

0
(1) If $\left(a x^{3}+b y^{2}\right) d x+\left(4 x y-c y^{3}\right) d y=0$ is exact, then find the value of b.

$$
\begin{aligned}
M=\psi_{x} & =a x^{3}+b y^{2} d x \\
Y & =a x^{3}+b y^{2} d x \\
Y & =\frac{a x^{4}}{4}+b y^{2}+g(x)
\end{aligned}
$$

(2) Solve the initial value problem: $\frac{d y}{d x}=\frac{y^{3}}{1-2 x y^{2}}, \mathrm{y}(0)=1$.iv

Non. Homo
(3) If $W(\sin x, f(x))=\sin ^{2} x$ for $0<x<\frac{\pi}{2}$, then find $f(x)$ given that $f\left(\frac{\pi}{4}\right)=\frac{\sqrt{2} \pi}{8}$.

$$
f^{\prime}\left(\frac{\pi}{4}\right)=
$$

(4) Find a solution of the O.D.E: $y^{\prime \prime}+\left(y^{\prime}\right)^{2}=2 e^{-y}$.

$$
\begin{aligned}
& \left|\begin{array}{cc}
\sin x & f(x) \\
\cos x & f^{\prime}(x)
\end{array}\right|=\sin ^{2} x \\
& \sin x f^{\prime}(x)-\cos (x) f(x)=\sin ^{2} x \\
& \frac{\sqrt{2}}{2} \cdot f=\frac{1}{f(\pi)}+\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2 \pi}}{8}=\frac{1}{2} \\
& \frac{\sqrt{2}}{2} f^{\prime}(x)-\frac{k \pi}{8}=\frac{1}{8}=\frac{1}{2}
\end{aligned}
$$

\qquad $x \rightarrow A$

3
(5) Let $y^{\prime \prime}-10 y^{\prime}+21 y=x e^{3 x} \cos ^{2} x$. Find a suitable form for the particular solution Y_{p} if the method of undetermined coefficients is to be used.

$$
\left(y=e^{n x}\right)
$$

$$
\begin{aligned}
& r^{2}-10 y^{\prime}+21=0 \\
& \Delta=\frac{100-4(1)(21)}{}=100-84=+160 \sqrt{16}=4 \\
& r=\frac{-10 \pm 4}{2}=\frac{-10+4}{2}=\frac{-6}{2}=-3=r_{1} \\
& \quad=\frac{-10-4}{2}=\frac{-14}{2}=-7=r_{2}
\end{aligned}
$$

$$
(r+3)(r+7) \rho
$$

$$
y_{h}=C_{1} e_{+}^{+3 x}+C_{2} e^{+7 x}
$$

(6) Find the general solution of the differential equation \rightarrow

$$
y^{\prime \prime}+4 y^{\prime}+4 y=e^{-2 x} \ln x . \rightarrow g(x)
$$

$$
r^{2}+4 r+4=0
$$

$y_{p}=-e^{2 x} \int \frac{x \cdot e^{-2 x} \cdot e^{-2 x} \ln x}{e^{4 x}}+x \cdot e^{-2 x} \int \frac{-e^{-2 x}}{e^{-2 x}}$
$\left.\left(E_{3} x \cos x+E_{4} x \sin x\right)\right]$

