

FALL=2013

0117446
 UNIVERSITY OF JORDAN Electrical Engineering Dept.
Electromagnetic I: EE251 $\quad \varepsilon_{0}=(1 / 36 \pi) 10^{-9} \mathrm{~F} / \mathrm{m} \quad$ First Mid-Term Exam:22/10/2013
Prob. \#1 $1\left[5\right.$ PTS]: A certain electrical source produces an electric field $\quad E=-10 a_{x}+10 a_{y} \mathrm{~V} / \mathrm{m}$ at $\mathrm{P}\left(5,45^{\circ}, 135^{\circ}\right)$; Then write down E in spherical coordinate.

$$
\begin{array}{ll}
\text { spherical coordinate. } \\
x=-10 & y=10 \therefore r=\sqrt{200}
\end{array}
$$

\square
$E=-10\left(\overrightarrow{a r y s} \cos \phi+\vec{b}+\cos \theta \cos \phi \vec{a}_{\phi} \operatorname{sic}\right)+0$

$$
\Rightarrow a_{x}=a_{r} \sin \theta \cos \phi+a_{\theta} \cos \theta \cos \phi-a_{\phi} \sin \phi
$$

$=\frac{-1}{2} \overrightarrow{a_{r}} \frac{1}{2} a{ }_{\theta} \frac{1}{\sqrt{2}} a \phi$ cell cavell

'celts'

$$
\begin{aligned}
& (5,45180) \\
& E=E_{r} \overrightarrow{a_{r}}+E_{\theta} \overrightarrow{a_{\theta}}+E_{\phi} a_{\phi} \\
& E_{r}=\sqrt{(10)^{2}+(10)^{2}}=\sqrt{200} \\
& E_{\theta}=\cos ^{-1}(0)=\frac{\pi}{2} \\
& E_{\phi}=\tan ^{-1}(-1)=\frac{3}{4} \\
& a_{r}=a_{x} \cos \phi \sin \theta+a_{y} \sin \phi>\theta+a_{z} \cos \theta \\
& \overrightarrow{a_{\theta}}=\overrightarrow{a_{x} \cos \theta \cos \phi}+a_{y} \sin \phi \cos \theta-a_{n} x \sin \theta, \\
& a \phi=-a_{x} \sin \phi+a_{y} \cos \phi \\
& \begin{array}{l}
a_{x}=-\frac{1}{2} a_{r}-\frac{1}{2} a_{\theta}-\frac{1}{\sqrt{2}} \vec{a}_{\phi} \\
a_{y=}=\frac{1}{2} \vec{a}_{r}+\frac{1}{2} a_{\theta}-\frac{1}{\sqrt{2}} a_{\phi}
\end{array} \\
& E=-10\left(-\frac{1}{2} \overrightarrow{a r}-\frac{1}{2} a \theta-\frac{1}{\sqrt{2}} a \phi\right) \\
& +10\left(\frac{1}{2} a r+\frac{1}{2} a \theta-\frac{1}{\sqrt{2}} a \phi\right) \\
& \begin{aligned}
\therefore \vec{B} E & =5 a r+5 a \theta+\frac{10}{\sqrt{2}} a \phi+15 \\
& =1 Q \overrightarrow{a r}+\overline{10} \overrightarrow{a \theta} \quad V \mid w
\end{aligned} \\
& \therefore \dot{C}=\sqrt{20 g} a r+\frac{\pi}{2} \int \vec{a}
\end{aligned}
$$

Prob. \# 2 [8 PTS]: A good conducting spherical shell whose and outer radii are "a" and "b" respectively (a<b). A positive charge q is located at the center of this shell; Then find the electric $\frac{1}{E}$, electric flux density and the potential for this arrangement everywhere except at $\mathrm{r}=0$.

$$
\begin{aligned}
& D_{r} 4 \pi r^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& a \leqslant r \leqslant b \\
& D_{r} 4 \pi r^{2}=\int_{0}^{2 \pi} \int_{0}^{\pi} \rho_{s} a^{2} \sin \theta d \theta d \phi \\
& \begin{array}{l}
D_{r} 4 \pi r^{2}=\iint_{0} \int_{s} a \sin a_{0}^{2 \pi}-\left.\cos \theta\right|_{0} ^{\pi} d \phi d{ }_{0}^{2} \Rightarrow \\
D_{r} 4 \pi r^{2}=\rho_{s}
\end{array} \\
& \text { Dr } \operatorname{DAt~}^{2}=\rho_{S} a^{2}(4 R) \quad D /=E E \\
& D_{r}=\rho_{s} a^{2} r^{2} C / m^{2} C_{r}=\frac{\rho_{s} a^{2}}{\epsilon_{0} r^{2}} V / m
\end{aligned}
$$

Prob. \# 3 [7 PTS]: A ring which is made out of very thin conducting wire. The ring carry a linear charge density $\rho_{\circ} \mathrm{C} / \mathrm{m}$. The ring radius $=\mathrm{a} \mathrm{m}$ and it is located in the $\mathrm{x}-\mathrm{y}$ plane with its center at the origin; Then: (i) Find E at point $(0,0, h)$. (ii) Find V and E at the origin.
 using Simetry $\geqslant 1$
(ii)

$$
\begin{align*}
V & =-\int E \cdot d L \\
& =-\int \frac{\rho_{L} t_{a} \frac{a z}{2 \epsilon_{0}\left(\frac{t_{2}}{2}+\right)^{3 / 2}} d L}{}=-\int \frac{\rho t a}{2 t_{0}\left(t^{2}+a^{2}\right)^{3 / 2}} d z
\end{align*}
$$

$$
\stackrel{y}{\square}
$$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \frac{\rho_{2} a d \phi}{4 \pi \epsilon_{0}\left(\hbar^{2}+a^{2}\right)^{3 / 2}}\left(\overrightarrow{a_{z}}\right) \\
& \Gamma_{z}=\frac{\rho_{c} h a}{4 \pi \epsilon_{0}\left(h^{2}+a^{2}\right)^{3 / 2}} \int_{0}^{2 \pi} d \phi \\
& =\frac{\rho_{c} h a}{4 \pi E_{0}\left(h^{2}+a^{2}\right)^{3 / 2}} \\
& =\frac{\rho_{L} h a}{y_{2} E_{0}\left(h^{2}+a^{2}\right)^{3 / 2}}+2 \mathbb{R}=\frac{\rho_{L} h a}{2 \epsilon_{0}\left(h^{2}+a^{2}\right)^{1 / 2}} V / m
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \vec{R}=r-r^{\prime} \\
& |\vec{R}|=\sqrt{h^{2}+a^{2}} \frac{1}{a z}-a_{a r} \\
& \text { (i) } E=\int \frac{\rho_{L} d L}{4 \pi \in_{0} R^{2}} a_{r} \\
& =\int_{0}^{2 \pi} \frac{\rho_{l} a d \phi}{4 \pi t_{0}\left(\frac{\left.\hbar^{2}+a^{2}\right)^{3 / 2}}{}\left(\Delta \overrightarrow{a_{2}}-a_{a r}\right)\right) ~}
\end{aligned}
$$

$$
\begin{aligned}
& V=-\int \frac{\rho_{L} z a}{-2 \epsilon_{0}\left(z^{2}+a^{2}\right)^{3 / 2}} d z \\
& =-\frac{\rho_{2} a}{2 \epsilon_{0}} \int \frac{z}{\left(z^{2}+a^{2}\right)^{3 / 2}} d z \\
& u=z^{2}+a^{2} \\
& \partial u=2 z+z \\
& =\frac{-s_{i} a}{q \epsilon_{0}} \int \frac{1}{u^{3 / 2}} d u \\
& =+\frac{\sum_{L} a}{2 t_{0}} g\left(+x^{-1 / 2} u^{\$} \&\right. \\
& u^{-3 / 2} \overline{a z} \\
& \frac{4^{-1 / 2}}{-1 / 2}=-2 u^{-1 / 2} \\
& =\frac{\rho_{L} q}{2 \epsilon_{0}} \cdot \frac{1}{\sqrt{u}}=\frac{\rho_{E q} q}{2 \epsilon_{0} \sqrt{z^{2}+q^{2}}} \\
& \int V(0,0,0)=\frac{\rho_{L} d}{2 \epsilon_{0} d}=\frac{\rho_{L}}{2 G} \forall \\
& C_{2}(0,0,0)=0 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

