

Name:

Number: 0144364

Index

40

University of Jordan Elect. Eng. Dept. Cellular 0953522

عمر عبد الرحن عبدريه

Mid Examl. (12 Points, ABET Question) 0.1

20/11/2017

Area Design a Digital Cellular system/for an area of 40000Km², if the total number of available channels is 315 and 30 subscribers are active per Km² at busy hour. If the average call duration is 2 min one control channel per cell, $\gamma=3$ and BP=1%. Then Find (you must use all channels): $\gamma=2$ Q4=30×40K=1.2M

• • • • • • • • • • • • • • • • • • • •	KXV	(X M
Configuration	3x3	7x1
No of Ch. Per sector	35	144
No of control Ch.	3 1ch/sent	/7
Total No of Cells	592 9	MAS 1341
Actual C/I	11.303 dB	12.05 dB

Reneat for RP=2%

Configuration	3x3	7x1
Total No of Cells	563 9	1283/
Actual C/I	11.303018	12.05 dB

cella sectors

== 3 (9)8

 $q = \frac{3}{5} (3)$

Write down the frequency plan for the 3x3 system:

		A	/ 4		B		1		
	f.	fz	f3	fn	fs	F6	f7	f8	fg
	fie	Cu	f12	fis	fin	f15	£16	F17	fig
	f 12	£20	fzi	f22 /	f23	fzn	f25	F26	f27
	£28	F # 9	£30	F31	f32	F33	F34	F35	£ 36
	f37	f38	F39	fyo	fui	fuz	F43	fun	fus
1	f46	fy7	F48	fug	fso				fsn
1	£ 55 27	219	390	391	302	303	304	305	E63 30
j	POY	F308	A SON	£309	F310	A L	f311	f312	4302 -

 $N_{c} = \frac{315 - 39}{3} = 102 \begin{pmatrix} 33 & 5 \\ 34 & 5 \end{pmatrix} = 34.66 = 35 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 999 \begin{pmatrix} 7 \times 1 & 5 \\ 7 \times 1 & 5 \end{pmatrix} = 99$

AT = QA 7 = 1.2M + 2 = 40K

No. of cells = 40k 40k 72.12

Q.2 (5 Points)

Design a Digital Cellular system for an area of 10000Km², if the total number of available channels is 138 and 300K subscribers are active at busy hour. If the average call duration is 3 min one control channel per

cell, γ =3, min C/I is 8.5dB and BP=1%.

$$\frac{2}{1} = \frac{3}{6} \times (3)^3 = 11.303 \, dB > 8.5 \, dB$$

$$N_c = \frac{138-3}{3} = 45 \left\{ \frac{15}{15} - Number of channels / sector \right\}$$

$$A_T = \frac{Q_q \lambda}{60} = \frac{300 k \times 3}{60} = 15 k$$

No. of cells =
$$\frac{15 \, \text{K}}{22.17} = 676.59$$

= 677 cell

Q.3 (5 Points 1,2,2)

A 3x3 configuration system at C/I=7dB. Down tilting increases the 1home signal by 1.5dB and reduces the interference by 1dB each. Find the new C/I.

C/I= 9.5 dB.

If a user at 800m from base station has C/I=11dB. What is the C/I for a 2user at 500m in the same cell (assume that the interference on both locations is the same).

C/I= 12525 dB.

- $\frac{C}{T_{old}} = k \left(\frac{D}{R}\right)^{8}, R = 800$ $\frac{C}{T_{new}} = k \left(\frac{D}{0.625}\right)^{8}, S = 800$ 500 = 0.625R
- Discuss briefly (in points) the call setup procedure. 3-

$$\frac{10^{1.1}}{\text{C/Enew}} = \frac{10^{1.1}}{0.625}$$

$$\frac{10^{1.1}}{\text{C/Enew}} = 0.244$$

$$\frac{10^{1.1}}{\text{C/Enew}} = 58.59$$

$$= 16.538$$

$$= 17.12588$$

 $\frac{C}{T} \circ Id = 7dR = \frac{C}{6T}$ $\frac{C}{GT} \star 10^{0.15} = \frac{C}{6T} \star \frac{10^{0.15}}{3 \cdot 10^{0.1}} = \frac{C}{6T} \star 1.77$ $\frac{C}{T_{avv}} = \frac{C}{6\left(\frac{T}{10^{0.1}}\right)} \star 10^{0.15} = \frac{C}{6T} \star \frac{10^{0.15}}{3 \cdot 10^{0.1}} = \frac{C}{6T} \star 1.77$

Q.4	(8 Points 1 each)		
1.	Frequency plan reduces the effect of both co-channel and adjacent-channel interference	Т	(F)
2.	Frequency reuse is implemented by creating a full spatial orthogonality.	Т	F
3.	Frequency hopping increases the C/I for all active users.	Т	(F)
4.	The propagation constant γ depends on the multi-paths in the channel.	T	F
5.	Control data is transmitted over the control channel while the user is active.	Т	E
6.	Control Channels are used to update only active users data.	T	F
7.	Near End Far End problem happens at the cell center.	Т	F
8.	Hand over failure is only due to no available channels in the interred cell.	T	F

2%	54.37	55,25	56,12	57,00	57,87	58.76	59,63	60,52	61,39	62,28	63,16	64.05	64,93	65,81	06,70	67,58	68,47	69,36	70,25	71.13	72,02	72,91	73,80	74,68	75,58	78,47	77,30	78,26	79,16	80,04	80,94	81,84	82,73	83,62	84,52
1%	52,55	53,41	54.27	55,14	56,00	58.87	57.73	58.60	59,47	60,33	81,18	62.06	62.94	63,81	64,08	85,55	66,42	67,28	68,17	69,05	69.92	70,78	71,67	72,55	73,42	74,31	75,18	76.06	78,95	77,83	78,71	79,60	80,48	81,35	82,25
z	11	27	23	7	75	76	11	78	٦	8	81	Ø	8	ä	88	98	87	88	68	8	- 10	8	8	æ	8	8	18	8	8	100	101	102	501	104	105
7	24.53	25,35	26.18	27,01	27.84	28.69	2P.51	30.35	31,18	32.03	32.87	33.72	34.57	35,41	36,20	37.08	37.83	38.79	39,64	40.50	41.35	42.22	43.08	43.85	44.80	45,67	46.54	47.40	48.27	46.14	50.01	50.88	51,75	52,63	53,50
	23,35	24.15	24.95	25,76	26.58	27.38	28.20	29.02	29.84	30.67	31,49	32,31	33.14	33,97	34.81	35.58	36.42	37.26	38,10	38.84	39,78	40.63	41.47	42.32	43,16	44,01	44.86	45.71	46,56	47.41	48.27	49.13	49.88	50,84	51,66
	38	37	38	35	6	41	4	4	1	45	46	47	48	4	R	51	B	R	古	8	99	16	58	80	00	91	20	8	8	8	99	10	88	80	R
	0.00	0.21	0.56	86'0	1.50	2,06	263	3.25	3.88	4.75	5,21	5.90	6.60	7.31	8.04	8,77	9,51	10,25	11,01	11,77	12.53	13,30	14,08	14,86	15,66	16.44	17,23	18,00	18,83	19.64	20,45	21,26	22.07	22,89	23.71
1	0.01	0.15	0.43	0,81	1,38	1,78	2.30	2.87	3.40	4.09	4.7	5.36	6.03	6.71	(7.38	8.09	8.80	9.52	10,24	10,97	11,71	12.45	13,21	13,86	14,72	15,48	10.25	17,03	17,81	18,59	19,37	20.16	20.85	21,75	22.55
000	1	2	6	4	20	0	7	60	O)	9	11	12	13	14	15	16	17	18	10	20	21	n	23	23	22	26	12	28	29	8	31	32	33	*	35