Department of Electrical Engineering Faculty of Engineering & Technology University of Jordan

Course Title: Probability & Random Variables	Exam: 2 nd Exam	Date: Apr 13/2016	
Course No.: 0903321	Semester: 2 nd Term 2015-2016	Time Period: 1:30 Hr.	

Instructor:

		Dr. Ahmad	Atieh	
Q. 1	Q. 2	Q. 3	Q. 4	Fotal 30
2-5	0.3	85	2	3-3 30
			y	

Student Name:

Student Number:

Section:

2

$$G(u) = \int_{\alpha(u)}^{\beta(u)} H(x, u) \, dx$$

$$\frac{dG(u)}{du} = H[\beta(u), u] \frac{d\beta(u)}{du} - H[\alpha(u), u] \frac{d\alpha(u)}{du} + \int_{\alpha(u)}^{\beta(u)} \frac{\partial H(x, u)}{\partial u} dx$$

$$\frac{d \ln [u(x)]}{dx} = \frac{1}{u(x)} \frac{du(x)}{dx}$$

Q1) (5 marks)

The envelope of a noise filtered by a bandpass filter in a radar communication system has a Rayleigh probability density function given by

$$f_X(x) = \begin{cases} \frac{2}{b}(x-a)e^{-(x-a)^2/b} & x \ge a \\ 0 & x < a \end{cases}$$

Assume $\underline{\mathbf{a}} = 0$, $\underline{b} = 2\sigma_X^2$, and σ_X^2 represents the power of filtered noise. If the filtered noise signal is detected by a diode with square-law characteristics such that a new variable $\underline{Y} = cX^2$ is created, where c is constant.

Q2) (5 marks)

The characteristic function of a Poisson random variable X is given by

Find the mean and variance of the random variable?

$$M_{1} = (-j) \frac{d(e^{j\omega_{-1}})}{d\omega} = (-j)^{n} \frac{d^{n}\omega}{d\omega} = (-j)^$$

Q3) (10 marks)

The following sequence of letters A, B, C, and D is generated by a musical instrument.

ААААААААААААААВААААВРААААААААССААРРА

Typically Data compression for the given sequence is achieved using

Huffman code mapping:

$$\begin{array}{ccc} A & \longrightarrow & 0 \\ B & \longrightarrow & 10 \end{array}$$

$$B \longrightarrow 10$$

Find the following:

PDF

A= 30 = 0.78

$$C = \frac{2}{50} = 0.04$$

$$D = \frac{3}{50} = 0.06$$

a) The probability density function for the generated sequence?

b) The mean code length for the produced sequence (bits/letter)?

c) Calculate the entropy of the musical instrument?

 $\int_{x} \frac{1}{(x)} = P(x; 1) \frac{1}{5} (x - 2i)$

1, from mapping

$$A = \frac{39}{50} \qquad C = \frac{6}{50}$$

$$B = \frac{12}{50} \qquad D = 2$$

$$1D = \frac{9}{50}$$

$$= (0.78) \log(0.78) + (0.12) \log(0.12) + (0.04) \log(0.04) + (0.06) \log(0.06)$$

$$= -((-0.28) + (-0.367) + (10.186) + (-0.244)$$

$$= 1.077$$

Q4) (10 marks)

Let $X_1, X_2, ..., X_n$ are independent random variables, each having a uniform probability density function over (0, 1). Let $M = \max (X_1, X_2, ..., X_n)$.

1) Show that the probability distribution function $F_{M}(...)$ is given by:

