
The University of Jordan
\qquad

Department of Electrical Engineering
Circuit I, EE-211
Fall 2014
First Exam

Date: Oct. 23,2014
Time: 60 Min.

Section \#: 1
Name (Arabic):

Problem \#1 (1 pt)
Find the absorbed power for each element of the following:

1. $i=3 \mathrm{~A}$ and $v=8 \mathrm{~V}$

$$
P=I \bar{V}=(3)(8)=24 \mathrm{~W}
$$

2. $i=3 \mathrm{~A}$ and $\boldsymbol{v}=-8 \mathrm{~V}$

Problem \#2 (1.5 pts)
Find $R_{\text {eq }}$ of the following connection:

1

Problem \#3 (4.5 pts)
Don't use MESH, NODAL or SUPERPOSITION to solve the following circuit:

1. find V_{x} by voltage division rule only.

$$
V_{x}=V_{T} \frac{4}{10}=4 V
$$

2. find i_{y} by current division rule only.

$$
i_{y}=8 \frac{1 / 8}{1 / 8+1 / 8+14}=-2 A>8 \Omega 1
$$

$$
(4 A)=y_{-2}-\lambda
$$

3. find V_{y}

$$
V_{y}=L R=(-4)(y)=-16 \mathrm{~V}
$$

4. find $i_{x} u$ sing $K C L$.

The Mesh Equations of the following Circuit are given by:

$$
\begin{aligned}
& 20 \mathrm{I}_{1}-40 \mathrm{I}_{2}-5 \mathrm{I}_{3}=\mathrm{V}_{1} \\
& -15 \mathrm{I}_{1}+65 \mathrm{I}_{2}-25 \mathrm{I}_{3}=-\mathrm{V}_{2} \\
& -5 \mathrm{I}_{1}-25 \mathrm{I}_{2}+35 \mathrm{I}_{3}=0
\end{aligned}
$$

Find R_{1}, R_{2}, R_{3} and R_{4}.

-

Problem \#5 (5 pts)
Write the NODAL voltage equations for the following circuit (Don't solve them; just arrange them to fill the blanks below.
 (KL)

$$
5+\frac{v_{1}-v_{2}}{12.5}+\frac{v_{3}}{20}+\frac{v_{3}-v_{4}}{10}=0 \cdots
$$

$$
V_{1}-V_{3}=100 \mathrm{~V}
$$

$$
\begin{aligned}
& 10+\frac{v_{2}-v_{1}}{12.5}=0 \\
& 10+0.08 V_{2}-0.08 V_{1}=0
\end{aligned}
$$

$$
\frac{v_{4}}{25}+\frac{v_{4}-v_{3}}{10}=10
$$

$$
0.04 V_{4}+0 N_{4}-0.1 V_{3}=10
$$

$$
0.14 V_{4}-0.1 V_{3}=10
$$

$$
\begin{aligned}
& 0.08 v_{1}+-0,0.8 v_{2}+0.1 .5 \\
& v_{3}+-0.1 \\
& -5 \\
& -0.08 \% v_{1}+0.08 v_{2}+0.0 v_{4}+0 \\
& 0 v_{1}+0 v_{2}+-0.1 v_{3}+0.14 v_{4}=10 \\
& \square 10 v_{1}+\square v_{2}+\square+10 v_{4}=100
\end{aligned}
$$

Problem \#6 (4 pts)
Use Superposition Principle to find i_{x} and i_{y} in the following circuit.

12 V

$$
\text { (ix) } \frac{u}{R}=\frac{12}{4}=3 \hat{A}
$$

Lin $\quad V_{x}=0$

$$
\text { i' }^{\prime} \text {, } 2_{i x}^{\prime \prime}=2(3)=6 A
$$

QA
Volt -

Division $l_{y}=0.8$

$$
\frac{\dot{i}_{x}=\dot{M}_{x}^{\prime} y_{x}^{\prime \prime}=3 \mathrm{~A}}{\dot{f}_{y}=i_{y}^{\prime}+i_{y}^{\prime \prime}=6,8 \mathrm{~A}}
$$

