the fourth-order model except that the d-axis transient emf E ′
d is assumed

to remain constant allowing Equation (11.97) to be removed from the equation set. The generator is
described only by Equations (11.98) and (11.89) with real power again given by Equation (11.105).
Besides neglecting the effect of the damper windings by assuming E ′

d to be constant, this model
also neglects the damping produced by the rotor body eddy currents, even if an additional coil is
used to represent the rotor body. If there is no winding in the quadrature axis to represent the rotor
body then E ′

d = 0, X′
q = Xq and Equation (11.105) reduces to

P = E ′
q Iq + (X′

d − Xq)Id Iq. (11.107)

As in the fourth-order model, damper winding effects are neglected and so their effect must be
included by increasing the value of the damping coefficient in the swing equation. The model is
described by the following three differential equations:

M�ω̇ = Pm − Pe − D�ω

δ̇ = �ω (11.108)

T ′
do Ė ′

q = Ef − E ′
q + Id(Xd − X′

d).

Changes in mechanical power Pm and emf Ef should be calculated as in the sixth-order model.

11.1.7.5 Second-Order Model – the Classical Model (δ̇, ω̇)

The classical synchronous generator model, widely used in all the previous chapters for a simplified
analysis of power system dynamics, assumes that neither the d-axis armature current Id nor the
internal emf Ef representing the excitation voltage change very much during the transient state. In
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this model the generator is represented by a constant emf E′ behind the transient reactance X′
d and

the swing equations

M�ω̇ = Pm − Pe − D�ω

(11.109)δ̇ = �ω.

The justification of the classical model is that the time constant T ′
do, appearing in Equation

(11.98), is relatively long, the order of a few seconds, so that E ′
q does not change much providing

that changes in Ef and Id are small. This means that E ′
q ≈ constant and, because it has already

been assumed that E ′
d ≈ constant, both the magnitude of the transient emf E′ and its position α

with respect to the rotor may be assumed to be constant. If rotor transient saliency is neglected,
X′

q = X′
d and the two equivalent circuits in Figure 4.13a may be replaced by the one equivalent

circuit shown in Figure 5.8 for a generator connected to an infinite busbar. As

I = Iq + jId, V = Vq + jVd, E′ = E′
q + jE′

d (11.110)

the two algebraic equations describing the armature voltage in Equations (11.104) can now be
replaced by one equation

V = (E′
q + jE′

d) − jX′
d(Iq + jId) = E′ − jX′

d I (11.111)

The assumption of small changes in the direct component of the generator current, and in the
internal emf, means that only generators located a long way from the point of disturbance should
be represented by the classical model.

11.1.7.6 Summary

The number of reactances and time constants representing the generator depends on the number
of equivalent windings used in a particular model. The five-winding model has two equivalent
rotor windings and time constants (T′′

do, T ′
do) on the d-axis and three armature reactances (X′′

d,
X′

d, Xd). In the q-axis there is one equivalent rotor winding, with a time constant (T′′
qo), and two

armature reactances (X′′
q, Xq). Although generators with rotors constructed from ferromagnetic,

electrically insulated sheets of steel are well characterized by these parameters, this is not the case
for generators whose rotors are made from solid steel. In such generators the rotor eddy currents
play a significant role in the q-axis damping. This damping may be modelled approximately by
introducing an additional q-axis winding as in the sixth-order model. This expands the model
by an additional reactance X′

q �= X′
d and a time constant T ′

qo to represent the flux decay through
this circuit. If these parameters are not specified by the manufacturer it is typical to assume that
X′

q = 2X′′
q and T ′

q = 10T′′
q . Due to the screening effect of the field winding, the influence of the eddy

currents in the d-axis is small and there is no need to introduce an additional winding to account
for this. For slower changing disturbances, and to enable faster solution in complex systems, the
generator model can be simplified by omitting the damper windings from the electrical equations,
the fourth- and third-order models, and representing their damping effect by an increased damping
coefficient in the swing equation. The simplest second-order model is the model traditionally used
in quantitative power system analysis. It is simple, but very approximate, and only really suitable
for representing generators well away from the fault. It can also be useful for evaluating generator
behaviour during the first rotor swing.

In developing all the generator models it has been assumed that ω ≈ ωs and that the transformer
emfs in the armature voltage equations can be neglected. Speed changes can be accounted for
in all the models by introducing a factor ω/ωs in front of every reactance. Accounting for the
armature transformer emfs is significantly more difficult and is only justified if detailed modelling
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of the electromagnetic transients immediately after the fault is required, for example in computing
short-circuit currents.

11.1.8 Saturation Effects

The generator equations derived in the previous subsection ignored the effect of magnetic saturation
in the stator and rotor iron and the effect this would have on the generator parameters and the
operating conditions. Saturation effects are highly nonlinear and depend on the generator loading
conditions so that trying to account for them accurately in the generator model is nigh on impossible.
What is required is a relatively simple saturation model that produces acceptable results, is linked
to the physical process and uses easily obtainable data.

At this stage it is interesting to consider the flux paths in Figures 4.8 that are associated with
the different generator reactances. As it is only the iron paths that saturate, one might expect those
generator reactances where the flux path is mainly in air, that is X′

d, X′
q, X′′

d, X′′
q, to be less susceptible

to saturation effects than Xd and Xq where a substantial part of the flux path is through iron (at
least for the round-rotor generator). This concept of parameter sensitivity will be investigated later
in this section, but first it is necessary to investigate the general effects of saturation itself. This
is more easily accomplished and understood if all generator parameters are expressed in per-unit
notation.

11.1.8.1 Saturation Characteristic

For any magnetic circuit that comprises an iron path and an air path the mmf and flux will be related
by the general curve shown in Figure 11.9a. When the iron path is unsaturated the relationship
between the mmf and the flux is linear and is represented by the air-gap line, 0A. In this situation
the reluctance of the magnetic circuit is dominated by the reluctance of the air gap. As the mmf
is increased, the iron saturates and the mmf/flux relationship ceases to be linear and follows the
saturation curve 0B. Consequently, for some flux linkage �T the mmf required to produce this flux
can be considered to have two components, the air-gap mmf Fa and the iron mmf F i, so that the
total mmf is given by

FT = Fa + Fi. (11.112)

flux linkage flux linkage
or voltage

A: air-gap line C: air-gap line, D: "saturated" air-gap line

0

A

B

mmf

(a)

0

(b)

1 1

C
D

Lad Ladsat

if0 ifsat if

Ψad , E

FTFa

Fa Fi
Ψs

ΨT

ΨaT

Figure 11.9 Saturation: (a) typical saturation curve for a magnetic circuit whose flux path is in iron
and air; (b) generator open-circuit saturation characteristic. C, air-gap line; D, ‘saturated’ air-gap
line.



P1: OTA/XYZ P2: ABC
c11 JWBK257/Machowski September 22, 2008 21:49 Printer Name: Yet to Come

Advanced Power System Modelling 459

A saturation factor S can now be defined as

S = air-gap mmf
air-gap mmf + iron mmf

= Fa

Fa + Fi
= Fa

FT
, (11.113)

and, by similar triangles,

S = Fa

Fa + Fi
= �T

�T + �s
. (11.114)

Having defined a saturation factor, it is now necessary to provide a simple method of finding
its value for any generator loading condition and then be able to take this into account when
computing the generator parameters. To achieve these objectives it is usually assumed that:

1. The open-circuit generator saturation curve can be used under load conditions. On no load the
mmf in the d-axis is due to the field current, if, while on load it is due to (if + iD + id). As Kundur
(1994) points out, this is usually the only saturation data available.

2. As the leakage flux path is mainly in air, the leakage inductances are assumed to be independent
of saturation. This implies that it is only the mutual inductances Lad and Laq that are affected by
saturation (and of course the self-inductance Ld = Lad + ll , Lf = Lad + lf , etc., as explained in
Equation (11.94) and Section A.4).

3. Saturation on the d-axis and that on the q-axis are independent of each other.

11.1.8.2 Calculation of the Saturation Factor

When the generator is on no load, Equation (11.85) shows that the voltage induced in one of the
armature phases V g0 is

Vg0 = E = Eq = 1√
2
ωs Mf if0 = 1√

3
ωskMf if0 =

[
1√
3
ωs

]
Ladif0 =

[
1√
3
ωs

]
�ad, (11.115)

because �ad = Ladif0 and is the mutual flux linkage defined in Equation (A.34) in the Appendix.
This equation can now be related to the open-circuit characteristic in Figure 11.9b where the slope
of the air-gap line is proportional to Lad. It should also be recognized that as the flux linkage and
the voltage are related by Equation (11.115), the vertical axis can be interpreted in either voltage or
flux linkage.

If at some open-circuit voltage E the required flux linkage is �ad then if there is no saturation
of the iron paths, the field current required to set up this flux linkage would be if0; however, if
saturation is present then the required field current would be ifsat. From the definition of saturation
factor in Equation (11.114)

ifsat = if0

S
, (11.116)

while

Lad = �ad

if0
and Ladsat = �ad

ifsat
. (11.117)

Substituting Equation (11.116) into (11.117) gives

Ladsat = SLad, (11.118)

where Ladsat is the slope of the ‘saturated’ air-gap line in Figure 11.9b. Consequently, if �ad is known
then the saturation factor S can be calculated from Equation (11.114) by recognizing that �ad and
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Xl R I

V gEl

Figure 11.10 Equivalent circuit to calculate the armature voltage behind leakage reactance.

�T are equivalent. The saturated value of Lad is then found from Equation (11.118) and used to
account for saturation in all the generator parameter equations developed in Section 11.1.4.

The flux linkage, �ad, can be calculated provided that the armature voltage proportional to these
flux linkages is known. As shown in Figure 11.10, this voltage is the voltage behind the armature
leakage reactance Xl and, since Xl is not affected by saturation,

El = Vg + (R + jXl )I, (11.119)

so that provided Vg and I are known, El and �ad can be computed for any loading condition. In
some instances the voltage Ep behind the Potier reactance Xp is used instead of El (Arrillaga and
Arnold, 1990).

The final piece of the jigsaw is to have some method of conveniently storing the saturation curve in
computer memory so as to facilitate the calculation of the saturation factor. A number of methods
are available with perhaps the simplest being to fit the saturation curve by the function

If = V + CnVn, (11.120)

where n is 7 or 9 and Cn is a constant for the particular curve (Hammons and Winning, 1971;
Arrillaga and Arnold, 1990). Alternatively a polynomial can be used.

A slightly different approach is to use a two-stage exponential process (Anderson and Fouad,
1977; Anderson, Agrawal and Van Ness, 1990; Kundur, 1994) where

�ad < 0.8, �s = 0

�ad ≥ 0.8, �s = AsateBsat(�ad−0.8),
(11.121)

where Asat and Bsat are constants that are easily calculated by taking two points from the known
saturation curve. When using this method there is usually a slight discontinuity at �ad = 0.8 but it
is usually of no consequence (Anderson and Fouad, 1977).

The procedure for accounting for saturation in the generator equations can now be summarized
as:

Step 1: Knowing Vg and I, use Equation (11.119) to calculate El.

Step 2: Divide El by ωs/
√

3 to obtain �ad.
Step 3: Use Equation (11.121) to compute �s.
Step 4: Use Equation (11.114) to calculate the saturation factor S.
Step 5: Modify Lad to account for saturation using Equation (11.118).
Step 6: Modify all the generator parameters that are a function of Lad.

The procedure described above defines saturation in the d-axis and, although a similar procedure
can be used in the q-axis, it is usual to assume:

� for round-rotor generators the saturation factor is the same in both axes when Sd = Sq;
� for salient-pole generators, since the q-axis reluctance is dominated by air paths, Laq does not

vary as much with saturation as Lad and Sq = 1 is assumed under all loading conditions.
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Although the saturation factor can be varied during a dynamic simulation, it is quite common
to calculate it at the beginning of the simulation and assume that it remains constant during the
simulation period. This ensures that the initial conditions are calculated correctly. If the saturation
factor is varied during a dynamic simulation then it will be necessary to iterate steps 1 to 6 at each
integration step in order to find a solution for Ladsat. This is because Vg and I depend on the degree
of saturation while the saturation factor itself is dependent on Vg and I. Other variations of this
method of accounting for saturation can be found in Arrillaga and Arnold (1990) and Pavella and
Murthy (1994).

11.1.8.3 Sensitivity of Parameters to Saturation

It was explained at the beginning of this section how generator reactances associated with flux
paths mainly in air are less susceptible to saturation effects than are those associated with flux paths
in iron. Such parameter sensitivity can be quantified by assessing the sensitivity of the particular
parameter to variations in Lad (or Laq). For example, assume that the general parameter X is a
function of Lad so that for a small change in X

X = X0 + �X, (11.122)

where �X , the change in X , is given by

�X = ∂X
∂Lad

∣∣∣∣
0

�Lad, (11.123)

and the suffix 0 indicates an initial value.
In the context of the present discussion, Table 11.1 summarizes the per-unit d-axis steady-state

and transient parameters defined in Section 11.1.4 with the sensitivity parameter determined using
Equation (11.122). For example, the synchronous inductance Ld = Lad + ll . Therefore

�Ld = ∂Ld

∂Lad

∣∣∣∣
0

�Lad

but as

∂Ld

∂Lad

∣∣∣∣
0

= 1

Table 11.1 Sensitivity of d-axis parameters to saturation (based on Anderson, Agrawal and Van
Ness, 1990)

Typical sensitivity to a 10 %
Parameter Equation Equation number � parameter change in mutual flux linkage (%)

Ld Lad + ll (11.94) �Lad 21

L′
d Ld − L2

ad

Lf
(11.37)

[
lf

Lf0

]2

�Lad 1.5

T ′
d0

Lf

Rf
(11.39)

1
Rf

�Lad 20

Ef ωs Lad
vf

Rf
(11.64)

[
ωsvf

Rf

]
�Lad 21
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then �Ld = �Lad. Similarly, for the d-axis transient inductance

L′
d = Ld − L2

ad

Lf
= Lad + ll − L2

ad

Lf
, (11.124)

and differentiating gives

�L′
d = �Lad −

[
2Lad0�Lad

Lf0
− L2

ad0�Lf

L2
f0

]
, (11.125)

but Lf = Lad + ll so that �Lf = �Lad and

�L′
d = �Lad −

[
2Lad0�Lad

Lf0
− L2

ad0�Lad

L2
f0

]
. (11.126)

Rearranging and writing Lf0 = Lad0 + lf gives

�L′
d =

[
lf

Lf0

]2

�Lad. (11.127)

Anderson, Agrawal and Van Ness (1990) calculated typical values for these sensitivity parameters
assuming a 10 % change in the mutual flux linkage �ad, the values of which are shown in Table 11.1.
As expected, the synchronous inductance is particularly sensitive to saturation but the transient
inductance, associated with flux paths mainly in air, shows little change. Indeed, if the analysis is
extended to include subtransient inductance the change in this parameter is negligible.

11.2 Excitation Systems

In Chapter 2 the different types of excitation system and AVR used to supply, and control, the
field current to the generator were described and the complete exciter and AVR subsystem shown
in block diagram form in Figure 2.4. Generally the exciter is equipped with both an AVR and a
manual regulator. In some cases a back-up AVR will also be provided. It is the AVR that is of
particular interest here. As the power system industry uses a wide range of exciters and AVRs, with
the details varying from one manufacturer to another, the aim of this section is to develop generic
models of some of the most common types of excitation system. With careful parameter selection
these models can then be used to represent different exciter systems from different manufacturers.
A comprehensive study of excitation system models can be found in the IEEE Committee Reports
on excitation systems (IEEE Committee Report, 1968, 1973a, 1973b, 1973c, 1981, 1992) and the
interested reader should consult these excellent sources.

Ultimately the exciter and the AVR model must be interfaced with the generator model developed
in Section 11.1.6. This interface is through the variable Ef, which represents the generator main
field voltage vf referred to the generator armature winding; vf is also the exciter output voltage vex.
Initially exciter subsystem models will be developed in terms of the currents and voltages at the field
winding but will finally be referred to the armature and the values converted to per-unit notation.
This is equivalent to expressing the exciter variables in a per-unit system where one per-unit exciter
output voltage corresponds to the field voltage required to produce one per-unit armature voltage on
the air-gap line, the per-unit system used in the armature. This exciter per-unit system is commonly
used by manufacturers.

11.2.1 Transducer and Comparator Model

Figure 11.11 shows the block diagram of the transducer and comparator together with the load
compensation element. The first block in this model corresponds to the load compensation element,
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Figure 11.11 Block diagram of the transducer and comparator.

shown previously in Figure 2.5, which corrects the generator terminal voltage according to the value
of the compensation impedance. The second block represents the delay introduced by the signal
transducers. Normally the equivalent time constant of the transducers is small so that this block
is often neglected. The third element represents the comparator at which the corrected generator
voltage is added algebraically to the reference voltage V ref.

11.2.2 Exciters and Regulators

Section 2.2.2 discussed different types of exciters. Modern excitation systems usually employ either
a brushless AC exciter or a static exciter with either an analogue or digital AVR, although digital
AVRs are becoming more common. However many older generators are fitted with DC excitation
systems and consequently the models developed in this section are typical of the excitation systems
in use today.

11.2.2.1 DC Exciters

Two different DC exciters are shown in Figure 11.12, the first being separately excited and the
second self-excited. In order to develop a mathematical model of these two exciters, consider first
the separately excited case in Figure 11.12a. A change in the exciter field current iexf can be described
by the following equation:

vR = Rexf iexf + Lexf
diexf

dt
, (11.128)

where Lexf depends on saturation and is an incremental inductance. The relationship between the
exciter field current iexf and the emf eex induced in the exciter armature is nonlinear because of
magnetic saturation in the exciter core, while the exciter output voltage vex depends on both the
saturation characteristic and the armature loading. Both of these effects can be included in the
modelling process by using the constant resistance load saturation curve shown in Figure 11.13.

The first step in the modelling process is to observe that the slope of the air-gap line in Figure
11.13 is tangential to the linear part of the no-load saturation curve and can be represented by a
resistance with the value R = vA/ iC. The exciter field current that corresponds to the nonlinear

G
G

+

+–

–

(a) (b)

Lexf

Rexf iexf if

vvex f=

vR
vvex f=

eex

ifRexRexf iexf

LexfvR

Figure 11.12 Equivalent circuit diagrams of DC exciters: (a) separately excited; (b) self-excited.
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Figure 11.13 Illustration to define the saturation coefficient: eex is the no-load saturation curve, vex

the constant resistance load saturation curve. The saturation characteristic is shown only around
its saturation knee and has been exaggerated for clarity.

part of the constant resistance load characteristic can then be expressed using similar triangles as

iA = iC
vB

vA
= iC(1 + Se) = vA

R
(1 + Se), (11.129)

where Se is a saturation coefficient defined in Figure 11.13 with reference to the constant resis-
tance load saturation curve. This means that any point on the constant resistance load saturation
characteristic is defined by

iexf = vex

R
(1 + Se). (11.130)

Substituting (11.130) into Equation (11.128) and writing

Lexf
diexf

dt
= Lexf

[
diexf

dvex

]
vex0

dvex

dt

gives

vR = Rexf

R
(1 + Se)vex + Lexf

[
diexf

dvex

]
vex0

dvex

dt
, (11.131)

where the derivative in square brackets is simply the slope of the saturation characteristic at the
initial operating point.

To enable the exciter to be easily interfaced with the generator model, the exciter base quantities
are defined with the base exciter voltage Eexb being that voltage which gives rated open-circuit
generator voltage V go/c on the generator air-gap line. This means that Eexb and the generator
voltage are related by

Vgo/c = 1√
2

ωMf

Rf
Eexb.

The base exciter resistance is defined as Rb = R with base current Iexfb = Eexb/Rb. Equation (11.131)
can now be expressed in per-unit notation by dividing through by Eexb. It is also convenient to
normalize the saturation curve to the base quantities Eexb and Iexfb when

Lexf

[
diexf

dvex

]
vex0

= Lexf

R

[
dIexf

dVex

]
Vex0
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Figure 11.14 Block diagram of the regulated DC exciter.

and Equation (11.131) becomes

VR = Rexf

R
(1 + Se)Vex + Lexf

R

[
dIexf

dVex

]
Vex0

dVex

dt
. (11.132)

Noting that Ef = V ex and writing

Lexf

R

[
dIexf

dVex

]
Vex0

= TE

gives Equation (11.132) in normalized form as

VR = (KE + SE)Ef + TE
dEf

dt
, (11.133)

where KE = Rexf/R and SE = (Rexf/R)Se. This equation is shown in block diagram form in Figure
11.14 and comprises an integrating element, with integration time TE, and two negative feedback
loops with gains KE and SE respectively.3 The negative feedback loop with gain SE models the
saturation in the exciter iron. As the saturation increases so does the value SE, the magnitude of
the negative feedback signal increases, and the influence of the regulator on the exciter voltage,
Ef, is reduced. A DC exciter that is separately excited usually operates with Rf < R so that KE =
0.8–0.95. Often, approximated values of KE = 1 and SE = Se are assumed in the exciter model. The
constant, TE, is under 1 second and is often taken to be TE ≈ 0.5 s.

If the exciter is self-excited as shown in Figure 11.12b then the voltage vR is the difference between
the exciter internal emf and the excitation voltage, vex. Including this in Equation (11.128) would give
a differential equation that is identical to (11.133) except that KE = (Rexf/R − 1). Consequently, the
exciter block diagram in Figure 11.14 is also valid for self-excited exciters. Typically Rexf is slightly
less than R so that KE assumes a small negative value in the range −0.05 to −0.2.

The block diagram of the main part of the excitation system can now be formulated by combining
the block diagram of the exciter with that of the regulator and the stabilizing feedback signal as
shown in Figure 11.15. The regulator is represented by a first-order transfer function with a time
constant TA and gain KA. Typical values of these parameters are TA = 0.05–0.2 s and KA =
20–400. The high regulator gain is necessary to ensure small voltage regulation of the order of
0.5 %. Unfortunately, although this high gain ensures low steady-state error, when coupled with
the length of the time constants the transient performance of the exciter is unsatisfactory. To
achieve acceptable transient performance the system must be stabilized in some way that reduces
the transient (high-frequency) gain. This is achieved by a feedback stabilization signal represented

3 The constant TE is sometimes called the exciter time constant. It is not a time constant. As shown in Figure
10.14, the time constant would depend on KE and SE. If saturation is neglected then the effective exciter time
constant would be TE/KE.
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Figure 11.15 Block diagram of the excitation system with a DC exciter. Based on IEEE Committee
Report (1968).

Source: © IEEE 1968

by the first-order differentiating element with gain KF and time constant TF. Typical values of the
parameters in this element are TF = 0.35 – 1s and KF = 0.01 – 0.1.

Although the saturation function SE = f (Ef ) can be approximated by any nonlinear function, an
exponential function of the form SE = AexeBex Ef is commonly used. As this function must model the
saturation characteristic over a wide range of exciter operating conditions, the parameters Aex and
Bex of the exponential function are determined by considering the heavily saturated region of the
characteristic corresponding to high excitation voltage and high exciter field current. For example,
Anderson et al. (1990) recommend that points on the characteristic corresponding to 100 and 75 %
of the maximum excitation voltage be used.

It is important to note that the limits on Ef are linked to the regulator limit and the saturation
function such that the maximum value EfM is obtained from

VM − (KE EfM + SEM) = 0. (11.134)

11.2.2.2 AC Rotating Exciters

These exciters usually use a three-phase bridge rectifier consisting of six diode modules as shown in
Figure 11.16a. The rectifier is fed from a three-phase AC voltage source of emf VE and reactance
XE. As with any rectifier system, the output voltage depends on the commutation characteristics
of the rectifier as determined by the degree of commutation overlap. As the effect of commutation
overlap depends on the current through the rectifiers and the commutating reactance XE, three
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Figure 11.16 Three-phase uncontrolled bridge rectifier: (a) equivalent circuit; (b) voltage–current
characteristic; (c) block diagram. VE, XE are the emf and the reactance of the voltage source, Ef,
I f are the internal emf and the field current, and ISHC is the rectifier short-circuit current. Based on
IEEE Committee Report (1981).

Source: © IEEE 1968
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main operating states can be identified as a function of field current as shown in Figure 11.16b.
These three states, denoted as I, II, III on the characteristic, depend on the commutation behaviour
of the rectifier and allow the voltage at the rectifier terminals to be determined for a given field
current I f and voltage source emf VE (Witzke, Kresser and Dillard, 1953; IEEE Committee Report,
1981).

State I refers to the case where commutation in one branch of the bridge finishes before com-
mutation in another branch starts. During this state the relationship between the rectifier terminal
voltage and the field current is linear and is described by

Ef

VE
= 1 − 1√

3

If

ISHC
, (11.135)

where ISHC = √
2VE/XE is the rectifier short-circuit current conveniently chosen here to be one per

unit. This relationship is valid for field currents If < 2ISHC/
√

3.
As the field current increases, commutation overlap also increases and the rectifier reaches state

II when each diode can only conduct current when the counter-connected diode of the same phase
has finished its conduction. In this state the relationship between the rectifier voltage and the field
current is nonlinear and corresponds to a circle with radius

√
3/2 as described by the equation

(
Ef

VE

)2

+
(

If

ISHC

)2

=
(√

3
2

)2

. (11.136)

This relationship is valid for current

2√
3

ISHC ≤ If ≤ 2
4

ISHC

As the field current increases further, the rectifier reaches state III where commutation overlap is
such that four diodes all conduct at the same time, two in each of the upper and lower arms. In this
state the relationship between the rectifier voltage and the field current is linear and is described by
the equation

Ef

VE
=

√
3

(
1 − If

ISHC

)
. (11.137)

This relationship is valid for currents 3ISHC/4 ≤ If ≤ ISHC.
The block diagram that models the rectifier is shown in Figure 11.16c with all values in per-unit

form. In this diagram the first block on the left calculates the value of the field current relative to
the short-circuit current ISHC. The second block calculates the value of the function fE(If/ISHC)
before passing it to the multiplying element to find the voltage at the terminals of the rectifier.

Figure 2.3b and c shows how the rectifier can be fed from either an inductor generator or an
inside-out AC generator with the latter being most common as it eliminates the need for slip rings.
Although the alternator can be modelled using one of the generator models described in Section
11.1, it is usually sufficiently accurate to simplify the alternator model to be similar to that used to
represent the DC exciter. This simplification allows the complete excitation system to be modelled
as shown in Figure 11.17.

As for the DC exciter, the alternator is modelled by an integrating element with three feedback
loops. The feedback loops with gain KE and SE play the same role as in the DC excitation system.
However, the effect of the alternator resistance is now included in the voltage–current characteristics
of the rectifier when SE is determined from the no-load saturation characteristic rather than the load
saturation line as used for the DC exciter. As the armature current in the AC exciter is proportional
to the current in the main generator field winding, the third feedback loop, with gain KD, uses this
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Figure 11.17 Block diagram of the excitation system with AC alternator and the uncontrolled
rectifier.

current to model the demagnetizing effect of the armature reaction in the AC exciter. As the output
voltage of a diode rectifier cannot drop below zero, this is modelled by the negative feedback loop
containing the signal limiter. If the excitation voltage drops below zero a large negative signal is fed
back to the summing point that prevents a further drop in the voltage, thereby keeping it at zero.

The system is stabilized by the feedback loop with transfer function KG(s) = KFs/(1 + TFs).
In this case the stabilizing loop is supplied by a signal that is proportional to the exciter field
current. Alternatively the system could be stabilized by supplying this block directly from the
output of the voltage regulator or from the excitation voltage Ef. In this diagram the feedback
stabilization is supplemented by an additional block with the transfer function K(s) in the forward
path preceding the regulator block. Both KG(s) and K(s) depend on the specific excitation system
and can be implemented by either analogue or digital techniques. Normally K(s) will have a PI
or PID type of structure and is often represented by the transfer function (1 + TCs)/(1 + TBs). A
major simplification to the model can be made by neglecting the variable effect of the field current
on the rectifier voltage. In this case the model reduces to one that is very similar to that shown in
Figure 11.15 for the DC exciter.

11.2.2.3 Static Exciters

In static excitation systems the source of the direct current is a controlled three-phase bridge
rectifier consisting of six thyristor modules as shown in Figure 11.18. The output characteristic of
the rectifier depends on both the thyristor firing angle α and the system commutation characteristic.
In the limiting case α = 0 and the output characteristic is similar to that of the uncontrolled rectifier
shown in Figure 11.16b. One very important characteristic of the controlled rectifier is the ability
to provide a negative exciter output voltage so providing the exciter with exciter buck capability.
Although the exciter output voltage may go negative, the current cannot and must always flow in the
same direction. As the firing angle increases, the output voltage of the controlled rectifier decreases
proportionally to cos α (Lander, 1987) to give the family of characteristics shown in Figure 11.18.

The firing angle is set by the voltage regulator. The cosinusoidal dependency of the firing angle
and the rectifier output voltage can be negated by introducing an inverted cosine function at the
regulator output so as to produce a linear relationship. As the slight delays caused by discretization
of the firing sequence in each phase are much smaller than the power system time constants, the
rectifier can be regarded as a current source with no time delay.
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Figure 11.18 Three-phase controlled bridge rectifier: (a) circuit diagram; (b) voltage–current char-
acteristic. α is the firing angle of the thyristors.

The complete excitation system can then be modelled by the block diagram shown in Figure
11.19. In this figure the regulator and the stabilization element are shown in the upper part of
the diagram while the static characteristic of the rectifier is shown in the bottom part of the
diagram. The rectifier supply voltage VE is proportional to both the generator armature voltage
and armature current as determined by the constants Kv and Ki. The values of these constants
depend on how the rectifier is fed (Figure 2.3d–f). When Ki = 0 and Kv = 1 the system has no load
compensation and corresponds to the rectifier being supplied directly from the terminals of the
generator.

The way in which the main generator field current effects the rectifier output voltage is modelled
in the same way as the uncontrolled rectifier. The regulator, together with the firing circuits, are
modelled by a first-order transfer function with gain KA and time constant TA. If the systems
does not contain cosinusoidal compensation of the voltage–firing angle dependency the gain KA

max max
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Figure 11.19 Block diagram of the excitation system with a static exciter. Based on IEEE Com-
mittee Report (1968).

Source: © IEEE 1968
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Figure 11.20 Block diagram of the power system stabilizer. A, signal sensor; B, high-pass filter; C,
lead compensation element; D, amplifier gain; E, limiter.

will not be constant and should be modelled as a cosine function of the regulator signal. The
system is stabilized by the transfer function K(s) in the forward path and by feedback of the
exciter output voltage through the block KG(s). For example, the transfer function K(s) = K1(1 +
TCs)/(1 + TBs) and a constant gain KG(s) = KG may be used. Although K(s) and KG(s) can be
implemented using digital or analogue methods, digital AVRs are becoming common as they allow
more sophisticated functions to be built into the AVR while only software changes are needed
between different generators. The exciter output voltage Ef is given by the product of the supply
voltage and the regulator output signal which represents the firing angle. If the influence of the
generator field current on the rectifier output voltage is neglected then the exciter block diagram
may be simplified to that consisting of the transfer function of the regulator and its stabilization
element.

11.2.3 Power System Stabilizer (PSS)

Section 9.1 explained how a PSS can help to damp generator rotor oscillations by providing an
additional input signal that produces a torque component that is in phase with the rotor speed
deviation. The general structure of a PSS was shown Figure 10.2 where the main elements are:
the signal sensor, a low-pass filter, a high-pass filter, at least one lead compensation element, an
amplifier and a limiter. A block diagram of the PSS model corresponding to the functional diagram
of Figure 10.2 is shown in Figure 11.20. The input signal q can be rotor speed, real power, frequency
or some other signal as described in Section 10.1. The output signal is shown in Figure 11.20 as
VPSS and is passed to the AVR as the auxiliary signal V aux. The parameters within the PSS are
carefully selected for each PSS depending on its input signals and location in the system.

11.3 Turbines and Turbine Governors

Chapter 2 explained how turbines, of one form or another, are used almost exclusively to provide
the mechanical input power to the generator. It also explained how the basic governing systems
on these turbines work. In this section models of the turbine and its governor will be developed
so that the input power into the generator model can be regulated in the same way as in the
actual system. The turbine models developed are simplified models designed solely to be used for
power system analysis rather than for detailed mechanical modelling of the turbine itself. Models
of both the mechanical–hydraulic and the electro-hydraulic governor will be developed. As with
the AVR, modern generators tend to be fitted with sophisticated digital governors that allow a
high degree of functionality. As the structure of these vary between manufacturers, the models
developed here are typical of the turbines and governors currently in use. Although the turbine
control system allows for both start-up of the turbine and for its control when in operation, it is the
latter that is of interest here. A comprehensive discussion on the modelling of both steam and water
turbines and their governors can be found in IEEE Committee Reports (1973a, 1973b, 1973c, 1991,
1992, 1994).
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Figure 11.21 Model of the steam flow through a steam vessel: (a) vessel of capacity V ; (b) block
diagram.

11.3.1 Steam Turbines

Steam turbines are used extensively throughout the world to provide mechanical power to the
generator. The mathematical model of the turbine will be derived using a simple model of steam
flow through a steam vessel shown in Figure 11.21.

The vessel introduces a time delay into the system as changes in the steam flow at the input take a
finite time to appear at the output. This time delay can be quantified by considering a steam vessel
of volume V as shown in Figure 11.21a. In this diagram m is the mass of steam in the vessel, p
the steam pressure and ṁ1 and ṁ2 the steam mass flowrates at the input and output. The mass of
the steam in the vessel is constant when ṁ1 = ṁ2. When the steam input flowrate changes due to a
change in the valve position then the mass of steam in the vessel will change at a rate proportional
to the difference between the input flowrate and the output flowrate, that is dm/dt = (ṁ1 − ṁ2). If
the steam temperature is constant then the change of mass in the vessel must result in a pressure
change when this equation can be written as

ṁ1 − ṁ2 = dm
dt

= ∂m
∂p

dp
dt

= V
∂

∂p

(
1
v

)
dp
dt

, (11.138)

where v is the steam specific volume at a given pressure (volume divided by mass). Assuming that
the outflow of steam is proportional to the pressure in the vessel

ṁ2 = ṁ0
p
p0

or
dp
dt

= p0

ṁ0

dṁ2

dt
, (11.139)

where ṁ0 = ṁ1(t = 0) = ṁ2(t = 0) and p0 = p(t = 0). Substituting (11.139) into (11.138) gives

ṁ1 − ṁ2 = T
dṁ2

dt
, (11.140)

where

T = V
p0

ṁ0

∂

∂p

(
1
v

)

is a time constant corresponding to the inertia of the mass of steam in the vessel. Applying Laplace
transforms and writing in transfer function form gives

ṁ2(s)
ṁ1(s)

= 1
(1 + Ts)

, (11.141)

which corresponds to the inertia block in Figure 11.21b.
Figure 11.22 shows how the above equation can be used to model the tandem compound single-

reheat turbine described in Section 2.2.3. A schematic diagram of this arrangement, Figure 11.22a,
shows how the steam passes through the governor control valves and the inlet piping to the HP
steam chest (A). On leaving the steam chest it passes through the HP turbine before entering the
reheat stage between the HP and IP steam turbines. After being reheated the steam passes through
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(c) transformed block diagram; (d) response of the linear turbine model to a step change in valve
position. Symbols Pi, Pm are the power of the inlet steam and of the turbine.

the intercept valves to the IP turbine and then through the crossover piping to the LP turbine.
The mathematical model of such a system is shown in Figure 11.22b and can be divided into two
parts. Firstly, as the power extracted by a turbine is proportional to the steam mass flowrate ṁs,
each turbine stage can be modelled by a constant α, β, γ which correspond to the portion of the
total turbine power developed in the different turbine stage with α + β + γ = 1. Typically, for the
single-reheat turbine shown here, α ≈ 0.3, β ≈ 0.4 and γ ≈ 0.3 defined on the turbine megawatt
output base. If the generator MVA base is used then these values must be modified in the ratio of
the two bases.

The second part of the turbine model concerns the storage of the steam chests and associated
piping and corresponds to Figure 11.21b. Typical values of the parameters are: TA = 0.1 to 0.4 s,
TB = 4 to 11 s, TC = 0.3 to 0.5 s, α = 0.3, β = 0.4, γ = 0.3.

Assuming that there is no control of the intercept valves, the block diagram of Figure 11.22b
can be simplified to that shown in Figure 11.22c by combining the three inertia blocks to give an
equivalent third-order block with the combined parameters

a1 = TA + TB + TC, a2 = TATB + TATC + TBTC, a3 = TATBTC

b1 = α(TB + TC) + βTC, b2 = αTBTC.

As turbine power is proportional to the steam mass flowrate, the input flowrate is changed in this
diagram to input power to simplify the diagram further. As the reheat time constant TB is several
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times higher than either TA or TC, the turbine model can be further simplified by assuming TA ≈ 0
or even TA ≈ TC ≈ 0, reducing the turbine model to a second- and first-order block respectively.

A steam turbine without reheat can be modelled by a first-order block with time constant
TA = 0.2 to 0.5 s and with α = 1, β = γ = 0, TB = TC = 0.

A comparison of the time response of a turbine with and without reheat with an incremental
step increase in the opening of the governor valve �cGV is shown in Figure 11.22d. When the valve
opening increases so does the valve flow area GVArea so that for a constant boiler pressure the
steam flowrate also increases. However, steam storage effects introduce a delay before the increased
steam flowrate can reach the turbine blades and increase the output power. This effect is particular
noticeable for a turbine with reheat when the rise time may be as long as 10 seconds as shown in
Figure 11.22d. As this delay between activating the valve and the power changing can be excessively
long in reheat turbines, coordinated control of both the governor and the interceptor valves is
necessary as explained in the next section.

11.3.1.1 Governing System for Steam Turbines

Chapter 2 explained that the reheat turbine shown in Figure 11.22a is fitted with two sets of
control valves and two sets of emergency stop valves. Normally turbine control is accomplished by
regulating the position of the governor valves and the intercept valves while the emergency stop
valves are kept fully open and only used in an emergency to stop the turbine. As both sets of stop
valves are normally kept fully open, they can be neglected for modelling purposes.

Although the way in which control of the governor valves and the intercept valves is coordinated
depends on the purpose of the control action, the type of governor and the manufacturer concerned,
the generic features of the governor can be included in a general model capable of representing
both the mechanical–hydraulic and the electro-hydraulic governor. This model allows for overspeed
control and load/frequency control as described in Chapter 9. The fast-valving features described
in Chapter 10 can be readily added if necessary.

In order to develop this governor model the functional diagram of the mechanical–hydraulic
governor shown in Figure 11.23a will be used. This diagram shows the main elements of a
mechanical–hydraulic governor as the speed transducer, regulator, speed relay, servomotor and
the steam control valves. Compared with Figure 2.12 an additional element, the speed relay, is
shown that develops an output proportional to the load reference signal less any contribution
due to speed deviation. This additional element is required because on some larger generators
the force required to adjust the position of the main steam valves is very large and an additional
spring-loaded servomotor, the speed relay, is required between the speeder linkage and the main
servomotor. On some smaller machines the spring-loaded servomotor of the speed relay is used
to adjust the position of the control valves rather than the servomotor arrangement shown in
Figure 2.12.

The elements in this functional diagram are modelled as shown in the block diagram of Figure
11.23b. The regulator is modelled by a gain K = 1/ρ, where ρ is the droop of the regulator static
characteristic, while the speed relay is modelled by a first-order lag with time constant T2. The
effect of the load reference has been modelled as the required opening of the main governor control
valves c0GV. The main servomotor, which alters the position of the control valves, is modelled by
an integrator with direct feedback of valve position along with two limiters. The first limiter is
necessary to protect the turbine from rapid opening or closing of the steam valves. The second
limiter limits the valve position between fully open and fully closed, or to some set position if
a load limiter is present. The final, nonlinear block models the valve characteristics, effectively
converting the valve position to normalized flow area. The nonlinearity of the valve characteristic
may be compensated in the governor by a linearizing cam located between the speed relay and the
servomotor. These two mutually compensating nonlinearities are often neglected in the model. The
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Figure 11.23 Mechanical–hydraulic steam turbine governor of the steam turbine: (a) functional
diagram; (b) block diagram; (c) simplified block diagram. Symbols: c, main steam valve position;
GV, governor valves; IV, intercept valves.

output of the model is the normalized valve flow area and appears as the main input to the turbine
model in Figure 11.22b.

One way in which the intercept valves can be controlled to limit overspeed is also shown in
Figure 11.23b. In this example the position of the intercept valves is controlled to follow a demand
position signal cIVdem generated according to the equation

cIVdem = c0IV − K ′�ω, (11.142)

where K
′

is the IP gain and is the inverse of the IP droop; K ′ > K .
To examine in further detail how this control loop works, assume that K = 25 (main droop 4 %)

and that K ′ = 50 (IP droop 2 %) and that it is necessary to keep the intercept valves fully open
until the overspeed is 4 %. At this speed the main governor valves will just have fully closed. The
reference signal c0IV is set to 3. With 0.04 > �ω > 0 then the demand cIVdem ≥ 1 and the intercept
valves are kept fully open. When �ω = 0.04 the intercept valves start to close and are fully closed
when �ω = 0.06.

In some cases an auxiliary governor is used that acts in parallel with the normal regulator. This
auxiliary governor only comes into operation when large speed deviations are registered and has
the effect of increasing the regulator gain K. In this way the regulator output is increased to close
quickly both the interceptor valves and the governor control valves.
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The governor model can also be used to model the electro-hydraulic governor because the
main power components are similar, except that now the mechanical components have been re-
placed by electronic circuits. Such changes provide a greater degree of flexibility and functionality
than can be achieved in the traditional mechanical–hydraulic governor. A further advance is the
digital–hydraulic governor where the control functions are implemented in software, so providing
even greater flexibility. From a modelling point of view this increased flexibility means that the
actual governor control used is manufacturer dependent, particularly with regard to the more ad-
vanced features such as fast valving. Nevertheless, the governor model developed in Figure 11.23b
with the speed relay replaced by the general transfer function (1 + T3s)/(1 + T2s) to provide any
phase compensation forms a good basis for modelling an electro-hydraulic governor. If a particular
control logic is to be implemented then it is relatively straightforward to modify Figure 11.23b
accordingly.

When analysing electromechanical dynamics in a time interval of around 10 s the boiler pressure
can be assumed to be constant and can be equated to the initial power P0 so that Pb = Pm(t = 0) =
P0 = constant. With this assumption the governor block diagram can be simplified to that shown
in Figure 11.24 by multiplying the limits, and the initial conditions, in the servomotor model by P0.
In this model the regulator and the speed relay transfer functions have been replaced by a general
control block K (1 + T3s) / (1 + T2s) to enable this model to be used for both mechanical–hydraulic
and electromechanical governors. The additional time constant now allows both types of governor
to be modelled by correct choice of values. Intercept valve control is not shown on this diagram
as it assumes that they are kept fully open but could be added if required. Other forms of electro-
hydraulic and mechanical–hydraulic governors are described in IEEE Committee Reports (1973b,
1991) and Kundur (1994).

11.3.1.2 Boiler Control

In the modelling process the boiler output is linked to the turbine via the boiler pressure parameter
Pb. It is not the purpose here to describe boiler models but a brief discussion of boiler/turbine
interaction is necessary because throughout this book it has been assumed that Pb effectively
remains constant. Traditionally, conventional turbine control operated in a ‘boiler follows turbine’
mode where all load changes are carried out by control of the turbine valves with the boiler controls
operating to maintain constant steam conditions, that is pressure and flow. Although this control
mode allows rapid turbine response and good frequency control by utilizing the stored energy in
the boiler, the changes in the boiler pressure and other variables can be quite large. To prevent this
an alternative ‘turbine follows boiler’ control mode can be used when all load changes are made
via the boiler controls. The turbine valves are controlled to regulate the boiler pressure. As the
speed of response of the turbine valves is very fast, almost perfect pressure control can be achieved.
However, load changes are now very slow with time constants of 1–2 min, depending on the type of
boiler and the fuel, since now no use is made of the stored energy in the boiler. As a compromise,
‘integrated boiler and turbine’ control may be used to achieve both a quick turbine response and
limiting of the changes in the boiler variables.
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11.3.2 Hydraulic Turbines

If water flows from a high level to a low level through a hydraulic turbine the potential energy of the
water stored in a high reservoir is converted into mechanical work on the turbine shaft as described
in Section 2.2.3. The turbine may be either an impulse turbine or a reaction turbine and, although
the way in which they operate hydraulically differs, the work done by both types is entirely due
to the conversion of kinetic energy. In impulse turbines, such as the Pelton wheel, all the available
energy in the water is converted into kinetic energy as the water passes through the nozzle. The
water forms a free jet as it leaves the nozzle and strikes the runner where the kinetic energy is
converted into mechanical work. In the reaction turbine, such as the Francis turbine, only a part of
the energy in the water is converted into kinetic energy as the water passes through the adjustable
wicket gates, with the remaining conversion taking place inside the runner itself. All passages are
filled with water including the draft tube. In both turbines the power is controlled by regulating
the flow into the turbine by wicket gates on the reaction turbine and by a needle, or spear, on the
impulse turbine. What is required is a mathematical description of how the turbine power changes
as the position of the regulating device is changed.

Figure 11.25a shows a schematic diagram of a turbine installation where water flows down the
penstock and through the turbine before exiting into the tailwater. The penstock is modelled by
assuming that the flow is incompressible when the rate of change of flow in the penstock is obtained
by equating the rate of change of momentum of the water in the penstock to the net force on the
water in the penstock when

ρL
dQ
dt

= Fnet, (11.143)

where Q is the volumetric flowrate, L the penstock length and ρ the mass density of water.
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The net force on the water can be obtained by considering the pressure head at the conduit. On
entry to the penstock the force on the water is simply proportional to the static head Hs, while at
the wicket gate it is proportional to the head H across the turbine. Due to friction effects in the
conduit, there is also a friction force on the water represented by the head loss Hl so that the net
force on the water in the penstock is

Fnet = (Hs − Hl − H)Aρg, (11.144)

where A is the penstock cross-sectional area and g the acceleration due to gravity. Substituting the
net force into Equation (11.143) gives

ρL
dQ
dt

= (Hs − Hl − H)Aρg. (11.145)

It is usual to normalize this equation to a convenient base. Although this base system is arbitrary,
the base head hbase is taken as the static head above the turbine, in this case Hs, while the base
flowrate qbase is taken as the flowrate through the turbine with the gates fully open and the head
at the turbine equal to hbase (IEEE Committee Report, 1992). Dividing both sides of Equation
(11.145) by hbaseqbase gives

dq
dt

= 1
Tw

(1 − hl − h), (11.146)

where q = Q/qbase and h = H/hbase are the normalized flowrates and pressure heads respectively
and Tw = Lqbase/Aghbase is the water starting time. Theoretically Tw is defined as the time taken
for the flowrate in the penstock to change by a value equal to qbase when the head term in brackets
changes by a value equal to hbase. The head loss hl is proportional to the flowrate squared and
depends on the conduit dimensions and friction factor. It suffices here to assume that hl = kfq2 and
can often be neglected. This equation defines the penstock model and is shown in block diagram
form in the left hand part of Figure 11.25b.

In modelling the turbine itself both its hydraulic characteristics and mechanical power output
must be modelled. Firstly, the pressure head across the turbine is related to the flowrate by assuming
that the turbine can be represented by the valve characteristic

Q = kc
√

H, (11.147)

where c is the gate position between 0 and 1 and k is a constant. With the gate fully open c = 1 and
this equation can be normalized by dividing both sides by qbase = k

√
hbase to give, in per-unit form,

q = c
√

h. (11.148)

Secondly, the power developed by the turbine is proportional to the product of the flowrate and
the head and depends on the efficiency. To account for the turbine not being 100 % efficient the
no-load flow qnl is subtracted from the actual flow to give, in normalized parameters,

Pm = h(q − qnl ). (11.149)

Unfortunately this expression is in a different per-unit system to that used for the generator whose
parameters are normalized to the generator MVA base so that Equation (11.149) is written as

Pm = Ath(q − qnl ), (11.150)
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where the factor At is introduced to account for the difference in the bases. The value of the factor
At can be obtained by considering the operation of the turbine at rated load when

Pm = Athr(qr − qnl ) = turbine power (MW)
generator MVA rating

, (11.151)

and the suffix ‘r’ indicates the value of the parameters at rated load. Rearranging Equation (11.151)
gives

At = turbine power (MW)
generator MVA rating

1
hr(qr − qnl )

. (11.152)

A damping effect is also present that is dependent on gate opening so that at any load condition
the turbine power can be expressed by

Pm = Ath(q − qnl ) − Dc �ω, (11.153)

where D is the damping coefficient. Equations (11.148) and (11.153) constitute the turbine nonlinear
model shown on the right of Figure 11.25b where the wicket gate position is the control variable.

11.3.2.1 Linear Turbine Model

The classical model of the water turbine (IEEE Committee Report, 1973a, 1973b, 1973c) uses a
linearized version of the nonlinear model. Such a model is valid for small changes of mechanical
power and can be obtained by linearizing Equations (11.146), (11.148) and (11.150) about an initial
operating point to give

d�q
dt

= −�h
Tw

, �q = ∂q
∂c

�c + ∂q
∂h

�h, �Pm = ∂ Pm

∂h
�h + ∂ Pm

∂q
�q. (11.154)

Introducing the Laplace operator s and eliminating �h and �q from the equations gives

�Pm

�c
=

[
∂q
∂c

∂ Pm

∂q
− sTw

∂ Pm

∂h
∂q
∂c

]

1 + sTw
∂q
∂h

, (11.155)

where the partial derivatives are

∂q
∂h

= 1
2

c0√
h0

,
∂q
∂c

=
√

h0

(11.156)∂ Pm

∂q
= Ath0,

∂ Pm

∂h
= At(q0 − qnl ) ≈ At(q0)

and the suffix 0 indicates an initial value. Substituting into Equation (11.155) and noting that
q0 = c0

√
h0 gives

�Pm

�c
= Ath

3/2
0

1 − sT′
w

1 + s T′
w
2

, (11.157)

where

T ′
w = Tw

q0

h0
= L

Ag
Q0

H0
.

Typically T ′
w is between 0.5 and 5 s.
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Figure 11.26 Hydraulic turbine: (a) linear model; (b) response of the linear turbine model to a
step change in gate position.

This is the classic definition of water starting time but is dependent on the values of the head and
flowrate at the linearization point. It therefore varies with load. If required, the constant At can
be absorbed into the gate position when it effectively converts the gate opening to per unit turbine
power on the generator MVA base. The block diagram of this linear turbine model is shown in
Figure 11.26a.

Equation (11.157) describes an interesting and important characteristic of water turbines. For
example, suppose that the position of the gate is suddenly closed slightly so as to reduce the turbine
power output. The flowrate in the penstock cannot change instantaneously so the velocity of the
flow through the turbine will initially increase. This increase in water velocity will produce an initial
increase in the turbine power until, after a short delay, the flowrate in the penstock has time to
reduce when the power will also reduce. This effect is reflected in Equation (11.157) by the minus
sign in the numerator. This characteristic is shown in Figure 11.26b where a step increase in the
gate position �c initially produces a rapid drop in power output. As the flowrate in the penstock
increases, the power output increases.

Although the linearized model (11.157) has been successfully used in both steady-state and
transient stability studies, IEEE Committee Report (1992) recommends the use of the nonlinear
turbine model in power system studies because its implementation using computers is no more
difficult than the approximate linear transfer function. Other, more detailed models are discussed
in IEEE Committee Reports (1973a, 1973b, 1973c, 1992).

11.3.2.2 Governing System for Hydraulic Turbines

Governing systems for hydraulic turbines differ from those used in steam turbines in two main ways.
Firstly, a very high force is required to move the control gate as it must overcome both high water
pressure and high friction forces and, secondly, the peculiar response of the hydraulic turbine to
changes in valve position must be adequately compensated. To provide the necessary force to move
the gate two servomotors are used as shown in the functional diagram in Figure 11.27a. In a similar
way as in the steam turbine, the speed regulator acts through a system of levers on the pilot valve
which controls the flow of hydraulic fluid into the pilot servomotor. The pilot servomotor then acts
on the relay valve of the very high-power main servomotor which controls the gate position. Just like
the servomotor on the steam turbine, negative feedback of the position of both the servomotors is
necessary to achieve the required movement. To compensate for the peculiar response of the water
turbine to changes in the gate position it is necessary to slow down the initial gate movement to allow
the water flow in the penstock to catch up. This is achieved by the transient droop element which
reduces the gain of the governor for fast changes in valve position and, in mechanical–hydraulic
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Figure 11.27 Block diagram of hydraulic turbine governing system: (a) functional diagram; (b)
full diagram; (c) simplified diagram.

governor systems, is achieved by feeding back the position of the gate via a system of levers that
includes a dashpot system. Similar to the steam turbine governor shown in Figure 2.11, direct
feedback of the gate position through a series of levers controls the static droop.

The block diagram model of the governor, including the transient droop, is shown in Figure
11.27b. The main servomotor is modelled by an integrating element, with integration time Tg,
and two limiters. The first limiter limits the gate position between fully open and fully closed,
while the second, the rate limiter, limits the rate at which the gate can be moved. This is nec-
essary because, if the gate is closed too rapidly, the resulting high pressure could damage the
penstock. The pilot servomotor with its position feedback is modelled by a first-order lag with
a time constant Tp. The system has two main feedback loops. The proportional feedback loop
provides the static droop characteristic equal to ρ while the feedback loop with the differentiat-
ing element corrects the transient droop to a value δ. Typical values of the parameters recom-
mended by Ramey and Skooglund (1970) are: Tp = 0.04 s, Tg = 0.2 s, Tr = 5T ′

w, δ = 2.5T ′
w/Tm and

ρ = 0.03 to 0.06, where T ′
w is the water starting time and Tm is the mechanical time constant of

the unit.
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Table 11.2 Typical values of parameters of turbine governing systems

Parameters

Type of turbine ρ T1 (s) T2 (s) T3 (s) T4 (s)

Steam 0.02–0.07 0.1 0.2–0.3 0 —
Hydraulic 0.02–0.04 — 0.5 5 50

If the nonlinearities introduced by the limiters are, for the moment, neglected the system may be
described by the third-order transfer function

�c
�ω

=
(1 + Trs)

ρ

TpTrTg

ρ
s3 + (Tp + Tr)Tg

ρ
s2 + Tg + Tr(ρ + δ)

ρ
s + 1

. (11.158)

As the time constant Tp is several times smaller than the time constants Tg and T r, it may be
neglected to give the second-order transfer function

�c
�ω

= (1 + T3s)K
(1 + T2s)(1 + T4s)

, (11.159)

where K = 1/ρ, T2 ≈ TrTg/[Tg + Tr(ρ + δ)], T3 = Tr and T4 = [Tg + Tr(ρ + δ)]/ρ. Usually T4 
 T2

when T4 + T2 ≈ T4.
If the gate limiters are now added to the transfer function the simplified governor block diagram

shown in Figure 11.27c is obtained and is similar to the simplified system used to represent the
steam turbine governor.

Typical parameter values for use in the simplified block diagram of the steam and hydraulic
turbine governors are tabulated in Table 11.2.

11.3.3 Wind Turbines

Modelling the behaviour of wind turbines follows a similar approach to that for a conventional
steam or water turbine except that now more detailed modelling of the energy resource is often
required to take account of its variable nature.

11.3.3.1 Wind Energy Systems

Figures 7.5–7.11 in Section 7.1 described the general structure of wind turbine generation systems.
Although the general structure of all these system options is similar, they differ in the type of
electrical generator that is used and the way that it is controlled. However, all the systems can be
broken down into a number of subsystems each of which can be modelled individually. Slootweg
et al. (2003) suggests a convenient set of subsystems as follows:

1. A wind speed model representative of the site that takes account of turbulence, wind gusts and
so on.

2. A rotor model that converts the power in the wind into mechanical power at the turbine low-speed
drive shaft.

3. A transmission model that accounts for the effect of the gearbox, if present.
4. A model of the generator and, if necessary, its associated power electronic converter.
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5. A power or speed controller to control the power output of the generator, particularly at wind
speeds below rated speed, if required.

6. A voltage or reactive power controller, if required.
7. A pitch controller to control the power output of the turbine, particularly at wind speed above

rated, if required.
8. A protection system for limiting converter current, isolating the turbine if voltage or frequency

exceeds specified values. This system may also be required to shut the turbine down.

Not all these subsystems are required in all turbine and generator systems. However, items 1, 2,
4 and 8 will always be required while the other subsystems will depend on the type of generator
and speed control system used. For example, the fixed-speed induction generator with stall control
(Figure 7.6) will not require items 5 or 7 while the variable speed turbines utilizing pitch control
will require all the subsystems to a greater or lesser extent.

11.3.3.2 Wind Speed

The wind is not steady. It is time variable and subject to variable amounts of turbulence depending
on location. The wind speed can be modelled either by using a suitable spectral density method to
predict turbulence or by directly recorded wind speed data. In either case the wind speed produced
will be a point wind speed. Spectral models use a suitable transfer function to produce a time-domain
turbulence variation of wind speed that can be added to a steady wind speed to obtain the net point
wind speed (Leithead, Delasalle and Reardon, 1991; Leithead, 1992; Stannard and Bumby, 2007).
In deriving this wind speed account can be taken of the nature of the terrain and the height above
ground level. This wind speed may be valid over a time period of tens of seconds but for longer
periods the model may need to be augmented by wind gusts and a steady increase in the mean wind
speed (Slootweg et al., 2003).

Because of the size of the wind turbine, the point wind speed will vary across the diameter of the
turbine and the effective wind speed that the turbine reacts to will be different from the point wind
speed. Leithead (1992) identifies four major effects of rotational sampling, wind shear, tower shadow
and disc averaging. Rotational sampling accounts for the averaging of the torque over a rotational
period while tower shadow takes account of the effect of blades passing in front of the tower (or
behind if a downwind turbine) losing lift and hence torque. For a three-bladed wind turbine this
tends to produce torque pulsations at three times the rotational speed. Disc averaging accounts for
the fact that the turbulence will not be constant over the turbine swept area so impacting on the
local point wind speed. Similarly wind shear recognizes that the diameter of the turbine is such that
the effect of height above ground level cannot be assumed constant in the wind speed calculation.
These effects should be included in computing the effective wind speed used in the turbine rotor
model. Wind speed modelling is a sophisticated subject and interested readers are referred to the
references above and also Wasynczuk, Man and Sullivan (1981) and Anderson and Bose (1983).

11.3.3.3 Turbine Rotor Model

The power from the turbine rotor can be calculated using Equation (7.1) but here it is modified
slightly to make clear that the coefficient of performance depends on both the tip speed ratio and
the pitch angle β of the blades

P = 1
2
ρ Acp(λ, β)v3

w. (11.160)

Generally as the pitch angle is decreased the performance coefficient cp reduces as shown in
Figure 11.28.
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Figure 11.28 Turbine performance coefficient showing the effect of pitch angle.

The tip speed ratio depends on the turbine rotational speed and the wind speed and is given by
Equation (7.2) as

λ = ωTr
vw

, (11.161)

where the rotational speed of the turbine is ωT and the wind speed vw. The turbine rotor radius r
is constant. To compute the tip speed ratio both the wind speed and the rotational speed of the
turbine must be known. Knowing the tip speed ratio, the current value of cp can be computed either
from a look-up table that models the curves in Figure 11.28 or by using an appropriate curve fit to
these curves. For example, Slootweg et al. (2003) use the approximation

cp(λ, β) = 0.73
(

151
λi

− 0.58β − 0.002β2.14 − 13.2
)

e−18.4/λi , (11.162a)

with

λi = 1
1

λ − 0.02β
− 0.003

β3 + 1

. (11.162b)

The variation of cp with tip speed ratio produced by these curves is shown in Figure 11.28.
With the performance coefficient determined the turbine power can be calculated for the in-

stantaneous effective wind speed using Equation (11.160). The turbine torque τT is then obtained
from

τT = P
ωT

. (11.163)

With this torque known, the turbine speed can be determined from the equation of motion.

11.3.3.4 Pitch Control System

The speed and torque control of a variable speed turbine is a sophisticated control process designed
to maximize the power output of the turbine and prevent turbine overspeed. In its simplest form, at
wind speeds below rated, controlling the generator electromagnetic torque as an optimized function
of rotor speed will maximize energy capture and control the turbine speed. However, at high wind
speed when the generator is operating at rated output the electromechanical torque cannot be
increased further without overloading the generator and the speed and power output of the turbine
must be controlled by pitching the turbine blades. A simple model of the pitch controller and the
pitch actuator is shown in Figure 11.29. The pitch actuator is normally modelled by a first-order
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Figure 11.29 Pitch angle controller.

system with a time constant TA but, as the pitch actuator is a relatively slow-moving hydraulic
system, it is necessary to impose rate limits on the movement. Typically this may be of the order of
3◦ per second. The pitch controller used is normally a PI controller. Pitch control may only become
operative at high wind speeds.

11.3.3.5 Shaft and Gear System

A schematic of the turbine shaft and gear system is shown in Figure 11.30 and assumes that the
gearbox has a transmission ratio n so that the speed of the high-speed shaft of the generator ωmg is
related to the speed of the low-speed shaft of the turbine ωmT by

ωmg = nωmT. (11.164)

For a perfect gearbox with no losses the power input and output are equal so that the torque on
the high-speed shaft is related to the torque on the low-speed shaft by

τ ′
tr = τtr

n
. (11.165)

Two equations of motion, one for the low-speed shaft and one for the high-speed shaft, describe
the torque transmission in Figure 11.30:

JT
dωmT

dt
= τT − τtr, (11.166)

Jg
dωmg

dt
= τ ′

tr − τg. (11.167)

G

Low speed shaft
ωτ mTT,

ωτ mgg ,

τtr

τ′tr

Figure 11.30 Turbine shaft and gear system.
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Combining Equations (11.166) and (11.167) and referring all torques and speeds to the high-speed
shaft gives the combined torque equation of motion referred to the high-speed shaft in SI units as

J
dωmg

dt
= τT

n
− τg, (11.168)

where

J =
(

Jg + JT

n2

)

is the combined inertia of the turbine and generator referred to the high-speed shaft. If necessary
τ tr can allow for a finite shaft stiffness and shaft damping if required (Estanqueiro, 2007).

The above equation can readily be expressed in per-unit notation as described in Section 5.1 and
Section 11.4 as

M
dω

dt
= τt − τg, (11.169)

where M = 2H/ωs.
If no gearbox is present the gear ratio n = 1.

11.3.3.6 Generator Model

The range of generators used in wind turbine systems are described in Section 7.1 with the ‘fixed-
speed’ induction generator and doubly fed induction generator being most common. The fixed-
speed induction generator can be modelled by the induction motor model described in detail
in Section 11.4. This model is equally valid for generator action, the only difference being that
the operational speed will now be greater than synchronous speed with the machine operating
at negative slip. If required, the necessary sign changes can be made so that generator torque is
positive.

In order to model the doubly fed induction generator, models of the generator, the power converter
and its control system must be developed. Detailed models of these components that include the
effect of the rotation emfs (see Section 11.1.3) are described in detail by Ekanayake, Holdsworth
and Jenkins (2003) and Holdsworth et al. (2003). However, as discussed in Section 11.1.3, including
the rotational emfs requires the power system network equations also to be modelled by differential
equations rather than algebraic equations. Consequently, the detailed model is useful for single-
machine, infinite-busbar simulations but not so useful for studies incorporating parallel generators
and more complex networks. For this type of work a reduced order model is required, similar to
that used for the fixed-speed induction generator in Section 11.4. Such a model is derived by Erlich
et al. (2007).

11.4 Dynamic Load Models

Section 3.5 explained how power system loads, at the transmission and subtransmission levels,
can be represented by a static load characteristic which describes how the real and reactive power
at a busbar change with both voltage and frequency. Although this is an adequate method of
representing modest changes of voltage and/or frequency for a composite load, there are cases
when it is necessary to account for the dynamics of the load components themselves.

Typically, motors consume 60 to 70 % of the total power system energy and their dynamics
are important for studies of interarea oscillations, voltage stability and long-term stability. In this
section the dynamic model of an induction motor will be presented. The dynamic model of the
synchronous motor is not discussed as it is identical to that of the synchronous generator presented
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in Section 11.1, except for a sign change on the armature current necessary to reflect the motoring
action.

The induction motor can be modelled in the same way as the synchronous generator but with
three important differences. Firstly, as there is no field winding in the induction motor, the cage rotor
is modelled by two coils in quadrature (as for the damper windings in the synchronous machine)
while the armature is modelled in the normal way by a d- and a q-axis armature coil. Secondly,
as the induction motor does not rotate at synchronous speed, both the stator armature coils and
the two rotor coils are transformed into a reference frame that rotates at synchronous speed. This
means that the two rotor equations now include a rotational emf term proportional to the rotor
slip speed sωs and are of the form

vdR = 0 = RRidR + �̇dR − sωs�qR

vqR = 0 = RRiqR + �̇qR + sωs�dR,
(11.170)

where the suffix ‘R’ signifies rotor quantities and the slip s = (ωs − ω)/ωs.
The two rotational voltages are proportional to the rotor slip speed and to the flux linkage of the

other rotor coil. During a disturbance the flux linkages �qR and �dR cannot change instantaneously
and, just as in Equations (11.54) and (11.60), can be equated to d- and q-axis armature emfs E ′

d
and E ′

q. If Equation (11.170) is further compared with (11.51) the rotational voltages sωs�qR and
sωs�dR can be seen to play a similar role as the excitation voltage Ef and will therefore appear in
the corresponding flux decay equations.

The third important difference is that positive current is now defined for motoring action,
requiring a sign change in the appropriate equations.

With these points in mind Figure 11.31 shows how the induction motor can be modelled by a
transient emf E

′
behind a transient impedance X

′
in the same way as in the fourth-order model

of the synchronous generator (Section 11.1.6). However, as the reactance is unaffected by rotor
position, and the model is in the synchronously rotating reference frame, the necessary equations
are more conveniently expressed in the network (a, b) coordinates (Arrillaga and Arnold, 1990) as

[
Vb

Va

]
=

[
E ′

b

E ′
a

]
+

[
RS X′

−X′ RS

] [
Ib

Ia

]
, (11.171)

with the change in the emfs E ′
b and E ′

a given by

Ė ′
b = −sωs E ′

a − E ′
b − (X − X′)Ia

T ′
0

(11.172)
Ė ′

a = sωs E ′
b − E ′

a + (X − X′)Ib

T′
0

,

where s = (ωs − ω)/ωs is the rotor slip, X′ = XS + Xµ XR/
(
Xµ + XR

)
is the transient reactance

and is equal to the blocked-rotor (short-circuit) reactance, X = XS + Xµ is the motor no-load
(open-circuit) reactance and T ′

0 = (XR + Xµ)/(ωs RR) is the transient open-circuit time constant.
The other reactances take the meaning explained in the induction motor’s steady-state equivalent

E′

Rs

V

I

Figure 11.31 Transient state representation of induction motor.
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circuit in Figure 3.28. The stator current can be calculated from Equation (11.171). Alternatively
Equations (11.171) and (11.172) can be written directly in phasor notation as

V = E′ + jX′ I + I Rs

(11.173)
Ė

′ = −sωs jE′ − [E′ − jI(X − X′)]
T ′

0

.

To evaluate the slip s = (ωs − ω)/ωs it is necessary to calculate the rotor speed ω from the equation
of motion

J
dω

dt
= τe − τm, (11.174)

where J is the inertia of the motor and load, τm is the mechanical load torque and τ e is the
electromagnetic torque that can be converted into useful work.

Taking into account that the slip is s = (ωs − ω)/ωs and using the notation shown in the equivalent
circuit of Figure 3.28, the induction motor air-gap power can be expressed as

Pag = I2 R
s

= I2 R
ωs

ωs − ω
, (11.175)

while the electromagnetic power Pe is given by

Pe = I2 R
(1 − s)

s
= Pag(1 − s) = Pag

ω

ωs
. (11.176)

The electromagnetic torque may now be expressed using the last two equations as

τe = Pe

ω
= Pag

ωs
, (11.177)

where for the considered model (Figure 11.28)

Pag = Re(E′ I∗) = E ′
b Ib + E ′

a Ia. (11.178)

Normally τm will vary with speed and is commonly represented by a quadratic equation of the
form

τm = τm0(Aω2 + Bω + C), (11.179)

where τm0 is the rated load torque, Aω2
0 + Bω0 + C = 1 and ω0 is the rated speed. For example,

a simple pump load, the torque of which is proportional to speed squared, can be represented by
setting B = C = 0.

The above analysis is derived for single-cage induction motors but can be readily extended to
double-cage and deep-bar rotors by using slip-dependent rotor parameters XR(s) and RR(s) in the
calculation of X

′
and T ′

0 as explained by Arrillaga and Arnold (1990). However, in many cases it
is sufficient to model the induction motor by its steady-state equivalent circuit when the electrical
torque is obtained from the static torque–speed characteristic and the slip calculated via Equation
(11.174). The format of the induction motor dynamic model is similar to that of the synchronous
generator, so its inclusion in a simulation program is relatively straightforward.

With the increased penetration of renewable generation often connected at the distribution
level, it may become necessary to include dynamic models of distribution networks when assessing
the system stability. As that would increase the size of the problem quite considerably, dynamic
equivalents of the full distribution network model could be used – see Chapter 14. Often the actual
configuration and models of generators connected may not be known and then the equivalent would
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be derived from measurements of certain electrical quantities taken inside the distribution network
and/or at the border nodes – see, for example, Feng, Lubosny and Bialek (2007).

11.5 FACTS Devices

In power system stability analysis it necessary to include dynamic models of those elements whose
control is fast enough to influence electromechanical dynamics. FACTS elements belong to that
category and were described in Section 2.5. CIGRE (Technical Brochure No. 145) published a
detailed report on modelling FACTS devices. Here only some simple models will be discussed.

11.5.1 Shunt FACTS Devices

Figure 11.32 shows a dynamic model of the SVC based on conventional thyristors. The model
is developed from the simplified model shown in Figure 2.28. The first and second blocks of the
dynamic model represent the regulator. Time constants T1, T2 of the correction block are chosen
based on stability analysis of the power system. That choice is heavily influenced by the type of
optional power system stabilizer (PSS) whose task is to stabilize control of the compensator (see
Section 10.5). The gain of the regulator is K ≈ 10–100. Such a gain corresponds to the droop of the
regulator static characteristic (Figure 2.29) of about 1−10 %. The time constant of the regulator is
TR ≈ 20–150 ms. The third block represents the thyristor firing circuits. The time constants are in
the range Td ≈ 1 ms and Tb ≈ 10–50 ms. At the bottom of the diagram there is a differentiating
block used in the SVC to stabilize the circuit using the compensator current ISVC.

In the discussed SVC model the most important role is played by the models of the voltage
regulator and the PSS. From the point of view of electromechanical dynamics, thyristors and their
firing circuits are proportional elements.

The dynamic model of STATCOM is shown in Figure 11.33 and includes the regulator’s transfer
function and the feedback loop ρ enforcing a required droop of the compensator static characteristic
(Figure 2.31). The converter is modelled by a first-order block with time constant TC = 10–30 ms.
The output signal is the compensator current. In the steady state when t → ∞ or s → 0 the model
results in the static characteristic shown in Figure 2.31 with droop ρ.

11.5.2 Series FACTS Devices

The most general series FACTS device is the UPFC described in Section 2.4. Hence here only
the dynamic model of the UPFC will be discussed. Descriptions of models of other series FACTS
devices can be found in CIGRE (Technical Brochure No. 145).

Figure 2.38 shows that the UPFC has two voltage-sourced converters and each of them is
equipped with its own PWM controller with two control parameters: m1, ψ1 for CONV 1 and
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Figure 11.32 Simplified dynamic model of the SVC.
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m2, ψ2 for CONV 2. These four parameters are selected by the UPFC regulator controlling the
following three important quantities:

1. Direct component Re(�V) of the booster voltage.
2. Quadrature component Im(�V) of the booster voltage.
3. Reactive component of the shunt current Im(I shunt).

From the point of view of electromechanical dynamics, thyristors and their firing circuits are
proportional elements and may be neglected. Hence the dynamic model of the UPFC consists of its
regulator model including technical constraints and is shown in Figure 11.34. The input variables
in the series part of the regulator (Figure 11.34a) are the transmitted real and reactive power. The
output variables are the direct and quadrature components of the booster voltage. The reference
values at the input of the regulator are divided by the actual voltage values in order to obtain
the required current components. The actual values of the components are subtracted from the
reference ones in order to create control errors. The regulator is of integral type with negative
feedback. The time constants of the integral block TP = TQ are chosen depending on the speed
with which power flow has to be regulated and on the type of PSS used. Converters are modelled
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by first-order blocks with time constants in the range of TC = 10–30 ms. There is a limiter on the
output of the regulator that proportionally reduces the components of the booster voltage when its
magnitude exceeds the allowed value.

The input signal of the regulator’s shunt part (Figure 11.34b) is the busbar voltage while the
output signal is the reactive component of the shunt current. The regulator is of integral type with
constraints. The converter is modelled by a first-order block. The output of the block produces
the converter voltage, that is the voltage on the lower side of the excitation (supply) transformer.
From that value the voltage on the upper side of the excitation transformer is subtracted in order
to obtain the reactive part of the UPFC shunt current. Similar to STATCOM, there is also a
negative feedback loop responsible for a required droop of the static characteristic. There is also
an additional signal PSS entering the summation point of regulation loops. This signal is due
to an additional optional block responsible for damping of power swings in the system – see
Section 10.7.
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12
Steady-State Stability
of Multi-Machine System

The steady-state, or small-signal, stability of a power system is the ability of the system to maintain
synchronism when subjected to a small disturbance. In Chapter 5 the steady-state stability of the
generator–infinite busbar system was discussed and the system was seen to be steady-state stable
about an equilibrium point if, following a small disturbance, the system remained within a small
region surrounding the equilibrium point. In such cases the system is said to be locally stable.
Furthermore, if, as time progresses, the system returns to the equilibrium point, then it is also said
to be asymptotically stable. These concepts, and those introduced in Chapter 5, will be expanded
in this chapter to assess the steady-state stability of a multi-machine power system in which the
generators are described by the mathematical models introduced in Chapter 11.

12.1 Mathematical Background

Section 5.4.6 analysed the classical model of a synchronous generator connected to the infinite
busbar and showed that rotor swings around the synchronous speed can be described by a second-
order differential equation (the swing equation). Depending on the values of the roots of the
characteristic equation (5.59), the swings can be aperiodic or oscillatory. A power system consists
of many generators and each of the generators is more accurately described by a higher order model
discussed in Section 11.1.6. Consequently a real power system will be described by a high number
of nonlinear differential equations. This chapter will analyse the steady-state stability of such a
large dynamic system using eigenvalue analysis. The main aim of eigenvalue analysis is to simplify
analysis of a large dynamic system by representing the system response to a disturbance as a linear
combination of uncoupled aperiodic and oscillatory responses, similar to those analysed in Section
5.4.6 and referred to as the modes.

12.1.1 Eigenvalues and Eigenvectors

A number λ is referred to as an eigenvalue of matrix A if there is a nonzero column vector w
satisfying

Aw = wλ. (12.1)

Power System Dynamics: Stability and Control, Second Edition Jan Machowski, Janusz W. Bialek and James R. Bumby
C© 2008 John Wiley & Sons, Ltd
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Each such vector w is referred to as the right eigenvector associated with eigenvalue λ. Equation
(12.1) shows that eigenvectors are not unique as they can be rescaled by multiplying or dividing
the elements by a nonzero number. If wi is an eigenvector then any other vector cwi is also an
eigenvector, where c �= 0 is a nonzero number. This property makes it possible to multiply or divide
eigenvectors by any number. In practice eigenvalues are normalized by dividing their values by the
vector length

‖w‖ =
√

wT∗ w =
√

|w1|2 + · · · + |wn|2. (12.2)

Equation (12.1) can be rewritten as

(A − λ 1) w = 0, (12.3)

where 1 is a diagonal identity matrix while 0 is a column vector of zeros. Equation (12.3) has a
non-trivial solution w �= 0 if and only if

det(A − λ 1) = 0. (12.4)

Equation (12.4) is called the characteristic equation. It can be written in a polynomial form

det(A − λ 1) = ϕ(λ) = (−1)n(λn + cn−1λ
n−1 + · · · + c1λ + c0), (12.5)

where n is the rank of A, cn−1 is the sum of the main minors of the first degree, cn−2 is the sum of the
main minors of the second degree and so on, and finally c0 is the main minor of the highest degree,
that is the determinant of matrix A. Polynomial (12.5) is of the nth order and therefore has n roots
λ1, λ2, . . . , λn which are at the same time the eigenvalues of matrix A.

Numerical methods for determining the eigenvalues and eigenvectors of a matrix can be found in
Press et al. (1992) or other textbooks on numerical methods and they will not be dealt with in this
book. Instead, attention will be concentrated on the application of eigenvalues and eigenvectors to
the stability analysis of power systems.

Knowing eigenvalue λi of matrix A, it is easy to find its associated eigenvector wi using the
following equation:

w i = col (A − λi 1)D, (12.6)

where col denotes selection of any non-zero column from a square matrix and upper index D denotes
an adjacent matrix. The correctness of Equation (12.6) can be proved using the definition of the
adjacent matrix. For any matrix B it holds that BBD = det B · 1. This property is true also for matrix
B = (A − λi 1), which can be written as (A − λi 1)(A − λi 1)D = det(A − λi 1) · 1. Hence, taking
into account (12.4), one gets (A − λi 1)(A − λi 1)D = 0 · 1. This equation shows that multiplying
matrix (A − λi 1) by any column of matrix (A − λi 1)D gives 0 · 1 = 0, where 0 is a column vector
of zeros. This shows that if a �= 0 is a non-zero column of (A − λi 1)D, then (A − λi 1)a = 0, or
Aa = λi a. This shows, according to Equation (12.1), that a = w i is a right eigenvector associated
with λi. In other words, any non-zero column of (A − λi 1)D is an eigenvector of A associated
with λi.

This methodology can be used to determine eigenvectors for all eigenvalues if the eigenvalues
are distinct, that is λ1 �= λ2 �= · · · �= λn . However, if λi is a multiple eigenvalue repeated k times then
the described methodology can be used to determine only one eigenvector associated with such a
multiple eigenvalue. The other (k − 1) linearly independent eigenvectors associated with λi have to
be determined in a different way. This will not be discussed here; the reader can find details in many
textbooks, for example Ogata (1967).
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A square complex matrix A is Hermitian if AT∗ = A, that is the transposed conjugate matrix AT∗

is equal to A. Obviously a real symmetrical matrix A = AT satisfies the definition of a Hermitian
matrix as for a real matrix A∗ = A.

Now it will be shown that eigenvalues of a Hermitian matrix are always real. The proof will be
indirect by assuming that there is a complex eigenvalue λ = α + j�. Then Equation (12.1) gives

Aw = w(α + j�). (12.7)

Left-multiplying this equation by wT∗
gives

wT∗
Aw = (α + j�)wT∗

w . (12.8)

Transposing and conjugating (12.8) gives wT∗
AT∗ = (α − j�)wT∗

. As AT∗ = A, one can write

wT∗
A = (α − j�)wT∗

. (12.9)

Right-multiplying this by w gives

wT∗
Aw = (α − j�)wT∗

w . (12.10)

Comparing (12.8) and (12.10) results in

(α + j�)wT∗
w = (α − j�)wT∗

w . (12.11)

Obviously wT∗
w �= 0 is real and positive as the sum of products of complex conjugate numbers.

Hence Equation (12.11) results in (α + j�) = (α − j�), or α + j� − α + j� = 0. Obviously the
imaginary part must be zero, j2� = 0, which proves that the eigenvalues of a Hermitian matrix are
real.

Example 12.1

Using Equation (12.6), find right eigenvalues of the following symmetrical matrix:

A =




5 0 0
- - - - - - - - - - - - - -
0 2 −√

2
- - - - - - - - - - - - - -
0 −√

2 3


 . (12.12)

The characteristic equation is

det (A− λ1) =




5 − λ 0 0
- - - - - - - - - - - - - - - - - - -

0 2 − λ −√
2

- - - - - - - - - - - - - - - - - - -
0 − √

2 3 − λ


= (5 − λ)[(2 − λ)(3 − λ) − 2] = (5 − λ)(λ2 − 5λ + 4)] = 0.

Hence (5 − λ)(λ − 4)(λ − 1) = 0, which means that: λ1 = 5; λ2 = 4; λ3 = 1.
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For λ1 = 5 one gets

(A − λ1 1) =




0 0 0
- - - - - - - - - - - - - -
0 −3 −√

2
- - - - - - - - - - - - - -
0 −√

2 −2


 , (A − λ1 1)T =




0 0 0
- - - - - - - - - - - - - -
0 −3 −√

2
- - - - - - - - - - - - - -
0 −√

2 −2


 ,

(A − λ1 1)D =




4 0 0
- - - - - - - -
0 0 0
- - - - - - - -
0 0 0




(A − λ2 1) =




1 0 0
- - - - - - - - - - - - - -
0 −2 −√

2
- - - - - - - - - - - - - -
0 −√

2 −1


 , (A − λ2 1)T =




1 0 0
- - - - - - - - - - - - - -
0 −2 −√

2
- - - - - - - - - - - - - -
0 −√

2 −1


 ,

(A − λ2 1)D =




0 0 0
- - - - - - - - - - - -
0 −1

√
2

- - - - - - - - - - - -
0

√
2 −2




(A − λ3 1) =




4 0 0
- - - - - - - - - - - - - -
0 1 −√

2
- - - - - - - - - - - - - -
0 −√

2 2


 , (A − λ3 1)T =




4 0 0
- - - - - - - - - - - - - -
0 1 −√

2
- - - - - - - - - - - - - -
0 −√

2 2


 ,

(A − λ3 1)D =




0 0 0
- - - - - - - - - - - - - -
0 8 4

√
2

- - - - - - - - - - - - - -
0 4

√
2 4


 .

For λ1, only one column is different from zero. This column can therefore be taken as an
eigenvector, divided by, for example, four. For λ2, the second and third columns are non-zero.
As an eigenvector, for example, third column can be chosen divided by four. Similarly for λ3.
Consequently, the following eigenvectors are obtained:

w1 =




1
- -
0
- -
0


 , w2 =




0
- - - -
−1
- - - -√

2


 , w3 =




0
- - - -√

2
- - - -

1


 ; hence W =




1 0 0
- - - - - - - - - - - -
0 −1

√
2

- - - - - - - - - - - -
0

√
2 1


 . (12.13)

The eigenvectors in all examples in this chapter are not normalized in order to make manual
calculations easy by maintaining round numbers.
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A real unsymmetric matrix A �= AT may have real eigenvalues (Example 12.1) or complex
eigenvalues or a mix of real and complex eigenvalues. Regarding complex eigenvalues, the following
property holds:

If matrix A �= AT has a complex eigenvalue λi then the complex conjugate number λ∗
i is also an eigenvalue

of that matrix. Moreover, the eigenvector associated with λ∗
i is equal to the conjugate eigenvector

associated with λi.

In other words, complex eigenvalues and eigenvectors appear in complex conjugate pairs:

λi , w i and λ∗
i , w∗

i . (12.14)

Proof of this important property is simple and results from Equation (12.1) while taking into account
that for a real matrix A∗ = A. Conjugating Aw i = w i λi (without transposing) gives Aw∗

i = w∗
i λ

∗
i .

Hence λ∗
i , w∗

i satisfy the definition of an eigenvalue and eigenvector of matrix A.
Obviously a pair of complex conjugate eigenvalues constitutes two distinct eigenvalues λ∗

i �= λi

and therefore their associated eigenvectors are linearly independent, that is w∗
i �= cw i for any

c �= 0.

Example 12.2

Calculate the eigenvalues and eigenvectors of the matrix

A =




−6 0 0
- - - - - - - - - - - -
0 −1 5

- - - - - - - - - - - -
0 −5 −1


 det(A − λ 1) =




−6 − λ 0 0
- - - - - - - - - - - - - - - - - - - - - -

0 −1 − λ 5
- - - - - - - - - - - - - - - - - - - - - -

0 −5 −1 − λ


 . (12.15)

As there are two zero elements in the first row, expansion of the determinant is easy:

det(A − λ 1) = (−6 − λ) [(1 + λ)(1 + λ) + 5 · 5] = −(6 + λ)[λ2 + 2λ + 26] = 0.

Consider the second-degree polynomial in the square brackets. The determinant of that poly-
nomial is negative giving a pair of complex conjugate roots:

det(A − λ 1) = −(6 + λ)[λ − (−1 − j5)][λ − (−1 + j5)] = 0. (12.16)

Hence matrix A will have the following eigenvalues:

λ1 = −6, λ2 = (−1 − j5), λ3 = (−1 + j5) = λ∗
2. (12.17)

Eigenvectors can be calculated from Equation (12.6), using the adjacent matrix similarly as in
Example 12.1:

(A − λ1 1) =




0 0 0
- - - - - - - - - -
0 5 5
- - - - - - - - - -
0 −5 5


 , (A − λ1 1)T =




0 0 0
- - - - - - - - - -
0 5 −5
- - - - - - - - - -
0 5 5


 , (A − λ1 1)D =




50 0 0
- - - - - - - - -
0 0 0

- - - - - - - - -
0 0 0






P1: OTA/XYZ P2: ABC
c12 JWBK257/Machowski September 22, 2008 21:52 Printer Name: Yet to Come

496 Power System Dynamics

(A − λ2 1) =




−5 + j5 0 0
- - - - - - - - - - - - - - -

0 j5 5
- - - - - - - - - - - - - - -

0 −5 j5


 , (A − λ2 1)T =




−5 + j5 0 0
- - - - - - - - - - - - - - -

0 j5 −5
- - - - - - - - - - - - - - -

0 5 j5


 ,

(A − λ2 1)D =




0 0 0
- - - - - - - - - - - - - - - - - - - - - - -
0 −25 − j25 25 − j25
- - - - - - - - - - - - - - - - - - - - - - -
0 −25 + j25 −25 − j25




(A − λ3 1) =




−5 − j5 0 0
- - - - - - - - - - - - - - - - -

0 −j5 5
- - - - - - - - - - - - - - - - -

0 −5 −j5


 , (A − λ3 1)T =




−5 − j5 0 0
- - - - - - - - - - - - - - - - -

0 −j5 −5
- - - - - - - - - - - - - - - - -

0 5 −j5


 ,

(A − λ3 1)D =




0 0 0
- - - - - - - - - - - - - - - - - - - - - - -
0 −25 + j25 25 + j25
- - - - - - - - - - - - - - - - - - - - - - -
0 −25 − j25 −25 + j25


 .

For λ1, only the first column is non-zero and dividing it by 50 gives eigenvector w1. For λ2, the
second and third columns are non-zero. The second column, divided by 25, may be assumed to
be eigenvector w2. Similarly for λ3, the second and third columns are non-zero. To be consistent,
the second column, divided by 25, may be assumed to be eigenvector w3, giving

w1 =




1
- -
0
- -
0


 , w2 =




0
- - - - - - -
−1 − j1
- - - - - - -
−1 + j1


 , w3 =




0
- - - - - - -
−1 + j1
- - - - - - -
−1 − j1


 = w∗

2. (12.18)

Hence λ3 = λ∗
2 resulted in w3 = w∗

2.

Example 12.2 confirmed that complex eigenvalues and eigenvectors form complex conjugate
pairs as in Equation (12.14). This property is important for further considerations.

12.1.2 Diagonalization of a Square Real Matrix

Let λi and wi be an eigenvalue and a right eigenvector of matrix A. Then for every pair of eigenvalues
and eigenvectors, Aw i = w i λi holds and

A [w1, w2, . . . , wn ] = [w1, w2 , . . . , wn ]




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


 or AW = WΛ, (12.19)

where W = [w1, w2, . . . , wn ] is a square matrix whose columns are the right eigenvectors of matrix
A and Λ = diag λi is a diagonal matrix of the corresponding eigenvalues.
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If all the eigenvalues λi are distinct, λ1 �= λ2 �= · · · �= λn , then the corresponding eigenvectors
are linearly independent. The proof of this property is conducted indirectly by assuming that the
eigenvectors are linearly dependent and showing that the false assumption leads to a contradiction.
Details can be found in many textbooks, for example Ogata (1967).

If vectors w1, w2, . . . , wn are linearly independent then matrix W made up from those vectors
is non-singular and the inverse U = W−1 exists. The following notation will be used:

U = W−1 = [w1, w2, . . . , wn ]−1 =




u1

u2

...
un


 , (12.20)

where ui are the rows of matrix U = W−1. Pre-multiplying both sides of Equation (12.19) by W−1

gives

Λ = diag λi = W−1AW = UAW. (12.21)

Right-multiplying this equation by W−1 = U gives UA = ΛU, that is




u1

u2

...
un


 A =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn







u1

u2

...
un


 . (12.22)

Hence for each eigenvalue λi, u i A = λi u i holds. Neglecting the indices gives

u A = uλ. (12.23)

This equation is similar to Equation (12.1) but now with the row vector u on the left hand side
of matrix A. Hence the row vector u is referred to as the left eigenvector of matrix A associated with
eigenvalue λ.

It should be noted that transposing matrices in Equation (12.23) gives

ATuT = λ uT. (12.24)

This equation shows that the column vector uT is the right eigenvector of matrix AT. This means
that the left eigenvector of matrix A has the same values as the right eigenvector of matrix AT.
Hence the left eigenvector of matrix A is defined by some authors as the right eigenvector of
matrix AT.

Example 12.3

Consider the matrix A given below. Its eigenvalues are λ1 = 3, λ2 = 2 and λ3 = 1. Application of
Equation (12.6) results in the following eigenvectors:

A =




2 −1 2
- - - - - - - - - -
0 −1 4
- - - - - - - - - -
0 −2 5


 , Λ =




λ1

- - - - - - - - - -
λ2

- - - - - - - - - -
λ3


 =




3
- - - - - - - -

2
- - - - - - - -

1


 , W =




1 1 0
- - - - - - - -
1 0 2
- - - - - - - -
1 0 1


 . (12.25)
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Checking the definition of right eigenvectors AW = WΛ corresponding to Equation (12.1),

AW =




2 −1 2
- - - - - - - - - -
0 −1 4
- - - - - - - - - -
0 −2 5


 ·




1 1 0
- - - - - - - -
1 0 2
- - - - - - - -
1 0 1


 =




3 2 0
- - - - - - - -
3 0 2
- - - - - - - -
3 0 1


 =




1 1 0
- - - - - - - -
1 0 2
- - - - - - - -
1 0 1


 ·




3
- - - - - - - -

2
- - - - - - - -

1


 = WΛ.

(12.26)

Inverting matrix W gives

U = W−1 =




0 −1 2
- - - - - - - - - - -
1 1 −2
- - - - - - - - - - -
0 1 −1


 or

u1 = [ 0 −1 2 ]

u2 = [ 1 1 −2 ]

u3 = [ 0 1 −1 ]

. (12.27)

Checking the definition of left eigenvectors UA = ΛU in Equation (12.22),

UA =




0 −1 2
- - - - - - - - - - -
1 1 −2
- - - - - - - - - - -
0 1 −1


 ·




2 −1 2
- - - - - - - - - -
0 −1 4
- - - - - - - - - -
0 −2 5


 =




0 −3 6
- - - - - - - - - - -
2 2 −4
- - - - - - - - - - -
0 1 −1


 =




3
- - - - - - - -

2
- - - - - - - -

1


 ·




0 −1 2
- - - - - - - - - - -
1 1 −2
- - - - - - - - - - -
0 1 −1




= ΛU. (12.28)

Transposing matrix A gives

AT =




2 0 0
- - - - - - - - - - - -
−1 −1 −2
- - - - - - - - - - - -
2 4 5


 . (12.29)

Checking that vectors uT
1 , uT

2 , uT
3 are indeed right eigenvectors of AT, that is that equation

ATUT = UTΛ is satisfied (corresponding to Equation (12.24)),

ATUT =




2 0 0
- - - - - - - - - - - -
−1 −1 −2
- - - - - - - - - - - -
2 4 5


 ·




0 1 0
- - - - - - - - - - - -
−1 1 1
- - - - - - - - - - - -
2 −2 −1


 =




0 2 0
- - - - - - - - - - - -
−3 2 1
- - - - - - - - - - - -
6 −4 −1


 =




0 1 0
- - - - - - - - - - - -
−1 1 1
- - - - - - - - - - - -
2 −2 −1




·




3
- - - - - - - -

2
- - - - - - - -

1


 = UTΛ. (12.30)

The following practical note should be borne in mind when calculating eigenvectors. Some profes-
sional programs, such as MATLAB, calculate eigenvalues and the corresponding right eigenvectors.
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In order to calculate left eigenvectors, manuals recommend that similar calculations are performed
for the transposed matrix, that is the left eigenvectors of A should be calculated as right eigenvectors
of AT. This recommendation may be confusing because the eigenvalues of AT and the correspond-
ing eigenvectors are usually ordered differently than those obtained for matrix A. Consequently,
the corresponding pairs of right and left eigenvectors (wi; ui) have to be selected manually based on
the identification of identical eigenvalues λi. Therefore it is simpler to calculate left eigenvectors by
inverting the matrix W−1 = U. Then the pairs (wi; ui) can be selected as the columns of W and rows
of U, respectively.

According to Equation (12.20), the square matrix U made up of left eigenvectors corresponds to
the inverse matrix of W made up of right eigenvectors. Obviously the product of both matrixes is
the identity matrix UW = 1, that is

UW =




u1

u2

...
un


 [w1, w2, . . . , wn ] =




u1w1 0 · · · 0
0 u2w2 · · · 0
...

...
. . .

...
0 0 · · · unwn


 =




1
1

. . .
1


 = 1.

(12.31)

Hence the following equations are true for left and right eigenvectors:

u i w i = 1 and u i w j = 0 for j �= i. (12.32)

Note that if λi is complex then this equation also holds, that is u∗
i w∗

i = 1. In that case matrices U
and W have the following structure:

U =




...
- - -
u

- - -
u∗

- - -
...




, W = [ . . . w w∗ . . . ]. (12.33)

Equations (12.32) and (12.33) are important when considering the solution of differential equations
covered in Section 12.1.5.

Example 12.4

Calculate the matrix of left eigenvectors U = W−1 of matrix A from Example 12.2 and use
Equation (12.21) to diagonalize the matrix Λ = UAW. Matrix W was calculated in Example
12.2:

A =




−6 0 0
- - - - - - - - - - -

0 1 5
- - - - - - - - - - -

0 −5 1


 , W =




1 0 0
- - - - - - - - - - - - - - - - - - -
0 −1 − j1 −1 + j1
- - - - - - - - - - - - - - - - - - -
0 −1 + j1 −1 − j1


 . (12.34)
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Simple calculations lead to

U = W−1 = 1
4




4 0 0
- - - - - - - - - - - - - - - - - - -
0 −1 + j1 −1 − j1
- - - - - - - - - - - - - - - - - - -
0 −1 − j1 −1 + j1


 =


 u1

u2

u3


 =


 u1

u2

u∗
2


 . (12.35)

u1 = 1
4

[ 4 0 0 ], u2 = 1
4

[ 0 −1 + j1 −1 − j1 ], u3 = 1
4

[ 0 −1 − j1 −1 + j1 ] = u∗
2.

It is easy to check that u3 = u∗
2 is a pair of complex conjugate row vectors, which confirms the

validity of Equation (12.33). Multiplying matrices (12.34) gives

AW =




−6 0 0
- - - - - - - - - - -

0 1 5
- - - - - - - - - - -

0 −5 1







1 0 0
- - - - - - - - - - - - - - - - - - -
0 −1 − j1 −1 + j1
- - - - - - - - - - - - - - - - - - -
0 −1 + j1 −1 − j1


 =




−6 0 0
- - - - - - - - - - - - - - - - - - - -
0 −4 + j6 −4 − j6

- - - - - - - - - - - - - - - - - - - -
0 +6 + j4 +6 − j4


 . (12.36)

UAW = 1
4




4 0 0
- - - - - - - - - - - - - - - - - - -
0 −1 + j1 −1 − j1
- - - - - - - - - - - - - - - - - - -
0 −1 − j1 −1 + j1







−6 0 0
- - - - - - - - - - - - - - - - - - - -
0 −4 + j6 −4 − j6

- - - - - - - - - - - - - - - - - - - -
0 +6 + j4 +6 − j4


=




−6 0 0
- - - - - - - - - - - - - - - - - - - -
0 −1 − j5 0

- - - - - - - - - - - - - - - - - - - -
0 0 −1 + j5


 .

(12.37)

The obtained diagonal matrix contains previously calculated eigenvalues of matrix A (Example
12.2, Equation (12.17)).

Diagonalization of a square matrix A using matrices W and U made up of right and left eigen-
vectors is important for the next section that considers the solution of matrix differential equations.

12.1.3 Solution of Matrix Differential Equations

The solution of scalar differential homogeneous equations is discussed in Appendix A3. It is shown
that the fundamental solution of ordinary linear differential equations consists of exponential
functions eλt, where numbers λ must be chosen so that the Wronskian matrix of solutions is
different from zero. In the case of a first-order differential homogeneous equation ẋ − ax = 0 or
ẋ = ax the fundamental system of solutions consists of only one exponential function eat. The
particular solution is of the form x(t) = eat x0, where x0 = x(t0) is the initial condition. In this
section the matrix form of a linear differential homogeneous equation is considered:

ẋ = Ax, (12.38)

where A is a square real matrix referred to as the state matrix. Equation (12.38) is referred to as the
state equation, vector x is the vector of the state variables or in short the state vector.

Matrix equation (12.38) has a solution in the same form as the scalar equation

x(t) = eAt x0, (12.39)
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where x(t) and x0 are column matrices while eAt is a square matrix which can be proved by expanding
eAt as a Taylor series:

eAt = 1 + At + (At)2

2!
+ (At)3

3!
+ · · · (12.40)

The Taylor expansion also proves that for a real matrix A, matrix eAt is also real and the solution
given by (12.39) is also real.

A number of different methods of calculation of eAt are given in textbooks, see, for example,
Ogata (1967) or Strang (1976). In power system analysis practice the calculation of eAt is replaced
by diagonalization of A and calculation of eAt, where Λ = diag λi is a diagonal matrix – see (12.21).

In order to utilize matrix diagonalization for the solution of the state equation (12.38), the state
vector x can be transformed into a new state vector z using the linear transformation

x = Wz, (12.41)

where W is a square matrix consisting of right eigenvectors of matrix A. Note that vector z is
generally complex. Using the inverse matrix U = W−1 the following inverse transformation can be
defined:

z = W−1x = Ux. (12.42)

Substituting Equations (12.41) into Equation (12.38) gives Wż = AWz, or ż = W−1 AWz, which
after taking into account Equation (12.21) gives

ż = Λz. (12.43)

Equation (12.43) is the modal form of the state equation (12.38). Matrix Λ given by Equation (12.21)
is the modal form of the state matrix, matrix W is the modal matrix and variables z(t) are the modal
variables.1

Because matrix Λ is diagonal the matrix equation (12.43) describes a set of uncoupled scalar
differential equations

żi = λi zi for i = 1, 2, . . . , n. (12.44)

Each of the equations is of first order and its solution is of the form

zi (t) = eλi t zi0 for i = 1, 2, . . . , n, (12.45)

where zi0 is the initial condition of the modal variable. The set of these scalar solutions can be
expressed as the following column vector:

z(t) = eΛt z0, (12.46)

where

eΛt =




eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλn t


 = diag [eλi t]. (12.47)

1 Note that z(t) are complex variables while x(t) are real. Many authors refer to z(t) as simply the modes. In
this book z(t) are referred to as the modal variables analogously to x(t) as the state variables. It will be shown
later in this section that a state variable can be expressed as a linear combination of uncorrelated real variables
of the form eαi t · cos(�i t) + φki ) or eαi t which will be referred to as the modes in this book.
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Equations (12.41) and (12.46) give

x = WeΛt z0, (12.48)

where z0 = z(t0) is a column of initial conditions for the modal variables z(t). These initial conditions
can be found using Equation (12.42) as

z0 = Ux0. (12.49)

Substituting (12.49) into (12.48) gives

x = WeΛtUx0. (12.50)

Obviously the solution given by (12.50) is equivalent to the solution given by (12.39) as:

eAt = WeΛtU. (12.51)

The correctness of Equation (12.51) can be proved by using the Taylor series expansion (12.40) and
Equation (12.19). The proof can be found in Strang (1976).

It should be noted that generally matrix A may be unsymmetric, giving complex eigenvalues λi

(see Example 12.2). In that case the modal variables zi(t) given by Equation (12.45) are complex.
The solution of complex differential equations (12.44) in the complex domain is discussed in
Section A3.6 of the Appendix. It is shown that for complex λi the trajectories of solutions zi(t)
form logarithmic spirals in the complex plane. The spirals are converging for αi = Reλi < 0 and
diverging for αi = Reλi > 0. For αi = Reλi = 0 the solution zi(t) represents a circle in the complex
plane. The spiral rotates anticlockwise when �i = Imλi > 0 and clockwise when �i = Imλi < 0.

In the case of matrix equations (see Equation (12.14)) there is always a pair of complex conjugate
eigenvalues λ j = λ∗

i . This pair results in two solutions zi(t) and zj(t) forming counter-rotating spirals
in the complex plane (see Appendix A3). Obviously the imaginary parts of the spirals cancel each
other out (because they have opposite signs) so that the real solution will be equal to the double
real part, that is

zi (t) + z j (t) = zi (t) + z∗
i (t) = 2 Re zi (t)

This cancelling of the imaginary parts of the solution will now be proved formally for the discussed
matrix state equation (12.38) and its modal form (12.43).

When the eigenvalues are complex, matrix eΛt is complex too. From the definition of eigenvectors
it can be concluded that complex eigenvalues correspond to complex eigenvectors (see Example
12.4). Hence matrices W and U may be generally complex. In Equation (12.50) there is a product of
three complex matrices WeΛtU and one real matrix x0. On the other hand, it is clear from Equation
(12.39) that the solution x(t), and therefore also the product WeΛtUx0, must be real. Hence there
is a question about how the product of complex matrices produces a real result. The answer comes
from a previous observation that complex eigenvalues and eigenvectors must always form conjugate
pairs λ, λ∗ and the associated matrices of left and right eigenvectors have the structure shown in
Equation (12.33).

Let the ith and jth eigenvalues be a complex conjugate pair

λ j = λ∗
i , w j = w∗

i , u j = u∗
i . (12.52)
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Then the column of initial conditions of modal variables z(t) has the following structure:

z0 =




...
- - -
zi0

- - -
z j0

- - -
...




= Ux0 =




...
- - -
u i

- - -
u∗

i
- - -

...




· x0 =




...
- - - - -
u i x0

- - - - -
u∗

i x0

- - - - -
...




=




...
- - -
zi0

- - -
z∗

i0
- - -

...




, (12.53)

that is, for the considered pair, z j0 = z∗
i0 and the two elements of the column z0 are a complex

conjugate pair. The product WeΛt is a square matrix that in this case has the following structure:

WeΛt = [ . . . w i w∗
i . . . ] ·




. . .
...

... · · ·
· · · eλi t 0 · · ·
· · · 0 eλ∗

i t · · ·
· · ·

...
...

. . .


 = [ . . . w i eλi t w∗

i eλ∗
i t . . . ], (12.54)

that is the matrix has two columns which are complex conjugates. Taking into account the matrix
structure expressed by Equations (12.53) and (12.54), Equation (12.48) gives

x(t) =




x1(t)
- - - - -

...
- - - - -
xk(t)
- - - - -

...
- - - - -
xn(t)




= WeΛt z0 =




. . . w1i eλi t w∗
1i e

λ∗
i t · · ·

- - - - - - - - - - - - - - - - - - - - - - - -
...

...
- - - - - - - - - - - - - - - - - - - - - - - -
· · · wki eλi t w∗

ki e
λ∗

i t · · ·
- - - - - - - - - - - - - - - - - - - - - - - -

...
...

- - - - - - - - - - - - - - - - - - - - - - - -
· · · wni eλi t w∗

ni e
λ∗

i t · · ·




·




...
- - -
zi0

- - -
z∗

i0
- - -

...




. (12.55)

This structure shows that the solution for the state variable for any k is

xk(t) = · · · + wki zi0eλi t + w∗
ki z

∗
i0eλ∗

i t + · · · (12.56)

or

xk(t) = · · · + cki eλi t + c∗
ki e

λ∗
i t + · · · (12.57)

where cki = wki zi0 is a complex number depending on the eigenvector and the initial condition.
Denoting λi = αi + j�i gives

cki eλi t + c∗
ki e

λ∗
i t = cki eαi t(cos �i t + j sin �i t) + c∗

ki e
αi t(cos �i t − j sin �i t).

Rearranging the right hand side gives

cki eλi t + c∗
ki e

λ∗
i t = eαi t[(cki + c∗

ki ) cos �i t + j(cki − c∗
ki ) sin �i t]. (12.58)

Note that

ai = (ci + c∗
i ) = 2 Re ci and bi = j(ci − c∗

i ) = −2 Im ci , (12.59)
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are real numbers equal to the real part and double imaginary part of the integration constant
cki = wki zi0. Hence Equation (12.58) takes the form

cki eλi t + c∗
ki e

λ∗
i t = eαi t [aki cos �i t − bki sin �i t] . (12.60)

Note that the difference between the cosine and sine functions in the square brackets can be
replaced by a cosine function (see also Figure A.2 in the Appendix):

cki eλi t + c∗
ki e

λ∗
i t = eαi t ·

√
a2

ki + b2
ki


 aki√

a2
ki + b2

ki

· cos �i t − bki√
a2

ki + b2
ki

· sin �i t


 . (12.61)

In the same way as in Appendix A3 it can be assumed that

cos φki = aki√
a2

ki + b2
ki

= Re ci√
(Re ci )2 + (Im ci )2

= Re ci

|ci | , (12.62)

sin φki = bki√
a2

ki + b2
ki

= Im ci√
(Re ci )2 + (Im ci )2

= Im ci

|ci | , (12.63)

φki = arcsin (Im ci / |ci |) , (12.64)

|cki | =
√

(Re ci )2 + (Im ci )2 and
√

a2
ki + b2

ki = 2 ·
√

(Re ci )2 + (Im ci )2 = 2 · |ci | . (12.65)

With this notation Equation (12.61) gives

cki eλi t + c∗
ki e

λ∗
i t = 2 · |cki | eαi t · cos(�i t + φki ). (12.66)

Finally, substituting (12.66) into (12.57) gives

xk(t) = · · · + 2 · |cki | eαi t · cos(�i t + φki ) + · · · . (12.67)

This means that in the solution for the state variable xk(t), a pair of complex eigenvalues λi , λ∗
i

corresponds to an oscillatory term eαi t · cos(�i t + φki ) where αi = Reλi and �i = Im λi are the
real and imaginary parts of the eigenvalue. This term is referred to as the oscillatory mode and
it corresponds to a solution of a second-order underdamped differential equation analysed in the
Appendix, Example A3.4.

The above considerations were concerned with complex eigenvalues. The case of real eigen-
values can be obtained from the derived equations by substituting �i = Im λi = 0 and φki =
arcsin (Im ci /|ci |) = 0. The only difference is that the resulting term will not be multiplied by 2
as real eigenvalues are considered individually, not in pairs. This gives for a real eigenvalue λi = αi

xk(t) = · · · + cki eαi t + · · · . (12.68)

The term eαi t is referred to as the aperiodic mode and it corresponds to a solution of a first-order
differential equation analysed in Appendix A3. Taking into account in (12.55) both the real and
imaginary parts of eigenvalues after multiplying both matrices for each variable, the following
solution is obtained:

xk(t) =
∑

λi ∈real

cki · eαi t +
∑

λi ∈complex

2 |cki | · eαi t · cos(�i t + φki ). (12.69)
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Analysis of Equation (12.69) leads to the following conclusions which are important for the
analysis of power system dynamics:

1. Real eigenvalues λi = αi introduce to the response of xk(t) aperiodic modes that are proportional
to eαi t. If αi < 0 then the corresponding aperiodic mode is stable and ( − 1/αi ) is the time constant
of the exponential decay of the mode. If αi > 0 then the corresponding aperiodic mode is unstable
and exponentially increasing.

2. Each conjugate pair of complex eigenvalues λi = αi ± j�i introduces to the response of xk(t) os-
cillatory modes proportional to eαi t · cos(�i t + φki ). If αi < 0 then the corresponding oscillatory
mode is stable. If αi > 0 then the corresponding oscillatory mode is unstable. The term �i is the
frequency of oscillation (in rad/s) of the oscillatory mode. The angle φki is the phase angle of
the oscillatory mode and its value depends on the initial conditions.

3. The solution xk(t) of a differential equation is a linear combination of the modes and the
coefficients of proportionality in that combination depend on the initial conditions. As an
oscillatory mode corresponds to a response of a second-order underdamped system while an
aperiodic mode corresponds to a response of a first-order system, effectively a small-signal
response of a dynamic system of high order is represented as a linear combination of responses
of decoupled second- and first-order systems.

4. A dynamic system described by Equation (12.38) is unstable if any of the modes are unstable.

The definition and the types of modes are given in Table 12.1.
For an oscillatory mode, analogously to Equation (5.65), the following definition of the damping

ratio may be introduced:

ζi = −αi√
α2

i + �2
i

. (12.70)

In practice, as discussed in Section 5.4.6, damping is considered to be satisfactory if the damping
ratio ζ ≥ 0.05.

Table 12.1 Illustration of the definition and types of modes

Eigenvalue λi

Real Complex pair

Notation λi = αi λi = αi + j�i , λ∗
i = αi − j�i

Mode definition eαi t eαi t cos �i t
Mode type Aperiodic Oscillatory
Corresponding to Response of a first-order system Response of a second-order

underdamped system

αi < 0

αi > 0
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Note that cki = wki zi0 in Equation (12.69) depends on the initial conditions zi0 of a given modal
variable zi(t). If this modal variable has zero initial conditions then obviously cki = 0 and the mode
has no influence on the value of xk(t). A mode or a modal variable zi(t) is said to be excited if
cki �= 0. Equation (12.69) shows that the trajectory of xk(t) is influenced only by the excited modes
or excited modal variables. Those modes or modal variables that have the largest values of cki are
said to be dominant modes or dominant modal variables.

The analysis in Section 5.4.6 of the second-order classical model of a synchronous generator
connected to an infinite busbar showed that rotor swings around the synchronous speed can be
aperiodic or oscillatory, depending on the roots of the characteristic equation. These roots are
equal to the eigenvalues of the state matrix – see Equations (5.70) and (5.71) – and the swings are
characterized by the frequency � and the damping ratio ζ . This section showed that the response of a
multi-machine power system, or of a generator described by a higher order differential equation, can
be expressed as a linear combination of uncoupled aperiodic and oscillatory responses, depending on
whether the eigenvalues are real or complex. In other words, rotor swings in a multi-machine power
system can be expressed as a linear combination of uncoupled swings of different frequencies �i

and damping ratios ζ i, similar to those analysed in Section 5.4.6. This finding simplifies significantly
the analysis of multi-machine power systems.

Example 12.5

Find the solution of the differential equation ẋ = Ax for matrix A from Example 12.2. The
eigenvalues are λ1 = −6, λ2 = (−1 − j5) and the corresponding matrices W and U were calculated
in Example 12.2 and Example 12.4, respectively:

A =




−6 0 0
- - - - - - - - - - -

0 1 5
- - - - - - - - - - -

0 −5 1


 , W =




1 0 0
- - - - - - - - - - - - - - - - - - -
0 −1 − j1 −1 + j1
- - - - - - - - - - - - - - - - - - -
0 −1 + j1 −1 − j1


 , U = 1

4




4 0 0
- - - - - - - - - - - - - - - - - - -
0 −1 + j1 −1 − j1
- - - - - - - - - - - - - - - - - - -
0 −1 − j1 −1 + j1


 .

(12.71)

The initial conditions are x10 = x1(t0) �= 0, x20 = x2(t0) �= 0. To simplify complex number ma-
nipulations, multiplication of matrices in Equation (12.50) will be executed in such a way
that first the product (WeΛt) will be calculated, then (WeΛt)U and finally the solution x(t) =
(WeΛtU)x0:

WeΛt =




1 0 0
- - - - - - - - - - - - - - - - - - -
0 −1 − j1 −1 + j1
- - - - - - - - - - - - - - - - - - -
0 −1 + j1 −1 − j1







eλ1t

eλ2t

eλ∗
2 t


 =




eλ1t 0 0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 (−1 − j) · eλ2t (−1 + j) · eλ∗
2 t

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0 (−1 + j) · eλ2t (−1 − j) · eλ∗

2 t




(12.72)

WeΛtU = 1
4




eλ1t 0 0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 (−1 − j) · eλ2t (−1 + j) · eλ∗
2 t

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0 (−1 + j) · eλ2t (−1 − j) · eλ∗

2 t







4 0 0
- - - - - - - - - - - - - - - - - - -
0 −1 + j1 −1 − j1
- - - - - - - - - - - - - - - - - - -
0 −1 − j1 −1 + j1


 .
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Patiently multiplying the matrices and ordering the terms gives

WeΛtU = 1
4




4 · eλ1t 0 0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 2 · (eλ2t + eλ∗
2 t) 2j · (eλ2t − eλ∗

2 t)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 2j · (−eλ2t + eλ∗
2 t) 2 · (eλ2t + eλ∗

2 t)


 . (12.73)

Substituting into this equation λ1 = α1, λ2 = (α2 + j�2), λ3 = λ∗
2 = (α2 − j�2) gives the following

matrix:

WeΛtU =




eα1t 0 0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 eα2t cos �2t −eα2t sin �2t
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 +eα2t sin �2t eα2t cos �2t


 . (12.74)

Substituting this matrix into Equation (12.50) gives

x(t) = WeΛtUx0 =

 x1(t)

x2(t)
x3(t)


 =




eα1t 0 0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 eα2t cos �2t −eα2t sin �2t
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 +eα2t sin �2t eα2t cos �2t





 x10

x20

x30


 , (12.75)

or

x1(t) = x10 · eα1t

x2(t) = eα2t · [x20 cos �2t − x30 sin �2t]

x3(t) = eα2t · [x30 cos �2t + x20 sin �2t].

(12.76)

Obviously the solutions x2(t) and x3(t) corresponding to complex eigenvalues can be expressed
in a form containing an oscillatory mode eα2t cos �2t with a phase angle φ2. To do this the
following notation is introduced (see also Figure A2 in the Appendix):

sin φ2 = x30√
x2

20 + x2
30

, cos φ2 = x20√
x2

20 + x2
30

, φ2 = arcsin
(

x30/

√
x2

20 + x2
30

)
. (12.77)

Now the solutions can be expressed as

x2(t) = eα2t ·
√

x2
20 + x2

30 · (cos φ2 · cos �2t − sin φ2 · sin �2t)

x3(t) = eα2t ·
√

x2
20 + x2

30 · (sin φ2 · cos �2t + cos φ2 · sin �2t) ,

and finally

x1(t) = x10 · eα1t

x2(t) =
√

x2
20 + x2

30 · eα2t · cos(�2t + φ2)

x3(t) =
√

x2
20 + x2

30 · eα2t · sin(�2t + φ2).

(12.78)
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Substituting the numbers α1 = −6, α2 = −1, �2 = 5 gives

x1(t) = x10 · e−6t

x2(t) =
√

x2
20 + x2

30 · e−t · cos(5t + φ2)

x3(t) =
√

x2
20 + x2

30 · e−t · sin(5t + φ2),

(12.79)

where φ2 is given by Equation (12.77) and depends on the initial conditions. As oscillatory
responses x3(t) and x2(t) are proportional to cosine and sine functions, they are shifted in phase
by π/2.

Initial conditions x10 = x20 = x30 = 1 give the phase angle of the mode equal to φ2 = 45◦ = π/4
and the following time responses

x1(t) = e−6t, x2(t) =
√

2 · e−t · cos
(

5t + π

4

)
, x3(t) =

√
2 · e−t · sin

(
5t + π

4

)

shown in Figure 12.1.

1.0

–1.0

t

x(t)

0

x1(t)
x2(t)
x3(t)

s42

Figure 12.1 Illustration for the solution of Example 12.5.

The example shows that the overall system response can be represented as a linear combination
of aperiodic and oscillatory modes. The real eigenvalue λ1 = −6 produces the aperiodic mode
e−6t decaying with a time constant of 1/6 = 0.17 s. The complex conjugate pair of eigenvalues
λ2, 3 = (−1 ± j5) produces the oscillatory mode e−t · cos(5t + φ2) oscillating at frequency 5rad/s
and exponentially decaying with a time constant of 1 s. The system is stable because the real
parts of all the eigenvalues are negative, that is the exponential functions are decaying. In this
particular case the aperiodic mode shows itself only in the response of x1(t) while the oscillatory
mode shows itself only in the responses of x2(t) and x3(t) because the first row of matrix A
(corresponding to x1(t)) contains only one diagonal element. In other words, the first row of A is
decoupled from the other rows.

The considerations so far have assumed that all the eigenvalues of matrix A are distinct, λ1 �= λ2 �=
· · · �= λn . If matrix A has multiple eigenvalues then the situation is more complicated. Nevertheless,
it can be shown (Willems, 1970) that:

The linear equation ẋ = Ax is stable if, and only if, all the eigenvalues of matrix A have non-positive
real parts, Re(λi ) ≤ 0. The system is asymptotically stable if, and only if, all the eigenvalues of matrix A
have negative real parts, Re(λi ) < 0.
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The stability of a linear equation does not depend on the initial conditions but only on the eigen-
values of the state matrix A.

12.1.4 Modal and Sensitivity Analysis

Equation (12.42) shows that each modal variable zi(t) can be expressed as a linear combination of
the state variables, that is

zi (t) =
n∑

j=1

ui j xj (t), (12.80)

where uij is the (i, j) element of matrix U consisting of left eigenvectors. Expanding the sum in
Equation (12.80) gives

zi (t) = ui1x1(t) + ui2x2(t) + · · · + ui j xj (t) + · · · + uin xn(t). (12.81)

This equation shows that the left eigenvectors carry information about the controllability of in-
dividual modal variable by individual state variables. If the eigenvectors are normalized then uij

determines the magnitude and phase of the share of a given variable xj(t) in the activity of a given
mode zi(t). Controlling xj(t) influences a given modal variable zi(t) only if element uij is large. If uij

is small, then controlling xj(t) cannot influence modal variable zi(t).
Equation (12.41) shows that each state variable can be expressed as a linear combination of

modal variables

xk(t) =
n∑

i=1

wki zi (t), (12.82)

where wki is the (k, i) element of matrix W consisting of right eigenvectors. Expanding the sum in
Equation (12.82) gives

xk(t) = wk1z1(t) + wk2z2(t) + · · · + wkj z j (t) + · · · + wkn zn(t). (12.83)

This equation shows that the right eigenvectors carry information about the observability of in-
dividual modal variables in individual state variables. If the eigenvectors are normalized then wkj

determines the magnitude and phase of the share of modal variable zj(t) in the activity of state
variable xk(t). This is referred to as the mode shape. Note that the mode shape represents an in-
herent feature of a linear dynamic system and does not depend on where and how a disturbance
is applied. The mode shape plays an important role in power system stability analysis, especially
for determining the influence of individual oscillatory modes on swings of rotors of individual
generators.

Example 12.6

For a certain large interconnected system, it has been calculated that the damping ratio of one of
the oscillatory modes is unsatisfactory, ζ < 0.05. This mode corresponds to a complex conjugate
pair of eigenvalues λi = −0.451 + j2.198 and λ j = λ∗

i = −0.451 − j2.198. The frequency of the
mode is 2.198/2π ∼= 0.35 Hz while the damping ratio is ζ = 0.045/

√
0.0452 + 2.1982 ∼= 0.02.

The important elements of the right eigenvector associated with λi and the corresponding mode
shapes are shown in Figure 12.2.
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Figure 12.2 Example of mode shapes: (a) right eigenvector associated with the considered eigen-
value; (b) mode shapes in the complex plane.

The state variables corresponding to the considered mode shapes are the rotor angles of three
generators: x1(t) = �δ1(t), xk(t) = �δk(t), xl (t) = �δl (t). For these variables one gets, according
to (12.83),

�δ1(t) = · · · + w1i zi (t) + · · ·
�δk(t) = · · · + wki zi (t) + · · ·
�δl (t) = · · · + wli zi (t) + · · · .

(12.84)

Figure 12.2 shows the mode shapes in the complex plane. Note that the mode shapes wki , wli are
almost directly in the opposite direction with respect to the mode shape w1i . The interpretation
of this is that if a disturbance excites a mode corresponding to the pair of complex eigenvalues
λi = λ∗

j then the rotor of generator 1 will swing at a frequency of 0.35 Hz against the rotors
of generators k, l which are coherent with respect to each other at that particular frequency.
Generator l swings almost directly against generator 1 (the phase difference is 186◦) while the
0.35 Hz swings of generator k are shifted by 159◦ with respect to generator 1. Obviously these
conclusions may not be true for other modes, that is other frequencies of modal oscillations
making up the overall rotor swings.

Interesting examples of the application of mode shapes to analyse power swings in UCTE
interconnected power systems can be found in Breulmann et al. (2000). The article describes how
a number of poorly damped modes have been discovered and how they were grouped, using mode
shapes, into coherent groups of generators swinging against each other.

Knowledge of matrices W and U allows the sensitivity of a particular modal variable zi(t) to
the changes in a particular system parameter to be determined. This is especially important when
choosing the parameter values of any control device installed in the system. Such a sensitivity
analysis is accomplished in the following way.

Let λi be an eigenvalue of matrix A and wi and ui be the right and left eigenvectors associated with
this eigenvalue. Equation (12.23) shows that u i A = λi u i . Right-multiplying by wi gives u i Aw i =
λi u i w i . Substituting u i w i = 1 into the right hand side of that equation (see Equation (12.32)) gives

λi = u i Aw i . (12.85)

Now let β be a system parameter. Equation (12.85) shows that

∂λi

∂β
= u i

∂A
∂β

w i . (12.86)

If the derivative ∂A/∂β in Equation (12.86) is known, then it is possible to determine whether or
not a given parameter improves the system stability by observing if the eigenvalues acquire a larger
real part, that is move to the left in the complex plane, when the value of a parameter changes.
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A particular case of sensitivity analysis is the investigation of the influence of the diagonal
elements of a state matrix on the eigenvalues. Assuming β = Akk gives

A =




A11 · · · A1k · · ·
...

. . .
...

Ak1 · · · Akk
...

...
. . .


 and

∂A
∂β

= ∂A
∂Akk

=




0 · · · 0 · · ·
...

. . .
...

0 · · · 1
...

...
. . .


 (12.87)

∂λi

∂Akk
= u i

∂A
∂Akk

w i = [
ui1 · · · uik · · · ]




0 · · · 0 · · ·
...

. . .
...

0 · · · 1
...

...
. . .







w1i
...

wki
...


 . (12.88)

Multiplying the matrices on the right hand side of Equation (12.88) gives

∂λi

∂Akk
= uikwki = pki . (12.89)

Coefficients pki = uikwki are referred to as the participation factors. Each participation factor is a
product of the kth element of the ith left and right eigenvectors. It quantifies the sensitivity of the
ith eigenvalue to the kth diagonal element of the state matrix. Element wki contains information
about the observability of the ith modal variable in the kth state variable, while uik contains in-
formation about the controllability of the ith modal variable using the kth state variable. Hence
the product pki = uikwki contains information about the observability and controllability. Con-
sequently, the participation factor pki = uikwki is a good measure of correlation between the ith
modal variable and the kth state variable. Participation factors can be used to determine the siting
of devices, enhancing system stability. Generally a damping controller or a stabilizer is preferably
sited where the modal variables associated with a given eigenvalue are both well observable and well
controllable.

The method of calculation of participation factors for the ith eigenvalue and all diagonal elements
A11, . . . , Akk, . . . , Ann of the state matrix A is illustrated below in Equation (12.90) in which for
convenience transposition of the left eigenvalue was used:

uT
i =




ui1

...
uik
...

uin




, w i =




w1i
...

wki
...

wni




; hence




ui1

...
uik
...

uin




→

→

→




w1i
...

wki
...

wni




⇒

⇒

⇒




ui1w1i
...

uikwki
...

uinwni




=




p1i
...

pki
...

pni




= pi .

(12.90)

Elements of column vector pi contain participation factors quantifying to what extent individual
diagonal elements A11, . . . , Akk, . . . , Ann of the state matrix may influence eigenvalue λi. If, for
example, pki is large, it means that a diagonal element Akk of the state matrix has s large influence
on λi.
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Example 12.7

Consider again the system used previously in Example 12.2, Example 12.4 and Example 12.5
characterized by

A =




−6 0 0
- - - - - - - - - - - -
0 −1 5

- - - - - - - - - - - -
0 −5 −1


 ; λ1 = −6, λ2 = (−1 − j5), λ3 = (−1 + j5) = λ∗

2. (12.91)

The concluding remark in Example 12.5 stated that, due to the block diagonal structure of
matrix A, the aperiodic mode corresponding to λ1 was linked only with the first row of A while
the oscillatory mode corresponding to λ2 = λ∗

3 was linked only to the second and third rows of
A. This conclusion will now be confirmed formally by calculating participation factors.

Right eigenvalues w1, w2, w3 were calculated in Example 12.2. Left eigenvalues u1, u2, u3 were
calculated in Example 12.4. For convenience, left-transposed eigenvectors are used, uT

1 , uT
2 , uT

3 .
For the first pair, that is for λ1, one gets

uT
1 = 1

4




4

0

0


 , w1 =




1
- -
0
- -
0


 or

1
4




4

0

0




→
→
→




1
- -
0
- -
0




⇒
⇒
⇒




1
- -
0
- -
0


 = p1. (12.92)

This confirms that that the first eigenvalue may be influenced only by changing element A11 of
matrix A. Elements A22 and A33 have no influence on λ1 and the corresponding aperiodic mode.

For the second pair, that is for λ2, one gets

uT
2 = 1

4




0

−1 + j

−1 − j


 , w2 =




0
- - - - - -
−1 − j
- - - - - -
−1 + j


 or

1
4




0

−1 + j

−1 − j




→
→
→




0
- - - - - -
−1 − j
- - - - - -
−1 + j




⇒
⇒
⇒




0
- -
2
- -
2




1
4

= p2.

(12.93)

For the third pair, that is for λ3 = λ∗
2, one gets

uT
3 = 1

4




0

−1 − j

−1 + j


 , w3 =




0
- - - - - -
−1 + j
- - - - - -
−1 − j


 or

1
4




0

−1 − j

−1 + j




→
→
→




0
- - - - - -
−1 + j
- - - - - -
−1 − j




⇒
⇒
⇒




0
- -
2
- -
2




1
4

= p3.

(12.94)

This confirms that eigenvalues λ2 and λ3 = λ∗
2 may be equally influenced by changing elements

A22 and A33 of A. Element A11 has no influence on λ2 and λ3 = λ∗
2.

12.1.5 Modal Form of the State Equation with Inputs

The state equation (12.38) is homogeneous; that is, it is of the form ẋ − Ax = 0. Sometimes it is
necessary to consider a non-homogeneous equation of the form ẋ − Ax = Bu. This equation is
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usually written as

ẋ = Ax + Bu (12.95)

where B is a rectangular matrix and u is a column vector containing system inputs.
Equation (12.95) can also be analysed using modal analysis. Substituting Equations (12.41) into

Equation (12.95) gives Wż = AWz + Bu, or ż = W−1 AWz + W−1 Bu. After taking into account
Equations (12.20) and (12.21), this gives

ż = Λz + bu. (12.96)

where b = W−1 B = UB. Equation (12.96) represents the modal form of the state equation (12.95).
This equation may be used to study the influence of inputs u on the excitation of modal variables
z(t). Equation (12.96) may be written as




ż1

...
żi
...

żn




=




λ1

. . .
λi

. . .
λn







z1

...
zi
...

zn




+




b1

...
bi
...

bn




u, (12.97)

or żi = λi zi + bi u. It shows that the excitation of a given modal variable by input u is decided by
row vector bi. It may happen that a certain structure of matrix B results in some modal variables
not being excited. An example of this will be given in Section 14.6.3.

12.1.6 Nonlinear System

Generally a nonlinear dynamic system can be described by the differential matrix equation

ẋ = F (x), (12.98)

where x is the vector of the n state variables. The equilibrium points x̂ are those points where the
system is at rest, that is where all the state variables are constant and their values do not change
with time, so that F (x̂) = 0. Expanding function F(x) in the vicinity of x̂ in a Taylor series, and
neglecting the nonlinear part of the expansion, gives the linear approximation of the nonlinear
equation (12.98) as

�ẋ = A�x, (12.99)

where �x = x − x̂ and A = ∂ F/∂x is the Jacobi matrix calculated at the point x̂. Equation (12.99)
is known as the state equation.

Lyapunov’s first method now defines the stability of the nonlinear system based on its linear
approximation as follows:

A nonlinear system is steady-state stable in the vicinity of the equilibrium point x̂ if its linear approxi-
mation is asymptotically stable. If the linear approximation is unstable, then the nonlinear system is also
unstable. If the linear approximation is stable, but not asymptotically stable, then it is not possible to
assess the system stability based on its linear approximation.

This theorem, together with Lyapunov’s first theorem, leads to the conclusion that if the nonlinear
equation ẋ = F (x) can be approximated by the linear equation �ẋ = A�x then the nonlinear
system is asymptotically stable if all the eigenvalues of the state matrix A are negative (Re(λi ) < 0).



P1: OTA/XYZ P2: ABC
c12 JWBK257/Machowski September 22, 2008 21:52 Printer Name: Yet to Come

514 Power System Dynamics

If any of the eigenvalues have a positive real part then the system is unstable. If any of the eigenvalues
are zero then no conclusion can be reached with regard to the system stability and some other
method, such as Lyapunov’s second method, must be used.

12.2 Steady-State Stability of Unregulated System

The inherent steady-state stability of a power system is concerned with analysing the response of
generators when the system is subjected to a small disturbance and when the effect of the voltage reg-
ulators is neglected. This form of stability was first discussed in Section 5.4 for the generator–infinite
busbar system where the steady-state stability limit (critical power) was determined (Figure 5.5)
by the steady-state model of the generator; that is constant emfs Ef = Eq and Ed = 0 behind the
synchronous reactances Xd and Xq in conjunction with the swing equation, Equation (5.15). The
same assumption is valid in this chapter when each ith generator is replaced by emf Ei behind
reactance Xi. In the considered case of an unregulated system it is further assumed that

Ei = Eqi and Xi = Xdi = Xqi . (12.100)

Nodes behind the generator reactances form the generator nodes set {G}. The system model is
shown schematically in Figure 12.3a. {L} is the set of load nodes that are eliminated, which leads
to an equivalent transfer network, shown in Figure 12.3b. In the equivalent network, the generator
nodes {G} are directly connected with each other.

Assuming small power angle variations, the swing equation, Equation (5.15), can be written in
the following way for each ith generator:

d�δi

dt
= �ωi

d�ωi

dt
= −�Pi

Mi
− Di

Mi
�ωi

for i = 1, 2, . . . , n, (12.101)

where �Pi is the change in the generator real power determined using the incremental network
equations (3.157). Equations (3.157) and (12.101) constitute the basic linearized system model
suitable for assessing small-signal stability. However, the final form of the state equation will
depend on additional assumptions regarding the value of the damping coefficients and the load
model used.

network

(a)

{G} {L}

iIi
Xi

Ei

eq
ui

va
le

nt
ne

tw
or

k

(b)

{G}

iIi

Ei

Figure 12.3 Network model for the steady-state stability analysis: (a) before elimination of load
nodes; (b) after elimination. {G} is the set of generator nodes behind the synchronous reactances,
{L} is the set of load nodes including generator terminals.
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12.2.1 State-Space Equation

Computations are considerably simplified if all the system loads are modelled as constant impedance
loads. Further simplifications can be introduced by neglecting steady-state saliency so that for all
the generators Xd = Xq. The next step is to eliminate all the load nodes, including the generator
terminal nodes, in the network model of Figure 12.3 using the method described in Section 12.2.
The only retained nodes are the fictitious generator nodes behind the synchronous reactances. The
equivalent transfer network directly links all the generator nodes. For this network, Equations
(3.154) and (3.157) can be used with the voltages Vi replaced by the synchronous emfs Ei. As
�Ei = 0, Equation (3.157) can be simplified to

�P = H�δ, (12.102)

where, according to Equation (3.160), the elements of the Jacobi matrix are

Hi j = ∂ Pi

∂δ j
= Ei Ej (−Bi j cos δi j + Gi j sin δi j )

Hii = ∂ Pi

∂δi
=

n∑
j=1

Ei Ej (Bi j cos δi j − Gi j sin δi j ).
(12.103)

The matrix H is singular because the sum of the elements in each of its rows is zero:

n∑
j=1

Hi j = Hii +
n∑

j �=i

Hi j = 0. (12.104)

At this stage it is tempting to define the increments in the power angles as the state variables but,
as a loss of synchronism does not correspond to a simultaneous increase in all the power angles,
this is not a valid choice. Rather, as a loss of synchronism is determined by the relative angles �δin

calculated with respect to a reference generator, it is the increments in these relative angles that must
be used as the state variables. This is illustrated in Figure 12.4.

The power change in all the generators must now be related to the relative angles �δin. Assuming
that the last generator, numbered n, acts as the reference, Equation (12.104) gives

Hin = −
n∑

j �=n

Hi j . (12.105)

reference

b

i

n

a

1

δin

δn

δi

Figure 12.4 The emfs in the complex plane. Finding the relative angles δin = δi − δn where n is the
reference generator and (a, b) are the rectangular coordinates of network equations.
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The power change in any of the generators, Equation (12.102), can be expressed as

�Pi =
n∑

j=1

Hi j �δi =
∑
j �=n

Hi j �δ j + Hin�δn =
∑
j �=n

Hi j �δ j −
∑
j �=n

Hi j �δn

(12.106)
=

∑
j �=n

Hi j (�δ j − �δn) =
∑
j �=n

Hi j �δ jn .

Equation (12.102) can now be expressed as a function of the relative angles by removing the last
column of H, that is




�P1

�P2

...
�Pn


 =




H11 H12 · · · H1,n−1

H21 H22 · · · H2,n−1

...
...

. . .
...

H21 Hn2 · · · Hn,n−1







�δ1n

�δ2n
...

�δn−1,n


 or �P = Hn�δn, (12.107)

where the matrix Hn is rectangular and is of dimension n × (n − 1) while the vector �δn contains
(n − 1) relative rotor angles calculated with respect to the nth reference generator.

Substituting Equation (12.107) into the differential equation (12.101) gives




�δ̇1n

�δ̇2n

...
�δ̇n−1,n

- - - - - - -

�ω̇1

�ω̇2

...

�ω̇n−1

- - - - - - -

�ω̇n




=




0 0 · · · 0 1 0 · · · 0 −1
0 0 · · · 0 0 1 · · · 0 −1
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · 1 −1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

− H11

M1
− H12

M1
· · · − H1,n−1

M1
− D1

M1
0 · · · 0 0

− H21

M2
− H22

M2
· · · − H2,n−1

M2
0 − D2

M2
· · · 0 0

...
...

. . .
...

...
...

. . .
...

...

− Hn−1,1

Mn−1
− Hn−1,n−1

Mn−1
· · · − Hn−1,n−1

Mn−1
0 0 · · · − Dn−1

Mn−1
0

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

− Hn1

Mn
− Hn2

Mn
· · · − Hn,n−1

Mn
0 0 · · · 0 − Dn

Mn







�δ1n

�δ2n

...
�δn−1,n

- - - - - - -

�ω1

�ω2

...

�ωn−1

- - - - - - -

�ωn




.

(12.108)

Equation (12.108) can be expressed more compactly as


�δ̇n

- - - -
�ω̇


 =


 0 1−1

- - - - - - - - - - - - - - - - - -
−M−1 Hn −M−1 D





 �δn

- - - -
�ω


 or �ẋ = A�x, (12.109)

where 1−1 denotes a diagonal unit matrix extended by a column whose elements are equal to (−1).
In this equation the state vector has (2n − 1) elements consisting of (n − 1) angle changes and n
speed deviations. The matrix A has a rank equal to (2n − 1).
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For the generator–infinite busbar system Equation (12.108) takes the form


 �δ̇

- - - -
�ω̇


 =




0 1
- - - - - - - - - - - -

− H
M

− D
M





 �δ

- - - -
�ω


 . (12.110)

The characteristic equation of this matrix is

λ2 + D
M

λ + H
M

= 0 (12.111)

and results in two eigenvalues. This equation is identical to the characteristic equation (5.59) but with
H = KEq used instead of the transient synchronizing power coefficient KE′ . This is a consequence
of using Equation (12.108) or (12.110) to assess the steady-state stability, not the frequency of
rotor oscillations. If the classical transient model were used with the generator represented by the
transient reactance X′

d then Equation (12.108) or (12.110) could be used to determine the frequency
of oscillations but not for assessing the steady-state stability. As shown in Section 5.4, Figure 5.16,
the steady-state stability limit is determined by the steady-state characteristic obtained when the
generator is represented by the emf Eq behind the synchronous reactance Xd.

12.2.2 Simplified Steady-State Stability Conditions

Equation (12.108) is valid when the network conductances are included and for any value of
the damping coefficients. Checking the steady-state stability condition requires the calculation of
eigenvalues of matrix A, which is time consuming. This can be significantly simplified if network
conductances are neglected and uniform weak damping of swings of all generators is assumed.

Damping of rotor swing in a system is uniform if

D1

M1
= D2

M2
= · · · = Dn

Mn
= d. (12.112)

With uniform damping the swing equation for any machine, and for the reference machine, can be
written as

d�ωi

dt
= −�Pi

Mi
− d�ωi ,

d�ωn

dt
= −�Pn

Mn
− d�ωn . (12.113)

Subtracting the last equation from the first gives

d�ωin

dt
= −

(
�Pi

Mi
− �Pn

Mn

)
− d�ωin or i = 1, 2, . . . , (n − 1), (12.114)

where �ωin = �ωi − �ωn = dδin/dt and is the rotor speed deviation of the ith generator relative
to the reference machine. Substituting the power changes calculated from Equation (12.107) into
Equation (12.114) gives


 �δ̇n−1

- - - - - -
�ω̇n−1


 =


 0 1

. . . . . . .
a −d..

..
..

..





 �δn−1

- - - - - -
�ωn−1


 or �ẋ = A�x, (12.115)

where 1 is the unit matrix, �δn−1 and �ωn−1 are the vectors of the (n − 1) relative changes in the
power angles and speed deviations, and d is a diagonal matrix in which all the diagonal elements
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are identical and equal to d given by Equation (12.112). The matrix a is equal to

a = −




H11

M1
− Hn1

Mn

H12

M1
− Hn2

Mn
· · · H1,n−1

M1
− Hn,n−1

Mn

H21

M2
− Hn1

Mn

H22

M2
− Hn2

Mn
· · · H2,n−1

M2
− Hn,n−1

Mn
...

...
. . .

...

Hn−1,1

Mn−1
− Hn1

Mn

Hn−1,2

Mn−1
− Hn2

Mn
· · · Hn−1,n−1

Mn−1
− Hn,n−1

Mn




. (12.116)

Comparing the matrix a with the square state matrix in Equation (12.108) shows that the matrix
a is created by subtracting the last row in Equation (12.108) from all the upper rows correspond-
ing to the elements Hij. The state vector in Equation (12.115) has (2n − 2) elements, including
(n − 1) relative angles �δin and (n − 1) relative speed deviations �ωin . The problem of finding the
eigenvalues of the state matrix in Equation (12.115) can now be simplified to that of determining
the eigenvalues of the matrix a which, with rank (n − 1), is half the size. This can be explained as
follows.

Let λi and wi be the eigenvalues and eigenvectors of the matrix A in Equation (12.115). The
definition of the eigenvalues and eigenvectors gives


 0 1

. . . . . . .
a −d..

..
..

..





 w ′

i

- - - -
w ′′

i


 = λi


 w ′

i

- - - -
w ′′

i


 , (12.117)

or, after multiplying, w ′′
i = λi w ′

i and (aw ′
i − dw ′′

i ) = λi w ′′
i . Substituting w ′′

i calculated from the first
equation into the second gives aw ′

i = (λ2
i + dλi )w ′

i or aw ′
i = µi w ′

i where µi = λ2
i + dλi . Hence

λ2
i + dλi − µi = 0. (12.118)

Obviously µi and w ′
i also satisfy the definition of eigenvalues and eigenvectors of matrix a. The

eigenvalue λi can be found by solving Equation (12.118) to give

λi = −d
2

±
√

d2

4
+ µi . (12.119)

Thus, knowing the eigenvalues µi of matrix a it is possible to determine the eigenvalues λi. With
this information it is possible to evaluate the system stability knowing the eigenvalues µi and the
damping coefficient d. Obviously, determining the eigenvalues µi of matrix a of rank (n − 1) is less
computationally intensive than determining the eigenvalues λi of matrix A which has a rank (2n − 2).
Thus the assumption of uniform damping, if valid, considerably simplifies stability calculations.

Equation (12.118) shows that if the damping coefficient is zero, d ∼= 0, then λi = ±√
µi , that is

the eigenvalues of the state matrix A are the square root values of the eigenvalues of matrix a. Hence
if an eigenvalue µi is complex (Figure 12.5a) then one of the eigenvalues λi lies on the right hand
side of the complex plane and the system is unstable. On the other hand, if an eigenvalue µi is real
and negative (Figure 12.5b) then the corresponding eigenvalues λi lie on the imaginary axis. In this
case any small positive damping will move the eigenvalues to the left hand plane and the system
will be stable (Figure 12.5c).

When damping is weak, the steady-state stability condition is that eigenvalues µi of matrix a
should be real and negative:

µi ∈ Real and µi < 0 for i = 1, 2, . . . , n − 1. (12.120)



P1: OTA/XYZ P2: ABC
c12 JWBK257/Machowski September 22, 2008 21:52 Printer Name: Yet to Come

Steady-State Stability of Multi-Machine System 519

Im
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λ2
∗ λ1

∗
µ∗

µ
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λ1

λ2
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λ2

µ

d

2

00

(a) (b) (c)

Figure 12.5 Eigenvalues µ and λ when: (a) µ is complex; (b) µ is real and negative; (c) µ is real
and negative and there is positive damping.

Further simplification can be obtained by neglecting network conductances. Equation (12.103)
shows that if Gi j

∼= 0 then Hi j
∼= Hji , that is the matrix of synchronizing powers is symmetric

HT = H.
When matrix H is symmetric, Equation (12.104) is valid for rows and also valid for columns of

the matrix. Similar to (12.105) one gets

Hnj = −
n∑

i �=n

Hi j . (12.121)

Under this assumption matrix (12.116) can be written in a product form

a = −m Hn−1, (12.122)

where

m =




1
M1

+ 1
Mn

1
Mn

· · · 1
Mn

1
Mn

1
M2

+ 1
Mn

· · · 1
Mn

...
...

. . .
...

1
Mn

1
Mn

· · · 1
Mn−1

+ 1
Mn




(12.123)

Hn−1 =




H11 H12 · · · H1,n−1

H21 H22 · · · H2,n−1

...
...

. . .
...

Hn−1,1 Hn−1,2 · · · Hn−1,n−1


 . (12.124)

According to the definition of the right eigenvector and eigenvalue, aw i = µi w i holds. Substituting
for a on the right hand side of Equation (12.122) gives mHn−1w i = −µi w i , that is

Hn−1w i = −µi m−1w i (12.125)

and

w∗T
i H∗T

n−1 = −µ∗
i w∗T

i (m−1)∗T. (12.126)
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Now Equation (12.125) should be left-multiplied by w∗T
i and Equation (12.126) right-multiplied by

wi. This gives

w∗T
i Hn−1w i = −µi w∗T

i m−1w i (12.127)

w∗T
i H∗T

n−1w i = −µ∗
i w∗T

i (m−1)∗Tw i . (12.128)

Under the discussed assumptions matrix Hn−1 is real and symmetric and therefore Hn−1 =
H∗T

n−1 holds. Similarly for the matrix in Equation (12.123), m−1 = (m−1)∗T holds. Now comparing
Equations (12.127) and (12.128) gives µ∗

i = µi . This means that under the considered assumptions
(neglecting conductances) the eigenvalues µi of matrix a are real µi ∈ Real. Hence the first of
conditions (12.120) is satisfied and there is no need to check it. Checking the second of conditions
(12.120), that is µi < 0, can be simplified by the following observations.

It is easy to check that matrix m is positive definite, hence w∗T
i m−1w i > 0. Equation (12.127)

shows that if µi < 0 then w∗T
i Hn−1w i > 0. This means that instead of checking if the eigenvalues µi

are negative, it is enough to check if matrix Hn−1 is positive definite. If conductances are neglected,
the steady-state stability condition is that the matrix of synchronizing powers Hn−1 is positive
definite. According to Sylvester’s theorem, this condition is satisfied if the main minors are positive,
that is

H11 > 0,

∣∣∣∣ H11 H12

H21 H22

∣∣∣∣ > 0,

∣∣∣∣∣∣
H11 H12 H13

H21 H22 H23

H31 H32 H33

∣∣∣∣∣∣ > 0, etc. (12.129)

Condition (12.129) is a generalization of condition (5.33) in Section 5.4.1 obtained for the
generator–infinite busbar system when condition (12.129) simplifies to H11 > 0, that is H =
(∂ P/∂δ) > 0.

It can be shown that when the conductances are neglected, the sufficient condition for matrix
Hn−1 to be positive definite is ∣∣δi − δ j

∣∣ <
π

2
for i, j = 1, 2, . . . , n (12.130)

This means that the angle between the emfs of any pair of generators must be less than π/2. Proof
of this will be undertaken in the following way. Matrix Hn−1 can be expressed as

Hn−1 = CT(diagHi j ) C (12.131)

where C is the incidence matrix of generator nodes and the branches linking them. Each such
branch corresponds to a parameter

Hi j = ∂ Pi/∂δ j = −Ei Ej Bi j cos δi j , (12.132)

corresponding to the synchronizing power. According to the Cauchy–Binet theorem (Seshu and
Reed, 1961), the determinant of matrix (12.131) can be expressed as

det Hn−1 =
∑
trees

( ∏
branches

(−Hi j
))

, (12.133)

that is as the sum of negative values of synchronizing powers over all the possible branches of
the graph. The sufficient condition for the sum to be positive is that each component is positive.
The sufficient condition for each component to be positive is (−Hi j ) = Ei Ej Bi j cos δi j > 0, or
cos δi j > 0, as for the inductive branches Bi j > 0. Condition cos δi j > 0 is satisfied if condition
(12.130) is satisfied. Similar considerations can be applied for matrices Hn−2, Hn−3 and so on, that
is the main minors of matrix Hn−1.
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The stability conditions (12.120), (12.129) and (12.130) are all based on a variety of assump-
tions. Condition (12.120) is the most accurate because it includes network conductances which are
neglected in condition (12.129). Condition (12.130) holds when the network conductances are ne-
glected. Compared with (12.120), conditions (12.129) and (12.130) give an approximate assessment
of steady-state stability. This will be illustrated using an example.

Example 12.8

Consider a three-machine system in which elimination of the load nodes has resulted in the
following admittances (in per-unit notation) of the branches linking the generator nodes: y12 =
(0.3 + j1.0), y13 = (2.5 + j7.0) and y23 = (1.5 + j4.0). The inertia coefficients of the generators
are M1 = 10, M2 = 2 and M3 = 1. The third generator was assumed to be the reference machine;
hence the angles δ13 and δ23 are the state variables. The steady-state stability area is shown in
Figure 12.6 in the (δ23, δ13) plane for each of the stability conditions (12.120), (12.129) and
(12.130).

π
2

−
π
2

−
π
2

π
2

δ23

δ13

δ23

δ13

(a) (b)

Figure 12.6 Examples of steady-state stability areas in the three-machine system: (a) the area
with conductances included (solid line) and conductances neglected (dashed line); (b) the area
with conductances neglected (dashed line) and the area due to the necessary condition (dashed
line).

The solid line in Figure 12.6a corresponds to the case when the network conductances have
been included and condition (12.120) used. When the line is exceeded, the system loses stability in
an aperiodic way, that is real positive eigenvalues λ will appear. Oscillatory instability corresponds
to the small dashed areas when complex eigenvalues λ have positive real parts. When the network
conductances are neglected, condition (12.129) corresponds to the area restricted by the dashed
line in Figure 12.6a. The area corresponding to condition (12.129) is repeated in Figure 12.6b
and compared with the area corresponding to the necessary condition (12.130). Clearly both
areas are quite close to each other.

12.2.3 Including the Voltage Characteristics of the Loads

The linear equation in (12.108) was derived in two stages. First the load nodes in the network
admittance model were eliminated, Figure 12.3a, and then the power equations of the equivalent
transfer matrix were linearized. By reversing the order of these steps the voltage characteristics of
the loads can be included in the model. To accomplish this it is first necessary to linearize the original
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network model and replace the power increments of the loads by the increments resulting from the
voltage characteristics before eliminating the load nodes in the linearized network equation.

As the voltage magnitude at all the generator nodes {G} is constant (steady-state representation),
all the increments �Ei = 0 for i ∈ {G}. In this case the incremental network equation (3.157) has
the following form for the original network model (Figure 12.3a):




�PG

- - - - -
�PL

� QL


 =




HGG HGL MGL

- - - - - - - - - - - - - - - - -
HLG HLL MLL

- - - - - - - - - - - - - - - - -
NLG NLL KLL







�δG

- - - - -
�δL

�VL


 , (12.134)

where the submatrices, forming the square matrix, are the partial derivatives of the power with
respect to the nodal voltage angles and magnitudes. The indices show which set of nodes, {G} or
{L}, a particular submatrix refers to.

In Section 3.5, the voltage sensitivities of the loads kPV and kQV were introduced so that for a small
change in the voltage at each of the load nodes j ∈ {L}, both �Pj = kPV j �Vj and �Q j = kQV j �Vj

hold. These can be written for the whole set {L} as

�PL = −kP�VL, � QL = −kQ�VL, (12.135)

where kP = diag(kPVi ) and kQ = diag(kQVi ) are diagonal matrices of the voltage sensitivities. The
minus sign is present because loads in the network equations represent negative injections, that is
outflow from the node.

Substituting Equation (12.135) into Equation (12.134) gives after some algebra


�PG

- - - - -
0

- - - - -
0


 =




HGG HGL MGL

- - - - - - - - - - - - - - - - - - - - -
HLG HLL MLL + kP

- - - - - - - - - - - - - - - - - - - - -
NLG NLL KLL + kQ







�δG

- - - - -
�δL

- - - - -
�VL


 . (12.136)

Partial inversion of this equation allows the submatrices �δL, �VL to be eliminated to obtain an
equation of the same form as Equation (12.102) where

H = HGG − [
HGL MGL

] 
 HLL MLL + kP

- - - - - - - - - - - - - - -
NLL KLL + kQ




−1 
 HLG

- - - - -
NLG


 . (12.137)

The remaining calculations follow the same pattern as described in the previous section with
Equations (12.108) and (12.117) being equally valid but now with the elements Hij calculated from
the matrix defined in Equation (12.137).

12.2.4 Transfer Capability of the Network

System operators often want to know the transfer capability, that is the maximum power that can be
exported from a given power plant to the system or from one subsystem to another. Calculation of
the transfer capability can be done using a modified load flow program in which impedances of the
generating units are also taken into account while the fictitious nodes behind those nodes are treated
as the generator (PV) nodes. The calculations are done step by step. The power demand for a given
set of nodes is increased in each step, and load flow together with steady-state stability conditions are
determined. The power at which the steady-stability condition is reached is considered to represent
the transfer capability.



P1: OTA/XYZ P2: ABC
c12 JWBK257/Machowski September 22, 2008 21:52 Printer Name: Yet to Come

Steady-State Stability of Multi-Machine System 523

The previous section showed that system stability can be checked using the simple necessary
condition (12.130) or (12.129). When checking condition (12.129) one can calculate only the de-
terminant of the Jacobi matrix. This is because, when the operating point is moved towards the
stability limit, the first to reach zero is the main minor, that is the determinant of the Jacobi matrix.
Some professional load flow programs based on the Newton method calculate the value of the
determinant of the Jacobi matrix and hence may be used to determine the stability limit.

12.3 Steady-State Stability of the Regulated System

In Section 5.5 the steady-state stability of the regulated generator–infinite busbar system was
discussed. In the present section this analysis will be extended to multi-machine systems.

In order to assess the steady-state stability of a regulated power system, detailed models of the
generators, the exciters, the turbine governors and the power system stabilizers must be used. This
leads to a large number of state variables being required to describe each generating unit. As a
complete description of the full linearized system model would therefore be complicated, and take
up a lot of space, the approach adopted here is to describe the overall methodology of creating the
system model using relatively simple component models. The creation of more extensive system
models would then follow similar lines.

12.3.1 Generator and Network

To simplify considerations the fifth-order generator model described in Section 11.1.6 will be used.
For this model it is convenient to attach the generator subtransient reactance to the network model.
The procedure is similar to that shown in Figure 12.3 with the only difference being that for
the purpose of assessing the inherent steady-state stability the generator was represented by the
synchronous reactances and synchronous emf Eq = constant. As variations in the subtransient emfs
now have to be considered, the generator reactances attached to the network are the subtransient
(not steady-state) reactances and hence (similar to Equation (12.100)) can be written

Ei = E′′ and Xi = X′′
d i = X′′

q i (12.138)

After all the load nodes, including the generator terminal nodes, have been eliminated, the
generator currents can be expressed in terms of the subtransient emfs. Working in rectangular
coordinates, the currents can be expressed in the same way as in Equation (3.153) to give

Iai =
n∑

j=1

(
Gi j E′′

a j − Bi j E′′
b j

)
, Ibi =

n∑
j=1

(
Gi j E′′

b j + Bi j E′′
a j

)
. (12.139)

The emfs E′′
d and E′′

q in the individual generator (d, q) coordinate system can be transformed to the
(a, b) coordinate system using Equation (3.166) to give

E′′
a j = −E′′

d j sin δ j + E′′
q j cos δ j , E′′

b j = E′′
d j cos δ j + E′′

q j sin δ j , (12.140)

while the reverse transformation in Equation (3.167) can be used for the generator currents

Idi = −Iai sin δi + Ibi cos δi , Iqi = Iai cos δi + Ibi sin δi . (12.141)

It should be noted that the rotor angle δ is the angle of the rotor q-axis measured with respect to
the reference frame and not the phase angle of the subtransient emf E′′.
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Substituting Equations (12.139) and (12.140) into Equation (12.141) gives after some simple but
arduous algebra

Idi =
n∑

j=1

[(Bi j cos δi j − Gi j sin δi j )E′′
q j + (Bi j sin δi j + Gi j cos δi j )E′′

d j ]

Iqi =
n∑

j=1

[(Bi j sin δi j + Gi j cos δi j )E′′
q j − (Bi j cos δi j − Gi j sin δi j )E′′

d j ].

(12.142)

These are the transfer network equations in the (d, q) coordinates of the individual generators.
Similar to the power increment in Equation (12.106), Equation (12.142) allows the current

increments to be expressed in terms of the increments in the relative angles �δ jn and the increments
of the component emfs as


 �Iq

- - - - -
�Id


 =




∂ Iq

∂δn−1

∂ Iq

∂ E′′
q

∂ Iq

∂ E′′
d

- - - - - - - - - - - - - - - - - - - - -
∂ Id

∂δn−1

∂ Id

∂ E′′
q

∂ Id

∂ E′′
d







�δn−1

- - - - -
�E′′

q

- - - - -
�E′′

d


 , (12.143)

where �Iq, �Id, �δn−1, �E′′
q and �E′′

d are the appropriate generator increment vectors. The elements
of the Jacobi matrix can be found by differentiating the right hand side of the equations in (12.142)
and will not be considered further here. However. it should be remembered that vector �δn−1 is
of size (n − 1) so that the submatrices ∂ Iq/∂δn−1 and ∂ Id/∂δn−1 are rectangular with dimensions
n × (n − 1).

If transient saliency is neglected X′′
q ≈ X′′

d then Equation (11.102) simplifies to Pi = E′′
qi Iqi +

E′′
di Idi which, after substituting for Idi and Iqi from Equation (12.142), yields

Pi = E′′
di

n∑
j=1

](Bi j cos δi j − Gi j sin δi j )E′′
q j + (Bi j sin δi j + Gi j cos δi j )E′′

d j ]

+ E′′
qi

n∑
j=1

[(Bi j sin δi j + Gi j cos δi j )E′′
q j − (Bi j cos δi j − Gi j sin δi j )E′′

di ].

(12.144)

Linearizing and expressing this equation in matrix form gives

[�P] =
[

∂ P
∂δn−1

∂ P
∂ E′′

q

∂ P
∂ E′′

d

]



�δn−1

- - - - -
�E′′

q

- - - - -
�E′′

d


 , (12.145)

where �P is the vector of the power increments in all the generators and ∂ P/∂δn−1 is a rectangular
Jacobi matrix of dimension n × (n − 1). The Jacobi submatrices are calculated by differentiating
the right hand side of the equations in (12.144).

The terminal voltage equation (11.100) can be treated in a similar way. Substituting Equation
(12.142) into Equation (11.100) gives

Vqi = E′′
qi + X′′

di

n∑
j=1

[(Bi j cos δi j − Gi j sin δi j )E′′
q j + (Bi j sin δi j + Gi j cos δi j )E′′

d j ]

Vdi = E′′
di − X′′

qi

n∑
j=1

[(Bi j sin δi j + Gi j cos δi j )E′′
q j − (Bi j cos δi j − Gi j sin δi j )E′′

d j ].

(12.146)
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The quantity of interest with regard to voltage regulator action is the voltage magnitude Vi =√
V2

qi + V2
di so that

[�V] =
[

∂V
∂δn−1

∂V
∂ E′′

q

∂V
∂ E′′

d

]



�δn−1

- - - - -
�E′′

q

- - - - -
�E′′

d


 , (12.147)

where �V is the vector of the magnitude increments in the terminal voltages of all the generators.
The Jacobi submatrices can be calculated by taking the partial derivative of the voltage magnitude
with respect to a variable α as

∂Vi

∂α
= 1

Vi

(
Vqi

∂Vqi

∂α
+ Vdi

∂Vdi

∂α

)
, (12.148)

where α signifies E′′
qi , E′′

q j , E′′
di , E′′

d j , δi or δj. The derivatives ∂Vqi/∂α and ∂Vdi/∂α are obtained by
differentiating the right hand sides of the equations in (12.146).

The linearized generator differential equations can now be obtained from Equations (10.96),
(10.97), (10.98) and (10.89) as

�δ̇n−1 = 1−1�ω

M�ω̇ = −�P − D�ω

T ′
d0�Ė′

q = −�E′
q + �X′

d�Id + �Ef

T ′′
d0�Ė′′

q = −�E′
q − �E′′

q + �X′′
d�Id

T ′′
q0�Ė′′

d = −�E′′
d − �X′′

q�Iq,

(12.149)

where �E′
q, �E′′

q, �E′′
d, �Iq, �Td, �P and �ω are the generator increment vectors of size n while

�δn−1 is the increment vector of the relative angles of size (n − 1). The matrices T ′
q0, T ′

d0, M and
D are the respective diagonal matrices of the generator time constants, inertia coefficients and
damping coefficients. Matrices �X are diagonal and contain the following elements:

�X′
d = diag

(
Xdi − X′

di

)
�X′′

d = diag
(
X′

di
− X′′

di
)

�X′′
q = diag

(
X′

qi
− X′′

qi
)
.

(12.150)

Substituting Equations (12.143), (12.145) and (12.147) into Equation (12.149) gives the state
equation (12.49). The four submatrices in the upper left corner of the state matrix have the same
structure as the state matrix used in Equation (12.110) to assess the steady-state inherent stability.
The changes in Ef, appearing in the last component of Equation (12.151), are due to the action of
the generator exciters and AVR systems.

12.3.2 Including Excitation System Model and Voltage Control

Models were derived in Section 11.2 for the different types of excitation systems. For steady-state
stability purposes nonlinearity effects do not play a major role and may be neglected, allowing the
excitation systems to be represented by a high-order transfer function. To show how the linearized
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Figure 12.7 Simplified block diagram of the exciter with AVR and PSS.

equations of the excitation system can be included in the complete linearized system model, a
second-order transfer function will be used to represent the exciter and the AVR while a third-order
transfer function will be used to represent the PSS. The block diagram corresponding to such an
excitation system is shown in Figure 12.7. In this system the PSS will react to a signal proportional
to rotor speed deviation, when KP = 0, or to a signal proportional to the generator real power,
when Kω = 0.

The differential equation describing the excitation system can be obtained from the transfer
function in Figure 12.7 by introducing two auxiliary variables, x1 and x2, to give

ẋ2i = �zi − c1i x2i − c0i x1i (12.152)

ẋ1i = x2i ,

�Efi = b1i x2i + b0i x1i , (12.153)

where i is the generator number. Expressing this equation in matrix form, and substituting Equation
(12.147), gives


 ẋ1

. . .
ẋ2


 =


 0 1

. . . . . . . . . .
−c0 −c1..

..
..

..





 x1

. . .
x2


 +




0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .

− ∂V
∂δn−1

− ∂V
∂E′′

q

− ∂V
∂E′′

d..
..

..
..

..
.

..
..

..
..

..
. 





�δn−1
. . . . . .
�E′′

q
. . . . . .
�E′′

d


 +


 0

. . . . . . . .
−�VPSS




(12.154)

[�Ef ] = [
b0 b1..

. ] 
 x1

. . .
x2


 ,

where c0, c1, b0, b1 are diagonal submatrices of the coefficients in the excitation system transfer
functions.

The vector �VPSS can be obtained from the stabilizer equations which, because the stabilizer
transfer function is third order, can be constructed using three auxiliary variables x3, x4 and x5.
This results in

ẋ5i = �yi − α2i x5i − α1i x4i − α0ox3i

ẋ4i = x5i

�VPSS = β3i �yi − (α2iβ3i − β2i ) x5i − (α1i β3i − β1i ) x4i − β3i x3i ,

(12.155)
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where �yi = Kωi �ωi + KPi �Pi is the input signal and i is the generator number. Representing the
equations in matrix form and taking into account Equation (12.145) gives




ẋ3
. . .
ẋ4
. . .
ẋ5


 =




0 1 0
. . . . . . . . . . . . . . . . .

0 0 1
. . . . . . . . . . . . . . . . .
−α0 −α1 −α2..

..
..

..
..

..
.

..
..

..
..

..
..

. 





x3
. . .
x4
. . .
x5


 +




0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−KP
∂P

∂δn−1
−Kω −KP

∂P
∂E′′

q
−KP

∂P
∂E′′

d..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..







�δn−1
. . . . . . .

�ω
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,

(12.156)

where α0, α1, α2, β0, β1, β2, β2, KP and Kω are diagonal matrices of the stabilizer coefficients.

12.3.3 Linear State Equation of the System

As the linear equations in (12.151), (12.154) and (12.156) have common state variables they can be
combined to form one large state equation that includes the effect of all the generators (fifth-order
model), exciters, AVRs and PSSs. This results in the matrix equation (12.157). The solid line in the
upper left corner separates the submatrix corresponding to the swing equation. The dashed line
separates the submatrix corresponding to the generator equations without voltage control. The
lower side of the state matrix below the dashed line corresponds to the voltage control and PSS.

So far the turbine power has been assumed to be constant. If this is not the case then additional
equations that describe the turbine and its governor must be added to the state equation, further
increasing its size. The size of the state equation will be increased yet further if the effect of control
devices, such as SVC or other FACTS devices, is included. Provided a suitable model is known, then
including the effect of such elements is straightforward and follows similar lines as for the exciter
and AVR and for this reason is not considered further in this book.

As the state matrix in Equation (12.157) is sparse it is advantageous to use sparse matrix tech-
niques when calculating the eigenvalues and eigenvectors even if a small system is under investi-
gation. In the case of a large interconnected system, when all the control devices influencing the
steady-state stability and damping are included, then the dimension of the state matrix may be very
large indeed and well outside the range of conventional eigenvalue analysis methods. In such cases
special solution techniques, which evaluate a selected subset of the eigenvalues associated with the
complete system response, are necessary (Kundur, 1994).

12.3.4 Examples

A number of interesting examples of the application of modal analysis to large interconnected
power systems can be found in Wang (1997) and Breulmann et al. (2000). Below are two examples
based on data from a paper by Rasolomampionona (2000).
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Example 12.9

Consider the generator–infinite busbar system shown in Figure 6.13 when line L1 has an outage
due to maintenance. Since this will weaken the connection of the generator with the system,
it is necessary to check the steady-state stability. The lines remaining in operation are of the
length 250 km (line L2) and 80 km (line L3). The lines operate at the rated voltage of 220 kV
and their reactance is x = 0.4 �/km. There is a load of (350 + j150) MVA at node B3. The
generator operates with a step-up transformer of reactance XT = 0.14. The generator is salient-
pole (hydro) one with the following parameters: Sn = 426 MVA, X′′

d
∼= X′′

d = 0.160, X′
d = 0.21,

Xd = 1.57, X′
q

∼= Xq = 0.85, T′
do = 6.63, T′′

do = 0.051, T′′
qo = 1.2, Tm = 10. The transfer function

of the voltage control and excitation system is

�Ef (s)
�V(s)

= KA
2s + 1

0.3 s2 + 10s + 1
= KA

6.66s + 3.33
s2 + 33.3s + 3.33

= b1s + b0

s2 + c1s + c0
, (12.158)

where (according to Figure 12.7) b0 = 3.33KA, b1 = 6.66KA and c0 = 3.33, c1 = 33.3.
It is necessary to compute eigenvalues and the associated eigenvectors and, on the basis of

the participation factors, determine which diagonal elements of the state matrix and which state
variables are strongly related to which eigenvalues. Assume a small regulator gain KA = 30.

Substituting the data into (12.157), the following state equation of the fifth-order generator
model together with voltage control and excitation system is obtained:




�δ̇

- - - - -
�ω̇

- - - - -
�Ė′

q

- - - - -
�Ė′′

q

- - - - -
�Ė′′

d
- - - - -

ẋ1

- - - - -
ẋ2




=




0 1 0 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−20.316 0 0 −25.048 −1.411 0 0

−0.061 0 −0.773 −0.083 0.018 15.06 30.12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−0.213 0 7.050 −5.026 0.063 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−2.654 0 0 −1.463 −12.958 0 0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 0 0 0 0 0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−0.008 0 0 −0.565 0.971 −3.33 −33.33..
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- - - - -
�ω
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�E′

q
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�Ė′′

q
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�Ė′′

d
- - - - -

x1

- - - - -
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.

(12.159)

The 2 × 2 submatrix in the upper left corner corresponds to the swing equation. It relates to the
state matrix in Equation (12.115) corresponding to the inherent stability and the second-order
generator model. The matrix has two imaginary eigenvalues λ1,2 = ±j4.507 which correspond to
the frequency of oscillations of about 0.72 Hz. The upper left 5 × 5 submatrix corresponds to
the swing equation together with the equations describing the excitation system and the damping
circuits in both axes. It relates to the state equation (12.151). The state matrix in Equation (12.159)
has the following eigenvalues:

λ1,2 = −0.177 ± j4.535, λ3 = −1.239, λ4 = −3.681, λ5 = −13.036,

λ6 = −0.342, λ7 = −33.334.
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Equation (12.90) was used to determine the complex values of participation factors for all
eigenvalues. The matrix of participation factors p below contains the magnitudes |pki |:

λ1 λ2 λ3 λ4 λ5 λ6 λ7

x =




�δ̇

- - - - -
�ω̇

- - - - -
�Ė′

q

- - - - -
�Ė′′

q

- - - - -
�Ė′′

d
- - - - -

ẋ1

- - - - -
ẋ2




, diag A =




A11

- - - -
A22

- - - -
A33

- - - -
A44

- - - -
A55

- - - -
A66

- - - -
A77




, p =




0.5 0.5 0.05 0.06
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.5 0.5 0.05 0.06

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.04 0.04 1.80 0.54 0.33
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.03 0.03 0.29 1.33 0.01 0.03
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0.03 0.02 1.0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0.41 0.05 1.36
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0.03 0.05 1.0




.

(12.160)

The dominant values of |pki | are shown in bold. Values less than 0.01 are neglected. The majority
of eigenvalues are connected with a few diagonal elements of the state matrix and therefore with
a few state variables. However, by considering only the dominant values of |pki |, it is possible
to link individual eigenvalues approximately with some state variables. The simplest relationship
is for λ7 which has only one dominant participation factor associated with A77 and x2, that is
with the voltage controller. Eigenvalue λ5 is associated with A55 and emf E′′

d which corresponds
to the damping circuit in the q-axis. Eigenvalue λ4 is mainly associated with A44 and emf E′′

q
which corresponds to the damping circuit in the d-axis. The same λ4 is also, but less strongly,
associated with A33 and emf E′

q which corresponds to the excitation circuit. Eigenvalue λ6 is
mainly associated with A66 and emf x1 which corresponds to the voltage controller, and to a
lesser extent with A33 and emf E′

q which corresponds to the excitation circuit. The complex
conjugate pair of eigenvalues λ1,2 is equally associated with A11 and A22, that is with �δ and
�ω, which correspond to the swing equation. A summary of these associations and the physical
meaning of all the eigenvalues is shown in Table 12.2.

Table 12.2 Physical meaning and values of modes in Example 12.9

Equation Physical meaning of the mode Notation Eigenvalue

�δ̇n−1, �ω̇ Rotor swings λ1, 2 −0.177 ± j4.535
�Ė′

q Excitation circuit λ3 −0.342
�Ė′′

q Damping circuit in the d-axis and
excitation circuit

λ4 −3.681

�Ė′′
d Damping circuit in the q-axis λ5 −13.036

ẋ1 Voltage controller and excitation circuit λ6 −3.681
ẋ2 Voltage controller λ7 −33.334

Example 12.10

Consider the generator–infinite busbar system described in Example 12.9. It is necessary to check
the steady-state stability conditions and determine the influence of the regulator gain KA on the
position of the eigenvalues.
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Taking into account the voltage control and excitation system introduces two additional
eigenvalues shown in Table 12.3. All the eigenvalues lie in the left half-plane so the system is
stable over a wide range of the regulator gain values KA. For small values of the gain, the
eigenvalues λ3, λ4 are still real. As the gain increases, the values come close to each other until
they become complex values λ3,4. Increased damping causes an increase in the imaginary part.
This means that as the gain increases, electromagnetic phenomena in the excitation winding
start to be oscillatory. The higher the gain, the higher the frequency of oscillations. As the gain
increases, the eigenvalues λ1,2 move left. Figure 12.8 shows the loci of eigenvalues λ1,2 and λ3,4 as
the gain increases.

Table 12.3 Physical meaning and values of modes in Example 12.10

Voltage control and
excitation system

λ6 λ7

Regulator Excitation d-axis q-axis
gain Rotor swings circuit damping damping
KA λ1, 2 λ3 λ4 λ5

0 −0.111 ± j4.432 −0.784 −4.828 −12.931 0 0
50 −0.193 ± j4.555 −1.602 −2.585 −12.983 −0.352 −33.468
60 −0.215 ± j4.584 −2.403 ± j 0.1531 −19.056 −0.376 −33.498
80 −0.257 ± j4.637 −2.301 ± j1.1519 −18.976 −0.403 −33.548

150 −0.459 ± j4.866 −1.918 ± j2.379 −18.968 −0.448 −33.732
200 −0.644 ± j5.090 −1.619 ± j2.837 −11.871 −0.462 −33.861
250 −0.828 ± j5.395 −1.331 ± j3.097 −19.419 −0.469 −33.988
325 −1.083 ± j5.976 −1.082 ± j3.264 −19.563 −0.477 −34.185

1 1

2
3
4
5
6

–6

–6 –1–1

–2
–3

–3

–4

–4

–5

–5

Re λ

Im λ

λ3

λ3,4

λ3,4

λ1,2

λ1,2

λ4

Figure 12.8 Eigenvalue loci when the regulator gain KA increases.

Increasing the regulator gain improves the damping of swing modes λ1,2 but deteriorates the
damping of modes λ3,4 connected with oscillations in the rotor circuits. When KA = 325 the
real parts of λ1,2 and λ3,4 are the same (Table 12.3). It is reasonable to assume that rotor circuit
oscillations should not be less well damped than the rotor oscillations. Assuming that the rotor
circuit oscillations should be better damped than the rotor oscillation, the gain is KA = 250. With
this gain λ1,2 = −0.828 ± j5.395 and the damping ratio is ζ = 0.828/

√
0.8282 + 5.3952 ∼= 0.15 =

15 %. This value is quite high because usually satisfactory damping corresponds to ζ ≥ 5 %.



P1: OTA/XYZ P2: ABC
c12 JWBK257/Machowski September 22, 2008 21:52 Printer Name: Yet to Come

Steady-State Stability of Multi-Machine System 533

Example 12.11

Consider the same generator–infinite busbar system as before by assuming that the transfer
function of the voltage control and excitation system is

�E f (s)
�V(s)

= KA

s
(2s + 1)

(0.2 s + 1)
. (12.161)

This is an integrating regulator with a corrective circuit of the lead type. It should be emphasized
that such a transfer function is not recommended for a voltage regulator. It was selected just to
demonstrate how eigenvalue analysis can expose the bad influence of a particular regulator on
damping of rotor swings.

Using the same model as before, eigenvalues have been calculated for a range of values of the
regulator gain KA:

KA = 0 : λ1,2 = −0.111 ± j4.432, λ3 = −0.784, λ4 = −4.821
KA = 10 : λ1,2 = −0.085 ± j4.638, λ3,4 = −1.442 ± j1.588
KA = 20 : λ1,2 = −0.018 ± j4.941, λ3,4 = −0.977 ± j2.426.

For KA = 0 the eigenvalues correspond to the regulator being deactivated and therefore inherent
damping of swings. Increased gain reduces the negative real parts of λ1,2 and therefore deteriorates
damping. For KA = 20 the eigenvalues λ1,2 lie close to the imaginary axis and damping is
weak. When KA > 20 the eigenvalues λ1,2 move to the right half-plane and the system becomes
oscillatory unstable.

It should, however, be remembered that in order to achieve good voltage regulation (Chapter 2)
the regulator gain should be high, usually higher than KA = 20. Such a high gain is unacceptable
from the point of view of damping. Hence the discussed regulator must be equipped with a supple-
mentary control loop such as a PSS. For example, a PSS with real power input signal could be used.

Assume that the transfer function of the PSS is

�VPSS(s)
�P(s)

= KP
0.05 s

1 + 0.05s
1 + 0.15 s
1 + 0.05s

1 + 0.15 s
1 + 3s

. (12.162)

Now it is necessary to check if the PSS improves damping and to select gain KP assuming that
voltage regulation requires the regulator gain KA = 20.

The eigenvalue loci of the influence of the PSS gain KP are shown in Figure 12.9. For KP = 0
the eigenvalues λ1,2 are close to the imaginary axis. Increasing KP causes a shift to the left, that
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Figure 12.9 Eigenvalue loci when the gain KP of PSS increases.
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is improved damping. At the same time the eigenvalues λ3,4 corresponding to the rotor circuits
move to the right, therefore deteriorating damping. For KP = 3 one gets λ1,2 = −0.441 ± j7.214
and λ3,4 = −0.441 ± j1.730, that is the same real parts. Further increase of KP causes too high a
deterioration of oscillations in the rotor circuits.

For KP = 3 the eigenvalues are λ1,2 = −0.441 ± j7.214 and the damping ratio is ζ =
0.441/

√
0.4412 + 7.2142 ∼= 0.06 = 6 %. Such damping is satisfactory, as it is higher than 5 %,

but much weaker than with the previously discussed regulator with transfer function (12.159).
Both examples show the importance of choosing the right value for the transfer function of the
voltage regulator.
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13
Power System Dynamic
Simulation

Simulation of power system behaviour, which is the subject of this chapter, is a highly useful tool
for planning, for the analysis of stability and for operator training. The individual models of the
generator, AVR, turbine–governor and the system loads are given by the differential and algebraic
equations developed in Chapter 11 and the network is modelled by the algebraic equations developed
in Chapter 3. Together these equations form a complete mathematical model of the system, which
can be solved numerically to simulate the system behaviour.

To develop a power system dynamic simulation the equations used to model the different elements
are collected together to form a set of differential equations

ẋ = f (x, y) (13.1)

that describe the system dynamics, primarily contributed by the generating units and the dynamic
loads, and a set of algebraic equations

0 = g(x, y) (13.2)

that describe the network, the static loads and the algebraic equations of the generator. The solution
of these two sets of equations defines the electromechanical state of the power system at any instant
in time. A disturbance in the network usually requires a change to both the network configuration
and the boundary conditions. These are modelled by changing the coefficients in the functions
appearing on the right hand side of Equations (13.1) and (13.2). The computer program for the
power system dynamic simulation program must then solve the differential and algebraic equations
over a period of time for a given sequence of network disturbances.

Equations (13.1) and (13.2) can be solved using either a partitioned solution or a simultaneous
solution. The partitioned solution is sometimes referred to as the alternating solution and the
simultaneous solution as the combined solution. In the partitioned solution the differential equations
are solved using a standard explicit numerical integration method with the algebraic equations
(13.2) being solved separately at each time step. The simultaneous solution uses implicit integration
methods to convert the differential equations (13.1) into a set of algebraic equations which are
then combined with the algebraic network equations (13.2) to be solved as one set of simultaneous
algebraic equations. The effectiveness of these two solutions depends both on the generator model
used and on the method of numerical integration.

Power System Dynamics: Stability and Control, Second Edition Jan Machowski, Janusz W. Bialek and James R. Bumby
C© 2008 John Wiley & Sons, Ltd
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In order to select the most appropriate integration method it is necessary to understand the
time scale of the dynamics included in the model of the generating unit. As explained in Chapter
12, the solution of any set of linear differential equations is in the form of a linear combination
of exponential functions each of which describes the individual system modes. These modes are
themselves defined by the system eigenvalues which are linked to the time scale of the different
dynamics in the model. When the eigenvalues have a range of values that are widely distributed in
the complex plane, the solution will consist of the sum of fast-changing dynamics, corresponding
to large eigenvalues, and slow-changing dynamics, corresponding to small eigenvalues. In this
instance the system of differential equations is referred to as a stiff system. A nonlinear system is
referred to as stiff if its linear approximation is stiff. Among the power system electromechanical
models developed in Chapter 11, all the models that include both the subtransient equations, with
their very small time constants, and the relatively slow rotor dynamics constitute stiff models. The
model stiffness is further aggravated if the AVR equations, with their small time constants, and
the turbine equations, with their long time constants, are included in the model. Consequently, if
the power system model includes AVR systems and high-order generator models then the solution
method should use integration methods well suited to stiff systems. In contrast, the classical power
system model does not constitute a stiff set of differential equations because it only includes
slow rotor dynamics. Transient stability programs using this model can use simpler integration
formulae.

13.1 Numerical Integration Methods

The analytical solution of nonlinear differential equations is not generally possible and a numerical
solution consisting of a series of values (x1, x2, . . . , xk, . . .) that satisfies the equation ẋ = f (x, t)
at the time instants (t1, t2, . . . , tk, . . .) must be found. This requires the use of numerical integration
formulae that calculate the value xk+1 knowing all the previous values (. . . , xk−2, xk−1, xk). These
formulae fall into two general categories: the single-step Runge–Kutta methods and the multi-
step predictor–corrector methods. Both are used in power system simulation programs and the
interested reader is referred to Chua and Lin (1975) or Press et al. (1992) where these methods,
and in particular the Runge–Kutta methods, are discussed in detail along with examples of the
necessary computer code. In this section discussion is mainly concentrated on implicit integration
methods because they can be effectively used in both the partitioned solution and the simultaneous
solution of stiff differential equations. Such equations are generally used to describe power system
behaviour. The standard Runge–Kutta methods are restricted to the partitioned solution of non-stiff
systems.

When numerically solving differential equations each calculated value of the solution will differ
from the accurate solution by an amount called the local error. This error comprises a round-off
error that depends on the computational accuracy of the particular computer used, and the method
error that depends on the type, order and step length of the integration method used. As the local
error propagates to subsequent steps, the total error at any one step consists of the local error
made at that step plus the local errors transmitted from previous steps. The way in which the error
propagates to subsequent steps determines the practical usefulness of a method. If the error does
not increase from step to step then the formula is numerically stable, otherwise the formulae is
numerically unstable. In the latter case the cumulative effect of the errors may cause the solution xk

to be drastically different from the accurate solution.
For the differential equation ẋ = f (x, t) the value of xk+1 can be found by either integrating the

function f (x, t) along its time path between tk and tk+1 or integrating x(t) along its path from xk to
xk+1. Each method will result in a different set of formulae known as the Adams formulae and the
Gear formulae respectively.

The Adams formulae used in predictor–corrector schemes are obtained by approximating the
function f (x, t) by a power series w(t) in the time interval over which the function f (x, t) must be
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integrated. This gives

xk+1 = xk +
tk+1∫
tk

f (x, t)dt ≈ xk +
tk+1∫
tk

w(t)dt, (13.3)

where the power series w(t) is based on r values of f (x, t). The coefficients in this power series
depend on the values of f (x, t) at the individual points so that the integration formula becomes

xk+1 = xk + h


 r∑

j=1

b j fk+1− j + b0 fk+1


 , (13.4)

where the function fi = f (x(ti )) is the value of the function at a given point ti in time and h is the
integration step length. The number of points r used in the power series is referred to as the order
of the formula.

If b0 = 0 then the resulting formulae are referred to as the explicit or Adams–Bashforth formu-
lae. In these formulae the approximating polynomial w(t) is calculated using the known values
(. . . , fk−2, fk−1, fk) and used to extrapolate the function f (x, t) in the new interval from tk to tk+1.
If b0 �= 0, then the resulting formulae are referred to as the implicit or Adams–Moulton formu-
lae. In these formulae the approximating polynomial w(t) is calculated using the known values
(. . . , fk−2, fk−1, fk) and the unknown value of fk+1 in order to interpolate function f (x, t) in the
interval from tk to tk+1. Table 13.1 contains Adams–Bashforth and Adams–Moulton formulae up
to third order.

The first-order formulae in the Adams family are the Euler formulae and they can have either an
explicit or implicit form. The second-order interpolation formula is the trapezoidal rule when the
polynomial w(t) corresponds to the area of a trapezium below a line linking the points fk and fk+1.

The error in the Adams formulae depends on the order and is the integral of the error between
the function f (x, t) and the polynomial approximation w(t). This error may be expressed as

εk+1 = ε0hr+1xr+1
k (τ ) , (13.5)

where x(r+1)
k (τ ) is the (r + 1) th derivative at a point τ lying in the interval from tk−r to tk+1, while

ε0 is a constant. Table 13.1 shows that for r > 1 the size of the error introduced by the implicit
formulae is much smaller than that introduced by the explicit formulae.

Table 13.1 Examples of Adams–Bashforth and Adams–Moulton formulae

Type Order Formula ε0

Adams–Bashforth
(explicit) formulae

1 xk+1 = xk + h fk 1/2

2 xk+1 = xk + h
2

(3 fk − fk−1) 5/12

3 xk+1 = xk + h
12

(23 fk − 16 fk−1 + 5 fk−2) 9/24

Adams–Moulton
(implicit) formulae

1 xk+1 = xk + h fk+1 –1/2

2 xk+1 = xk + h
2

( fk+1 + fk) –1/12

3 xk+1 = xk + h
12

(5 fk+1 + 8 fk − fk−1) –1/24
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Figure 13.1 Areas of numerical stability for the Adams formulae: (a) explicit; (b) implicit.

An additional advantage of the implicit formulae is their better numerical stability. Figure 13.1
shows the area of numerical stability in the complex (λ, h) plane where h is the integration step
length and λ is the largest system eigenvalue. The integration process is numerically stable if the
integration step length is small enough so that for all the system eigenvalues λi the product hλi lies
inside the stability area. The figure shows that the stability area of the explicit formulae is much
smaller than that of their implicit counterparts. The first- and second-order implicit formulae are
stable over the whole left half-plane and are therefore numerically absolutely stable. This stability
issue is particularly important for stiff systems where large eigenvalues force the use of a small
integration step h. The low-order implicit formulae are numerically stable over a large part of the
complex plane and potentially allow the use of a longer integration step. When using these formulae,
the length of the integration step is limited only by the accuracy required in the calculation and the
error as determined by Equation (13.5).

A disadvantage of the implicit formulae is that the value of xk+1 cannot be calculated directly.
When b �= 0 Equation (13.4) can be expressed as

xk+1 = βk + hb0 f (xk+1) , (13.6)

where

βk = xk +
r∑

j=1

b j fk+1− j .

The unknown value of xk+1 now lies on both sides of the equation, which means that, if the function
f (x) is nonlinear, it must be found iteratively.

The simplest method of solving (13.6), referred to as functional iteration, consists of a series of
substitutions according to the following iterative formula:

x(l+1)
k+1 = βk + hb0 f

(
x(l)

k+1

)
, (13.7)
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where the upper indices in brackets denote the iteration number. If the first value x(0)
k+1 used in the

iteration is calculated using an explicit Adams formula, then the whole procedure is known as the
prediction–correction method. The explicit formula is used as a predictor, while the implicit formula
is the corrector. The iterative process (13.7) converges if

hb0 L < 1, (13.8)

where L is the Lipschitz constant, L = √
αM, and αM is the maximum eigenvalue of the matrix

product
(

AT A
)
, where A = ∂ f/∂x is the Jacobi matrix calculated at point x̂k+1 being a solution of

Equation (13.6). The smaller the value of the product (hb0 L), the faster the convergence.
Because of the presence of large eigenvalues in stiff systems the convergence condition of Equation

(13.8) may force a limitation on the integration step length that is more restrictive than that required
either by the required accuracy or by numerical stability. In such a case Equation (13.6) may
be solved using Newton’s method instead of by functional iteration. For any equation F(x) = 0
Newton’s formula is

x(l+1) = x(l) −
[

∂F
∂x

]−1

(l)
F

(
x(l)) , (13.9)

where the upper index in brackets denotes the iteration number. Applying (13.9) to the implicit
formula of Equation (13.6) gives

x(l+1)
k+1 = x(l)

k+1 −
[
1 − hb0 A(l)

k+1

]−1 [
x(l)

k+1 − βk − hb0 f
(

x(l)
k+1

)]
, (13.10)

where A(l)
k+1 is the Jacobi matrix calculated for the lth iteration. Newton’s method allows the

integration step length to be increased to a much higher value than that defined by (13.8) but,
because the matrix is inverted at each step, the complexity of the method is much greater than
functional iteration. However, if the integration step length is sufficiently large then the added
complexity of Newton’s method may be justified.

In developing the Adams formulae the function f (x, t) was approximated by the power series w(t)
in order to find xk+1. An alternative approach is to approximate x(t), rather than the function f (x, t),
by the power series x(t). In this case w(t) ≈ x(t) and the coefficients in the approximating polynomial
w(t) are functions of consecutive values of (. . . , xk−2, xk−1, . . .). Taking the time derivative gives
ẋ = ẇ(t), or ẇ(t) = f (x, t). When w(t) is used as the extrapolation formula this leads to the following
explicit integration formula:

xk+1 =
r∑

j=0

a j xk− j + b0h fk. (13.11)

If w(t) is used as the interpolation formula the following implicit integration formula is obtained:

xk+1 =
r∑

j=0

a j xk− j + b0h fk+1. (13.12)

These formulae, known as the Gear formulae, are shown in Table 13.2 (Variant I) up to third
order. The first order formula is the Euler formula while the second-order formula is referred to as
the intermediate point formula.

The solution of Equation (13.12) may be obtained using either functional iteration or Newton’s
method, just as for the Adams formulae. If Equation (13.12) is solved by functional iteration then
Equation (13.11) is used as the predictor and Equation (13.12) as the corrector.



P1: OTA/XYZ P2: ABC
c13 JWBK257/Machowski September 5, 2008 18:5 Printer Name: Yet to Come

540 Power System Dynamics

Table 13.2 Examples of Gear formulae

Type Order Formula ε0

Explicit
Variant I

1 xk+1 = xk + h fk

2 xk+1 = xk−1 + 2h fk

3 xk+1 = −3
2

xk + 3xk−1 − 1
2

xk−2 + 3 fkh

Explicit
Variant II

1 xk+1 = 2xk − xk−1

2 xk+1 = 3xk − 3xk−1 + xk−2

3 xk+1 = 4xk − 6xk−1 + 4xk−2 − xk−3

Implicit 1 xk+1 = xk + h fk+1 –1/2

2 xk+1 = 4
3

xk − 1
3

xk−1 + 2
3

h fk+1 –2/9

3 xk+1 = 18
11

xk − 9
11

xk−1 + 2
11

xk−2 + 6
12

h fk+1 –3/22

The main advantage of the Gear formulae over the Adams formulae is that they have a larger
area of numerical stability as shown in Figure 13.2. They are therefore better suited to stiff systems.
If a large integration step length is used on a stiff system the predictor in (13.11) may not give a good
approximation and instead x(t) may be extrapolated directly using the values (. . . , xk−2, xk−1, xk).
The Lagrange extrapolation equations then give

xk+1 = a0xk +
r∑

j=1

a j xk−1. (13.13)

Values of the coefficients for these formulae up to third order are given in Table 13.2 (Variant II).
When a set of differential equations is nonlinear the Jacobi matrix and its eigenvalues are not

constant and the criteria that limit the integration step length constantly change with time. For
example, the numerical stability depends on the eigenvalues and the step length, the convergence
properties on the Lipschitz constant and the step length, while the local error is determined by the
derivative x(r+1)(τ ) and the step length so that the correct choice of integration step length is of
fundamental importance.
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Figure 13.2 Areas of numerical stability of the Gear formulae.
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To combat these problems there are two extreme ways in which the difference formulae can be
used. The first is to use a low-order formula, which is absolutely stable numerically, together with
a constant integration step length that is limited to a value that will guarantee good convergence
of the iterative corrector and limited local errors for the whole of the simulation period. Alterna-
tively the order of the formulae can be automatically varied during the simulation process so that
the integration step length can be maximized without compromising either the accuracy or the
convergence properties.

Because higher order formulae have a low area of numerical stability, the highest order formula
that is normally used in practice is the sixth. Simple programs use second- or third-order formulae in
order to avoid problems with numerical stability. It is also possible to use a constant order, variable
step procedure. Automatic changes in either the integration step length or the order of the formula
used require additional calculation. In addition, a change in the integration step length is not easy
because if the step length is changed then the coefficients in most of the formulae also change since
they depend on the distance between the interpolation nodes. Problems with the use of variable
order, constant step formulae are alleviated if the equations are written in canonical form, details of
which can be found in Chua and Lin (1975).

13.2 The Partitioned Solution

In each step of the numerical integration procedure the partitioned solution alternates between the
solutions of the differential equations (13.1) and the algebraic equations (13.2). In order to match
the values of the variables y(t) to the values of the variables x(t) it is necessary to solve the algebraic
equations before numerically integrating the differential equations. A general solution algorithm
for the partitioned solution, using a predictor–corrector numerical integration method, is shown in
Figure 13.3. In this algorithm the algebraic equations are solved at three stages. The first solution
is at stage 3, and occurs whenever there is a change in the network configuration. This change in
the network configuration alters the coefficients in the algebraic equations so that for a given set
of state variables xk the value of the dependent variables yk change. The second solution of the
algebraic equations takes place at stage 5, after predicting the new values of the variables xk+1. The
third, and final solution, is at stage 7 after correcting xk+1 in stage 6. The solution at stage 7 is
repeated for each integration step as many times as there are corrections of xk+1.

In the algorithm shown in Figure 13.3 the solution of the algebraic equations takes a significant
proportion of the total computation time. It is therefore important to consider the methods available
for effectively realizing the solution. In the following discussion the network equations will be solved
assuming the network to be represented as shown in Figure 13.4.

In the considered network model (Figure 13.4) each generator is represented by an additional
generator node i′ and a fictitious emf E f

i behind a fictitious reactance Xf
i with Ii being the injected

generator current. If rotor saliency is neglected then, depending on the generator model used, the
fictitious emf and the fictitious reactance will correspond to the transient or subtransient values
(Section 11.1.6). If, on the other hand, rotor saliency is included then both the reactance and the
emf will have some fictitious value.

Each load is represented (Figure 13.4) by an equivalent admittance y
l

and a correction nodal
current �Il . Figure 13.5 illustrates the way �Il is calculated. The loads are modelled (see Section
3.5.4) using nonlinear voltage characteristics Pl (Vl ) and Ql (Vl ) denoted by solid lines in the diagram.
Dashed lines denote parabolas corresponding to, respectively, real and reactive power consumed
by admittance y

l
= gl + jbl inserted in the network model. Differences between the required load

characteristic and the admittance characteristic are made up by correction powers �Pl and �Ql ,
respectively, which are denoted by vertical lines in Figure 13.5. When the load voltage is Vl ,
correction power �Sl = �Pl + j�Ql corresponds to a correction current �Il = �S∗

l /Vl . Note
that the voltage is a complex number as nodal voltage is a phasor in the common network reference
frame (Figure 13.4).
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Figure 13.3 Simplified algorithm of the partitioned solution using the predictor–corrector method.

Under the above assumptions the network is described by the following nodal equation using
complex numbers:

[
IG

�IL

]
=

[
YGG YGL

YLG YLL

] [
EG

VL

]
, (13.14)

where {G} is the set of fictitious generator nodes, {L} is the set of all the other nodes (called the
load nodes) that includes the generator terminal nodes, IG is a vector of the generator currents, �IL

a vector of the load corrective currents, EG a vector of the fictitious emfs and VL a vector of the

l
power
system
network

iI i

V iEi
f

Xi
f

i ′ ∆ I l

V l y
l

Figure 13.4 Network model with each generator replaced by a Thévenin voltage source: i ′, a
generator node; l, a load node.
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Figure 13.5 Modelling of nonlinear voltage characteristic of a load: (a) correction real power; (b)
correction reactive power; (c) phasors of the nodal voltage and nodal correction current.

voltages at the load nodes. The matrix YGG is a diagonal matrix of generator admittance y
i
= 1/jXf

i .
YGL is a rectangular matrix comprising a diagonal submatrix with elements equal to −y

i
and all

other elements equal to zero. YLG is the transpose of YGL. The matrix YLL is a modified version
of the nodal admittance matrix, introduced in Chapter 3, whose diagonal terms now include the
load and generator admittances at the rows corresponding to the relevant load nodes and generator
terminal nodes, respectively. If each load is represented by a constant admittance then the correction
currents �IL = 0.

13.2.1 Partial Matrix Inversion

Appendix A.2 contains the derivation of partial matrix inversion which may be applied to Equation
(13.14). This equation can be expanded as

IG = YGG EG + YGLVL, (13.15)

�IL = YLG EG + YLLVL. (13.16)

Rearranging Equation (13.16),

VL = −Y−1
LLYLG EG + Y−1

LL�IL, (13.17)

and substituting into Equation (13.15) gives

IG = (YGG − YGLY−1
LLYLG)EG + YGLY−1

LL�IL. (13.18)

These last two equations (13.17) and (13.18) can be rewritten in matrix form as[
IG

VL

]
=

[
YG KI

KV ZLL

] [
EG

�IL

]
, (13.19)

where YG = YGG − YGLY−1
LLYLG, KI = YGLY−1

LL, KV = −Y−1
LLYLG and ZLL = Y−1

LL. The square ma-
trix in Equation (13.19) is called the partial inversion matrix and refers to the fact that only the
submatrix YLL is explicitly inverted to obtain ZLL = Y−1

LL.
If rotor saliency is neglected then the fictitious emfs E f

i in the network model are equal to the
generator emfs and are calculated during the numerical integration of the differential equations. If,
in addition, each load is represented by a constant admittance then the correction currents �IL are
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equal to zero and the generator currents and the load voltages can be calculated directly from

IG = YG EG

VL = KV EG,
(13.20)

without the need for an iterative solution. However, if the loads are nonlinear the correction currents
are non-zero and depend on the load voltage according to the function �IL(VL). As the unknown
load voltages now appear on both sides of Equation (13.19), they must be calculated iteratively.
The lower equation in (13.19) can be used to formulate the iterative formula

V (l+1)
L = KV EG + ZLL�IL

(
V (l)

L

)
, (13.21)

where the upper index in brackets denotes the iteration number. When the iteration process is
complete, the voltage VL = V (l+1)

L and the generator currents may be calculated from the upper
equation in (13.19) as

IG = YG EG + KI�IL, (13.22)

where �IL are the correction currents corresponding to the calculated values of the voltages.
If rotor saliency is included then the fictitious emfs representing the generators in the network

equations must also be calculated iteratively together with the generator currents. To explain how
this is done the generator fourth-order transient model (Ė′

d, Ėq, δ̇, ω̇) will be used, but the technique
can equally well be applied to the sixth-order subtransient model (Ė

′′
d, Ė′′

q, Ė′
d, Ė′

q, δ̇, ω̇) or the
fifth-order subtransient model (Ė′′

d, Ė′′
q, Ė′

q, δ̇, ω̇) defined in Section 11.1.6.
Figure 13.6 shows three circuit diagrams. The first two diagrams correspond to the generator in

the transient state, while the third diagram corresponds to the fictitious Thévenin source used in the
network model to replace the generator. The emf of the fictitious generator voltage source E f must
satisfy the equation E f = V + jXf I, or

(
E f

a + jE f
b

) = (Va + jVb) + jXf (Ia + jIb), which expressed
in matrix form is[

E f
a

E f
b

]
=

[
Va

Vb

]
−

[
0 −Xf

Xf 0

] [
Ia

Ib

]
or E f

ab = Vab − Zf
ab I ab. (13.23)

This equation can be transformed from the system (a, b) reference frame to the individual generator
(d, q) reference frame using the T transformation defined in Equation (3.166) to give

[
E f

d
E f

q

]
=

[
Vd

Vq

]
−

[
0 −Xf

Xf 0

] [
Id

Iq

]
or E f

dq = Vdq − Zf
dq Idq, (13.24)

Id

Iq

I

VE f

X f

E ′d

E ′q

X ′d

X ′q

Figure 13.6 Replacing the equivalent d-axis and q-axis circuit of the generator by one equivalent
circuit with fictitious reactance X f and fictitious emf E f .
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where Z f
dq = T−1 Z f

abT = Z f
ab and T−1 = T. On the other hand, the armature voltage equation for

the fourth-order model of the generator (Ė′
d, Ė′

q, δ̇, ω̇) is given by Equation (11.104) as

[
Vd

Vq

]
=

[
E′

d

E′
q

]
−

[
0 X′

q

−X′
d 0

] [
Id

Iq

]
or Vdq = E′

dq − Zdq Idq, (13.25)

which, when substituted into (13.24), gives[
E f

d

E f
q

]
=

[
E′

d

E′
q

]
−

[
0 −�Xq

�Xd 0

] [
Id

Iq

]
or E f

dq = E′
dq − �ZIdq, (13.26)

where �Xq = X′
q − Xf and �Xd = X′

d − Xf . This equation determines the emf of the fictitious
voltage source in terms of the generator current.

Equation (13.26) can be solved iteratively together with the network equations (13.19). To show
how this is done Equation (13.26) is rewritten as[

Ef(l+1)
d

Ef(l+1)
q

]
=

[
E′

d

E′
q

]
−

[
0 −�Xq

�Xd 0

][
I (l)

d

I (l)
q

]
or Ef(l+1)

dq = E′
dq − �ZI (l)

dq, (13.27)

where l is the iteration number. The iterative solution algorithm is then:

1. Estimate the values of E f
d, E f

q for every generator and transform them to the system reference
frame (a, b) in order to obtain E f = E f

a + jE f
b.

2. Solve the network equations (13.19). Calculate the current I = Ia + jIb for every generator and
transform Ia, Ib to the generator (d, q) reference frame in order to obtain Id, Iq.

3. Use Equation (13.27) to correct the values of E f
d, E f

q.
4. Compare the result with the pervious iteration; if they differ, transform the new values of E f

d, E f
q

to the system reference frame (a, b) and repeat step 2 until the voltages converge.

The number of iterations necessary to solve the generator equations and the network equations
depends on the value of the reactance chosen for the fictitious Thévenin source. Let Ê f

d, Ê f
q and Îd,

Îq be the solutions to the equations. According to Equation (13.27), the solution must satisfy[
Ê f

d

Ê f
q

]
=

[
E′

d

E′
q

]
−

[
0 −�Xq

�Xd 0

] [
Îd

Îq

]
or Ê

f
dq = E′

dq − �ZÎdq. (13.28)

Subtracting Equation (13.27) from (13.28) gives(
Ef(l+1)

dq − Ê
f
dq

)
= �Z

(
I (l)

dq − Îdq

)
. (13.29)

This equation is important because it means that for a given error �I (l)
dq = (I (l)

dq − Îdq) in the current
estimation, then the smaller the elements �Xq = X′

q − Xf and �Xd = X′
d − Xf in the matrix �Z,

the closer the next estimation of the fictitious emf to the final solution. Consequently, the iterative
process will converge quickly if the equivalent generator reactance is chosen to have a value equal
to an average value of X′

d and X′
q when the fictitious emf E f then has a value close to the generator

transient emf E′. Generally one of the following ‘average’ reactance values is used for the fictitious
reactance:

Xf = 1
2

(
X′

d + X′
q

)
, Xf = 2

X′
d X′

q

X′
d + X′

q

, Xf =
√

X′
d X′

q. (13.30)
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The use of one of these values guarantees a small number of iterations in the solution of Equation
(13.27). If X′

d is close to X′
q then one or two iterations will suffice. If transient saliency is neglected

then X′
d = X′

q = Xf and Ê f
dq = E′

dq and the solution is obtained without any iterations. When
X′

d �= X′
q, then the number of iterations depends on the initial choice of the fictitious emfs. If the

value of X f is chosen according to one of the formulae in (13.30) then the magnitude, and the angle,
of the fictitious emf are close to the magnitude and the angle of the generator transient emf. In
order to achieve a good estimate for the final value, the fictitious emfs should be changed at each
integration step in proportion to the generator emfs.

When rotor saliency and load nonlinearity are included, the algorithm will involve both of the
iterative processes described above. A simplified algorithm is shown in Figure 13.7.

A disadvantage of the partial matrix inversion technique used in Equation (13.19) to solve the
network equation is that all the submatrices YG, KI, KV and ZLL are dense and therefore have a
large computer memory requirement while also requiring a large number of arithmetic operations
to calculate the currents and the voltages. If the number of loads for which the voltage must be
computed is small, in comparison with the total number of nodes, then the partial matrix inversion
technique is worth using because then only part of the submatrices KI, KV and ZLL need be stored
and the number of arithmetic operations is also reduced. If the voltage must be computed for the
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Figure 13.7 A simplified flowchart for the solution of the network equations using partial matrix
inversion with both load nonlinearity and rotor saliency included.
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∆ I l

Figure 13.8 Network model with each generator replaced by a Norton source.

majority of the load nodes then the partial matrix inversion method is not recommended since the
matrix factorization technique described in the next section is more efficient.

13.2.2 Matrix Factorization

The lower equation in (13.14) gives

YLLVL = (�IL + IN) , (13.31)

where IN = −YLG EG is a vector of the currents having non-zero elements only at the nodes where
the generators are connected to the system. Equation (13.31) corresponds to the network shown in
Figure 13.8.

Using triangular factorization (Press et al., 1992) the square matrix YLL can be replaced by the
product of an upper, or right, triangular matrix RLL and a lower, or left, triangular matrix LLL to
give

YLL = LLL RLL. (13.32)

Equation (13.31) can then be rewritten as two equations

LLLbL = (�IL + IN) , RLLVL = bL, (13.33)

where bL is an unknown vector.
Assuming that the loads are represented by constant admittances, then, for a given set of generator

emfs EG, Equations (13.33) can be solved non-iteratively. As the vector IN = −YLG EG and the
lower triangular matrix LLL are both known and �IL = 0, the unknown vector bL can be found
using a series of forward substitutions starting from the upper left hand corner of LLL. After
calculating bL the values of VL can be found by a series of back substitutions starting from the
lower right hand corner of the upper triangular matrix RLL. The advantage of this method is that
if the matrix YLL is sparse then both the factor submatrices RLL and LLL are also sparse, thus
allowing sparse matrix techniques to be used to save on computer memory and the number of
arithmetic operations needed to effect a solution (Tewerson, 1973; Brameller, Allan and Hamam,
1976; Pissanetzky, 1984; Duff, Erisman and Reid, 1986).

If nonlinearity of the loads is included, Equations (13.33) must be solved iteratively since the
correction currents �IL depend on the voltages. The iteration formulae are

LLLb(l+1)
L =

(
�I (l)

L + IN

)
, RLLV (l+1)

L = b(l+1)
L , (13.34)

where �I (l)
L = �IL

(
V (l)

L

)
is a vector of the load correction currents. The upper index l denotes the

iteration number.
If rotor saliency is included then the generator Norton current IN must also be calculated

iteratively, in a similar way to the equivalent emfs in Equation (13.27). These iterations can be
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Figure 13.9 Simplified network solution flowchart using triangular factorization with load non-
linearity and rotor saliency included.

executed together with the iterations necessary to calculate the voltages and the correction currents
at the load nodes. A simplified algorithm of the method is shown in Figure 13.9.

13.2.3 Newton’s Method

Newton’s method was introduced in Chapter 3 as a way to solve the network power–voltage equa-
tions. In system simulation Newton’s method is also used but must now solve a set of current–voltage
equations so that the solution algorithm is different from that used in the steady-state load flow.
A particularly attractive feature of Newton’s method is that if the network nodal current–voltage
equations are solved in rectangular coordinates, in the system (a, b) reference frame, then rotor
saliency can be conveniently included in the solution. To account for saliency the generator equa-
tions are added to the network nodal admittance equation expressed in real numbers as in Equation
(3.154).
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Assuming that the generators are represented by the fourth-order transient model (Ė′
d, Ė′

q, δ̇, ω̇),
the generator armature voltage equations (11.104) can be written as[

E′
d − Vd

E′
q − Vq

]
=

[
0 −X′

q

X′
d 0

] [
Id

Iq

]
, (13.35)

which, when inverted, give[
Id

Iq

]
= 1

X′
d X′

q

[
0 X′

q

−X′
d 0

] [
E′

d − Vd

E
′
q − Vq

]
or Idq = Ydq

(
E′

dq − Vdq
)
. (13.36)

These voltages and currents are in the generator (d, q) reference frame and are transformed into
the system (a, b) reference frame using the transformation matrix T in Equation (3.166) to give[

Ia

Ib

]
= (

T−1YdqT
) [

E′
a − Va

E′
b − Vb

]
or I ab = Yab (E′

ab − Vab) , (13.37)

where

Yab = T−1YdqT = 1
X′

d X′
q

[
− sin δ cos δ

cos δ sin δ

] [
0 X′

q

−X′
d 0

] [
− sin δ cos δ

cos δ sin δ

]

= 1
X′

d X′
q


 1

2

(
X′

d − X′
q

)
sin 2δ −X′

q sin2 δ − X′
d cos2 δ

X′
q cos2 δ + X′

d sin2 δ − 1
2

(
X′

d − X′
q

)
sin 2δ


 =

[
ga −bab

bba gb

]
(13.38)

is a submatrix similar in form to Yij in Equation (3.154). In the nodal admittance technique
the submatrix Yab describes a generator with transient saliency. Generally, because ga �= gb and
bab �= bba, there is no one equivalent branch with admittance Yab so that an equivalent circuit for
the salient-pole machine cannot be drawn. In such a case Equation (13.37) cannot be written in
complex form as I = Yab(E′ − V) since the equivalent admittance Yab does not exist. If transient
saliency is neglected, X′

d = X′
q, then the submatrix Yab is skew symmetric as ga = gb = 0 and

bab = bba = 1/X′
d and an equivalent branch with admittance Yab = 0 + jbab = j(1/X′

d) now exists
to represent the generator as shown in Figure 13.4 for the Thévenin source or in Figure 13.8 for the
Norton source with, in both cases, Xf

i = X′
d.

Because of saliency the generator current–voltage equation can only be written using real numbers
in the (a, b) coordinate system. Complex notation cannot be used. In order to include Equation
(13.37) with the network equation (13.14) or (13.31), the latter must also be written using real
numbers in the same way as Equation (3.155). Then each generator will be represented by a
submatrix as in Equation (13.38), which is added to the respective elements of the real submatrices
YGG, YGL, YLG and YLL. In the case of the Norton source, Equation (13.31) can be rewritten as

YLL (δ) VL = �IL(VL) + IN, (13.39)

where the real matrix YLL(δ) is shown as a function of δ to emphasize that the diagonal elements of
this matrix that refer to the generator depend on the power angle in the way defined by the submatrix
(13.38). The elements of these submatrices change with time as the generator rotor angles change.
The Norton source currents IN are given by

IN = −YLG(δ)EG, (13.40)

where matrix YLG(δ) consists of the submatrices (13.38) and EG is a vector comprising the individual
generator emfs E′

ab. All variables are in the (a, b) system coordinates.
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To solve Equation (13.39) it can be rewritten in the standard Newton form as

F (VL) = [YLG(δ)EG − �IL(VL)] + YLL (δ) VL = 0. (13.41)

Using Newton’s iterative formula gives

V (l+1)
L = V (l)

L −
[

∂ F
∂VL

]−1

l
F

(
V l

L

)
, (13.42)

where the Jacobi matrix [
∂ F
∂VL

]
= YLL (δ) −

[
∂�IL

∂VL

]
(13.43)

is equal to the nodal admittance matrix minus the matrix of the derivatives of the correction currents
with respect to the voltages. This correction matrix is diagonal and its elements are of the form

[
∂�Ii

∂Vi

]
=




∂�Iai

∂Vai

∂�Iai

∂Vbi

∂�Ibi

∂Vai

∂�Ibi

∂Vbi


 . (13.44)

The way in which the derivatives in Equation (13.44) are calculated needs some explanation. In
rectangular coordinates the relationship between the correction powers and the correction currents
can be expressed as

[
�Pi

�Qi

]
=

[
Vai Vbi

Vbi −Vai

] [
�Iai

�Ibi

]
or

[
�Iai

�Ibi

]
= 1

|Vi |2
[

Vai Vbi

Vbi −Vai

] [
�Pi

�Qi

]
. (13.45)

Making the substitution

�pi = �Pi

|Vi |2
, �qi = �Qi

|Vi |2
(13.46)

allows Equation (13.45) to be rewritten as

[
�Iai

�Ibi

]
=

[
Vai Vbi

Vbi −Vai

] [
�pi

�qi

]
. (13.47)

Differentiating Equation (13.47) gives

∂�Iai

∂Vai
= Vai

∂�pi

∂Vai
+ �pi + Vbi

∂�qi

∂Vai

∂�Iai

∂Vbi
= Vbi

∂�qi

∂Vbi
+ �qi + Vai

∂�pi

∂Vbi

∂�Ibi

∂Vai
= −Vai

∂�qi

∂Vai
− �qi + Vbi

∂�pi

∂Vai

∂�Ibi

∂Vbi
= Vbi

∂�pi

∂Vai
+ �pi − Vai

∂�qi

∂Vbi
,
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which, when substituted into Equation (13.44) and the matrix rearranged, leads to

[
∂�Ii

∂Vi

]
=

[
Vai Vbi

Vbi −Vai

] 


∂�pi

∂Vai

∂�pi

∂Vbi

∂�qi

∂Vai

∂�qi

∂Vbi


+

[
�pi �qi

−�qi �pi

]

= 1
|Vi |

[
Vai Vbi

−Vbi −Vai

] 


∂�pi

∂ |Vi |
∂�pi

∂ |Vi |
∂�qi

∂ |Vi |
∂�qi

∂ |Vi |




[
Vai 0

0 Vbi

]
+

[
�pi �qi

−�qi �pi

]
.

(13.48)

If the derivatives in the second matrix are expressed in the form

∂�pi

∂Vai
= ∂�pi

∂ |Vi |
∂ |Vi |
∂Vai

= ∂�pi

∂ |Vi |
∂

∂Vai

√
V2

ai + V2
bi = 1

|Vi |
∂�pi

∂ |Vi | Vai ,

then the partial derivatives ∂�pi /∂ |Vi | and ∂�qi /∂ |Vi | can be computed from the static load
characteristics P(V ) and Q(V ).

The solution algorithm consists of the iterative equation (13.42), the Jacobi matrix equation
(13.43) and the correction currents (13.48). The algorithm may be simplified by using the dishonest
Newton method, where the Jacobi matrix is calculated only once at the beginning of each integration
step using the initial values of the correction currents. This simplification should not be used during
those integration steps when a network disturbance is being simulated because the change in the
correction currents may be large.

If rotor saliency, and the load correction currents, are neglected, Equation (13.42) of the Newton
method is identical to the second equation of (13.20) in the partial matrix inversion method. This
can be shown by substituting �IL = 0, YLL(δ) = YLL = constant and V (l+1)

L = V l
L into Equations

(13.42) and (13.41).

13.2.4 Ways of Avoiding Iterations and Multiple Network Solutions

The basic algorithm of the partitioned solution shown in Figure 13.1 attempts to match the values
of the variables y(t), for given values of x(t), by solving the linear algebraic equation (13.2). This
solution is repeated after each prediction and each correction of x(t). One way to speed up the
algorithm is to replace the solution of the algebraic equation by an extrapolation of the value of y(t)
at some appropriate stage in the solution. As the extrapolated values of y(t) are only approximate,
an error is introduced into the right hand side of Equation (13.1), called the interface error, which
influences the accuracy of x(t).

There are three ways of introducing extrapolation into the algorithm:

� the algebraic equations are solved after each prediction, with extrapolated values being used after
each correction;

� the algebraic equations are solved after each prediction and after the last correction;
� the algebraic equations are solved after each correction with the prediction of y(t) and x(t) being

done together, by extrapolation.

The first method is not recommended as it may introduce large interface errors which force the
integration step length to shorten. The second and third methods are much better, with the third
method being preferred because, with this method, interface errors generated at the prediction
stage are eliminated during correction. In this case extrapolation eliminates one solution of the
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algebraic equations in each integration step. Obviously this method is beneficial only if the number
of corrections required is small and the corrector converges quickly.

In most cases the variables in y(t) are extrapolated individually and independently of each other.
Simple extrapolation formulae are normally employed that use the past values of the variable
obtained from the previous two or three steps. Typical of these formulae are those listed as Variant
II in Table 13.2 as

xk+1 = 2xk − xk−1 or xk+1 = 3xk − 3xk−1 + xk−2,

though Adibi, Hirsch and Jordan (1974) suggest updating the complex load voltages using

Vk+1 = V2
k

Vk−1

or Vk+1 = V3
kVk−2

V2
k−1

. (13.49)

After extrapolating the voltages at all the load nodes using Equation (13.49) the generator currents
are computed from the nodal equation (13.14) using the generator emfs obtained from the numerical
integration. Extrapolation procedures can also be used to obtain the values of other variables such
as generator real power, voltage error and so on (Stott, 1979). Generally high-order extrapolation
formulae are not used to update y(t) as the improvement in the accuracy is small compared with the
simple formulae. In addition, complications occur following network disturbances because, at the
instant of the discontinuity, all the previous old values of the variable are invalid and extrapolation
must start at the step where the disturbance occurs. Sometimes no previous values are used in the
extrapolation process but a linearized equation is formed that links the increments in y(t) with the
increments in x(t) (Stott, 1979).

Besides reducing the number of times that the algebraic equations need to be solved at each
integration step, it is also possible to avoid iterations in the network solution. These iterations
result from nonlinear load characteristics and from saliency in the generator rotors. The number of
iterations necessary to account for generator saliency can be reduced by using either the sixth- or the
fifth-order subtransient models rather than the fourth- or third-order transient models. Table 4.3
shows that transient saliency, X′

q �= X′
d, is usually much larger than subtransient saliency, X′′

q �= X′′
d,

so that the iteration process for the subtransient model converges faster, and with fewer iterations,
than that for the transient model. Unfortunately the reduction in computing time due to the faster
convergence is partially offset by the shorter integration time step required by the subtransient
model to account for the smaller time constants. As subtransient saliency effects are normally quite
small, Dandeno and Kundur (1973) suggest that in order to produce a fast non-iterative solution
the subtransient model with subtransient saliency effects neglected should be used. By adopting this
approach a solution is obtained that is more accurate than that produced by the transient model
where the damper windings are neglected. In this non-iterative algorithm the iterations required to
account for load nonlinearity are performed only at discontinuities, that is only at the time of the
disturbance. Except at disturbances, the change of the voltage at the load nodes is smooth and slow
so that the correction currents can be approximately calculated at each integration step by basing
them on the voltages in the previous step, that is

�IL(k+1) = �IL
(
VL(k)

)
. (13.50)

With these assumptions the network equations can be solved non-iteratively, apart from the instants
of discontinuity, using either partial matrix inversion or matrix factorization. At discontinuities,
changes in the voltages may be large and it is necessary to execute a few iterations in order to
calculate accurately the correction currents. Adibi, Hirsch and Jordan (1974) noted that small
errors resulting from (13.50) can be partially eliminated by extrapolating the voltages at the load
nodes thereby improving the estimated correction currents.
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Based on these assumptions, the solution algorithm in Figure 13.3 can be modified. When solving
the algebraic equations at the discontinuity, stage 3, Equations (13.21) or (13.34) can be used to
introduce the iterations necessary to model the nonlinear loads. Solution of the algebraic equations
at stage 5, after the prediction, can be replaced by extrapolation of the algebraic variables y(t), while
the solution at stage 7, after correction, can be executed using Equations (13.20) or (13.33) to solve
the network equations non-iteratively.

13.3 The Simultaneous Solution Methods

The concept of the simultaneous solution methods is to use implicit integration formulae to change
the differential equations (13.1) into algebraic form and then to solve these algebraic equations
simultaneously with the algebraic network equations in (13.2).

Any implicit integration formula can be written in the general form

xk+1 = βk + hb0 f (xk+1), (13.51)

where h is the integration step length, b0 is a coefficient that depends on the actual integration
method, f (xk+1) is the right hand side of the differential equations (13.1) calculated at the value
xk+1 and

βk = xk +
∑

j

b j fk+1− j (13.52)

is a coefficient depending on all the previous steps. Using the formula in Equation (13.51), Equations
(13.1) and (13.2) can be rewritten as

F 1
(
xk+1, yk+1

) = f
(
xk+1, yk+1

) − 1
hb0

xk+1 − βk = 0
F 2

(
xk+1, yk+1

) = g
(
xk+1, yk+1

) = 0,
(13.53)

where βk is a column vector containing the values βk.
Newton’s method gives the iteration formula as

[
x(l+1)

k+1

y(l+1)
k+1

]
=

[
x(l)

k+1

y(l)
k+1

]
−


 f x − 1

hb0
1 f y

gx gy




−1 
 F 1

(
x(l)

k+1, y(l)
k+1

)
F 2

(
x(l)

k+1, y(l)
k+1

)

 , (13.54)

where 1 is the unit diagonal matrix and f x = ∂ f /∂x, f y = ∂ f /∂ y, gx = ∂ g/∂x, gy = ∂ g/∂ y are
the Jacobi submatrices. The Jacobi matrix in Equation (13.54) is sparse, so computer programs
that simulate large systems do not generally explicitly invert this matrix. Instead Equation (13.54)
is solved using triangular factorization and forward and back substitution. The network equations
are expressed in rectangular form in the system (a, b) reference frame so that rotor saliency can be
included without any difficulty. The nonlinear load correction currents are modified during each
iteration. The effectiveness of the method depends both on the choice of variables to be iterated in
the Newton method and on skilful use of sparse matrix techniques. A significant role is also played
by appropriate grouping of the variables allowing block matrices to be used.

Vorley (1974) presents one of the variants of this method where Equations (13.1) and (13.2) are
arranged in such a way that the differential and algebraic equations of the generator are grouped
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together to produce an equation of the form




1 . . . 0
...

. . .
...

0 . . . 1
- - - - - - - - - - - - - - - - - - - - -

0 . . . 0
...

. . .
...

0 . . . 0







ẋ1

...
ẋr
- - -
ẋr+1

...
ẋm




=




f1

...
fr

- - -
fr+1

...
fm




or ci ẋi = f i (xi , V) , (13.55)

where (x1, . . . , xr ) are the variables of the differential equations describing the ith generating unit
and (xr+1, . . . , xm) are the variables of the algebraic equations describing this unit. As matrix ci is
singular, this equation is singular. The whole system is described by

Cẋ = F (x, V)
0 = G (x, V) ,

(13.56)

where the first of the equations consists of Equations (13.55) corresponding to individual generating
units and the second, describing the network, is the equation of nodal voltages. Using the implicit
integration formulae and Newton’s equation (as in (13.54)) gives


 x(l+1)

k+1

V (l+1)
k+1


 =

[
x(l)

k+1

V (l)
k+1

]
−


 F x − 1

hb0
C F v

Gx Gv




−1

 F

(
x(l)

k+1, V (l)
k+1

)
− 1

hb0
C

(
x(l)

k+1 − βk

)
G

(
x(l)

k+1, V (l)
k+1

)

 , (13.57)

where F x = ∂ f /∂x, F v = ∂ f /∂V, Gx = ∂G/∂x and Gv = ∂G/∂V are the submatrices of the
Jacobi matrix.

The Jacobi matrices of the individual generating units have a block structure which simplifies the
factorization. To speed up calculations the dishonest Newton method is used where the iterations
at each integration step are executed for a constant matrix calculated from predicted values. It is
also possible to simplify the method further by modifying the Jacobi matrix only after network
disturbances and after a certain number of integration steps. The number of iterations necessary
for convergence can be used as an indicator for when to modify the Jacobi matrix, with this matrix
being updated if the number of iteration exceeds a preset value, for example three.

Variable integration step length and variable order interpolation formulae are also used. As the
differential and algebraic equations are solved together, there is no interfacing problem, and the use
of Newton’s method ensures no convergence problems, even when a long integration step length is
used with a stiff system. At the start of each integration step, extrapolated initial values are used in
the iterations.

Descriptions of other examples of the simultaneous solution method can be found in (Adibi,
Hirsch and Jordan, 1974; Harkopf, 1978; Stott, 1979; Rafian, Sterling and Irving, 1987).

13.4 Comparison Between the Methods

The simultaneous solution methods allow rotor saliency and nonlinear loads to be readily included
and are especially attractive for simulations that cover a long time period. Newton’s method,
together with implicit integration formulae, allow the integration step length to be increased when
the changes in the variables are not very steep. The dishonest Newton method can be used to speed
up the calculations. Interfacing problems between the algebraic and differential equations do not
exist.
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In contrast, the partitioned solution methods are attractive for simulations that cover a shorter
time interval. They are more flexible, easier to organize and allow a number of simplifications to be
introduced that speed up the solution. However, unless care is taken, these simplifications may cause
large interfacing errors. The majority of dynamic simulation programs described in the literature
are based on partitioned solution methods.

The main characteristics of the partitioned solution methods relate to the way in which the
network equations are solved. Partial matrix inversion is only attractive for simplified systems
because the submatrices of the partially inverted nodal matrix are dense. If the nodal matrix is
large these submatrices take up a lot of computer memory. Additionally, because of the large
number of non-zero elements in these submatrices, the number of arithmetic operations needed
to solve the network equations is also large. The speed of solution can be improved by assuming
that the loads are linear (constant admittances) and by calculating the voltages at only a small
number of load nodes thereby limiting the size of the relevant inverted submatrices. This method
becomes particularly attractive when model reduction is employed based on the aggregation of
coherent generators as discussed in Chapter 14. In this case, when the algorithm is reorganized, the
transfer matrix that is used to predict groups of coherent generators (after certain transformations
corresponding to aggregation) can also be used to solve the equations of the reduced network.

If nonlinear loads are included, or the voltage change at a certain number of loads is required,
then triangular factorization is superior to partial inversion because the factor matrices remain
sparse after factorization. For a typical power network the factor matrices only contain about
50 % more elements than the original admittance matrix and the number of arithmetic operations
required to solve the network is not very high. If additional modifications that limit the number
of iterations due to rotor saliency and nonlinear loads are included, then triangular factorization
becomes by far the fastest solution method.

The properties of the computer algorithms that use Newton’s method are similar to those for the
simultaneous solution method. Compared with triangular factorization, Newton’s method requires
a larger computer memory and more arithmetic calculations per integration step. However, due
to good convergence, Newton’s method can use a longer integration step than the factorization
method, which partially compensates for the greater number of computations per step. The use of the
dishonest Newton method speeds up the calculations quite considerably. Moreover, rotor saliency
and nonlinear loads can be included more easily than is the case with triangular factorization.

It is worth adding that fairly recently, with the ever-increasing power of computers, there has been
a tendency to develop real-time simulators to train operators for dispatch and security monitoring
and which can also be used as the core of an online dynamic security assessment system. To make
these simulators operate in real time, it is often required to split the program into independent tasks
to be executed in parallel (Chai and Bose, 1993; Bialek, 1996).
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14
Power System Model
Reduction – Equivalents

Because contemporary power systems are so large, power system analysis programs do not usually
model the complete system in detail. This problem of modelling a large system arises for a number
of reasons including:

� Practical limitations on the size of computer memory.
� The excessive computing time required by large power systems, particularly when running

dynamic simulation and stability programs.
� Parts of the system far away from a disturbance have little effect on the system dynamics and it

is therefore unnecessary to model them with great accuracy.
� Often parts of large interconnected systems belong to different utilities, each having its own

control centre which treats the other parts of the system as external subsystems.
� In some countries private utilities compete with each other and are reluctant to disclose detailed

information about their business. This means that vital data regarding the whole system may not
be available.

� Even assuming that full system data are available, maintaining the relevant databases would be
very difficult and expensive.

To avoid all these problems, only a part of the system, called the internal subsystem, is modelled in
detail. The remainder of the system, called the external subsystem, is represented by simple models
referred to as the equivalent system or simply as the equivalent.

14.1 Types of Equivalents

The methods by which the equivalent of an external subsystem can be produced can be broadly
divided into two groups depending on whether or not they require any knowledge of the configu-
ration and parameters of the external subsystem itself. Methods that do not require any knowledge
of the external subsystem are used for online security assessment and will not be considered further
here, but details of these methods can be found in Dopazo et al. (1977), Contaxis and Debs (1977)
and Feng, Lubosny and Bialek (2007). Typically these methods use the measurement of certain
electrical quantities taken inside the internal subsystem and at the border nodes and tie-lines
to form the equivalent. Methods that do require knowledge of the subsystem are called model

Power System Dynamics: Stability and Control, Second Edition Jan Machowski, Janusz W. Bialek and James R. Bumby
C© 2008 John Wiley & Sons, Ltd
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reduction methods. These methods are used for offline system analysis and are the subject of this
chapter.

Model reduction methods can be further divided into the following three groups:

� Physical reduction, which consists of choosing appropriate models for the system elements
(generators, loads, etc.) depending on how influential an individual element is in determin-
ing the system response to a particular disturbance. Generally elements electrically close to
the disturbance are modelled more accurately while elements further away are modelled more
simply.

� Topological reduction, which consists of eliminating and/or aggregating selected nodes in
order to reduce the size of the equivalent network and the number of generating units
modelled.

� Modal reduction techniques which use linearized models of the external subsystem that eliminate,
or neglect, the unexcited modes.

The equivalent model obtained using modal reduction is in the form of a reduced set of linear
differential equations (Undrill and Turner, 1971). This requires extending the standard power
system software to take into account the special form of the equivalent. As standardization of
the software is difficult to achieve with modal reduction, this type of equivalent is rarely used in
practice.

Topological reduction, used together with physical reduction, gives an equivalent model that
comprises standard system elements such as equivalent generating units, equivalent lines, equivalent
nodes and so on. Consequently, topological equivalents are easy to attach to the internal subsystem
model and allow the whole system to be analysed using standard software.

If the topological reduction is performed using one of the methods described in this chapter
then the reduced model obtained will generally be a good representation of both the system static
performance and the system dynamic performance for the first few seconds following a disturbance.
The reduced model can therefore be used for load flow analysis and transient stability analysis when
disturbances occur in the internal subsystem.

The division of the whole system into external and internal components is illustrated in Figure
14.1. A reduced model of the external subsystem is created assuming that the disturbance occurs
only inside the internal subsystem. The border nodes between the internal and external subsystems
are sometimes referred to as the boundary nodes or tearing nodes. Topological reduction consists of
transforming a large external network that consists of load nodes and/or generation nodes into a
smaller network by eliminating and/or aggregating the nodes. Eliminated nodes are removed com-
pletely from the network while every group of aggregated nodes is replaced by one equivalent node.

internal
subsystem

external
subsystem

L}{

B}{

G}{

Figure 14.1 Internal and external subsystems: {B}, boundary nodes; {L}, load nodes; {G}, gen-
erator nodes of the external subsystem.
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14.2 Network Transformation

Topological reduction is achieved by transforming a large network into a smaller equivalent network
by either elimination or aggregation of nodes.

14.2.1 Elimination of Nodes

Figure 14.2 illustrates that when nodes are eliminated from the network model, set {E}, they must
be removed in such a way that the currents and nodal voltages at the retained nodes, set {R}, are
unchanged.

Before any nodes are eliminated the network is described by the following nodal equation (see
Section 3.5): [

IR

IE

]
=

[
YRR YRE

YER YEE

] [
VR
VE

]
, (14.1)

where the subscripts refer to the eliminated {E} and retained {R} sets of nodes. The eliminated
voltages and currents can be swapped using simple matrix algebra to give[

IR

VE

]
=

[
YR KI

KV Y−1
EE

] [
VR
IE

]
, (14.2)

where

YR = YRR − YREY−1
EEYER, KI = YREY−1

EE, KV = −Y−1
EEYER. (14.3)

The square matrix in Equation (14.2) is the partial inversion of the admittance matrix and is
described in detail in Appendix A2. The nodal currents in the set {R} are

IR = YRVR + �IR, (14.4)

where

�IR = KI IE.

Equation (14.4) describes the relationship between the currents and voltages of the retained nodes
in the reduced network. As any electrical network is uniquely described by its admittance matrix,
the matrix YR corresponds to a reduced equivalent network that consists of the retained nodes and
equivalent branches linking them. This network is often referred to as the transfer network and the
matrix describing it as the transfer admittance matrix. Matrix KI passes the nodal currents from the
eliminated nodes to the retained nodes and is referred to as the distribution matrix. Each equivalent
current is a combination of the eliminated currents.

original
network

re
du

ce
d

ne
tw

or
k

(a) (b)E}{R}{ R}{

I R I R

Figure 14.2 Elimination of nodes: (a) network before elimination; (b) network after elimination.
{E}, set of eliminated nodes; {R}, set of retained nodes.
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Another form of Equation (14.4) can be obtained by replacing the nodal power injection at each
eliminated node by a constant shunt admittance YEi = S∗

i /V2
i added, with an appropriate sign, to

the diagonal elements of the submatrix YEE (and to the network diagram as a shunt connection).
The nodal injections at the eliminated nodes then become zero (IE = 0) and the reduced model
does not contain any equivalent currents (�IR = 0). This is quite convenient but has a drawback.
The equivalent shunt branches have large conductance values, corresponding to the real power
injections, which become part of the equivalent branches in the reduced model. Consequently, the
branches of the equivalent network may have a poor X/R ratio causing convergence problems for
some load flow computer programs.

Different authors give different names to the elimination of the network nodes using Equations
(14.2) and (14.4). Edelmann (1974) refers to it as Gauss–Rutishauser elimination while Brown
(1975) and Grainger and Stevenson (1994) call the reduced circuit a Ward equivalent.

14.2.1.1 Sparse Matrix Techniques

Equation (14.4) formally describes the elimination algorithm. In practice sparse matrix techniques
are used and the nodes are processed one at a time in order to minimize the complexity and
memory requirements of the elimination process (Tewerson, 1973; Brameller, Allan and Hamam,
1976). This is equivalent to Gaussian elimination of a corresponding row and column from the
admittance matrix.

Consider one elimination step, namely that of eliminating node k of set {E}. Matrix YEE = Ykk
is a scalar, YRE is a column and YER is a row. The second component of matrix YR becomes

YREY−1
EEYER = 1

Ykk




Y1k
...

Yik
...

Ynk




[
Yk1 . . . . Ykj . . . Ykn

] = 1
Ykk




...
. . . . YikYkj . . .

...




j

i, (14.5)

where n is the number of nodes in set {R}. Assume now that Yold
i j is an element of matrix YRR

while Ynew
i j is an element of matrix YR. Equations (14.3) and (14.5) show that elimination of node k

modifies each element of the ‘new’ matrix YR to

Ynew
i j = Yold

i j − YikYkj

Ykk
for i �= k, j �= k. (14.6)

If node i is directly connected to the eliminated node k then it is called its neighbour and the
corresponding mutual admittance is Yik �= 0. The mutual admittances Yik of a node i which is not
a neighbour of node k are all zero. Equation (14.6) shows that:

� if nodes i and j are not neighbours of node k then elimination of k does not modify the admittance
Yi j ;

� elimination of node k modifies the admittance between all its neighbours, which creates additional
connections between the neighbours replacing the original connections of node k;

� self-admittances of all the neighbours of node k are also modified according to Equation (14.6)
when i = j .

Both situations are illustrated in Figure 14.3. Nodes {1, 2, 3} are the neighbours of node k so that
its elimination creates additional connections between the nodes. Nodes {4, 5} are not neighbours
of node k and their connections do not change.
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network

network

44
55

2 2

1 13

3k

00

(a) (b)

Figure 14.3 Elimination of a single node: (a) situation before elimination; (b) situation after
elimination.

When using sparse matrix techniques, the order in which the rows/columns of a matrix (or nodes
of the network) are processed is important from the point of view of preserving the sparsity of
the resultant matrix and minimizing the number of algebraic manipulations required. Although it
is not possible to devise a general optimal elimination ordering strategy, simple heuristic schemes
usually work well (Tinney and Walker, 1967; Brameller, Allan and Hamam, 1976). Typically these
node elimination schemes adopt one of the following procedures at each elimination step:

� eliminate the node which has the least number of neighbours, or
� eliminate the node which introduces the least number of new connections.

It is worth noting that elimination defined by Equation (14.6) is a generalization of the star–delta
transformation. In that particular case three branches are connected to the eliminated node
(Figure 14.4). Note that an off-diagonal element of the admittance matrix is equal to the branch
admittance with a reversed sign, while the diagonal element is equal to the sum of branches con-
nected to the node. Taking into account that admittance is the reciprocal of impedance, Equation
(14.6) for the delta connection (Figure 14.4b) gives

y
AB

=
y

A
y

B

y
A

+ y
B

+ y
C

. (14.7)

Changing to impedances,

ZAB =
y

A
+ y

B
+ y

C

y
A

y
B

= ZA ZB

(
1

ZA

+ 1
ZB

+ 1
ZC

)
. (14.8)

And finally

ZAB = ZA + ZB + ZA ZB

ZC

. (14.9)

ZA

ZB

ZC

ZAB

ZBC

ZCA

(a) (b)

AA

BB

CC

k

Figure 14.4 Replacing the star connection by the delta connection: (a) the star connection, (b) the
equivalent delta connection.
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A similar procedure can be applied to the remaining branches ZAC and ZBC. Equation (14.9) is
the well-known formula for the star–delta transformation.

14.2.2 Aggregation of Nodes Using Dimo’s Method

This method is illustrated in Figure 14.5 and consists of replacing a group of nodes {A} by an
equivalent node a. As before, {R} is the set of retained nodes.

In the first step of the transformation (Dimo, 1971), some fictitious branches are added to the
aggregated nodes, set {A}. Each branch admittance is chosen in such a way as to make the terminal
voltage of all the added branches equal. The terminal equipotential nodes can then be connected
together to form a fictitious auxiliary node f. The admittance of each of the fictitious branches can
be chosen freely provided that they all give the same terminal voltage. Usually these admittances
are made to correspond to the nodal injections (at a given voltage) in the aggregated nodes

Yfi = S ∗
i

V2
i

for i ∈ {A}, (14.10)

and then the voltage at the fictitious node f is zero. As it is inconvenient to have an equivalent node
operating at zero voltage, an extra fictitious branch with negative admittance is usually added to
node f. This branch raises the voltage at its terminal node a to the value close to the rated network
voltage. A typical choice of the negative admittance is

Yfa = − S ∗
a

V2
a

where Sa =
∑
i∈{A}

Si . (14.11)

This makes the voltage Va at the equivalent node equal to the weighted average of the voltages at
the aggregated nodes:

Va = Sa

I∗
a

=

∑
i∈{A}

Si

∑
i∈{A}

(
Si
Vi

)∗ . (14.12)

The auxiliary node f is eliminated together with the nodes belonging to set {A} giving an equivalent
network, referred to as the radial equivalent independent (REI) circuit, connecting the equivalent
node a with the retained nodes {R}. As well as the REI circuit, the elimination process also creates
additional connections between the retained nodes.

If the operating conditions are different from the ones for which the reduction was performed,
then the obtained equivalent will only imitate the external network accurately if the admittances of
the fictitious branches, Equation (14.10), can be assumed to remain constant. For load nodes this is
equivalent to assuming that the loads can be modelled as constant admittances and is only valid for
loads with a power–voltage characteristic of the form Si = V2

i Y∗
fi , Yfi = constant. The generation
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re
du

ce
d

ne
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a a
I R I R

I a I a

V a
V a

Y fa

Yif

R}{ R}{A}{

Figure 14.5 Node aggregation using Dimo’s method: (a) network with fictitious branches; (b)
network after elimination of the nodes and fictitious branches.
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nodes operate at a constant voltage and the condition Yfi = S∗
i /V2

i = constant is only satisfied by
those generators where the real and reactive power output can be assumed to be constant.

Dimo’s method produces a large number of fictitious branches due to the elimination of node f
and nodes {A}. As aggregation introduces a branch with negative admittance, Equation (14.11), the
branches in the final network model may have negative admittances. Moreover, large nodal injections
in the aggregated nodes produce large resistance values in the equivalent branches, Equation (14.10).
Negative branch admittances combined with large resistances may cause convergence problems for
some load flow programs.

14.2.3 Aggregation of Nodes Using Zhukov’s Method

This method of aggregation was first formulated by Zhukov (1964). The matrix formulation de-
scribed below was developed by Bernas (1971) but in view of Zhukov’s early publication is referred
to here as Zhukov’s aggregation.

Aggregation consists of replacing a set of nodes {A} by a single equivalent node a as shown
in Figure 14.6. {R} denotes the set of retained nodes. Aggregation must satisfy the following
conditions:

1. It does not change the currents and voltages, IR and VR, at the retained nodes.
2. The real and reactive power injection at the equivalent node must be equal to the sum of injections

at the aggregated nodes, Sa = ∑
i∈{A} Si .

The transformation of the network can then be described by[
IR

IA

]
=

[
YRR YRA

YAR YAA

] [
VR
VA

]
⇒

[
IR

Ia

]
=

[
YRR YRa

YaR Yaa

] [
VR
Va

]
, (14.13)

where the subscripts refer to the appropriate sets. As a is a single node, YRa is a column, YaR is a
row and Yaa is a scalar.

The first condition is satisfied when

YRRVR + YRAVA = YRRVR + YRaVa or YRAVA = YRaVa. (14.14)

If this condition is to be satisfied for any vector VA, the following must hold:

YRa = YRAϑ, (14.15)

where

ϑ = V−1
a VA =




ϑ1
ϑ2
...


 (14.16)
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Figure 14.6 Node aggregation using Zhukov’s method: (a) network before aggregation; (b) net-
work after aggregation.
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is the vector of voltage transformation ratios between the aggregated nodes and the equivalent
node.

The second assumption is satisfied when

Va I∗
a = VT

A I∗
A, (14.17)

where the left hand side expresses the injection at the equivalent node and the right hand side
expresses the sum of all the aggregated injections. Substituting into Equation (14.17) for Ia and IA

calculated from Equation (14.13) gives

VaY∗
aRV∗

R + VaY∗
aaV∗

a = VT
AY∗

ARV∗
R + VT

AY∗
AAV∗

A. (14.18)

If this equation is to be satisfied for any vector of VA, the following two conditions must hold:

YaR = ϑ∗TYAR, (14.19)

Yaa = ϑ∗TYAAϑ . (14.20)

Substituting Equations (14.15), (14.19) and (14.20) into the second of Equations (14.13) finally
gives

[
IR

Ia

]
=


 YRR YRAϑ

- - - - - - - - - - - - - - - - - - - - - - - -
ϑ∗TYAR ϑ∗TYAAϑ


 [

VR

Va

]
. (14.21)

Equations (14.15), (14.19) and (14.20) describe the admittances of the equivalent network. The
admittances of the equivalent branches linking the equivalent node with the retained nodes depend
on the vector of transformation ratios ϑ , and hence on the voltage angle at the equivalent node. As
it is convenient to have equivalent branches of low resistances, the voltage angle δa at the equivalent
node is assumed to be equal to the weighted average of voltage angles at the aggregated nodes

δa =

∑
i∈{A}

Si δi∑
i∈{A}

Si
or δ′

a =

∑
i∈{A}

Miδ
′
i∑

i∈{A}
Mi

, (14.22)

where Si is the apparent power injection at the aggregated node i and Mi = Tmi Sni/ωs is the inertia
coefficient of the unit installed at the ith aggregated node. The first formula can be used for forming
the equivalent to be used for steady-state analysis and the second formula can be applied for
aggregation of a group of generators represented by the classical transient stability model (constant
transient emfs E′

i ).
When compared with Dimo’s method, the advantage of Zhukov’s method is that it does not

introduce fictitious branches between the retained nodes {R}. This is because submatrix YRR is
unchanged by aggregation. It does, however, introduce fictitious shunt branches at the retained
nodes. To understand this, examine the ith diagonal element of YRR which is equal to the sum of
admittances of all the series and shunt branches connected to i:

Yii = y
i0

+
∑
j∈{R}

y
i j

+
∑

k∈{A}
y

ik
for i ∈ {R}, (14.23)

where y
i0

is the sum of admittances of all shunt branches connected to i and y
i j

is the admittance
of a branch linking nodes i and j. During aggregation, all the branches of admittance y

ik
that link

node i ∈ {R} with the aggregated nodes k ∈ {A} are replaced by a single branch with admittance
y

ia
generally not equal to

∑
k∈{A} y

ik
. As Yii and

∑
j∈{R} y

ik
must remain unchanged, replacing
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∑
k∈{A} y

ik
by y

ia
must be compensated by a change in the value y

i0
. The interpretation of this in

network terms is that Zhukov’s aggregation introduces some equivalent shunt admittances at the
retained nodes {R}.

14.2.3.1 Symmetry of the Equivalent Admittance Matrix

If the vector ϑ is complex then Zhukov’s equivalent admittance matrix is not generally symmetric
(YaR �= YT

Ra). This means that if Yia �= Yai for i ∈ {R} then the value of the admittances in the
equivalent branches obtained after aggregation are direction dependent. From a computational
point of view, asymmetry of the admittance matrix is inconvenient and Figure 14.7 shows how this
asymmetry can be removed by inserting a correction current Ic at the equivalent node a. The nodal
equation of the system then takes the form

[
IR

Ia

]
=


 YRR YRa

YT
Ra Yaa + Ic

Va


 [

VR

Va

]
, (14.24)

where Ic = [(ϑ∗ − ϑ)TYAR]VR is the correction current. This current is not constant because it de-
pends on the voltages in set {R}. The correction current is small (negligible when compared with Ia)
when the difference (ϑ∗ − ϑ) is small, that is when the imaginary parts of the transformation ratios
are small. This condition is usually satisfied because the angle of the equivalent voltage, Equation
(14.22), is averaged over the aggregated nodes. Consequently, variations of the correction current
can be neglected and a constant current replaced by a constant admittance (Ic/Va) added to the
self-admittance of the equivalent node a. This has been shown using the dotted line in Figure 14.7.

14.2.4 Coherency

The admittances in the equivalent Zhukov network depend on the transformation ratios ϑ i = Vi /Va
between the aggregated nodes i ∈ {A} and the equivalent node a. This means that an equivalent
network obtained for an initial (prefault) state is only valid for other states (transient or steady
state) if the transformation ratios (see Figure 14.15) can be assumed to remain constant for all
nodes i ∈ {A} in a given group:

Vi (t)
Va(t)

= V̂i

V̂a

= ϑ i = constant for i ∈ {A}, (14.25)

where the circumflex denotes the initial state (stable equilibrium point) for which the reduced model
has been constructed. For any two nodes i, j ∈ {A} this condition is equivalent to

Vi (t)
V j (t)

= Vi (t)
Vj (t)

ej[δi (t)−δ j (t)] = V̂i

V̂j
ej[δ̂i −δ̂ j ] = constant for i, j ∈ {A}. (14.26)
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Figure 14.7 Symmetry of the equivalent network.
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Nodes satisfying this condition are referred to as electrically coherent nodes or simply coherent
nodes. If the voltage magnitude of the aggregated node can be assumed to be constant (as for PV
nodes in the steady-state power flow problem) the above coherency condition (14.26) simplifies to

δi (t) − δ j (t) = δ̂i j for i, j ∈ {A}, (14.27)

where δ̂i j = δ̂i − δ̂ j are the initial values.
Practical experience with power system simulation shows that load nodes are almost never

electrically coherent. Only the load nodes very far away from a disturbance maintain constant
voltage magnitude and angle. On the other hand, it is usually possible to find groups of coherent
generation nodes because some groups of generators in the system have a natural tendency to swing
together. This means that Zhukov’s method is well suited for aggregation of groups of electrically
coherent generation nodes.

For the generators modelled by the classical generator model (Figure 5.8) the nodal voltage at the
generator nodes is equal to the transient emf E′

i , the magnitude of which is assumed to be constant
E′

i = constant, and the angle corresponds to the rotor angle δ′
i (t). For these generator nodes the

coherency condition (14.26) simplifies to

δ′
i (t) − δ′

j (t) = δ̂′
i j for i, j ∈ {A}, (14.28)

where δ̂′
i j = δ̂′

i − δ̂′
j are the initial values. The coherency defined by Equation (14.28) is valid also

for generator rotors and is therefore referred to as the electromechanical coherency.
An example of rotor swings for three generators is shown in Figure 14.8. Generators i, j are

electromechanically coherent because the difference between their rotor angles is almost constant
despite both angles undergoing quite deep oscillations. Generator k is not coherent with the other
two because its rotor angle variations are different.

Condition (14.28) may also be written as [δ′
i (t) − δ̂′

i ] − [δ′
j (t) − δ̂′

j ] = 0 or [�δ′
i (t) − �δ′

j (t)] = 0.
For practical considerations it may be assumed that coherency is only approximate with accuracy
ε�δ , which corresponds to the condition∣∣�δ′

i (t) − �δ′
j (t)

∣∣ < ε�δ for i, j ∈ {A} and t ≤ tc, (14.29)

where ε�δ is a small positive number and tc is the duration time of coherency.
The generators are said to be exactly coherent generators if

ε�δ = 0 and tc = ∞. (14.30)

Exactly coherent generators rarely occur in practice, but the definition is useful for theoretical
considerations.

It should be noted that swings of coherent generators can be treated as a constrained motion as
illustrated in Figure 14.9 where generators i and j are electromechanically coherent. In the plane with

δ′

δ′k

δ′i t( )

δ′j t( )
t

Figure 14.8 Example of variation of rotor angles for three generators.
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δ′(t)

δ′ )(t0

k

Figure 14.9 Illustration of exact coherency: (a) rotor swings; (b) trajectory in the rotor angle space.

coordinates δ′
i (t), δ′

j (t), the trajectory of these two coherent generators is given by δ′
i (t) = δ′

j (t) + δ̂′
i j

resulting from the coherency condition (14.28). Obviously δ′
i (t) as a function of δ′

j (t) is a straight
line. Generator k is not coherent with generators i, j (Figure 14.9a). Consequently, the trajectory
δ′(t) in the space with coordinates δ′

i (t), δ
′
j (t), δ

′
k(t) lies in the plane crossing the previously mentioned

straight line (Figure 14.9b).
When there are more coherent generators, the trajectory lies on the intersection line of the planes.

The intersection line may be described using the following equation:

ϕ(δ′) = 0, (14.31)

where ϕ(δ′) is a vector function consisting of the following functions:

ϕ j (δ) = δ′
1(t) − δ′

j (t) − δ̂′
1 j = 0 for j ∈ {A} and j > 1, (14.32)

where δ′
1 j0 = δ′

10 − δ′
j0. For every generator belonging to a coherent group {A}, the above equation

can be treated as a constraint for the rotor motion.

14.3 Aggregation of Generating Units

The elimination and aggregation of nodes considered so far will produce a reduced network model
for use in steady-state analysis. If the reduced model is to be used for dynamic analysis then
equivalent generating units must be added to the equivalent nodes.

From a mechanical point of view, the rotors of electromechanically coherent generators can be
treated as if they rotated on one common rigid shaft, Figure 14.10. A group {A} containing n such
generators can be replaced by one equivalent generator with inertia coefficient Ma and mechanical
power input Pma given by

Ma =
∑
i∈{A}

Mi , Pma =
∑
i∈{A}

Pmi , (14.33)

where Mi = Tmi Sni /ωs is the inertia coefficient and Pmi is the mechanical power input of the ith
aggregated generator. This is consistent with Zhukov’s aggregation, which sets the power injection
at the equivalent node equal to the sum of power injections to all the aggregated nodes, Equation
(14.17).

The equivalent model of a group of electromechanically coherent generation units is therefore
created by Zhukov’s aggregation of the generation nodes and by replacing the aggregated generators
by one equivalent generator with inertia coefficient and mechanical power given by Equation (14.33).
The equivalent generator is represented by the classical model with constant equivalent transient
emf and by the swing equation.
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If more detailed models are used then parameters of the equivalent unit can be found by matching
the frequency response characteristics of the equivalent unit to the characteristics of the aggregated
units. Details can be found in Garmond and Podmore (1978) and Cai and Wu (1986).

14.4 Equivalent Model of External Subsystem

The described method of creating a dynamic equivalent model is based on the following assump-
tions:

1. The system is divided as in Figure 14.1 into internal and external parts.
2. In the internal part, detailed generator and load models are used as described in Chapter 11.
3. In the external part, the loads are replaced by constant admittances while the generators are

modelled using the classical model (the rotor swing equation and a constant transient emf behind
a transient reactance).

Under these assumptions the creation of the dynamic equivalent model is significantly simplified
and consists of three steps:

1. Elimination of the load nodes in the external subsystem.
2. Identification of coherent groups of generators in the external subsystem.
3. Aggregation of the coherent groups.

All three steps are briefly described in the following subsections.
All the load nodes in the external subsystem can be eliminated using the method described in

Section 14.2.1. The resulting external equivalent network is referred to as the PV equivalent network
because, with the exception of the border nodes, it contains only generation nodes (the terminology
used with respect to load flow calculations in Section 3.7 referred to such nodes as PV nodes). The
power demand of the external system is then distributed among the border nodes and generation
nodes. All the generation nodes, and the border nodes, are connected by the equivalent network,
which is much more dense than the original.

For some power system analysis problems it may be more convenient not to eliminate the load
nodes altogether, but to replace a few of them by equivalent load nodes using Dimo’s aggregation
method. These equivalent nodes can then be used to change the power demand of the external
subsystem if a change in tie-line flows is required.

Coherency recognition is the most difficult step in creating a dynamic equivalent model of the
external subsystem. Coherency criteria and coherency recognition algorithms are described in next
section.

When all the groups of coherent generators in the external subsystems have been recognized, the
next step is to use Zhukov’s method to aggregate the nodes in these groups. Equivalent generating

Pm1 Pm2 Pmn Pma

S2S1 Sn Sa

M1 M2 Mn Ma

Figure 14.10 Mechanical aggregation of coherent rotors.
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Figure 14.11 Model reduction of the external system.

units with parameters calculated as described in Section 14.3 are connected to the equivalent nodes
obtained by Zhukov’s method.

Figure 14.11 illustrates the whole process of forming an equivalent model of the external sub-
system. The original model of the subsystem contains a large number of load nodes and a large
number of generation nodes {G} = {G1} + {G2} + · · · + {Gg}. The load nodes are either completely
eliminated or aggregated into a few equivalent nodes using Dimo’s method. The generator nodes are
divided into groups of approximately coherent nodes {G1}, {G2}, . . . , {Gg} and each of the groups
is replaced by one equivalent node with an equivalent generating unit.

14.5 Coherency Recognition

The topological network equivalent obtained by aggregation of generation nodes will only give
valid results if, following a disturbance inside the internal subsystem, the generators within each
aggregated group are coherent. The problem is therefore how to assess generator coherency without
first completing a detailed dynamic simulation of the complete system for a particular disturbance.
Fortunately methods are available that will assess generator coherency without the need for such
detailed simulation and this is referred to as coherency recognition. The simplest solution to this
problem is to assume that all the generators installed at the aggregated nodes can be modelled by
the classical generator model and electromechanical coherency must be recognized.

Several methods of coherency recognition have been reported in the literature. The approach
described here is based on coherency criteria derived by Machowski et al. (1988).

Coherency criteria for nonlinear dynamic system models have been mathematically derived by
Machowski (1985) using the theory of motion with prescribed trajectory due to Olas (1975).
The methodology was based on an observation that electromechanical coherency is a case of the
constrained motion (Figure 14.9) with constraints given by Equation (14.32). As the proof is rather
complicated, the idea of coherency recognition will be described here using a single disturbance
when the voltage angle at one of the nodes k ∈ {B} is changed.

Providing that all the load nodes of the external subsystem have been eliminated, any disturbance
inside the internal subsystem influences the generators in the external subsystem through equivalent
branches of the transfer network. According to Equation (3.156), if the mutual conductances Gij in
the transfer admittance matrix are neglected, the real power produced by generator i ∈ {G} in the
external subsystem (Figure 14.11) can be expressed as

Pi = (E′
i )

2Gii +
∑
k∈{B}

E′
i Vk Bik sinδ′

ik +
∑
l∈{G}

E′
i E′

l Bil sin δ′
i l , (14.34)



P1: OTA/XYZ P2: ABC
c14 JWBK257/Machowski September 5, 2008 18:17 Printer Name: Yet to Come

570 Power System Dynamics

where E′
i for i ∈ {G} is the generator transient emf, Vk for k ∈ {B} is the voltage at the border

node, δ′
ik = δ′

i − δk, δ′
i l = δ′

i − δ′
l and Gii, Bik and Bil are the appropriate elements of the transfer

admittance matrix.
Assuming that the disturbance is caused by a change in the voltage angle of the border node k from

the initial value δ̂k to a value δk = δ̂k + �δk, and assuming that the voltages at the other nodes are
constant, this change in angle will cause a change in the power generation at node i ∈ {G} equal to

�Pi (�δk) = bik[sin(δ̂′
ik + �δk) − sin δ̂′

ik], (14.35)

where bik = E′
i Vk Bik is the maximum power transfer in the equivalent branch linking a generator

node i ∈ {G} with a border node k ∈ {B}. As �δk is small, it holds that cos �δk ≈ 1 and
sin �δk ≈ �δk. Expanding the sine term in Equation (14.35) gives

�Pi (�δk) ≈ Hik�δk, (14.36)

where Hik = bik cos δik0 is the synchronizing power between a given generator i ∈ {G} and a given
border node k ∈ {B}. The considered disturbance causes the rotor acceleration

εi = �Pi (�δk)
Mi

= Hik

Mi
�δk for k ∈ {B}, (14.37)

where Mi is the inertia coefficient. A similar expression for acceleration can be written for another
generator in the external subsystem as

ε j = �Pj (�δk)
Mj

= Hjk

Mj
�δk for k ∈ {B}. (14.38)

Generators i, j ∈ {G} are electromechanically exactly coherent generators (see Equation (14.30))
if their rotor accelerations εi and εj caused by the disturbance are the same, that is when

Hik

Mi
= Hjk

Mj
for i, j ∈ {A}, k ∈ {B}. (14.39)

Equation (14.39) constitutes the exact coherency condition during the postfault state and means
that the synchronizing powers divided by the inertia constants must be identical.

It will be shown in Section 14.6 that exact coherency has an elegant and interesting modal
interpretation and that the exact coherency condition (14.39) may be derived using modal analysis.

Equation (14.39) is the condition for exact coherency. In real power systems (apart from the trivial
case of identical generating units operating in parallel on the same busbar) the exact coherency
practically does not appear. This is not a significant problem as simulation of the internal system
gives results of satisfactory accuracy if the external subsystem can be replaced by an approximate
equivalent created by the aggregation of generators that are only approximately coherent. For
practical purposes the equality (14.39) can be replaced by the following inequality:

max
i∈{G}

Hik

Mi
− min

j∈{G}
Hjk

Mj

d{G}
≤ ρh for i, j ∈ {G}, k ∈ {B}, (14.40)

where ρh is a small number determining the admissible error and d{G} is a density measure of the
considered group {A}. The density measure for a pair of generators i, j is defined using the following
parameter:

di j = min
i, j∈{G}

(
Hi j

Mi
;

Hji

Mj

)
, (14.41)
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Figure 14.12 Illustration of the definition of the density measure.

which relates to the direct connection of this pair and appropriate inertia coefficients. For the group
of generators {G} this parameter can be used to define the following density measure:

d{G} = min
i, j∈{T}

di j , (14.42)

where {T} is a tree made up of the equivalent branches with the highest values of d{i, j}. Such a
definition is justified by the fact that, inside the group, the nodes with weak direct connections can
be strongly connected via other nodes. This is illustrated in Figure 14.12. For example, nodes 5 and
2 are directly very weakly connected by a branch of parameters d{2,5} = 0.03. However, these nodes
are strongly connected via nodes 3 and 4. In Figure 14.12 the tree {T} is denoted using bold lines.
The weakest branch of this tree is the branch connecting nodes 1 and 4. Hence in the discussed
example the density measure of the group {G} = {1, 2, 3, 4, 5} is equal to d{G} = d14 = 0.33.

Justification of the density measure (14.42) results from the following observations of simulations
of power system dynamic response. Each strongly connected group of generators has a natural
tendency to maintain synchronism. The synchronism may be disturbed only by disturbances close
to that group. For remote disturbances the further away is the disturbance, the less the synchronism
is disturbed and the more the group motion is close to exact coherency.

Inequality (14.40) was derived based on condition (14.39) for exact coherency when the above
observations were taken into account. Hence inequality (14.40) is referred to as the coherency
criterion while Equation (14.39) constitutes the coherency condition.

Another important observation in the simulation of power system dynamic response concerns
the influence of the coherency error of a group of generators aggregated in the external subsystem
on the simulation accuracy of the internal subsystem. The more the group of aggregated generators
is remote from the internal subsystem, the smaller is the influence of the coherency error on the
simulation accuracy of dynamic response in internal subsystems. This observation makes it possible
to make ρh in criterion (14.40) dependent on the distance of group {A} from the border nodes:

ρh = ρh0 + �ρh
d{G}

max
k∈{B};i∈{G}

dik
, (14.43)

where ρh0 and �ρh are small positive numbers (ρh0 = 0.2–0.5 and �ρh = 0.1–0.3). For the border
nodes {B} the coefficient of inertia is zero and according to Equation (14.41), dik = hik/Mi holds
for k ∈ {B} and i ∈ {G}.

The coherency recognition algorithm based on criterion (14.40) works as follows:

1. Determine the transfer admittance matrix for the border nodes {B} and all the generation nodes
in the external subsystem.
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2. Mark all the generators of the external subsystem as eligible generators for grouping.
3. Order all the equivalent branches in ascending order according to the values of the distance

measure dij. Create an ordered list of those branches containing, for each branch, the value of dij

and numbers of the terminal nodes i and j.
4. Take from the list created in step 3 the data of the next equivalent branch. Memorize its terminal

nodes i and j and density measure dij. If there are no branches left, stop the algorithm.
5. If the generator i or j is not eligible for grouping then return to step 4.
6. If the criterion (14.40) is not satisfied for pair {i, j}, then return to step 4. Otherwise, create group

{G} consisting of two generators {i, j}.
7. Search all the eligible generators for a new generator x which satisfies criterion (14.40) for the

extended group substituting {G, x} and gives a minimum value for the left hand side of (14.40).
If such a generator cannot be found, store group {G} as a new group and return to step 4.
Otherwise, go to step 8.

8. Mark generator x as not eligible and add it to group {G}. Return to step 7.

The algorithm is very fast and gives good results in practice. Test results of the above coherency
recognition algorithm for test systems and real, large interconnected power systems can be found
in Machowski (1985), Machowski, Gubina and Omahen (1986) and Machowski et al. (1986, 1988).
Due to lack of space here only one example will be presented.

Example 14.1

The diagram of a 25-machine test system is shown in Figure 14.13. In order to show in such
a small system the influence of the disturbance distance on the grouping of generators, it was
assumed that the internal subsystem is very small, it is on the verge of the test system and it
contains two power plants with generators 7 and 18 (bottom right corner of the diagram). The
remaining part of the test system was treated as the external subsystem.
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Figure 14.13 Test system and recognized coherent groups.
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For the parameter values ρh0 = 0.3 and �ρh = 0 a number of groups were obtained that are
shown by solid lines in Figure 14.13. The groups are: {4, 5, 6}, {10, 12}, {9, 11, 13, 25}, {14, 15,
16}, {1, 2, 3, 8}, {17, 20, 21, 22}, {23, 24}. Altogether 22 generators were replaced by 7 equivalent
generators. Generator 19 close to the internal subsystem did not enter any of the groups.

After introducing a dependence of the parameter ρh on the distance to the disturbance and
assuming �ρh = 0.2, three groups were obtained close to the internal system. The first three
groups were identical to the previous case: {4, 5, 6}, {10, 12}, {9, 11, 13, 25}. Three further
groups were joined together to form one large group: {14, 15, 16, 1, 2, 3, 8, 17, 20, 21, 22}
encircled by a dashed line in Figure 14.13. Group {23, 24} was not included in any other group.
Altogether 22 generators were replaced by 5 equivalent generators.

Figure 14.14 shows the simulation results for the original system consisting of 25 generators
and the reduced models. The assumed disturbance was an intermittent short circuit on the
busbars of power plant 18. The solid line corresponds to the rotor swing of generator 18 for the
original (unreduced) system model. The dotted line corresponds to the group obtained using
�ρh = 0. The dashed line corresponds to the group obtained using �ρh = 0.2, that is when larger
coherency tolerance was assumed for remote generators. In the transient state of about 1.5 s
the rotor swings obtained for the reduced model were quite close to the swings for the original
(unreduced) model.
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Figure 14.14 Simulation results for original and reduced system model.

14.6 Properties of Coherency-Based Equivalents

Coherency-based equivalents using Zhukov’s aggregation exhibit many interesting static and dy-
namic properties which will be discussed in this section.

14.6.1 Electrical Interpretation of Zhukov’s Aggregation

De Mello, Podmore and Stanton (1975) proposed an aggregation method whereby all the nodes to
be aggregated are connected together through ideal transformers with transformation ratios that
give a common secondary voltage Va. This is illustrated in Figure 14.15. Now it will be shown
that such an aggregation method is, from the mathematical point of view, equivalent to Zhukov’s
aggregation.

Let τ be a diagonal matrix containing transformation ratios of all the ideal transformers used to
aggregate the nodes by using De Mello’s method:

τ =




ϑ1
ϑ2

. . .


 . (14.44)
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Figure 14.15 Electrical interpretation of Zhukov’s aggregation.

Note that there is the following relationship between the above diagonal matrix and vector (14.16)
defined in the Zhukov’s aggregation:

ϑ =




ϑ1
ϑ2
...


 =




ϑ1
ϑ2

. . .







1
1
...


 = τ 1A, (14.45)

where 1A is a column vector with all elements equal to one.
The network shown in Figure 14.15, but without the ideal transformers, is defined by the following

nodal admittance equation: [
IR

I ′
A

]
=

[
YRR YRA

YAR YAA

] [
VR

V ′
A

]
, (14.46)

where the prime denotes variables on the primary side of the ideal transformers. For the ideal
transformers

I ′′
A = τ ∗ I ′

A, V ′
A = τ Va, Va = 1AVa, (14.47)

where Va is a vector column with all the elements identical and equal to Va. For the equivalent node

Ia = 1T
A I ′′

A, (14.48)

which is the mathematical expression of the fact that the sum of secondary currents in the ideal
transformers is equal to the nodal current at the equivalent node (Figure 14.15).

Equation (14.46) can be written as

IR = YRRVR + YRAV ′
A, (14.49a)

I ′
A = YARVR + YAAV ′

A. (14.49b)

Vector V ′
A in these equations can be, according to Equation (14.47), replaced by τ Va. Taking this

into account and left-multiplying Equation (14.49b) by τ ∗ gives

IR = YRRVR + YRAτ Va, (14.50a)

τ ∗ I ′
A = τ ∗YARVR + τ ∗YAAτ Va. (14.50b)

Now, according to Equation (14.47), τ ∗ I ′
A may be replaced by I ′′

A and Va by 1AVa. Equations
(14.50) will then take the form

IR = YRRVR + YRAτ1AVa, (14.51a)

I ′′
A = τ ∗YARVR + τ ∗YAAτ1AVa. (14.51b)
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Equation (14.49b) is left-multiplied by 1T
A which, after taking into account (14.46), gives

Ia = 1T
Aτ ∗YARVR + 1T

Aτ ∗YAAτ1AVa. (14.51c)

Taking into account (14.45), it is possible to write Equations (14.51a) and (14.51c) as

IR = YRRVR + YRAϑVa, (14.52a)

Ia = ϑ∗TYARVR + ϑ∗TYAAϑVa, (14.52b)

or in matrix form

[
IR

Ia

]
=


 YRR YRAϑ

- - - - - - - - - - - - - - - - - - - - - - - -
ϑ∗TYAR ϑ∗TYAAϑ


 [

VR

Va

]
. (14.53)

Note that Equation (14.53) is identical to Equation (14.21) obtained for Zhukov’s aggregation.
This means that the methods proposed by De Mello, Podmore and Stanton (1975) and by Zhukov
(1964) are equivalent. The advantage of De Mello’s approach is that it gives an electrical interpre-
tation of mathematical transformations.

14.6.2 Incremental Equivalent Model

For the system shown in Figure 14.6 in which nodes {R} and {A} have been emphasized, the
incremental equation (12.99) takes the following form:

[
�PR

�PA

]
=

[
HRR HRA

HAR HAA

] [
�δ′

R
�δ′

A

]
, (14.54)

where elements in matrix H = [∂P/∂δ′] are the synchronizing powers.
In the case of exact coherency (Section 14.2.4) the increments of rotor angles are identical and

can be written as

�δ′
i (t) = �δ′

j (t) = �δ′
a(t) for i, j ∈ {A}, (14.55)

where �δa(t) is a common change of angles for the node group {A}. Equation (14.55) can be
expressed in matrix form as

�δ′
A = 1A · �δ′

a(t), (14.56)

where 1A is a vector of unity elements of the size of group {A}.
When a group of generators is replaced by one equivalent generating node (Figure 14.6) it is

assumed that Sa = ∑
i∈{A} Si which also means Pa = ∑

i∈{A} Pi . In the case of the incremental model

�Pa =
∑
i∈{A}

�Pi , (14.57)

which means that a change of power in the equivalent node is equal to the sum of changes of power
in the replaced nodes.



P1: OTA/XYZ P2: ABC
c14 JWBK257/Machowski September 5, 2008 18:17 Printer Name: Yet to Come

576 Power System Dynamics

Equation (14.57) can be written in matrix form as

�Pa = 1T
A · �PA. (14.58)

Equation (14.58) gives

�PR = HRR�δR + HRA�δ′
A, (14.59a)

�PA = HAR�δR + HAA�δ′
A. (14.59b)

Substituting into Equations (14.59) the value from Equation (14.56) gives

�PR = HRR�δR + HRA1A · �δ′
a, (14.60a)

�PA = HAR�δR + HAA1A · �δ′
a. (14.60b)

Left-multiplying (14.60b) by 1T
A and taking into account (14.58) gives

�Pa = 1T
A HAR�δR + 1T

A HAA1A · �δ′
a. (14.61)

Equations (14.60a) and (14.61) may be merged in matrix form as[
�PR

�Pa

]
=

[
HRR HRA1A

1T
A HAR 1T

A HAA1A

] [
�δR

�δ′
a

]
, (14.62)

or [
�PR

�Pa

]
=

[
HRR HRa

HaR Haa

] [
�δR

�δ′
a

]
, (14.63)

where

HaR = 1T
A HAR, HRa = HRA1A, Haa = 1T

A HAA1A (14.64)

and HaR is a row vector, HRa is a column vector, while Haa is a scalar.
Note that HaR is created from HAR by adding up its rows and HRa is created from HRA by adding

up its columns. Element Haa is created by adding up all the elements of HAA. This means that
aggregation of generators in the incremental model in effect adds up all the synchronizing powers.

The described aggregation method corresponding to Equation (14.62) was proposed by Di Caprio
and Marconato (1975).

Now it will be shown that the linearized reduced model proposed by Di Caprio and Marconato
corresponds to the linearized form of the reduced model obtained by Zhukov’s aggregation. The
operations of linearization and aggregation are commutative, which is illustrated in Figure 14.16.

aggregation in nonlinear original model + linearization of reduced model

linearization of original model + aggregation in linear model

Figure 14.16 Illustration of the fact that aggregation and linearization are commutative.
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A simple proof of this can be conducted in the complex-number domain by calculating the
derivatives Ji j = ∂Si /∂δ j directly from the apparent power Si instead of real power Pi = Re i .
Obviously Si = Pi + jQi and hence Hi j = ∂ Pi/∂δ′

j = ReJi j . Thus the proof conducted for J =[
∂ S/∂δ′] is at the same time valid also for H = [∂ P/∂δ′]. Calculation of the derivative in the

complex-number domain makes it possible to avoid complicated transformations of trigonometric
functions which appear in the equations for real power.

14.6.2.1 Aggregation in the Linear Model

In the original model before aggregation (Figure 14.6) the apparent power for node i ∈ {R} can be
expressed as

Si = Vi

∑
j∈{R}

Y∗
i j V

∗
j + Vi

∑
k∈{A}

Y∗
ik E∗

k, (14.65)

where

Vi = Vi e jδi , V∗
j = Vj e−jδ j , E∗

k = Eae−jδ′
k . (14.66)

Differentiating gives

Ji j = ∂Si

∂δ j
= −jVi Y

∗
i j V

∗
j and Jik = ∂Si

∂δ′
k

= −jVi Y
∗
ik E∗

k. (14.67)

Similarly one gets for l ∈ {A}

Sl = El

∑
j∈{R}

Y∗
l j V

∗
j + El

∑
k∈{A}

Y∗
lk E∗

k, (14.68)

where

El = Ei e jδ′
l , V∗

j = Vj e−jδ j , E∗
k = Eke−jδ′

k . (14.69)

After calculating the derivatives one gets

Jl j = ∂Sl

∂δ j
= −jEl Y

∗
l j V

∗
j and Jlk = ∂Sl

∂δ′
k

= −jEl Y
∗
lk E∗

k. (14.70)

After aggregation of group {A} using the method of Di Caprio and Marconato, that is by adding
the synchronizing powers, one gets

Jia =
∑

k∈{A}
Jik = −jVi

∑
k∈{A}

Y∗
ik E∗

k, (14.71a)

Ja j =
∑
l∈{A}

Jl j = −jV∗
j

∑
l∈{A}

Y∗
l j El . (14.71b)

Elements Ji j for i, j ∈ {R} do not change during aggregation of group {A}.
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14.6.2.2 Linearization of the Reduced Nonlinear Model

In the reduced model obtained after aggregation by Zhukov’s method (Figure 14.6), the apparent
power for node i ∈ {R} can be expressed as

Si = Vi

∑
j∈{R}

Y∗
i j V

∗
j + Vi Y

∗
ia E∗

a, (14.72)

where

Vi = Vi ejδi , V∗
j = Vj e−jδ j , E∗

a = Eae−jδ′
a . (14.73)

Differentiation gives

Ji j = ∂Si

∂δ j
= −jVi Y

∗
i j V

∗
j , Jia = ∂Si

∂δ′
a

= −jVi Y
∗
ia E∗

a. (14.74)

Utilizing Equation (14.15) one can write

Yia =
∑

k∈{A}
Yik

Ek

Ea

,

and after substituting in the second of Equations (14.74) one finally gets

Jia = ∂Si

∂δ′
a

= −jVi

∑
k∈{A}

Y∗
ik

E∗
k

E∗
a

E∗
a = −jVi

∑
k∈{A}

Y∗
ik E∗

k. (14.75)

The apparent power in the equivalent node (Figure 14.6) is given by

Sa = Ea

∑
j∈{R}

Y∗
a j V

∗
j + EaY∗

aa E∗
a. (14.76)

Differentiation gives

Ja j = ∂Sa

∂δ j
= −jEaY∗

a j V
∗
j . (14.77)

Utilizing Equation (14.19) one can write

Ya j =
∑
l∈{A}

E∗
l

E∗
a

Yl j ,

and after substituting into Equation (14.77) one finally gets

Ja j = ∂Sa

∂δ j
= −jV∗

j Ea

∑
l∈{A}

El

Ea

Y∗
l j = − jV∗

j

∑
l∈{A}

Y∗
l j El . (14.78)

Comparing (14.71a) with (14.75) and (14.71b) with (14.78) clearly shows that the values obtained
through aggregation in the linear model, and by linearization in the reduced model, are the same.
Equivalence of the synchronizing power Jaa = ∂Sa/∂δ′

a in both cases is due to the self-synchronizing
power being equal to the sum of mutual synchronizing powers taken with the opposite sign –
see Equations (3.164) and (3.165) in Section 3.5. This concludes the proof that aggregation and
linearization are commutative.
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14.6.3 Modal Interpretation of Exact Coherency

In Chapter 12 power swings in the linearized power system model were analysed using modal
analysis. Each mode (corresponding to an eigenvalue of the state matrix) has a frequency of
oscillation and a damping ratio. Now it will be shown that exact coherency can also be analysed
using modal analysis. Also, a proof of the exact coherency condition given by (14.39) will be
conducted.

Partial inversion (Appendix A.2) of Equation (14.54) gives

�PA = HA�δ′
A + RA�PR, (14.79)

where

HA = HAA − HAR H−1
RR HRA, (14.80)

RA = HAR H−1
RR. (14.81)

The matrix equation for the motion of rotors in group {A} can be written in a similar way to
Equation (11.23), while for further considerations it is more convenient to express the equations
as

MA�δ̈′
A = −HA�δ′

A − RA�PR − DA�δ̇
′
A, (14.82)

where MA and DA are diagonal matrices containing inertia and damping coefficients. Neglecting
damping, the equation can be written as

�δ̈
′
A = −M−1

A HA�δ′
A − M−1

A RA�PR. (14.83)

This is the state equation of group {A} in which changes of power �PR in nodes {R} are treated
as inputs. This is a second-order equation (discussed in Section 12.2) which can be replaced by a
first-order matrix equation


 �δ̇

′
A

- - - - -
�ω̇A


 =




0 1
- - - - - - - - - - - - -
−M−1

A HA 0





 �δ′

A
- - - - -
�ωA


 −


 0A

- - - - - - - - -
M−1

A RA�PR


 , (14.84)

where 0A is a zero column vector and �ωA = �δ′
A. Equation (14.84) has the form of Equation

(12.95) described in Section 12.1.5. Now changes of �δ′
A enforced by changes of �PR will be

considered using modal analysis.
Let µi be an eigenvalue of the state matrix a = −M−1

A HA from Equation (14.83) and let wi and
ui be respectively the right and left eigenvectors of this matrix. It was shown in Section 12.2.2 that
a system is stable when all the eigenvalues µi are real and negative. The eigenvalues λi of the state
matrix in Equation (14.84) are equal to λi = √

µi and, as µi < 0, they are imaginary numbers (see
Figure 12.5). To simplify considerations, eigenvalues µi of the state matrix in Equation (14.83) will
be analysed rather than λi .

From Section 12.1.1

W = [
w1 w2 · · · w N

]
and U = W−1 =




u1

u2

...
u N


 , (14.85)

where W and U are square matrices consisting of right and left eigenvectors.
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Equation (3.164) proved in Section 3.6 showed that the sum of elements in each row of matrix
H = [∂ P/∂δ′] is equal to zero. Let 1A, 1R and 0A, 0R be column vectors with all elements equal to
zero or one, respectively. Then Equation (14.54) can be transformed, using (3.164), to[

0R

0A

]
=

[
HRR HRA

HAR HAA

] [
1R

1A

]
. (14.86)

That is, for �δ′
A = 1A and �δR = 1R one gets �PA = 0A and �PR = 0R. Substituting these equa-

tions into (14.79) gives HA1A = 1A. This means that partial inversion given by (14.80) maintains
property (3.164) that the sum of elements in each row is equal to zero. Left-multiplying the last
equation by M−1

A gives

a · 1A = −M−1
A HA · 1A = 0A = 0 · 1A, (14.87)

that is a · 1A = 0 · 1A. This equation is the same as Equation (12.1) defining the eigenvalue and the
right eigenvector. Hence finally

µ1 = 0 and w1 = 1A. (14.88)

This leads to an important conclusion that one of the eigenvalues of the state matrix a = −M−1
A HA

in Equation (14.83) is equal to zero and the corresponding right eigenvector consists of ones.
As UW = 1 is a diagonal identity matrix, the following hold for the right and left eigenvectors

defined by (14.85): u1w1 = 1; u2w1 = 0; . . .; unw1 = 0. Substituting w1 = 1A gives

u11A = 1
u21A = 0
...
un1A = 0.

(14.89)

These relationships are crucial for further considerations.
As in Equation (12.41), new variables z are introduced, referred to as the modal variables, which

are related to the state variables �δ′
A by

�δ′
A = Wz and z = U�δ′

A. (14.90)

Expanding the second equation gives


z1

z2

...
zn


 =




u1

u2

...
un


 · �δ′

A =




u1�δ′
A

u2�δ′
A

...
un�δ′

A


 . (14.91)

The generators from group (A) are assumed to be exactly coherent, that is they satisfy (14.28)
and (14.56). Substituting �δ′

A for the right hand side of Equation (14.56) and taking into account
(14.89) leads to 


z1

z2

...
zn


 =




u11A

u21A

...
un1A


 · �δ′

a =




1
0
...
0


 · �δ′

a =




�δ′
a

0
...
0


 . (14.92)

This means that if group {A} is exactly coherent then among its n modal variables there is only one
modal variable z1(t) excited. This modal variable is responsible for the swinging of the whole group
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against the rest of the system. The remaining modal variables z2(t), . . . , zn(t) corresponding to the
swings inside the group are not excited, that is z2(t) = · · · = zn(t) = 0. These considerations lead to
the following conclusion:

In modal analysis, the exact electromechanical coherency of generators belonging to the external sub-
system corresponds to a situation where modal variables representing the swinging of generator rotors
inside the coherent group are not excited by disturbances in the internal subsystem. Disturbances in the
internal subsystem excite only that modal variable that represents the swinging of the whole coherent
group with respect to the rest of the system.

Now it will be investigated what the structure of matrix M−1
A RA in Equation (14.84) must be

so that disturbances in the internal subsystem represented by �PR cannot excite modal variables
z2(t), . . . , zn(t). Section 12.1.6 outlined the general conditions for a particular modal variable not
to be excited and this theory will be applied now. Substituting (14.90) into (14.83) gives

z̈ = 
z − r · �PR, (14.93)

where

r = W−1 M−1
A RA. (14.94)

Substituting (14.81) for RA gives

r = W−1 M−1
A HAR H−1

RR, (14.95)

and

Wr HRR = M−1
A HAR. (14.96)

Equation (14.93) shows that excitation of modal variables enforced by �PR is decided by matrix
r given by (14.94). Hence investigation of the structure of matrix r should lead to the derivation of
a condition for only one modal variable to be excited, that is the condition for exact coherency. To
simplify considerations further, Equation (14.93) can be rewritten as




z̈1

z̈2

...
z̈n


 =




λ1

λ2

. . .
λn







z1

z2

...
zn


 −




r1

r2

...
rn


 · �PR. (14.97)

Equation (14.97) shows that any input �PR will excite only one modal variable z1(t) if matrix r has
the following structure:

r =




r1

r2

...
rn


 =




r1

0
...
0


 , (14.98)
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that is it will have only one row (the first) non-zero. The first column of W consists of ones – see
(14.88). Now taking into account (14.98) leads to

Wr = [
1A w2 · · · wn

] ·




r1

0
...
0


 =




r1

r1

...
r1


 , (14.99)

which means that a matrix equal to the product Wr has all its rows identical. Then the left hand
side of Equation (14.96) will be

Wr HRR =




r1

r1

...
r1


 · HRR =




h1

h1

...
h1


 , (14.100)

that is it will also be a matrix of identical rows. Substituting (14.100) into (14.96) leads to

M−1
A HAR =




h1

h1

...
h1


 , (14.101)

that is a matrix equal to the product M−1
A HAR also has all its rows identical. Hence all the elements

in its column k are identical, which may be written as

Hik

Mi
= Hjk

Mj
for i, j ∈ {A}, k ∈ {R}. (14.102)

This means that the necessary and sufficient condition for exciting only one modal variable z1(t)
by any disturbance �PR in Equation (14.97), and therefore for group {A} to be exactly coherent,
is that condition (14.102) is satisfied. Remember that the excited modal variable z1(t) corresponds
to swings of group {A} with respect to the rest of the system and the modes z2(t) = · · · = zn(t) = 0
correspond to the internal swinging modes inside group {A} that are not excited.

Clearly Equations (14.102) and (14.39) are identical. The conclusion is that modal analysis
confirms the considerations in Section 14.5.

14.6.4 Eigenvalues and Eigenvectors of the Equivalent Model

The analysis in the previous subsection was undertaken under an assumption that, in the state
equation (14.83), changes of power in the remaining part of the system constitute a disturbance.
Such a model was used to investigate internal group swings and external swings between the group
and the rest of the system. The model could not be used to asses the influence of aggregation of
nodes in group {A} on the modes corresponding to oscillations in the rest of the system. That task
will require the creation of the incremental model of the whole system and an investigation of how
aggregation of group {A} influences eigenvalues and eigenvectors in the whole system. This difficult
task will be simplified by reducing the system model using aggregation which will be shown as a
projection of the state space on a subspace.

Let x be the state vector of a dynamic system described by the state equation

ẋ = Ax. (14.103)
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System reduction will be undertaken by projecting vector x onto a smaller vector

xe = Cx, (14.104)

where C is a rectangular matrix defining this projection and further referred to as the projection
matrix. The lower index comes from the word ‘equivalent’. The reduced model is described by

ẋe = axe, (14.105)

where a is a square matrix that will now be expressed using matrices A and C.
Equation (14.105) describes a reduced dynamic system obtained by the reduction of the state

vector using transformation (14.104).
Differentiating both sides of Equation (14.104) gives ẋe = Cẋ. Substitution of ẋe by the right

hand side of Equation (14.105) leads to axe = CAx. Substitution of xe by the right hand side of
(14.104) gives aCx = C Ax which finally leads to

aC = CA. (14.106)

Right-multiplying by CT gives aCCT = C ACT leading to

a = CACT(CCT)−1, (14.107)

where matrix CCT is a square matrix with rank equal to the number of state variables in the reduced
model.

The relationship given by (14.106) is very important because it will make it possible to show that
the reduced model (14.105) obtained from reducing the state vector using transformation (14.104)
partially retains eigenvalues and eigenvectors of the original (unreduced) system (14.103).

Let λi be an eigenvalue of the state matrix A in Equation (14.103) and let wi be a right
eigenvector of that matrix. Then according to the definition of eigenvectors, Aw i = λi w i . Left-
multiplying by C gives C Aw i = λi Cw i . Substitution of CA by the left hand side of (14.106) results in
aCw i = λi Cw i or

aw ei = λi w ei , (14.108)

where

w ei = Cw i . (14.109)

Equation (14.108) shows that for each w ei �= 0 the number λi is an eigenvalue of matrix a and w ei

is the corresponding right eigenvector. Obviously λi is also an eigenvalue of A. Equation (14.109)
shows that vector w ei is created by the reduction of vector w i . This means that by satisfying the
condition

w ei = Cw i �= 0, (14.110)

the reduced dynamic system (14.105) obtained by reducing the state vector using (14.104) partially
retains eigenvalues and eigenvectors of the original (unreduced) system (14.103). Note that the
relationship between eigenvector w ei of the reduced model and eigenvector w i of the original
(unreduced) model is the same as that between the state vector xe and the state vector x. This means
that wei corresponds to the projection of wi obtained using the projection matrix C.

Obviously condition (14.110) is not satisfied for every matrix C and the reduced model does not
maintain all eigenvalues and eigenvectors of the original (unreduced) model.
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In the case of the incremental model of a power system, Machowski (1985) showed that the
projection matrix should be of the following form:

C =




1
. . . 0

1
- - - - - - - - - - - - - - - - - - - - -

0
1
n

1
n

· · · 1
n




=




1 0
- - - - - - - - -
0

1
n

1T
A


 , (14.111)

where 1A is a vector of ones and n is the number of generators in group {A}.
The discussed reduction using the projection matrix may be applied to Equation (14.84) or

(14.83). This will be shown for the latter since: (i) the state matrix in (14.83) is simpler than in
(14.84); (ii) there is an exact relationship λi = √

µi between the eigenvalues of both matrices.
When applying the projection matrix (14.111), vector �δ′ in Equation (14.62) is transformed in

the following way:

C

[
�δ′

R

�δ′
A

]
=

[
�δ′

R

�δ′
a

]
, (14.112)

where

�δ′
a = 1

n

∑
j∈{A}

�δ′
j . (14.113)

Equation (14.113) shows that, when using the discussed reduction method, the rotor of the
equivalent generator moves on average with respect to all the rotors of aggregated generators.
Obviously, for exactly coherent generators this movement is the same for all the generators in group
{A} and its average value is equal simply to the value for each generator in the group.

For matrix C in the structure (14.111) it can be shown that

CT(CCT)−1 =




1
. . . 0A

1
- - - - - - - - - - - - - - - - - - - - -

0RA

1
1
...
1




=
[

1 0A
- - - - - - - - - - - -
0RA 1A

]
= BT. (14.114)

Thus the state matrix of the reduced model given by Equation (14.107) takes the simple form

a = CABT. (14.115)

The matrix equation of motion, with damping neglected, for the original model (Figure 14.6a)
containing generators in groups {A} and {R} can be written similarly to Equation (11.23):


 �δ̈

′
R

- - -
�δ̈

′
A


 = −


 M−1

R HRR M−1
R HRA

- - - - - - - - - - - - - - - - - - - -
M−1

A HAR M−1
A HAA


[

�δ′
R

- - - -
�δ′

A

]
. (14.116)
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After applying reduction using matrix C in the form (14.111), the state vector is reduced to the
form (14.112) while Equation (14.116) reduces to

[
�δ̈

′
R

- - -
�δ̈′

a

]
= −




M−1
R HRR M−1

R HRA1A
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1
n

1T
A M−1

A HAR
1
n

1T
A M−1

A HAA1A




[
�δ′

R
- - - -
�δ′

a

]
, (14.117)

where the state matrix has been calculated according to (14.115). As shown previously, the reduced
model given by (14.117) partially retains eigenvalues and eigenvectors of the original (unreduced)
model of (14.116).

It is easy to see some similarity between the described reduced model (14.117) and the reduced
model obtained using the Di Caprio and Marconato aggregation described in Section 14.6.2. In
both cases there is a summation of matrix elements corresponding to multiplication by 1A and 1T

A.
Using Equation (14.62) obtained from the Di Caprio and Marconato aggregation. it is possible, as
in (14.117), to write the following state equation:

[
�δ̈

′
R

- - -
�δ̈′

a

]
= −


 M−1

R HRR M−1
R HRA1A

- - - - - - - - - - - - - - - - - - - - - - - - - -
M−1

a 1T
A HAR M−1

a 1T
A HAA1A




[
�δ′

R
- - - -
�δ′

a

]
, (14.118)

where, according to (14.33), the inertia coefficients of the equivalent machine are Ma = ∑
i∈{A} Mi .

It is also easy to see, when comparing Equations (14.117) and (14.118), that they differ in the
bottom row corresponding to the equivalent generator. The difference lies in the different order
of factors, which is important for the result as the multiplication of matrices is generally not
commutative. A detailed analysis leads to the conclusion that the elements in the bottom row of
Equation (14.117) are given by

aak = − 1
n

∑
i∈{A}

Hik

Mi
, (14.119)

and those in Equation (14.118) are given by

aak = −

∑
i∈{A}

Hik∑
i∈{A}

Mi
. (14.120)

This is obvious because generally both elements given by Equations (14.119) and (14.120) are not
the same. In the particular case when Equation (14.39) is satisfied, that is when the group is exactly
coherent, the following holds:

Hik

Mi
= hk for i, j ∈ {A}, k ∈ {B}. (14.121)

Hence Hik = hkMi . Substituting this into (14.120) gives

aak = −

∑
i∈{A}

hkMi∑
i∈{A}

Mi
= −

hk
∑

i∈{A}
Mi∑

i∈{A}
Mi

= −hk. (14.122)

The same value of aak = −hk can be obtained by substituting (14.121) into (14.119). This shows
that when the exact coherency condition (14.39) is satisfied, the matrices in (14.117) and (14.118)
are the same.
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Example 14.2

To illustrate how the reduced model partially retains eigenvalues and eigenvectors, a simple three-
machine system will be studied in which two generators satisfy the exact coherency condition
given by (14.121). The state matrix given by Equation (14.116) is

−6 3 3
- - - - - - - - - - - - -

2 −4 2
2 3 −5


 .

The eigenvalues and eigenvectors are

µ1 = 0 and w1 = [
1 1 1

]T

µ2 = −8 and w2 = [ −3 1 1
]T

µ3 = −7 and w3 = [
3 −4 3

]T
.

The state matrix reduces using Equation (14.117) to[
−6 6
- - - - - - - - -

2 −2

]
.

The eigenvalues and eigenvectors of this state matrix are

µ1 = 0 and w e1 = [
1 1

]T

µ2 = −8 and w e2 = [−3 1
]T

.

The reduced system also retained, apart from the zero eigenvalue, the eigenvalue µ2 = −8
and the associated right eigenvector w e2 = [−3 1

]T
which is a part of the original eigenvector

w2 = [− 3 1 1
]T

. Equation (14.110) is satisfied as

Cw2 =

 1 0 0

- - - - - - - - - - - - -
0

1
2

1
2





 −3

1
1


 =

[ −3
1

]
= w e2.

This illustrates that the reduced model partially retains eigenvalues and eigenvectors of the
original (unreduced) model.

To summarize the observations contained in this chapter:

1. The operations of aggregation and linearization are commutative (proof in Section 14.6.2).
2. The reduced linear model (14.62) obtained using the method of Di Caprio and Marconato

corresponds to the linearized form of the reduced model obtained by Zhukov’s aggregation
(proof in Section 14.6.2).

3. When the exact coherency condition given by Equation (14.39) is satisfied, the reduced lin-
ear model (14.118) is equivalent to the reduced model (14.117) obtained using transformation
(14.111) and the projection matrix (14.111).

4. The reduced model (14.117) partially retains the eigenvalues of the original (unreduced) model.

These observations clearly show that, when the exact coherency condition (14.39) is satisfied,
the reduced model obtained by Zhukov’s aggregation (Section 14.2.3) also partially retains the
eigenvalues of the original (unreduced) model. This is a very important property of the coherency-
based dynamic equivalent model obtained by Zhukov’s aggregation.
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In practice, exact coherency rarely occurs in real power systems apart from identical generators
operating on the same busbar. Reduced dynamic models are created by aggregation of generators for
which the coherency definition is satisfied within accuracy ε�δ as in condition (14.29). Obviously any
inaccuracy of coherency means that all the dynamic properties of the original (unreduced) model
will be maintained only to some degree by the equivalent (reduced) model. Hence it may be expected
that also eigenvalues and eigenvectors of the equivalent (reduced) model will be only approximately
equal to eigenvalues and eigenvectors of the original (unreduced) model. It is important here that
the equivalent (reduced) model maintains as precisely as possible those modal variables that are
strongly excited by disturbances in the internal subsystem and which therefore have the strongest
influence on power swings in the internal subsystem. These modal variables will be referred to
as dominant modal variables (see also Section 12.1.6). Modal analysis (Section 12.1) shows that
matrices U and W built from right and left eigenvectors decide which modal variables are most
strongly excited and influence power swings. The example below will show that a coherency-based
equivalent model quite accurately retains the dominant modes.

Example 14.3

Figure 14.17 shows a 15-machine test system. Plant 7 was assumed to constitute the internal
system. For this internal system, the algorithm described in Section 14.5 was used to identify
coherent groups which are encircled in Figure 14.17 using solid lines.
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Figure 14.17 Test system and recognized coherent groups.

The dominant modes have been identified assuming that the initial disturbance is a rotor angle
change of generator 7, that is �δ′ = [

0 · · · 0| �δ′
7| 0 · · · 0

]T
. With this disturbance, the equation

z = U · �δ′ results in z = u◦7 · �δ′
7 where u◦7 denotes the seventh column of matrix U. For the

assumed data (Machowski et al., 1986; Machowski, Gubina and Omahen, 1986), the following
results were obtained:

� for the original (unreduced) model

u◦7 = 10−3 · [
−184 0 914 −11 160 −3 −56 −9 −71 −18 −64 −1 −90 0 20

]T
;
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� for the equivalent (reduced) model

u◦7 = 10−3 · [
−154 29 915 −47 124 −2 0

]T
.

The largest values correspond to the third modal variable z3 and are shown in bold and
underlined. Note that they are almost the same for the original and the equivalent model, which
means that excitation of the third modal variable in both systems is the same. Also strongly exited
are the first modal variable z1 and the fifth z5. That excitation is nevertheless several times weaker
than excitation of the third modal variable z3. The remaining values are much smaller, so it may
be assumed that the remaining modes are either weakly excited or not excited at all. The excited
modal variables are associated with the following eigenvalues:

original model : equivalent model :
µ1 = −11.977 µ1 = −13.817
µ3 = −42.743 µ3 = −44.170
µ5 = −72.499 µ5 = −119.390.

Clearly the third eigenvalue corresponding to the most excited modal variable is almost the
same for both the equivalent and original models. The first eigenvalue has similar values for both
models while the fifth is quite different. However, it should be remembered that the first and fifth
modal variables are weakly excited and do not have to be accurately modelled.

Matrix W decides how individual modal variables influence power swings in the internal
subsystem. The equation z�δ′ = Wz results in �δ′

7 = w7◦ z where w7◦ denotes the seventh row
of W. For the assumed data the following results were obtained:

� for the original (unreduced) model

w7◦ = 10−1 · [
−34 −26 98 −10 21 0 −50 −10 −80 −20 −40 0 0 0 −20

]
;

� for the equivalent (reduced) model

w7◦ = 10−1 · [
−52 6 99 −12 60 0 7

]
.

The largest values again correspond to the third modal variable z3 and they are almost the
same for both models. This means that the influence of the third modal variable on power swings
in the internal system is the same in both models. The values for the first modal variable z1

and the fifth z5 are quite different, but those modal variables are weakly excited. Nevertheless,
model reduction by aggregation causes some differences between power swings simulated in both
models – see the simulation results shown previously in Figure 14.14 for a different test system.

By making use of u◦7 (seventh column of U) and w7◦ (seventh row of W) it is possible
to calculate participation factors defined in Section 11.1. According to Equation (12.90), it is
necessary to multiply elements of matrix column u◦7 by elements of matrix row w7◦ . For example,
the first participation factor for the original (unreduced) model is: 10−4 · 184 · 34 ∼= 63 · 10−2.
The calculated participation factors can be expressed in the following way:

� for the original (unreduced) model

10−2 · [
63 0 896 1 34 0 28 1 57 4 26 0 0 0 −4

]
;

� for the equivalent (reduced) model

10−2 · [
80 2 906 6 74 0 0

]
.
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Based on the values of participation factors, it can be concluded that there is a strong relation-
ship between the investigated variable �δ′

7 in the internal subsystem and the third modal variable
z3. The relationships between �δ′

7 and the first modal variable z1 and the fifth z5 are an order of
magnitude weaker.

When analysing Example 14.3 it should be remembered that the calculated eigenvalues µi are
the eigenvalues of a matrix in the second-order equation, respectively (14.116) and (14.117). These
values are real and negative. The corresponding eigenvalues λi of first-order equations of the type
(14.84) are complex numbers λi = √

µi .

14.6.5 Equilibrium Points of the Equivalent Model

The coherency-based equivalent model obtained by Zhukov’s aggregation is constructed for a
stable equilibrium point which is at the same time the steady-state operating point of the system.
Consequently, the equivalent model must partially retain the coordinates of the stable equilibrium.
This can be illustrated in the following way when denoting the nodes as in Figure 14.6. Let r be
the number of generators in group {R} and N be the total number of system generators, that is
in both groups {R} and {A}. Then the coordinates of the stable equilibrium point of the original
(unreduced) model and the equivalent (reduced) model can be written as

δ̂
′ = [

δ̂′
1 · · · δ̂′

r δ̂′
r+1 · · · δ̂′

N

]T
, (14.123)

δ̂
′
e = [

δ̂′
1 · · · δ̂′

r δ̂′
a

]T
, (14.124)

where δ̂′
a is the power angle of the equivalent generator given by Equation (14.22). Now the question

arises whether, and which, unstable equilibrium points are retained by the reduced (equivalent)
model. This question is especially important from the point of view of the Lyapunov direct method.
It was shown in Section 6.3.5 (Figure 6.24) that when transient stability is lost, each unstable
equilibrium point corresponds to the system splitting in a certain way into groups of asynchronously
operating generators. From that point of view the reduced (equivalent) model is a good model if
it partially retains those unstable equilibrium points which are important for disturbances in the
internal subsystem (Figure 14.1).

The coordinates of an unstable equilibrium point of the original (unreduced) model and the
equivalent (reduced) model will be denoted as follows:

δ̃
′ = [

δ̃′
1 · · · δ̃′

r δ̃′
r+1 · · · δ̃′

N

]T
, (14.125)

δ̃
′
e = [

δ̃′
e1 · · · δ̃′

er δ̃′
a

]T
. (14.126)

The equivalent model will be said to partially retain the unstable equilibrium point of the original
model if

δ̃′
ek = δ̃′

k for k ∈ {R}. (14.127)

The electrical interpretation of Zhukov’s aggregation shown in Figure 14.15 will reveal which
particular unstable equilibrium points satisfy Equation (14.127). Aggregation will not distort the
coordinates of an unstable equilibrium point if at that point the ratio of the voltages is equal to
the transformation ratio used for aggregation, that is the ratio of voltages at the stable equilibrium
point. As in Equation (14.16), the condition may be written as

Ṽ
−1
a ṼA = ϑ = V̂

−1
a V̂A. (14.128)
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For the classical generator model (constant magnitudes of emfs) the condition simplifies to

δ̃′
i − δ̃′

a = δ̂′
i − δ̂′

a for i ∈ {A}, (14.129)

or δ̃′
i − δ̂′

i = δ̃′
a − δ̂′

a. This equation must be satisfied for each i ∈ {A} and therefore for each i, j ∈ {A}.
Hence δ̃′

i − δ̂′
i = δ̃′

j − δ̂′
j = δ̃′

a − δ̂′
a must be satisfied, or

δ̃′
i − δ̂′

i = δ̃′
j − δ̂′

j i, j ∈ {A}. (14.130)

This means that for each generator belonging to a given group i, j ∈ {A}, the distance between
an unstable equilibrium point and the stable equilibrium point must be the same. Such unstable
equilibrium points can be called partially equidistant points with respect to a given group of variables
belonging to group {A}.

The equivalent model obtained using Zhukov’s aggregation partially retains each unstable equi-
librium point equidistant with respect to a given group of variables belonging to group {A}.
Aggregation destroys only those unstable equilibrium points that are not partially equidistant. This
property will be illustrated using an example that is intuitively simple to understand.

Example 14.4

Figure 14.18 shows an example of two parallel generators 1 and 2 operating on an infinite busbar
represented by a generator of large capacity 3. For each external short circuit in the transmission
line 4–3, the two parallel generators are exactly coherent. Oscillations between the generators
may appear only in the case of an internal short circuit inside the power plants at nodes 5 or 6.
The lower part of Figure 14.18a shows the equivalent diagram after elimination of load nodes.
The parameters have symbols following the notation in Equation (6.41). Figure 14.18b shows
equiscalar lines of potential energy similar to Figure 6.24.
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Figure 14.18 Illustration to the definition of the partially equidistant equilibrium point: (a)
network diagrams; (b) equiscalar lines of potential energy.

There are three unstable equilibrium points: u1, u2, u3. The saddle point u1 corresponds to
the loss of synchronism of generator 1 with respect to generators 2 and 3. This may happen when
a short circuit appears at node 5. The saddle point u2 corresponds to a loss of synchronism of
generator 2 with respect to generators 1 and 3. This may happen when there is a short circuit at
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node 6. Point u3 is of the maximum type. It corresponds to a loss of synchronism of generators
1 and 2 with respect to generator 3. This may happen when there is a short circuit in line 4–3
at, for example at point 7. For point u3, condition (14.130) is satisfied as δ̃′

13 − δ̂′
13 = δ̃′

23 − δ̂′
23.

Point u3 is at the same time partially equidistant. Note that when the exact coherency condition
is satisfied, trajectory δ′(t) lies on the straight line AB crossing the origin, point s and point u3.
The line is defined by

δ′
13(t) − δ′

23(t) = δ̂′
13 − δ̂′

23 = δ̂′
12 = constant,

similar to Equation (14.31). Aggregation of generators 1 and 2 reduces the three-machine system
to a two-machine system and destroys the unstable equilibrium points u1, u2. After aggregation
the unstable equilibrium point u3 is retained. A plot of potential energy for the reduced model
(two-machine model) corresponds to a cross-section of the diagram in Figure 14.18 along line
AB. This plot has the same shape as shown previously in Figure 6.21b.

The next important issue for the Lyapunov direct method is the question whether or not the
dynamic equivalent (reduced) model retains the values of the Lyapunov function during the transient
state and at unstable equilibrium points of the original (unreduced) model. For the Lyapunov
function V(δ′, �ω) = Ek + Ep given by Equation (6.52) the answer to this question is positive,
which will now be proved.

For kinetic energy Ek the proof is trivial. It is enough to separate Equation (6.46) into two sums:

Ek = 1
2

N∑
i=1

Mi�ω2
i =1

2

∑
i∈{R}

Mi�ω2
i + 1

2

∑
i∈{A}

Mi �ω2
i = 1

2

∑
i∈{R}

Mi�ω2
i + 1

2
Ma�ω2

a,

where for i ∈ {A} the definition of exact coherency gives �ω1 = · · · = �ωn = �ωa and, according
to Equation (14.33), Ma = ∑

i∈{A} Mi . This concludes the proof.
For potential energy given by Equation (6.51) the proof is also simple but long. Here only an

outline will be given:

1. The sum of components (Pmi − P0i )(δ′
i − δ̂′

i ) should be broken down (similarly as for kinetic
energy) into two sums: one for i ∈ {R} and one for i ∈ {A}. Then it should be noted that when
the exact coherency condition is satisfied for i ∈ {A}, then (δ′

i − δ̂′
i ) = (δ′

a − δ̂′
a) while, according

to the principles of aggregation,
∑

i∈(A) (Pmi − P0i ) = (Pma − P0a).

2. The double sum of components bi j (cos δ′
i j − cos δ̂′

i j ) in Equation (6.51) should be broken down
into three sums: (i) for i, j ∈ {R}; (ii) for i ∈ {R}, j ∈ {A}; and (iii) for i, j ∈ {A}. Then it should
be noted that components bi j cos δ′

i j and bi j cos δ̂′
i j correspond to synchronizing powers. It was

shown in Section 14.6.2 that for the equivalent (reduced) model, synchronizing powers are equal
to the sum of synchronizing powers of aggregated generators. Hence the corresponding sums of
components give the same values as for the equivalent (reduced) model.

Conclusions from the above points 1 and 2 conclude the proof for potential energy. This will now
be illustrated using the results of calculations conducted for a test system.

Example 14.5

Consider again the test system shown in Figure 14.17. In this example the internal subsystem
is assumed to consist of power plant 11 located in the middle of the test network. Treating the
test system as the original (unreduced) model, the gradient method was used to calculate the
coordinates of the stable equilibrium point and the unstable equilibrium point corresponding
to the loss of synchronism of generator 11. The coordinates of those points are shown in Table
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14.1 in columns under the heading ‘Original’. For the assumed internal subsystem, the coherency
recognition algorithm has identified two groups: {2, 3, 4} and {5, 6, 8, 9, 10, 12, 13, 14, 15}.
The groups have been aggregated using Zhukov’s method. For the equivalent (reduced) model
obtained, the stable equilibrium point and unstable equilibrium point corresponding to the loss
of synchronism of generator 11 have been calculated. The coordinates of these points are shown
in Table 14.1 in columns under the heading ‘Reduced’. The results show that for generators {1, 7,
11}, the coordinates for both the stable and unstable equilibrium points have been well retained.
The lower rows of Table 14.1 show the values of the Lyapunov function calculated for the unstable
equilibrium point of the original (unreduced) and equivalent (reduced) model. Clearly the values
are quite close, similar to the values of the critical clearing time for a short circuit in busbar 11.

Table 14.1 Results for a fault at bus 11

Coordinates of equilibrium points

Stable Unstable

Generator no. Group no. Original Reduced Original Reduced

1 — 0.00 0.00 0.00 0.00
7 — 23.36 23.40 50.76 49.65

11 — 14.22 14.30 183.80 181.81

2 1 20.54 19.65 26.42 24.50
3 19.84 25.10
4 10.56 19.02

5 2 13.25 18.24 28.22 34.68
6 12.48 27.02
8 15.39 26.58
9 12.73 28.28

10 11.15 26.59
12 14.23 33.02
13 14.14 34.44
14 31.08 52.63
15 25.55 44.67

Value of Lyapunov function 11.05 10.95
Critical clearing time 0.322 0.325

Similar results have been obtained for the same and other test systems when choosing different
internal subsystems. More examples can be found in the publications by Machowski (1985) and
Machowski et al. (1986, 1988).
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Appendix

A.1 Per-Unit System

Perhaps the one area in power system analysis that causes more confusion than any other is that of
per-unit systems. This confusion is further compounded when a synchronous machine is included
in the system. However, the per-unit system is well established and has a number of attractions.
For example, by normalizing the generator equations derived in Chapter 11, the parameters of
generators of the same type, but different ratings, will fall within the same range thereby providing
the engineer with an intuitive understanding of the generator’s performance. Such a normalized set
of parameters can also lead to computational efficiencies.

In the following subsections the per-unit system used in this book is described. Firstly, the base
system used in the stator armature is described followed by a brief discussion on power invariance
in both SI and per-unit forms. The per-unit system is then examined in more detail in order to
derive base values for the different rotor circuits before finally explaining how the generator and
the network per-unit systems fit together.

A.1.1 Stator Base Quantities

The principal armature base values used are:

Base voltage Vb = generator line to neutral rms terminal voltage, VL−N, (this will normally be the
rated voltage).

Base power Sb = the generator MVA rating/phase, S1φ

Base time tb = 1 s.

These principal base values lead to the following derived base values:

Base current Ib = Sb

Vb
= S1φ

Vb
A.

Base impedance Zb = Vb

Ib
�.

Base inductance Lb = Vbtb

Ib
H.

Base flux linkage �b = Lb Ib = Vbtb ≡ Vb Vs.
Base electrical angle θb = 1 electrical radian.
Base electrical speed ωb = 1 electrical radian/s.
Base mechanical angle θmb = 1 mechanical radian.

Power System Dynamics: Stability and Control, Second Edition Jan Machowski, Janusz W. Bialek and James R. Bumby
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Base mechanical speed ωmb = 1 mechanical radian/s.
Base machine power S3φ = 3S1φ VA.

Base torque τb = S3φ

ωsm
Nm.

To use these base values, any particular current, voltage and so on in SI is simply divided by the
corresponding base value to obtain the per-unit value (or vice versa):

per-unit value = actual value
base value

. (A.1)

It is important to note that with the voltage and current ABC/dq transformation equations
introduced in Chapter 11 the same base values are used for the armature coils in both the A,
B, C and the d, q reference frames. This is not the case with other values of transformation
coefficient (Harris, Lawrenson and Stephenson, 1970). As explained in Chapter 11, the ABC/dq
transformation is power invariant such that

vaia + vbib + vcic = vdid + vqiq. (A.2)

With the base values defined above, the transformations are power invariant in both SI and
per-unit notation.

The following points should be noted:

1. With a base time of 1 s all time constants are expressed in seconds.
2. A per-unit reactance is related to a per-unit inductance by Xpu = ωLpu so that the normal

relationship between inductance and reactance is maintained. The per-unit inductance is not
equal to the per-unit reactance.

3. The definition of base torque is such that at synchronous speed per-unit torque is equal to per-
unit power, for example a turbine torque of 0.8 pu corresponds to a turbine power of 0.8 pu. In
general

P = τ ωm (SI). (A.3)

Dividing by S3φ ,

P
S3φ

= τωm

S3φ

= τωm

τbωsm
, Ppu = τpu

ωm

ωsm
, (A.4)

but as ωm = ω/p and ωsm = ωs/p

Ppu = τpu
ωm

ωsm
= τpu

ω

ωs
(A.5)

at synchronous speed ω = ωs and

Ppu = τpu. (A.6)

4. Under balanced operation the power output of a single phase, normalized to S1φ , is numerically
the same per unit as the generator power output normalized to S3φ . Under balanced operation

P1φ = Vrms Irms cos φ, P3φ = 3Vrms Irms cos φ. (A.7)

Dividing by S1φ and S3φ respectively gives

Ppu = Vpu Ipu cos φ. (A.8)
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This is an extremely useful identity, particularly when balanced operation is being studied by
means of a phasor diagram.

5. Because of the per-unit notation adopted, most of the equations developed in this book are
the same whether the quantities are expressed in SI or in per-unit notation. The two important
exceptions to this are generator power and torque, both of which must be normalized to the
generator MVA base rather than the phase MVA base. Consequently

Ppu = PSI

S3φ

= 1
3

[
PSI

Vb Ib

]
, (A.9)

while

τpu = τSI

τb
= τSI

ωs

S3φ

= ωs

3

[
τSI

Vb Ib

]
. (A.10)

The implication of these two equations is that generator power or torque equations derived in
SI can be simply converted to per-unit form by multiplying by 1/3 and ωs/3, respectively. See,
for example, the torque expressions in Chapter 4.

6. Full load power (and torque) should not be confused with 1 pu power (and torque). They are
not the same. In general

Full load power = S3φ cos φrated

Full load torque = τb cos φrated.

Mechanical engineers like to refer to a shaft rated, for example, as four times full load torque.
This does not mean four times τ b – they are different by cos φrated.

7. Because of the base values used, the relationship between vd, vq and Vd, Vq and id, iq and Id, Iq

derived in Chapter 11 are valid in both SI and per-unit form, that is

vdpu =
√

3 Vdpu, idpu =
√

3 Idpu, (A.11)

vqpu =
√

3Vqpu, iqpu =
√

3 Iqpu. (A.12)

A.1.2 Power Invariance

A check on power invariance in SI is useful. Under balanced conditions, and using the current and
voltage identities of Equations (11.80) and (11.82),

P3φ = vdid + vqiq = 3
(
Vd Id + Vq Iq

)
= 3Vg Ig [sin δ0 sin (δ0 + φ) + cos δ0 cos (δ0 + φ)]

= 3Vg Ig cos φW,

(A.13)

showing that power invariance is maintained.
As P3φ = 3Vg Ig cos φ, dividing both sides by S3φ gives the generator power in per-unit form

P3φ

S3φ

= vdid + vqiq

3Vb Ib
= 3(Vd Id + Vq Iq)

3Vb Ib
= 3Vg Ig cos φ

3Vb Ib
= Vg pu Ig pu cos φ, (A.14)

Ppu = 1
3

(vdpuidpu + vqpuiqpu) = (Vdpu Idpu + Vqpu Iqpu) = Vg pu Ig pu cos φ, (A.15)

and power invariance is also maintained in the per-unit system.
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A.1.3 Rotor Base Quantities

Although a number of per-unit systems are possible (Harris, Lawrenson and Stephenson, 1970) the
system considered here is that of equal mutual flux linkages as expounded by Anderson and Fouad
(1977) and also explained in depth by Pavella and Murthy (1994). In this system the base field
current, or base d-axis damper current, is defined so that each will produce the same fundamental
air-gap flux wave as that produced by the base armature current acting in the fictitious d-axis
armature coil. As will be seen as a consequence of this choice of per-unit system, all the per-unit
mutual inductances on a particular axis are equal.

It is convenient at this stage to separate each individual winding self-inductance into a magnetizing
inductance and a leakage inductance so that

Ld = Lmd + ll Lq = Lmq + ll

LD = LmD + lD LQ = LmQ + lQ,

Lf = Lmf + lf

(A.16)

where l represents the winding leakage inductance. The per-unit system requires the mutual flux
linkage in each winding to be equal, that is

d-coil: Lmd Ib = kMf Ifb = kMD IDb

f-coil: kMf Ib = Lmf Ifb = LfD IDb

D-coil: kMD Ib = LfD Ifb = LmD IDb

q-coil: Lmq Ib = kMQ IQb

Q-coil: kMQ Ib = LmQ IQb.

(A.17)

Multiplying each of these winding mutual flux linkages by the coil base current gives the funda-
mental constraint between the base currents as

Lmd I2
b = Lmf I2

fb = LmD I2
Db = kMf Ifb Ib = kMD IDb Ib = LfD Ifb IDb

Lmq I2
b = LmQ I2

Qb = kMQ Ib IQb.
(A.18)

As the MVA base for each winding must be the same and equal to S b = Vb Ib, this gives

Vfb

Vb
= Ib

Ifb
=

√
Lmf

Lmd
= kMf

Lmd
= Lmf

kMf
= LfD

kMD
≡ kf

VDb

Vb
= Ib

IDb
=

√
LmD

Lmd
= kMD

Lmd
= LmD

kMD
= LfD

kMf
≡ kD (A.19)

VQb

Vb
= Ib

IQb
=

√
LmQ

Lmq
= kMQ

Lmq
= LmQ

kMQ
≡ kQ.

Since Equation (A.19) defines the base currents and voltages in all the windings as a function of
the stator base quantities Vb and Ib,

Zfb = Vfb

Ifb
= k2

f Zb �, ZDb = VDb

IDb
= k2

D Zb �, ZQb= VQb

IQb
=k2

Q Zb � (A.20)

and

Lfb = Vfbtb

Ifb
= k2

f Lb H, LDb = VDbtb

IDb
= k2

D Lb H, LQb = k2
Q Lb H, (A.21)
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while the base mutual inductances are

Mfb = Vfbtb

Ib
= Vbtb

Ifb
= kf Lb H, MDb = kD Lb H

MQb = kQ Lb H, LfDb = kf kD Lb H.

(A.22)

With the base values now defined, Equations (11.18), (11.19) and (10.30), (10.31) can now be
normalized and expressed in per-unit form. As an example consider the normalization of the field
flux linkage � f in Equation (11.18) where

�f = kMf id + Lf if + LfDiD. (A.23)

Divide by �fb = Lfb Ifb to give

�fpu = kMf

Lfb

id

Ifb
+ Lf

Lfb

if

Ifb
+ LfD

Lfb

iD

Ifb
. (A.24)

Substituting for I fb and Lfb from Equations (A.19) and (A.20) gives

�fpu =
[

kMf

kf Lb

] [
id

Ib

]
+

[
Lf

Lfb

] [
if

Ifb

]
+

[
LfD

kf kD Lb

] [
iD

IDb

]
(A.25)

and

�fpu = kMfpuidpu + Lfpuifpu + LfDpuiDpu. (A.26)

This normalized equation is of exactly the same form as the equation in SI and this is true for
all other equations in Section 11.1.4. In other words, all the voltage, current and flux equations in
Section 11.1.4 are of same form whether in per-unit or SI form.

One further interesting feature of the per-unit system is that the per-unit values of all the mutual
inductances on one axis are equal: that is, Lmd, Lmf, LmD, kMf, kMD and LfD are all equal. For
example,

kMfpu = kMf

Mfb
= kMf

kf Lb
= kf Lmd

kf Lb
= Lmdpu

LfDpu = LfD

LfDb
= LfD

kf kD Lb
= LfD

kMf
Lmd

LfD
kMf

Lb

= Lmd

Lb
= Lmdpu.

(A.27)

It is common practice to replace all these per-unit mutual values by a per-unit mutual inductance
Lad so that

Lad ≡ Lmd = Lmf = LmD = kMf = kMD = LfD, (A.28)

and, in the q-axis,

Laq ≡ Lmq = LmQ = kMQ. (A.29)

All the equations in Section 11.1.4 can now be written in per-unit form in terms of the mutual
inductances Lad and Laq. For example, Equation (11.43) for the d-axis subtransient inductance
would become

L′′
d = Ld −

[
L2

ad LD + L2
ad Lf − 2L3

ad

LD Lf − L2
ad

]
, (A.30)

where Ld = Lad + ll ,LD = Lad + lD and Lf = Lad + lf .
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With this knowledge it is constructive to examine the per-unit flux linking each winding. Using
Equation (11.18), and dropping the pu symbol for simplicity, the flux linkage of the d-axis coil is

�d = Ldid + kMf if + kMDiD. (A.31)

Substituting for Lad and introducing the winding leakage inductance gives

�d = Lad(id + if + iD) + ll id, (A.32)

and similarly for the field and d-axis damper coil

�f = Lad(id + if + iD) + lf if

�D = Lad(id + if + iD) + lDiD.
(A.33)

Thus if the per-unit leakage flux linkage of a particular winding is subtracted from the total flux
linkage then the remaining mutual flux linkage in all the windings on each axis is equal. This mutual
flux linkage is often given the symbol �ad and, for the q-axis, �aq where

�ad = Lad(id + if + iD)

�aq = Laq(iq + iQ).
(A.34)

A.1.4 Power System Base Quantities

It is customary in three-phase power system analysis to use rated line-to-line voltage as the base
voltage and an arbitrary three-phase voltage-ampere base, typically 10 MVA, 100 MVA and so on.
Such a base system would, at first sight, seem to be totally inconsistent with the generator armature
base defined in Section A.1.1. In fact the two are entirely consistent.

For the power system

VL−L,b = VL−L =
√

3VL−N V

Sb = S3φ V A

Ib = S3φ√
3VL−L,b

A

Zb = VL−L,b√
3Ib

= V2
L−L,b

S3φ

�.

(A.35)

Ignoring any transformer effects and assuming that the system MVA base S3φ is equal to the
generator MVA rating, then VL−N = Vb, where Vb is the generator base voltage, and

Zb = V2
L−L,b

S3φ

= 3V2
L−N

S3φ

= V2
b

S1φ

Ib = S3φ√
3VL−L,b

= S1φ

Vb
,

(A.36)

showing that the power system base and the generator base are totally consistent.
However, there is one complication and this is that S3φ for the system is chosen arbitrarily while

S1φ for the generator is the rated MVA per phase. In fact for all the equipment making up the power
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system, the per-unit impedance values will be defined with respect to the individual MVA ratings.
Consequently, in the system analysis it will be necessary either:

� to convert all the generator parameters to be on the system base; or
� to have a base conversion between the individual generator equations and the system equations

in the computer software. This is easily achieved and has the advantage that the generator per-
unit values not only retain their familiarity, but also are exactly as provided by the equipment
manufacturer.

Both methods are used and converting per-unit values from one system (base 1) to another (base
2) is readily achieved via Equation (A.1) to obtain

per-unit value (base 2) = per-unit value (base)
base 1 value
base 2 value

. (A.37)

A.1.5 Transformers

It was shown in Section 3.2 how a transformer could be represented by either the primary or the
secondary equivalent circuit shown in Figure A.1. In these equivalent circuits the primary equivalent
impedance Z1 and the secondary equivalent impedance Z2 are related by

Z1 = n2 Z2, (A.38)

where n is the nominal turns ratio. However, the primary and secondary base values are defined as

Vpb = V1,L−N Vsb = V2,L−N

Ipb = S3φ

3Vpb
Isb = S3φ

3Vsb

Zpb = Vpb

Ipb
Zsb = Vsb

Isb
,

(A.39)

where

Vpb = nVsb, (A.40)

(a)

(b) (c)

I1 I 2
Z1

E2E1Y10
V N1,L − V N2,L −

I1

Y10 E1
V N1,L − E2

V N2,L −

Z2 I 2

V 1,pu V 2,pu

Z pu

Y10pu

Figure A.1 Transformer equivalent circuit: (a) primary; (b) secondary; (c) per unit at nominal tap
setting.
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and implies that

Ipb = Isb

n
, Zpb = n2 Zsb. (A.41)

Consequently, as 1 per unit on the high-voltage side of the transformer must be 1 per unit on the
low voltage side and

Zpu = Z1

Zpb
= Z2n2

n2 Zsb
= Z2

Zsb
= Zpu, (A.42)

the per-unit value of the primary and secondary equivalent impedance is the same so that the
transformer at nominal taps can be represented by the per-unit equivalent shown in Figure A.1c.
If the tap setting changes from nominal, the equivalent circuit is modified to that shown in
Figure 3.8.

A.2 Partial Inversion

Consider the following block linear equation in which the variables have been grouped into two
groups {R} and {E}:


 xR

- - -
xE


 =


 ARR ARE

- - - - - - - - - -
AER AEE





 yR

- - -
yE


 . (A.43)

Expanding the equation gives

xR = ARR yR + ARE yE, (A.44)

xE = AER yR + AEE yE. (A.45)

Simple manipulations result in

yE = −A−1
EE AER yR + A−1

EExE. (A.46)

Substituting (A.46) into (A.44) gives

xR = (
ARR − ARE A−1

EE AER
)

yR + ARE A−1
EExE. (A.47)

Equations (A.46) and (A.47) can be written as


 xR

- - -
yE


 =


 ARR − ARE A−1

EE AER ARE A−1
EE

- - - - - - - - - - - - - - - - - - - - - - - - - -
−A−1

EE AER A−1
EE





 yR

- - -
xE


 . (A.48)

Comparing with (A.43), yE has been moved to the left hand side of the equation and xE to the right.
This is referred to as the partial inversion of a matrix.

Equation (A.48) can be written as


 xR

- - -
yE


 =


 AR BRE

- - - - - - - - - - - -
−BER CEE





 yR

- - -
xE


 , (A.49)
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where

AR = ARR − ARE A−1
EE AER

BRE = ARE A−1
EE

BER = A−1
EEYER

CEE = A−1
EE.

(A.50)

In the particular case when xE = 0 Equation (A.49) gives

xR = AR yR. (A.51)

These derived equations are useful when dealing with the transformation of the admittance and
incremental network models.

A.3 Linear Ordinary Differential Equations

There are many good mathematical textbooks dealing with the solutions of ordinary differential
equations. A well-written textbook aimed at engineers is Arnold (1992). This appendix contains
the essential information regarding scalar linear differential equations necessary for understanding
this textbook.

A.3.1 Fundamental System of Solutions

For real variables x, t ∈ Real, the linear scalar homogeneous differential equation is of the
form

dn x
dtn

+ a1
dn−1x
dtn−1

+ · · · + an−2
d2x
dt2

+ an−1
dx
dt

+ an x = 0, (A.52)

where a1, a2, . . . , an are constant coefficients.
Each function x(t) that satisfies (A.52) is its solution. Without specifying some initial conditions,

the solution of (A.52) is not unique and there may be an infinite number of solutions. For example,
if function x1(t) is a solution then a solution is also any function cx1(t) where c �= 0 is a constant.
Additionally, if functions x1(t), x2(t), x3(t), . . . are solutions then any linear combination of the
functions c1x1(t) + c2x2(t) + c3x3(t) + . . . is also a solution, because substituting that combination
into (A.52) gives a sum of zeros, that is zero.

Solutions x1(t), x2(t), x3(t), . . . are linearly independent if no solution can be expressed as a
linear combination of the remaining solutions. For example, if xi (t), xj (t), xk(t), . . . are linearly
independent then there exist no constants c j , ck, . . . for which xi (t) = c j xj (t) + ckxk(t) + . . . would
hold.

The largest set of linearly independent solutions x1(t), x2(t), x3(t), . . . , xn(t) of Equation (A.52)
is referred to as the fundamental system of solutions. Whether or not a given set of solutions
is fundamental (i.e. the solutions are linearly independent) can be checked by investigating the
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determinant of the matrix below, the columns of which contain individual solutions and their
derivatives:

det W = det




x1 x2 x3 . . . xn

- - - - - - - - - - - - - - - - - -
ẋ1 ẋ2 ẋ3 · · · ẋn

- - - - - - - - - - - - - - - - - -
ẍ1 ẍ2 ẍ3 · · · ẍn

- - - - - - - - - - - - - - - - - -
˙̇ẋ1 ˙̇ẋ2 ˙̇ẋ3 · · · ˙̇ẋn

- - - - - - - - - - - - - - - - - -
...

...
...

. . .
...




�= 0, (A.53)

where ẋ = dx/dt, ẍ = d2x/dt2, ˙̇ẋ = d3x/dt3, and so on, denote time derivatives. This determinant is
referred to as the Wronskian, after the mathematician Jósef Wroński. It may be shown that solutions
x1(t), x2(t), x3(t), . . . , xn(t) are linearly independent and form the fundamental system of solutions
if, and only if, det W �= 0.

It follows then that a linear combination of the fundamental system of solutions of the form

x(t) = A1x1(t) + A2x2(t) + A3x3(t) + · · · + An xn(t) (A.54)

is also a solution of Equation (A.52). Such a solution is referred to as the general solution. It
is general because it contains all the fundamental solutions. Coefficients A1, A2, A3, . . . , An are
referred to as the integration constants.

For a linear equation the fundamental solutions are of the exponential form

x(t) = eλt,
dx
dt

= λeλt,
d2x
dt2

= λ2eλt,
d3x
dt3

= λ3eλt, and so on. (A.55)

Substituting (A.55) into Equation (A.52) gives

λneλt + a1λ
n−1eλt + · · · + an−2λ

2eλt + an−1λeλt + aneλt = 0. (A.56)

For each t, eλt �= 0 holds and Equation (A.56) may be simplified to the following form:

λn + a1λ
n−1 + · · · + an−2λ

2 + an−1λ + an = 0. (A.57)

This equation is referred to as the characteristic equation. It determines the values of λ for which
the function x(t) = eλt is a solution of (A.52). The characteristic equation is an algebraic equation
of nth order and it generally has n roots λ1, λ2, λ3, . . . , λn . The roots of the characteristic equation
form n solutions of the form

x1(t) = eλ1t, x2(t) = eλ2t, x3(t) = eλ3t, . . . , xn(t) = eλn t. (A.58)
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The Wronskian of the solutions is

det W = det




eλ1t eλ2t eλ3t . . . eλn t

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
λ1eλ1t λ2eλ2t λ3eλ3t · · · λneλn t

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
λ2

1eλ1t λ2
2eλ2t λ2

3eλ3t · · · λ2
neλn t

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
λ3

1eλ1t λ3
2eλ2t λ3

3eλ3t · · · λ3
neλn t

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
...

...
...

. . .
...




. (A.59)

Multiplying a matrix column by a number corresponds to multiplying the determinant of the matrix
by that number. Hence the terms eλ1t, eλ2t, eλ3t, and so on, can be extracted in front of the Wronskian
(A.59). As

eλ1t · eλ2t · eλ3t · · · · · eλn t = e(λ1+λ2+λ3+···+λn )t, (A.60)

Equation (A.59) can be expressed as

det W = e(λ1+λ2+λ3+...+λn )t · det




1 1 1 . . . 1
- - - - - - - - - - - - - - - - - -
λ1 λ2 λ3 · · · λn

- - - - - - - - - - - - - - - - - -
λ2

1 λ2
2 λ2

3 · · · λ2
n

- - - - - - - - - - - - - - - - - -
λ3

1 λ3
2 λ3

3 · · · λ3
n

- - - - - - - - - - - - - - - - - -
...

...
...

. . .
...




. (A.61)

This determinant is made up of successive powers of the roots and is referred to as Vandermonde’s
determinant. It can be shown using mathematical induction that Vandermonde’s determinant is
equal to the sum of products of differences between the pairs of roots

det




1 1 1 . . . 1
- - - - - - - - - - - - - - - - - -
λ1 λ2 λ3 · · · λn

- - - - - - - - - - - - - - - - - -
λ2

1 λ2
2 λ2

3 · · · λ2
n

- - - - - - - - - - - - - - - - - -
λ3

1 λ3
2 λ3

3 · · · λ3
n

- - - - - - - - - - - - - - - - - -
...

...
...

. . .
...




=
∏

1≤i≤ j≤n

(λ j − λi ), (A.62)

where∏
1≤i≤ j≤n

(λ j − λi ) = (λn − λn−1)(λn − λn−2)(λn − λn−3) . . . (λ3 − λ2)(λ3 − λ1)(λ2 − λ1). (A.63)

Equation (A.62) is useful for a fast determination of Vandermonde’s determinant. The proof can
be found, for example, in Ogata (1967).
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A.3.2 Real and Distinct Roots

The sufficient condition for Vandermonde’s determinant given by (A.62), and therefore also the
Wronskian given by (A.61), to be different from zero is that the roots of the characteristic equation
are distinct:

λ1 �= λ2 �= λ3 �= · · · �= λn . (A.64)

If this condition is satisfied, the functions given by (A.58) form the fundamental system of solutions
of Equation (A.52). Hence the general solution (A.54) is

x(t) = A1eλ1t + A2eλ2t + A3eλ3t + · · · + Aneλn t. (A.65)

When the integration constants A1, A2, A3, . . . , An are not specified, the general solution gives an
infinite number of solutions. The Cauchy problem consists of finding such a particular solution that
satisfies the initial conditions for the solution and its derivatives: x(t0), ẋ(t0), ẍ(t0), ˙̇ẋ(t0), . . .. In order
to solve the Cauchy problem, it is necessary to find such integration constants A1, A2, A3, . . . , An

for the general solution that the initial conditions are satisfied.
Often the initial conditions are assumed to be a non-zero value of the solution and zero values

of its derivatives:

x(t0) = 	x �= 0, ẋ(t0) = 0, ẍ(t0) = 0, ˙̇ẋ(t0) = 0 . . . . (A.66)

Substituting function (A.65) and its derivatives calculated at time instant t0 into (A.66) results in
an algebraic equation




1 1 1 . . . 1
- - - - - - - - - - - - - - - - - -
λ1 λ2 λ3 · · · λn

- - - - - - - - - - - - - - - - - -
λ2

1 λ2
2 λ2

3 · · · λ2
n

- - - - - - - - - - - - - - - - - -
λ3

1 λ3
2 λ3

3 · · · λ3
n

- - - - - - - - - - - - - - - - - -
...

...
...

. . .
...







A1

A2

A3

A4

...




=




	x

0

0

0

...




. (A.67)

The matrix on the left hand side is Vandermonde’s matrix. Equation (A.62) shows that under the
assumption of distinct roots of the characteristic equation, the determinant of Vandermonde’s
matrix is different from zero, which means that the matrix is not singular and there is only one
solution for the integration constants A1, A2, A3, . . . , An .

Example A3.1

Solve a third-order equation ˙̇ẋ + 6ẍ + 11ẋ + 6x = 0 under the initial solutions given by (A.66).
The characteristic equation is λ3 + 6λ2 + 11λ + 6 = 0 with the distinct roots λ1 = −3, λ2 = −2,

λ3 = −1. The general solution (A.65) is of the form x(t) = A1e−3t + A2e−2t + A3e−t. Equation
(A.67) is

 1 1 1
−3 −2 −1

9 4 1





 A1

A2

A3


 =


 	x

0
0


 or


 A1

A2

A3


 = 1

2


 2 3 1

−6 −8 −2
6 5 1





	x

0
0


 . (A.68)

Hence A1 = 	x, A2 = −3 · 	x, A3 = 3 · 	x. Finally, x(t) = 	x · (e−3t − 3e−2t + 3e−t).
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For the dynamics considered in this book, of particular interest is a second-order scalar equation
corresponding to the equation of motion for the synchronous generator (Section 5.4.6). Hence a
solution to the second-order equation will now be discussed when the roots of the characteristic
equation are initially assumed to be real.

Example A3.2

Solve the second-order equation ẍ − (α1 + α2)ẋ + α1α2x = 0 with the initial conditions given by
(A.66).

The characteristic equation is λ2 − (α1 + α2)λ + α1α2 = 0 with the distinct roots λ1 = α1, λ2 =
α2, α2 �= α1. The general solution (A.65) is x(t) = A1eα1t + A2eα2t. Equation (A.67) takes the form[

1 1
α1 α2

] [
A1

A2

]
=

[
	x
0

]
or

[
A1

A2

]
= 1

α2 − α1

[
α2 −1

−α1 1

] [
	x
0

]
. (A.69)

Hence A1 = 	x · α2/(α2 − α1) and A2 = −	x · α1/(α2 − α1).
Finally x(t) = 	x · [α2eα1t − α1eα2t]/(α2 − α1).

A.3.3 Repeated real roots

If condition (A.64) is not satisfied, and there are repeated real roots of the characteristic equation,
then the fundamental system of equations can be built from those solutions that are linearly
independent and correspond to distinct roots. Obviously there will then be fewer than n solutions
corresponding to those roots, that is too few to solve the Cauchy problem of finding a particular
solution for given initial conditions. In order to obtain a unique solution, one has to supplement
the fundamental system of solutions by additional linearly independent solutions such that there is
overall n solutions, where n is the order of the differential equation.

Let λi be a root of the characteristic equation repeated k times. Then one of the solutions belonging
to the fundamental system of solutions corresponding to that root is of the form xi 1(t) = eλi t. There
are still (k − 1) missing linearly independent solutions which have to supplement the fundamental
system of solutions. For a root λi repeated k times, a solution is formed in the following way:

xi2 (t) = Ai2 (t) · eλi t, xi3 (t) = Ai3 (t) · eλi t, . . . , xik(t) = Aik(t) · eλi t, (A.70)

where Ai2 (t), Ai3 (t), . . . , Aik(t) are the required functions chosen in such a way that the solutions
are linearly independent. It can be shown (Arnold, 1992) that the required functions are orthogonal
polynomials t, t2, t3, . . . , tk−1. The complete set of additional solutions corresponding to a root λi

repeated k times is

xi 1(t) = eλi t, xi2 (t) = t · eλi t, xi3 (t) = t2 · eλi t, . . . , xik(t) = tk−1 · eλi t. (A.71)

Obviously the complete set of fundamental solutions also contains the solutions corresponding
to other roots.

Example A3.3

Solve a second-order equation ẍ − 2αẋ + α2x = 0 with the initial conditions given by (A.66).
The characteristic equation is λ2 − 2αλ + α2 = 0. It has two repeated roots λ1 = λ2 = α. The

fundamental system of solutions consists of the following functions: eαt, t · eαt. The corresponding
general solution is x(t) = A1eαt + A2teαt.

Hence ẋ(t) = αA1eαt + A2(1 + αt) · eαt. Substituting the initial conditions x(t0) = 	x and
ẋ(t) = 0 gives A1 = 	x and αA1 + A2(1 + αt) = 0, hence A2 = −	x · α. Finally x(t) = 	x ·
eαt(1 − αt).
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A.3.4 Complex and Distinct Roots

It is known from the theory of polynomials that if polynomial (A.57) with real coefficients
a1, . . . , an−2, an−1, an has complex roots then the roots form complex conjugate pairs λi , λ

∗
i and

so on.
Assume the following notation:

λi = αi + j�i and λ∗
i = αi − j�i . (A.72)

Obviously the condition of distinct roots (A.64) is satisfied for this pair as λi �= λ∗
i . Vandermonde’s

determinant can be expressed using (A.62) as∏
1≤i≤ j≤n

(λ j − λi ) = (λn − λn−1)(λn − λn−2) . . . (λi − λ∗
i ) . . . (λ3 − λ2)(λ3 − λ1)(λ2 − λ1) �= 0, (A.73)

and it is different from zero because (λi − λ∗
i ) = j2�i �= 0. This makes it possible to assume the

following fundamental system of solutions:

eλ1t, . . . , eλi t, eλ∗
i t, . . . , eλn t, (A.74)

which contains exponential functions of λi and λ∗
i .

Using Equation (A.67) for given integration constants A1, . . . , Ai , . . . , An makes it possible to
find the particular solution. As Vandermonde’s matrix in Equation (A.67) and its determinant are
complex, it may be expected that the integration constants in the fundamental set of solutions will
also be complex, that is

x(t) = . . . + Ai eλi t + Bi eλ∗
i t + . . . , (A.75)

where variables x, t ∈ Real and the integration constants Ai , Bi ∈ Complex. Differentiation of
(A.75) gives

ẋ(t) = . . . + λi Ai eλi t + λ∗
i Bi eλ∗

i t + . . . . (A.76)

Integration constants Ai , Bi can be calculated from the initial conditions assuming

x(t = 0) = . . . + 	xi + . . . = 	x

ẋ(t = 0) = . . . + 0 + . . . = 0.
(A.77)

Substituting these initial conditions into Equations (A.75) and (A.76) gives the following two simple
equations: Ai + Bi = 	xi and λi Ai + λ∗

i Bi = 0. Solving these equations requires care because both
Ai , Bi and λi, λ∗

i are complex numbers. Expressing the equation in matrix form gives[
1 1
λi λ∗

i

] [
Ai

Bi

]
=

[
	xi

0

]
or

[
Ai

Bi

]
= 1

−j2�i

[
λ∗

i −1
−λi 1

] [
	xi

0

]
, (A.78)

where, according to (A.72), �i is the imaginary part of λi. Now one gets

Ai = 	x
1

−j2�i
λ∗

i = 	x
�i + jαi

2�i

Bi = 	x
1

−j2�i
(−λi ) = 	x

�i − jαi

2�i
= A∗

i .

(A.79)

This shows that Bi = A∗
i . The general important conclusion is that for each pair of solutions eλi t

and eλ∗
i t the integration constants resulting from the initial conditions form a complex conjugate
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pair Ai , A∗
i . Hence the solutions of (A.75) is

x(t) = . . . + Ai eλi t + A∗
i eλ∗

i t + . . . (A.80)

where

Ai eλi t + A∗
i eλ∗

i t = Ai eαi t(cos �i t + j sin �i t) + A∗
i eαi t(cos �i t − j sin �i t)

= eαi t
[
(Ai + A∗

i ) cos �i t + j(Ai − A∗
i ) sin �i t

]
.

(A.81)

Obviously (Ai + A∗
i ) = 2 Re Ai and j(Ai − A∗

i ) = −2 Im Ai are real numbers equal to the real and
imaginary parts of the integration constant Ai, respectively. Hence Equation (A.81) is now

Ai eλi t + A∗
i eλ∗

i t = eαi t [2 Re Ai · cos �i t − 2 Im Ai · sin �i t] . (A.82)

Note that the left hand side of the equation contains operations on real numbers and the right
hand side contains operations on imaginary numbers. This means that appropriate operations on
complex numbers Ai, A∗

i , eλi t, eλ∗
i t must result in the imaginary part of the term Ai eλi t + A∗

i eλ∗
i t being

equal to zero so that the overall result is a real number. This is an important observation leading
to the conclusion that for the discussed case of complex conjugate pairs of roots, the particular
solution is of the form

x(t) = . . . + 2 Re Ai · eαi t cos �i t − 2 Im Ai · eαi t sin �i t + . . . . (A.83)

Hence it can be concluded that operations on complex numbers connected with looking for the
particular solution are unnecessary because, instead of the fundamental system of solutions given
by (A.74), one can consider a fundamental system of solutions of the form

eλ1t, . . . , eαi t cos �i t, eαi t sin �i t, . . . , eλn t, (A.84)

consisting of real functions. As sine and cosine functions are orthogonal, the solutions eαi t cos �i t
and eαi t sin �i t are linearly independent. This can be checked by calculating the Wronskian of the
fundamental system of solutions (A.84) and the corresponding Vandermonde’s determinant. The
latter will contain terms proportional to (cos �i t − sin �i t) �= 0.

These considerations lead to an important conclusion:

Each complex conjugate pair of the roots λi , λ
∗
i in the solution x(t) of the differential equation (A.52)

corresponds to real exponential functions eαi t cos �i t and eαi t sin �i t because the imaginary parts of the
solutions corresponding to the pairs λi , λ

∗
i cancel each other out.

There is another proof of the above statement using the theorem that if a complex function is a
fundamental solution of a linear ordinary differential equation, then both the real and imaginary
parts of that function also form the general solution. Proof of this can be found in a number of
textbooks including Arnold (1992).

An examination of Equation (A.84) shows that the real roots λi of the characteristic equation will
produce exponential terms of the form eλi t so that the roots are the reciprocals of time constants of
the exponential terms. The complex conjugate root pairs λi = λ∗

i = αi + j�i of the characteristic
equation will produce oscillatory terms eαi t cos �i t and eαi t sin �i t. The imaginary parts of the roots
are therefore equal to the frequencies of oscillation of each term and the real parts of the roots are
the reciprocals of time constants of the exponential envelope of the oscillatory terms. The overall
solution is stable if the real parts of all the roots are negative.

For the dynamics considered in this book, of particular interest is a second-order scalar equation
corresponding to the equation of motion for the synchronous generator (Section 5.4.6), but now a
solution to the second-order equation will be discussed when the roots of the characteristic equation
are complex.
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Example A3.4

Solve a second-order equation ẍ − 2αẋ + (α2 + �2)x = 0 with the initial conditions given by
(A.66).
The characteristic equation is λ2 − 2αλ + (α2 + �2) = 0. The roots are λ1 = α + j� and λ2 =
λ∗

1 = α − j�. The fundamental system of solutions eλ1t, eλ∗
1 t results in the following Vander-

monde’s determinant:

det
[

1 1
λ1 λ∗

1

]
= λ∗

1 − λ1 = −j2� �= 0, (A.85)

which shows that the fundamental system of solutions was well chosen and the general solutions
is of the form

x(t) = A1eλ1t + B1eλ∗
1 t. (A.86)

Equation (A.78) takes the form[
1 1
λ1 λ∗

1

] [
A1

B1

]
=

[
	x
0

]
or

[
A1

B1

]
= 1

−j2�

[
λ∗

1 −1
−λ1 1

] [
	x
0

]
. (A.87)

Hence

A1 = 	x · � + jα
2�

and B1 = 	x · � − jα
2�

= A∗
1. (A.88)

After substituting (A.88) into (A.86) simple algebra gives the following particular solution:

x(t) = 	x
�

eαt [ω cos �t − α sin �t] . (A.89)

Obviously the solution can be obtained in a simpler way by assuming at the outset the funda-
mental system of solutions given by (A.84), eαt cos �t, eαt sin �t, and the general solution

x(t) = C1eαt� cos ωt + C2eαtα sin �t. (A.90)

Substituting the initial condition x(t0) = 	x leads to C1 = 	x/�. Differentiating (A.90) and
substituting ẋ(t0) = 0 gives C2 = −C1. Substituting the calculated constants C1 = −C2 = 	x/�

into Equation (A.90) gives the solution given by (A.89).
The solution (A.89) contains an expression [� cos �t − α sin �t]. It corresponds to the cosine

of angle differences: cos(�t + φ) = [cos �t cos φ − sin �t sin φ]. In order to obtain that form
exactly, it is necessary to transform Equation (A.89) in the following way:

x(t) = 	x
�

eαt
√

�2 + α2

[
�√

�2 + α2
cos �t − α√

�2 + α2
sin �t

]
, (A.91)

where the expression in front of the square brackets was multiplied by
√

�2 + α2 while the
components in the square brackets were divided by the same term. Assuming the notation

sin φ = α√
�2 + α2

and cos φ = �√
�2 + α2

, (A.92)

it is easy to check that sin2 φ + cos2 φ = 1. With this definition of angle φ, Equation (A.91)
becomes

x(t) = 	x
cos φ

eαt cos(�t + φ). (A.93)
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This form of the second-order equation is convenient because Equation (A.93) clearly shows that
the solution is in the form of a cosine function with exponentially decaying amplitude for α < 1
and exponentially increasing amplitude for α > 1 or a constant amplitude for α = 0. Inspection
of (A.93) shows that the solution satisfies the initial condition x(t = 0) = 	x.

Second-order equations represent many physical problems. It is convenient to express a second-
order equation in the standard form investigated in the next example.

Example A3.5

Consider the standard form of a second-order equation ẍ + 2ζ�natẋ + �2
natx = 0 where �nat is

the natural frequency of oscillations and ζ is the damping ratio. The initial conditions are given by
(A.66). The characteristic equation is λ2 + 2ζ�natλ + �2

nat = 0. When 	 = −4�2
nat(1 − ζ 2) ≥ 0,

that is the damping ratio ζ ≥ 1, the roots are real and the solution will contain the exponential
terms discussed in Example A3.2 and Example A3.3. In this example the case of the underdamped
second-order system will be discussed when 0 ≤ ζ < 1. The characteristic equation will then have
two roots forming a complex conjugate pair:

λ1,2 = −ζ�nat ± j�nat

√
1 − ζ 2 or λ1,2 = −ζ�nat ± j�d, (A.94)

where �d = �nat

√
1 − ζ 2 is the damped frequency of oscillation (in rad/s) as �nat is the natural

frequency of oscillations (in rad/s) when damping is neglected, that is when ζ = 0 and λ1,2 =
±j�nat. The solution x(t) can be obtained in the same way as in the previous example or by using
the solution (A.93) and substituting � = �d and α = −ζ�nat. Hence

x(t) = 	x
cos φ

e−ζ�natt cos(�dt + φ), (A.95)

where φ = − arcsin ζ .

A.3.5 Repeated Complex Roots

As shown previously, each complex conjugate pair of roots λi, λ∗
i corresponds to a solution (A.78)

containing the terms eαi t cos �i t and eαi t sin �i t. When the roots λi, λ∗
i are repeated k times then, as

in (A.85), the general solution has to be complemented by the same terms multiplied by orthogonal
polynomials t, t2, t3, . . . , tk−1. For a pair of complex roots repeated k times the following solutions
are obtained:

eαi t cos �i t, t · eαi t cos �i t, t2 · eαi t cos �i t, . . . , tk−1 · eαi t cos �i t

eαi t sin �i t, t · eαi t sin �i t, t2 · eαi t sin �i t, . . . , tk−1 · eαi t sin �i t.
(A.96)

Obviously the complete set of fundamental solutions also contains the solutions corresponding
to other roots.

A.3.6 First-Order Complex Differential Equation

A particular case of a linear first-order differential equation is a homogeneous equation of the form
ż − λz = 0 where λ is a complex number. The equation can be rewritten as

ż = λz. (A.97)

According to the theory developed earlier the solution will be of the form

z(t) = eλtz0, (A.98)
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y=Im z

x=Re z

y0
z0

r0

x0

φ0

Figure A.2 Initial condition in the complex plane.

where z0 = z(t0) is an initial condition (a complex number). Assume the following notation:

z(t) = x(t) + jy(t), z0 = x0 + jy0, λ = α + j�. (A.99)

The solution will be interpreted in the complex plane of coordinates x = Rez and y = Imz.
Substituting (A.99) into (A.98) gives

x(t) + jy(t) = e(α+j�)t(x0 + jy0),

or

x(t) + jy(t) = eαt(x0 + jy0)(cos �t + j sin �t).

Multiplying and ordering the terms gives

x(t) = eαt(x0 cos �t − y0 sin �t), (A.100a)

y(t) = eαt(y0 cos �t + x0 sin �t). (A.100b)

Figure A.2 shows that the initial condition z0 = x0 + jy0 is a point on the complex plane where

x0 = r0 cos φ0, y0 = r0 sin φ0, r0 =
√

x2
0 + y2

0 . (A.101)

Substituting (A.101) into (A.100a) gives

x(t) = r0eαt(cos φ0 cos �t − sin φ0 sin �t), (A.102a)

y(t) = r0eαt(sin φ0 cos �t + cos φ0 sin �t). (A.102b)

Equations (A.102a,b) can be expressed as

x(t) = r0eαt cos(�t + φ0), (A.103a)

y(t) = r0eαt sin(�t + φ0). (A.103b)

Obviously the solutions x(t) and y(t) given by (A.103a, b) are proportional to the sine and cosine
and are therefore shifted in time by π/2. Squaring and adding both sides of (A.103a, b) gives

r (t) = r0eαt where r (t) =
√

[x(t)]2 + [y(t)]2. (A.103)

Again creating a complex number z(t) = x(t) + jy(t) from the solutions (A.103a, b) gives

z(t) = r0 eαt[cos(�t + φ0) + j sin(�t + φ0)] = r0 eαtej(�t+φ0) = r (t) · ej(�t+φ0). (A.104)

Figure A.3 shows that function (A.105) describes a logarithmic spiral in the complex plane
starting at a point (x0, y0) corresponding to the initial condition. The spiral rotates anticlockwise if
� = Imλ > 0 and clockwise if � = Imλ < 0. For α = Reλ < 0 the spiral is converging towards the
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α < 0
ω > 0

α < 0
ω > 0

α < 0
ω > 0

α < 0
ω > 0

x

y

x

y

x

y

x

y

Figure A.3 Logarithmic spirals.

origin of coordinates while for α = Reλ > 0 the spiral is diverging. For α = Reλ = 0 the solution
z(t) corresponds to a circle in the complex plane.

Obviously for a conjugate value λ∗ = α − j� = α + j( − �) the imaginary part of λ∗ has the
opposite sign to λ. This means that the spiral corresponding to λ

∗
rotates in the opposite direction

to the spiral corresponding to λ. Hence if a function is the sum of solutions for complex conjugate
pairs λ, λ

∗
then the imaginary parts of the solutions will cancel each other out and the only remaining

part will be the double real part of the spiral, that is

zi (t) + z j (t) = zi (t) + z∗
i (t) = 2Rezi (t) = 2x(t) = 2r0 eαt cos(�t + φ0). (A.105)

This observation is important for the solution of matrix differential equations discussed in
Section 12.1.
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Hacaturov [Hačaturov], A.A. (1969) Asynchronous connection and re-synchronisation in electric power systems,
Energia, Moscow (in Russian).

Hammons, T.J. and Winning, D.J. (1971) Comparisons of synchronous machine models in the study of the
transient behaviour of electrical power systems. Proceedings of the IEE, 118 (10).

Handschin, E. and Stephanblome, T. (1992) New SMES strategies as a link between network and power plant
control. International IFAC Symposium on Power Plants and Power System Control, Munich, Germany.

Harkopf, T. (1978) Simulation of power system dynamics using trapezoidal rule and Newton’s method. Pro-
ceedings of the PSCC Conference, Darmstadt.

Harris, M.R., Lawrenson, P.J. and Stephenson, J.M. (1970) Per Unit Systems with Special Reference to Electrical
Machines, Cambridge University Press.

Hassenzahl, W.V. (1983) Superconducting magnetic energy storage. Proceedings of the IEEE, 71, 1089–8.
Haubrich, H.J. and Fritz, W. (1999) Study on Cross-Border Electricity Transmission Tariffs by order of the

European Commission, DG XVII/C1. Aachen.
Hicklin, J. and Grace, A. (1992) Simulink, MathWorks Inc.
Hill, D.J. (1993) Nonlinear dynamic load models with recovery for voltage stability studies. IEEE Transactions

on Power Systems, PWRS-8 (1), 166–76.
Hingorani, N.G. and Gyugyi, L. (2000) Understanding FACTS. Concepts and Technology of Flexible AC Trans-

mission Systems, IEEE Press.
Holdsworth, L., Jenkins, N. and Strbac, G. (2001) Electrical Stability of Large, Offshore Wind Farms, IEE

Conference on AC–DC Power Transmission.
Holdsworth, L., Wu, X.G., Ekanayake, J. and Jenkins, K. (2003) Comparison of fixed speed and doubly-fed

induction wind turbines during power system disturbances. IEE Proceedings – Generation, Transmission and
Distribution, 150 (3), 343–52.

Hughes, F.M., Anaya-Lara, O., Jenkins, N. and Strbac, G. (2006) A power system stabilizer for DFIG-based
wind generation. IEEE Transactions on Power Systems, 21 (2).

Humpage, W.D. and Stott, B. (1965) Predictor-corrector methods of numerical integration in digital computer
analysis of power system transient stability. IEE Proceedings, 112, 1557–65.

Humpage, W.D., Wong, K.P. and Lee, Y.W. (1974) Numerical integration algorithms in power-system dynamic
analysis. IEE Proceedings, 121, 467–73.

Huwer, R. (1992) Robuste Power System Stabilizer für Mehrmaschinennetze, PhD Thesis, Universität
Kaiserslautern.

IEEE Committee Report (1968) Computer representation of excitation systems. IEEE Transactions on Power
Apparatus and Systems, PAS-87 (6), 1460–4.

IEEE Committee Report (1969) Recommended phasor diagrams for synchronous machines. IEEE Transactions
on Power Apparatus and Systems, PAS-88 (11), 1593–610.

IEEE Committee Report (1973a) Excitation system dynamic characteristic. IEEE Transactions on Power Appa-
ratus and Systems, PAS-92 (1).

IEEE Committee Report (1973b) Dynamic models for steam and hydroturbines in power system studies. IEEE
Transactions on Power Apparatus and Systems, PAS-92 (6), 1904–15.

IEEE Committee Report (1973c) System load dynamics simulation effects and determination of load constants.
IEEE Transactions on Power Apparatus and Systems, PAS-92 (2), 600–9.

IEEE Committee Report (1981) Excitation system models for power system stability studies. IEEE Transactions
on Power Apparatus and Systems, PAS-100 (2), 494–509.

IEEE Committee Report (1991) Dynamic models for fossil fuelled steam units in power system studies. IEEE
Transactions on Power Systems, PWRS-6 (2), 753–61.



P1: OTA/XYZ P2: ABC
Refs JWBK257/Machowski September 17, 2008 9:27 Printer Name: Yet to Come

References 617

IEEE Committee Report (1992) Hydraulic turbine and turbine control models for system dynamic studies.
IEEE Transactions on Power Systems, PWRS-7 (1), 167–79.

IEEE Committee Report (1994) Static VAR compensator models for power flow and dynamic performance
simulation. IEEE Transactions on Power Systems, PWRS-9 (1), 229–40.

IEEE Power System Relaying Committee Report (1977) Out-of-step relaying for generators. IEEE Transactions
on Power Apparatus and Systems, PAS-96 (5), 1556–4.

IEEE Power System Relaying Comittee Power swing and out-of-step considerations on transmission lines. A
report to the Power System Relaying Committee of IEEE Power Engineering Society. http://www133.pair
.com/psrc/ (Published Reports/Line protections).

IEEE Std 122-1985. IEEE Recommended Practice for Functional and Performance Characteristics of Control
Systems for Steam Turbine-Generators Units, IEEE Power Engineering Society.

IEEE Std 421.5-1992. IEEE Recommended Practice for Excitation System Models for Powers System Stability
Studies, IEEE Power Engineering Society.

IEEE Task Force on Load Representation for Dynamic Performance (1993) Load representation for dynamic
performance analysis. IEEE Transactions on Power Systems, PWRS-8 (2), 472–82.

IEEE Task Force on Load Representation for Dynamic Performance (1995) Standard load models for
power flow and dynamic performance simulation. IEEE Transactions on Power Systems, PWRS-10 (3),
1302–12.

IEEE Working Group on Prime Mover and Energy Supply Models for System Dynamic Performance Studies
(1994) Dynamic models for combined cycle power plants in power system studies. IEEE Transaction on
Power Systems, PWRS-9 (3), 1698–708.

IEEE Working Group Report of panel discussion (1986) Turbine fast valving to aid system stability: benefits
and other considerations. IEEE Transactions on Power Systems, PWRS-1 (2), 143–53.

Iliceto, F. and Cinieri, E. (1977) Comparative analysis of series and shunt compensation schemes for AC
transmission systems. IEEE Transactions on Power Apparatus and Systems, PAS-96 (1), 167–79.
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a,b co-ordinates, 115
Acceleration area, 185, 209, 211
AC exciter

Rotating, 22, 466
Static, 22, 468

Aggregation
of generators, 567
of nodes, 562–563

Air-gap flux, 80
Alert state, 10
Amortisseurs, 21, 146, 172
Angle of attack, 273
Angular momentum, 171
Annual energy demand, 15
Aperiodic mode, 504
Area control error (ACE), 343
Armature

Leakage, 85, 136
flux paths,134
short circuit current, 133
time constant, 133
winding, 21
reactance, 81, 85, 135
reaction, 21, 79

Asynchronous
operation, 210, 239, 245, 251
torque, 172

Attenuation constant, 66
Automatic generator control (AGC), 336, 346
Auto-reclosing, 54, 212
Automatic voltage regulator (AVR)

modelling, 462, 527
load compensation, 23, 462
limiters, 24, 200
influence on fault current, 150
influence on steady state stability, 196

influence on transient stability, 216
influence on voltage stability, 317
modelling, 462, 526

Autotransformer, 37
Auxiliary services, 20

Backward swing, 400
Bang-bang control, 391, 397
Bandwidth of secondary control, 345
Betz limit, 266
Bias factors, 343, 366
Bifurcation point, 319
Blackouts, 323, 340
Blocking relay, 248
Boiler control, 475

boiler-follows-turbine, 475
turbine-follows-boiler, 475
integrated, 475

Braking resistor, 45, 49, 391
Buchholz protection, 57
Busbars, 35

protection, 57

Capacity factor, 269
Centre of power swing, 249
Classification of dynamics, 5
Characteristic equation, 192, 492, 517, 602
Characteristic impedance, 67
Charging current

line, 66
cable, 72

Classical model, 180, 456
Coherency, 567

based equivalents, 573
criterion, 571
electromechanical, 566
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Coherency (Continued )
exact, 567
recognition, 569

Combined cycle gas turbine (CCGT), 27
single shaft mode, 28

Combustion chamber, 27
Constant flux linkage, 127, 145,

153
Contingencies, 9
Controller

field-oriented, 289
vector, 289

Critical
disturbance, 4
fault clearing time, 210, 215, 230,

235
operating point, 176, 311
power demand, 310, 319
power state, 311
voltage, 311

Damped frequency, 611
Damper windings, 21,129, 136, 172, 186,

205
Damping

coefficient, 171, 175, 193
power, 172, 240
ratio, 193, 256, 262, 611
torque, 205

Danish concept, 270
Decentralized control, 341
DC excitation system, 20, 463
DC offset, 129
Declaration area, 189, 209, 229
Defence plan, 347
Diagonalization, 496
Dimo’s method, 564
Direct method, 22, 230, 418
Disc averaging, 482
Discharge lighting, 105
Distance relay, 56
Distributed generation, 18
Distribution, 17, 19
Distribution transformer, 36
Disturbance

critical, 4
large, 207
small, 169

Dominant mode, 506
Droop, 32, 46, 336, 341
d,q axis, 76, 434

d,q to a,b transformation, 117, 436
0,d,q transformation, 436, 438

Economic dispatch, 336
Eigenvalues, 195, 491
Eigenvectors, 491

left and right hand, 492, 497
Electrical centre, 249
Electro-hydraulic governor, 29
Embedded generation, 18, 278
Emergency state, 10
Elimination of nodes, 230, 559
Energy function, 225
Environmental issues, 16
Exact coherency, 567
Excitation systems, 21, 384

load compensation, 23, 462
modelling, 462

Excitation transformer, 22, 40, 490
Extremis state, 9
Equal-area criteria, 184, 209, 228, 388, 400, 419
Equilibrium

point, 3, 176, 305, 339, 589
stable point, 178, 194, 306, 359
unstable point, 33, 178, 194, 306

Equivalents, 557

FACTS, 43, 119, 370, 391, 423,488
Fast-valving, 35, 244, 389

momentary, 389
sustained, 389

Fault
clearing, 166, 168
critical clearing time, 210, 215
shunts, 208
unbalanced, 211

Feedback control, 5
Fixed speed generator 269
Flux decrement145, 195, 215
Forward swing, 387, 400, 419, 423
Francis turbine, 476
Frequency collapse, 358, 363
Frequency control, 335

primary, 339, 346
secondary, 340, 346
tertiary, 345, 346

Frequency stiffness, 340
Fundamental system of solutions, 601

Gate turn-off thyristor, 44
Gas turbines, 26
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Gauss-Seidel, 123
General solution, 602
Generating unit, 20
Generation characteristic, 336
Generator emfs, 78, 137, 143

establishing initial values, 143
subtransient, 140, 449
steady-state, 99, 447
transient, 142, 447

Generator equivalent circuits, 454
steady-state, 143
subtransient, 141, 143
transient, 142, 143

Generator reactance, 136, 138
Generator transformer21, 36
Generator tripping, 392

preventive, 393
restitutive, 394

Governor control valves, 26, 389, 471,
473

Governor systems, 32, 480

Heat recovery boiler, 27
Hybrid network equations, 116
Hydraulic turbines, 28

modelling, 476
transfer function, 479

Ideally stiff load, 300
Impulse turbine, 29
Incremental model, 371, 577
Induction generator, 265

doubly fed, 271
fixed speed, 269
variable speed, 271

Induction motor, 103, 282
easy starting, 107
equivalent circuit, 106
heavy-starting, 107
modelling, 485
slip, 106, 486
stalling voltage, 107
torque-slip curve, 106

Inertia coefficient, 172
Inertia constant, 171
Infinite busbar, 146, 163, 167, 173
Integration constants, 604
Intercept valves, 26, 389, 472
Interconnected systems, 340, 344,

364
Interface error, 353

Internal power factor angle, 82
Islanded systems, 335, 361

Jacobian, 116

Kaplan turbine, 29

Line trap, 55
Leakage flux, 72, 76, 459
Leakage reactance, 81, 460
Load angle, 68, 118
Load characteristics, 104, 110

effect of tap-changer, 111
frequency, 104, 112, 358
static, 110
voltage, 105, 107, 108, 110

Load modelling, 104, 111, 485
composite load, 104, 485
constant current, 111
constant power, 111
constant impedance, 105, 111, 324
exponential, 112
frequency dependent, 112
polynomial model, 111
stiffness, 321
voltage sensitivity, 105, 318

Load sensitivity
frequency, 104, 339
voltage, 104

Load shedding, 348, 360
Load reference set point, 39
Local measurements, 400, 410, 421, 428
Logarithmic spiral, 613
Lyapunov’s first method, 513
Lyapunov’s second (direct) method, 222,

407

Magnetizing reactance, 106, 274
Main stop valves, 34
Matrix

factorization, 547, 553
partial inversion, 543, 559, 600

Mechanical-hydraulic governor, 29, 470
Mechanical time constant, 171
Mho relay, 248, 250
Modal

analysis, 513, 528, 570, 579
matrix, 501
reduction, 558
variables, 501, 580, 587

Mode shape, 254, 509
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Modulation controller, 47, 401, 404, 405
Multimachine systems, 220, 230, 307, 318, 352,

371, 491

Natural frequency, 193
damped/undamped, 193, 256, 262

Natural load, 67
Negative damping, 187, 204, 218, 384, 422
Network equations, 113, 442, 450, 546, 553
Network feasibility, 299, 317
Network loadability, 300
Network splitting, 251
Network reduction, 557–558
Newton method, 123, 539, 551
Nodal admittance matrix, 75, 113
Nodal impedance matrix, 114
Nodal network equations, 113
Nodes: PV, PQ, slack, 122
Non-intervention rule, 342
Normal state, 10
Nose curves, 301
Numerical integration, 536

Off-nominal transformation ratio, 72, 74
Oscillatory mode, 504
Out-of-step protection (relaying), 244
Out-of-step tripping, 245
Overexcitation, 103
Overhead line, 68

Park’s transformation, 438
Partial inversion, 543, 559, 600
Partially equidistant point, 590
Participation factor, 511
Particular solution, 606
Partitioned solution method, 541
Participation factor, 511, 588
Pelton Wheel, 28
Penstock, 28
Per unit systems, 439, 593
Pitch control, 237, 482
Phase angle regulator (TCPAR), 52, 370, 423
Phase constant, 66
Phase-shifting transformer , 40, 423, 488
Phasor

Diagram, 86, 95, 141, 161, 180, 197, 288, 451
measurement unit (PMU), 61

Physical reduction, 558
Point of common connection, 278
Pole-slip protection, 245, 249
Potier reactance, 460

Power angle, 92, 97, 101, 171
Power-angle characteristic

classical, 183
steady-state, 103
transient, 179, 183, 209

Power capability curve, 91
Power conditioning system, 48
Power flow, 118
Power invariance, 595
Power line carrier, 55
Power swing, 185, 191, 215, 219

detection, 248
Power system stability, 9

angle, 9, 207
voltage, 9, 299
frequency, 9, 335

Power system stabilizer, 23, 47, 383,
429, 470

Power system structure, 19
Primary control, 339
Protection

differential current, 54
directional comparison, 55
distance, 56
local back-up, 43
pole-slip, 244
remote back-up, 54

Pull-out power, 177

Quadrature booster, 40, 52
q axis, 76

Rayleigh distribution, 268
Reactive power, 70, 91, 109, 305
Regulation power, 344, 362
Reheat stop valves, 26
Reliability of supply, 15
Reluctance power, 91
Reserve of secondary control, 345
Resynchronization, 237, 393
Rotation matrix, 441
Rotational

voltage, 87, 486
sampling, 482

Rotor angle, 101, 118, 170
Rotor screening, 135
Rotor swing, 184, 207, 218
Run-up control, 34
Roots

distinct, 604
repeated, 605



P1: OTA/XYZ P2: ABC
ind JWBK257/Machowski September 18, 2008 10:50 Printer Name: Yet to Come

Index 627

Saturation
characteristics, 458
factor, 459
parameter sensitivity, 461

Secondary control, 340
Security, 9

assessment, 10
dynamic, 11
small signal, 10
static, 10
transient, 11
voltage, 10

Self-excitation, 329
synchronous, 332
asynchronous, 333

Sensitivity analysis, 319, 510
Series capacitor, 41

thyristor controlled (TCSC), 50,
416

Series transformer, 40
Servomotor, 26, 473
Short circuit

current, 128, 134, 146, 149
in network, 167
power, 108, 396
reactance, 396

Shunt capacitor, 42, 45, 395
Shunt compensation, 41, 425
Shunt reactor, 25
Shut down wind speed, 267
Simulation methods

partitioned (alternating), 541
simultaneous (combined), 553

Slack bus (node), 122
Slip frequency, 271
Small signal stability, 491
Sparse matrix, 114, 547, 560
Speed deviation, 170
Speed measuring device, 26
Speeder gear, 29
Speed-droop

characteristic, 34, 336, 338
coefficient, 33

Speed reference set-point, 30
Speed ratio, 266
Spinning reserve, 337
Stability enhancement, 383
Stable equilibrium point, 181, 210, 227,

589
Stall control, 273
Standard form, 609

State
control, 370, 410
matrix, 500
space equation, 515
steady, 65, 135
subtransient, 125, 140
transient, 135, 141
variable, 3, 397, 500, 541
vector, 3, 500

Static compensator (STATCOM), 47, 395, 327,
488

Static VAR compensator (SVC), 45, 395, 488
Steady-state stability, 69, 177, 196, 491

condition, 190, 517
limit, 178
margin, 178
regulated system, 196
unregulated system, 177

Steam turbine, 25
cross-compound, 26
condenser, 26
modelling, 470
non-reheat, 25
overspeed control, 34
regulated characteristic
run-up control, 34
reheat, 25
stages, 25
tandem-compound, 25, 472
transfer function, 472
unregulated characteristic, 31
valves, 26, 389, 475

Step-up transformer, 18
Stiffness, 349, 344
Subtransmission network, 17
Subsynchronous resonance, 334
Substation, 21, 35
Subtransient reactance, 136

d axis, 136, 139
q axis, 137, 139

Subtransient saliency, 137, 148, 156
Subtransient time constant, 139

d axis, 139, 446
q axis, 139, 446

Superconducting magnetic energy storage
(SMES), 49, 395

Supplementary control, 383
Surge impedance, 66
Surge impedance load (SIL), 67
Survival wind speed, 267
Swing equation, 169, 452, 514
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Swing frequency, 189
Symmetrical components, 158
Synchronization, 163, 237

condition, 239
currents, 164, 238
torque, 164, 238

Synchronous compensator, 42
Synchronous generator, 19

emfs, 85, 95, 99
equivalent circuits, 87, 100
leakage flux, 76
modelling, 433
on no-load, 77
parameters, 139
power supplied to system, 102, 103
protection, 57
round-rotor, 76
salient pole, 83
saliency, 76
steady state, 135
subtransient, 135
torque, 82, 88
transient state, 135

Synchronous reactance, 82
d axis, 85
q axis, 85

Synchronous speed, 28, 77, 163, 170, 239
Synchronizing power

steady state, 178
transient, 184

Tap-changing transformers, 37
Tertiary control, 345
Thyristor, 43

conventional, 43
gate turn-off thyristor (GTO), 44

Tie-line, 17, 120, 342
control, 336, 343
oscillations, 364

Time constant, 128
armature, 133
d-axis, 133
mechanical, 171
q-axis, 138

Torque
asynchronous, 172
in round-rotor generator, 82
in salient pole generator, 88
mechanical, 171
subtransient, 150
synchronous, 82, 88

Torque angle, 83
Torsional oscillation, 253
Torsional fatigue, 237, 253,

263
Tower shadow, 482
Trajectory, 3, 223, 567, 591
Transfer

admittance, 231, 561
capability, 523
equivalent network, 207, 560

Transformation matrix, 437
Transformer emf, 442
Transformers, 36

booster, 40
π equivalent, 73
autotransformers, 41
core loss, 72
equivalent circuit, 73, 75
excitation current, 73
ideal, 73
leakage flux, 72
magnetization current, 72
modelling, 74
no-load test, 73
off-nominal taps, 74
phase shifting, 75
short-circuit test, 73
short-circuit voltage, 74
tap-changing, 37
three-winding transformers, 36
two-winding transformers, 36
unit transformer, 20

Transmission, 16
angle, 66

Transmission lines, 65
long, 66
lossless, 67
medium-length, 67
short-length, 67
π equivalent, 67

Transient droop, 479
Transient power angle, 178, 215
Transient reactance

d axis, 136, 139, 444
q axis, 138, 139, 444

Transient saliency, 179, 455
Transient stability, 9, 207

margin, 210, 215
Transient time constant

open-circuit, 139, 445
short-circuit, 139, 445
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Trumpet characteristic, 349
Turbine

governor, 19, 34, 470
modelling, 470

Turbogenerator, 20
Two-reaction theory, 84

Unbalanced faults, 211
Underexcitation, 103
Underdamped second – order system, 609
Underground cables, 35, 72
Unified power controller (UPFC), 52, 119,

423, 488
Uniform damping, 517
Unit transformer, 20
Unstable equilibrium point, 179, 195, 228, 589

Vandermonde’s determinant, 603
Vector control, 289
Voltage collapse, 299, 310, 312
Voltage sensitivities, 104
Voltage-sensitive loads, 315
Voltage source converter, 47

Voltage stability, 9, 299
criteria, 305
index, 320
proximity index, 320

Watt governor, 29
Water starting time, 474
Weibull distribution, 268
Wicket gates, 28
Wide area

measurement system (WAMS), 58
monitoring, 59
measurement, protection, and

control, (WAMPAC), 59, 378,
410

Wind
power, 265
shear, 482
speed, 266, 482
turbines, 265, 481

Wronskian, 603

Zhukov’s method, 563
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