

1) a) (3 points) Find the area of the triangle whose vertices are P(1,-1,2), Q(2,1,2), and R(1,2,3).

b) (3 points) Find cosine the angle between a diagonal of a cube and one of its edges.

a) (2 points)
$$x^2 - 2x + y^2 + z - 9 = 0$$

b) (2 points)
$$z = 1 - x^2$$

3) (4 points) Find equation of the plane that passes through the point P(1,1,0)and contains the line with symmetric equations $x = y - 1 = \frac{z+1}{2}$.

$$\frac{\frac{1}{1}}{\frac{1}{1}} = \frac{\frac{1}{2}}{\frac{2}{1}} = \frac{\frac{1}{2}}{\frac{2}{1}}$$

Q:10,t,-1)

$$V_{po} \times V_{L,} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{vmatrix} = \frac{(a, b, c)}{2}$$

4) (2 points) Find equation of the line that passes through the point P(2,0,1) and is orthogonal to the plane x = 2z + 10

5) a) (2 points) Show that the distance between the parallel planes $ax + by + cz + d_1 = 0$ and $ax + by + cz + d_2 = 0$ is $D = \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}$

$$\pi_1$$
: $ax + by + c2 + di = 0$
 π_1 : $ax + by + c2 + di = 0$

b) (2 points) Use part a) to find equations of the planes that are parallel to the plane 2x - y + 2z = 1 and 5 units away from it.

