Chapter 1: Introduction to Engineering Economy

Engineering economy:

Systematic evaluation of the economic merits of proposed solutions to engineering problems.
\rightarrow Answers basic economic questions:
Do benefits exceed costs?
$>$ How to conduct a certain activity?
$>$ How to utilize the staff?
$>$ Which alternative to choose?

Successful engineering proposal/design:

> Organization benefit.
$>$ Innovative technology.
$>$ Clear outcomes.
$>$ Valid measure of economic merit.

Engineering economy principles

$>$ Develop alternatives.
> Focus on the differences.
$>$ Use a consistent viewpoint.
$>$ Use a common unit of measure.
$>$ Consider all relevant criteria.
$>$ Make uncertainty explicit.
$>$ Revisit your decisions.

Economic analysis procedure

Problem definition.
Development of alternatives.
Development of prospective outcomes.
Selection of a decision criterion.
Analysis and comparison of alternatives.
Selection of the preferred alternative.
Performance monitoring and post-evaluation of results.

Problem definition example

Example:

A small furniture-manufacturing company wants to increase their profits to get a loan from the bank to purchase a more modern patterncutting machine. One proposed solution is to sell waste wood chips and shavings to a local charcoal manufacturer instead of using them to fuel space heaters for the company's office and factory areas.

- Define the company's problem.

Not enough revenue to cover costs or to produce significant profit.

- Alternatives?

Economic analysis example

Someone bought a small apartment building for $\$ 100,000$. He spent $\$ 10,000$ of his own money for the building and obtained a mortgage from a local bank for the remaining $\$ 90,000$. The annual mortgage payment to the bank is $\$ 10,500$. He also estimates that annual maintenance on the building and grounds will be $\$ 15,000$. There are four apartments in the building that can each be rented for $\$ 360$ per month.

- Problem?

Yes \rightarrow money spent ($\$ 10,500+\$ 15,000=\$ 25,500$) every year exceeds revenue $(\$ 360 \times 4 \times 12=\$ 17,280) \rightarrow \$ 8,220$ loss per year.
Maybe rent is too low?

- Alternatives?
$>$ Raise the rent.
$>$ Decrease maintenance cost.
$>$ Sell the building.
$>$ Abandon the building.
- Development of prospective outcomes?

Option 1: raise rent so the net balance is zero.
$\$ 8,220 / 4$ apts $/ 12$ months $=\$ 171.25$ increase per apartment per month (48% increase).

Option 2: lower monthly expenses.
$\$ 10,500+X=\$ 17,280 \rightarrow X=\$ 6,780$ per year (maintenance) $\rightarrow \$ 565$ per month.

Option 3: Selling the building.

Option 4: Abandoning the building.

- Selection of a decision criterion?

Minimization of losses.

- Analysis and comparison of alternatives?

Based on the selected criterion.

- Selection of the preferred alternative?

Select the best achievable option.

Spreadsheets

Excellent for large and repetitive problems.

Graphical output is easily generated.

Chapter 2: Cost Concepts and Design Economics

Objective

Analyze short term-alternatives when the time-value of money is not a factor.

Cost categories

1) Fixed costs (costs unaffected by changes in a specific range of operating conditions).
Examples: insurance on facilities, taxes on facilities, general management and administrative salaries, license fees, interest costs on borrowed capital.
2) Variable costs (costs that vary with the quantity of output).

Examples: materials and labor costs.
3) Incremental cost (additional cost resulting from increasing the output by one or more units).

Examples: mileage cost, production of 1 vs .2 units.

Cost categories example

Classify each of the following cost items into fixed or variable costs:

Raw materials	Variable
Direct labor wages	Variable
Supplies	Variable
Property taxes	Fixed
Utilities (electricity bill)	Fixed and Variable
Administrative salaries	Fixed
Sales commission	Variable
Rent	Fixed
Shipping charges	Variable

Example: highway paving

A new highway is to be paved and the contractor has two locations to set up their asphalt mixing equipment. The job requires $50,000 \mathrm{yd}^{3}$ of asphaltic material and the project duration is estimated to be 4 months (17 weeks of 5 working days). Which option is better?

Cost Factor	Site A	Site B
Average hauling distance	4 miles	3 miles
Monthly rental of site	$\$ 2,000$	$\$ 7,000$
Cost to set up and remove equipment	$\$ 15,000$	$\$ 50,000$
Hauling expense	$\$ 2.75 /$ yd 3-mile	$\$ 2.75 /$ yd 3-mile
Flagperson	Not required	$\$ 150 /$ day

Cost	Fixed	Variable	Site A	Site B	
Rent	\checkmark	$\sqrt{ }$	$=\$ 8,000$	$=$	\$28,000
Setup/removal	$\sqrt{ }$		$=15,000$	=	50,000
Flagperson	\checkmark		- 0	$5(17)(\$ 150)=$	12,750
Hauling			$4(50,000)(\$ 2.75)=550,000$	$3(50,000)(\$ 2.75)=$	412,500
			Total: \$573,000		\$503,250

\rightarrow Site B is better.
Assume the contractor is paid $\$ 12 / \mathrm{yd}^{3}$ asphalt delivered to the site and assume the cost of material is $\$ 1.5 / \mathrm{yd}^{3}$. At what point does he breakeven and begin to make a profit?

Break-even means: Total revenue $=$ Total expenses
$\$ 90,750+[\$ 2.75 \times 3 \mathrm{X}]+[\$ 1.5 \times \mathrm{X}]=\$ 12 \mathrm{X}$
$X=40,333 \mathrm{yd}^{3}$

Other categories of cost

- Direct costs (directly measured and allocated to a specific outcome or work activity).

Examples: labor and material costs associated with a certain construction activity are direct costs for that activity.

- Indirect costs (overhead or burden): difficult to allocate to a specific output or work activity. A specific formula can be used (proportions).

Examples: plant operating costs, common tools, general supplies, general maintenance.

- Standard costs (established ahead of production or service delivery: anticipated labor and material costs + overhead cost per unit).

Useful for bidding, cost estimation, comparison, and evaluation.

Cost terminology

Cash cost: involves payment of cash and results in cash flow.

- Example: estimates for the cost of travel, labor, material, etc.

Book cost: does not involve a cash transaction and is normally reflected as a noncash cost.

- Example: depreciation due to the use of assets such as equipment (not a cash flow).

Sunk cost: payment occurred in the past with no relevance to future cost and revenue estimates (not a part of future cash flows and is typically disregarded in engineering economy problems).

- Example: non-refundable down payment on a car.

Opportunity costs: monetary advantage foregone due to limited resources or the cost of the best rejected opportunity.

- Example: working and getting paid for one year or going to college and paying tuition.

Life-cycle cost: summation of all costs related to a product, a system, a structure, or a service during its lifespan.
$>$ Acquisition phase (need, alternatives, design) ... greatest potential for savings occurs here.
$>$ Operation phase (production or delivery until product/service is retired or disposed).

- Example: buying a modern hybrid car vs. an old SUV.

General price-demand relationship

$$
p=a-b \times D
$$

Where:
$p=$ price
$D=$ demand
a and $b=$ constants that depend on the product or service.
$0<D<a / b \quad a>0 ; b>0$

Total revenue

Total revenue (TR) from selling a product or a service is:
$T R=$ price \times demand $=p \times D$

Recall that $p=a-b D$

$$
T R=a D-b D^{2}
$$

Cost, volume, and breakeven point

Total costs $\left(C_{T}\right)=$ Fixed costs $\left(C_{F}\right)+$ Variable costs $\left(C_{V}\right)$

Assuming a linear relationship between variable costs and demand,

$$
\begin{aligned}
& C_{V}=c v \times D, \text { where } c_{v} \text { is the variable cost per unit demand. } \\
& \qquad C_{T}=C_{F}+c_{V} \times D
\end{aligned}
$$

Scenario 1: demand is a function of price.
Scenario 2: demand and price are independent from each other.

Profit - scenario 1

Profit $=$ Total revenue - Total costs

$$
\begin{gathered}
\text { Profit }=\left(a D-b D^{2}\right)-\left(C_{F}+c_{V} D\right) \\
\text { Profit }=-b D^{2}+\left(a-c_{V}\right) D-C_{F}
\end{gathered}
$$

To maximize profit,

$$
\frac{d(\text { Profit })}{d D}=a-c_{v}-2 b D=0
$$

Optimal $D \rightarrow D^{*}=\frac{a-c_{v}}{2 b}$

Breakeven point (profit $=0$) is found by:

$$
\begin{gathered}
\text { Total revenue }=\text { Total cost } \\
a D-b D^{2}=C_{F}+c_{V} D \\
-b D^{2}+\left(a-c_{V}\right) D-C_{F}=0
\end{gathered}
$$

Solve for D to get D^{\prime} (breakeven demand) (2 breakeven demands $D^{\prime} 1$ and $D^{\prime} 2$): range of profitable demand

$$
D^{\prime}=\frac{-\left(a-c_{v}\right) \pm \sqrt{\left(a-c_{v}\right)^{2}-4(-b)\left(-C_{F}\right)}}{2(-b)}
$$

Example

A company produces an electronic timing switch that is used in consumer and commercial products. The fixed cost $\left(C_{F}\right)$ is $\$ 73,000$ per month, and the variable cost $\left(c_{v}\right)$ is $\$ 83$ per unit. The selling price per unit is $p=\$ 180-$ 0.02(D).

1) Determine the optimal volume for this product and confirm that a profit occurs (instead of a loss) at this demand.
2) Find the volumes at which breakeven occurs; that is, what is the range of profitable demand.
(1)
$\mathrm{D}^{*}=\frac{a-c_{v}}{2 b}=\frac{\$ 180-\$ 83}{2 * 0.02}=2,425$ units per month (maximum profit).

Or write down the equation of profit, derive, and equate to zero.

$$
P=180 D-0.02 D^{2}-(73,000+83 D)=-0.02 D^{2}+97 D-73,000
$$

For a profit to occur, the $2^{\text {nd }}$ derivative should be negative (-0.04).

Also, substitute the optimal demand $\left(D^{*}\right)$ in the profit equation:
Profit $=\left[\$ 180 \times 2,425-0.02 \times 2,425^{2}\right]-[\$ 73,000+\$ 83 \times 2,425]=\$ 44,612$ (+ ve profit).
(2) $a=180 \quad b=0.02 \quad c_{v}=83 \quad C_{F}=73000$

$$
\mathrm{D}^{\prime}=\frac{-(180-83) \pm \sqrt{(180-83)^{2}-4(-0.02)(-73,000)}}{2(-0.02)}
$$

$D_{1}^{\prime}=932$ units and $D_{2}^{\prime}=3,918$ units.

Profit - scenario 2

Price per unit (p) and demand (D) are independent from each other.

Profit $=$ Total revenue - Total costs

$$
\text { Profit }=p D-\left(C_{F}+c_{V} D\right)
$$

Only one breakeven point.

Example

An engineering consulting firm measures its output in a standard service hour unit. The variable cost $\left(c_{v}\right)$ is $\$ 62$ per standard service hour and the charge-out rate [i.e., selling price (p)] is $\$ 85.56$ per hour. The maximum output of the firm is 160,000 hours per year, and its fixed $\operatorname{cost}\left(C_{F}\right)$ is $\$ 2,024,000$ per year. What is the breakeven point in standard service hours and in percentage of total capacity?

$$
\begin{gathered}
\text { Total revenue }=\text { Total costs } \\
D^{\prime} \times \$ 85.56 / h=\$ 2,024,000+\$ 62 \times D^{\prime} \\
D^{\prime}=85,908 \mathrm{~h} \\
\% \text { of total capacity }=\frac{85,908}{160,000} \times 100 \%=54 \%
\end{gathered}
$$

Present economy studies

Duration < one year \rightarrow time influence on money is ignored (present economy).

Comparing multiple alternatives:
(1) For variable known revenue and benefits, select the alternative with maximum profit.
(2) For constant or unknown revenues and benefits, select the alternative with minimum total cost per defect-free product or service.

Example

The demand for a certain part is 100,000 units. The part is produced on a high-speed turret lathe, using screw-machine steel costing $\$ 0.30$ per pound. A study was conducted to determine whether it might be cheaper to use brass screw stock, costing $\$ 1.40$ per pound. Because the weight of steel required per piece was 0.0353 pounds and that of brass was 0.0384 pounds, the material cost per piece was $\$ 0.0106$ for steel and $\$ 0.0538$ for brass. However, when the manufacturing engineering department was consulted, it was found that, although 57.1 defect-free parts per hour were being produced by using steel, the output would be 102.9 defect-free parts per hour if brass were used. Assuming the machine attendant is paid $\$ 15.00$ per hour, and the variable (i.e., traceable) overhead costs for the turret lathe are estimated to be $\$ 10.00$ per hour. Which material should be used for this part?

Unknown or constant revenue (demand is constant) \rightarrow compare the

 cost per defect-free unit| | Steel | Brass |
| :---: | :---: | :---: |
| Material | \$0.30 $\times 0.0353=\$ 0.0106$ | \$1.40 $\times 0.0384=\$ 0.0538$ |
| Labor | \$15.00/57.1 $=0.2627$ | \$15.00/102.9 $=0.1458$ |
| Variable overhead | \$10.00/57.1 $=0.1751$ | \$10.00/102.9 $=0.0972$ |
| Total cost per piece | \$0.4484 | \$0.2968 |
| Saving per piece by use of brass $=\$ 0.4484-\$ 0.2968=\$ 0.1516$ | | |

Select brass

Example

Two machines with approximately the same capital investment are being considered for the production of a part. The important differences between the machines are their production capacities (production rate \times available production hours) and their reject rates (percentage of parts produced that cannot be sold). Consider the following table:

	Machine A	Machine B
Production rate	100 parts/hour	130 parts/hour
Hours available for production	7 hours/day	6 hours/day
Percent parts rejected	3%	10%

The material cost is $\$ 6.00$ per part, and all defect-free parts produced can be sold for $\$ 12$ each (rejected parts have negligible scrap value.) For either machine, the operator cost is $\$ 15.00$ per hour and the variable overhead rate for traceable costs is $\$ 5.00$ per hour.

Assume that the daily demand for this part is large enough that all defect-free parts can be sold. Which machine should be selected?

Variable total revenue \rightarrow Rule \#1 \rightarrow Profit maximization
Profit per day $=$ Total revenue per day - Total costs per day

$$
\begin{aligned}
& =\left[\text { production rate } \times \text { production hours } \times \frac{\$ 12}{\text { part }} \times\left(1-\frac{\text { rejected } \%}{100}\right)\right]-\left[\text { production rate } \times \text { production hours } \times \frac{\$ 6}{\text { hour }}\right] \\
& -\left[\text { production hours } \times\left(\frac{\$ 15}{\text { hour }}+\frac{\$ 5}{\text { hour }}\right)\right]
\end{aligned}
$$

For machine A:
Profit per day $=\left[\frac{100 \text { parts }}{\text { hour }} \times \frac{7 \text { hours }}{\text { day }} \times \frac{\$ 12}{\text { part }} \times(1-0.03)\right]-\left[\frac{100 \text { parts }}{\text { hour }} \times \frac{7 \text { hours }}{\text { day }} \times \frac{\$ 6}{\text { part }}\right]-\left[\frac{7 \text { hours }}{\text { day }}\right.$

Energy efficiency studies

Two pumps delivering 100 hp ($1 \mathrm{hp}=0.746 \mathrm{~kW}$) will be operated for one year ($4,000 \mathrm{~h}$) for agricultural purposes. Assuming the electricity costs $\$ 0.1$ per kWh. Which pump would you select?

	PumpA	PumpB
Purchase price	$\$ 2,900$	$\$ 6,200$
Maintenance cost	$\$ 170$	$\$ 510$
Efficiency	80%	90%

$$
\text { Elect consumption }(\$)=\frac{\text { Power delivered }}{\text { efficiency }} \times \# \text { hours } \times \text { price }
$$

For pump A:

Consumption $=100 \mathrm{hp} \times \frac{0.746 \mathrm{~kW}}{\mathrm{hp}} \times \frac{1}{0.8} \times 4,000 \mathrm{~h} \times \frac{\$ 0.10}{\mathrm{kWh}}=\$ 37,300$
$>$ Total owning and operating cost $=\$ 37,300+\$ 2,900+\$ 170=\$ 40,370$
For pump B:

Consumption $=100 \mathrm{hp} \times \frac{0.746 \mathrm{~kW}}{\mathrm{hp}} \times \frac{1}{0.9} \times 4,000 \mathrm{~h} \times \frac{\$ 0.10}{\mathrm{kWh}}=\$ 33,156$
$>$ Total owning and operating cost $=\$ 33,156+\$ 6,200+\$ 510=\$ 39,866$
Select pump B

Making vs. outsourcing

- In-house production vs. purchasing (outsourcing).
- Indirect and overhead costs could be shared among other activities.
- Accurate analysis is needed in decision-making.

Chapter 3: Cost Estimation Techniques

Objective

To present various methods for estimating important factors (costs, revenue, useful lives, residual values, etc.) in an engineering economy study.

Cost estimation is useful for:

1) Setting up a selling price for a quote or a bid.
2) Determining if a product will be profitable.
3) Justifying capital for process changes or improvements.
4) Setting benchmarks for productivity improvements.

Two fundamental approaches for cost estimation

> Top-down approach

- Good for early estimates when developing alternatives.
- Uses historical data from similar projects with adjustments to account for inflation, deflation, and other factors.

Bottom-up approach

- More detailed approach.
- Project is broken down into small units.
- The estimated overall cost is the sum of the units' costs + other costs (e.g. overhead).

Integrated cost estimation approach

Components

1. Work breakdown structure (WBS):

Successive levels of the work elements and their interrelationships.
2. Cost and revenue structure (classification):

Delineation of cost and revenue categories and elements for different WBS levels.
3. Estimating techniques (models):

Selected mathematical models to estimate future costs and revenues.

Integrated approach

Work breakdown structure (WBS)

- WBS is a basic tool in project management.
- WBS defines all project elements and their interrelationships, collecting and organizing information, and developing relevant cost and revenue data and management activities. WBS includes recurring (maintenance) and nonrecurring (initial construction) work elements.
- Each WBS level further details the work elements. The resources required for a work element are the sum of resources of sub-elements below it.
- WBS Includes functional and physical work elements.
- Functional (logistic support, project management, and marketing).
- Physical (labor, materials, and resources required for the making of a product).

Example:

Develop the first 3 WBS levels for the construction of a small commercial building.

Cost and revenue structure

- In this structure, costs and revenue to be included in the analysis are identified and categorized.
- Examples of cost and revenue categories:
- Capital investment.
- Labor costs.
- Material costs.
- Maintenance costs.
- Overhead.
- Disposal costs.
- Sales revenue.
- Market (or salvage) value.

Estimating techniques (models)

The goal is to develop cash flow projections, not exact future data (which is almost impossible).

Cost and revenue estimates can be classified to:

- Order-of-magnitude estimates
- Planning and initial evaluation of a project to select feasible alternatives ($\pm 30-50 \%$ accuracy).
- Level 1 or 2 of the WBS.
- Semi-detailed (or budget) estimates
- Preliminary or conceptual design stage of a project ($\pm 15 \%$ accuracy).
- Level 2 or 3 of the WBS.
- Definitive (detailed) estimates
- Detailed design estimates from drawings, specs, quotations, ... used for bidding ($\pm 5 \%$ accuracy).
- Level 3 and beyond.

Sources of estimating data

- Accounting records.
- Other sources inside the firm.
- Sources outside the firm.
- Research and development (R\&D).

Selected models

Model 1: Indexes (ratio technique)

- An index is a dimensionless number used to estimate present and future costs from historical data.

$$
C_{n}=C_{k} \times \frac{\bar{I}_{n}}{\overline{I_{k}}}
$$

Where:
k : reference year.
n : year to be estimated at.
C_{n} and C_{k} : cost or price in years n and k, respectively.
\bar{I}_{n} and \bar{I}_{k} are the index values for the years n and k, respectively.

Example

A company wants to install a new boiler. The price of the boiler in the year 2000 was $\$ 525,000$ when the index was 468 . What is the price of the boiler in 2014 given that the index value is 542 in the year 2014?

$$
\begin{gathered}
C_{2014}=C_{2000} \times \frac{I_{2014}}{I_{2000}} \\
C_{2014}=525,000 \times \frac{542}{468}=\$ 608,013
\end{gathered}
$$

Selected models

Model 2: Unit technique

- Widely used and understood.
- Good for preliminary estimates.

Examples:

- Cost per m^{2} of construction \times area of construction.
- Operating cost per mile \times number of miles.

Selected models

Model 3: Factor technique

- Extension of the unit technique.
- Good for preliminary estimates.

$$
\text { Cost }=\sum_{d} C_{d}+\sum_{m} C_{m} U_{m}
$$

Where:
C_{d} : cost of a component d that is estimated directly.
f_{m} : cost per unit of component m .
U_{m} : number of units of component m .

Parametric cost estimating

- Utilizing historical cost data and statistical techniques to predict future costs.
- These models are used in early design stages to get an estimate of a product or project cost based on few physical characteristics (e.g. weight, volume, power).
- Common techniques (parametric models):
- Power sizing technique.
- Learning curve.

Power sizing technique

- Referred to as the exponential model.
- Used for industrial plants and equipment.

$$
\frac{C_{A}}{C_{B}}=\left(\frac{S_{A}}{S_{B}}\right)^{X}
$$

Where:
C_{A} and C_{B} : costs for plants A and B , respectively $(\$$ as of the time for which the estimate is desired).
S_{A} and S_{B} : sizes of plants A and B, respectively (same physical units).
X : cost-capacity factor which depends on the type of plant.

Example

The purchase price of a commercial boiler (capacity S) was $\$ 181,000$ eight years ago. Another boiler of the same basic design, except with capacity 1.42 S , is currently being considered for purchase. If the cost index was 162 for this type of equipment when the capacity S boiler was purchased and is 221 now, and the applicable cost capacity factor is 0.8 , what is your estimate of the purchase price for the new boiler?

Let $C_{A}=$ cost of new boiler $\left(S_{A}=1.42 S\right)$ today and $C_{B}=$ cost of old boiler today ($S_{B}=S$).

$$
\begin{gathered}
C_{B}=\$ 181,000 \times \frac{221}{162}=\$ 246,920 . \\
C_{A}=\$ 246,920 \times\left(\frac{1.42 S}{S}\right)^{0.8}=\$ 326,879
\end{gathered}
$$

Learning curve

- Also called experience curve or manufacturing progress function.
- Reflects increased efficiency and performance with repetitive production.

$$
Z_{u}=K\left(u^{n}\right)
$$

Where:
$u=$ output unit number.
$Z_{u}=$ number of input resource units needed to produce output unit u.
$K=$ number of input resource units needed to produce the first output unit.
$n=$ learning curve exponent $=\frac{\log s}{\log 2}$
$s=$ learning curve slope parameter expressed as a decimal ($s=0.9$ for a 90% learning curve).

Example

The time required to assemble the first car is 100 hours and the learning rate is 80%. What is the time required to assemble the $10^{\text {th }}$ car?
$S=0.8 \quad K=100$ hours $\quad u=10$ cars

$$
Z_{10}=100 \times 10^{\frac{\log 0.8}{\log 2}}=47.65 \text { hours }
$$

*** This is not the total time to produce 10 units ... it's the time to produce the $10^{\text {th }}$ unit ${ }^{* * *}$

Example

You have been asked to estimate the cost of 100 prefabricated structures, each structure provides 1,000 sq.ft of floor space, with 8 -ft ceilings. In 2003, you produced 70 similar structures consisting of the same materials and having the same ceiling height, but each provided only 800 sq.ft of floor space. The material cost for each structure was $\$ 25,000$ in 2003, and the cost capacity factor is 0.65 . The cost index values for 2003 and 2014 are 200 and 289, respectively. The estimated manufacturing cost for the first 1,000 sq.ft structure is $\$ 12,000$. Assume a learning curve of 88% and use the cost of the $50^{\text {th }}$ structure as your standard time for estimating manufacturing cost. Estimate the total material cost and the total manufacturing cost for the 100 prefabricated structures.

Material cost

$$
\begin{array}{ll}
I_{2003}=200 & I_{2014}=289 \\
S_{2003}=800 & S_{2014}=100 \\
C_{2003}=\$ 25,000 &
\end{array}
$$

$$
C_{2014}=\$ 25,000 \times\left(\frac{289}{200}\right) \times\left(\frac{1000}{800}\right)^{0.65}=\$ 41,764
$$

Manufacturing cost
$s=0.88 \quad K=\$ 12,000$

$$
Z_{50}=\$ 12,000 \times 50^{\left(\frac{\log 0.88}{\log 2}\right)}=\$ 5,832 / \text { unit }
$$

$\underline{\text { Total cost }=(\$ 41,764+\$ 5,832) \times 100=\$ 4,759,600 ~}$

Chapter 4: The Time Value of Money

Objective

Explain the time value of money calculations and economic equivalence.

Time value of money \rightarrow because money can earn more money over time (interest on capital).

Interest

Simple interest

- Not commonly used.
- Total interest is linearly proportional to the initial loan amount (principal).

Compound interest

- More common in personal and professional financing.
- Interest is based on the remaining principal + any accumulated interest.

Simple interest

$$
I=P \times N \times i
$$

I : Total simple interest paid or earned.
P : Principal amount lent or borrowed.
N : Number of interest periods (e.g., years).
i : Interest rate per interest period.
Example: $\$ 1,000$ loan for 3 years at a simple interest rate of 10% per year.
$P=$ Principal $=\$ 1,000$.
$N=$ Number of interest periods $=3$ years.
i : Interest rate per interest period $=10 \%$ per year.

The total interest paid $=I=\$ 1000 \times 10 \% \times 3$ years $=\$ 300$.
The total amount repaid at the end of the loan period $=$ principal $(P)+$ interest (I)
= \$1000 + \$300 = \$1300.

Example

You borrowed $\$ 5,000$ at a simple interest rate $=0.5 \%$ per month to be repaid after 4 years. How much will you pay back? or what is the future equivalent of the borrowed $\$ 5,000$?
$P=$ Principal $=\$ 5,000$.
$N=$ Number of interest periods $=4$ years.
i : Interest rate per interest period $=0.5 \%$ per month $\times 12$ months/year $=6 \%$ per year.

The total interest paid $=I=\$ 5,000 \times 6 \% \times 4$ years $=\$ 1,200$.
The total amount repaid (or future equivalent) $=\$ 5,000+\$ 1,200=\$ 6,200$.

Compound interest

Interest is based on the remaining principal + accumulated interest.

Example: \$1,000 loan for 3 years at a compound interest rate of 10% per year.

Period
= amount owed at beginning of period
\times interest rate $=\$ 1,000 \times 10 \%$

Amount owed at Ynterest amount Amount owed at beginning of period
\$1,000
\$100
\$110
\$121
= amount owed at beginning of period + interest for period $=\$ 1,000+\$ 100$ end of period
\$1,100
\$1,100
\$1,210

Simple vs. compound interest

The concept of economic equivalence

- For comparing alternatives when time value of money is a factor (compound interest is involved).
- Alternatives are reduced to an equivalent basis.
- Cash-flow diagram is an essential tool in economic equivalence.

Cash-flow diagrams

Direction of the arrows depends on the point of view (lender vs. borrower)

Example

An investment of $\$ 10,000$ will produce a uniform annual revenue of $\$ 5,000$ for 5 years and have a market (recovery) value of $\$ 2,000$ at the end of year (EOY) five. Annual operating and maintenance expenses are estimated at $\$ 3,000$ at the end of each year. Draw a cash-flow from the corporation's view point.

Cash flow diagrams

Notation

i : effective interest rate per interest period.
N : number of compounding interest periods (e.g., years).
P : present sum of money (or the equivalent sum of one or more cash flows at present time).
F : future sum of money (or the equivalent sum of one or more cash flows at future time).
A : end-of-period cash flow (or equivalent end-of-period value) in a uniform series starting at the end of first period and continuing through the last period.

> Beginning of period 1 (year 1, month 1, or any other compounding period)

Relating present and future equivalent values

- For a single cash flow and using the compound interest rate formula.

$$
F=P(1+i)^{N}
$$

or

$$
\begin{gathered}
F=P(F / P, i \%, N) \text { from tables in Appendix } C \\
P=F(1+i)^{-N}
\end{gathered}
$$

or

$$
P=F(P / F, i \%, N) \text { from tables in Appendix } C
$$

Example

$\$ 1,000$ loan for 3 years at a compound interest rate of 10% per year. How much will be repaid?
$P=\$ 1,000$
$N=3$ years
$i=10 \%$
$F=$?

$$
F=1,000(1+0.1)^{3}=\$ 1,331
$$

or
Go to Appendix C, $i=10 \%$ page to find $(F / P, 10 \%, 3)$

TABIE C13 Discrete Compounding $i=10 \%$			Uniform Series			Uniform Gradient		$F=1,000 \times 1.331=\$ 1,331$
$\begin{aligned} & \text { Compound } \\ & \text { Amount } \\ & \text { Factor } \end{aligned}$	$\begin{aligned} & \text { resent } \\ & \text { Factorn } \end{aligned}$	$\begin{gathered} \text { Compound } \\ \text { Cmator } \\ \text { Facto } \end{gathered}$	$\begin{aligned} & \text { Present } \\ & \text { factor } \end{aligned}$	$\begin{aligned} & \text { Sinking } \\ & \text { Fatad } \end{aligned}$		Gradient Present Worth Factor	Gradient Uniform Series Factor	
$\underset{\substack{\text { Tof find } f \\ \text { Given } P}}{\substack{\text { en }}}$	To Find P Given Given	$\begin{gathered} \substack{\text { Tofind } f \\ \text { Given } \\ \text { Given }} \end{gathered}$	$\xrightarrow[\substack{\text { To Find } \\ \text { Given } A}]{ }$	Tof find A Given F F	$\underset{\substack{\text { Tof Find } A \\ \text { Given } P}}{ }$		$\stackrel{\substack{\text { To. Find } A \\ \text { Given } \\ \text { Gin }}}{\text { and }}$	
			${ }^{\text {a, } 12012}$	$\xrightarrow{10000}$	$\underset{\substack{1,1000 \\ 0,520}}{10}$	${ }_{\text {cosem }}^{0.000}$	${ }_{0}^{0.0000}$	
			(tick		(eatio	${ }_{\substack{2329 \\ 438}}^{203}$	coiche	
${ }_{1}^{10205}$	${ }_{\text {a }}^{0.029}$	$\underset{\substack{6,1751 \\ \hline 726}}{ }$			${ }_{\substack{0}}^{0.2688}$	${ }^{6.892}$		
12716	0.566	${ }^{7} 77156$	4.353	${ }^{0.1296}$	0.2296	0,64	${ }^{22326}$	

Example

You need $\$ 10,000$ after five years so you decided to save money now. How much do you need to deposit now in the bank given that the interest rate is 5% per year?
$F=\$ 10,000 \quad N=5$ years $\quad i=5 \%$
$P=$?
$P=10,000(1+0.05)^{-5}=\$ 7,835.26$
or
Go to Appendix C, $i=5 \%$ page to find ($P / F, 5 \%, 5$)

TABLE C-8 Discrete Compounding $i=5 \%$								
Single Payment			Uniform Series				Uniform Gradient	
	Compound Amount Factor	Present Worth Factor	Compound Amount Factor	Present Worth Factor	Sinking Fund Factor	Capital Recovery Factor	Gradient Present Worth Factor	Gradient Uniform Series Factor
N	$\begin{gathered} \text { To Find } F \\ \text { Given } P \\ F / P \end{gathered}$	$\begin{gathered} \text { To Find } P \\ \text { Given } F \\ P / F \end{gathered}$	$\begin{gathered} \text { To Find } F \\ \text { Given } A \\ F / A \end{gathered}$	$\begin{gathered} \text { To Find } P \\ \text { Given } A \\ P / A \end{gathered}$	To Find A Given F A/F	To Find A Given P A / P	To Find P Given G P / G	To Find A Given G A/G
1	1.0500	0.9524	1.0000	0.9524	1.0000	1.0500	0.000	0.0000
2	1.1025	0.9070	2.0500	1.8594	0.4878	0.5378	0.907	0.4878
3	1.1576	0.8638	3.1525	2.7232	0.3172	0.3672	2.635	0.9675
	1.2155	0.8227	4.3101	3.5460	0.2320	0.2820	5.103	1.4391
	1.2763	0.7835	5.5256	4.3295	0.1810	0.2310	8.237	1.9025

Finding \boldsymbol{i} given F, P, and N

$$
i=\sqrt[N]{F / P}-1
$$

Example:
What is the interest rate that will double an investment of $\$ 50,000$ in 10 years?
$P=\$ 50,000$
$F=\$ 100,000$
$N=10$ years
$i=$?

$$
i=\sqrt[10]{100,000 / 50,000}-1=0.0718=7.18 \%
$$

(to use Appendix C tables, you need interpolation).

Finding N given F, P, and i

$$
N=\frac{\log (F / P)}{\log (1+i)}
$$

Example:
How many years does it take to double my money at an interest rate of 5\% per year?
$F / P=2 \quad i=5 \%$
$N=$?

$$
N=\frac{\log (2)}{\log (1+0.05)}=14.2 \text { years }
$$

(to use Appendix C tables, you need interpolation).

Uniform series (annuity) to present and future

A : series of uniform (equal) payments occurring at the end of each period for N periods ... also called annuity.

Future equivalent value (occurs at the same time as the last A, or N periods after P)

Example: repaying a loan in uniform monthly payments.

Finding \boldsymbol{F} given A

$$
F=A\left[\frac{(1+i)^{N}-1}{i}\right]
$$

$\underline{\text { Or }}$

$$
F=A(F / A, i \%, N) \text { from tables in Appendix } C
$$

Example:
How much will you have in 40 years if you invest $\$ 3,000$ of your income each year in a project that earns 8\% per year?
$A=\$ 3,000$

$$
i=8 \% \quad N=40 \text { years }
$$

$F=$?

$$
F=3,000\left[\frac{(1+0.08)^{40}-1}{0.08}\right]=\$ 777,169.6
$$

Or from Appendix C tables, $(F / A, 8 \%, 40)=259.0565 \rightarrow F=\$ 3,000 \times 259.0565=\$ 777,169.5$

Finding \boldsymbol{P} given A

$$
P=A\left[\frac{(1+i)^{N}-1}{i(1+i)^{N}}\right]
$$

Or

$$
P=A(P / A, i \%, N) \text { from tables in Appendix } C
$$

Example:
You took a loan which is to be repaid in uniform payments over 4 years. Assuming the interest rate is 1% per month, and your monthly payment is $\$ 300$. What is the principal amount (the amount of money borrowed)?
$A=\$ 300 \quad i=1 \%$ per month $\quad N=4$ years $\times 12$ months/year $=48$ months
${ }^{* * *}$ the period N should be consistent with the interest rate (interest per month \rightarrow period in months)
$P=$?

$$
P=300\left[\frac{(1+0.01)^{48}-1}{0.01(1+0.01)^{48}}\right]=\$ 11,392.2
$$

Or from Appendix C tables, $(P / A, 1 \%, 48)=37.9740 \rightarrow F=\$ 300 \times 37.9740=\$ 11,392.2$

Finding \boldsymbol{A} given \boldsymbol{P} or \boldsymbol{F}

- A given F

$$
A=F\left[\frac{i}{(1+i)^{N}-1}\right]
$$

Or

$$
A=F(A / F, i \%, N) \text { from tables in Appendix } C
$$

- A given P

$$
A=P\left[\frac{i(1+i)^{N}}{(1+i)^{N}-1}\right]
$$

Or

$$
A=P(A / P, i \%, N) \text { from tables in Appendix } C
$$

Example

Calculate the compounded future value of 20 annual payments of $\$ 5,000$ each into a savings account that earns 6% per year. All 20 payments are made at the beginning of each year.

- Definition of annuity: occurs at the end of each compounding period.
- In the example, payments are made at the beginning of each period.

$$
\begin{gathered}
F=\$ 5,000(F / A, 6 \%, 20)(F / P, 6 \%, 1) \\
=\$ 5,000 \times 38.7856 \times 1.06=\$ 194,963.68
\end{gathered}
$$

Payments start at the beginning of each year, so the first annuity is at time 0 . Hence, the present equivalent is at year -1 and the future equivalent is at year 19. We first use the (F/A) relationship to determine the future equivalent at year 19 and then we determine the future equivalent at year 20 using the (F / P) relationship.

Another way to solve:

$$
\begin{gathered}
F=\$ 5,000(F / P, 6 \%, 20)+\$ 5000(F / A, 6 \%, 19)(F / P, 6 \%, 1) \\
F=\$ 5,000 \times 3.2071+\$ 5000 \times 33.7600 \times 1.06
\end{gathered}
$$

Example

A loan of $\$ 10,000$ is to be repaid in 4 equal payments (over 4 years) and the interest rate is 10% per year. Determine the interest paid and principal repayment every year.
$>$ Find the annual payment (annuity)

$$
A=P(A / P, 10 \%, 4)=\$ 10,000 \times 0.3155=\$ 3,155 \text { per year }
$$

$>$ Fill out a table

Loan amount

Year	Amount owed at beginning of period	Interest	Annual payment	Principal repayment
1	\$10,000	\$1,000	\$3,155	\$2,155
2	\$7,845	\$785	\$3,155	\$2,371
3	\$5,475	\$547	\$3,155	\$2,608
4	\$2,867	\$287	\$3,155	\$2,868

= amount owed at beginning of previous year

- principal repayment in previous year

[^0]
Solving for N

- You borrowed $\$ 100,000$ at an interest rate of 7% per year. If the annual payment is $\$ 8,000$, how many years does it take to repay the loan?

$$
\begin{gathered}
\$ 100,000=\$ 8,000(P / A, 7 \%, N) \\
12.5=\frac{1.07^{N}-1}{0.07(1.07)^{N}} \Rightarrow 0.125(1.07)^{N}=1 \\
N=30.73 \text { years }
\end{gathered}
$$

- You invested $\$ 20,000$ in a project and you are expected to gain $\$ 4,000$ annually. At a 10% interest rate, when will you recover your investment?

$$
\begin{gathered}
\$ 20,000=\$ 4,000(P / A, 10 \%, N) \\
5=\frac{1.1^{N}-1}{0.1(1.1)^{N}} \Rightarrow 0.5(1.1)^{N}=1
\end{gathered}
$$

$$
N=7.27 \text { years }
$$

Solving for \boldsymbol{i}

- You wanted to start saving so that you will have $\$ 60,000$ in your bank account eight years from now. Each year, you deposit $\$ 6,000$ in your bank account. What should be the interest rate so you can achieve your goal?
$A=\$ 6,000$
$F=\$ 60,000$
$N=8$ years
$i=$?

$$
\$ 60,000=\$ 6,000\left[\frac{(1+i)^{8}-1}{i}\right]
$$

To solve:

- Trial and error.
- Interpolation.
- Calculators with solver.
- Spreadsheets (Excel function: Rate).

$$
i=6.29 \%
$$

Deferred annuities

- Ordinary annuity (uniform series) appears at the end of the first period.
- Deferred annuity (also uniform series) begins at later time.

Annuity is deferred for J periods

- To find the present equivalent (P) at time zero:

$$
P=A(P / A, i \%, N-J)(P / F, i \%, J)
$$

Deferred annuities - example

How much money should be deposited each year for 12 years if you wish to withdraw $\$ 309$ each year for five years, beginning at the end of the $14^{\text {th }}$ year? Assume the interest rate is 8% per year.

A?
Find the present worth of both annuities and equate.

$$
\begin{gathered}
A(P / A, 8 \%, 12)=\$ 309(P / A, 8 \%, 5)(P / F, 8 \%, 13) \\
A \times 7.5361=\$ 309 \times 3.9927 \times 0.3677 \\
A=\$ 60.2
\end{gathered}
$$

Uniform (arithmetic) gradient of cash flows

- Cash flow that changes by a constant amount (G) each period.

Present equivalent

$$
\begin{gathered}
P=G \times\left\{\frac{1}{i}\left[\frac{(1+i)^{N}-1}{i(1+i)^{N}}-\frac{N}{(1+i)^{N}}\right]\right\} \\
\underline{\text { Or }} P=G \times(P / G, i \%, N) \ldots \text { tables in Appendix } C
\end{gathered}
$$

Annuity equivalent

$$
A=G \times\left[\frac{1}{i}-\frac{N}{(1+i)^{N}-1}\right]
$$

Future equivalent

$$
F=\frac{G}{i} \times(F / A, i \%, N)-\frac{N \times G}{i}
$$

Examples

At a 15% interest rate, determine the present equivalent for the following cash flow.

$$
\begin{aligned}
& P=A(P / A, 15 \%, 4)+G(P / G, 15 \%, 4) \\
& P=\$ 5,000 \times 2.855+\$ 1,000 \times 3.79 \\
&=\$ 18,065
\end{aligned}
$$

At a 15% interest rate, determine the present equivalent for the following cash flow.

$$
P=A(P / A, 15 \%, 4)-G(P / G, 15 \%, 4)
$$

$P=\$ 8,000 \times 2.855-\$ 1,000 \times 3.79$
$=\$ 19,050$

Geometric sequence of cash flows

- Cash flow that changes by a constant rate (\bar{f}) each period.
- First payment at EOY 1.

$$
P= \begin{cases}\frac{A_{1}[1-(P / F, i \%, N)(F / P, \bar{f} \%, N)]}{i-\bar{f}} & \bar{f} \neq i \\ A_{1} N(P / F, i \%, 1) & \bar{f}=i .\end{cases}
$$

Example: Assume that a payment of $\$ 1,000$ is made at EOY 1 and decreases by 20% per year after the first year for 4 years. At a 25% interest rate, Determine the present equivalent.

$$
\begin{gathered}
\bar{f}=-20 \% \\
P=\frac{\$ 1,000[1-(P / F, 25 \%, 4)(F / P,-20 \%, 4)]}{0.25-(-0.2)} \\
P=\$ 1,849.38
\end{gathered}
$$

If interest rate is 20% ?

Nominal and effective interest rates

- If compounding period is less than a year.
- Annual rate is called nominal interest rate or annual percentage rate (APR).
- Actual or exact rate is called effective interest rate.
- Example: if annual interest rate is 10% compounded annually, then the effective rate $=$ nominal rate $=10 \%$.

$$
i=\left(1+\frac{r}{M}\right)^{M}-1
$$

Where:
i : effective interest rate per year.
r : nominal interest rate per year.
M : number of compounding periods per year.

Example

A credit card company charges 1.375% per month on the unpaid balance. They claim that the annual interest rate is ($12 \times 1.375 \%=16.5 \%$).

- What is the effective interest rate per month?

Since compounding is monthly, effective monthly rate $=$ nominal monthly rate $=1.375 \%$.

- What is the effective interest rate per year?
$r=16.5 \% \quad M=12$ compounding periods per year

$$
i=\left(1+\frac{0.165}{12}\right)^{12}-1=17.81 \%
$$

- Does this card provide a better deal than another card which charges 16.8% annual rate compounded bimonthly?
$M=6$ compounding periods per year $\Rightarrow \quad i$ for the other card $=\left(1+\frac{0.168}{6}\right)^{6}-1=18.02 \%$
$17.81 \%<18.02 \% \Rightarrow$ the first card (16.5% per year compounded monthly) is better.

Example

A loan of $\$ 15,000$ requires monthly payments of $\$ 477$ over a 36 -month period.

- What is the nominal interest rate (APR)?

$$
P=\$ 15,000 \quad A=\$ 477 \quad N=36 \text { months }
$$

$$
\$ 477=\$ 15,000\left(A / P, i_{\text {monthly }} \%, 36\right)
$$

By trial and error (or using solver) $\Rightarrow i=0.75 \%$ per month
Nominal rate $(r)=0.75 \% \times 12=9 \%$ per year.

- What is the effective interest rate per year?

$$
i=\left(1+\frac{0.09}{12}\right)^{12}-1=9.38 \% \text { per year }
$$

- What is the amount of unpaid loan principal after 20 months?

$$
P_{20}=\$ 477(P / A, 0.75 \%, 16)=\$ 7,166.59
$$

Examples

- A loan of $\$ 2,000$ at 10% annual interest rate for 8 years is to be repaid in two payments, @ EOY 4 and EOY 8 . What is the value of the payments?

Consider every 4 years as one payment.

$$
\begin{aligned}
\Rightarrow r & =40 \% \text { per } 4 \text { years compounded annually. } \\
i & =\left(1+\frac{0.4}{4}\right)^{4}-1=46.41 \% \text { per } 4 \text { years }
\end{aligned}
$$

Using A/P relationship:

$$
A=\$ 2,000 \times \frac{\left(0.4641 \times 1.4641^{2}\right)}{1.4641^{2}-1}=\$ 1,739.9 \text { every } 4 \text { years }
$$

- If the monthly interest rate is 1%, what is the effective semi-annual rate?
\Rightarrow Monthly rate $=1 \%=$ effective monthly $=$ nominal monthly (no additional info on compounding is provided).
Nominal semi-annual rate $=6 \times 1 \%=6 \%$
Effective semi-annual rate $i=\left(1+\frac{0.06}{6}\right)^{6}-1=6.15 \%$

Continuous compounding

- Allowing interest to compound continuously throughout the period $\Rightarrow M$ approaches ∞.

$$
i=e^{r}-1
$$

Where i is the effective rate and r is the nominal rate.

Continuous compounding factors

$$
\begin{gathered}
(P / F, r \%, N)=e^{-r N} \\
(F / A, r \%, N)=\frac{e^{r N}-1}{e^{r}-1} \\
(P / A, r \%, N)=\frac{e^{r N}-1}{e^{r N}\left(e^{r}-1\right)}
\end{gathered}
$$ substituted (not i) So we can use these formulas or we can substitute the effective interest rate (i) in P / F. F / A, and P / A equations presented earlier in the chapter

Example

- A bank offers loans at an annual interest rate of 12% compounded continuously,
- What is the effective annual interest rate?

$$
\begin{gathered}
r=0.12 \text { (nominal annual) } \\
i=e^{0.12}-1=0.1275=12.75 \%
\end{gathered}
$$

- What is the effective monthly interest rate?

$$
\begin{aligned}
r & =\frac{0.12}{12}=0.01 \text { (nominal monthly) } \\
i & =e^{0.01}-1=0.01005=1.005 \%
\end{aligned}
$$

- If you borrowed $\$ 10,000$ on these terms, what is the future equivalent of this loan after 5 years?
$(F / P, r \%, N)=e^{r N}=e^{0.12 * 5}=1.8221 \Rightarrow F=\$ 10,000 \times 1.8221=\$ 18,221$
Or $F=P \times(1+i)^{N}=\$ 10,000 \times(1+0.1275)^{5}=\$ 18,221$
Or using the monthly interest: $F=\$ 10,000 \times(1+0.01005)^{60}=\$ 18,221$

Example

- A nominal interest rate of 8% is compounded continuously.
- What is the uniform EOY amount for 10 years that is equivalent to $\$ 8,000$ at EOY 10 ?
$F=\$ 8,000$

$$
\begin{aligned}
& A=? \\
& \qquad A=\$ 8,000(A / F, 8 \% \text { nominal }, 10)=\$ 8,000 \times \frac{e^{0.08}-1}{e^{0.08 \times 10}-1}=\$ 543.68
\end{aligned}
$$

- What is the present equivalent value of $\$ 1,000$ per year for 12 years?
$A=\$ 1,000$

$$
P=?
$$

$$
P=\$ 1,000(P / A, 8 \% \text { nominal }, 12)=\$ 1,000 \times \frac{e^{0.08 \times 12}-1}{e^{0.08 \times 12}\left(e^{0.08}-1\right)}=\$ 7,409.4
$$

- What is the future equivalent at the end of the $6^{\text {th }}$ year of \$243 payments made every 6 months during the 6 years (first payment occurs 6 months from the present and the last occurs at EOY 6)?
$A=\$ 1,000 \quad F=$?

$$
F=\$ 243(F / A, 4 \%, 12)=\$ 243 \times \frac{e^{0.04 \times 12}-1}{e^{0.04}-1}=\$ 3,668.3
$$

APPENDIX C

Interest and Annuity Tables for Discrete Compounding

For various values of i from $1 / 4 \%$ to 25%,
$i=$ effective interest rate per period (usually one year);
$N=$ number of compounding periods;

$$
\begin{array}{ll}
(F / P, i \%, N)=(1+i)^{N} ; & (A / F, i \%, N)=\frac{i}{(1+i)^{N}-1} ; \\
(P / F, i \%, N)=\frac{1}{(1+i)^{N} ;} & (A / P, i \%, N)=\frac{i(1+i)^{N}}{(1+i)^{N}-1} ; \\
(F / A, i \%, N)=\frac{(1+i)^{N}-1}{i} ; & (P / G, i \%, N)=\frac{1}{i}\left[\frac{(1+i)^{N}-1}{i(1+i)^{N}}-\frac{N}{(1+i)^{N}}\right] \\
(P / A, i \%, N)=\frac{(1+i)^{N}-1}{i(1+i)^{N}} ; & (A / G, i \%, N)=\frac{1}{i}-\frac{N}{(1+i)^{N}-1} .
\end{array}
$$

TABLE C-1 Discrete Compounding; $i=1 / 4 \%$									
Single Payment			Uniform Series				Uniform Gradient		
	Compound Amount Factor	Present Worth Factor	Compound Amount Factor	Present Worth Factor	Sinking Fund Factor	Capital Recovery Factor	Gradient Present Worth Factor	Gradient Uniform Series Factor	
N	To Find F Given P F / P	To Find P Given F P / F	To Find F Given A F / A	To Find P Given A P / A	To Find A Given F A / F	To Find A Given P A / P	To Find P Given G P / G	To Find A Given G A/G	N
1	1.0025	0.9975	1.0000	0.9975	1.0000	1.0025	0.000	0.0000	1
2	1.0050	0.9950	2.0025	1.9925	0.4994	0.5019	0.995	0.4994	2
3	1.0075	0.9925	3.0075	2.9851	0.3325	0.3350	2.980	0.9983	3
4	1.0100	0.9901	4.0150	3.9751	0.2491	0.2516	5.950	1.4969	4
5	1.0126	0.9876	5.0251	4.9627	0.1990	0.2015	9.901	1.9950	5
6	1.0151	0.9851	6.0376	5.9478	0.1656	0.1681	14.826	2.4927	6
7	1.0176	0.9827	7.0527	6.9305	0.1418	0.1443	20.722	2.9900	7
8	1.0202	0.9802	8.0704	7.9107	0.1239	0.1264	27.584	3.4869	8
9	1.0227	0.9778	9.0905	8.8885	0.1100	0.1125	35.406	3.9834	9
10	1.0253	0.9753	10.1133	9.8639	0.0989	0.1014	44.184	4.4794	10
11	1.0278	0.9729	11.1385	10.8368	0.0898	0.0923	53.913	4.9750	11
12	1.0304	0.9705	12.1664	11.8073	0.0822	0.0847	64.589	5.4702	12
13	1.0330	0.9681	13.1968	12.7753	0.0758	0.0783	76.205	5.9650	13
14	1.0356	0.9656	14.2298	13.7410	0.0703	0.0728	88.759	6.4594	14
15	1.0382	0.9632	15.2654	14.7042	0.0655	0.0680	102.244	6.9534	15
16	1.0408	0.9608	16.3035	15.6650	0.0613	0.0638	116.657	7.4469	16
17	1.0434	0.9584	17.3443	16.6235	0.0577	0.0602	131.992	7.9401	17
18	1.0460	0.9561	18.3876	17.5795	0.0544	0.0569	148.245	8.4328	18
19	1.0486	0.9537	19.4336	18.5332	0.0515	0.0540	165.411	8.9251	19
20	1.0512	0.9513	20.4822	19.4845	0.0488	0.0513	183.485	9.4170	20
21	1.0538	0.9489	21.5334	20.4334	0.0464	0.0489	202.463	9.9085	21
22	1.0565	0.9466	22.5872	21.3800	0.0443	0.0468	222.341	10.3995	22
23	1.0591	0.9442	23.6437	22.3241	0.0423	0.0448	243.113	10.8901	23
24	1.0618	0.9418	24.7028	23.2660	0.0405	0.0430	264.775	11.3804	24
25	1.0644	0.9395	25.7646	24.2055	0.0388	0.0413	287.323	11.8702	25
30	1.0778	0.9278	31.1133	28.8679	0.0321	0.0346	413.185	14.3130	30
36	1.0941	0.9140	37.6206	34.3865	0.0266	0.0291	592.499	17.2306	36
40	1.1050	0.9050	42.0132	38.0199	0.0238	0.0263	728.740	19.1673	40
48	1.1273	0.8871	50.9312	45.1787	0.0196	0.0221	1040.055	23.0209	48
60	1.1616	0.8609	64.6467	55.6524	0.0155	0.0180	1600.085	28.7514	60
72	1.1969	0.8355	78.7794	65.8169	0.0127	0.0152	2265.557	34.4221	72
84	1.2334	0.8108	93.3419	75.6813	0.0107	0.0132	3029.759	40.0331	84
100	1.2836	0.7790	113.4500	88.3825	0.0088	0.0113	4191.242	47.4216	100
∞				400.0000		0.0025			∞

TABLE C-2 Discrete Compounding; $i=1 / 2 \%$									
Single Payment			Uniform Series				Uniform Gradient		
	Compound Amount Factor	Present Worth Factor	Compound Amount Factor	Present Worth Factor	Sinking Fund Factor	Capital Recovery Factor	Gradient Present Worth Factor	Gradient Uniform Series Factor	
N	To Find F Given P F / P	To Find P Given F P / F	To Find F Given A F / A	To Find P Given A P / A	To Find A Given F A/F	To Find A Given P A / P	To Find P Given G P / G	To Find A Given G A/G	N
1	1.0050	0.9950	1.0000	0.9950	1.0000	1.0050	0.000	0.0000	1
2	1.0100	0.9901	2.0050	1.9851	0.4988	0.5038	0.990	0.4988	2
3	1.0151	0.9851	3.0150	2.9702	0.3317	0.3367	2.960	0.9967	3
4	1.0202	0.9802	4.0301	3.9505	0.2481	0.2531	5.901	1.4938	4
5	1.0253	0.9754	5.0503	4.9259	0.1980	0.2030	9.803	1.9900	5
6	1.0304	0.9705	6.0755	5.8964	0.1646	0.1696	14.655	2.4855	6
7	1.0355	0.9657	7.1059	6.8621	0.1407	0.1457	20.449	2.9801	7
8	1.0407	0.9609	8.1414	7.8230	0.1228	0.1278	27.176	3.4738	8
9	1.0459	0.9561	9.1821	8.7791	0.1089	0.1139	34.824	3.9668	9
10	1.0511	0.9513	10.2280	9.7304	0.0978	0.1028	43.387	4.4589	10
11	1.0564	0.9466	11.2792	10.6770	0.0887	0.0937	52.853	4.9501	11
12	1.0617	0.9419	12.3356	11.6189	0.0811	0.0861	63.214	5.4406	12
13	1.0670	0.9372	13.3972	12.5562	0.0746	0.0796	74.460	5.9302	13
14	1.0723	0.9326	14.4642	13.4887	0.0691	0.0741	86.584	6.4190	14
15	1.0777	0.9279	15.5365	14.4166	0.0644	0.0694	99.574	6.9069	15
16	1.0831	0.9233	16.6142	15.3399	0.0602	0.0652	113.424	7.3940	16
17	1.0885	0.9187	17.6973	16.2586	0.0565	0.0615	128.123	7.8803	17
18	1.0939	0.9141	18.7858	17.1728	0.0532	0.0582	143.663	8.3658	18
19	1.0994	0.9096	19.8797	18.0824	0.0503	0.0553	160.036	8.8504	19
20	1.1049	0.9051	20.9791	18.9874	0.0477	0.0527	177.232	9.3342	20
21	1.1104	0.9006	22.0840	19.8880	0.0453	0.0503	195.243	9.8172	21
22	1.1160	0.8961	23.1944	20.7841	0.0431	0.0481	214.061	10.2993	22
23	1.1216	0.8916	24.3104	21.6757	0.0411	0.0461	233.677	10.7806	23
24	1.1272	0.8872	25.4320	22.5629	0.0393	0.0443	254.082	11.2611	24
25	1.1328	0.8828	26.5591	23.4456	0.0377	0.0427	275.269	11.7407	25
30	1.1614	0.8610	32.2800	27.7941	0.0310	0.0360	392.632	14.1265	30
36	1.1967	0.8356	39.3361	32.8710	0.0254	0.0304	557.560	16.9621	36
40	1.2208	0.8191	44.1588	36.1722	0.0226	0.0276	681.335	18.8359	40
48	1.2705	0.7871	54.0978	42.5803	0.0185	0.0235	959.919	22.5437	48
60	1.3489	0.7414	69.7700	51.7256	0.0143	0.0193	1448.646	28.0064	60
72	1.4320	0.6983	86.4089	60.3395	0.0116	0.0166	2012.348	33.3504	72
84	1.5204	0.6577	104.0739	68.4530	0.0096	0.0146	2640.664	38.5763	84
100	1.6467	0.6073	129.3337	78.5426	0.0077	0.0127	3562.793	45.3613	100
∞				200.0000		0.0050			∞

	Single Payment		Uniform Series				Uniform Gradient		
	Compound Amount Factor	Present Worth Factor	Compound Amount Factor	Present Worth Factor	Sinking Fund Factor	Capital Recovery Factor	Gradient Present Worth Factor	Gradient Uniform Series Factor	
N	To Find F Given P F / P	To Find P Given F P/F	To Find F Given A F/A	To Find P Given A P / A	To Find A Given F A/F	To Find A Given P A/P	To Find P Given G P/G	To Find A Given G A/G	N
5	$\begin{aligned} & 1.0100 \\ & 1.0201 \\ & 1.0303 \\ & 1.0406 \\ & 1.0510 \end{aligned}$	$\begin{aligned} & 0.9901 \\ & 0.9803 \\ & 0.9706 \\ & 0.9610 \\ & 0.9515 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 2.0100 \\ & 3.0301 \\ & 4.0604 \\ & 5.1010 \end{aligned}$	$\begin{aligned} & 0.9901 \\ & 1.9704 \\ & 2.9410 \\ & 3.9020 \\ & 4.8534 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 0.4975 \\ & 0.3300 \\ & 0.2463 \\ & 0.1960 \end{aligned}$	$\begin{aligned} & 1.0100 \\ & 0.5075 \\ & 0.3400 \\ & 0.2563 \\ & 0.2060 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.980 \\ & 2.922 \\ & 5.804 \\ & 9.610 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.4975 \\ & 0.9934 \\ & 1.4876 \\ & 1.9801 \end{aligned}$	1 2 3 4 5
7 8 9 10	$\begin{aligned} & 1.0615 \\ & 1.0721 \\ & 1.0829 \\ & 1.0937 \\ & 1.1046 \end{aligned}$	$\begin{aligned} & 0.9420 \\ & 0.9327 \\ & 0.9235 \\ & 0.9143 \\ & 0.9053 \end{aligned}$	$\begin{array}{r} 6.1520 \\ 7.2135 \\ 8.2857 \\ 9.3685 \\ 10.4622 \end{array}$	$\begin{aligned} & 5.7955 \\ & 6.7282 \\ & 7.6517 \\ & 8.5660 \\ & 9.4713 \end{aligned}$	$\begin{aligned} & 0.1625 \\ & 0.1386 \\ & 0.1207 \\ & 0.1067 \\ & 0.0956 \end{aligned}$	$\begin{aligned} & 0.1725 \\ & 0.1486 \\ & 0.1307 \\ & 0.1167 \\ & 0.1056 \end{aligned}$	$\begin{aligned} & 14.321 \\ & 19.917 \\ & 26.381 \\ & 33.696 \\ & 41.844 \end{aligned}$	$\begin{aligned} & 2.4710 \\ & 2.9602 \\ & 3.4478 \\ & 3.9337 \\ & 4.4179 \end{aligned}$	6 7 8 9 10
11 12 13 14 15	$\begin{aligned} & 1.1157 \\ & 1.1268 \\ & 1.1381 \\ & 1.1495 \\ & 1.1610 \end{aligned}$	$\begin{aligned} & 0.8963 \\ & 0.8874 \\ & 0.8787 \\ & 0.8700 \\ & 0.8613 \end{aligned}$	$\begin{aligned} & 11.5668 \\ & 12.6825 \\ & 13.8093 \\ & 14.9474 \\ & 16.0969 \end{aligned}$	$\begin{aligned} & 10.3676 \\ & 11.2551 \\ & 12.1337 \\ & 13.0037 \\ & 13.8651 \end{aligned}$	$\begin{aligned} & 0.0865 \\ & 0.0788 \\ & 0.0724 \\ & 0.0669 \\ & 0.0621 \end{aligned}$	$\begin{aligned} & 0.0965 \\ & 0.0888 \\ & 0.0824 \\ & 0.0769 \\ & 0.0721 \end{aligned}$	$\begin{aligned} & 50.807 \\ & 60.569 \\ & 71.113 \\ & 82.422 \\ & 94.481 \end{aligned}$	$\begin{aligned} & 4.9005 \\ & 5.3815 \\ & 5.8607 \\ & 6.3384 \\ & 6.8143 \end{aligned}$	11 12 13 14 15
16 17 18 19 20	1.1726 1.1843 1.1961 1.2081 1.2202	$\begin{aligned} & 0.8528 \\ & 0.8444 \\ & 0.8360 \\ & 0.8277 \\ & 0.8195 \end{aligned}$	$\begin{aligned} & 17.2579 \\ & 18.4304 \\ & 19.6147 \\ & 20.8109 \\ & 22.0190 \end{aligned}$	$\begin{aligned} & 14.7179 \\ & 15.5623 \\ & 16.3983 \\ & 17.2260 \\ & 18.0456 \end{aligned}$	$\begin{aligned} & 0.0579 \\ & 0.0543 \\ & 0.0510 \\ & 0.0481 \\ & 0.0454 \end{aligned}$	$\begin{aligned} & 0.0679 \\ & 0.0643 \\ & 0.0610 \\ & 0.0581 \\ & 0.0554 \end{aligned}$	$\begin{aligned} & 107.273 \\ & 120.783 \\ & 134.996 \\ & 149.895 \\ & 165.466 \end{aligned}$	$\begin{aligned} & 7.2886 \\ & 7.7613 \\ & 8.2323 \\ & 8.7017 \\ & 9.1694 \end{aligned}$	16 17 18 19 20
21 22 23 24 25	$\begin{aligned} & 1.2324 \\ & 1.2447 \\ & 1.2572 \\ & 1.2697 \\ & 1.2824 \end{aligned}$	$\begin{aligned} & 0.8114 \\ & 0.8034 \\ & 0.7954 \\ & 0.7876 \\ & 0.7798 \end{aligned}$	$\begin{aligned} & 23.2392 \\ & 24.4716 \\ & 25.7163 \\ & 26.9734 \\ & 28.2432 \end{aligned}$	$\begin{aligned} & 18.8570 \\ & 19.6604 \\ & 20.4558 \\ & 21.2434 \\ & 22.0232 \end{aligned}$	$\begin{aligned} & 0.0430 \\ & 0.0409 \\ & 0.0389 \\ & 0.0371 \\ & 0.0354 \end{aligned}$	$\begin{aligned} & 0.0530 \\ & 0.0509 \\ & 0.0489 \\ & 0.0471 \\ & 0.0454 \end{aligned}$	$\begin{aligned} & 181.695 \\ & 198.566 \\ & 216.066 \\ & 234.180 \\ & 252.895 \end{aligned}$	$\begin{array}{r} 9.6354 \\ 10.0998 \\ 10.5626 \\ 11.0237 \\ 11.4831 \end{array}$	21 22 23 24 25
30 36 40 48 60	$\begin{aligned} & 1.3478 \\ & 1.4308 \\ & 1.4889 \\ & 1.6122 \\ & 1.8167 \end{aligned}$	$\begin{aligned} & 0.7419 \\ & 0.6989 \\ & 0.6717 \\ & 0.6203 \\ & 0.5504 \end{aligned}$	$\begin{aligned} & 34.7849 \\ & 43.0769 \\ & 48.8863 \\ & 61.2226 \\ & 81.6697 \end{aligned}$	$\begin{aligned} & 25.8077 \\ & 30.1075 \\ & 32.8346 \\ & 37.9740 \\ & 44.9550 \end{aligned}$	$\begin{aligned} & 0.0287 \\ & 0.0232 \\ & 0.0205 \\ & 0.0163 \\ & 0.0122 \end{aligned}$	$\begin{aligned} & 0.0387 \\ & 0.0332 \\ & 0.0305 \\ & 0.0263 \\ & 0.0222 \end{aligned}$	$\begin{array}{r} 355.002 \\ 494.621 \\ 596.856 \\ 820.146 \\ 1192.806 \end{array}$	$\begin{aligned} & 13.7557 \\ & 16.4285 \\ & 18.1776 \\ & 21.5976 \\ & 26.5333 \end{aligned}$	30 36 40 48 60
72 84 100 ∞	$\begin{aligned} & 2.0471 \\ & 2.3067 \\ & 2.7048 \end{aligned}$	$\begin{aligned} & 0.4885 \\ & 0.4335 \\ & 0.3697 \end{aligned}$	$\begin{aligned} & 104.7099 \\ & 130.6723 \\ & 170.4814 \end{aligned}$	$\begin{array}{r} 51.1504 \\ 56.6485 \\ 63.0289 \\ 100.0000 \end{array}$	$\begin{aligned} & 0.0096 \\ & 0.0077 \\ & 0.0059 \end{aligned}$	$\begin{aligned} & 0.0196 \\ & 0.0177 \\ & 0.0159 \\ & 0.0100 \end{aligned}$	$\begin{aligned} & 1597.867 \\ & 2023.315 \\ & 2605.776 \end{aligned}$	$\begin{aligned} & 31.2386 \\ & 35.7170 \\ & 41.3426 \end{aligned}$	72 84 100 ∞

	Single Payment		Uniform Series				Uniform Gradient		
	Compound Amount Factor	Present Worth Factor	Compound Amount Factor	Present Worth Factor	Sinking Fund Factor	Capital Recovery Factor	$\begin{aligned} & \text { Gradient } \\ & \text { Present Worth } \\ & \text { Factor } \end{aligned}$	Gradient Uniform Series Factor	
N	To Find F Given P F / P	$\begin{gathered} \hline \text { To Find } P \\ \text { Given } F \\ P / F \end{gathered}$	To Find F Given A F / A	To Find P Given A P/A	To Find A Given F A/F	$\begin{gathered} \hline \text { To Find } A \\ \text { Given } P \\ A / P \\ \hline \end{gathered}$	$\begin{gathered} \text { To Find } P \\ \text { Given } G \\ P / G \end{gathered}$	$\begin{gathered} \hline \text { To Find } A \\ \text { Given } G \\ A / G \end{gathered}$	N
1 2 3 4 5	$\begin{aligned} & 1.0300 \\ & 1.0609 \\ & 1.0927 \\ & 1.1255 \\ & 1.1593 \end{aligned}$	$\begin{aligned} & 0.9709 \\ & 0.9426 \\ & 0.9151 \\ & 0.885 \\ & 0.8626 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 2.0300 \\ & 3.0909 \\ & 4.1836 \\ & 5.3091 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.9709 \\ & 1.9135 \\ & 2.8286 \\ & 3.7171 \\ & 4.5797 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 0.496 \\ & 0.3235 \\ & 0.2390 \\ & 0.1884 \end{aligned}$	$\begin{aligned} & 1.0300 \\ & 0.526 \\ & 0.3535 \\ & 0.2690 \\ & 0.2184 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.943 \\ & 2.773 \\ & 5.438 \\ & 8.889 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.4926 \\ & 0.9803 \\ & 1.4631 \\ & 1.9409 \\ & \hline \end{aligned}$	1 2 3 4 5
$\begin{array}{r} 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \hline \end{array}$	1.1941 1.2299 1.2668 1.3048 1.3439	$\begin{aligned} & 0.8375 \\ & 0.8131 \\ & 0.7894 \\ & 0.7644 \\ & 0.7441 \\ & \hline \end{aligned}$	$\begin{array}{r} 6.4684 \\ 7.6625 \\ 8.8923 \\ 10.1591 \\ 11.4639 \\ \hline \end{array}$	$\begin{aligned} & 5.4172 \\ & 6.2303 \\ & 7.0197 \\ & 7.7861 \\ & 8.5302 \end{aligned}$	$\begin{aligned} & 0.1546 \\ & 0.1305 \\ & 0.1125 \\ & 0.0984 \\ & 0.0872 \end{aligned}$	$\begin{aligned} & 0.1846 \\ & 0.1605 \\ & 0.1425 \\ & 0.1224 \\ & 0.1172 \end{aligned}$	$\begin{aligned} & 13.076 \\ & 17.955 \\ & 23.481 \\ & 29.612 \\ & 36.309 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4138 \\ & 2.8819 \\ & 3.3450 \\ & 3.8032 \\ & 4.2565 \\ & \hline \end{aligned}$	$\begin{array}{r}6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \hline\end{array}$
$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	1.3842 1.4258 1.4685 1.5126 1.5580	$\begin{aligned} & 0.7224 \\ & 0.7014 \\ & 0.6810 \\ & 0.6611 \\ & 0.6419 \end{aligned}$	12.8078 14.1920 15.6178 17.0863 18.5989	$\begin{array}{r} 9.2526 \\ 9.9540 \\ 10.6350 \\ 11.2961 \\ 11.9379 \end{array}$	$\begin{aligned} & 0.0781 \\ & 0.0705 \\ & 0.0640 \\ & 0.0585 \\ & 0.0538 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1081 \\ & 0.1005 \\ & 0.0940 \\ & 0.085 \\ & 0.0838 \end{aligned}$	$\begin{aligned} & 43.533 \\ & 51.248 \\ & 59.420 \\ & 68.014 \\ & 77.000 \end{aligned}$	$\begin{aligned} & 4.7049 \\ & 5.1485 \\ & 5.5872 \\ & 6.0210 \\ & 6.4500 \end{aligned}$	11 12 13 14 15
$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & 1.6047 \\ & 1.6528 \\ & 1.7024 \\ & 1.7535 \\ & 1.8061 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.6232 \\ & 0.6050 \\ & 0.5874 \\ & 0.5703 \\ & 0.5537 \\ & \hline \end{aligned}$	20.1569 21.7616 23.4144 25.1169 26.8704	12.5611 13.1661 13.7535 14.3238 14.8775	$\begin{aligned} & 0.0496 \\ & 0.0460 \\ & 0.0427 \\ & 0.0398 \\ & 0.0372 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0796 \\ & 0.0760 \\ & 0.0727 \\ & 0.0668 \\ & 0.0672 \\ & \hline \end{aligned}$	$\begin{array}{r} 86.348 \\ 96.028 \\ 106.014 \\ 116.279 \\ 126.799 \\ \hline \end{array}$	$\begin{aligned} & 6.8742 \\ & 7.2936 \\ & 7.7081 \\ & 8.1179 \\ & 8.5229 \\ & \hline \end{aligned}$	16 17 18 19 20
$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$	1.8603 1.9161 1.9736 2.0328 2.0938	0.5375 0.5219 0.5067 0.4919 0.4776	28.6765 30.5368 32.4529 34.4265 36.4593	15.4150 15.9369 16.4436 16.9355 17.4131	$\begin{aligned} & 0.0349 \\ & 0.0327 \\ & 0.0308 \\ & 0.0220 \\ & 0.0274 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0649 \\ & 0.0627 \\ & 0.0608 \\ & 0.0590 \\ & 0.0574 \\ & \hline \end{aligned}$	137.550 148.509 159.657 170.971 182.434	$\begin{array}{r} 8.9231 \\ 7.3186 \\ 9.7093 \\ 10.0954 \\ 10.4768 \end{array}$	21 22 23 24 25
$\begin{aligned} & 30 \\ & 35 \\ & 40 \\ & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 2.4273 \\ & 2.8139 \\ & 3.2620 \\ & 3.7816 \\ & 4.3839 \end{aligned}$	$\begin{aligned} & 0.4120 \\ & 0.354 \\ & 0.3066 \\ & 0.2644 \\ & 0.2281 \end{aligned}$	$\begin{array}{r} 47.5754 \\ 60.4621 \\ 75.4012 \\ 92.7199 \\ 112.7969 \end{array}$	19.6004 21.4872 23.1148 24.5187 25.7298	0.0210 0.0165 0.0133 0.0108 0.0089	$\begin{aligned} & 0.0510 \\ & 0.0465 \\ & 0.0433 \\ & 0.0408 \\ & 0.0389 \\ & \hline \end{aligned}$	$\begin{aligned} & 241.361 \\ & 301.627 \\ & 361.750 \\ & 420.633 \\ & 477.480 \end{aligned}$	$\begin{aligned} & 12.3141 \\ & 14.0375 \\ & 15.6502 \\ & 17.1556 \\ & 18.5575 \end{aligned}$	30 35 40 45 50
$\begin{array}{r} 60 \\ 80 \\ 100 \\ \infty \end{array}$	$\begin{array}{r} 5.8916 \\ 10.6409 \\ 19.2186 \end{array}$	$\begin{aligned} & 0.1697 \\ & 0.0940 \\ & 0.0520 \end{aligned}$	$\begin{aligned} & 163.0534 \\ & 321.3630 \\ & 607.2877 \end{aligned}$	$\begin{aligned} & 27.6756 \\ & 30.2008 \\ & 31.5989 \\ & 33.3333 \end{aligned}$ 33.333	0.0061 0.0031 0.0016	$\begin{aligned} & 0.0361 \\ & 0.0331 \\ & 0.0316 \\ & 0.0300 \end{aligned}$	$\begin{aligned} & 583.053 \\ & 756.087 \end{aligned}$ 879.854	$\begin{aligned} & 21.0674 \\ & 25.0353 \\ & 27.8444 \end{aligned}$	60 80 100 ∞

	Single Payment		Uniform Series				Uniform Gradient		
	Compound Amount Factor	Present Worth Factor	Compound Amount Factor	Present Worth Factor	Sinking Fund Factor	Capital Recovery Factor	Gradient Present Worth Factor	Gradient Uniform Series Factor	
N	$\begin{gathered} \text { To Find } F \\ \text { Given } P \\ F / P \end{gathered}$	To Find P Given F P / F	To Find F Given A F / A	To Find P Given A P / A	To Find A Given F A/F	To Find A Given P A/P	$\begin{gathered} \text { To Find } P \\ \text { Given } G \\ P / G \end{gathered}$	To Find A Given G A/G	N
1	1.0400	0.9615	1.0000	0.9615	1.0000	1.0400	0.000	0.0000	1
2	1.0816	0.9246	2.0400	1.8861	0.4902	0.5302	0.925	0.4902	2
3	1.1249	0.8890	3.1216	2.7751	0.3203	0.3603	2.703	0.9739	3
4	1.1699	0.8548	4.2465	3.6299	0.2355	0.2755	5.267	1.4510	4
5	1.2167	0.8219	5.4163	4.4518	0.1846	0.2246	8.555	1.9216	5
6	1.2653	0.7903	6.6330	5.2421	0.1508	0.1908	12.506	2.3857	6
7	1.3159	0.7599	7.8983	6.0021	0.1266	0.1666	17.066	2.8433	7
8	1.3686	0.7307	9.2142	6.7327	0.1085	0.1485	22.181	3.2944	8
9	1.4233	0.7026	10.5828	7.4353	0.0945	0.1345	27.801	3.7391	9
10	1.4802	0.6756	12.0061	8.1109	0.0833	0.1233	33.881	4.1773	10
11	1.5395	0.6496	13.4864	8.7605	0.0741	0.1141	40.377	4.6090	11
12	1.6010	0.6246	15.0258	9.3851	0.0666	0.1066	47.248	5.0343	12
13	1.6651	0.6006	16.6268	9.9856	0.0601	0.1001	54.455	5.4533	13
14	1.7317	0.5775	18.2919	10.5631	0.0547	0.0947	61.962	5.8659	14
15	1.8009	0.5553	20.0236	11.1184	0.0499	0.0899	69.736	6.2721	15
16	1.8730	0.5339	21.8245	11.6523	0.0458	0.0858	77.744	6.6720	16
17	1.9479	0.5134	23.6975	12.1657	0.0422	0.0822	85.958	7.0656	17
18	2.0258	0.4936	25.6454	12.6593	0.0390	0.0790	94.350	7.4530	18
19	2.1068	0.4746	27.6712	13.1339	0.0361	0.0761	102.893	7.8342	19
20	2.1911	0.4564	29.7781	13.5903	0.0336	0.0736	111.565	8.2091	20
21	2.2788	0.4388	31.9692	14.0292	0.0313	0.0713	120.341	8.5779	21
22	2.3699	0.4220	34.2480	14.4511	0.0292	0.0692	129.202	8.9407	22
23	2.4647	0.4057	36.6179	14.8568	0.0273	0.0673	138.128	9.2973	23
24	2.5633	0.3901	39.0826	15.2470	0.0256	0.0656	147.101	9.6479	24
25	2.6658	0.3751	41.6459	15.6221	0.0240	0.0640	156.104	9.9925	25
30	3.2434	0.3083	56.0849	17.2920	0.0178	0.0578	201.062	11.6274	30
35	3.9461	0.2534	73.6522	18.6646	0.0136	0.0536	244.877	13.1198	35
40	4.8010	0.2083	95.0255	19.7928	0.0105	0.0505	286.530	14.4765	40
45	5.8412	0.1712	121.0294	20.7200	0.0083	0.0483	325.403	15.7047	45
50	7.1067	0.1407	152.6671	21.4822	0.0066	0.0466	361.164	16.8122	50
60	10.5196	0.0951	237.9907	22.6235	0.0042	0.0442	422.997	18.6972	60
80	23.0498	0.0434	551.2450	23.9154	0.0018	0.0418	511.116	21.3718	80
100	50.5049	0.0198	1237.6237	24.5050	0.0008	0.0408	563.125	22.9800	100
∞				25.0000		0.0400			∞

	Single Payment		Uniform Series				Uniform Gradient		
	Compound Amount Factor	Present Worth Factor	Compound Amount Factor	Present Worth Factor	Sinking Fund Factor	Capital Recovery Factor	Gradient Present Worth Factor	Gradient Uniform Series Factor	
N	To Find F Given P F / P	To Find P Given F P/F	To Find F Given A F / A	To Find P Given A P/A	To Find A Given F A/F	To Find A Given P A / P	To Find P Given G P/G	To Find A Given G A/G	N
1	1.0500	0.9524	1.0000	0.9524	1.0000	1.0500	0.000	0.0000	1
2	1.1025	0.9070	2.0500	1.8594	0.4878	0.5378	0.907	0.4878	2
3	1.1576	0.8638	3.1525	2.7232	0.3172	0.3672	2.635	0.9675	3
4	1.2155	0.8227	4.3101	3.5460	0.2320	0.2820	5.103	1.4391	4
5	1.2763	0.7835	5.5256	4.3295	0.1810	0.2310	8.237	1.9025	5
6	1.3401	0.7462	6.8019	5.0757	0.1470	0.1970	11.968	2.3579	6
7	1.4071	0.7107	8.1420	5.7864	0.1228	0.1728	16.232	2.8052	7
8	1.4775	0.6768	9.5491	6.4632	0.1047	0.1547	20.970	3.2445	8
9	1.5513	0.6446	11.0266	7.1078	0.0907	0.1407	26.127	3.6758	9
10	1.6289	0.6139	12.5779	7.7217	0.0795	0.1295	31.652	4.0991	10
11	1.7103	0.5847	14.2068	8.3064	0.0704	0.1204	37.499	4.5144	11
12	1.7959	0.5568	15.9171	8.8633	0.0628	0.1128	43.624	4.9219	12
13	1.8856	0.5303	17.7130	9.3936	0.0565	0.1065	49.988	5.3215	13
14	1.9799	0.5051	19.5986	9.8986	0.0510	0.1010	56.554	5.7133	14
15	2.0789	0.4810	21.5786	10.3797	0.0463	0.0963	63.288	6.0973	15
16	2.1829	0.4581	23.6575	10.8378	0.0423	0.0923	70.160	6.4736	16
17	2.2920	0.4363	25.8404	11.2741	0.0387	0.0887	77.141	6.8423	17
18	2.4066	0.4155	28.1324	11.6896	0.0355	0.0855	84.204	7.2034	18
19	2.5270	0.3957	30.5390	12.0853	0.0327	0.0827	91.328	7.5569	19
20	2.6533	0.3769	33.0660	12.4622	0.0302	0.0802	98.488	7.9030	20
21	2.7860	0.3589	35.7193	12.8212	0.0280	0.0780	105.667	8.2416	21
22	2.9253	0.3418	38.5052	13.1630	0.0260	0.0760	112.846	8.5730	22
23	3.0715	0.3256	41.4305	13.4886	0.0241	0.0741	120.009	8.8971	23
24	3.2251	0.3101	44.5020	13.7986	0.0225	0.0725	127.140	9.2140	24
25	3.3864	0.2953	47.7271	14.0939	0.0210	0.0710	134.228	9.5238	25
30	4.3219	0.2314	66.4388	15.3725	0.0151	0.0651	168.623	10.9691	30
35	5.5160	0.1813	90.3203	16.3742	0.0111	0.0611	200.581	12.2498	35
40	7.0400	0.1420	120.7998	17.1591	0.0083	0.0583	229.545	13.3775	40
45	8.9850	0.1113	159.7002	17.7741	0.0063	0.0563	255.315	14.3644	45
50	11.4674	0.0872	209.3480	18.2559	0.0048	0.0548	277.915	15.2233	50
60	18.6792	0.0535	353.5837	18.9293	0.0028	0.0528	314.343	16.6062	60
80	49.5614	0.0202	971.2288	19.5965	0.0010	0.0510	359.646	18.3526	80
100	131.5013	0.0076	2610.0252	19.8479	0.0004	0.0504	381.749	19.2337	100
∞				20.0000		0.0500			∞

TABLE C-10 Discrete Compounding; $i=7 \%$									
	Single Payment		Uniform Series				Uniform Gradient		
	Compound Amount Factor	Present Worth Factor	Compound Amount Factor	Present Worth Factor	Sinking Fund Factor	Capital Recovery Factor	Gradient Present Worth Factor	Gradient Uniform Series Factor	
N	To Find F Given P F / P	$\begin{gathered} \hline \text { To Find } P \\ \text { Given } F \\ P / F \\ \hline \end{gathered}$	To Find F Given A F/A	$\begin{gathered} \hline \text { To Find } P \\ \text { Given } A \\ P / A \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { To Find } A \\ \text { Given } F \\ A / F \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { To Find } A \\ \text { Given } P \\ A / P \end{gathered}$	To Find P Given G P/G	To Find A Given G A/G	N
1	1.0700	0.9346	1.0000	0.9346	1.0000	1.0700	0.000	0.0000	1
2	1.1449	0.8734	2.0700	1.8080	0.4831	0.5531	0.873	0.4831	2
	1.2250	0.8163	3.2149	2.6243	0.3111	0.3811	2.506	0.9549	3
4	1.3108	0.7629	4.4399	3.3872	0.2252	0.2952	4.795	1.4155	4
5	1.4026	0.7130	5.7507	4.1002	0.1739	0.2439	7.647	1.8650	5
6	1.5007	0.6663	7.1533	4.7665	0.1398	0.2098	10.978	2.3032	6
7	1.6058	0.6227	8.6540	5.3893	0.1156	0.1856	14.715	2.7304	7
8	1.7182	0.5820	10.2598	5.9713	0.0975	0.1675	18.789	3.1465	8
9	1.8385	0.5439	11.9780	6.5152	0.0835	0.1535	23.140	3.5517	9
10	1.9672	0.5083	13.8164	7.0236	0.0724	0.1424	27.716	3.9461	10
11	2.1049	0.4751	15.7836	7.4987	0.0634	0.1334	32.467	4.3296	11
12	2.2522	0.4440	17.8885	7.9427	0.0559	0.1259	37.351	4.7025	12
13	2.4098	0.4150	20.1406	8.3577	0.0497	0.1197	42.330	5.0648	13
14	2.5785	0.3878	22.5505	8.7455	0.0443	0.1143	47.372	5.4167	14
15	2.7590	0.3624	25.1290	9.1079	0.0398	0.1098	52.446	5.7583	15
16	2.9522	0.3387	27.8881	9.4466	0.0359	0.1059	57.527	6.0897	16
17	3.1588	0.3166	30.8402	9.7632	0.0324	0.1024	62.592	6.4110	17
18	3.3799	0.2959	33.9990	10.0591	0.0294	0.0994	67.622	6.7225	18
19	3.6165	0.2765	37.3790	10.3356	0.0268	0.0968	72.599	7.0242	19
20	3.8697	0.2584	40.9955	10.5940	0.0244	0.0944	77.509	7.3163	20
21	4.1406	0.2415	44.8652	10.8355	0.0223	0.0923	82.339	7.5990	21
22	4.4304	0.2257	49.0057	11.0612	0.0204	0.0904	87.079	7.8725	22
23	4.7405	0.2109	53.4361	11.2722	0.0187	0.0887	91.720	8.1369	23
24	5.0724	0.1971	58.1767	11.4693	0.0172	0.0872	96.255	8.3923	24
25	5.4274	0.1842	63.2490	11.6536	0.0158	0.0858	100.677	8.6391	25
30	7.6123	0.1314	94.4608	12.4090	0.0106	0.0806	120.972	9.7487	30
35	10.6766	0.0937	138.2369	12.9477	0.0072	0.0772	138.135	10.6687	35
40	14.9745	0.0668	199.6351	13.3317	0.0050	0.0750	152.293	11.4233	40
45	21.0023	0.0476	285.7495	13.6055	0.0035	0.0735	163.756	12.0360	45
50	29.4570	0.0339	406.5289	13.8007	0.0025	0.0725	172.905	12.5287	50
60	57.9464	0.0173	813.5204	14.0392	0.0012	0.0712	185.768	13.2321	60
80	224.2344	0.0045	3189.0627	14.2220	0.0003	0.0703	198.075	13.9273	80
100	867.7163	0.0012	12381.6618	14.2693	0.0001	0.0701	202.200	14.1703	100
∞				14.2857		0.0700			∞

	Single Payment		Uniform Series				Uniform Gradient		
	Compound Amount Factor	Present Worth Factor	Compound Amount Factor	Present Worth Factor	Sinking Fund Factor	Capital Recovery Factor	Gradient Present Worth Factor	Gradient Uniform Series Factor	
N	$\begin{gathered} \text { To Find } F \\ \text { Given } P \\ F / P \\ \hline \end{gathered}$	To Find P Given F P / F	To Find F Given A F / A	To Find P Given A P / A	To Find A Given F A/F	To Find A Given P A / P	$\begin{gathered} \text { To Find } P \\ \text { Given } G \\ P / G \\ \hline \end{gathered}$	To Find A Given G A/G	N
1	1.0800	0.9259	1.0000	0.9259	1.0000	1.0800	0.000	0.0000	1
2	1.1664	0.8573	2.0800	1.7833	0.4808	0.5608	0.857	0.4808	2
3	1.2597	0.7938	3.2464	2.5771	0.3080	0.3880	2.445	0.9487	3
4	1.3605	0.7350	4.5061	3.3121	0.2219	0.3019	4.650	1.4040	4
5	1.4693	0.6806	5.8666	3.9927	0.1705	0.2505	7.372	1.8465	5
6	1.5869	0.6302	7.3359	4.6229	0.1363	0.2163	10.523	2.2763	6
7	1.7138	0.5835	8.9228	5.2064	0.1121	0.1921	14.024	2.6937	7
8	1.8509	0.5403	10.6366	5.7466	0.0940	0.1740	17.806	3.0985	8
9	1.9990	0.5002	12.4876	6.2469	0.0801	0.1601	21.808	3.4910	9
10	2.1589	0.4632	14.4866	6.7101	0.0690	0.1490	25.977	3.8713	10
11	2.3316	0.4289	16.6455	7.1390	0.0601	0.1401	30.266	4.2395	11
12	2.5182	0.3971	18.9771	7.5361	0.0527	0.1327	34.634	4.5957	12
13	2.7196	0.3677	21.4953	7.9038	0.0465	0.1265	39.046	4.9402	13
14	2.9372	0.3405	24.2149	8.2442	0.0413	0.1213	43.472	5.2731	14
15	3.1722	0.3152	27.1521	8.5595	0.0368	0.1168	47.886	5.5945	15
16	3.4259	0.2919	30.3243	8.8514	0.0330	0.1130	52.264	5.9046	16
17	3.7000	0.2703	33.7502	9.1216	0.0296	0.1096	56.588	6.2037	17
18	3.9960	0.2502	37.4502	9.3719	0.0267	0.1067	60.843	6.4920	18
19	4.3157	0.2317	41.4463	9.6036	0.0241	0.1041	65.013	6.7697	19
20	4.6610	0.2145	45.7620	9.8181	0.0219	0.1019	69.090	7.0369	20
21	5.0338	0.1987	50.4229	10.0168	0.0198	0.0998	73.063	7.2940	21
22	5.4365	0.1839	55.4568	10.2007	0.0180	0.0980	76.926	7.5412	22
23	5.8715	0.1703	60.8933	10.3711	0.0164	0.0964	80.673	7.7786	23
24	6.3412	0.1577	66.7648	10.5288	0.0150	0.0950	84.300	8.0066	24
25	6.8485	0.1460	73.1059	10.6748	0.0137	0.0937	87.804	8.2254	25
30	10.0627	0.0994	113.2832	11.2578	0.0088	0.0888	103.456	9.1897	30
35	14.7853	0.0676	172.3168	11.6546	0.0058	0.0858	116.092	9.9611	35
40	21.7245	0.0460	259.0565	11.9246	0.0039	0.0839	126.042	10.5699	40
45	31.9204	0.0313	386.5056	12.1084	0.0026	0.0826	133.733	11.0447	45
50	46.9016	0.0213	573.7702	12.2335	0.0017	0.0817	139.593	11.4107	50
60	101.2571	0.0099	1253.2133	12.3766	0.0008	0.0808	147.300	11.9015	60
80	471.9548	0.0021	5886.9354	12.4735	0.0002	0.0802	153.800	12.3301	80
100	2199.7613	0.0005	27484.5157	12.4943	a	0.0800	155.611	12.4545	100
∞				12.5000		0.0800			∞

${ }^{a}$ Less than 0.0001 .

[^1]${ }^{a}$ Less than 0.0001.

[^2]${ }^{a}$ Less than 0.0001.

[^3]${ }^{a}$ Less than 0.0001 .
TABLE C-18 Discrete Compounding; $i=25 \%$

	Single Payment		Uniform Series				Uniform Gradient		
	Compound Amount Factor	Present Worth Factor	Compound Amount Factor	Present Worth Factor	Sinking Fund Factor	Capital Recovery Factor	Gradient Present Worth Factor	Gradient Uniform Series Factor	
N	$\begin{gathered} \text { To Find } F \\ \text { Given } P \\ F / P \\ \hline \end{gathered}$	To Find P Given F P / F	To Find F Given A F / A	To Find P Given A P / A	To Find A Given F A/F	To Find A Given P A / P	To Find P Given G P / G	To Find A Given G A/G	N
1	1.2500	0.8000	1.0000	0.8000	1.0000	1.2500	0.000	0.0000	1
2	1.5625	0.6400	2.2500	1.4400	0.4444	0.6944	0.640	0.4444	2
3	1.9531	0.5120	3.8125	1.9520	0.2623	0.5123	1.664	0.8525	3
4	2.4414	0.4096	5.7656	2.3616	0.1734	0.4234	2.893	1.2249	4
5	3.0518	0.3277	8.2070	2.6893	0.1218	0.3718	4.204	1.5631	5
6	3.8147	0.2621	11.2588	2.9514	0.0888	0.3388	5.514	1.8683	6
7	4.7684	0.2097	15.0735	3.1611	0.0663	0.3163	6.773	2.1424	7
8	5.9605	0.1678	19.8419	3.3289	0.0504	0.3004	7.947	2.3872	8
9	7.4506	0.1342	25.8023	3.4631	0.0388	0.2888	9.021	2.6048	9
10	9.3132	0.1074	33.2529	3.5705	0.0301	0.2801	9.987	2.7971	10
11	11.6415	0.0859	42.5661	3.6564	0.0235	0.2735	10.846	2.9663	11
12	14.5519	0.0687	54.2077	3.7251	0.0184	0.2684	11.602	3.1145	12
13	18.1899	0.0550	68.7596	3.7801	0.0145	0.2645	12.262	3.2437	13
14	22.7374	0.0440	86.9495	3.8241	0.0115	0.2615	12.833	3.3559	14
15	28.4217	0.0352	109.6868	3.8593	0.0091	0.2591	13.326	3.4530	15
16	35.5271	0.0281	138.1085	3.8874	0.0072	0.2572	13.748	3.5366	16
17	44.4089	0.0225	173.6357	3.9099	0.0058	0.2558	14.109	3.6084	17
18	55.5112	0.0180	218.0446	3.9279	0.0046	0.2546	14.415	3.6698	18
19	69.3889	0.0144	273.5558	3.9424	0.0037	0.2537	14.674	3.7222	19
20	86.7362	0.0115	342.9447	3.9539	0.0029	0.2529	14.893	3.7667	20
21	108.4202	0.0092	429.6809	3.9631	0.0023	0.2523	15.078	3.8045	21
22	135.5253	0.0074	538.1011	3.9705	0.0019	0.2519	15.233	3.8365	22
23	169.4066	0.0059	673.6264	3.9764	0.0015	0.2515	15.363	3.8634	23
24	211.7582	0.0047	843.0329	3.9811	0.0012	0.2512	15.471	3.8861	24
25	264.6978	0.0038	1054.7912	3.9849	0.0009	0.2509	15.562	3.9052	25
30	807.7936	0.0012	3227.1743	3.9950	0.0003	0.2503	15.832	3.9628	30
35	2465.1903	0.0004	9856.7613	3.9984	0.0001	0.2501	15.937	3.9858	35
40	7523.1638	0.0001	30088.6554	3.9995	a	0.2500	15.977	3.9947	40
45	22958.8740	a	91831.4962	3.9998	a	0.2500	15.992	3.9980	45
50	70064.9232	a	280255.6929	3.9999	a	0.2500	15.997	3.9993	50
60	652530.4468	a	2610117.7872	4.0000	a	0.2500	16.000	3.9999	60
∞				4.0000		0.2500			∞

${ }^{a}$ Less than 0.0001 .

APPENDIX D

Interest and Annuity Tables for Continuous Compounding

For various values of \underline{r} from 8% to 20%,
$\underline{r}=$ nominal interest rate per period, compounded continuously;
$N=$ number of compounding periods;

$$
\begin{aligned}
& (F / P, \underline{r} \%, N)=e^{r N} \\
& (P / F, \underline{r} \%, N)=e^{-r N}=\frac{1}{e^{r N}} ; \\
& (F / A, \underline{r} \%, N)=\frac{e^{r N}-1}{e^{r}-1} \\
& (P / A, \underline{r} \%, N)=\frac{e^{r N}-1}{e^{r N}\left(e^{r}-1\right)} .
\end{aligned}
$$

[^0]: = annual payment - interest

[^1]: ${ }^{a}$ Less than 0.0001

[^2]: ${ }^{a}$ Less than 0.0001.

[^3]: ${ }^{a}$ Less than 0.0001 .

