Faculty of Engineering & Technology

Department of Electrical Engineering

	Course Title: Electromagnetics I		Exam: 2 nd Exam	
	Course No.: 0903251		Semester: 1 st Term 2015-2016	
,	Dr. Ahmad	Instructor: Atieh & Dr.		orel
Q.1	Q.2	Q.3	Q.4	Total /30
4	1.5	()	, · · · · ·	6.5

Student Name:

Student Number:

Section:

2

Dr. Ahmal Atich

$$d\mathbf{S} = \rho \, d\phi \, dz \, \mathbf{a}_{\rho}$$
$$d\rho \, dz \, \mathbf{a}_{\phi}$$
$$\rho \, d\phi \, d\rho \, \mathbf{a}_{z}$$

$$d\mathbf{l} = d\rho \, \mathbf{a}_{\rho} + \rho \, d\phi \, \mathbf{a}_{\phi} + dz \, \mathbf{a}_{z}$$

$$\varepsilon_{o} = \frac{10^{-9}}{36\pi} F/m$$

$$\mathbf{E} = \int \frac{\rho_L \, dl}{4\pi\varepsilon_0 R^2} \, \mathbf{a}_R$$

$$= \int \frac{\rho_S dS}{4\pi\epsilon R^2} a_R$$

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \phi} \frac{\partial^2}{\partial \phi} + \frac{1}{r^2 \sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial}{\partial \phi} \right).$$

$$\nabla = \frac{\partial}{\partial r} \mathbf{a}_r + \frac{1}{r} \frac{\partial}{\partial \theta} \mathbf{a}_{\theta} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \mathbf{a}_{\phi}$$

$$\int \frac{1}{\sin x} dx = \ln(\tan x/2)$$

$$\int \frac{x}{a^2 + x^2} dx = \frac{1}{2} \ln|a^2 + x^2|$$

$$\int \frac{dx}{(a^2 + x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 + x^2}}$$

Faculty of Engineering & Technology

Department of Electrical Engineering

Note that bold letters are vectors

Q1) (7 marks)

- a) Find the charge enclosed within an object formed by the planes x=0 and x=1, y=0 and y=2, z=0 and z=3 when an electric flux density $\mathbf{D} = 2xy \, \mathbf{a}_x + x^2 \, \mathbf{a}_y$ applied to it?
- b) What is the energy density in the object?
- c) Calculate the energy stored within the object?

$$\Psi = Q_{ene} = \int_{S} P_{o} dS = \int_{S} P_{v} dv$$

$$Q = \int_{0}^{3} \int_{0}^{3} 2y dx dy dz = \int_{0}^{3} dz \int_{0}^{2} 2y dy dx$$

$$Q = (3) * (y^{2}) \int_{0}^{3} * (1)$$

$$Q_{one} = (3) * (4) * (1) = 12 C$$

$$\Psi = \frac{1}{2} \int_{0}^{3} \int_{0}^{3} dz \int_{0}^{3} -1 \int_{0}^{3} \int_{0}^{3} dz \int_{0}$$

Faculty of Engineering & Technology

Department of Electrical Engineering

Q2) (8 marks)

Pes=4ndis

$$\rho_{\rm L} = 3 \text{ nC/m}$$

$$\rho = 2 \text{ m}$$

$$10^{0}$$

$$\rho = 2$$

$$\rho = 2$$

$$\rho_{\rm SC} = 4 \text{ nC/m}^{2}$$

Faculty of Engineering & Technology

Department of Electrical Engineering

$$= \frac{70^{\circ}}{(3*10^{7})(2)} = \frac{5.38}{(200)} = \frac{7}{3} = \frac{7}{3}$$

$$= (60)*(119*10^{3}) \left[-5./38ap + 5az\right]$$

$$= -(7.14*5.38ap) + (7.14*5az)$$

$$= -38.413ap + 35.7az V/m$$

Faculty of Engineering & Technology

Department of Electrical Engineering

Q3) (8 marks)

5

The Figure below represents a parallel plate capacitor with area 0.5 m² and separation 10 mm contains three dielectrics with interfaces normal to E and D as shown. Assume the voltage difference between the plates is 100 V. Find:

- a) Voltage drop across each dielectric.
- b) Electric flux density D_n for each region.
- c) Total capacitance.
- d) Total energy stored over all capacitor.

Faculty of Engineering & Technology

Department of Electrical Engineering

$$C = \frac{\mathcal{E}}{V} = \frac{\mathcal{E}}{S} =$$

Faculty of Engineering & Technology

For the conducting cone shown below, if the surrounding medium is free space; calculate V and E at P (r, 2α , 0°) and ρ_s at the cone surface.

to Using Poisson's Equ.

$$\nabla V = \frac{P_s}{E_o}$$