The University of Jordan **School of Engineering Department of Electrical Engineering** 2nd Semester – A.Y. 2017/2018

Course:	Selected topics in power and machines – 0903589			
Instructor:	Dr. Mohammed A Haj-ahmed <i>Telephone:</i> 5355000 ext. 22851 , <i>Email</i> : m.hajahmed@ju.edu.jo			
Course Website: Catalog Data:	Synchronous machine steady state and transient characteristics; Park's transformation. Introduction to power system stability problem; rotor angle stability, voltage stability, long and short term stability. Swing equation. Steady-state stability. Transient stability. Power system control. Load frequency control. Automatic generation control. Reactive power and voltage control. Wind generators types and characteristics. Wind generators stability.			
Prerequisites by Course:	EE 0903482 – Power systems II (pre-requisite)			
Prerequisites By Topic:	 Students are assumed to have a background in the following topics: Basic circuit analysis techniques. Basic electromagnetic and machines concepts. Basic control theory concepts. 			
Textbook:	Power System Analysis, Hadi Saadat, 2 nd Edition, McGraw-Hill.			
References:	 Power system stability and control, P.Kundur, 1994, McGraw-Hill. Power system analysis, W.D. Stevenson & J.J. Grainger, 1994, McGraw-Hill. Power generation, operation and control, A.J. Wood and B.F. Wollenberg, 1983, Wiley. Power system dynamics, stability and control, J. Machawski, J. Bialek, J. Bumby, 2008, Wiley. Dynamic simulation of electric machinary using MATLAB/SIMULINK, C. Ong, 1998, PTR Prentice-Hall. 			
Schedule & Duration:	16 Weeks, 42 contact hours (50 minutes each) including exams.			
Minimum Student	Student Textbook, class handouts, scientific calculator, and an access to a personal computer.			
Material: Minimum College Facilities:	Classroom with whiteboard and projection display facilities, library, computational facilities with MATLAB.			
Course Objectives:	 This is an introductory course to Power systems stability provided by the department of Electrical Engineering for the Electrical Engineering students. It is designed to achieve the following objectives: Introduce the concept of power system stability problem. Study the synchronous machine internal and external characteristics. Understand the basics of power systems control. Solve simulation-based stability and control problems. 			
Course Learning Outcomes and Relation to ABET Student Outcomes:				

Course Learning Outcomes and Relation to ABET Student Outcomes:

Upon successful completion of this course, a student should:

- Understand the stability problem and its importance to the system availability (stability). [e, j] 1.
- Realize the relationship between the stability problem and power system relaying. 2. [e] [a]
- 3. Review the basic concepts in state space control and matrices transformation.

4.	Be familiar with power system components: the generator, excitation systems, controllers, loads, and relaying systems.	[d, e]		
5.	Be able to design excitation system stabilizers.	[k]		
6.	Be familiar with synchronous machine external and internal problems.	[c]		
7.	Recognize the concept of AGC control.	[e]		
8.	Recognize the concepts of a power system stabilizer.	[e]		
Course Topics:				
	Topic Description	Hrs		
1.	Synchronous machine charecteristics: Steady-state and transients analysis, Parks' transformation, transient phenomena, balanced three phase short circuit, unbalanced short circuit.	6		
2.	Introduction to power system stability problem: Rotor angle stability, voltage stability, long and short term stability.	3		
3.	Stability problem: Swing equation, steady state stability, small disturbances, transient stability: Equal area criterion.	9		
4.	Numerical solution for the swing equation, multi-machine systems, multi machine transient stability.	6		
5.	Power system control: Introduction to basic control loops.	3		
6.	Load frequency control: generator model, load model, prime mover model, governor model. Automatic generation control (AGC): AGC in a single area system, AGC in multiarea systems.	9		
7.	Reactive power and voltage control: Amplifier model, exciter model, generator model, excitation system stabilizer rate feedback. Excitation system stabilizer PID controller.	3		
8.	Wind generators types, charecteristics and wind generators stability.	6		

Ground Rules:	Attendance is Mandatory and highly encouraged. To that end, attendance will be taken every lecture. All exams (including the final exam) should be considered cumulative . Exams are closed book. No scratch papers are allowed. You will be held responsible for all reading material assigned, even if it is not explicitly covered in lecture notes.			
Assessments:				
Grading policy:	Homeworks and project	20 %		
	First Exam	20 %		
	Second Exam	30%		
	Final Exam	50 % <u></u>		
	Total	110%		
Last Updated:	January, 28 th 2018			