Lbj ins ar．
Hiv，出
السبت：2014／5／3
الاختّار الثانى ：نغاضل وتكامل 2
الجامعة الاردنبة
هدرس المادة：د．هب؟

وتت المحاضرة：
الرتم الجامعي＇：
Q1：The base of the solid is the region bounded by $y=\ln x, x=1$ and $y=1$ ．
Cross－sections perpendicular to the y－axis are semicircles with diameter is on the base．Find the volume of this solid

$$
\left.\pi / 8\left[\frac{e^{3}}{3}\right)-\frac{1}{3}\right]
$$

Q2 ：Use the shell method to find the volume of the solid generated by rotating the region bounded by $y=5-x^{2}$ and $y=1$ about the line $x=3$

$$
\begin{aligned}
& \left(\left.\begin{array}{l}
\frac{2 \pi r_{y}(h)}{r=(y-y)} \\
h=5-x^{2}
\end{array} \right\rvert\, \begin{array}{l}
y=5-x^{2} \\
x^{2}=5-y \\
x-\sqrt{5-y}
\end{array}\right] \\
& \int_{1}^{5} \pi(3-y)(\sqrt{5-y}) d x \\
& \text { (} 3,1 \text {) } \\
& 2 \pi \int_{0}^{1}(3 \sqrt{5-y}-y \sqrt{5-y}) d y \\
& v=\text { Xt 大" }
\end{aligned}
$$

Q3: Find the length of the curve $y=2 \ln \left(\sin \frac{1}{2} x\right), \frac{\pi}{6} \leq x \leq \frac{\pi}{3}$

$$
\begin{aligned}
& y=2 \ln \left|\sin \left(\frac{y}{2}\right)\right| \\
& y^{\prime}-2 \frac{\cos (x / 2)}{\sin \frac{y}{(2)}}
\end{aligned}
$$

$$
3 y^{2}=4(\cot (y / 2))^{2}
$$

Q4: Find the limit of the sequence $\left\{\left(\frac{2 n+4}{2 n-6}\right)^{n}+n \sin \frac{1}{n}\right\}_{n=1}^{\infty}$

By Gocumetnic

$$
\begin{aligned}
\Sigma= & \frac{1 / 4}{1-1 / 4}=\frac{1 / 4}{3 / 4} \\
& =3 \\
& =1 / 34
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{(n+1)(n+2)}=\frac{A}{(n+1)}+\frac{B}{(n+2)} \\
& A(n+2)+B(n+1) \\
& \frac{1}{n+2}-\frac{-2+1}{n+1} \text { relescpr }
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\frac{2 n+9}{2 n-6}\right)^{n}+\lim _{n \rightarrow \infty} n \sin \frac{1}{n} \\
& \lim _{n \rightarrow \infty} \frac{(2 n+4)^{n}}{(2 n-6)^{n}}+\frac{\sin 1 / 1}{2 m^{2}-1} \\
& 2 n \frac{\frac{2}{2}+2}{2 n}+\frac{2 n-6}{2 n+4}=\frac{2}{2}=1+1=2 \\
& \text { Q5: Find the sum } \sum_{n=1}^{\infty}\left(3^{n-1} 4^{-n}+\frac{1}{n^{2}+3 n+2}\right) \\
& 1 \frac{3 n \cdot 3^{-1}}{4^{n}} \\
& \frac{8}{3}\left(\frac{1}{4}\right)^{n} \\
& 1 \\
& -n+3 n+3 \\
& (n+1)(n+2)
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{n+2} & =\frac{1}{n+1} \\
= & \left(\frac{1}{7}-\frac{1}{2}\right)_{a_{1}}+\left(\frac{1}{4}-\frac{y}{3}\right)_{a_{2}} \\
& +\left(\frac{1}{5}-\frac{1}{4}\right)_{a_{3}}+\left(\frac{y}{6}-\frac{1}{5}\right)_{a_{=1}} \\
& \lim ^{2}\left(\frac{1}{n+2}-\frac{1}{2}\right) \\
& \frac{1}{3}-1 / 2= \\
\frac{2-3}{6}= & =\frac{-1}{6}
\end{aligned}
$$

Q5: Test for convergence:

(b) $\sum_{n=1}^{\infty} \frac{\sqrt{n^{3}+n^{2}+1}}{n^{2}+4}$

Limit. Componen test $3 / 2-4 / 2$ $a_{n=\frac{n^{3 / 2}}{n^{n / 2}} \quad \sum b_{n}=\frac{1}{n \leqslant 1}}^{\text {it Divenges } b y \text { P-senis }}$

$$
\frac{\text { BASEL }}{\text { KHAMIS }}
$$

nn $<n^{3}$

