The University of Jordan
Mathematics Department
Mathematics for Engineering II . Second Exam
Student Name:
Student number:
Lecture time:....!!.....!...........

$$
\text { Q1. (6 points) Evaluate } \iint_{S}(x+y+z) d A
$$

where S is the part of the plane $z=6-y$ that lies in the cylinder $x^{2}+y^{2}=4$.
pe

$$
\begin{aligned}
& x=\cos u \\
& y=2 \sin u \\
& z=6-2 / \sin u
\end{aligned}
$$

$$
\begin{aligned}
& \vec{N}=\operatorname{gna} Q(z+y-6)=[0,1] \\
& |\vec{N}|=\sqrt{0^{2}+1^{2}+1^{2}}=\sqrt{E}
\end{aligned}
$$

Q2. (7 points) Use the divergence theorem to evaluate $\iint_{S} \vec{F} \cdot \vec{n} d A$, where $F(x, y, z)=[z-x, x-y, 2 y-z]$ and S is the boundary of the region between the spheres of radius 2 and 4 centered at the origin.

Q3. (6 points) Show that the integral represents the indicated function

$$
\int_{0}^{\infty} \frac{w-\sin w}{w^{2}} \underbrace{\sin w x} d w= \begin{cases}\frac{\pi(1-x)}{2}, & \frac{0<x<1}{x \geq 1} \\ 0, & \end{cases}
$$

$$
B(w)=-\left(\left.\frac{1-x)}{w} \cos w x\right|_{0} ^{1}+\left.\frac{\operatorname{Sin} w x}{w^{2}}\right|_{0} ^{1}\right.
$$

by Puts

$$
\frac{1}{w}\left(\frac{-1}{(-1)}(\operatorname{sos} x-\cos x)+\left(\frac{-\sin w}{w^{2}}\right)\right.
$$

$$
B(w)=-\frac{1}{w}-\frac{\sin w}{w^{2}}=\frac{w^{2}-w \sin w}{w^{3}}=\sqrt{\frac{w-\sin w}{w^{2}}}
$$

So Foxier Sine Lnonsform equals

$$
\int_{0}^{\infty} \frac{w-\sin w \sin w x d w}{w}
$$

Q4.(3 points) Find $F\{f(x)\}$ for $f(x)=\left\{\begin{array}{ll}\frac{x e^{-x}}{0 .} & x>0, \\ x<0 .\end{array}\right.$.
Use $F\{g(x)\}=\frac{1}{\sqrt{2 \pi}(1+i w)}$ for $g(x)=\left\{\begin{array}{ll}e^{-x}, & x>0, \\ 0 . & x<0 .\end{array}\right.$ and $F\left\{f^{\prime}\right\}=i w F\{f\}$.

b_{n}
Q5.(3 points) Let $\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4}{n^{2}}(-1)^{n} \cos (n x)-\frac{2}{n}(-1)^{n} \sin (n x)$ be the Fourier series for $f(x)=x^{2}+x \quad,-\pi<x<\pi . f(x+2 \pi)=f(x) \quad L=\pi$

Evaluate $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$

Q6.(5 points) Find the Fourier series for $f(x)=|x|,-1<x<1$

$$
f(x+2)=f(x)
$$

$$
\begin{aligned}
& 2 L=2 \\
& L=1
\end{aligned}
$$

it's am even function

$$
\text { so } b_{n}=Z E R O
$$

$\& 500 n!1!$

now, evolute $a_{0} \& a_{n}$

$$
\begin{aligned}
& a_{0}=\frac{1}{2 L} \int_{-L}^{2} f(x) \cdot d x, a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
& =\frac{2}{2} \int_{0}^{1} f(x) \cos \frac{n \pi x}{L} d x \\
& a_{0}=\frac{1}{2}\left[\int_{-1}^{0}-x d x+\int_{0}^{1} x d x\right]=\frac{1}{2}\left[\left.\frac{-x^{2}}{2}\right|_{-1} ^{0}+\left.\frac{x^{2}}{2}\right|_{0} ^{1}\right] \\
& =\frac{1}{2}\left[\frac{+1}{2}+\frac{1}{2}\right]=+\frac{1}{2} \\
& a_{n}=\left\{(1) \int_{-1}^{0}-x \cos n \pi x 9_{x}+\int_{0}^{1} x \cos n \pi x d x\right. \\
& \begin{array}{c}
a_{n}=\left.\frac{-x \sin n w x}{n \pi}\right|_{-\infty} ^{\infty}+\left.\frac{\cos n \pi x}{n^{2} \pi}\right|_{-\phi} ^{\infty}+\left.\frac{+x \sin n \pi x}{n \pi}\right|_{0} ^{1}+\frac{\cos n \pi x}{n^{2} \pi^{2}} \\
-\cos n \pi=(-1)^{n+1}-1
\end{array} \\
& =\frac{\sin n \omega}{n \pi}+\frac{-(\cos n \pi)-1}{n^{2} \pi}+\frac{0+\sin n \pi}{h \pi(-1))} \\
& -\frac{(-1)^{n+1}+1}{n^{2} \pi}+\frac{1-(n 1)^{n}}{n^{2} \pi}=\frac{2+\frac{1-\cos n \pi}{n^{2} \pi^{2}}}{n^{2} \pi^{2}} .
\end{aligned}
$$

