University of Jordan Faculty of Science Department of Physics

Date: 14/12/2013 First Semester

Time: 4:00 - 5:00 pm

General Physics I – PHYS. 0302101 Second Exam

Name (In Arabic): Student Number:

د. مورالد بن خيس :Instructor Section: 9

Constants: $g = 9.8 \text{ m/s}^2$

** Choose the closest correct answer and fill the Answer Table.

(Q1) An airplane moves 140 m/s as it travels around a vertical circular loop which has a 1.0-km radius. The magnitude of the resultant force (in kN) on the 70-kg pilot of this plane at the bottom of this loop is:

(B) 1.37 (A) 0.70;

(C) 2.1;

(D) 1.3;

(E) 1.58;

(Q2) An object (a) of mass m flies in a horizontal circle of radius R at a speed v. Another object (b) has the same mass m and flies in a horizontal circle of radius R/2 at a speed of v/2. Then the ratio of the centripetal acceleration of the object (a) to that of object (b) is:

(A) 0.25;

(B) 0.5;

(C) 1.0;

(D) 2.0;

(E) 4.0;

(Q3) Single conservative force acting on an object moving along the x axis is given by: $F_x = (14 x - 3 x^2) N$, where x is in m. The Change in potential energy ΔU (in J) done by this force as the object moves from x = -1 m to x = +2.5 m is:

(A) -20.1;

(B) + 38.0;

(C) - 12.0;

(D) + 16.0:

(E) - 28.0;

(Q4) A 12-kg block on a horizontal frictionless surface is attached to a light spring (force constant = 800 N/m). The block is initially at rest at its equilibrium position when a force of magnitude 80 N acting parallel to the surface is applied to the block. The speed (in m/s) of the block when it is 13 cm from its equilibrium position is:

(A) 0.55;

(B) 0.68;

(C) 0.78;

(D) 0.86:

(E) 0.90;

(Q5) A constant force of 15 N in the negative y direction acts on a particle as it moves from the origin to the point $(3\hat{i}+3\hat{j}-1\hat{k})$ m. The work (in J) done by the given force during this displacement is:

(A) - 45;

(B) -30;

(C) - 60;

(D) +30;

(E) + 12;

(Q6) A 2.5-kg block slides down a plane (inclined at 40° with the horizontal) at a constant speed of 5.0 m/s. The Power (in W) at which the gravitational force doing on the block is:

(A) zero;

(B) - 55.2;

(C) + 78.7;

(E) + 63.0;

(Q7) Three particles g particle is located center of mass of the	at $(-2, -2)$ m. Wh	ere a 20 g particl	e must be placed (i	at (3, 4) m, a 40 in m) so that the
(A) $(-0.5, -2.0)$;				(E) $(0, -2)$;
(Q8) A 3.0-kg object m/s during a 5.0-s tit the object during this	me interval. The n s time interval is:	nagnitude of the a	everage total force	(in N) acting on
(A) 2.0;	(B) 3.0;	(C) 4.0;	(D) 5.0;	(E) 6.0;
 (Q9) A ball falls to conserved in the bal (A) only if h ≤ H; (D) only if h > H; 	l-earth system (B) only	height H and boy if $h = 0$; y if $h \ge H$;	ounces to height h (C) only if $h = \frac{1}{2}$	
(Q10) At $t = 0$, a war an angular velocity revolutions. The ang (A) 15.7;	of 6.0 rad/s. Two	o seconds later it (in rad/s ²) of this	has turned through	acceleration has th 5.0 complete (E) 5.7;
(Q11) A wheel rota where θ is measure wheel at $t = 4.0$ s is:	d in radians and t	axis has an anguin seconds. The	llar position given angular velocity (by $\theta = 3 - 2t^3$, (in rad/s) of the
(A) - 24;	(B) - 38:	(C) -54 ;	(D) – 62;	(E) - 96;
Q12) A disk with uniformly by angula circumference of thi (A) 75;	r acceleration of	m whose mome 4.0 rad/s^2 . The ne (C) 115;	nt of inertia is 50 action (D) 135;	0 kg.m ² rotates ag tangent to the (E) 150;

Answer Table

Fill the appropriate square of the correct answer with (X).

Q's	A	B	/C	D	E	Q's	A	В	/C	D	E
1		100				7		V			
2				W		8					V
3	W					9			100		
4		V				10		VX			
5	1	7	# .			11					1º
6	-			VX		12	4	W			