Practical Physics-1 (0302111) The University of Jordan 2013/2014 2nd Semester 2013/2014 Faculty of Science Ouiz#3 Department of Physics 45 minutes Dr. Hanan Sa'adeh Section: --- 5----Name (in Arabic):-----* Rotational Motion Q1- The ticker tape shown was obtained for an experiment using a turntable of radius R = 10 cm and a hanging mass $m_h = 100$ g. The time interval between two successive points is 0.1s, and the acceleration due to gravity is 980 cm/s². a- The angular acceleration = b- The moment of inertia of the turntable = 15, 27 g.cm². Q2- All of the following graphs describe the experiment of rotational motion properly except one: (M_h: Hanging mass, M_a: Mass added to the turntable, I: Moment of inertia of the turntable) ω (rad/s) ω (rad/s) I (g.cm²) $M_a = constant$ $M_h = constant$ $M_h = constant$ $M_h = 90 g$ $M_2 = 0$ $M_{\rm h} = 60 \, {\rm g}$ $M_a = 50 g$ $-M_{\rm h} = 30 {\rm g}$ $M_a = 100 g$ t (s) $M_a(g) 0$ (c) (a) Q3- Justify your answer to Q2 above and correct the wrong graph. the Stope Will * Simple Pendulum Q4- A pendulum has a length of 3m and executes 20 complete oscillations in 70 s. The acceleration due to gravity at the location of the pendulum is: (d) 9.67 m/s (c) 10 m/s^2 (b) 940 cm/s² (a) 980 cm/8 /0) Q5- In Q4 above, if the mass of the pendulum bob is doubled, the period will: (c) remain the same. (b) decrease.) (a) increase.

My Kanilla

Q6- If we plot Log L versus Log T (L is the length of the string and T is the period) to obtain a			
straight line, the slope will b	e:		
(a) $\frac{1}{2}$	(b) 2	(c) -2	(d) -1
Q7- In order to increase the accuracy of the measurement in this experiment,			
(a) increase the length of the	pendulum.		
(b) decrease the mass of pen	dulum bob.		,
(c) increase the number of o	scillations for which t	he time is measure	₽ V
(d) decrease the number of oscillations for which the time is measured.			
		7	•
* Ballistic Pendulum	V	P 7 3	· <u>L</u>
O8- A 0.05 kg bullet with	velocity 150 m/s is s	hot into a 3 kg ba	allistic pendulum of 1 m length.
When the bullet hits the pendulum it swings up from the equilibrium position and reaches an angle of			
at its maximum. Find how high the pendulum rises after the bullet gets stuck inside ($g = 9.8 \text{ m/s}^2$).			
(a) 0.31 cm	(b) 0.31 m	(c) 0.31 mm	(d) 310 cm
Q9- Determine the angle φ in Q8 above.			
(a) 46°)	(b) 40°	(c) 30°	(d) 90°
			• •
Q10- The collision between the bullet and the pendulum in Q8 above is:			
(a) inelastic. (b) perfectly elastic. (c) perfectly inelastic.			
Q11- A plot of $(1-\cos\Phi)v$	ersus $\left(\frac{m}{m+M_{tot}}\right)^2$ is	shown, where m	(1-cosΦ)
is the mass of a steel ball projected horizontally into the ballistic			
pendulum, M _{tot} is the total mass of the pendulum (mass of the			
pendulum – added mass), and Φ is the maximum deflection of the			
pendulum. The pendulum has a length of 25 cm. If the speed of Slope = 3.2			
the ball before collision is 4 m/s, the acceleration due to gravity at			
the location of the pendulum is: $0 \qquad \qquad (m+M_{tot})$			
(a) 10 m/s^2	(b) 9.4 m/s^2	(c) 9.6 m/s^2	
Q12- In Q11 above, if instead we plot $(\cos \Phi)$ versus $\left(\frac{m}{m+M_{tot}}\right)^2$, the relationship will be:			
(a) nonlinear and direct.	(b) nonlinear and in	verse.	
(c) linear and direct.	(d) linear and invers	se.	
ALL THE BEST			