#### Faculty of Engineering & Technology

### **Department of Electrical Engineering**



| Course Title: Electromagnetics I  |                                | Exam:  1st Exam | <b>Date:</b><br>Nov/03/2015 |
|-----------------------------------|--------------------------------|-----------------|-----------------------------|
| Course No.:                       | Semester:                      |                 | Time Period:                |
| 0903251                           | 1 <sup>st</sup> Term 2015-2016 |                 | 1:00 Hr.                    |
| Instructor:                       |                                |                 |                             |
| Dr. Ahmad Atieh & Dr Yanal Faouri |                                |                 |                             |
| Q.1                               |                                | Q.2             | Total/20                    |
| 2                                 |                                | 8               | 10/20                       |

\* اللهم لا عما الا ما ععلية في الأواتية تجعل العزن إذا غنة مهلا

**Student Name:** 

**Student Number:** 

Section:

$$\nabla \cdot \mathbf{A} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho A_{\rho}) + \frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_{z}}{\partial z}$$

$$dS = \rho \, d\phi \, dz \, \mathbf{a}_{\rho}$$
$$d\rho \, dz \, \mathbf{a}_{\phi}$$
$$\rho \, d\phi \, d\rho \, \mathbf{a}_{z}$$

$$\nabla \times \mathbf{A} = \frac{1}{\rho} \begin{vmatrix} \mathbf{a}_{\rho} & \rho \, \mathbf{a}_{\phi} & \mathbf{a}_{z} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_{\rho} & \rho A_{\phi} & A_{z} \end{vmatrix}$$

$$d\mathbf{l} = d\rho \, \mathbf{a}_{\rho} + \rho \, d\phi \, \mathbf{a}_{\phi} + dz \, \mathbf{a}_{z}$$

$$\varepsilon_o = \frac{10^{-9}}{36\pi} F / m$$

# Faculty of Engineering & Technology

# **Department of Electrical Engineering**



### Note that bold letters are vectors

Q1)



## Faculty of Engineering & Technology

## Department of Electrical Engineering



$$|\nabla XA| = |\vec{ap} - p\vec{a} \cdot \vec{a}| + |\vec{bp}| +$$

### Faculty of Engineering & Technology

## **Department of Electrical Engineering**

Q2)

A uniform line charge density  $\rho_{\ell} = 1 \text{ nCm}^{-1}$  of an infinite length is placed along the z-axis in free space and an electric charge  $Q_1 = 1 \text{ nC}$  is placed at (1, 0, 0). Find the electric flux density at point P(2, 3, 0).



$$\frac{1}{2\pi \epsilon_0} = \frac{1}{2\pi \epsilon_0}$$

$$\frac{1}{2\pi \epsilon_0} = \frac{1}{2\pi \epsilon_0} ((2,3,0) - (1,6))$$

$$= \frac{10^{9}}{(4\pi6.)\times(31.62)} \left( \vec{q_{\chi}} + 3\vec{a_{\chi}} \right) \sqrt{}$$

$$= \frac{P_2}{2\pi \epsilon_0 p} = \frac{P_2}{2\pi$$

$$\int_{-2}^{2} \sqrt{\chi^{2} + y^{2}} = \sqrt{2/ + 9}$$