Engineering Economy

FIFTEENTH EDITION

Solutions Manual

WILLIAM G. SULLIVAN
Virginia Polytechnic Institute and State University

ELIN M. WICKS
Wicks and Associates, L.L.P.

C. PATRICK KOELLING
Virginia Polytechnic Institute and State University

Solutions to Chapter 1 Problems

A Note To Instructors: Because of volatile energy prices in today's world, the instructor is encouraged to vary energy prices in affected problems (e.g. the price of a gallon of gasoline) plus and minus 50 percent and ask students to determine whether this range of prices changes the recommendation in the problem. This should make for stimulating inclass discussion of the results.

1-1 Because each pound of CO_{2} has a penalty of $\$ 0.20$,

$$
\text { Savings }=(15 \text { gallons } \times \$ 0.10 / \text { gallon })-(8 \mathrm{lb})(\$ 0.20 / \mathrm{lb})=\$ 1.34
$$

If Stan can drive his car for less than $\$ 1.34 / 8=\$ 0.1675$ per mile, he should make the trip. The cost of gasoline only for the trip is (8 miles $\div 25$ miles $/$ gallon $)(\$ 3.00 /$ gallon $)=\$ 0.96$, but other costs of driving, such as insurance, maintenance, and depreciation, may also influence Stan's decision. What is the cost of an accident, should Stan have one during his weekly trip to purchase less expensive gasoline? If Stan makes the trip weekly for a year, should this influence his decision?

1-2 Other information needed includes total number of miles driven each year and the gas consumption (miles per gallon) of the average delivery vehicle.

1-3 Some non-monetary factors (attributes) that might be important are:

- Safety
- Reliability (from the viewpoint of user service)
- Quality in terms of consumer expectations
- Aesthetics (how it looks, and so on)
- Patent considerations

1-4 At first glance, Tyler's options seem to be: (1) immediately pay $\$ 803$ to the owner of the other person's car or (2) submit a claim to the insurance company. If Tyler keeps his Nissan for five more years (an assumption), the cost of option 2 is $(\$ 803-\$ 500)+\$ 60 \times 5$ years $=\$ 603$. This amount is less than paying $\$ 803$ out-of-pocket, so Tyler probably should have submitted an insurance claim. But if his premiums go higher and higher each subsequent year (another assumption!), Tyler ought to pursue option 1.

What we don't know in this problem is the age and condition of the other person's car. If we assume it's a clunker, another option for Tyler is to offer to buy the other person's car and fix it himself and then sell it over the internet. Or Tyler could donate the unrepaired (or repaired) car to his favorite charity.

1-5 (a) 15,000 miles per year / $25 \mathrm{mpg}=600$ gallons per year of E20 Savings $=600$ gallons per year $(\$ 3.00-\$ 2.55)=\$ 270$ per year
(b) Gasoline saved $=0.20(600 \mathrm{gal} / \mathrm{yr})(1,000,000$ people $)=120$ million gallons per year

1-6 The environmental impact on the villagers is unknown, but their spring and summer crop yields could be affected by more than normal snow melt. Let's assume this cost is $\$ 10$ million. Then the total cost of the plan is $\$ 6$ million (180 million rubles) plus $\$ 10$ million and the plan is no longer cost-effective when this additional externality is considered.

1-7 There are numerous other options including a nuclear plant, a 100% gas-fired plant and a windmill bank at a nearby mountain pass. Also, solar farms are becoming more cost competitive nowadays.

1-8 \quad Increased lifetime earnings of a college graduate $=\$ 1,200,000(0.75)=\$ 900,000$

1-9 Strategy 1: Change oil every 3,000 miles. Cost $=(15,000 / 3,000)(\$ 30)=\$ 150 /$ year
Strategy 2: Change oil every 5,000 miles. Cost $=(15,000 / 5,000)(\$ 30)=\$ 90 /$ year
Savings $=\$ 60$ per year

1-10 In six months you will spend approximately $\$ 360$ on bottled water. The cost of the filter is $\$ 50$, so you will save $\$ 310$ every four months. This amounts to $\$ 620$ over a year, and you don't need to bother recycling all those plastic bottles! An up-front expenditure of $\$ 50$ can indeed save a lot of money each year.

1-11 110 gallons $\times \$ 3.00$ per gallon $=\$ 330$ saved over 55,000 miles of driving. This comes down to $\$ 330 /$ $55,000=\$ 0.006$ per mile driven. So Brand A saves $6 / 10$ of a penny for each mile driven.

1-12 (a) Problem: To find the least expensive method for setting up capacity to produce drill bits.
(b) Assumptions: The revenue per unit will be the same for either machine; startup costs are negligible; breakdowns are not frequent; previous employee's data are correct; drill bits are manufactured the same way regardless of the alternative chosen; in-house technicians can modify the old machine so its life span will match that of the new machine; neither machine has any resale value; there is no union to lobby for inhouse work; etc.
(c) Alternatives: (1) Modify the old machine for producing the new drill bit (using in-house technicians); (2) Buy a new machine for $\$ 450,000$; (3) Get McDonald Inc. to modify the machine; (4) Outsource the work to another company.
(d) Criterion: Least cost in dollars for the anticipated production runs, given that quality and delivery time are essentially unaffected (i.e., not compromised).
(e) Risks: The old machine could be less reliable than a new one; the old machine could cause environmental hazards; fixing the old machine in-house could prove to be unsatisfactory; the old machine could be less safe than a new one; etc.
(f) Non-monetary Considerations: Safety; environmental concerns; quality/reliability differences; "flexibility" of a new machine; job security for in-house work; image to outside companies by having a new technology (machine); etc.
(g) Post Audit: Did either machine (or outsourcing) fail to deliver high quality product on time? Were maintenance costs of the machines acceptable? Did the total production costs allow an acceptable profit to be made?

1-13 (a) Problem A: Subject to time, grade point average and energy that Mary is willing/able to exert, Problem A might be "How can Mary survive the senior year and graduate during the coming year (earn a college degree)?"

Problem B: Subject to knowledge of the job market, mobility and professional ambition, Mary's Problem B could be "How can I use my brother's entry-level job as a spring board into a higherpaying position with a career advancement opportunity (maybe no college degree)?"
(b) Problem A - Some feasible solutions for Problem A would include:
(1) Get a loan from her brother and take fewer courses per term, possibly graduating in the summer.
(2) Quit partying and devote her extra time and limited funds to the task of graduating in the spring term (maybe Mary could get a scholarship to help with tuition, room and board).

Problem B - Some feasible solutions for Problem B would include:
(1) Work for her brother and take over the company to enable him to start another entrepreneurial venture.
(2) Work part-time for her brother and continue to take courses over the next couple of years in order to graduate.
(3) Work for her brother for one or two semesters to build up funds for her senior year. While interviewing, bring up the real life working experience and request a higher starting salary.
(a) One problem involves how to satisfy the hunger of three students -- assume a piping hot delicious pizza will satisfy this need. (Another problem is to learn enough about Engineering Economy to pass -- or better yet earn an "A" or a "B" -- on the final examination and ace the course. Maybe a pizza will solve this problem too?) Let's use "hunger satisfaction with a pizza" as the problem/need definition.
(b) Principle 1 -Develop the Alternatives
i) Alternative A is to order a pizza from "Pick-Up Sticks"
ii) Alternative B is to order a pizza from "Fred's"

Other options probably exist but we'll stick to these two alternatives

Principle 2-Focus on the Differences

Difference in delivery time could be an issue. A perceived difference in the quality of the ingredients used to make the pizza could be another factor to consider. We'll concentrate our attention on cost differences in part (c) to follow.

Principle 3-Use a Consistent Viewpoint

Consider your problem from the perspective of three customers wanting to get a good deal. Does it make sense to buy a pizza having a crust that your dog enjoys, or ordering a pizza from a shop that employs only college students? Use the customer's point of view in this situation rather than that of the owner of the pizza shop or the driver of the delivery vehicle.

Principle 4-Use a Common Unit of Measure

Most people use "dollars" as one of the most important measures for examining differences between alternatives. In deciding which pizza to order, we'll use a cost-based metric in part (c).

Principle 5-Consider All Relevant Criteria

Factors other than cost may affect the decision about which pizza to order. For example, variety and quality of toppings and delivery time may be extremely important to your choice. Dynamics of group decision making may also introduce various "political" considerations into the final selection (can you name a couple?)

Principle 6 - Make Uncertainty Explicit

The variability in quality of the pizza, its delivery time and even its price should be carefully examined in making your selection. (Advertised prices are often valid under special conditions -call first to check on this!)

Principle 7 - Revisit Your Decision

After you've consumed your pizza and returned to studying for the final exam, were you pleased with the taste of the toppings? On the downside, was the crust like cardboard? You'll keep these sorts of things in mind (good and bad) when you order your next pizza!
(c) Finally some numbers to crunch -- don't forget to list any key assumptions that underpin your analysis to minimize the cost per unit volume (Principles 1, 2, 3, 4 and 6 are integral to this comparison)

Assumptions: (i) weight is directly proportional to volume (to avoid a "meringue" pizza with lots of fluff but meager substance), (ii) you and your study companions will eat the entire pizza (avoids variable amounts of discarded leftovers and hence difficult-to-predict cost of cubic inch consumed) and (iii) data provided in the Example Problem are accurate (the numbers have been confirmed by phone calls).

Analysis: \quad Alternative A "Pick-Up-Sticks"
Volume $=20^{\prime \prime} \times 20^{\prime \prime} \times 1 \frac{1}{4 \prime \prime}=500 \mathrm{in} .^{3}$
Total Cost $=\$ 15(1.05)+\$ 1.50=\$ 17.25$
Cost per in. ${ }^{3}=\$ 0.035$
Alternative B "Fred's"
Volume $=(3.1416)\left(10^{\prime \prime}\right)^{2}(1.75 \prime \prime)=550$ in. 3
Total Cost $=\$ 17.25(1.05)=\$ 18.11$
Cost per in. ${ }^{3}=\$ 0.033$
Therefore, order the pizza from "Fred's" to minimize total cost per cubic inch.
(d) Typical other criteria you and your friends could consider are: (i) cost per square inch of pizza (select "Pick-Up-Sticks"), (ii) minimize total cost regardless of area or volume (select "Pick-UpSticks"), and (iii) "Fred's" can deliver in 30 minutes but "Pick-Up-Sticks" cannot deliver for one hour because one of their ovens is not working properly (select "Fred's").

Some homeowners need to determine (confirm) whether a storm door could fix their problem. If yes, install a storm door. If it will not basically solve the problem, proceed with the problem formulation activity.

Problem Formulation

The homeowner's problem seems to be one of heat loss and/or aesthetic appearance of their house. Hence, one problem formulation could be:
"To find different alternatives to prevent heat loss from the house."
Alternatives

- Caulking of windows
- Weather stripping
- Better heating equipment
- Install a storm door
- More insulation in the walls, ceiling, etc. of the house
- Various combinations of the above

1-16 STEP 1-Define the Problem: Your basic problem is that you need transportation. Further evaluation leads to the elimination of walking, riding a bicycle, and taking a bus as feasible alternatives.

STEP 2-Develop Your Alternatives (Principle 1 is used here.): Your problem has been reduced to either replacing or repairing your automobile. The alternatives would appear to be

1. Sell the wrecked car for $\$ 2,000$ to the wholesaler and spend this money, the $\$ 1,000$ insurance check, and all of your $\$ 7,000$ savings account on a newer car. The total amount paid out of your savings account is $\$ 7,000$, and the car will have 28,000 miles of prior use.
2. Spend the $\$ 1,000$ insurance check and $\$ 1,000$ of savings to fix the car. The total amount paid out of your savings is $\$ 1,000$, and the car will have 58,000 miles of prior use.
3. Spend the $\$ 1,000$ insurance check and $\$ 1,000$ of your savings to fix the car and then sell the car for $\$ 4,500$. Spend the $\$ 4,500$ plus $\$ 5,500$ of additional savings to buy the newer car. The total amount paid out of savings is $\$ 6,500$, and the car will have 28,000 miles.
4. Give the car to a part-time mechanic, who will repair it for $\$ 1,100$ ($\$ 1,000$ insurance and $\$ 100$ of your savings), but will take an additional month of repair time. You will also have to rent a car for that time at $\$ 400 /$ month (paid out of savings). The total amount paid out of savings is $\$ 500$, and the car will have 58,000 miles on the odometer.
5. Same as Alternative 4 , but you then sell the car for $\$ 4,500$ and use this money plus $\$ 5,500$ of additional savings to buy the newer car. The total amount paid out of savings is $\$ 6,000$, and the newer car will have 28,000 miles of prior use.

ASSUMPTIONS:

1. The less reliable repair shop in Alternatives 4 and 5 will not take longer than one extra month to repair the car.
2. Each car will perform at a satisfactory operating condition (as it was originally intended) and will provide the same total mileage before being sold or salvaged.
3. Interest earned on money remaining in savings is negligible.

STEP 3-Estimate the Cash Flows for Each Alternative (Principle 2 should be adhered to in this step.)

1. Alternative 1 varies from all others because the car is not to be repaired at all but merely sold. This eliminates the benefit of the $\$ 500$ increase in the value of the car when it is repaired and then sold. Also this alternative leaves no money in your savings account. There is a cash flow of $-\$ 8,000$ to gain a newer car valued at $\$ 10,000$.
2. Alternative 2 varies from Alternative 1 because it allows the old car to be repaired. Alternative 2 differs from Alternatives 4 and 5 because it utilizes a more expensive ($\$ 500$ more) and less risky repair facility. It also varies from Alternatives 3 and 5 because the car will be kept. The cash flow is $-\$ 2,000$ and the repaired car can be sold for $\$ 4,500$.
3. Alternative 3 gains an additional $\$ 500$ by repairing the car and selling it to buy the same car as in Alternative 1. The cash flow is $-\$ 7,500$ to gain the newer car valued at $\$ 10,000$.
4. Alternative 4 uses the same idea as Alternative 2, but involves a less expensive repair shop. The repair shop is more risky in the quality of its end product, but will only cost $\$ 1,100$ in repairs and $\$ 400$ in an additional month's rental of a car. The cash flow is $-\$ 1,500$ to keep the older car valued at $\$ 4,500$.
5. Alternative 5 is the same as Alternative 4 , but gains an additional $\$ 500$ by selling the repaired car and purchasing a newer car as in Alternatives 1 and 3. The cash flow is $-\$ 7,000$ to obtain the newer car valued at $\$ 10,000$.

STEP 4-Select a Criterion: It is very important to use a consistent viewpoint (Principle 3) and a common unit of measure (Principle 4) in performing this step. The viewpoint in this situation is yours (the owner of the wrecked car).

The value of the car to the owner is its market value (i.e., $\$ 10,000$ for the newer car and $\$ 4,500$ for the repaired car). Hence, the dollar is used as the consistent value against which everything is measured. This reduces all decisions to a quantitative level, which can then be reviewed later with qualitative factors that may carry their own dollar value (e.g., how much is low mileage or a reliable repair shop worth?).

STEP 5-Analyze and Compare the Alternatives: Make sure you consider all relevant criteria (Principle 5).

1. Alternative 1 is eliminated, because Alternative 3 gains the same end result and would also provide the car owner with $\$ 500$ more cash. This is experienced with no change in the risk to the owner. $($ Car value $=$ $\$ 10,000$, savings $=0$, total worth $=\$ 10,000$.)
2. Alternative 2 is a good alternative to consider, because it spends the least amount of cash, leaving $\$ 6,000$ in the bank. Alternative 2 provides the same end result as Alternative 4, but costs $\$ 500$ more to repair. Therefore, Alternative 2 is eliminated. $($ Car value $=\$ 4,500$, savings $=\$ 6,000$, total worth $=\$ 10,500$.)
3. Alternative 3 is eliminated, because Alternative 5 also repairs the car but at a lower out-of-savings cost ($\$ 500$ difference), and both Alternatives 3 and 5 have the same end result of buying the newer car. (Car value $=\$ 10,000$, savings $=\$ 500$, total worth $=\$ 10,500$.)
4. Alternative 4 is a good alternative, because it saves $\$ 500$ by using a cheaper repair facility, provided that the risk of a poor repair job is judged to be small. (Car value $=\$ 4,500$, savings $=\$ 6,500$, total worth $=\$ 11,000$.)
5. Alternative 5 repairs the car at a lower cost ($\$ 500$ cheaper) and eliminates the risk of breakdown by selling the car to someone else at an additional $\$ 500$ gain. $($ Car value $=\$ 10,000$, savings $=\$ 1,000$, total worth $=$ $\$ 11,000$.)

STEP 6-Select the Best Alternative: When performing this step of the procedure, you should make uncertainty explicit (Principle 6). Among the uncertainties that can be found in this problem, the following are the most relevant to the decision. If the original car is repaired and kept, there is a possibility that it would have a higher frequency of breakdowns (based on personal experience). If a cheaper repair facility is used, the chance of a later breakdown is even greater (based on personal experience). Buying a newer car will use up most of your savings. Also, the newer car purchased may be too expensive, based on the additional price paid (which is at least $\$ 6,000 / 30,000$ miles $=20$ cents per mile). Finally, the newer car may also have been in an accident and could have a worse repair history than the presently owned car.

Based on the information in all previous steps, Alternative 5 was actually chosen.

STEP 7-Monitor the Performance of Your Choice

This step goes hand-in-hand with Principle 7 (revisit your decisions). The newer car turned out after being "test driven" for 20,000 miles to be a real beauty. Mileage was great, and no repairs were needed. The systematic process of identifying and analyzing alternative solutions to this problem really paid off!

1-17 Imprudent use of electronic mail, for example, can involve legal issues, confidential financial data, trade secrets, regulatory issues, public relations goofs, etc. These matters are difficult to "dollarize" but add to the $\$ 30,000$ annual savings cited in the problem. Surfing the web inappropriately can lead to legal prosecution for pornography violations.

1-18 (a) Value of metal in collection $=(5,000 / 130 \mathrm{lb})(0.95)(\$ 3.50 / \mathrm{lb})$ $+(5,000 / 130 \mathrm{lb})(0.05)(\$ 1.00 / \mathrm{lb})=\$ 129.81$

Each penny is worth about 2.6 cents for its metal content. The numismatic value of each coin is most likely much greater. Note: It is illegal to melt down coins.
(b) This answer is left to the individual student. In general, the cost of purchases would go up slightly. The inflation rate would be adversely affected if all purchases were rounded up to the nearest nickel. Additional note: The cost of producing a nickel is almost 10 cents. Maybe the U.S. government should get out of the business of minting coins and turn over the minting operation to privately-owned subcontractors.

1-19 Left to student.

1-20 Left to student.

Solutions to Chapter 2 Problems

A Note To Instructors: Because of volatile energy prices in today's world, the instructor is encouraged to vary energy prices in affected problems (e.g. the price of a gallon of gasoline) plus and minus 50 percent and ask students to determine whether this range of prices changes the recommendation in the problem. This should make for stimulating inclass discussion of the results.

2-1 Fixed Cost Elements:

- Executive salaries and the related cost of benefits
- Salaries and other expenses associated with operating a legal department
- Operation and maintenance ($\mathrm{O} \& \mathrm{M}$) expenses for physical facilities (buildings, parking lots, landscaping, etc.)
- Insurance, property taxes, and any license fees
- Other administrative expenses (personnel not directly related to production; copying, duplicating, and graphics support; light vehicle fleet; etc.)
- Interest cost on borrowed capital

Variable Cost Elements:

- Direct labor
- Materials used in the product or service
- Electricity, lubricating and cutting oil, and so on for equipment used to produce a product or deliver a service
- Replacement parts and other maintenance expenses for jigs and fixtures
- Maintenance material and replacement parts for equipment used to produce a product or deliver a service
- The portion of the costs for a support activity (to production or service delivery) that varies with quantity of output (e.g., for central compressed air support: electricity, replacement parts, and other O\&M expenses)

	Fixed	Variable
Raw Materials		X
Direct Labor		X
Supplies	X	X
Utilities*	X	X
Property Taxes	X	
Administrative Salaries	X	
Payroll Taxes	X	X
Insurance-Building and Equipment	X	
Clerical Salaries	X	X
Sales Commissions	X	
Rent		
Interest on Borrowed Money		
*Classification is situation dependent		

2-3 (a) \# cows $=\frac{1,000,000 \text { miles } / \text { year }}{(365 \text { days } / \text { year) }(15 \text { miles } / \text { day })}=182.6$ or 183 cows
Annual cost $=(1,000,000$ miles $/$ year $)(\$ 5 / 60$ miles $)=\$ 83,333$ per year
(b) Annual cost of gasoline $=\frac{1,000,000 \text { miles } / \text { year }}{30 \text { miles } / \text { gall on }}(\$ 3 /$ gallon $)=\$ 100,000$ per year

It would cost $\$ 16,667$ more per year to fuel the fleet of cars with gasoline.

Cost	Site A	Site B
Rent	$=\$ 5,000$	$=\$ 100,000$
Hauling	$(4)(200,000)(\$ 1.50)=\$ 1,200,000$	$(3)(200,000)(\$ 1.50)=\$ 900,000$
Total	$\$ 1,205,000$	$\$ 1,000,000$

Note that the revenue of $\$ 8.00 / \mathrm{yd}^{3}$ is independent of the site selected. Thus, we can maximize profit by minimizing total cost. The solid waste site should be located in Site B.

2-5 Stan's asking price of $\$ 4,000$ is probably too high because the new transmission adds little value to the N.A.D.A. estimate of the car's worth. (Low mileage is a typical consideration that may inflate the N.A.D.A. estimate.) If Stan can get $\$ 3,000$ for his car, he should accept this offer. Then the $\$ 4,000-$ $\$ 3,000=\$ 1,000$ "loss" on his car is a sunk cost.

2-6 The $\$ 97$ you spent on a passport is a sunk cost because you cannot get your money back. If you decide to take a trip out of the U.S. at a later date, the passport's cost becomes part of the fixed cost of making the trip (just as the cost of new luggage would be).

2-7 If the value of the re-machining option ($\$ 60,000$) is reasonably certain, this option should be chosen. Even if the re-machined parts can be sold for only $\$ 45,001$, this option is attractive. If management is highly risk adverse (they can tolerate little or no risk), the second-hand market is the way to proceed to guarantee $\$ 15,000$ on the transaction.

2-8 The certainty of making $\$ 200,000-\$ 120,000=\$ 80,000$ net income is not particularly good. If your friend keeps her present job, she is turning away from a risky $\$ 80,000$ gain. This "opportunity cost" of $\$ 80,000$ balanced in favor of a sure $\$ 60,000$ would indicate your friend is risk averse and does not want to work hard as an independent consultant to make an extra \$20,000 next year.

2-9 (a) If you purchase a new car, you are turning away from a risky 20% per year return. If you are a risk taker, your opportunity cost is 20%, otherwise; it is 6% per year.
(b) When you invest in the high tech company's common stock, the next best return you've given up is 6% per year. This is your opportunity cost in situation (b).

2-10 (a) The life cycle cost concept encompasses a time horizon for a product, structure, system, or service from the initial needs assessment to final phaseout and disposal activities. Definition of requirements; conceptual design, advanced development, and prototype testing; detailed design and resource acquisition for production or construction; actual production or construction; and operation and customer use, and maintenance and support are other primary activities involved during the life cycle.
(b) The acquisition phase includes the definitions of requirements as well as the conceptual and detailed design activities. It is during these activities that the future costs to produce (or construct), operate, and maintain a product, structure, system, or service are predetermined. Since these future costs (during the operation phase) are $80-90$ percent of the life cycle costs, the greatest potential for lowering life cycle costs is during the acquisition phase (in the definition of requirements and design activities).
(a)

(b) Fixed costs that could change the BE point from 62 passengers to a lower number include: reduced aircraft insurance costs (by re-negotiating premiums with the existing insurance company or a new company), lower administrative expenses in the front office, increased health insurance costs for the employees (i.e. lowering the cost of the premiums to the airline company) by raising the deductibles on the group policy.
(c) Variable costs that could be reduced to lower the BE point include: no more meals on flights, less external air circulated throughout the cabin, fewer flight attendants. Note: One big cost is fuel, which is fixed for a given flight but variable with air speed. The captain can fly the aircraft at a lower speed to save fuel.

2-12 Re-write the price-demand equation as follows: $p=2,000-0.1 D$. Then,

$$
\mathrm{TR}=p \cdot D=2,000 D-0.1 D^{2}
$$

The first derivative of TR with respect to D is

$$
\mathrm{d}(\mathrm{TR}) / \mathrm{d} D=2,000-0.2 D
$$

This, set equal to zero, yields the \hat{D} that maximizes TR. Thus,

$$
\begin{aligned}
& 2,000-0.2 \hat{D}=0 \\
& \hat{D}=10,000 \text { units per month }
\end{aligned}
$$

What is needed to determine maximum monthly profit is the fixed cost per month and the variable cost per lash adjuster.

2-13
$p=150-0.01 D$
$C_{F}=\$ 50,000$ $c_{v}=\$ 40 /$ unit

Profit $=150 D-0.01 D^{2}-50,000-40 D=110 D-0.01 D^{2}-50,000$
$\mathrm{d}($ Profit $) / \mathrm{d} D=110-0.02 D=0$
$\hat{D}=5,500$ units per year, which is less than maximum anticipated demand

At $D=5,500$ units per year, Profit $=\$ 252,500$ and $p=\$ 150-0.01(5,500)=\$ 95 /$ unit.

2-14 (a) $\mathrm{p}=600-0.05 \mathrm{D} ; \quad \mathrm{C}_{\mathrm{F}}=\$ 900,000 /$ month; $\quad \mathrm{c}_{\mathrm{v}}=\$ 131.50$ per unit
The unit demand, D , is one thousand board feet.

$$
\begin{equation*}
\mathrm{D}^{*}=\frac{\mathrm{a}-\mathrm{c}_{\mathrm{v}}}{2 \mathrm{~b}}=\frac{600-131.50}{2(0.05)}=\underline{4,685 \mathrm{units} / \mathrm{month}} \tag{Eqn.2-10}
\end{equation*}
$$

$$
\begin{aligned}
\text { Profit (loss) } & =600 \mathrm{D}-0.05 \mathrm{D}^{2}-(900,000+131.50 \mathrm{D}) \\
& =\left[600(4,685)-0.05(4,685)^{2}\right]-[\$ 900,000+\$ 131.50(4,685)] \\
& =\$ 197,461.25 / \text { month } \quad(\text { maximum profit })
\end{aligned}
$$

(b) $\quad \mathrm{D}^{\prime}=\frac{468.5 \pm \sqrt{(468.5)^{2}-4(0.05)(9,000,000)}}{2(0.05)}$
$\mathrm{D}_{1}^{\prime}=\frac{468.5-198.73}{0.1}=2,698$ units $/$ month
$\mathrm{D}_{2}^{\prime}=\frac{468.5+198.73}{0.1}=6,672$ units $/ \mathrm{month}$
Range of profitable demand is $\underline{2,698}$ units to 6,672 units per month.

2-15
(a) Profit $=\left[38+\frac{2700}{\mathrm{D}}-\frac{5000}{\mathrm{D}^{2}}\right] \mathrm{D}-1000-40 \mathrm{D}$

$$
=38 \mathrm{D}+2700-\frac{5000}{\mathrm{D}}-1000-40 \mathrm{D}
$$

Profit $=-2 \mathrm{D}-\frac{5000}{\mathrm{D}}+1700$
$\frac{d(\text { Profit })}{d \mathrm{D}}=-2+\frac{5000}{\mathrm{D}^{2}}=0$
or, $\quad \mathrm{D}^{2}=\frac{5000}{2}=2500 \quad$ and $\mathrm{D}^{*}=\underline{50 \text { units per month }}$
(b) $\frac{d^{2} \text { (Profit) }}{d \mathrm{D}^{2}}=\frac{-10,000}{\mathrm{D}^{3}}<0$ for $\mathrm{D}>1$

Therefore, $\underline{D}^{*}=50$ is a point of maximum profit.

$$
\begin{aligned}
& =\left(15 X-0.2 X^{2}\right)-\left(12+0.3 X+0.27 X^{2}\right) \\
& =14.7 X-0.47 X^{2}-12
\end{aligned}
$$

$$
\frac{d \text { Profit }}{d \mathrm{X}}=0=14.7-0.94 \mathrm{X}
$$

$X=\underline{15.64 \text { megawatts }}$
Note: $\frac{d^{2} \text { Profit }}{d \mathrm{X}^{2}}=-0.94$ thus, $\mathrm{X}=15.64$ megawatts maximizes profit

2-17 Breakeven point in units of production:
$\mathrm{C}_{\mathrm{F}}=\$ 100,000 / \mathrm{yr} ; \mathrm{C}_{\mathrm{V}}=\$ 140,000 / \mathrm{yr}$ (70% of capacity)
Sales $=\$ 280,000 / \mathrm{yr}$ (70% of capacity); $\mathrm{p}=\$ 40 /$ unit
Annual Sales (units) $=\$ 280,000 / \$ 40=7,000$ units $/ \mathrm{yr}(70 \%$ capacity $)$
$\mathrm{c}_{\mathrm{v}}=\$ 140,000 / 7,000=\$ 20 /$ unit
$\mathrm{D}^{\prime}=\frac{\mathrm{C}_{\mathrm{F}}}{\mathrm{p}-\mathrm{c}_{\mathrm{v}}}=\frac{\$ 100,000}{(\$ 40-\$ 20)}=5,000$ units $/ \mathrm{yr}$
or in terms of capacity, we have: 7,000 units/ $0.7=x$ units $/ 1.0$

Thus, $x(100 \%$ capacity $)=7,000 / 0.7=10,000$ units $/ \mathrm{yr}$
$\mathrm{D}^{\prime}(\%$ of cap acity $)=\frac{\$ 5,000}{(10,000}=\underline{0.5 \text { or } 50 \% \text { of capacity }}$

2-18 20,000 tons/yr. (2,000 pounds $/$ ton $)=40,000,000$ pounds per year of zinc are produced.
The variable cost per pound is $\$ 20,000,000 / 40,000,000$ pounds $=\$ 0.50$ per pound.
(a) Profit/yr $=(40,000,000$ pounds $/$ year $)(\$ 1.00-\$ 0.50)-\$ 17,000,000$
$=\$ 20,000,000-\$ 17,000,000$
$=\$ 3,000,000$ per year
The mine is expected to be profitable.
(b) If only 17,000 tons ($=34,000,000$ pounds) are produced, then

Profit/yr $=(34,000,000$ pounds/year $)(\$ 1.00-\$ 0.50)-\$ 17,000,000=0$
Because Profit $=0,17,000$ tons per year is the breakeven point production level for this mine. A loss would occur for production levels < 17,000 tons/year and a profit for levels > 17,000 tons per year.

2-19 (a) $\mathrm{BE}=\$ 1,000,000 /(\$ 29.95-\$ 20.00)=100,503$ customers per month
(b) New BE point $=\$ 1,000,000 /(\$ 39.95-\$ 25.00)=66,890$ per month
(c) For 75,000 subscribers per month, profit equals

$$
75,000(\$ 39.95-\$ 25.00)-\$ 1,000,000=\$ 121,250 \text { per month }
$$

This improves on the monthly loss experienced in part (a).

2-20
(a) $\quad \mathrm{D}^{\prime}=\frac{\mathrm{C}_{\mathrm{F}}}{\mathrm{p}-\mathrm{c}_{\mathrm{v}}}=\frac{\$ 2,000,000}{(\$ 90-\$ 40) / \text { unit }}=\underline{40,000 \text { units per year }}$

(b) Profit (Loss) $=$ Total Revenue - Total Cost

$$
\begin{aligned}
(90 \% \text { Capacity }) & =90,000(\$ 90)-[\$ 2,000,000+90,000(\$ 40)] \\
& =\$ \underline{2,500,000} \text { per year } \\
(100 \% \text { Capacity }) & =[90,000(\$ 90)+10,000(\$ 70)]-[\$ 2,000,000+100,000(\$ 40)] \\
& =\$ \underline{2,800,000} \text { per year }
\end{aligned}
$$

2-21 Annual savings are at least equal to $(\$ 60 / \mathrm{lb})(600 \mathrm{lb})=\$ 36,000$. So the company can spend no more than $\$ 36,000$ (conservative) and still be economical. Other factors include ease of maintenance / cleaning, passenger comfort and aesthetic appeal of the improvements. Yes, this proposal appears to have merit so it should be supported.

2-22 Jerry's logic is correct if the AC system does not degrade in the next ten years (very unlikely). Because the leak will probably get worse, two or more refrigerant re-charges per year may soon become necessary. Jerry's strategy could be to continue re-charging his AC system until two re-charges are required in a single year. Then he should consider repairing the evaporator (and possibly other faulty parts of his system).

2-23 Over 81,000 miles, the gasoline-only car will consume 2,700 gallons of fuel. The flex-fueled car will use 3,000 gallons of E85. So we have

$$
(3,000 \text { gallons })(\mathrm{X})+\$ 1,000=(2,700 \text { gallons })(\$ 2.89 / \mathrm{gal})
$$

and

$$
X=\$ 2.268 \text { per gallon }
$$

This is 21.5% less expensive than gasoline. Can our farmers pull it off - maybe with government subsidies?

2-24 (a) Total Annual Cost $(T A C)=$ Fixed cost + Cost of Heat Loss $=450 \mathrm{X}+50+\frac{4.80}{\mathrm{X}^{1 / 2}}$

$$
\frac{d(\mathrm{TAC})}{d \mathrm{X}}=0=450-\frac{2.40}{\mathrm{X}^{3 / 2}}
$$

$$
X^{3 / 2}=\frac{2.40}{450}=0.00533
$$

$X^{*}=\underline{0.0305 \text { meters }}$
(b) $\frac{d^{2}(\mathrm{TAC})}{d \mathrm{X}^{2}}=\frac{3.6}{\mathrm{X}^{5 / 2}}>0 \quad$ for $\mathrm{X}>0$.

Since the second derivative is positive, $\mathrm{X}^{*}=0.0305$ meters is a minimum cost thickness.
(c) The cost of the extra insulation (a directly varying cost) is being traded-off against the value of reduction in lost heat (an indirectly varying cost).

2-25 Let $X=$ number of weeks to delay harvesting
and $R=$ total revenue as a function of X
$\mathrm{R}=(1,000$ bushels $+1,000$ bushels $\cdot \mathrm{X})(\$ 3.00 /$ bushel $-\$ 0.50 /$ bushel $\cdot \mathrm{X})$
$R=\$ 3,000+\$ 2,500 X-\$ 500 X^{2}$
$\frac{\mathrm{dR}}{\mathrm{dX}}=2,500-1,000 \mathrm{X}=0$
So $\mathrm{X}^{*}=2.5$ weeks
$\frac{d^{2} R}{d X^{2}}=-1,000$ so, we have a stationary point, X^{*}, that is a maximum.
Maximum revenue $=\$ 3,000+\$ 2,500(2.5)-500(2.5)^{2}=\underline{\$ 6,125}$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{T}}=\mathrm{C}_{\mathrm{o}}+\mathrm{C}_{\mathrm{c}}=\mathrm{knv}^{2}+\frac{\$ 1,500 \mathrm{n}}{\mathrm{v}} \\
& \frac{d \mathrm{C}_{\mathrm{T}}}{d \mathrm{v}}=0=2 \mathrm{kv}-\frac{1,500}{\mathrm{v}^{2}}=\mathrm{kv}^{3}-750 \\
& \mathrm{v}=\sqrt[3]{\frac{750}{\mathrm{k}}}
\end{aligned}
$$

To find k, we know that

$$
\begin{aligned}
& \frac{\mathrm{C}_{0}}{\mathrm{n}}=\$ 100 / \mathrm{mile} \text { at } \mathrm{v}=12 \mathrm{miles} / \mathrm{hr} \\
& \frac{\mathrm{C}_{0}}{\mathrm{n}}=\mathrm{kv}^{2}=\mathrm{k}(12)^{2}=100
\end{aligned}
$$

and

$$
\mathrm{k}=100 / 144=0.6944
$$

so, $\quad v=\sqrt[3]{\frac{750}{0.6944}}=10.25 \mathrm{miles} / \mathrm{hr}$.
The ship should be operated at an average velocity of 10.25 mph to minimize the total cost of operation and perishable cargo.

Note: The second derivative of the cost model with respect to velocity is:

$$
\frac{d^{2} \mathrm{C}_{\mathrm{T}}}{d \mathrm{v}^{2}}=1.388 \mathrm{n}+3,000 \frac{\mathrm{n}}{\mathrm{v}^{3}}
$$

The value of the second derivative will be greater than 0 for $n>0$ and $v>0$. Thus we have found a minimum cost velocity.

	R 11	R19	R30	R38
A. Investment cost	$\$ 1,800$	$\$ 2,700$	$\$ 3,900$	$\$ 4,800$
B. Annual Heating Load $\left(10^{6} \mathrm{Btu} / \mathrm{yr}\right)$	74	69.8	67.2	66.2
C. Cost of heat loss/yr	$\$ 1,609.50$	$\$ 1,518.15$	$\$ 1,461.60$	$\$ 1,439.85$
D. Cost of heat loss over 25 years	$\$ 40,238$	$\$ 37,954$	$\$ 36,540$	$\$ 35,996$
E. Total Life Cycle Cost = A + D	$\$ 42,038$	$\$ 40,654$	$\$ 40,440$	$\$ 40,796$

R30 is the most economical insulation thickness.

2-28 $\left(293 \mathrm{kWh} / 10^{6} \mathrm{Btu}\right)(\$ 0.15 / \mathrm{kWh})=\$ 43.95 / 10^{6} \mathrm{Btu}$

	R 11	R 19	R 30	R 38
A. Investment cost	$\$ 2,400$	$\$ 3,600$	$\$ 5,200$	$\$ 6,400$
B. Annual Heating Load $\left(10^{6} \mathrm{Btu} / \mathrm{yr}\right)$	74	69.8	67.2	66.2
C. Cost of heat loss/yr	$\$ 3,252$	$\$ 3,068$	$\$ 2,953$	$\$ 2,909$
D. Cost of heat loss over 25 years	$\$ 81,308$	$\$ 76,693$	$\$ 73,836$	$\$ 72,737$
E. Total Life Cycle Cost = A + D	$\$ 83,708$	$\$ 80,293$	$\$ 79,036$	$\$ 79,137$

Select R30 to minimize total life cycle cost.

2-29
(a) $\frac{d \mathrm{C}}{d \lambda}=-\frac{\mathrm{C}_{\mathrm{I}}}{\lambda^{2}}+\mathrm{C}_{\mathrm{R}} \mathrm{t}=0$
or, $\lambda^{2}=\mathrm{C}_{\mathrm{I}} / \mathrm{C}_{\mathrm{R}} \mathrm{t}$
and, $\lambda^{*}=\left(\mathrm{C}_{\mathrm{I}} / \mathrm{C}_{\mathrm{R}} \mathrm{t}\right)^{1 / 2}$; we are only interested in the positive root.
(b) $\frac{d^{2} \mathrm{C}}{d \lambda^{2}}=\frac{2 \mathrm{C}_{\mathrm{I}}}{\lambda^{3}}>0$ for $\lambda>0$

Therefore, λ^{*} results in a minimum life-cycle cost value.
(c) Investment cost versus total repair cost

2-30 $\quad\left(\frac{100,000}{22 \mathrm{mpg}}-\frac{100,000}{28 \mathrm{mpg}}\right)(\$ 3.00 /$ gallon $)=\$ 2,922$
Total extra amount $=\$ 2,500+\$ 2,922=\underline{\$ 5,422}$
Assume the time value of money can be ignored and that comfort and aesthetics are comparable for the two cars.

2-31 (a) With Dynolube you will average $(20 \mathrm{mpg})(1.01)=20.2$ miles per gallon (a 1% improvement). Over 50,000 miles of driving, you will save

$$
\frac{50,000 \mathrm{miles}}{20 \mathrm{mpg}}-\frac{50,000 \mathrm{miles}}{20.2 \mathrm{mpg}}=24.75 \text { gallons of gasoline. }
$$

This will save (24.75 gallons)($\$ 3.00$ per gallon $)=\$ 74.25$.
(b) Yes, the Dynolube is an economically sound choice.

2-32 The cost of tires containing compressed air is $(\$ 200 / 50,000$ miles $)=\$ 0.004$ per mile. Similarly, the cost of tires filled with 100% nitrogen is $(\$ 220 / 62,500$ miles $)=\$ 0.00352$ per mile. On the face of it, this appears to be a good deal if the claims are all true (a big assumption). But recall that air is 78% nitrogen, so this whole thing may be a gimmick to take advantage of a gullible public. At 200,000 miles of driving, one original set of tires and three replacements would be needed for compressed-air tires. One original set and two replacements (close enough) would be required for the 100% nitrogen-filled tires. What other assumptions are being made?

2-33

Cost Factor	Brass-Copper Alloy	Plastic Molding
Casting $/ \mathrm{pc}$	$(25 \mathrm{lb})(\$ 3.35 / \mathrm{lb})=\$ 83.75$	$(20 \mathrm{lb})(\$ 7.40 / \mathrm{lb})=\$ 148.00$
Machining $/ \mathrm{pc}$	$\$ 6.00$	0.00
Weight Penalty $/ \mathrm{pc}$	$(25 \mathrm{lb}-20 \mathrm{lb})(\$ 6 / \mathrm{lb})=\$ 30.00$	0.00
Total Cost $/ \mathrm{pc}$	$\$ 119.75$	$\$ 148.00$

The Brass-Copper alloy should be selected to save $\$ 148.00-\$ 119.75=\$ 28.25$ over the life cycle of each radiator.
(a) Machine A

Non-defective units/day $=(100$ units/hr $)(7 \mathrm{hrs} /$ day $)(1-0.25)(1-0.03)$

$$
\approx 509 \text { units/day }
$$

Note: 3 months $=(52$ weeks $/$ year $) / 4=13$ weeks
Non-defective units/3-months $=(13$ weeks)(5 days/week)(509 units/day)

$$
=33,085 \text { units (> 30,000 required) }
$$

Machine B

Non-defective units/day $=(130$ units/hr $)(6 \mathrm{hrs} /$ day $)(1-0.25)(1-0.10)$

$$
\approx 526 \text { units/day }
$$

Non-defective units/3-months = (13 weeks)(5 days/week)(526 units/day)

$$
=34,190 \text { units }(>30,000 \text { required })
$$

Either machine will produce the required 30,000 non-defective units/3-months
(b) Strategy: Select the machine that minimizes costs per non-defective unit since revenue for 30,000 units over 3-months is not affected by the choice of the machine (Rule 2). Also assume capacity reductions affect material costs but not labor costs.

Machine A

$$
\begin{aligned}
\text { Total cost/day }= & (100 \mathrm{units} / \mathrm{hr})(7 \mathrm{hrs} / \text { day })(1-0.25)(\$ 6 / \mathrm{unit}) \\
& +(\$ 15 / \mathrm{hr}+\$ 5 / \mathrm{hr})(7 \mathrm{hrs} / \text { day }) \\
= & \$ 3,290 / \text { day }
\end{aligned}
$$

Cost/non-defective unit $=(\$ 3,290 /$ day $) /(509$ non-defective units/day $)$

$$
=\$ 6.46 / \text { unit }
$$

Machine B

Total cost/day $=(130$ units/hr)(6 hrs/day)(1-0.25)(\$6/unit)

$$
+(\$ 15 / \mathrm{hr}+\$ 5 / \mathrm{hr})(6 \mathrm{hrs} / \text { day })
$$

$$
=\$ 3,630 / \text { day }
$$

Cost/non-defective unit $=(\$ 3,630 /$ day $) /(526$ non-defective units/day $)$

$$
=\$ 6.90 / \text { unit }
$$

Select Machine A.

2-35 Strategy: Select the design which minimizes total cost for 125,000 units/year (Rule 2). Ignore the sunk costs because they do not affect the analysis of future costs.
(a) Design A

Total cost/125,000 units $=(16 \mathrm{hrs} / 1,000$ units $)(\$ 18.60 / \mathrm{hr})(125,000)$

$$
+(4.5 \mathrm{hrs} / 1,000 \text { units })(\$ 16.90 / \mathrm{hr})(125,000)
$$

$=\$ 46,706.25$, or $\$ 0.37365 /$ unit
Design B
Total cost/ 125,000 units $=(7 \mathrm{hrs} / 1,000$ units $)(\$ 18.60 / \mathrm{hr})(125,000)$
$+(12 \mathrm{hrs} / 1,000$ units $)(\$ 16.90 / \mathrm{hr})(125,000)$
$=\$ 41,625$, or $\$ 0.333 /$ unit

Select Design B

(b) Savings of Design B over Design A are:

Annual savings $(125,000$ units $)=\$ 46,706.25-\$ 41,625=\$ 5081.25$
Or, savings/unit $=\$ 0.37365-\$ 0.333=\$ 0.04065 /$ unit.

2-36 Profit per day $=$ Revenue per day - Cost per day

$$
\begin{aligned}
= & (\text { Production rate })(\text { Production time })(\$ 30 / \text { part })[1-(\% \text { rejected }+\% \text { tested }) / 100] \\
& -(\text { Production rate })(\text { Production time })(\$ 4 / \text { part })-(\text { Production time })(\$ 40 / \mathrm{hr})
\end{aligned}
$$

Process 1: Profit per day $=(35$ parts/hr) $(4 \mathrm{hrs} /$ day $)(\$ 30 /$ part $)(1-0.2)-$
(35 parts/hr)(4 hrs/day)(\$4/part) - (4 hrs/day)(\$40/hr)
$=\$ 2640 / \mathrm{day}$
Process 2: Profit per day $=(15$ parts/hr) $)(7 \mathrm{hrs} /$ day $)(\$ 30 /$ part $)(1-0.09)-$
(15 parts/hr)(7 hrs/day)(\$4/part) - (7 hrs/day)(\$40/hr) $=\$ 2155.60 /$ day

Process 1 should be chosen to maximize profit per day.

2-37 At 70 mph your car gets $0.8(30 \mathrm{mpg})=24 \mathrm{mpg}$ and at 80 mph it gets
$0.6(30 \mathrm{mpg})=18 \mathrm{mpg}$. The extra cost of fuel at 80 mph is:
$(400 \mathrm{miles} / 18 \mathrm{mpg}-400 \mathrm{miles} / 24 \mathrm{mpg})(\$ 3.00$ per gallon $)=\$ 16.67$
The reduced time to make the trip at 80 mph is about 45 minutes. Is this a good tradeoff in your opinion? What other factors are involved?

2-38 $5(4 \mathrm{X}+3 \mathrm{Y})=4(3 \mathrm{X}+5 \mathrm{Y})$ where $\mathrm{X}=$ units of profit per day from an 85 -octane pump and $\mathrm{Y}=$ units of profit per day from an 89 -octane pump. Setting them equal simplifies to $8 X=5 Y$, so the 89 -octane pump is more profitable for the store.

2-39 When electricity costs $\$ 0.15 / \mathrm{kWh}$ and operating hours $=4,000$:
$\operatorname{Cost}_{\mathrm{ABC}}=(100 \mathrm{hp} / 0.80)(0.746 \mathrm{~kW} / \mathrm{hp})(\$ 0.15 / \mathrm{kWh})(4,000 \mathrm{~h} / \mathrm{yr})+\$ 2,900+\$ 170=\$ 59,020$
Cost $_{\mathrm{XYZ}}=(100 \mathrm{hp} / 0.90)(0.746 \mathrm{~kW} / \mathrm{hp})(\$ 0.15 / \mathrm{kWh})(4,000 \mathrm{~h} / \mathrm{yr})+\$ 6,200+\$ 510=\$ 56,443$

Select pump XYZ.
When electricity costs $\$ 0.15 / \mathrm{kWh}$ and operating hours $=4,000$:
$\operatorname{Cost}_{\mathrm{ABC}}=(100 \mathrm{hp} / 0.80)(0.746 \mathrm{~kW} / \mathrm{hp})(\$ 0.15 / \mathrm{kWh})(3,000 \mathrm{~h} / \mathrm{yr})+\$ 2,900+\$ 170=\$ 45,033$
$\operatorname{Cost}_{\mathrm{XYZ}}=(100 \mathrm{hp} / 0.90)(0.746 \mathrm{~kW} / \mathrm{hp})(\$ 0.15 / \mathrm{kWh})(3,000 \mathrm{~h} / \mathrm{yr})+\$ 6,200+\$ 510=\$ 44,010$

Select pump XYZ.

$$
\mathrm{C}_{\mathrm{T}}=(10,000 \text { items })(\$ 8.50 / \text { item })=\$ 85,000
$$

Option B (Manufacture):
Direct Materials $=\$ 5.00 / \mathrm{item}$
Direct Labor $=\$ 1.50 /$ item
Overhead $\quad=\$ 3.00 /$ item

$$
\mathrm{C}_{\mathrm{T}}=(10,000 \text { items })(\$ 9.50 / \text { item })=\$ 95,000
$$

Choose Option A (Purchase Item).

2-41 Assume you cannot stand the anxiety associated with the chance of running out of gasoline if you elect to return the car with no gas in it. Therefore, suppose you leave three gallons in the tank as "insurance" that a tow-truck will not be needed should you run out of gas in an unfamiliar city. The cost (i.e., the security blanket) will be $(\$ 2.70+\$ 0.30=\$ 3.00) \times 3$ gallons $=\$ 9.00$. If you bring back the car with a full tank of gasoline, the extra cost will be $\$ 0.30 \mathrm{x}$ the capacity, in gallons, of the tank. Assuming a 15gallon tank, this option will cost you $\$ 4.50$. Hence, you will save $\$ 9.00-\$ 4.50=\$ 4.50$ by bringing back the car with a full tank of gasoline.

2-42 Assumptions: You can sell all the metal that is recovered
Method 1: $\begin{array}{lll}\text { Recovered ore } & =(0.62)(100,000 \text { tons }) & =62,000 \text { tons } \\ \text { Removal cost } & =(62,000 \text { tons })(\$ 23 / \mathrm{ton}) & =\$ 1,426,000 \\ \text { Processing cost } & =(62,000 \text { tons })(\$ 40 / \mathrm{ton}) & =\$ 2,480,000 \\ \text { Recovered metal } & =(300 \mathrm{lbs} / \mathrm{ton})(62,000 \mathrm{tons}) & =18,600,000 \mathrm{lbs} \\ \text { Revenues } & =(18,600,000 \mathrm{lbs})(\$ 0.8 / \mathrm{lb})=\$ 14,880,000 \\ \text { Profit }=\text { Revenues }- \text { Cost } & =\$ 14,880,000-(\$ 1,426,000+\$ 2,480,000) \\ & =\$ 10,974,000\end{array}$
Method 2: Recovered ore $=(0.5)(100,000$ tons $)=50,000$ tons
Removal cost $=(50,000$ tons $)(\$ 15 /$ ton $)=\$ 750,000$
Processing cost $=(50,000$ tons $)(\$ 40 /$ ton $)=\$ 2,000,000$
Recovered metal $=(300 \mathrm{lbs} /$ ton $)(50,000$ tons $)=15,000,000 \mathrm{lbs}$
Revenues $\quad=(15,000,000 \mathrm{lbs})(\$ 0.8 / \mathrm{lb})=\$ 12,000,000$

$$
\begin{aligned}
\text { Profit }=\text { Revenues }- \text { Cost } & =\$ 12,000,000-(\$ 750,000+\$ 2,000,000) \\
& =\$ 9,250,000
\end{aligned}
$$

Select Method 1 (62% recovered) to maximize total profit from the mine.

2-43 Profit/oz. (Method A) = \$1,350/oz. - (\$220/t-water)/(0.9 oz./t-water)(0.85)

$$
=\$ 1,062.42 / \mathrm{oz} .
$$

Profit/oz. $($ Method B) $=\$ 1,350 /$ oz. $-(\$ 160 / t-w a t e r) /(0.9$ oz./t-water)(0.65) $=\$ 1,076.50 / \mathrm{oz}$.

Select Method B

(a) False; (d) False; (g) False; (j) False; (m) True; (p) False; (s) False
(b) False;
(e) True;
(h) True; (k) True; (n) True;
(q) True;
(c) True; (f) True; (i) True; (l) False; (o) True; (r) True;

(a) Loss $=\frac{(1,750,000 \mathrm{Btu})\left(\frac{\mathrm{lb} \mathrm{coal}}{12,000 \mathrm{Btu}}\right)}{0.30}=486 \mathrm{lbs}$ of coal

(b) 486 pounds of coal produces $(486)(1.83)=889$ pounds of CO_{2} in a year.
(a) Let $\mathrm{X}=$ breakeven point in miles

Fuel cost $($ car dealer option $)=(\$ 2.00 / \mathrm{gal})(1 \mathrm{gal} / 20 \mathrm{miles})=\$ 0.10 / \mathrm{mile}$
Motor Pool Cost $=$ Car Dealer Cost
$(\$ 0.36 / \mathrm{mi}) \mathrm{X}=(6$ days $)(\$ 30 /$ day $)+(\$ 0.20 / \mathrm{mi}+\$ 0.10 / \mathrm{mi}) \mathrm{X}$
$\$ 0.36 \mathrm{X}=180+\$ 0.30 \mathrm{X} \quad$ and $\quad \mathrm{X}=\underline{3,000 \text { miles }}$
(b) 6 days $(100 \mathrm{miles} /$ day $)=600$ free miles

If the total driving distance is less than 600 miles, then the breakeven point equation is given by:
$(\$ 0.36 / \mathrm{mi}) \mathrm{X}=(6$ days $)(\$ 30 /$ day $)+(\$ 0.10 / \mathrm{mi}) \mathrm{X}$
$X=692.3$ miles >600 miles
This is outside of the range [0,600], thus renting from State Tech Motor Pool is best for distances less than 600 miles.

If driving more than 600 miles, then the breakeven point can be determined using the following equation:
$(\$ 0.36 / \mathrm{mi}) \mathrm{X}=(6$ days $)(\$ 30 /$ day $)+(\$ 0.20 / \mathrm{mi})(\mathrm{X}-600 \mathrm{mi})+(\$ 0.10 / \mathrm{mi}) \mathrm{X}$
$X=\underline{1,000 \text { miles } \quad \text { The true breakeven point is } 1000 \text { miles. } ~}$
(c) The car dealer was correct in stating that there is a breakeven point at 750 miles. If driving less than 900 miles, the breakeven point is:

$$
\begin{aligned}
& (\$ 0.34 / \mathrm{mi}) \mathrm{X}=(6 \text { days })(\$ 30 / \text { day })+(\$ 0.10 / \mathrm{mi}) \mathrm{X} \\
& X=750 \text { miles }<900 \text { miles }
\end{aligned}
$$

However, if driving more than 900 miles, there is another breakeven point.

$$
\begin{aligned}
& (\$ 0.34 / \mathrm{mi}) \mathrm{X}=(6 \text { days })(\$ 30 / \mathrm{day})+(\$ 0.28 / \mathrm{mi})(\mathrm{X}-900 \mathrm{mi})+(\$ 0.10 / \mathrm{mi}) \mathrm{X} \\
& \mathrm{X}=1800 \text { miles }>900 \text { miles }
\end{aligned}
$$

The car dealer is correct, but only if the group travels in the range between 750 miles and 1,800 miles. Since the group is traveling more than 1,800 miles, it is better for them to rent from State Tech Motor Pool.

This problem is unique in that there are two breakeven points. The following graph shows the two points.

Car Dealer v. State Tech Motor Pool

2-47 This problem is location specific. We'll assume the problem setting is in Tennessee. The eight years $(\$ 2,400 / \$ 300)$ to recover the initial investment in the stove is expensive (i.e. excessive) by traditional measures. But the annual cost savings could increase due to inflation. Taking pride in being "green" is one factor that may affect the homeowner's decision to purchase a corn-burning stove.

2-49 New annual heating load $=(230$ days $)\left(72{ }^{\circ} \mathrm{F}-46^{\circ} \mathrm{F}\right)=5,980$ degree days. Now, 136.7×10^{6} Btu are lost with no insulation. The following U-factors were used in determining the new heating load for the various insulation thicknesses.

	U-factor	Heating Load
R11	0.2940	$101.3 \times 10^{6} \mathrm{Btu}$
R19	0.2773	$95.5 \times 10^{6} \mathrm{Btu}$
R30	0.2670	$92 \times 10^{6} \mathrm{Btu}$
R38	0.2630	$90.6 \times 10^{6} \mathrm{Btu}$

	$\$ / \mathrm{kWhr}$ Energy Cost	$\$ / 10^{6} \mathrm{Btu}$ $\$ 25.20$			
		R 11	R 19	R 30	R38

Solutions to Case Study Exercises

In this problem we observe that "an ounce of prevention is worth a pound of cure." The ounce of prevention is the total annual cost of daylight use of headlights, and the pound of cure is postponement of an auto accident because of continuous use of headlights. Clearly, we desire to postpone an accident forever for a very small cost.

The key factors in the case study are the cost of an auto accident and the frequency of an auto accident. By avoiding an accident, a driver "saves" its cost. In postponing an accident for as long as possible, the "annual cost" of an accident is reduced, which is a good thing. So as the cost of an accident increases, for example, a driver can afford to spend more money each year to prevent it from happening through continuous use of headlights. Similarly, as the acceptable frequency of an accident is lowered, the total annual cost of prevention (daytime use of headlights) can also decrease, perhaps by purchasing less expensive headlights or driving less mileage each year.

Based on the assumptions given in the case study, the cost of fuel has a modest impact on the cost of continuous use of headlights. The same can be said for fuel efficiency. If a vehicle gets only 15 miles to the gallon of fuel, the total annual cost would increase by about 65%. This would then reduce the acceptable value of an accident to "at least one accident being avoided during the next 16 years." To increase this value to a more acceptable level, we would need to reduce the cost of fuel, for instance. Many other scenarios can be developed.

2-51 Suppose my local car dealer tells me that it costs no more than $\$ 0.03$ per gallon of fuel to drive with my headlights on all the time. For the case study, this amounts to (500 gallons of fuel per year) x $\$ 0.03$ per gallon $=\$ 15$ per year. So the cost effectiveness of continuous use of headlights is roughly six times better than for the situation in the case study.

Solutions to FE Practice Problems

2-52

$$
\begin{aligned}
& \mathrm{p}=400-\mathrm{D}^{2} \\
& \mathrm{TR}=\mathrm{p} \cdot \mathrm{D}=\left(400-\mathrm{D}^{2}\right) \mathrm{D}=400 \mathrm{D}-\mathrm{D}^{3} \\
& \mathrm{TC}=\$ 1125+\$ 100 \cdot \mathrm{D} \\
& \text { Total Profit } / \text { month }=\mathrm{TR}-\mathrm{TC}=400 \mathrm{D}-\mathrm{D}^{3}-\$ 1125-\$ 100 \mathrm{D} \\
& \\
& =-\mathrm{D}^{3}+300 \mathrm{D}-1125
\end{aligned} \quad \begin{array}{r}
\frac{d \mathrm{TP}}{d \mathrm{D}}=-3 \mathrm{D}^{2}+300=0 \rightarrow \mathrm{D}^{2}=100 \rightarrow \mathrm{D}^{*}=\underline{10 \text { units }} \\
\frac{d^{2} \mathrm{TP}}{d \mathrm{D}^{2}}=-6 \mathrm{D} ; \text { at } \mathrm{D}=\mathrm{D}^{*}, \quad \frac{d^{2} \mathrm{TP}}{d \mathrm{D}^{2}}=-60
\end{array}
$$

Negative, therefore maximizes profit.
Select (a)

Select (b)

$C_{F}=\$ 100,000+\$ 20,000=\$ 120,000$ per year
$\mathrm{C}_{\mathrm{V}}=\$ 15+\$ 10=\$ 25$ per unit
$\mathrm{p}=\$ 40$ per unit

$$
\mathrm{D}^{\prime}=\frac{\mathrm{C}_{\mathrm{F}}}{\mathrm{p}-\mathrm{c}_{\mathrm{v}}}=\frac{\$ 120,000}{(\$ 40-\$ 25)}=8,000 \text { units } / \mathrm{yr}
$$

Select (c)

2-55 Profit $=\mathrm{pD}-\left(\mathrm{C}_{\mathrm{F}}+\mathrm{C}_{\mathrm{V}} \mathrm{D}\right)$
At $\mathrm{D}=10,000$ units/yr,
Profit/yr $=(40)(10,000)-[120,000+(25)(10,000)]=\$ 30,000$
Select (e)

2-56 Profit $=\mathrm{pD}-\left(\mathrm{C}_{\mathrm{F}}+\mathrm{C}_{\mathrm{V}} \mathrm{D}\right)$
$60,000=35 \mathrm{D}-(120,000+25 \mathrm{D})$
$180,000=10 \mathrm{D} ; \mathrm{D}=\underline{18,000}$ units/yr

Select (d)

$$
\begin{aligned}
\text { Annual profit/loss } & =\text { Revenue }- \text { (Fixed costs }+ \text { Variable costs) } \\
& =\$ 300,000-[\$ 200,000+(0.60)(\$ 300,000)] \\
& =\$ 300,000-\$ 380,000 \\
& =-\$ 80,000
\end{aligned}
$$

Select (d)

2-58 Savings in first year $=(7,900,000$ chips $)(0.01 \mathrm{~min} / \mathrm{chip})(1 \mathrm{hr} / 60 \mathrm{~min})(\$ 8 / \mathrm{hr}+5.50 / \mathrm{hr})=\$ 17,775$

Select (d)

Solutions to Problems in Appendix 2-A

2-A-1 (a) Details of transactions
(a) Smith invested $\$ 35,000$ cash to start the business.
(b) Purchased $\$ 350$ of office supplies on account.
(c) Paid $\$ 30,000$ to acquire land as a future building site.
(d) Earned service revenue and received cash of \$1,900.
(e) Paid $\$ 100$ on account.
(f) Paid for a personal vacation, which is not a transaction of the business.
(g) Paid cash expenses for rent, $\$ 400$, and utilities, $\$ 100$.
(h) Sold office supplies for cost of $\$ 150$.
(i) Withdrew $\$ 1,200$ cash for personal use.

Analysis of Transactions:

(b) Financial Statements of Campus Apartments Locators

Income Statement
Month Ended July 31, 2010
Revenue:

Expenses:

Total expenses
500
Net income
\$1,400

Statement of Owner's Equity

Month Ended July 31, 2010

Jill Smith, capital, July 1, 2010	\$ 0
Add: Investment by owner	35,000
Net income for the month	1,400
	36,400
Less: Withdrawals by owner	$(1,200)$
Jill Smith, capital, July 31, 2010	\$35,200

Balance Sheet
July 31, 2010

Assets		Liabilities	
Cash	\$5,250	Accounts payable	\$ 250
Office supplies	200		
Land	30,000	Owner's Equity Jill Smith, capital	35,200
Total assets	35,450	Total liabilities and owner's equity	\$35,450

Peavy Design Income Statement Month Ended May 31, 2010			
Revenues: Service revenue ($\$ 1,100+\$ 5,000$)		\$	6,100
Expenses:			
Rent expense	\$1,200		
Advertising expense	660		
Total expenses			1,860
Net income		\$	4,240

Peavy Design Statement of Owner's Equity Month Ended May 31, 2010	
Daniel Peavy, capital, April 30, 2010	$\$ 23,660$
Add: Investments by owner $(\$ 12,000+\$ 1,700)$	13,700
Net income for the month	4,240
	41,600
Less: Withdrawals by owner	$(4,000)$
Daniel Peavy, capital, May 31, 2010	$\$ 37,600$

Peavy Design Balance Sheet May 31, 2010			
ASSETS		LIABILITIES	
Cash	\$ 6,090	Accounts payable	\$ 720
Accounts receivable	7,490		
Supplies	640	OWNER'S EQ	
Land	24,100	Daniel Peavy, capital	37,600
Total assets	\$ 38,320	Total liabilities and owner's equity	\$ 38,230

2-A-3 1. Overhead
Compensation for non-chargeable time, $0.15 \times \$ 3,600,000 \quad \$ 540,000$
Other costs
(a) Total overhead
\$1,989,000
(b) Direct labor, $0.85 \times \$ 3,600,000$

Overhead application rate, (a) \div (b)
2. Hourly rate:
$\$ 60,000 \div(48 \times 40)=\$ 60,000 \div 1,920$
\$31.25
Many students will forget that "his work there" includes an overhead application:

Direct labor, $10 \times \$ 31.25$
Applied overhead, $\$ 312.50 \times 0.65$
Total costs applied
We point out that direct-labor time on a job is usually compiled for all classes of engineers and then applied at their different compensation rates. Overhead is usually not applied on the piecemeal basis demonstrated here. Instead, it is applied in one step after all the labor costs of the job have been accumulated.

Solutions To Chapter 3 Problems

3-1 Left as an individual exercise by each student. One possible solution:

At a typical household, the cost of washing and drying a 12 pound load of laundry would include: water (\$0.40), detergent (\$0.25), washing machine - dryer equipment (\$1.50), electric power (\$0.75), and floor space ($\$ 0.10$). This totals $\$ 3.00$ for a load of laundry.

Ask your students to fine tune these numbers. Also ask them to comment on the statement that "your time is worth nothing unless you have an opportunity to use your time elsewhere" while your washer and dryer are busy. Why not add $\$ 5$ for your labor?

3-2 A representative cost and revenue structure for construction, 10-years of ownership and use, and the sale of a home is:

Cost or Revenue Category	Typical Cost and Revenue Elements
Captial Investment	Real estate (lot) cost; architect/engineering fees; construction costs (labor,material, other); working capital (tools, initial operating supplies, etc.); landscaping costs.
Annual Operating and Maintenance Costs	Utilities (electricity, water, gas, telephone, garbage); cable TV; painting (interior and exterior); yard upkeep (labor and materials); routine maintenance (furnace, air conditioner, hot water heater, etc.); insurance; taxes.
Major Repair or Replacement Costs	Roof; furnace; air conditioner; plumbing fixtures; garage door opener; driveway and sidewalks; patio; and so on.
Real Estate Fees	Acquisition; selling.
Asset Sales	Sale of home (year 10).

3-3 Left as an individual exercise by each student. One possible solution:
The cost of an oil and filter change would be approximately: five quarts of oil (\$5.50), oil filter (\$4.75), labor ($\$ 4.00$), and building / equipment ($\$ 3.00$). This totals $\$ 17.75$. The actual cost of an oil and filter change is around $\$ 20$, which leaves a profit of $\$ 2.25$ for the service station owner. This is a markup of 12.7% by the station. The station will make even more money when you need new wiper blades, a replacement tail-light, new fan belts, and so on. The $\$ 20$ oil change turns into a $\$ 75$ visit fairly quickly. Does this sound familiar?

Ask the students to supply other items to the "shopping list" of add-ons above.

3-4 (a) (62 million tons per year) $(0.05)=3.1$ million tons of greenhouse gas per year
$\frac{\$ 1.2 \text { billion }}{3.1 \text { million tons per year }}=\$ 387.10$ per ton
(b) (3 billion tons per year) $(0.03)=90$ million tons per year
$\frac{\$ 1.2 \text { billion }}{3.1 \text { million tons } / \text { year }}=\frac{\$ X \text { billion }}{90 \text { million tons }}$

$$
\mathrm{X}=\$ 34.84 \text { billion }
$$

3-5 $\left(24,000 \mathrm{ft}^{2}\right)\left(60,000 \mathrm{Btu} / \mathrm{ft}^{2}\right)=1,440$ million Btu during the heating season. This is 1,440 thousand cubic feet of natural gas, and the cost would be $\left(1,440,000 \mathrm{ft}^{3}\right)\left(\$ 9 / 1000 \mathrm{ft}^{3}\right)=\$ 12,960$ for the heating season.

Side note: The building uses 0.3 million kWhr of electricity $\times \$ 0.10$ per $\mathrm{kWhr}=\$ 30,000$ to cool the area. The total bill will be about $\$ 43,000$. The owner must take this into account when she decides on a price to charge per square foot of leased space.

3-6 (a) Standard electric bill $=(400 \mathrm{kWhr})(12$ months $/$ year $)(\$ 0.10 / \mathrm{kWhr})=\$ 480$ per year.
Green power bill $=(12$ months $/$ year $)(\$ 4 /$ month $)=\$ 48$ per year .
Total electric bill $=\$ 528$ per year.
(b) $\$ 528 / 4,800 \mathrm{kWhr}=\$ 0.11$ per kWhr (a 10% increase due to green power usage)
(c) The technology used to capture energy from solar, wind power and methane is more expensive than traditional power generation methods (coal, natural gas, and so on).

3-7 (a) Relatively easy to estimate. Contact a real estate firm specializing in commercial property.
(b) Accurate construction cost estimate can be obtained by soliciting bids from local construction contractors engaged in this type of construction.
(c) Working capital costs can be reasonably estimated by carefully planning and identifying the specific needs, and then contacting equipment distributors and other suppliers; estimating local labor rates and company staffing; establishing essential inventory levels; and so on.
(d) Total capital investment can be reasonably estimated from a, b, and c plus the cost of other fixed assets such as major equipment, plus the cost of any consulting or engineering services.
(e) It is not easy to estimate total annual labor and material costs due to the initial uncertainty of sales demand for the product. However, these costs can be controlled since they occur over time and the expenditure can be matched to the demand.
(f) First year revenues for a new product are difficult to estimate. A marketing consultant could be helpful.

3-8 $\quad \mathrm{C}_{2012}=\mathrm{C}_{2007}\left(\frac{\overline{\mathrm{I}}_{2012}}{\overline{\mathrm{I}}_{2007}}\right)=\$ 200,000\left(\frac{293}{223}\right)=\underline{\$ 262,780.27}$

3-9

$$
\overline{\mathrm{I}}_{2008}=\frac{0.70\left(\frac{62}{41}\right)+0.05\left(\frac{57}{38}\right)+0.25\left(\frac{53}{33}\right)}{0.70+0.05+0.25} \times 100=153.5
$$

3-10 (a) $\quad \overline{\mathrm{I}}_{2012}=0.30(200)+0.20(175)+0.50(162)=\underline{176}$
(b) $\overline{\mathrm{I}}_{2008}=0.30(160)+0.20(145)+0.50(135)=\underline{144.5}$

$$
C_{2012}=\$ 650,000\left(\frac{176}{144.5}\right)=\underline{\$ 791,696}
$$

3-11 Let $C_{A}=$ cost of new boiler,
$\mathrm{S}_{\mathrm{A}}=1.42 \mathrm{X}$
$\mathrm{C}_{\mathrm{B}}=$ cost of old boiler, today
$\mathrm{S}_{\mathrm{B}}=\mathrm{X}$

$$
\begin{aligned}
& C_{B}=\$ 181,000\left(\frac{221}{162}\right)=\$ 246,920 \\
& C_{A}=\$ 246,920\left(\frac{1.42 X}{X}\right)^{0.8}=\$ 326,879
\end{aligned}
$$

Total cost with options $=\$ 326,879+\$ 28,000=\underline{\$ 354,879}$

3-12 The average compound rate of growth is 2.4% per year.
$\mathrm{C}_{2012}=\mathrm{C}_{2010}\left[(1+0.24)^{2}\right]$ or $\mathrm{C}_{2012}=\$ 10.2(1.0486)=\$ 10.7$ million

3-13 (a) $\quad \mathrm{C}_{\text {now }}(80-\mathrm{kW})=\$ 160,000\left(\frac{194}{187}\right)=\$ 165,989$

$$
\mathrm{C}_{\mathrm{now}}(120-\mathrm{kW})=\$ 165,989\left(\frac{120}{80}\right)^{0.6}=\$ 211,707
$$

Total Cost $=\$ 211,707+\$ 18,000=\underline{\$ 229,707}$
(b) $\mathrm{C}_{\mathrm{now}}(40-\mathrm{kW})=\$ 165,989\left(\frac{40}{80}\right)^{0.6}=\$ 109,512$

Total Cost $=\$ 109,512+\$ 18,000=\underline{\$ 127,512}$

3-14 Let $C_{A}=$ cost of new plant
$\mathrm{C}_{\mathrm{B}}=$ cost of similar plant
$=\$ 3,000,000$
$C_{A}=\$ 3,000,000\left(\frac{500,000}{250,000}\right)^{0.59}=\$ 4,515,740$

3-15 Material: $\left(7,500 \mathrm{ft}^{2}\right)(\$ 8.50 / \mathrm{lb})(15 \mathrm{lb} / \mathrm{ft})+(7,500 \mathrm{ft})(\$ 10 / \mathrm{ft})=\$ 1,031,250$
Design and labor: $\$ 16,000+\$ 180,000=\$ 196,000$
Total cost $=\$ 1,227,250$

3-16 Cost in 10 years $=\left(\frac{2,400}{2,000}\right)(400 \mathrm{lbs})(\$ 3.50 / \mathrm{lb})(1.045)^{10}=\$ 2,609$

3-17 $\mathrm{K}=126$ hours; $\mathrm{s}=0.95$ (95% learning curve); $\mathrm{n}=(\log 0.95) /(\log 2)=-0.074$
(a) $\mathrm{Z}_{8}=126(8)^{-0.074}=\underline{108 \text { hours; }}$

$$
\mathrm{Z}_{50}=126(50)^{-0.074}=\underline{94.3 \text { hours }}
$$

(b) $\mathrm{C}_{5}=\mathrm{T}_{5} / 5 ; \quad \mathrm{T}_{5}=126 \sum_{\mathrm{u}=1}^{5} \mathrm{u}^{-0.074}=587.4 \mathrm{hrs} ; \mathrm{C}_{5}=587.4 / 5=\underline{117.5 \mathrm{hrs}}$

3-18 $K=1.15 X ; s=0.90(90 \%$ learning curve $) ; \mathrm{n}=(\log 0.90) /(\log 2)=-0.152$

$$
\mathrm{Z}_{30}=1.15 \mathrm{X}(30)^{-0.152}=0.686 \mathrm{X}
$$

After 30 months, a $(1-0.686)=31.4 \%$ reduction in overhead costs is expected (with respect to the present cost of \$X).

3-19 $Z_{3}=846.2=K(3)^{n}$ and $Z_{5}=783.0=K(5)^{n} . S o(846.2 / 783.0)=(3 / 5)^{n}$ and $1.0807=(0.6)^{n}$. Furthermore, $\log (1.0807)=n \log (0.6)$. Finally, we get

$$
\mathrm{n}=\frac{0.03371}{-0.22185}=-0.152
$$

This is a 90% learning curve.

3-20 Material Costs: $\quad \mathrm{I}_{1999}=200 \quad \mathrm{I}_{2010}=289 \quad \mathrm{X}=0.65$
$\mathrm{S}_{1999}=800 \quad \mathrm{~S}_{2010}=1000$
$\mathrm{C}_{1999}=\$ 25,000$

$$
\mathrm{C}_{2010}=\$ 25,000\left(\frac{289}{200}\right)\left(\frac{1000}{800}\right)^{0.65}=\$ 41,764
$$

Manufacturing Costs: $\quad \mathrm{s}=0.88 \quad \mathrm{~K}=\$ 12,000$

$$
\mathrm{Z}_{50}=\$ 12,000(50)^{\log (0.88) / \log (2)}=\$ 5,832
$$

Total Cost $=(\$ 41,764+\$ 5,832)(100)=\$ 4,759,600$

3-21 The following table facilitates the intermediate calculations needed to compute the values of b_{0} and b_{1} using Equations (3-8) and (3-9).

I	x_{i}	y_{i}	x_{i}^{2}	$x_{i} y_{i}$
1	14,500	800,000	$210,250,000$	$11,600,000,000$
2	15,000	825,000	$225,000,000$	$12,375,000,000$
3	17,000	875,000	$289,000,000$	$14,875,000,000$
4	18,500	972,000	$342,250,000$	$17,982,000,000$
5	20,400	$1,074,000$	$416,160,000$	$21,909,600,000$
6	21,000	$1,250,000$	$441,000,000$	$26,250,000,000$
7	25,000	$1,307,000$	$625,000,000$	$32,675,000,000$
8	26,750	$1,534,000$	$715,562,500$	$41,034,500,000$
9	28,000	$1,475,500$	$784,000,000$	$41,314,000,000$
10	30,000	$1,525,000$	$900,000,000$	$45,750,000,000$
Totals	216,150	$11,637,500$	$4,948,222,500$	$265,765,100,000$

$\mathrm{b}_{1}=\frac{(10)(265,765,100,000)-(216,150)(11,637,500)}{(10)(4,948,222,500)-(216,150)^{2}}=51.5$
$\mathrm{b}_{0}=\frac{11,637,500-(51.5)(216,150)}{10}=50,631$
(a) The resulting CER relating supermarket building cost to building area (x) is:

$$
\text { Cost }=50,631+51.5 x
$$

So the estimated cost for the $23,000 \mathrm{ft}^{2}$ store is:

$$
\text { Cost }=\$ 50,631+\left(\$ 51.5 / \mathrm{ft}^{2}\right)\left(23,000 \mathrm{ft}^{2}\right)=\$ 1,235,131
$$

(b) The CER developed in part (a) relates the cost of building a supermarket to its planned area using the following equation:

$$
\text { Cost }=50,631+51.5 x
$$

Using this equation, we can predict the cost of the ten buildings given their areas.

i	x_{i}	y_{i}	Cost $_{i}$	$\left(y_{i}-\text { Cost }_{i}\right)^{2}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$	$\left(y_{i}-\bar{y}\right)^{2}$
1	14,500	800,000	797,345	$7,048,179$	$2,588,081,250$	$50,623,225$	$132,314,062,500$
2	15,000	825,000	823,094	$3,633,147$	$2,240,831,250$	$43,758,225$	$114,751,562,500$
3	17,000	875,000	926,089	$2,610,081,256$	$1,332,581,250$	$21,298,225$	$83,376,562,500$
4	18,500	972,000	$1,003,335$	$981,896,725$	$597,301,250$	$9,703,225$	$36,768,062,500$
5	20,400	$1,074,000$	$1,101,181$	$738,780,429$	$109,046,250$	$1,476,225$	$8,055,062,500$
6	21,000	$1,250,000$	$1,132,079$	$13,905,356,010$	$-53,043,750$	378,225	$7,439,062,500$
7	25,000	$1,307,000$	$1,338,069$	$965,288,881$	$484,901,250$	$11,458,225$	$20,520,562,500$
8	26,750	$1,534,000$	$1,428,190$	$11,195,807,942$	$1,901,233,750$	$26,368,225$	$137,085,062,500$
9	28,000	$1,475,500$	$1,492,562$	$291,099,988$	$1,990,523,750$	$40,768,225$	$97,188,062,500$
10	30,000	$1,525,000$	$1,595,557$	$4,978,246,304$	$3,029,081,250$	$70,308,225$	$130,501,562,500$
Totals	216,150	$11,637,500$	$11,637,500$	$35,677,238,861$	$14,220,537,500$	$276,140,250$	$767,999,625,000$

$$
\bar{x}=\frac{1}{10}(216,150)=21,615 \quad \bar{y}=\frac{1}{10}(11,637,500)=1,163,750
$$

Using Equations (3-10) and (3-11), we can compute the standard error and correlation coefficient for the CER.

$$
\begin{aligned}
& S E=\sqrt{\frac{35,677,238,861}{10-2}}=\underline{66,780} \\
& R=\frac{14,220,537,500}{\sqrt{(276,140,250)(767,999,625,000)}}=\underline{0.9765}
\end{aligned}
$$

3-22 $\quad x_{i}=$ weight of order (lbs)
$y_{i}=$ packaging and processing costs (\$)
(a) $\mathrm{y}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}$

$$
\begin{aligned}
& \sum x_{\mathrm{i}}=2530 \quad \bar{x}=253 \quad \sum x_{i}^{2}=658,900 \\
& \sum y_{\mathrm{i}}=1024 \quad \bar{y}=102.4 \quad \sum y_{i}^{2}=106,348 \\
& \sum x_{i} y_{i}=264,320 \\
& \mathrm{~b}_{1}=\frac{264,320-(253)(1024)}{658,900-(253)(2530)}=0.279 \\
& \mathrm{~b}_{0}=102.4-(0.279)(253)=31.813 ; \quad \mathrm{y}=\underline{31.813+0.279 \mathrm{x}}
\end{aligned}
$$

(b) $\mathrm{R}=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}$
$\mathrm{S}_{\mathrm{xy}}=264,320-(2530)(1024) / 10=5,248$
$\mathrm{S}_{\mathrm{xx}}=658,900-(2530)^{2} / 10=18,810$
$S_{y y}=106,348-(1024)^{2} / 10=1,490.4$
$R=\frac{5248}{\sqrt{(18,810)(1490.4)}}=\underline{0.99}$
(c) $\mathrm{y}=31.813+(0.279)(250)=\underline{\$ 101.56}$

3-23 $\quad \operatorname{Cost}_{150 \mathrm{ft}}=\$ 13,500\left(\frac{150}{250}\right)^{0.6}\left(\frac{1029}{830}\right)=\$ 12,319$

3-24 $\$ 127(1.19)^{5}=\$ 303$ per square foot in five years. The total estimated cost in five years is $(320,000$ $\left.\mathrm{ft}^{2}\right)\left(\$ 303 / \mathrm{ft}^{2}\right)=\$ 96,960,000$. It's a good idea to build this facility today and then, if needed, add on the additional space five years later.

3-25 The amount of the FICO score affected is $(0.35)(720)=252$. If this drops by 10%, the payment history score will be $(0.90)(252)=227$ and the overall FICO score will be 695 . This lower value could adversely affect the interest rate you'll be quoted on your next loan.

3-26 Boiler Cost $=\$ 300,000\left(\frac{10 m W}{6 m W}\right)^{0.8}=\$ 451,440$
Generator Cost $=\$ 400,000\left(\frac{9 m W}{6 m W}\right)^{0.6}=\$ 510,170$
Tank Cost $=\$ 106,000\left(\frac{91,500_{\mathrm{gal}}}{80,000 \mathrm{gal}}\right)^{0.66}=\$ 115,826$
Total Cost $=(2)(\$ 451,440)+(2)(\$ 510,170)+\$ 115,826+\$ 200,000=\$ 2,239,046$

3-27 The following spreadsheet was used to calculate a 2011 estimate of $\$ 320,274,240$ for the plant.

Element Code	Units/Factors	Price/Unit	Subtotal		Totals
1.1.1-2	600	\$2,000	\$ 1,200,000		
1.1.3			\$ 3,000,000		
1.1				\$	4,200,000
1.2-3	$2.3969{ }^{\text {a }}$	\$ 110,000,000	\$ 263,659,000	\$	263,659,000
1.4	$4.4727^{\text {b }}$	\$ 5,000,000	\$ 22,363,500	\$	22,363,500
1.5.1-3					
labor materials	$80,390{ }^{\text {c }}$	\$ 60	$\begin{array}{rr} \$ & 4,823,400 \\ \$ & 15,000,000 \end{array}$		
1.5.4	600	\$ 1,500	\$ 900,000		
1.5				\$	20,723,400
1.9	3\%	\$ 310,944,672		\$	9,328,340
TOTAL ESTIMATED COST IN 2005				\$	320,274,240

${ }^{a}$ Factor value for boiler and support system (WBS elements 1.2 and 1.3):

$$
\left(\frac{492}{110}\right)\left(\frac{1}{2}\right)^{0.9}=2.3969
$$

${ }^{\mathrm{b}}$ Factor value for the coal storage facility (WBS element 1.4):

$$
\left(\frac{492}{110}\right)=4.4727
$$

${ }^{\mathrm{c}}$ Labor time estimate for the 3rd facility (WBS elements 1.5.1, 1.5.2, and 1.5.3):

$$
\begin{aligned}
& \mathrm{K}=95,000 \text { hours, } \mathrm{s}=0.9, \mathrm{n}=\log (0.9) / \log (2)=-0.152 \\
& Z_{3}=95,000(3)^{-0.152}=80,390 \text { hours }
\end{aligned}
$$

Solutions to Spreadsheet Exercises

3-28 See P3-28.xls.

K	100
u	
s	Z_{u}
0.75	51.27
0.77	54.51
0.79	57.85
0.81	61.31
0.83	64.88
0.85	68.57
0.87	72.37
0.89	76.29
0.91	80.33
0.93	84.49
0.95	88.77

(a) Based on the constant reduction rate of 8% each time the number of homes constructed doubles, a 92% leanring curve applies to the situation. The cumulative average material cost per square foot for the first five homes is $\$ 24.12$.
(b) The estimated material cost per square foot for the $16^{\text {th }}$ home is $\$ 19.34$.

S	0.92			
K	\$27			
	Material	Cumulative	Cumulative	
Home	Cost per ft ${ }^{2}$	Sum	Average	
1	\$ 27.00	\$ 27.00	\$	27.00
2	\$ 24.84	\$ 51.84	\$	25.92
3	\$ 23.66	\$ 75.50	\$	25.17
4	\$ 22.85	\$ 98.35	\$	24.59
5	\$ 22.25	\$ 120.60	\$	24.12
6	\$ 21.76	\$ 142.36	\$	23.73
7	\$ 21.37	\$ 163.73	\$	23.39
8	\$ 21.02	\$ 184.75	\$	23.09
9	\$ 20.73	\$ 205.48	\$	22.83
10	\$ 20.47	\$ 225.95	\$	22.59
11	\$ 20.23	\$ 246.18	\$	22.38
12	\$ 20.02	\$ 266.21	\$	22.18
13	\$ 19.83	\$ 286.04	\$	22.00
14	\$ 19.66	\$ 305.69	\$	21.84
15	\$ 19.49	\$ 325.19	\$	21.68
16	\$ 19.34	\$ 344.53	\$	21.53

 recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Solutions to Case Study Exercises

3-31 Other cost factors include maintenance, packaging, supervision, materials, among others. Also, the case solution presents a before-tax economic analysis.

3-32 Left as an exercise for the student. However, by observation, it appears that the factory overhead and factory labor are good candidates since they comprise the largest percentage contributions to the per unit demanufacuring cost.

3-33 A 50\% increase in labor costs equates to a factor of 15%; a 90% increase in Transportation equates to a factor of 38%. The corresponding demnaufacturing cost per unit is $\$ 5.19$. The per unit cost of using the outside contractor (i.e., the target cost) is $\$ 11.70$. Should the proposed demanufacturing method be adopted, the revised per unit cost savings is $\$ 6.51$ for a 55.6% reduction over the per unit cost for the outside contractor.

		Unit Elements		Factor Estimates	Row	
	DE-MANUFACTURING COST ELEMENTS	Units	Cost/Unit	Factor	of Row	
Total						

3-34 The estimate of direct labor hours is based on the time to produce the 50th unit.

$$
\begin{aligned}
& \mathrm{K}=1.76 \text { hours } \\
& \mathrm{s}=0.8(80 \% \text { learning curve }) \\
& \mathrm{n}=(\log 0.80) /(\log 2)=-0.322 \\
& \mathrm{Z}_{50}=1.76(50)^{-0.322}=0.5 \text { hours }
\end{aligned}
$$

Factory Labor	$=(\$ 15 / \mathrm{hr})(0.5 \mathrm{hr} /$ widget $)$	$=\$ 7.50 /$ widget
Production Material	$=\$ 375 / 100$ widgets	$=\$ 3.75 /$ widget
Factory Overhead	$=(1.25)(\$ 7.50 /$ widget $)$	$=\$ 9.375 /$ widget
Packing Costs	$=(0.75)(\$ 7.50 /$ widget $)$	$=\$ 5.625 /$ widget
Total Manufacturing Cost		$=\$ 26.25 /$ widget
Desired Profit	$=(0.20)(\$ 26.25 /$ widget $)$	$=\$ 5.25 /$ widget
Unit Selling Price		$=\$ 31.50 /$ widget

```
3-35 Profit \(=\) Revenue - Cost \(\$ 25,000=(\$ 20.00 /\) unit \()(x)-[(\$ 21.00 /\) unit \()(.2\) hours/unit) \((x)+(\$ 4.00 /\) unit \()(x)\) \(+(1.2)(\$ 21.00 /\) unit \()(.2\) hours/unit)(x) + (\$1.20/unit)(x)]
```

$\$ 25,000=5.56 x ; \quad x=\underline{4,497 \text { units }}$

Solutions to FE Practice Problems

3-36 $K=460$ hours; $\mathrm{s}=0.92$ (91% learning curve); $\mathrm{n}=(\log 0.92) /(\log 2)=-0.120$
$\mathrm{C}_{30}=\mathrm{T}_{30} / 30 ; \quad \mathrm{T}_{30}=460 \sum_{\mathrm{u}=1}^{30} \mathrm{u}^{-0.120}=10,419.63 \mathrm{hrs} ;$
$\mathrm{C}_{30}=10,419.63 / 30=347.3211$
$\underline{\text { Select (d) }}$

3-37

$$
\begin{aligned}
& -1,500+800+(.07-.05)(1.85)(10) x=0 \\
& -700+0.60 x=0 \\
& x=700 / 0.60=1,167 \text { miles } / \text { year }
\end{aligned}
$$

Select (a)

3-38 $\mathrm{AC}_{\text {current }}=\$ 4,000$
Proposed: $\mathrm{N}=13$ years, $\mathrm{SV}=11 \%$ of first cost
$\$ 4,000=\mathrm{I}(\mathrm{A} / \mathrm{P}, 12 \%, 13)-(0.11) \mathrm{I}(\mathrm{A} / \mathrm{F}, 12 \%, 13)$
$\$ 4,000=I(0.1557)-(0.003927) I$
$\$ 4,000=I(0.1517)$
$I=\$ 26,358$

Select (c)

3-39 Let $X=$ average time spent supervising the average employee. Then the time spent supervising employee $\mathrm{A}=2 \mathrm{X}$ and the time spent supervising employee $\mathrm{B}=0.5 \mathrm{X}$. The total time units spent by the supervisor is then $2 \mathrm{X}+0.5 \mathrm{X}+(8) \mathrm{X}=10.5 \mathrm{X}$. The monthly cost of the supervisor is $\$ 3,800$ and can be allocated among the employees in the following manner:
$\$ 3,800 / 10.5 \mathrm{X}=\$ 361.90 / \mathrm{X}$ time units.
Employee A (when compared to employee B) costs $(2 \mathrm{X}-0.5 \mathrm{X})(\$ 361.90 / \mathrm{X})=\$ 542.85$ more for the same units of production. If employee B is compensated accordingly, the monthly salary for employee B should be $\$ 3,000+\$ 542.85=\$ 3,542.85$.

Select (a)

3-40 Type X filter: cost $=\$ 5$, changed every 7,000 miles along with 5 quarts oil between each oil change 1 quart of oil must be added after each 1,000 miles

Type Y filter: cost $=$?, changed every 5,000 miles along with 5 quarts of oil no additional oil between filter changes
oil $=\$ 1.08 /$ quart
Common multiple $=35,000$ miles
For filter $X=5$ oil changes: $\quad 5(\$ 5+5(\$ 1.08)+6(\$ 1.08))=(5) \$ 16.88=\$ 84.40$
For filter $\mathrm{Y}=7$ oil changes: $7 \mathrm{C}_{\mathrm{Y}}+7(5)(\$ 1.08)=7 \mathrm{X}+\$ 37.8$

$$
\begin{aligned}
& \$ 84.40=7 \mathrm{C}_{Y}+\$ 37.8 \\
& \$ 46.60=7 \mathrm{C}_{Y} \\
& \mathrm{C}_{\mathrm{Y}}=\$ 6.66
\end{aligned}
$$

Select (d)

3-41 $\mathrm{C}_{2000}($ new design $)=\$ 900,000\left(\frac{200}{150}\right)^{0.92}+\$ 1,125,000\left(\frac{450}{200}\right)^{0.87}+\$ 750,000\left(\frac{175}{100}\right)^{0.79}=\$ 4,617,660$ $C_{2010}=\$ 4,617,660(1.12)^{10}=\$ 14,341,751$

Select (c)

Solutions to Chapter 4 Problems

4-1

$$
\underline{\mathrm{I}}=\mathrm{P}(\mathrm{~N})(\mathrm{i})=\$ 10,000(4.25 \mathrm{yrs} .)(0.10 / \mathrm{yr})=\$ \underline{4,250}
$$

Total owed $=\$ 200+\$ 12=\$ 212$

4-4 Simple interest earned $=5(\mathrm{i}) \mathrm{P}$
Compound interest earned $=P(1+i)^{5}-P$

4-5	Amount Owed at Beginning of Year	Interest Accrued for Year	Total Amount Owed at End of Year	Principal Payment	Total End of Year Payment	
1	$\$ 2,000$	$\$ 200$	$\$ 2,200$	$\$$	0	$\$ 200$
2	2,000	200	2,200	0	200	
3	2,000	200	2,200	0	200	
4	2,000	200	2,200	1,000	1,200	
5	1,000	100	1,100	0	100	
6	1,000	100	1,100	0	100	
7	1,000	100	1,100	0	100	
8	1,000	100	1,100	1,000	1,100	
Total Interest $=\$ 1,200$						

$\$ 200$ in interest is payable each year for the first four years. $\$ 100$ in interest is payable each year for the second four years. The total interest paid over the eight year period is $\$ 1,200$.

Month	Amount Owed at BOM	Interest Accrued for Month	Total Amount Owed at End of Month	Principal Payment	Total EOM Payment
1	$\$ 17,000$	$\$ 170$	$\$ 17,170$	$\$$	0
2	17,000	170	17,170	8,500	8,670
3	8,500	85	8,585	0	85
4	8,500	85	8,585	8,500	8,585
Total Interest $=$					$\$ 510$

Total interest paid over the four month loan period $=\underline{\$ 510}$.

4-7 (a) (The monthly payment is $\$ 24,000(\mathrm{~A} / \mathrm{P}, 1 \%, 60)=\$ 24,000(0.0222)=\$ 532.80$.
(b) Payment Interest Principal Remaining Loan

Number Payment Repayment
Balance

1	$\$ 240.00$	$\$ 292.80$	$\$ 23,707.20$
2	$\$ 237.07$	$\$ 295.73$	$\$ 23,411.47$
3	$\$ 234.11$	$\$ 298.69$	$\$ 23,112.78$

Interest in the third month is $\$ 234.11$ and principal repayment is $\$ 298.69$.

4-8 $\mathrm{A}=\$ 10,000(\mathrm{~A} / \mathrm{P}, 6 \%, 5)=\$ 2,374$. We'll use the Excel solution of $\$ 2,373.96$.

Payment	Principal Payment	Interest Payment
1	$\$ 1,773.96$	$\$ 600.00$
2	$\$ 1,880.41$	$\$ 493.55$
3	$\$ 1,993.22$	$\$ 380.74$
4	$\$ 2,112.82$	$\$ 261.14$
5	$\$ 2,239.59$	$\$ 134.37$

The principal remaining after the first payment is $\$ 2,373.96(\mathrm{P} / \mathrm{A}, 6 \%, 4)=\$ 8,226.04$, or from above $\$ 10,000-\$ 1,773.96=\$ 8,226.04$.

4-10 Consumer Loan: $\quad \mathrm{F}=\$ 5,000(\mathrm{~F} / \mathrm{P}, 12 \%, 5)=\$ 5,000(1.7623)=\$ 8,811.50$

$$
\text { Interest }=\$ 8,811.50-\$ 5,000=\$ 3,811.50
$$

PLUS Loan: $\quad \mathrm{F}=\$ 5,000(\mathrm{~F} / \mathrm{P}, 8.5 \%, 5)=\$ 5,000(1.085)^{5}=\$ 7,518.28$
Interest $=\$ 2,518.28$

Difference $=\$ 3,811.50-\$ 2,518.28=\$ 1,293.22$
Chandra will save money by following the advice of her father.

4-11 $\quad \mathrm{F}=\$ 25,000(\mathrm{~F} / \mathrm{P}, 10 \%, 25)=\$ 25,000(10.8347)=\$ 270,867.50$

4-14 $\quad \mathrm{N}=2005-1981=24$ years

$$
\mathrm{P}=\$ 67(\mathrm{P} / \mathrm{F}, 3.2 \%, 24)=\$ 67(1.032)^{-24}=\$ 31.46
$$

4-15 $\quad \mathrm{F}_{28}=\$ 1,200(\mathrm{~F} / \mathrm{A}, 8 \%, 20)(\mathrm{F} / \mathrm{P}, 8 \%, 8)-\$ 7,500(\mathrm{~F} / \mathrm{A}, 8 \%, 5)(\mathrm{F} / \mathrm{P}, 8 \%, 3)-\$ 4,500(\mathrm{~F} / \mathrm{A}, 8 \%, 2)(\mathrm{F} / \mathrm{P}, 8 \%, 1)$ $\mathrm{F}_{28}=\$ 36,106.09$

4-16 Solution by Rule of $72: N \approx \frac{72}{10}=7.2$ years.
Compare to the exact solution:

$$
\begin{aligned}
& \$ 10,000=\$ 5,000(\mathrm{~F} / \mathrm{P}, 10 \%, \mathrm{~N})=\$ 5,000(1+0.10)^{\mathrm{N}} \\
& 2=1.1^{\mathrm{N}} ; \ln (2)=\mathrm{N} \ln (1.1) ; \text { and } \mathrm{N}=\underline{7.2725 \text { years }}
\end{aligned}
$$

4-17 $\$ 4,000=\$ 1,000(\mathrm{~F} / \mathrm{P}, 15 \%, \mathrm{~N})$

$$
\begin{aligned}
& 4=(1.15)^{N} \\
& N=\log (4) / \log (1.15)=9.9 \text { or } N=10 \text { years }
\end{aligned}
$$

Alternative solution: $4=(\mathrm{F} / \mathrm{P}, 15 \%, \mathrm{~N})$ and from Table $\mathrm{C}-15$, the value of N is 10 .

4-18 $\$ 25,000(1+i)^{231}=\$ 400,000$
$i=\sqrt[23]{16}-1=0.0121$ or 1.21% per year

4-19 The $\$ 1,000$ originally invested dollars doubles nine times in 36 years, so the student will gain $(\$ 1,000)\left(2^{9}\right)-\$ 1,000=\$ 511,000$ in 36 years.

An alternate approach is to solve $2=\left(F / P, i^{\prime}, 4\right)$ for $\mathrm{i}^{\prime}=18.921 \%$. Then

$$
\mathrm{F}=\$ 1,000(\mathrm{~F} / \mathrm{P}, 18.921 \%, 36)=\$ 512,000 .
$$

Thus, the gain is $\$ 512,000-\$ 1,000=\$ 511,000$.

4-20 $\quad \mathrm{N}=2011-1885=126$ years
$0.46=0.02(1+i)^{126}$
$\mathrm{i}=\sqrt[126]{0.41 / 0.02}-1=0.0252$ or 2.52% per year

4-21 (a) $\mathrm{N}=2007-1982=25$ years

$$
\$ 100,000=\$ 25,000(1+i)^{25}
$$

$i=\sqrt[25]{4}-1=0.057$ or 5.7% per year.
So Barney and Lynne did not really do that well at all!
(b) $\quad \$ 100,000=\$ 1,000\left(\mathrm{~F} / \mathrm{A}, \mathrm{i}^{\prime}, 25\right)$
$\left(\mathrm{F} / \mathrm{A}, \mathrm{i}^{\prime}, 25\right)=100$
$\mathrm{i}^{\prime}=10.1 \%$ per year
In this situation they did pretty well on their mutual fund investment.

4-22 $\$ 102,000=\$ 9,000\left(\mathrm{~F} / \mathrm{P}, \mathrm{i}^{\prime} \%, 36\right)$ or $\mathrm{i}^{\prime}=6.98 \%$. This is more than double the Consumer Price index.

4-23 (a) $\quad \$ 5,290=\$ 827(\mathrm{~F} / \mathrm{P}, \mathrm{i} \%, 23)$

$$
\mathrm{i}=8.4 \% \text { per year }
$$

(b) $\quad \$ 5,290=\$ 2,018(\mathrm{~F} / \mathrm{P}, \mathrm{i} \%, 12)$

$$
\mathrm{i}=8.36 \% \text { per year }
$$

(c) 1982-2005: 198.1 $=96.5(1+\mathrm{i})^{23}$
$\mathrm{i}=3.18 \%$ per year
1993-2005: $198.1=144.5(1+\mathrm{i})^{12}$
$i=2.66 \%$ per year
The cost of tuition and fees has risen 2.6 times faster than the CPI for the 1982-2005 time period. Over the 1993-2005 period, they have risen more than three times as fast.

4-24 $\quad \$ 15=\$ 6(\mathrm{~F} / \mathrm{P}, \mathrm{i} \%, 6) ; \mathrm{i}=16.5 \%$ per year. This is more than five times the annual inflation rate! Turn down the thermostat on your gas furnace.

4-26 $\quad \mathrm{F}=\$ 100(\mathrm{~F} / \mathrm{A}, 30 \%, 25)=\$ 100\left[\frac{(1.3)^{25}-1}{0.30}\right]=\$ 234,880$

4-28 $\mathrm{F}=\$ 730(\mathrm{~F} / \mathrm{A}, 7 \%, 35)=\$ 730(138.2369)=\$ 100,913$. Of this amount, $\$ 730 \times 35=\$ 25,550$ is money you paid in and $\$ 75,363$ is accumulated interest.

4-29 (a) $\mathrm{F}=\$ 848(\mathrm{~F} / \mathrm{A}, 10 \%, 45)=\$ 848(718.9048)=\$ 609,631$. Liam's friend has exaggerated the truth because the claim is too high.
(b) Liam is trading off the answer in part (a) against the likelihood that he will survive to age 65. If Liam's health is good, he may choose to gamble and go ahead with the mutual fund.
(c) Answer left to the student.

4-30 Use the uniform series compound amount factor to find the equivalence between $\$ 2,000,000$ and $\$ 10,000$ per year for N years:
$\$ 2,000,000=\$ 10,000(\mathrm{~F} / \mathrm{A}, 10 \%, \mathrm{~N})$
$\$ 2,000,000=\$ 10,000\left[(1+0.1)^{N}-1\right] / 0.1$
$200=\left[(1+0.1)^{\mathrm{N}}-1\right] / 0.1$
$20+1=(1.1)^{\wedge} \mathrm{N}$
$\log (21)=N \log (1.1)$
$\mathrm{N}=31.94$ years (call it 32 years)

4-31 (a) $\mathrm{P}=\$ 10,000(\mathrm{P} / \mathrm{A}, 2 \%, 12)=\$ 10,000(10.5753)=\$ 105,573$
(b) $\mathrm{P}=\$ 10,000+\$ 10,000(\mathrm{P} / \mathrm{A}, 2 \%, 11)=\$ 107,868$
(c) The present equivalent in part (b) is higher because the cash flows are not as far into the future, so less discounting occurs.

4-32 Since payments are made monthly, first find the monthly interest rate in effect.
$\$ 20,000=\$ 893\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 30\right)$
$\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 30\right)=22.3964$

Using Appendix C we find that $(\mathrm{P} / \mathrm{A}, 2 \%, 30)=22.3965$, so $\mathrm{i}^{\prime}=2 \%$ per month.
The effective annual interest rate is $(1.02)^{12}-1=0.2682$ or 26.82% per year.

4-33 The carbon fiber automobile would average around 39 miles per gallon of gasoline. The dollar savings in fuel per year is

$$
A=\left[\frac{117,000 / 6}{30}-\frac{117,000 / 6}{39}\right](\$ 3.00)=\$ 450
$$

The extra sticker price that can be afforded is $\$ 450(\mathrm{P} / \mathrm{A}, 20 \%, 6)=\$ 1,496$. This is not a whole lot of room to wiggle compared to the sticker price of the conventional car. So the cost of manufacturing carbon fiber automobiles must be made much more competitive against conventional ferrous-aluminum car bodies and parts.

$$
\mathrm{P}=\$ 22,000(\mathrm{P} / \mathrm{A}, 15 \%, 5)=\$ 22,000(3.3522)=\$ \underline{73,748.40}
$$

The company can justify spending up to $\$ 73,748.40$ for this piece of equipment.

If Spivey is offered a lump-sum payment now that exceeds $\$ 12,158,100$, he should take it.

4-36 Set up an equation for the unknown P-equivalent amount:
$\mathrm{P}-0.3 \mathrm{P}=0.8(\$ 2,500)(\mathrm{P} / \mathrm{A}, 9 \%, 15)$, or $0.7 \mathrm{P}=\$ 2,000(\mathrm{P} / \mathrm{A}, 9 \%, 15)$.
The value of P (affordable amount) is $\$ 23,031$. This type of heat pump is also a cleaner choice for the environment.

4-38 (a) In 30 years you would have $\$ 100,000(\mathrm{~F} / \mathrm{P}, 6 \%, 30)=\$ 100,000(5.7435)=\$ 574,350$ in real purchasing power.
(b) In 20 years you would have $\$ 5,000(\mathrm{~F} / \mathrm{A}, 6 \%, 20)=\$ 183,928$. At the end of 30 years you would have $\$ 183,928(\mathrm{~F} / \mathrm{P}, 6 \%, 10)=\$ 329,378$.

4-39 $\mathrm{N}=12 \times 25=300$ months
$\mathrm{A}=\$ 500,000(\mathrm{~A} / \mathrm{F}, 0.5 \%, 300)=\$ 500,000\left[\frac{0.005}{(1.005)^{300}-1}\right]=\$ 720$ per month

4-40 (a) $\mathrm{N}=\$ 1$ million per year $/ \$ 0.005$ per cup $=200,000,000$ cups per year
(b) $\mathrm{N}=\frac{\$ 5 \text { million }(\mathrm{A} / \mathrm{F}, 15 \%, 5)}{\$ 0.005 \text { per cup }}=148,300,000$ cups per year
(c) The compounding of interest.

4-41 $\quad(A / P, i \%, N)=\frac{i(1+i)^{N}}{(1+i)^{N}-1}=\frac{i}{1-1 /(1+i)^{N}}=\frac{i}{1-(P / F, i \%, N)}$

4-43 Fuel savings over eight years $=\frac{100,000 \text { miles }}{26 \text { miles/gall on }}-\frac{100,000 \text { miles }}{28 \text { miles } / \text { gall on }} \cong 275$ gallons, which is about 34.4 gallons per year. Let X represent the cost of gasoline ($\$ / \mathrm{gal}$).

$$
\begin{aligned}
& \$ 800=(34.4 \mathrm{gal} / \mathrm{yr})(\mathrm{X} / \mathrm{gal})(\mathrm{P} / \mathrm{A}, 10 \%, 8) \\
& \frac{\$ 800}{(34.4 \mathrm{gal})(5.3349)}=\mathrm{X}, \text { or } \mathrm{X}=\$ 4.36 / \mathrm{gal}
\end{aligned}
$$

If the actual cost of gasoline is less than $\$ 4.36$ per gallon, the CVT is not a good deal.

Total interest paid $=\$ 2,098,000(6)-\$ 10,000,000=\$ 2,588,000$

4-46 With traditional financing, the monthly payment will be $\mathrm{A}=\$ 84,000(\mathrm{~A} / \mathrm{P}, 3 / 4 \%, 60)=\$ 1,747.20$. The monthly payment with the 0% financing plan would be $\$ 84,000 / 60=\$ 1,400$ per month. Total savings $=$ $(\$ 1,747.20-\$ 1,400)(60)=\$ 20,832$. Thus the claim is true.
$(1+i)^{40}=74 / 3$
$i=1.89 \%$ per year

4-48 $40 \mathrm{~A}-\$ 35$ million $=\$ 39$ million, thus $\mathrm{A}=\$ 1,850,000$.
We also know that $\mathrm{A}=\$ 35$ million ($\mathrm{A} / \mathrm{P}, \mathrm{i} \%, 40$). We can guess various interest rates and compare the resulting value of A to $\$ 1,850,000$. For example, at $\mathrm{i}=4 \%, \mathrm{~A}=\$ 1,767,500$. At $\mathrm{i}=5 \%$, $\mathrm{A}=\$ 2,040,500$. By linear interpolation, $\mathrm{i} \approx 4.3 \%$ per year.

4-49 (a) $\mathrm{P}=\mathrm{A}(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N}) ; \$ 1,000=\$ 200(\mathrm{P} / \mathrm{A}, 12 \%, \mathrm{~N}) ;(\mathrm{P} / \mathrm{A}, 12 \%, \mathrm{~N})=5.0000$
By looking at the 12% interest table in Appendix C under the P / A column, $\mathrm{N} \approx 8$ years.
(b) $\mathrm{P}=\mathrm{A}(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N}) ; \$ 1,000=\$ 200(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 10) ;(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 10)=5.0000$ $(\mathrm{P} / \mathrm{A}, 15 \%, 10)=5.0188$ and $(\mathrm{P} / \mathrm{A}, 18 \%, 10)=4.4941$, thus $15 \%<\mathrm{i}<18 \%$
By using linear interpolation $-\frac{18 \%-15 \%}{5.0188-4.4941}=\frac{\mathrm{i} \%-15 \%}{5.0188-5.00}$
$\therefore \mathrm{i}=15.11 \%$
(c) $\mathrm{P}=\mathrm{A}(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N})=\$ 200(\mathrm{P} / \mathrm{A}, 12 \%, 5)=200(3.6048)=\$ \underline{720.96}$
(d) $\mathrm{A}=\mathrm{P}(\mathrm{A} / \mathrm{P}, \mathrm{i} \%, \mathrm{~N})=\$ 1,000(\mathrm{~A} / \mathrm{P}, 12 \%, 5)=\$ 1,000(0.2774)=\$ \underline{277.40}$

From Table C-9, $13 \leq \mathrm{N} \leq 14$.
If $\mathrm{i}=8 \%$, Table $\mathrm{C}-11$ gives us $16 \leq \mathrm{N} \leq 17$.

4-51 $\$ 3,500=\$ 100(\mathrm{P} / \mathrm{A}, 1.75 \%, \mathrm{~N})$, so by trial and error, or exact numerical solution, we find that $\mathrm{N}=55$ months to repay the credit card value. Note: $(\mathrm{P} / \mathrm{A}, 1.75 \%, 55)=35.1345$

From Table C-8, $12 \leq \mathrm{N} \leq 13$.

4-53 $\quad \mathrm{F}_{6}=\$ 2,000(\mathrm{~F} / \mathrm{A}, 5 \%, 6)=\$ 2,000(6.8019)=\$ 13,603.80$
and
$\mathrm{F}_{10}=\mathrm{F}_{6}(\mathrm{~F} / \mathrm{P}, 5 \%, 4)=\$ 13,603.80(1.2155)=\$ \underline{16,535.42}$

4-54 $\quad \mathrm{F}_{12}=\$ 24,000(\mathrm{~F} / \mathrm{P}, 1 / 2 \%, 12)$
$=\$ 24,000$ (1.0617)
$=\$ 25,480.80$
and
$\mathrm{A}=\mathrm{F}_{12}(\mathrm{~A} / \mathrm{P}, 1 / 2 \%, 36)$
$=\$ 25,480.80(0.0304)$
$=\$ \underline{74.62 \text { per month }}$
$\mathrm{F}=\$ 3,000(\mathrm{~F} / \mathrm{A}, 10 \%, 8)(\mathrm{F} / \mathrm{P}, 10 \%, 33)=\$ 3,000(11.4359)(23.2252)=\$ 796,803$. This sounds too good to be true, but it really is true! The stock market is one place where a return of 10% might be earned over the span of time in this problem.

$\mathrm{P}_{12}($ of deposits $)=\mathrm{A}(\mathrm{F} / \mathrm{A}, 8 \%, 12)$, and $\mathrm{P}_{13}=\mathrm{P}_{12}(\mathrm{~F} / \mathrm{P}, 8 \%, 1)$
$\mathrm{P}_{13}{ }^{\prime}($ of withdrawals $)=\$ 309(\mathrm{P} / \mathrm{A}, 8 \%, 5)$
By letting $\mathrm{P}_{13}=\mathrm{P}_{13}$, we have

$$
\begin{aligned}
& {[\mathrm{A}(\mathrm{~F} / \mathrm{A}, 8 \%, 12)](\mathrm{F} / \mathrm{P}, 8 \%, 1)=\$ 309(\mathrm{P} / \mathrm{A}, 8 \%, 5)} \\
& {[\mathrm{A}(18.9771)](1.08)=\$ 309(3.9927)} \\
& \mathrm{A}=\$ \underline{60.20}
\end{aligned}
$$

4-57 This is a deferred annuity, the time periods are months, and $\mathrm{i}=3 / 4 \%$ per month:

$$
\begin{aligned}
& \mathrm{P}_{71}=\$ 500(\mathrm{P} / \mathrm{A}, 3 / 4 \%, 60)=\$ 500(48.1733)=\$ 24,086.65 \\
& \mathrm{P}_{0}=\$ 24,086.65(\mathrm{P} / \mathrm{F}, 3 / 4 \%, 71)=24,086.65(0.58836)=\$ 14,171.62
\end{aligned}
$$

$$
\begin{aligned}
\text { Equivalent receipts } & =\text { Equivalent expenditures } \\
\mathrm{F}_{4}+\$ 10,000(\mathrm{~F} / \mathrm{A}, 15 \%, 4) & =\$ 100,000(\mathrm{~F} / \mathrm{P}, 15 \%, 4)
\end{aligned}
$$

so,

$$
\begin{aligned}
\mathrm{F}_{4} & =\$ 100,000(\mathrm{~F} / \mathrm{P}, 15 \%, 4)-\$ 10,000(\mathrm{~F} / \mathrm{A}, 15 \%, 4) \\
& =\$ 100,000(1.7490)-\$ 10,000(4.9934) \\
& =\$ 174,900-\$ 49,934=\$ \underline{124,966}
\end{aligned}
$$

(a)

(b) $\mathrm{P}_{0}=\$ 5,000[(\mathrm{P} / \mathrm{F}, 12 \%, 4)+(\mathrm{P} / \mathrm{F}, 12 \%, 7)+(\mathrm{P} / \mathrm{F}, 12 \%, 10)+(\mathrm{P} / \mathrm{F}, 12 \%, 13]$ $\mathrm{P}_{0}=\$ 5,000(1.639)=\$ 8,195$
(c) $\quad \mathrm{A}=\$ 8,195(\mathrm{~F} / \mathrm{P}, 12 \%, 4)(\mathrm{A} / \mathrm{P}, 12 \%, 9)=\$ 2,420$

$$
\begin{aligned}
\text { 4-60 } \quad \mathrm{P}_{0} & =-\$ 1,000(\mathrm{P} / \mathrm{A}, 10 \%, 5)-\$ 10,000(\mathrm{P} / \mathrm{F}, 10 \%, 15)-\$ 10,000(\mathrm{P} / \mathrm{F}, 10 \%, 30) \\
& =-\$ 1,000(3.7908)-\$ 10,000(0.2394)-\$ 10,000(0.0573) \\
& =-\$ 6,757.80 \\
\mathrm{~A} & =-\$ 6,757.80(\mathrm{~A} / \mathrm{P}, 10 \%, 50)=-\$ 6,757.80(0.1009)=-\$ \underline{681.86}
\end{aligned}
$$

(b) $\mathrm{A}_{66-85}=\$ 309,524(\mathrm{~A} / \mathrm{P}, 6 \%, 20)=\$ 309,524(0.0872)=\$ 26,990$ per year or about $\$ 2,249$ per month.

(b) The future compound value of the cash outflows from the account is

$$
\$ 15,000(\mathrm{~F} / \mathrm{P}, 2 \%, 4)+\$ 25,000=\$ 41,236 .
$$

The future compound value of cash inflows (deposits) to the account is

$$
\mathrm{X}(\mathrm{~F} / \mathrm{A}, 2 \%, 8)(1.02)=8.7546 \mathrm{X} .
$$

By equating both future values and solving for X , we find that $\mathrm{X}=\$ 4,710.21$.

4-63 (a) Cost in 10 years $=\$ 75,000(\mathrm{~F} / \mathrm{P}, 10 \%, 10)=\$ 75,000(2.5937)=\$ 194,528$
$\mathrm{A}=\$ 194,528(\mathrm{~A} / \mathrm{F}, 6 \%, 10)=\$ 194,528(0.0759)=\$ 14,765$
(b) Because $\$ 150,000$ is less than $\$ 194,528$, this is a good deal (the college's cost increases are less than 10% per year).

$$
\begin{aligned}
\mathrm{F} & =\$ 200,000(\mathrm{~F} / \mathrm{P}, 7 \%, 15)+\$ 22,000(\mathrm{~F} / \mathrm{A}, 7 \%, 15) \\
& =\$ 200,000(2.7590)+\$ 22,000(25.1290) \\
& =\$ 1,104,638
\end{aligned}
$$

If inflation averages 3\% per year over this time period, Eileen will have

$$
\$ 1,104,638(\mathrm{P} / \mathrm{F}, 3 \%, 15)=\$ 709,067
$$

in today's spending power when she reaches age 65 .
$\mathrm{P}=\$ 400(\mathrm{~A} / \mathrm{F}, 12 \%, 2)(\mathrm{P} / \mathrm{A}, 12 \%, 10)=\$ 400(0.4717)(5.6502)=\$ 1,066$
Another approach would be to discount each of the five cash flows individually using the appropriate (P/F) factors.

This value of $\$ 1,066$ is most likely an upper bound on what the deal is worth to you.

Annual payment $=\$ 137,268(\mathrm{~A} / \mathrm{P}, 15 \%, 10)=\$ 137,268(0.1993)=\$ 27,358$
The moral is to avoid debt if at all possible. Otherwise, minimize it by reducing the amount borrowed, the obligation period, and/or the interest rate. It is assumed in this problem that the interest rate remains constant at 15% per year over the next 18 years.

Using time $=0$ as the reference point, set $\mathrm{P}_{0}($ LHS $)=\mathrm{P}_{0}($ RHS $)$

$$
\begin{gathered}
\$ 1,000(\mathrm{P} / \mathrm{F}, 12 \%, 1)+\$ 1,000(\mathrm{P} / \mathrm{F}, 12 \%, 3)-\$ 1,000(\mathrm{P} / \mathrm{F}, 12 \%, 5)=\mathrm{W}+\mathrm{W}(\mathrm{P} / \mathrm{F}, 12 \%, 7) \\
\$ 1,000(0.8929)+\$ 1,000(0.7118)-\$ 1,000(0.5674)=\mathrm{W}+\mathrm{W}(0.4523) \\
\$ 1,037.30=1.4523 \mathrm{~W} \\
\mathrm{~W}=\$ 714.25
\end{gathered}
$$

4-69 (a) Monthly payment $=\$ 30,000(\mathrm{~A} / \mathrm{P}, 3 / 4 \%, 48)=\$ 30,000(0.0249)=\$ 747$.
Amount owed after $24^{\text {th }}$ payment $=\$ 747(\mathrm{P} / \mathrm{A}, 3 / 4 \%, 24)=\$ 747(21.8891)=\$ 16,351$.
(b) Not counting the $\$ 5,000$ down payment, your friend is "upside down" by $\$ 1,351$. This happens when she owes more on the car than it is worth in the marketplace. Nothing much can be done about this situation except to keep the car longer and hope the vehicle remains in good working order. Or if the mileage is low and the car is in very good condition, perhaps it is worth more than $\$ 15,000$ and she should consider selling it.

4-70 $\quad \mathrm{P}_{0}=-\$ 100,000-\$ 10,000(\mathrm{P} / \mathrm{A}, 15 \%, 10)-\$ 30,000(\mathrm{P} / \mathrm{F}, 15 \%, 5)$
$=-\$ 100,000-\$ 10,000(5.0188)-\$ 30,000(0.4972)$
$=-\$ 165,104$

4-71 Profit $=(\$ 0.08 / \mathrm{gal})(20,000 \mathrm{gal} / \mathrm{mo})=\$ 1,600$ per month .
$\$ 30,000=\$ 1,600(\mathrm{P} / \mathrm{A}, 1 \%, \mathrm{~N})$, so $(\mathrm{P} / \mathrm{A}, 1 \%, \mathrm{~N})=18.75$
From Table C-4, N = 21 months.

4-72 Equivalent cash inflows = Equivalent cash outflows
Using time 0 as the equivalence point and $\mathrm{N}=$ total life of the system:

$$
\begin{gathered}
\$ 2,000(\mathrm{P} / \mathrm{F}, 18 \%, 1)+\$ 4,000(\mathrm{P} / \mathrm{F}, 18 \%, 2)+\$ 5,000(\mathrm{P} / \mathrm{A}, 18 \%, \mathrm{~N}-2)(\mathrm{P} / \mathrm{F}, 18 \%, 2)=\$ 20,000 \\
\$ 2,000(0.8475)+\$ 4,000(0.7182)+\$ 5,000(\mathrm{P} / \mathrm{A}, 18 \%, \mathrm{~N}-2)(0.7182)=\$ 20,000 \\
\$ 5,000(\mathrm{P} / \mathrm{A}, 18 \%, \mathrm{~N}-2)(0.7182)=\$ 15432.20 \\
(\mathrm{P} / \mathrm{A}, 18 \%, \mathrm{~N}-2)=4.297
\end{gathered}
$$

From Table C-17, $(\mathrm{P} / \mathrm{A}, 18 \%, 8)=4.078$ and $(\mathrm{P} / \mathrm{A}, 18 \%, 9)=4.303$
 of the cash inflows < present equivalent of the cash outflows.

4-73 Left side:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{L}}= & -10(\mathrm{P} / \mathrm{F}, 15 \%, 1)+\mathrm{H}(\mathrm{P} / \mathrm{A}, 15 \%, 16-4)(\mathrm{P} / \mathrm{F}, 15 \%, 4)+ \\
& 0.7 \mathrm{H}(\mathrm{P} / \mathrm{A}, 15 \%, 6)(\mathrm{P} / \mathrm{F}, 15 \%, 7) \\
= & -10(0.8696)+\mathrm{H}(5.4206)(0.5718)+0.7 \mathrm{H}(3.7845)(0.3759) \\
= & 4.0953 \mathrm{H}-8.696
\end{aligned}
$$

Right side:

$$
\mathrm{P}_{\mathrm{R}}=-\mathrm{P}_{0}+2 \mathrm{P}_{0}(\mathrm{P} / \mathrm{F}, 15 \%, 10)=-\mathrm{P}_{0}+2 \mathrm{P}_{0}(0.2472)=-0.5056 \mathrm{P}_{0}
$$

$$
\text { set } \mathrm{P}_{\mathrm{R}}=\mathrm{P}_{\mathrm{L}}:-0.5056 \mathrm{P}_{0}=4.0953 \mathrm{H}-8.696
$$

$$
\mathrm{P}_{0}=\underline{17.2-8.1 \mathrm{H}}
$$

4-74 $\mathrm{A}=\$ 500+\$ 100(\mathrm{~A} / \mathrm{G}, 8 \%, 20)=\$ 500+\$ 100(7.0369)=\underline{\$ 1,203.69}$

$$
\begin{aligned}
\mathrm{P}_{0}(\text { rental income }) & =\$ 1,300(\mathrm{P} / \mathrm{A}, 9 \%, 15)-\$ 50(\mathrm{P} / \mathrm{G}, 9 \%, 15) \\
& =\$ 1,300(8.0607)-\$ 50(43.807) \\
& =\underline{\$ 8,288.56}
\end{aligned}
$$

The present equivalent of the rental income is greater than the present equivalent of the $\$ 8,000$ investment, so the rental property appears to be a good investment.

4-76 $\quad \mathrm{P}_{0}$ (loan amount) $=\mathrm{P}_{0}$ (loan repayment)
$\$ 10,000=\mathrm{Z}(\mathrm{P} / \mathrm{G}, 7 \%, 8)(\mathrm{P} / \mathrm{F}, 7 \%, 2)$
$\$ 10,000=Z(18.789)(0.8734)$
$\$ 10,000=16.4103 \mathrm{Z}$
$Z=\$ \underline{609.37}$
(a) $\mathrm{F}=\$ 600(\mathrm{P} / \mathrm{G}, \mathrm{i} \%, 6)(\mathrm{F} / \mathrm{P} i \%, 6)=\$ 10,000$

If $\mathrm{i}=7 \%, \mathrm{~F}=\$ 9,884.81<\$ 10,000, \therefore \mathrm{i}>7 \%$
If $\mathrm{i}=8 \%, \mathrm{~F}=\$ 10,019.37>\$ 10,000, \therefore \mathrm{i}<8 \%$
Thus, $7 \%<\mathrm{i}<8 \%$. Using linear interpolation,

$$
\frac{\mathrm{i} \%-7 \%}{\$ 10,000-\$ 9,884.81}=\frac{8 \%-7 \%}{\$ 10,019.37-\$ 9,884.81}
$$

$\mathrm{i}=\underline{7.86 \%}$
(b) $\mathrm{F}=\$ 600(\mathrm{P} / \mathrm{G}, 5 \%, \mathrm{~N})(\mathrm{F} / \mathrm{P}, 5 \%, \mathrm{~N})=\$ 10,000$

If $\mathrm{N}=6, \mathrm{~F}=\$ 9,622.99<\$ 10,000, \therefore \mathrm{~N}>6$
If $\mathrm{N}=7, \mathrm{~F}=\$ 13,704.03>\$ 10,000, \therefore \mathrm{~N}<7$
Thus, $6<\mathrm{N}<7$. Using linear interpolation,

$$
\frac{\mathrm{N}-6}{\$ 10,000-\$ 9,622.99}=\frac{7-6}{\$ 13,704.03-\$ 9,622.99}
$$

$\mathrm{N}=\underline{6.1}$ periods. If an integer value of N is desired, choose $\mathrm{N}=7$ periods.
(c) $\mathrm{F}=\$ 1,000(\mathrm{P} / \mathrm{G}, 10 \%, 12)(\mathrm{F} / \mathrm{P}, 10 \%, 12)$

$$
=\$ 1,000(29.901)(3.1384)=\$ \underline{93,841.30}
$$

(d) $\quad \mathrm{G}=\mathrm{F}(\mathrm{P} / \mathrm{F}, 10 \%, 6) \frac{1}{(\mathrm{P} / \mathrm{G}, 10 \%, 6)}=\$ 8,000(0.5645) \frac{1}{9.684}=\underline{\$ 466.34}$

4-78 (a) $\$ 2,000=\$ 100(\mathrm{P} / \mathrm{A}, 0.5 \%, 12)+\mathrm{G}(\mathrm{P} / \mathrm{G}, 0.5 \%, 12)$

$$
=\$ 100(11.6189)+\mathrm{G}(63.214)
$$

$\mathrm{G}=\$ 13.26$ per month beginning at the end of month 2
(b) $\mathrm{A}=\$ 2,000(\mathrm{~A} / \mathrm{P}, 0.5 \%, 12)=\$ 2,000(0.0861)=\$ 172.20$
(c) $\mathrm{G}=\frac{\$ 2,000-\$ 150(11.6189)}{63.214}=\$ 4.07$ per month beginning at end of month 2 .

4-79 Using time 1 as the reference point, set $\mathrm{P}_{1}($ LHS $)=\mathrm{P}_{1}($ RHS $)$

$$
\begin{aligned}
\mathrm{K}(\mathrm{P} / \mathrm{A}, 12 \%, 2)(\mathrm{P} / \mathrm{F}, 12 \%, 2) & =\$ 100(\mathrm{P} / \mathrm{A}, 12 \%, 6)+\$ 110(\mathrm{P} / \mathrm{G}, 12 \%, 6) \\
\mathrm{K}(1.6901)(0.7972) & =\$ 100(4.1114)+\$ 110(8.93) \\
1.3473 \mathrm{~K} & =\$ 1,393.44 \\
\mathrm{~K} & =\$ 1,034.25
\end{aligned}
$$

4-80 $\quad \mathrm{F}=\$ 1,000(\mathrm{~F} / \mathrm{A}, 8 \%, 4)(\mathrm{F} / \mathrm{P}, 8 \%, 1)-\$ 200(\mathrm{P} / \mathrm{G}, 8 \%, 4)(\mathrm{F} / \mathrm{P}, 8 \%, 5)$
$=\$ 1,000(4.5061)(1.08)-\$ 200(4.65)(1.4693)=\$ 3,500.14$

Savings will increase by: $\quad \$ 200(0.8)=\$ 160$ each year (gradient)

$$
\begin{aligned}
\mathrm{P}_{0}(\text { savings }) & =\$ 2,400(\mathrm{P} / \mathrm{A}, 10 \%, 15)+\$ 160(\mathrm{P} / \mathrm{G}, 10 \%, 15) \\
& =\$ 2,400(7.6061)+160(40.15) \\
& =\$ \underline{24,678.64}
\end{aligned}
$$

The present equivalent value of the savings is greater than the installation cost of $\$ 18,000$. Therefore recommend installing the insulation.

4-83 Using time 1 as the equivalence point:

$$
\begin{aligned}
-\mathrm{R}(\mathrm{P} / \mathrm{G}, 15 \%, \mathrm{~N}-1) & =-27 \mathrm{R}(\mathrm{P} / \mathrm{F}, 15 \%, 3)+27 \mathrm{R}(\mathrm{P} / \mathrm{F}, 15 \%, 9) \\
-\mathrm{R}(\mathrm{P} / \mathrm{G}, 15 \%, \mathrm{~N}-1) & =-27 \mathrm{R}(0.6575)+27 \mathrm{R}(0.2843) \\
(\mathrm{P} / \mathrm{G}, 15 \%, \mathrm{~N}-1) & =10.0764
\end{aligned}
$$

From Table $\mathrm{C}-15$, $(\mathrm{P} / \mathrm{G}, 15 \%, 7)=10.192$, thus $\mathrm{N}-1=7$ and $\mathrm{N}=\underline{8 \text { years }}$.

4-84 The present equivalent of energy savings can be determined with Equation (4-30):

$$
\mathrm{P}=\$ 18,000 \frac{1-(\mathrm{P} / \mathrm{F}, 15 \%, 10)(\mathrm{F} / \mathrm{P}, 12 \%, 10)}{0.15-0.12}=\$ 18,000(0.2322) / 0.03=\$ 139,320 . \text { Therefore, the }
$$

investment in the insulation is justified by a wide margin.

$$
\begin{aligned}
P_{0} & =-\frac{\$ 175,000[1-(P / F, 18 \%, 6)(F / P, 8 \%, 6)]}{0.18-0.08} \\
& =\frac{\$ 175,000[1-(0.3704)(1.5869]}{0.10} \\
& =\$ 721,371
\end{aligned}
$$

You can afford to spend as much as $\$ \underline{721,371}$ for a higher quality heat exchanger.

4-86

$$
\mathrm{P}_{\mathrm{S} 1}=\$ 1,000+\frac{\$ 1,000(1.05)[1-(\mathrm{P} / \mathrm{F}, 10 \%, 5)(\mathrm{F} / \mathrm{P}, 5 \%, 5)]}{0.10-0.05}=\$ 5,358.45
$$

$$
\mathrm{P}_{\mathrm{S} 2}=\frac{\$ 2,000\left[1-(\mathrm{P} / \mathrm{F}, 10 \%, 5)(1-0.06)^{5}\right]}{0.10+0.06}=\$ 6,804
$$

Choose S2.

4-88 $\quad \mathrm{P}_{\text {Gas }}=\frac{\$ 8,800[1-(\mathrm{P} / \mathrm{F}, 18 \%, 15)(\mathrm{F} / \mathrm{P}, 10 \%, 15)]}{0.18-0.10}=\$ 71,632$
$\mathrm{P}_{\text {Maint. }}=\frac{\$ 345(1.15)[1-(\mathrm{P} / \mathrm{F}, 18 \%, 15)(\mathrm{F} / \mathrm{P}, 15 \%, 15)]}{0.18-0.15}=\$ 4,239$
$\mathrm{A}=(\$ 71,632+\$ 4,239)(\mathrm{A} / \mathrm{P}, 18 \%, 15)=\$ 14,901$

4-89 $\$ 1,304.35(1+\bar{f})^{10}=\$ 5,276.82$; Solving yields $\bar{f}=15 \%$

$$
\begin{aligned}
\mathrm{P}_{-1} & =\frac{\$ 1,304.35[1-(P / F, 20 \%, 11)(F / P, 15 \%, 11)]}{0.20-0.15} \\
& =\frac{\$ 1,304.35[1-(0.1346)(4.6524)]}{0.05} \\
& =\$ 9,750.98
\end{aligned}
$$

$$
\therefore \mathrm{P}_{0}=\$ 9,750.98(\mathrm{~F} / \mathrm{P}, 20 \%, 1)=\$ 9,750.98(1.20)=\$ 11,701.18
$$

$$
\therefore \mathrm{A}=\$ 11,701.18(\mathrm{~A} / \mathrm{P}, 20 \%, 10)=\$ 11,701.18(0.2385)=\$ 2,790.73
$$

4-90 $\quad \mathrm{F}=\frac{\$ 2,200[1-(\mathrm{P} / \mathrm{F}, 7 \%, 40)(\mathrm{F} / \mathrm{P}, 3 \%, 40)]}{0.07-0.03}(\mathrm{~F} / \mathrm{P}, 7 \%, 40)=\$ 644,128$
(a) $\mathrm{P}_{0}=\frac{\$ 10,000[1-(P / F, 12 \%, 8)(F / P, 7 \%, 8)]}{0.12-0.07}$

$$
\begin{aligned}
& =\frac{\$ 10,000[1-(0.4039)(1.7182)]}{0.05} \\
& =\$ \underline{61,204}
\end{aligned}
$$

We can justify spending up to $\$ 61,204$ for the device
(b) Using the result of part (a):

$$
\mathrm{A}=\$ 61,204(\mathrm{~A} / \mathrm{P}, 12 \%, 8)=\$ 61,204(0.2013)=\$ \underline{12,320}
$$

4-92

$$
\mathrm{P}=\$ 1,000(\mathrm{P} / \mathrm{A}, 12 \%, 15)+\frac{\$ 300[1-(\mathrm{P} / \mathrm{F}, 12 \%, 10)(\mathrm{F} / \mathrm{P}, 6 \%, 10)]}{0.12-0.06}=\$ 8,012
$$

4-93
(a) $\quad \mathrm{P}_{0}=\frac{\$ 5,000[1-(\mathrm{P} / \mathrm{F}, 8 \%, 8)(\mathrm{F} / \mathrm{P}, 6 \%, 8)]}{0.08-0.06}=\$ 34,717$
(b) $\quad \mathrm{P}_{0}{ }^{\prime}=\$ 4,000(\mathrm{P} / \mathrm{A}, 8 \%, 8)+\mathrm{G}(\mathrm{P} / \mathrm{G}, 8 \%, 8)$
(c) Set $\mathrm{P}_{0}=\mathrm{P}_{0}{ }^{\prime}$ and solve for $\mathrm{G}=\$ 658.80$.

$$
\begin{aligned}
\mathrm{F} & =\$ 10,000(\mathrm{~F} / \mathrm{P}, 6 \%, 1)(\mathrm{F} / \mathrm{P}, 4 \%, 1)(\mathrm{F} / \mathrm{P}, 2 \%, 2)(\mathrm{F} / \mathrm{P}, 5 \%, 1) \\
& =\$ 10,000(1.06)(1.04)(1.0404)(1.05)=\$ \underline{12,042.83}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}=\$ 1,000(\mathrm{P} / \mathrm{F}, 8 \%, 1)+\$ 2,000(\mathrm{P} / \mathrm{F}, 10 \%, 1)(\mathrm{P} / \mathrm{F}, 8 \%, 1) \\
&+\$ 1,000(\mathrm{P} / \mathrm{F}, 6 \%, 1)(\mathrm{P} / \mathrm{F}, 8 \%, 1)(\mathrm{P} / \mathrm{F}, 10 \%, 1)(\mathrm{P} / \mathrm{F}, 8 \%, 1) \\
&+\$ 2,000(\mathrm{P} / \mathrm{F}, 10 \%, 1)(\mathrm{P} / \mathrm{F}, 6 \%, 2)(\mathrm{P} / \mathrm{F}, 8 \%, 1)(\mathrm{P} / \mathrm{F}, 10 \%, 1)(\mathrm{P} / \mathrm{F}, 8 \%, 1) \\
&= \$ 1,000(0.9259)+\$ 2,000(0.9091)(0.9259) \\
&+\$ 1,000(0.9434)(0.9259)(0.9091)(0.9259) \\
&+\$ 2,000(0.9091)(0.8900)(0.9259)(0.9091)(0.9259) \\
&= \$ 4,606
\end{aligned}
$$

4-98 This solution assumes a 10-year repayment period (common practice) to compute the minimum monthly payments.
$\mathrm{A}_{\text {Card 1 }}=\$ 4,500(\mathrm{~A} / \mathrm{P}, 21 / 12 \%, 120)=\$ 89.97$
$\mathrm{A}_{\text {Card } 2}=\$ 5,700(\mathrm{~A} / \mathrm{P}, 2 \%, 120)=\$ 125.67$
$\mathrm{A}_{\text {Card } 3}=\$ 3,200(\mathrm{~A} / \mathrm{P}, 1.5 \%, 120)=\$ 57.66$
$\mathrm{A}_{\text {Consolidated }}=\$ 13,400(\mathrm{~A} / \mathrm{P}, 16.5 / 12 \%, 120)=\$ 228.66$
Mary's current monthly payments total $\$ 273.30$. The consolidated payment represents a ($\$ 273.30$ $\$ 228.66) / \$ 273.30 \times 100 \%=16.3 \%$. So while consolidating the credit cards will benefit Mary, the company has overstated the amount of this savings.
$4-99$ (a) $\mathrm{r}=10 \%, \mathrm{M}=2 / \mathrm{yr} ; \mathrm{i}=\left[1+\frac{\mathrm{r}}{\mathrm{M}}\right]^{\mathrm{M}}-1=\left[1+\frac{0.1}{2}\right]^{2}-1=0.1025=\underline{10.25 \%}$
(b) $\mathrm{r}=10 \%, \mathrm{M}=4 / \mathrm{yr} ; \mathrm{i}=\left[1+\frac{\mathrm{r}}{\mathrm{M}}\right]^{\mathrm{M}}-1=\left[1+\frac{0.1}{4}\right]^{4}-1=0.1038=\underline{10.38 \%}$
(c) $\mathrm{r}=10 \%, \mathrm{M}=52 / \mathrm{yr} ; \mathrm{i}=\left[1+\frac{\mathrm{r}}{\mathrm{M}}\right]^{\mathrm{M}}-1=\left[1+\frac{0.1}{52}\right]^{52}-1=0.1051=\underline{10.51 \%}$

4-100 $[1+0.05875 / \mathrm{X}]^{\mathrm{X}}-1=0.0604$

4-101 The effective annual interest rate is determined as follows:

$$
i_{e f f}=\left(1+\frac{0.30}{12}\right)^{12}-1=0.3449
$$

or 34.49% per year. The credit card holder is really paying a high rate if a balance is carried on this card.

4-102 (a) For a 30-year loan:

$$
\mathrm{A}=\$ 300,000(\mathrm{~A} / \mathrm{P}, 0.5 \%, 360)=\$ 300,000(0.0060)=\$ 1,800 \text { per month }
$$

For a 50 year loan:

$$
\mathrm{A}=\$ 300,000(\mathrm{~A} / \mathrm{P}, 0.5 \%, 600)=\$ 300,000(0.0053)=\$ 1,590 \text { per month }
$$

The difference is $\$ 210$ per month.
(b) 30-year: Total interest paid $=\$ 1,800(360)-\$ 300,000=\$ 348,000$
$50-$ year: Total interest paid $=\$ 1,590(600)-\$ 300,000=\$ 654,000$
Difference $=\$ 306,000$

4-103 $\mathrm{r}=12 \% ; \mathrm{M}=12 ; \mathrm{i} / \mathrm{yr}=\left(1+\frac{0.12}{12}\right)^{12}-1=0.1268$ or 12.68%

End of Year

$$
\mathrm{P}_{0}=?
$$

$$
\mathrm{P}_{0}=\$ 10,000(\mathrm{P} / \mathrm{A}, 12.68 \%, 6)(\mathrm{P} / \mathrm{F}, 12.68 \%, 11)
$$

$$
=\$ 10,000(4.034)(0.2689)=\$ \underline{10,847.43}
$$

4-104 $\mathrm{A}=\$ 50,000,000(\mathrm{~A} / \mathrm{F}, 2 \%, 80)=\$ 50,000,000(0.0052)=\$ 260,000$ per quarter

4-105 The future lump-sum equivalent cost of the membership is:

$$
\mathrm{F}=\$ 29(\mathrm{~F} / \mathrm{A}, 0.75 \%, 100)=\$ 29(148.1445)=\$ 4,296.19
$$

The manager is incorrect in his claim.

4-106 Monthly interest $=2.4 \% / 12=0.2 \%$ per month. The present equivalent of payments is

$$
\mathrm{P}=\$ 1,238+\$ 249(\mathrm{P} / \mathrm{A}, 0.2 \%, 39)=\$ 1,238+\$ 249(37.4818)=\$ 10,571
$$

The difference is \$3,429 against the MSRP, so this 24.5% discount is very good for the buyer.

4-107 (a) $\mathrm{A}=\$ 10,000(\mathrm{~A} / \mathrm{P}, 1 \%$ per month, 36 months)
$=\$ 10,000(0.0332)=\$ \underline{332}$
(b) $0=\$ 9,800-\$ 332$ (P/A, i' per month, 36 months)

By trial and error, $\mathrm{i}^{\prime}=1.115 \%$ per month so the true APR is $12(1.115 \%)=\underline{13.38 \%}$ per year

4-108 (a) $\mathrm{F}=\$ 200(\mathrm{~F} / \mathrm{A}, 0.5 \%, 360)=\$ 200(1004.52)=\$ 200,904$.
The $\$ 200(360)=\$ 72,000$ paid into the account grows to $\$ 200,904$ through compounding over 30 years (360 months).
(b) F in today's spending power $=\$ 200,904(\mathrm{P} / \mathrm{F}, 2 \%, 30)=\$ 200,904(0.5521)=\$ 110,919$. Thus, the spending power equivalent is about half the amount saved in part (a). Now you can see why it is important for the Federal Reserve Board to keep a modest inflation rate ($2-3 \%$ per year) in the economy.

4-109 (a) $\mathrm{A}=\$ 20,000(\mathrm{~A} / \mathrm{P}, 0.75 \%, 36)=\$ 20,000(0.0318)=\$ 636$ Interest $=\$ 636(36)-\$ 20,000=\$ 2,896$
$\mathrm{A}=\$ 20,000(\mathrm{~A} / \mathrm{P}, 0.75 \%, 72)=\$ 20,000(0.0180)=\$ 360$
Interest $=\$ 360(72)-\$ 20,000=\$ 5,920$
Difference $=\$ 3,024$
(b) You would be willing to pay this extra interest if either you can't afford the $\$ 636$ payment or if you can invest at $>0.75 \%$ per month.

4-110 Number of monthly deposits $=(5$ years $)(12$ months $/ \mathrm{yr})=60$
$\$ 400,000=\$ 200,000\left(\mathrm{~F} / \mathrm{P}, \mathrm{i}^{\prime} /\right.$ month, 60$)+\$ 676\left(\mathrm{~F} / \mathrm{A}, \mathrm{i}^{\prime} /\right.$ month, 60$)$
Try i' $/$ month $=0.75 \%: \quad \$ 400,000>\$ 364,126.69, \therefore \mathrm{i}^{\prime} /$ month $>0.75 \%$
Try i' $/$ month $=1 \%: \quad \$ 400,000<\$ 418,548.72, \therefore \mathrm{i}^{\prime} /$ month $<1 \%$
Using linear interpolation:
$\frac{\mathrm{i}^{\prime} / \text { month }-0.75 \%}{\$ 400,000-\$ 364,126.69}=\frac{1 \%-0.75 \%}{\$ 418,548.72-\$ 364,126.69} ; \quad \mathrm{i}^{\prime} /$ month $=0.9148 \%$
Therefore, $\mathrm{i}^{\prime} /$ year $=(1.009148)^{12}-1=0.1155$ or 11.55% per year

4-111 (a) $\$ 1,100=\$ 19.80(\mathrm{P} / \mathrm{A}, 1.5 \%, \mathrm{~N})$, so $(\mathrm{P} / \mathrm{A}, 1.5 \%, \mathrm{~N})=55.5556$
This can be solved by trial and error or using Excel.
$\mathrm{N}=\operatorname{NPER}(0.015,19.8,-1100)=120$
(b) $\mathrm{N}=\operatorname{NPER}(0.015,29.8,-1100)=54$
(c) \quad Difference $=\$ 19.80(120)-\$ 29.80(54)=\$ 766.80$

4-112 $0.35=e^{r}-1 \quad e^{r}=1.35$
$r=\ln (1.35)$
$\underline{r}=30 \%$

4-113 $\mathrm{i}=\mathrm{e}^{0.11333}-1=0.12$ or 12% per year

4-114 $\mathrm{i}=\mathrm{e}^{0.06}-1=0.0618$ or 6.18% per year

4-115 (a) $\mathrm{A}=\$ 8,000(\mathrm{~A} / \mathrm{F}, \underline{8} \%, 10)=\frac{\$ 8,000}{(\mathrm{~F} / \mathrm{A}, \underline{8} \%, 10)}=\frac{\$ 8,000}{14.7147}=\underline{\$ 543.67}$
(b) $\mathrm{P}=\$ 1,000(\mathrm{P} / \mathrm{A}, \underline{8} \%, 12)=\$ 1,000(7.4094)=\$ 7,409.40$
(c) $\mathrm{r}=8 \% / 2 \%=\underline{4} \%$
$\mathrm{F}=\$ 243(\mathrm{~F} / \mathrm{A}, \underline{4} \%, 12)=\$ 243\left[\frac{\mathrm{e}^{(0.04)(12)}-1}{\mathrm{e}^{0.04}-1}\right]=\$ 243(15.0959)=\underline{\$ 3,668.30}$
(d) $\mathrm{F}=\$ 1,000(\mathrm{~F} / \mathrm{P}, \underline{8} \%, 9)=\$ 1,000(2.0544)=\$ 2,054.40$

4-116 Set Equivalent cash outflows = Equivalent cash inflows
Using time 9 as the equivalence point,

$$
\begin{aligned}
\mathrm{Z}(\mathrm{~F} / \mathrm{P}, \underline{20} \%, 9) & =\$ 500(\mathrm{~F} / \mathrm{A}, \underline{20} \%, 5)+\mathrm{Z}(\mathrm{~F} / \mathrm{P}, \underline{20} \%, 6) \\
6.0496 \mathrm{Z} & =\$ 500(7.7609)+3.3201 \mathrm{Z} \\
2.7295 \mathrm{Z} & =\$ 3,880.45 \\
\mathrm{Z} & =\underline{\$ 1,421.67}
\end{aligned}
$$

4-117 $\mathrm{i}=\mathrm{e}^{0.072}-1=0.0747$ or 7.47% per year
$\mathrm{F}=\$ 5,000 \mathrm{e}^{0.072(2)}=\$ 5,774.42$

4-118 $\mathrm{F}_{18}=\$ 10,000(\mathrm{~F} / \mathrm{P}, \underline{8} \%, 18)=\$ 10,000(4.2207)=\$ \underline{42,207}$

4-119 $\underline{r}=10 \% / 2=\underline{5} \%$ every six months, compounded continuously

$$
\mathrm{A}=\$ 18,000(\mathrm{~A} / \mathrm{P}, \underline{5} \%, 24)=\frac{\$ 18,000}{(\mathrm{P} / \mathrm{A}, \underline{5} \%, 24)}=\frac{\$ 18,000}{13.6296}=\underline{\$ 1,320.66}
$$

4-120 $\mathrm{P}=\$ 3,500(\mathrm{P} / \mathrm{A}, \underline{10} \%, 5)=\$ 3,500(3.7412)=\$ \underline{13,094.20}$

4-121 $\$ 16,000=\$ 7,000(\mathrm{~F} / \mathrm{P}, \mathrm{r} \%, 9)$
$\$ 16,000=\$ 7,000 e^{9 r} ; 2.2857=e^{9 r} ; 9 r=\ln (2.2857)=0.8267$
$\mathrm{r}=0.0919$ or 9.19%

4-122 $\mathrm{r}=\underline{10} \%$ per year, compounded continuously
(a) $\mathrm{F}=\$ 2000(\mathrm{~F} / \mathrm{A}, \underline{10} \%, 30]=\$ 2000(181.472)=\$ \underline{362,944}$
(b) $\mathrm{A}=\$ 362,944(\mathrm{~A} / \mathrm{P}, \underline{10} \%, 10)=\frac{\$ 362,944}{(\mathrm{P} / \mathrm{A}, \underline{10} \%, 10)}=\frac{\$ 362,944}{6.0104}=\underline{\$ 60,386}$

4-123 (a) False; (b) False; (c) False; (d) True; (e) False; (f) True; (g) False;
(h) False; (i) False

4-124 (a) True; $\mathrm{i} / \mathrm{yr}=\mathrm{e}^{\mathrm{r}}-1=\mathrm{e}^{0.1}-1=0.1052$ or $10.52 \%>\mathrm{r}=10 \%$
(b) True; In fact, more than half of the principal is still owed after the tenth monthly payment is made.
$r=\underline{10} \% / 12=\underline{0.833} \%$ per month compounded continuously.

$$
\begin{aligned}
\mathrm{P}_{0} & =\$ 185(\mathrm{P} / \mathrm{A}, \underline{0.833} \%, 24)=\$ 185\left(\frac{\mathrm{e}^{0.00833(24)}-1}{\mathrm{e}^{0.00833(24)}\left(\mathrm{e}^{0.00833}-1\right)}\right) \\
& =\$ 185(21.6627)=\$ 4,008
\end{aligned}
$$

Amount still owed
immediately following $=\$ 185(\mathrm{P} / \mathrm{A}, \underline{0.833} \%, 10)=\$ 185(13.1595)=\$ 2,435$ tenth payment

$$
\frac{\$ 2,435}{\$ 4,008} * 100=61 \% \text { of principal is still owed after tenth payment. }
$$

(c) False; $\mathrm{r}=8 \%, \mathrm{M}=2, \mathrm{i} / \mathrm{yr}=\left[1+\frac{0.08}{2}\right]^{2}-1=0.0816=8.16 \%$
$\mathrm{F}=\mathrm{P}(\mathrm{F} / \mathrm{P}, \mathrm{i} \%, \mathrm{~N})$
$\$ 1,791 \stackrel{?}{=} \$ 900(\mathrm{~F} / \mathrm{P}, 8.16 \%, 10)$
$\$ 1,791 \stackrel{?}{=} \$ 900(1.0816)^{10}$
$\$ 1,791 \neq \$ 1,972$
(d) False; $(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N})=\sum_{\mathrm{k}=1}^{\mathrm{N}}(\mathrm{P} / \mathrm{F}, \mathrm{i} \%, \mathrm{k}) \neq \frac{\mathrm{N}}{1+\mathrm{i}}$
(e) Part i) $(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N})(\mathrm{F} / \mathrm{P}, \mathrm{i} \%, \mathrm{~N})=(\mathrm{F} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N})$

Note: $\quad \frac{(\mathrm{F} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N})}{(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N})}=(\mathrm{F} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N})(\mathrm{A} / \mathrm{P}, \mathrm{i} \%, \mathrm{~N})=\left[\frac{(1+\mathrm{i})^{\mathrm{N}}-1}{\mathrm{i}}\right]\left[\frac{\mathrm{i}(1+\mathrm{i})^{\mathrm{N}}}{(1+\mathrm{i})^{\mathrm{N}}-1}\right]$

$$
=(1+\mathrm{i})^{\mathrm{N}}=(\mathrm{F} / \mathrm{P}, \mathrm{i} \%, \mathrm{~N})
$$

Part ii) $\quad(\mathrm{A} / \mathrm{G}, \mathrm{i} \%, \mathrm{~N})(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N})=(\mathrm{P} / \mathrm{G}, \mathrm{i} \%, \mathrm{~N})$
Note: $\quad(\mathrm{A} / \mathrm{G}, \mathrm{i} \%, \mathrm{~N})(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N})=\left[\frac{1}{\mathrm{i}}-\frac{\mathrm{N}}{(1+\mathrm{i})^{\mathrm{N}}-1}\right]\left[\frac{(1+\mathrm{i})^{\mathrm{N}}-1}{\mathrm{i}(1+\mathrm{i})^{\mathrm{N}}}\right]$

$$
=\frac{1}{i}\left[\frac{(1+i)^{N}-1}{i(1+i)^{N}}-\frac{N}{(1+i)^{N}}\right]
$$

$$
=(\mathrm{P} / \mathrm{G}, \mathrm{i} \%, \mathrm{~N})
$$

4-125 $\mathrm{F}=\$ 10,000(\mathrm{~F} / \mathrm{P}, 11 \%, 25)=\$ 10,000(13.5855)=\$ 135,855$
$\mathrm{F}($ in today's dollars $)=\$ 135,855(\mathrm{P} / \mathrm{F}, 3 \%, 25)=\$ 135,855(0.4776)=\$ 64,884$

$$
\$ 100,000(\mathrm{~A} / \mathrm{P}, 0.5 \%, 360)=\$ 100,000(0.0060)=\$ 600
$$

After adding the additional $\$ 400$ for property taxes and insurance, the total condo payment is $\$ 1,000$ per month.
(b) This is an open-ended exercise for students to have fun with. Utilities could easily be in the $\$ 300-\$ 500$ per month ballpark. Condo homeowner association fees might be another $\$ 100-\$ 200$ per month. Other miscellaneous expenses could bring Javier's total monthly expenses to $\$ 1,500-\$ 1,700$. This is a fairly expensive undertaking for Javier!
(c) The monthly interest rate is $5.8 \% / 12=0.4833 \%$. Javier's monthly mortgage payment will be $\$ 100,000(0.0083)=\$ 830$. The savings in interest paid on the mortgage between the answers in parts (a) and (c) is enormous ($\$ 66,600$).

4-127 If the rate of return on your invstment is about 14% per year, set up cash flow diagrams for starting to save at age 20 (first deposit at age 21), age 25 and age 30 to determine that

$$
\begin{aligned}
& \mathrm{A}=0.0007 \mathrm{~F} \text { for } 40 \text { years of saving } \\
& 2 \mathrm{~A}=0.0014 \mathrm{~F} \text { for } 35 \text { years of saving } \\
& 4 \mathrm{~A}=0.0028 \mathrm{~F} \text { for } 30 \text { years of saving. }
\end{aligned}
$$

Here $\mathrm{F}=\$ 1,000,000$ and the coefficient of F is the appropriate $(\mathrm{A} / \mathrm{F}, \mathrm{i} \%, \mathrm{~N})$ factor. The big assumption is whether you can earn 14% per year on your investments. If not, the above statement is not true. That it is true for $\mathrm{i}=14 \%$ is a real eye - opener for most students. Moral: start saving early!

4-128 Let's start (guess) that three points $(\$ 3,000)$ are paid up front on a loan over $15(12)=180$ months. The loan amount will be $\$ 103,000(\mathrm{~A} / \mathrm{P}, 0.5 \%, 180)=\$ 103,000(0.0084)=\$ 865.20$ per month. The true interest rate per month on the loan is found as follows: $\$ 100,000=\$ 865.20(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 180)$, or $\mathrm{i}=$ 0.5325% per month. The effective interest rate per year is $(1+0.005325)^{12}-1=0.0658$ or 6.58% per year. Thus, three points are being charged (lucky starting guess).

Solutions to Spreadsheet Exercises

4-129 See P4-129.xls.

Credit Card Balance:	$\$ 17,000$
Credit Card APR:	12%

Plan 1: Pay interest due at end of each month and principal at the end of fourth month.

1	$\$ 17,000$	$\$ 170$	$\$ 17,170$	$\$ 0$	$\$ 170$
2	$\$ 17,000$	$\$ 170$	$\$ 17,170$	$\$ 0$	$\$ 170$
3	$\$ 17,000$	$\$ 170$	$\$ 17,170$	$\$ 0$	$\$ 170$
	4	$\$ 17,000$	$\$ 170$	$\$ 17,170$	$\$ 17,000$
	$\$ 17,170$				
	$\$ 68,000$	$\$ 680$	$=$ total interest		

Plan 2: Pay off the debt in four equal end-of-month installments (principal and interest).

1	$\$ 17,000$	$\$ 170$	$\$ 17,170$	$\$ 4,187$	$\$ 4,357$
2	$\$ 12,813$	$\$ 128$	$\$ 12,941$	$\$ 4,229$	$\$ 4,357$
3	$\$ 8,585$	$\$ 86$	$\$ 8,670$	$\$ 4,271$	$\$ 4,357$
4	$\$ 4,314$	$\$ 43$	$\$ 4,357$	$\$ 4,314$	$\$ 4,357$
$\$$-mo. $=$	$\$ 42,711$	$\$ 427$	$=$ total interest		

Plan 3: Pay principal and interest in one payment at end of fourth month.

1	$\$ 17,000$	$\$ 170$	$\$ 17,170$	$\$ 0$	$\$ 0$
2	$\$ 17,170$	$\$ 172$	$\$ 17,342$	$\$ 0$	$\$ 0$
3	$\$ 17,342$	$\$ 173$	$\$ 17,515$	$\$ 0$	$\$ 0$
	4	$\$ 17,515$	$\$ 175$	$\$ 17,690$	$\$ 0$
	$\$ 17,690$				
	$\$ 69,027$	$\$ 690$	$=$ total interest		

EOY	Cash Flow	
0	$\$$	$(15,000)$
1	$\$$	2,000
2	$\$$	2,500
3	$\$$	3,000
4	$\$$	3,500
5	$\$$	4,000
6	$\$$	4,000
7	$\$$	4,000
8	$\$$	4,000
P	$\$$	2,189
A	$\$$	410
F	$\$$	4,692

Notice that a cell is not designated for the interest rate. Therefore, the interest rate must be entered specifically in the NPV, PMT, and FV financial functions. The following entries in the designated cells will yield the results for P, A, and F :

$$
\begin{aligned}
& \mathrm{B} 11=\operatorname{NPV}(0.1, \mathrm{~B} 3: \mathrm{B} 10)+\mathrm{B} 2 \\
& \mathrm{~B} 12=\operatorname{PMT}(0.1, \mathrm{~A} 10,-\mathrm{B} 11) \text { or }=\operatorname{PMT}(0.1,8,-\mathrm{B} 11) \\
& \mathrm{B} 13=\mathrm{FV}(0.1, \mathrm{~A} 10,-\mathrm{B} 12) \text { or }=\mathrm{FV}(0.1,9,-\mathrm{B} 12)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P} & =\$ 2,189.02 \\
\mathrm{~A} & =\$ 410.32 \\
\mathrm{~F} & =\$ 4,692.38
\end{aligned}
$$

4-131

$i / \mathrm{yr}=$	25%
$f=$	20%
$\mathrm{~A}_{1}=$	$\$ 1,000$
$\mathrm{~N}=$	10

EOY		
1	$\$$	1,000
2	$\$$	1,200
3	$\$$	1,440
4	$\$$	1,728
5	$\$$	2,074
6	$\$$	2,488
7	$\$$	2,986
8	$\$$	3,583
9	$\$$	4,300
10	$\$$	5,160
$P=$	$\$$	6,703
$\mathrm{~A}=$	$\$$	1,877
$\mathrm{~F}=$	$\$ 62,430$	

4-132 See P4-132.xls.
Note: This spreadsheet assumes monthly compounding.

Loan Amount \# of Payments	
APR	Payment
0\%	\$416.67
1\%	\$427.34
2\%	\$438.19
3\%	\$449.22
4\%	\$460.41
5\%	\$471.78
6\%	\$483.32
7\%	\$495.03
8\%	\$506.91
9\%	\$518.96
10\%	\$531.18
11\%	\$543.56
12\%	\$556.11

\$25,000
60

Solutions to Case Study Exercises

4-133 Amount set aside each month $=\$ 311.40$
Interest rate $=3 \% / 12=1 / 4 \%$ per month
First payment occurs at the end of the first month of year 6
Amount available at end of 10-year time frame:

$$
\mathrm{F}=\$ 311.40(\mathrm{~F} / \mathrm{A}, 1 / 4 \%, 60)=\$ 311.40(64.6467)=\$ 20,130.98
$$

4-134 Assume the utility cost remains at $\$ 150$ per month.
Assume a property tax and insurance rate equal to 25% of the principal and interest (P\&I) payment.
Total Monthly Payment $=\$ 800=1.25(\mathrm{P} \mathrm{\& I})$
$\mathrm{P} \& \mathrm{I}=\$ 640$
Assume a 30-year mortgage at 6\% compounded monthly.
Mortgage amount $=\$ 640(\mathrm{P} / \mathrm{A}, 1 / 2 \%, 360)=\$ 640(166.7916)=\$ 106,747$
Maximum purchase price $=\$ 106,747+\$ 40,000=\underline{\$ 146,747}$

4-135 $\mathrm{A}=\$ 320 ; \mathrm{i}=10 \% / 12=0.833 \%$ per month; $\mathrm{N}=120$ months $\mathrm{F}=\$ 320(\mathrm{~F} / \mathrm{A}, 0.833 \%, 120)=\$ 320(204.7981)=\$ 65,535.39$

Solutions to FE Practice Problems

4-136 $\quad \underline{I}=(\mathrm{P})(\mathrm{N})(\mathrm{i})=\$ 3,000(7)(0.06)=\$ 1,260$
$\mathrm{F}=\mathrm{P}+\underline{\mathrm{I}}=\$ 3,000+\$ 1,260=\$ 4,260$
Select (e)

4-137 $\mathrm{P}=\$ 100,000(\mathrm{P} / \mathrm{F}, 10 \%, 25)$

$$
=\$ 100,000(0.0923)=\$ 9,230
$$

Select (b)

4-138 $\mathrm{F}=\$ 2,000(\mathrm{~F} / \mathrm{A}, 2 \%, 30)=\$ 2,000(40.5681)$ $=\$ 81,136$

Select (d)

4-139 i / mo. $=0.5 \%, \mathrm{~N}=30 \times 12=360$ months

$$
\mathrm{P}=\$ 1,500(\mathrm{P} / \mathrm{A}, 0.5 \%, 360)
$$

$$
=\$ 1,500\left[\frac{(1.005)^{360}-1}{(0.005)(1.005)^{360}}\right]
$$

$$
=\$ 1,500(166.7916)=\$ 250,187
$$

$\underline{\text { Select (c) }}$

4-140 $\quad \mathrm{A}=\$ 8,000 ; \mathrm{G}=\$ 7,000$

$$
\begin{aligned}
\mathrm{A}_{\text {total }} & =\$ 8,000+\$ 7,000(\mathrm{~A} / \mathrm{G}, 12 \%, 5) \\
& =\$ 8,000+\$ 7,000(1.7746)=\$ 20,422
\end{aligned}
$$

$\underline{\text { Select (a) }}$

4-141 $\$ 9,982=\$ 2,500\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 5\right)$

$$
\begin{aligned}
3.9928 & =\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 5\right) ; \mathrm{i}^{\prime}=8 \% / \mathrm{yr} \\
\$ 9,982 & =\mathrm{G}(\mathrm{P} / \mathrm{G} .8 \%, 5) \\
\$ 9,982 & =\mathrm{G}(7.372) \\
\mathrm{G} & =\$ 1,354
\end{aligned}
$$

Select (d)

4-142 $\mathrm{A}=\$ 10,000(\mathrm{~A} / \mathrm{P}, 3 \%, 20)=\$ 672$

Select (c)

4-143 $i_{\text {monthly }}=\frac{6.00 \% / \text { year }}{12 \text { months } / \text { year }}=1 / 2 \% /$ month
$\mathrm{A}=\$ 100,000(\mathrm{~A} / \mathrm{F}, 1 / 2 \%, 60)=100,000(0.0143)=\$ \underline{1,430}$

Select (d)

4-144 $\mathrm{A}=\$ 20,000(\mathrm{~A} / \mathrm{P}, 1 \%, 60)=\$ 444$
$\mathrm{P}($ of remaining 40 payments $)=\$ 444(\mathrm{P} / \mathrm{A}, 1 \%, 40)$ or $\mathrm{P}=\$ 14,579$

Select (c)

4-145 i $/ \mathrm{mo} .=12 \% / 12=1 \%$ per month; $\mathrm{N}=4 \times 12=48$ months $\mathrm{A}=\$ 5,000(\mathrm{~A} / \mathrm{P}, 1 \%$ per month, 48 months)
$=\$ 5,000(0.0263)=\$ 131.50$
$\underline{\text { Select (a) }}$

4-146 $0.192=e^{r}-1$
$r=\ln (1.192)=17.56 \%$

Select (c)

$\mathrm{i}=\mathrm{e}^{0.12}-1=0.1275$ or 12.75% compounded annually

Select (c)

4-148

$$
\begin{aligned}
\mathrm{F} & =\$ 7,000(\mathrm{~F} / \mathrm{P}, 12 \%, 3)=\$ 7,000 \mathrm{e}^{(0.12)(3)} \\
& =\$ 7,000 \mathrm{e}^{0.36}, \\
& =\$ 7,000(1.4333)=\$ 10,033
\end{aligned}
$$

Select (c)

Solutions to Chapter 5 Problems

5-1 No. A higher MARR reduces the present worth of future cash inflows created by savings (reductions) in annual operating costs. The initial investment (at time 0) is unaffected, so higher MARRs reduce the price that a company should be willing to pay for this equipment.

5-2 One of many formulations:

$\operatorname{PW}(10 \%)=-\$ 50,000+(\$ 20,000-\$ 5,000)(\mathrm{P} / \mathrm{A}, 10 \%, 5)-\$ 1,000(\mathrm{P} / \mathrm{G}, 10 \%, 5)$

$$
+\$ 11,000 \mathrm{~F} / \mathrm{A}, 10 \%, 5)(\mathrm{P} / \mathrm{F}, 10 \% 10)+\$ 35,000(\mathrm{P} / \mathrm{F}, 10 \%, 10)
$$

so we find that $\mathrm{PW}(10 \%)=\$ 39,386$, and this is a profitable undertaking.

5-3 Bonus $=\$ 12.5$ million $(\mathrm{P} / \mathrm{A}, 20 \%, 3)(0.001)=\$ 26,331$. This is a very nice bonus for Josh's contribution to the company. (The international passengers did not balk at this idea because flights have been packed to capacity for the past year.)

5-4 $\mathrm{PW}(12 \%)=-\$ 13,000+\$ 3,000(\mathrm{P} / \mathrm{F}, 12 \%, 15)-\$ 1000(\mathrm{P} / \mathrm{A}, 12 \%, 15)$

- \$200 (P/F,12\%,5) - \$550 (P/F,12\%,10)
$=-\$ 13,000+\$ 3,000(0.1827)-\$ 1000(6.8109)-\$ 200(0.5674)$
$-\$ 550(0.3220)$
$=-\$ 19,553.38$

5-5 Amount to deposit now $=\$ 20,000+\$ 250(\mathrm{P} / \mathrm{A}, 0.5 \%, 360)=\$ 20,000+\$ 250(166.7916)$ $=\$ 61,698$

5-6 Demand charge $/$ year $=\frac{(\$ 90 / \mathrm{kW} / \mathrm{yr})(100 \mathrm{hp})(0.746 \mathrm{~kW} / \mathrm{hp})}{0.9}=\$ 7,640 /$ year
Energy charge $/$ year $=\frac{(\$ 0.08 / \mathrm{kWh})(100 \mathrm{hp})(0.746 \mathrm{~kW} / \mathrm{hp})(8,760 \mathrm{hr} / \mathrm{yr})}{0.9}=\$ 58,089 /$ year
Total annual cost of operation $=\$ 65,549$
$\operatorname{PW}(15 \%)=-\$ 3,500-\$ 65,549(\mathrm{P} / \mathrm{A}, 15 \%, 10)=-\$ 332,477$.
Notice that the annual cost of operating the motor is almost 19 times the initial investment costs of the motor!

5-7 $\mathrm{PW}(18 \%)=-\$ 84,000+\$ 18,000(\mathrm{P} / \mathrm{A}, 18 \%, 6)=-\$ 21,043$.
Since $\mathrm{PW}<0$, this is not an acceptable investment.

5-8 The weekly interest rate equals $6.5 \% / 52$, or 0.125% per week. The present worth of an indefinitely long payout period is $\$ 5,000 / 0.00125=\$ 4,000,000$.

5-9 Assume miles driven each year is roughly constant at 12,000. A four-speed transmission car will consume 400 gallons of gasoline each year, and the fuel cost is $\$ 1,200$ per year. The six-speed transmission will attain (1.04)(30 mpg) $=31.2 \mathrm{mpg}$ for an annual consumption of 384.6 gallons and a fuel cost of $\$ 1,153.80$. The annual savings due to a six-speed transmission is $\$ 1,200-\$ 1,153.80=$ $\$ 46.20$. Over a ten year life, the present worth of savings will be $\$ 46.2(\mathrm{P} / \mathrm{A}, 6 \%, 10)=\$ 340$. This is how much extra the motorist should be willing to pay for a six-speed transmission.

5-10 Desired yield per year $=10 \%$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{N}} & =\$ 1,000(\mathrm{P} / \mathrm{F}, 10 \%, 10)+0.14(\$ 1,000)(\mathrm{P} / \mathrm{A}, 10 \%, 10) \\
& =\$ 1,000(0.3855)+\$ 140(6.1446)=\$ 1,245.74
\end{aligned}
$$

5-11 $\quad \mathrm{V}_{\mathrm{N}}=\$ 10,000(\mathrm{P} / \mathrm{F}, 1.75 \%, 120)+\$ 150(\mathrm{P} / \mathrm{A}, 1.75 \%, 120)$
$=\$ 10,000(0.1247)+\$ 150(50.0171)$

$$
=\$ 8,750
$$

The worth of Jim's bonds had dropped by $\$ 1,250$ because of the increase in the marketplace interest rates for long-term debt. With bonds, as the interest rate in the economy goes up, the value of the bond decreases and vice versa.

5-12 Desired yield per quarter $=12 \% / 4=3 \% ; \mathrm{N}=4(10)=40$ quarters

$$
\begin{aligned}
\mathrm{V}_{\mathrm{N}} & =\$ 10,000(\mathrm{P} / \mathrm{F}, 3 \%, 40)+0.02(\$ 10,000)(\mathrm{P} / \mathrm{A}, 3 \%, 40) \\
& =\$ 10,000(0.3066)+\$ 200(23.1148) \\
& =\$ \underline{7,688.96}
\end{aligned}
$$

5-13 True interest rate in the IRR associated with the equation $\mathrm{PW}\left(\mathrm{i}^{\prime}\right)=0$.

$$
\begin{gathered}
(\$ 1,000,000-\$ 50,000)-\$ 40,000\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 15 \%\right)-\$ 70,256\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 15\right)- \\
\$ 1,000,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 15\right)=0
\end{gathered}
$$

$$
\$ 950,000-\$ 110,526\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 15 \%\right)-\$ 1,000,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 15\right)=0
$$

$$
\text { at } 10 \%: \quad \$ 950,000-\$ 110256(7.6061)-\$ 1,000,000(0.2394)=-\$ 128,018
$$

$$
\text { at } 12 \%: \quad \$ 950,000-\$ 110,256(6.8109)-\$ 1,000,000(0.1827)=+\$ 16,357
$$

By interpolation, $\underline{\mathbf{i}^{\prime}=11.773 \%}$

5-14 Purchase price of the bonds $=\$ 9,780$
Annual interest paid by the government $=(0.05)(\$ 10,000)=\$ 500$
Redemption value in 10 years $=\$ 10,000$
Yield on the bonds is found by finding i^{\prime} that satisfies the following equation:

$$
\begin{gathered}
0=-\$ 9,780+\$ 500\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 10\right)+\$ 10,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 10\right) \\
\mathrm{i}^{\prime}=5.29 \% \text { per year }(\text { the yield })
\end{gathered}
$$

5-15 From the viewpoint of WRC, they can determine the annuity equivalent of their services:

$$
\mathrm{A}=\$ 360,000+\$ 15,000(\mathrm{~A} / \mathrm{G}, 12 \%, 100)=\$ 484,982 .
$$

Then $\operatorname{PW}(12 \%)=\$ 484,982(\mathrm{P} / \mathrm{A}, 12 \%, 100)=\$ 4,041,452$.
WRC will receive more upfront money than the value of its services over a 100-year period, so this is a profitable agreement for WRC. They will earn more than 12% on this deal.

5-16 (a) $\mathrm{CW}(10 \%)=\frac{\$ 1,500}{0.10}+\left[\frac{\$ 10,000(\mathrm{~A} / \mathrm{F}, 10 \%, 4)}{0.10}\right](\mathrm{P} / \mathrm{F}, 10 \%, 1)=\$ \underline{34,591}$
(b) Find the value for N for which $(\mathrm{A} / \mathrm{P}, 10 \%, \mathrm{~N})=0.10$

From Table C-13, N = 80 years

5-17 $\mathrm{AW}=-\$ 20,000,000(\mathrm{~A} / \mathrm{P}, 8 \%, 40)-\$ 600,000=-\$ 2,278,000$
$\mathrm{CW}=-\$ 2,278,000 / 0.08=-\$ 28,475,000$

Amount at July 2004:

$$
\$ 100,000(1.05)^{4}-\$ 3,000,000=\$ 12,155,000-\$ 3,000,000=\$ 9,155,000
$$

$$
\begin{aligned}
& \text { Let } \quad \mathrm{A}=\$ 2,900, \mathrm{G}=-\$ 100(\text { delayed } 1 \text { year }) \\
& \\
& \mathrm{F}_{6}=-\$ 2,000 \\
& \mathrm{P}_{0}=\$ 2,900(\mathrm{P} / \mathrm{A}, 6 \$, 10)-100(\mathrm{P} / \mathrm{G}, 6 \%, 9)(\mathrm{P} / \mathrm{F}, 6 \%, 1)-\$ 2,000(\mathrm{P} / \mathrm{F}, 6 \%, 6) \\
& =\$ 2,900(7.3601)-\$ 100(24.5768)(0.9434)-\$ 2,000(0.7050) \\
& =\$ 17,615.71
\end{aligned}
$$

$\mathrm{FW}_{10}=\$ 17,615.71(\mathrm{~F} / \mathrm{P}, 6 \%, 10)=\$ 17,615.71(1.7908)=\$ 31,546.21$

5-20 Tax savings per year $=(0.034)(\$ 50,000)=\$ 1,700$
$\mathrm{FW}=\$ 1,700(\mathrm{~F} / \mathrm{A}, 12 \%, 10)=\$ 1,700(17.5487)=\$ 29,833$

5-21 $\mathrm{FW}(15 \%)=-\$ 10,000(\mathrm{~F} / \mathrm{P}, 15 \%, 5)+(\$ 8,000-\$ 4000)(\mathrm{F} / \mathrm{A}, 15 \%, 5)-\$ 1,000$
$=-\$ 10,000(2.0114)+\$ 4000(6.7424)-\$ 1,000$
$=\$ \underline{5,855.60}$

5-22 $\mathrm{PW}=\$ 1,020[1-(\mathrm{P} / \mathrm{F}, 10 \%, 20)(\mathrm{F} / \mathrm{P}, 2 \%, 20)] /(0.10-0.02)=\$ 9,935$
$\mathrm{FW}=\$ 9,935(\mathrm{~F} / \mathrm{P}, 10 \%, 20)=\$ 66,838$

5-23 Opportunity Cost $=$ Investment at $\mathrm{BOY} \times(\mathrm{P} / \mathrm{F}, 15 \%, 1)=\mathrm{BOY}(0.15)$
Capital Recovery Amount $=$ Opportunity Cost + Loss in Value During Year

Year	Investment at Beginning of Year	Opportunity Cost of Interest $(\mathrm{i}=15 \%)$	Loss in Value During Year	Capital Recovery Amount
1	$\$ 10,000$	$\$ 10,000(0.15)=\mathbf{1 , 5 0 0}$	$\$ 3,000$	$1,500+3,000=\mathbf{4 , 5 0 0}$
2	$10,000-3000=\mathbf{7 , 0 0 0}$	$7,000(0.15)=\mathbf{1 , 0 5 0}$	2,000	$1,050+2,000=\mathbf{3 , 0 5 0}$
3	$7,000-2,000=\mathbf{5 , 0 0 0}$	$5,000(0.15)=\mathbf{7 5 0}$	2,000	$750+2,000=\mathbf{2 , 7 5 0}$
4	$5,000-2,000=\mathbf{3 , 0 0 0}$	$3,000(0.15)=\mathbf{4 5 0}$	$\mathbf{1 , 0 0 0}$	$450+1,000=\mathbf{1 , 4 5 0}$

$$
\begin{aligned}
\mathrm{P}_{0}= & \$ 4,500(\mathrm{P} / \mathrm{F}, 15 \%, 1)+\$ 3,050(\mathrm{P} / \mathrm{F}, 15 \%, 2)+\$ 2,750(\mathrm{P} / \mathrm{F}, 15 \%, 3) \\
& +\$ 1,450(\mathrm{P} / \mathrm{F}, 15 \%, 4) \\
= & \$ 4,500(0.8696)+\$ 3,050(0.7561)+\$ 2,750(0.6575)+\$ 1,450(0.5718) \\
= & \$ 8,856.54
\end{aligned}
$$

$$
\mathrm{A}=\$ 8,856.54(\mathrm{~A} / \mathrm{P}, 15 \%, 4)=\$ 8,856.49(0.3503)=\$ 3,102.45
$$

This same value can be obtained and confirmed with Equation (5-5):

$$
\begin{aligned}
\mathrm{CR}(\mathrm{i} \%) & =\mathrm{I}(\mathrm{~A} / \mathrm{P}, \mathrm{i} \%, \mathrm{~N})-\mathrm{S}(\mathrm{~A} / \mathrm{F}, \mathrm{i} \%, \mathrm{~N}) \\
& =\$ 10,000(\mathrm{~A} / \mathrm{P}, 15 \%, 4)-\$ 2,000(\mathrm{~A} / \mathrm{F}, 15 \%, 4) \\
& =\$ 10,000(0.3503)-\$ 2,000(0.2003) \\
& =\$ \underline{3,102.12}
\end{aligned}
$$

Note: The Annual Worth from the table and the CR amount from Equation (5-5) are the same.

Year	Investment at Beginning of Year	Opportunity Cost of Interest $(\mathrm{i}=15 \%)$	Loss in Value During Year	Capital Recovery Amount
1	$\$ 1,000$	$\$ 50$ 200 2	$\$ 250-\$ 50=\underline{\$ 200}$	$\$ 250$
3	$1,000-200=\underline{800}$	$800(0.05)=\underline{40}$	200	240
4	$600-200=\underline{400}$	20	$400-300=\underline{100}$	$20+100=\underline{120}$

(a) Loss in Value $=$ Capital Recovery Amount - Opportunity Cost
(b) Investment at $\mathrm{BOY}_{2}=$ Investment at $\mathrm{BOY}_{1}-$ Loss in Value during Year 1
(c) Opportunity Cost $=$ Investment at $\mathrm{BOY} *(0.05)$
(d) Investment at $\mathrm{BOY}_{4}=$ Investment at $\mathrm{BOY}_{3}-$ Loss in Value during Year 3
(e) Loss in Value during year $4=$ Investment at $\mathrm{BOY}_{4}-$ Salvage Value at EOY 4
(f) Capital Recovery Amount $=$ Opportunity Cost + Loss in Value during Year

5-25 $\mathrm{AW}(20 \%)=-\$ 50,000(\mathrm{~A} / \mathrm{P}, 20 \%, 5)+\$ 20,000-\$ 5,000=-\$ 1,720<0$.
Not a good investment.

5-26 $\mathrm{AW}(18 \%)=-\$ 15,000(\mathrm{~A} / \mathrm{P}, 18 \%, 2)+\$ 10,000-\$ 3,000+\$ 10,000(\mathrm{~A} / \mathrm{F}, 18 \%, 2)=\$ 2,006.50>0$.
A good investment.

Revenue $=\$ 750,000$ per year
Market Value $=\$ 400,000+\$ 350,000+\$ 50,000=\$ 800,000$
Expenses $=-\$ 475,000$ per year

$$
\begin{aligned}
\mathrm{AW}(15 \%) & =\$ 750,000-\$ 475,000-\$ 1,250,000(\mathrm{~A} / \mathrm{P}, 15 \%, 10)+\$ 900,000(\mathrm{~A} / \mathrm{F}, 15 \%, 10) \\
& =\$ 275,000-\$ 1,250,000(0.1993)+\$ 900,000(0.0493) \\
& =\$ 70,245>0
\end{aligned}
$$

Therefore, they should invest in the new product line (Note: all of the $\$ 100,000$ working capital recovered at the end of year 10).

5-28 (a) Initial investment $=\$ 54,000$ (one-time cost)
Operating expenses $=\$ 450+\$ 7.50(3,000)=\$ 22,950$ per year (recurring expense) Disposal $=\$ 8,000$ (one-time cost)

$$
\mathrm{AW}(15 \%)=-\$ 54,000(\mathrm{~A} / \mathrm{P}, 15 \%, 8)-\$ 22,950-\$ 8,000(\mathrm{~A} / \mathrm{F}, 15 \%, 8)=-\$ 35,570
$$

(b) Fuel related cost $=(\$ 22,500 / \$ 35,570) \times 100 \%=63.3 \%$ of the total.

5-29 Investment cost of new buses $=35(\$ 40,000-\$ 5,000)=\$ 1,225,000$
Annual fuel + maintenance $=\$ 144,000-\$ 10,000=\$ 134,000$
$\operatorname{EUAC}(6 \%)=\$ 1,225,000(\mathrm{~A} / \mathrm{P}, 6 \%, 15)+\$ 134,000=\$ 260,175$

5-30 Purchase price $=\$ 33,500-\$ 4,500=\$ 29,000$
Capital recovery cost per year $=\$ 29,000(\mathrm{~A} / \mathrm{P}, 8 \%, 7)-\$ 3,500(\mathrm{~A} / \mathrm{F}, 8 \%, 7)$

$$
\begin{aligned}
& =\$ 29,000(0.1921)-\$ 3,500(0.1121) \\
& =\$ 5,570.90-\$ 392.35 \\
& =\$ 5,178.55
\end{aligned}
$$

She cannot afford (barely) this automobile. Maybe she can negotiate for a lower net purchase price. How much would it have to be?

5-31 The incremental investment is $(0.08)(\$ 250,000)=\$ 20,000$. The equivalent annual savings (A) is then $\$ 20,000(\mathrm{~A} / \mathrm{P}, 10 \%, 30)=\$ 2,122$ to justify the extra investment. If this savings represents 15% of the total annual heating and cooling expense, the total annual expenditure would have to be $\$ 14,147$. This is high in most parts of the U.S., so green homes are difficult to justify on economic grounds alone. Can you list some non-economic considerations that may bear on the decision to build a green home?

5-32 Let $\mathrm{X}=$ units produced per year. Then the breakeven equation becomes:

$$
\mathrm{AW}(15 \%)=-\$ 500,000(\mathrm{~A} / \mathrm{P}, 15 \%, 5)-\$ 35,000+\mathrm{X}(\$ 50-\$ 7.50)=0
$$

Solving yields $X=4,333$ units per year.

5-33 Monthly gasoline savings $=10$ gallons $x \$ 2.75$ per gallon $=\$ 27.50$ per month.
$\$ 1,200=\$ 27.50$ per month $\times(\mathrm{P} / \mathrm{A}, 0.5 \%$ per month, N months $)$
$(\mathrm{P} / \mathrm{A}, 0.5 \%, \mathrm{~N})=43.64$
From Table C-2, $48<\mathrm{N}<60$

Interpolating yields $\mathrm{N}=50$ months.
Using Excel, NPER($0.005,27.5,-1200)=49.35$

5-34 (a) $\mathrm{AW}=0=-\$ 10,000,000\left(\mathrm{~A} / \mathrm{P}, \mathrm{i}^{\prime}, 4\right)+\$ 2,800,000+\$ 5,000,000\left(\mathrm{~A} / \mathrm{F}, \mathrm{i}^{\prime}, 4\right)$

Solving yields $\mathrm{i}^{\prime}=18.5 \%$

(b) Yes, $\operatorname{IRR}(18.5 \%)>\operatorname{MARR}(15 \%)$. The plant should be built.

5-35 EUAC of the equipment $=\$ 1,000,000(\mathrm{~A} / \mathrm{P}, 15 \%, 8)=\$ 222,900$.
Letting $\mathrm{C}=$ the output (sq. yards) of re-manufactured carpet, we have

$$
\$ 1 \mathrm{C}+\$ 222,900=\$ 3 \mathrm{C},
$$

so $C=111,450$ square yards per year.

5-36 $\quad \mathrm{PW}=0=-\$ 200,000+(\$ 100,000-\$ 64,000)\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 10\right)$
$\mathrm{i}^{\prime}=12.4 \%>$ MARR; project is justified

5-37 We can solve for the unknown interest rate being charged as follows:

$$
\$ 6,000=\$ 304.07\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime} \% \text { per month, } 24 \text { months }\right),
$$

or i' per month equals 1.63% (solve via linear interpolation or Excel).
The nominal interest rate is: $12(1.63 \%)=19.56 \%$ per year. This is a fairly expensive loan for the student.

5-38

5-39 Letting A $=\$ 200$ per month, we solve for the unknown interest rate (IRR) as follows:
$4[\$ 200(120)]=\$ 200\left(\mathrm{~F} / \mathrm{A}, \mathrm{i}^{\prime}\right.$ per month, 120 months) $480=\left[\left(1+\mathrm{i}^{\prime}\right)^{120}-1\right] / \mathrm{i}^{\prime}$

Solving this we find that $\mathrm{i}^{\prime}=1.98 \%$ per month. The annual effective IRR is $(1.0198)^{12}-1=0.2653$. Thus, IRR $=26.53 \%$ per year - not a bad return!

5-40 (a) The following cash flow diagram summarizes the known information in this problem.

(b) $\$ 75,000=\$ 39,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime} \%, 1\right)+\$ 50,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime} \%, 2\right)$, or $\mathrm{i}^{\prime}=11.7 \%($ IRR $)$.
(c) $\quad \$ 75,000\left(\mathrm{~F} / \mathrm{P}, \mathrm{i}^{\prime} \%, 2\right)=\$ 39,000(\mathrm{~F} / \mathrm{P}, 8 \%, 1)+\$ 50,000$
$\$ 75,000\left(\mathrm{~F} / \mathrm{P}, \mathrm{i}^{\prime} \%, 2\right)=\$ 92,120$, so $\mathrm{i}^{\prime}=10.1 \%(\mathrm{ERR})$

By trial and error or with Excel we can determine that i^{\prime} equals 0.31% per month. Assuming monthly compounding, this equates to $\mathrm{i}^{\prime}=3.78 \%$ per year. This is not a particularly good investment, but it is favorable to the environment. (The payback period is 100 months, or 8.33 years.)

The CFD is from the lender's viewpoint. Equating outflows to inflows:

$$
\begin{gathered}
\$ 350+\$ 350\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 11\right)=\$ 375\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 12\right) \\
\mathrm{i}^{\prime}=7.14 \% \text { per month }
\end{gathered}
$$

The effective annual interest rate is $(1.0714)^{12}-1=1.288(128.8 \%)$. Jess's wife is correct, and in fact, the U.S. military is moving to correct predatory lending practices near its installations.

5-43 $\$ 10,000=\$ 200(\mathrm{~F} / \mathrm{A}, \mathrm{i}, 45)(\mathrm{F} / \mathrm{P}, \mathrm{i}, 3)$ or i per month is approximately equal to 0.4165% which equates to i per year of $(1.004165)^{12}-1=0.0511(5.11 \%$ per year). This is a conservative investment when Stan makes the assumption that the investment firm will pay him $\$ 10,000$ when he leaves the service at the end of 4 years (i.e., there is little risk involved). Stan should probably take this opportunity to invest money while he is in the service. It beats U.S. savnings bonds which pay about 4\% per year.

5-44 $\operatorname{PW}\left(\mathrm{i}^{\prime} \%\right)$ of outflows $=\mathrm{PW}\left(\mathrm{i}^{\prime} \%\right)$ of inflows
$\$ 308.57\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime} \%, 35\right)=\$ 7,800$
$\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime} \%, 35\right)=25.2779$
$(\mathrm{P} / \mathrm{A}, 1 \%, 35)=29.4085$ and $(\mathrm{P} / \mathrm{A}, 2 \%, 35)=24.9986$, Therefore, $1 \%<\mathrm{i} \%<2 \%$.
Linear interpolation yields: $\mathrm{i}^{\prime} \%=1.9 \%$ per month
A.P.R. $=(1.9 \%$ per month $)(12$ months/year $)=\underline{22.8 \%}$ compounded monthly

$$
\begin{aligned}
& \mathrm{PW}\left(\mathrm{i}^{\prime} \%\right)=0=- \$ 450,000-\$ 42,500\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime} \%, 1\right)+\$ 92,800\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime} \%, 2\right) \\
&+ \\
& \$ 386,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime} \%, 3\right)+\$ 614,600\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime} \%, 4\right) \\
& \$ 202,200\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime} \%, 5\right) \\
& \mathrm{PW}(20 \%)=\$ 17,561>0, \therefore \mathrm{i}^{\prime} \%>20 \% \\
& \text { PW }(25 \%)=-\$ 41,497<0, \therefore \mathrm{i}^{\prime} \%<25 \%
\end{aligned}
$$

Linear interpolation between 20% and 25% yields: $\mathrm{i}^{\prime} \%=21.5 \%>10 \%$, so the new product line appears to be profitable.

However, due to the multiple sign changes in the cash flow pattern, the possibility of multiple IRRs exists. The following graph of PW versus i indicates that multiple IRRs do not exist for this problem.

(a) $\operatorname{PW}\left(\mathrm{i}^{\prime} \%\right)=0=-\$ 23,000-\$ 1,200\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{'} \%, 4\right)-\$ 8,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{'} \%, 4\right)$

+ \$5,500 (P/A,i'\%,11)(P/F,i'\%,4) +\$33,000 (P/F,i'\%,15)

By linear interpolation, $\mathrm{i}^{\prime} \%=\operatorname{IRR}=\underline{10} \%$
(b) $\mathrm{FW}(12 \%)=-\$ 23,000(\mathrm{~F} / \mathrm{P}, 12 \%, 15)-\$ 1,200(\mathrm{~F} / \mathrm{A}, 12 \%, 4)(\mathrm{F} / \mathrm{P}, 12 \%, 11)$

$$
-\$ 8,000(\mathrm{~F} / \mathrm{P}, 12 \%, 11)+\$ 5,500(\mathrm{~F} / \mathrm{A}, 12 \%, 11)+\$ 33,000
$$

$$
=-\$ 23,000(5.4736)-\$ 1,200(4.7793)(3.4785)-\$ 8,000(3.4785)
$$

$$
+\$ 5,500(20.6546)+\$ 33,000
$$

$$
=-\$ \underline{27,070.25}
$$

(c) $\quad|-\$ 23,000-\$ 1,200(\mathrm{P} / \mathrm{A}, 12 \%, 4)-\$ 8,000(\mathrm{P} / \mathrm{F}, 12 \%, 4)|\left(\mathrm{F} / \mathrm{P}, \mathrm{i}^{\prime} \%, 15\right)$

$$
=\$ 5,500(\mathrm{~F} / \mathrm{A}, 12 \%, 11)+\$ 33,000
$$

$[\$ 23,000+\$ 1,200(3.0373)+\$ 8,000(0.6355)]\left(\mathrm{F} / \mathrm{P}, \mathrm{i}^{\prime} \%, 15\right)$

$$
=\$ 5,500(20.6546)+\$ 33,000
$$

$\$ 31,728.76\left(1+\mathrm{i}^{\prime}\right)^{15}=\$ 146,600.30$
$\mathrm{i}^{\prime}=\mathrm{ERR}=\underline{0.1074 \text { or } 10.74 \%}$

IRR method:

$$
\begin{aligned}
& \mathrm{PW}\left(\mathrm{i}^{\prime} \%\right)=0=\$ 500,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime} \%, 1\right)+\$ 300,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime} \%, 2\right) \\
&+\left[\$ 100,000+\$ 100,000\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime} \%, 7\right)+\$ 50,000\left(\mathrm{P} / \mathrm{G}, \mathrm{i}^{\prime} \%, 7\right)\right]\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime} \%, 3\right) \\
&-\$ 2,500,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime} \%, 4\right)
\end{aligned}
$$

i'\%	Present Worth			
1	$\$ 103,331.55$			
2	$63,694.68$			
3	$30,228.14$			
4	$2,175.18$			
5	$-21,130.28$	\quad	i'\%	Present Worth
:---:	:---:			
30	$-\$ 12,186.78$			
31	$-5,479.09$			
32	$1,182.76$			

There are two internal rates of return: 4.09% and 31.8% per year.

ERR Method:

$$
\begin{aligned}
|-\$ 2,400,000|(\mathrm{P} / \mathrm{F}, 8 \%, 4)\left(\mathrm{F} / \mathrm{P}, \mathrm{i}^{\prime} \%, 10\right)= & \$ 500,000(\mathrm{~F} / \mathrm{P}, 8 \%, 9) \\
& +\$ 300,000(\mathrm{~F} / \mathrm{P}, 8 \%, 8) \\
& +\$ 100,000(\mathrm{~F} / \mathrm{P}, 8 \%, 7) \\
& +\$ 150,000(\mathrm{P} / \mathrm{A}, 8 \%, 6)(\mathrm{F} / \mathrm{P}, 8 \%, 6) \\
& +\$ 50,000(\mathrm{P} / \mathrm{G}, 8 \%, 6)(\mathrm{F} / \mathrm{P}, 8 \%, 6)
\end{aligned}
$$

After solving, the external rate of return is $\underline{7.6 \%}$ per year.

5-48 The general equation to find the internal rate of return is:
$\mathrm{PW}\left(\mathrm{i}^{\prime} \%\right)=0=-\$ 520,000+\$ 200,000\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime} \%, 10\right)-\$ 1,500,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime} \%, 10\right)$
(a)

$\mathrm{i}^{\prime} \%$	$\mathrm{PW}\left(\mathrm{i}^{\prime} \%\right)$
0	$-\$ 20,000$
0.5	0
1	10,250
4	89,000
10	131,000

$\mathrm{i}^{\prime} \%$	$\mathrm{PW}(\mathrm{i} \%)$
15	$\$ 113,000$
20	76,000
25	33,000
30	$-10,350$
40	$-89,100$

$\mathrm{i}^{\prime} \%=1 / 2 \%$ and 28.8% per year.

(b) Assume $\varepsilon=20 \%$ per year.
$|-\$ 520,000-\$ 1,500,000(\mathrm{P} / \mathrm{F}, 20 \%, 10)|\left(\mathrm{F} / \mathrm{P}, \mathrm{i}^{\prime} \%, 10\right)=\$ 200,000(\mathrm{~F} / \mathrm{A}, 20 \%, 10)$
$[\$ 520,000+\$ 1,500,000(0.1615)]\left(\mathrm{F} / \mathrm{P}, \mathrm{i}^{\prime} \%, 10\right)=\$ 200,000(25.9587)$
$\$ 762,250\left(1+i^{\prime}\right)^{10}=\$ 5,191,740 \quad i^{\prime}=0.2115$ or $\underline{21.15 \%}$
ERR $>20 \%$, therefore the project is economically acceptable.

5-49 (a) The simple payback period is $\$ 1,400 / \$ 24$ per month $=58$ months, or about five years. This is a marginally good investment.
(b) The IRR can be determined from this equation:

$$
0=-\$ 1,400+\$ 24 \text { (P/A, i'\% per month, } 120 \text { months) }
$$

From Excel we can determine $i^{\prime}=1.39 \%$ per month (approximately), or about 18% compounded annually. This is a pretty good investment, assuming the salvage value is negligible. If the solar panels can last for 10 years, they are a good hedge against any increase in the cost of electricity (hedges are investments to protect against price increases, i.e. they reduce risk).

5-50 (a) Average electrical output per year $=285 \mathrm{MW}(0.75)=213.75 \mathrm{MW}$. This translates into 8,760 hours per year $\times 213,750 \mathrm{~kW}=1.842 .45 \times 10^{6} \mathrm{kWh}$ per year of output. Thus, the annual profit will be $\$ 55,273,500$ when the profit of a kiloWatt hour is $\$ 0.03$. The simple payback period (once the plant is operating) is $\$ 570,000,000 / \$ 55,273,500=10.3$ years (round it up to 11 years since we are using the end of year cash flow convention). This is not a liquid investment and should be considered "high risk".
(b) The IRR is determined from the following equation (all figures in $\$$ millions):

$$
0=-\$ 285-\$ 285\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 1\right)+\$ 55.2735\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 20\right)\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 1\right)
$$

Solving yields $\mathrm{i}^{\prime}=6.8 \%$ per year. This is typically not an acceptable IRR to most utilities. This investment does not look attractive.
(a) $0=-\$ 4,900+\$ 1,875\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 5\right) ; \quad \mathrm{i}^{\prime}=26.4 \%$
(b) $\theta=\$ 4,900 / \$ 1,875=3$ years (to the integer year)
(c) The IRR will signal an acceptable (profitable) project if the MARR is less than 26.4% and the value of θ may indicate a poor project in terms of liquidity.
(d) $1 / \theta=33.3 \%$. This is the payback rate of return, and it over-estimates the actual IRR.

5-52 (a) The sum of positive cash flows through year five is $\$ 325,000$, which marginally exceeds the initial investment of $\$ 300,000$. Therefore, the simple payback period is five years.
(b) To find the IRR, we must solve this equation:

$$
0=-\$ 300,000+\$ 75,000\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 6\right)-\$ 5,000\left(\mathrm{P} / \mathrm{G}, \mathrm{i}^{\prime}, 6\right)+\$ 20,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 6\right)
$$

By trial and error (or with Excel), we can determine that $\mathrm{i}^{\prime}=8.76 \%$.

PW(20\%) $=\$ 12,891>0, \therefore \mathrm{i}^{\prime} \%>20 \%$
$\mathrm{PW}(25 \%)=-\$ 897<0, \therefore \mathrm{i}^{\prime} \%<25 \%$
By linear interpolation, $\mathrm{i}^{\prime} \%=\mathrm{IRR}=\underline{\mathbf{2 4 . 7} \%}$

EOY	Cumulative Cash Flow
1	$-\$ 100,000+\$ 20,000=-\$ 80,000<$
2	$-80,000+30,000=-50,000<0$
3	$-50,000+40,000=-10,000<0$
4	$-10,000+50,000=40,000>0$

Although this project is profitable (IRR > MARR), it is not acceptable since $\theta=4$ years is greater than the maximum allowable simple payback period of 3 years.

Year	Cash Flow For Year	PW(8\%) of Cash Flow	Cumulative PW thru Year	
0	$-\$ 275,000$	$-\$ 275,000$	$-\$ 275,000$	
1	$-35,000$	$-32,407$	$-307,407$	
2	55,000	47,154	$-260,254$	
3	175,000	138,921	$-121,333$	
4	250,000	183,757	62,424	>0

The project meets the benchmark.

5-55 (a) $\mathrm{FW}(18 \%)=\$ 84,028 \geq 0$, so the profitability is acceptable.
(b) \quad IRR $=38 \cdot 4 \% \geq 18 \%$, so the investment is a profitable one.
(c) $\theta^{\prime}=4$ years, so the liquidity is marginal at best.

5-56 (a) Annual Savings $=\$ 2.5$ billion
Affordable amount: $\mathrm{PW}=\$ 2.5$ billion $(\mathrm{P} / \mathrm{A}, 7 \%, 40)=\$ 33.33$ billion
(b) $\theta=\$ 25$ billion $/ \$ 2.5$ billion $=10$ years

$$
0=-\$ 200,000\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 3\right)+\$ 50,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 4\right)+\$ 250,000\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 5\right)\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 4\right)
$$

By trial and error, $\mathrm{i}^{\prime}=17.65 \%$, which is greater than the MARR. As a matter of interest, the $\mathrm{PW}(15 \%)=$ $\$ 51,094$. But the simple payback period is seven years, so the gamble in this firm is probably too great for a risk intolerant investor (like most of us).

5-58 (a) $\operatorname{Set} \mathrm{AW}(8 \%)=0$ and solve for S , the salvage value.
$0=-\$ 2,000(\mathrm{~A} / \mathrm{P}, 10 \%, 8)+\$ 350+\mathrm{S}(\mathrm{A} / \mathrm{F}, 10 \%, 8) ; \mathrm{S}=\$ 283.75$
(b) Set $\mathrm{PW}\left(\mathrm{i}^{\prime}\right)=0$ (or AW or FW$)$ and solve for i^{\prime}.

$$
0=-\$ 2,000+\$ 350\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 8\right) ; \mathrm{i}^{\prime}=8.15 \% \text { per year }
$$

5-59 Because the face value (what a bond is worth at maturity) of a bond and its interest payout are fixed, the trading price of a bond will increase as interest rates go down. This is because people are willing to pay more money for a bond to obtain the fixed interest rate in a declining interest rate market. For instance, if the bond pays 8% per year, people will pay more for the bond when interest rates in the economy drop from, for example, 6% to 5% per year.

5-60 (a) In all three cases, $\operatorname{IRR}=15.3 \%$. This is true for EOY 0 as a reference point in time, and also for EOY 4 as a reference point in time.
(b) $\mathrm{PW}_{1}(10 \%)=\$ 137.24$ at EOY 0
$\mathrm{PW}_{2}(10 \%)=\$ 137.24$ at EOY 4
$\mathrm{PW}_{2}(10 \%)=\$ 93.73$ at EOY 0
$\mathrm{PW}_{3}(10 \%)=\$ 686.18$ at EOY 4
$\mathrm{PW}_{3}(10 \%)=\$ 468.67$ at EOY 0

Select (3) to maximize $\mathrm{PW}(10 \%)$. However, the $\mathrm{PW}(\operatorname{IRR}=15.3 \%)$ would be zero for all three situations.

5-61 (a) Loan repayment amount $=\$ 30$ million $(\mathrm{A} / \mathrm{P}, 6 \%, 40)=\$ 1.995$ million per year.
Recurring expenses $=\$ 4,000(300)=\$ 1.2$ million per year
Total annual expenses $=\$ 1.995$ million $+\$ 1.2$ million $=\$ 3.195$ million per year Revenue $=\$ 12,000(300)(0.80)=\$ 2.88$ million per year
Annual Profit (loss) $=\$ 2.88$ million $-\$ 3.195$ million $=-\$ 0.315$ million per year
(b) Revenue $=\$ 12,000(300)(0.95)=\$ 3.42$ million per year Annual Profit $($ loss $)=\$ 3.42$ million $-\$ 3.195$ million $=+\$ 0.225$ million per year

5-62 We can solve for N using trial and error. If we guess $\mathrm{N}=53$ months, we'll find that economic equivalence is established with the following relationship:

$$
\begin{aligned}
\$ 50,000=\$ 1, & 040(\mathrm{P} / \mathrm{A}, 3 / 4 \%, 53)+\$ 1,040(\mathrm{P} / \mathrm{F}, 3 / 4 \%, 1)+\$ 1,040(\mathrm{P} / \mathrm{F}, 3 / 4 \%, 13) \\
& +
\end{aligned}
$$

So $\mathrm{N}=53$ months. This means that five extra payments will reduce the loan period from 60 months to 53 months. This is a net savings of two payments $(\$ 2,080)$ over the loan's duration. If Javier can earn more than $3 / 4 \%$ per month on his money, he should not make extra payments on this loan.
(a) $\mathrm{AW}(15 \%)=-\$ 710,000(\mathrm{~A} / \mathrm{P}, 15 \%, 5)+\$ 198,000+\$ 100,000(\mathrm{~A} / \mathrm{F}, 15 \%, 5)$ $=\$ 1,828$ per year.

Yes, it is a good investment opportunity
(b) IRR: $0=-\$ 710,000\left(\mathrm{~A} / \mathrm{P}, \mathrm{i}^{\prime}, 5\right)+\$ 198,000+\$ 100,000\left(\mathrm{~A} / \mathrm{F}, \mathrm{i}^{\prime}, 5\right)$

$$
\mathrm{i}^{\prime}=15.3 \%
$$

$\theta=4$ years
$\theta^{\prime}=5$ years
(c) Other factors include sales price of reworked units, life of the machine, the company's reputation, and demand for the product.

Solutions to Spreadsheet Exercises

5-64

Desired Ending Balance	$\$ 250,000$
Current Age	25
Age at	60
Retirement	

		Interest Rate per Year					
		4\%		8\%			12\%
N	5		4,458		2,207		1,036
	10	\$	6,003		3,420		1,875
	15	\$	8,395		5,463		3,470
	20	\$	12,485		9,207		6,706

The formula used in cell C7 is:
=-PMT(C\$6,\$D\$3-\$D\$2-\$B7,,\$D\$1)
Note that this uses the fv parameter of the PMT function instead of the $p v$ parameter. The formula in cell C 7 was copied over the range $\mathrm{C} 7: \mathrm{E} 10$.

The trend in the table shows that as the interest rate increases, less has to be saved each year. Also, the longer Jane delays the start of her annual savings, the larger the annual deposit will have to be.

A payout duration table can be constructed for selected payout percentages and compound interest rates as follows:

Interest Rate/Year						
Payout/Yr (\% of principal)	10%	13.0^{*}	15.7	20.9	never	
	20%	5.7	6.1	6.6	7.3	
	30%	3.7	3.8	4.0	4.3	

* Note: Table entries are years.

MARR $=$	20%	
Reinvestment rate $=$		20%
Capital Investment $=$	$\$$	25,000
Market Value $=$	$\$$	5,000
Useful Life $=$	$\$$	5
Annual Savings $=$	$\$$	8,000
Annual Expense $=$	$\$$	-

EOY	Cash Flow		EOY	Cash Flow	
0	$\$$	$(25,000)$	0	$\$$	$(25,000)$
1	$\$$	8,000	1	$\$$	8,000
2	$\$$	8,000	2	$\$$	8,000
3	$\$$	8,000	3	$\$$	8,000
4	$\$$	8,000	4	$\$$	8,000
5	$\$$	8,000	5	$\$$	13,000
5	$\$$	5,000			

	Present Value $=$	$\$$
Annual Worth $=$	$\$ 334.28$	
	$\$$	312.41
Future Worth $=$	$\$$	$2,324.80$
Internal Rate of		21.58%
Return $=$		
External Rate of		20.88%

The following table displays the results of different MARRs on the profitability measures.

	MARR $=18 \%$		MARR $=22 \%$
Present Worth	\$	2,202.91	\$(240.89)
Annual Worth	\$	704.44	\$ (84.12)
Future Worth	\$	5,039.73	\$(651.04)
IRR		21.58\%	21.58\%
ERR		20.88\%	20.88\%

The original recommendation is unchanged for a MARR $=18 \%$. However, the recommendation does change for MARR $=22 \%$ (which is greater than the IRR of the project's cash flows).
Note that the ERR is unaffected by changes in the MARR. This is because 1) the reinvestment rate was assumed to remain at 20%, and 2) there is only a single net cash outflow occurring at $\mathrm{t}=0$.

| $\begin{array}{c}\text { Labor } \\ \text { EOY } \\ \text { savings }\end{array}$ | | | |
| :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Operating

expenses\end{array}\right]\) Net savings

The hospital can afford to pay $\$ 93,560$ for this device.

Given:	Loan Amount	$\$ 30,000,000$
	Interest Rate	6%
	Repayment Periods	40
	Annual Expenses	$\$ 4,000$
	(per apartment)	300
	Number of units	
Inputs:	Annual Rental Fee	$\$ 12,000$
	Occupancy Rate	89%
Intermediate Calculations:		
	Annual Loan	
Results:	Annual Profit (Loss)	$\$ 1,993,846$

The Goal Seek function was used to find the breakeven occupancy rate of 89%.

Solutions to Case Study Exercises

5-69 Average number of wafers per week:
$(10$ wafers $/ \mathrm{hr})(168 \mathrm{hr} / \mathrm{wk})(0.90)=1,512$
Added profit per month:
$(1,512 \mathrm{wafers} / \mathrm{wk})(4.333 \mathrm{wk} / \mathrm{month})(\$ 150 /$ wafer $)=\$ 982,724$
$\mathrm{PW}(1 \%)=-\$ 250,000-\$ 25,000(\mathrm{P} / \mathrm{A}, 1 \%, 60)+\$ 982,724(\mathrm{P} / \mathrm{A}, 1 \%, 60)=\$ 42,804,482$
The increase in CVD utilization serves to make the project even more attractive.

5-70 Average number of wafers per week:
$(15$ wafers $/ \mathrm{hr})(168 \mathrm{hr} / \mathrm{wk})(0.80)=2,016$
New breakeven point:

$$
\mathrm{X}=\frac{\$ 1,373,875}{(2,016)(4.333)(44.955)}=\$ 3.50 / \text { wafer }
$$

$\$ 3.50 / \$ 100=0.035$ extra microprocessors per wafer.
The retrofitted CVD tool would significantly reduce the breakeven point.

5-71 Average number of wafers per week:
$(10$ wafers $/ \mathrm{hr})(150 \mathrm{hr} / \mathrm{wk})(0.90)=1,350$
Added profit per month:
$(1,350 \mathrm{wafers} / \mathrm{wk})(4.333 \mathrm{wk} / \mathrm{month})(\$ 150 /$ wafer $)=\$ 877,433$

$$
\begin{aligned}
\mathrm{PW}(1 \%) & =-\$ 250,000-\$ 25,000(\mathrm{P} / \mathrm{A}, 1 \%, 60)+\$ 877,433(\mathrm{P} / \mathrm{A}, 1 \%, 60) \\
& =\$ 38,071,126
\end{aligned}
$$

New breakeven point:

$$
X=\frac{\$ 1,373,875}{(1,350)(4.333)(44.955)}=\$ 5.225 / \text { wafer }
$$

$\$ 5.225 / \$ 100=0.05225$ extra microprocessors per wafer.

Solutions to FE Practice Problems

5-72 The remaining loan principal immediately after the $240^{\text {th }}$ payment of $\$ 200$ is:

$$
\$ 200(\mathrm{P} / \mathrm{A}, 7 \% / 12,120)=\$ 200(86.1264)=\$ 17,225
$$

The IRR on this investment can be dtermined by solving for i^{\prime} in this equation:

$$
0=-\$ 20,000-\$ 200\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 240\right)+[\$ 100,000-\$ 17,225]\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 240\right)
$$

By trial and error we find that i^{\prime} is about 0.128% per month. This corresponds to an effective annual interest rate of $(1.00128)^{12}-1=0.015(1.5 \%)$
$\underline{\text { Select (d) }}$

5-73 i $/ \mathrm{mo} .=9 \% / 12=3 / 4 \%$ per month; $\mathrm{N}=4 \times 12=48$ months

$$
\begin{aligned}
\mathrm{A} & =\$ 8,000(\mathrm{~A} / \mathrm{P}, 3 / 4 \% \text { per month, } 48 \text { months }) \\
& =\$ 8,000(.0249)=\$ 199.20
\end{aligned}
$$

$\underline{\text { Select (d) }}$

$\frac{\text { EOY }}{0}$	Cumulative PW $(\mathrm{i}=12 \%)$
$-\$ 300,000$	
1	$-\$ 300,000+\$ 111,837.50(\mathrm{P} / \mathrm{F}, 12 \%, 1)=-\$ 200,140.30$
2	$-200,140.30+\$ 111,837.50(\mathrm{P} / \mathrm{F}, 12 \%, 2)=-\$ 110,983.45$
3	$-\$ 110,983.45+\$ 111,837.50(\mathrm{P} / \mathrm{F}, 12 \%, 3)=-\$ 31,377.52$
4	$-\$ 31,377.52+\$ 111,837.50(\mathrm{P} / \mathrm{F}, 12 \%, 4)=\$ 39,695.21>0$
	$\therefore \emptyset^{\prime}=4$

Select (a)

Select (b)

5-76 Find $\mathrm{i} \%$ such that $\mathrm{PW}(\mathrm{i} \%)=0$
$0=-\$ 3,345+\$ 1,100\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime} \%, 4\right)$
$\mathrm{PW}(10 \%)=\$ 141.89$ tells us that $\mathrm{i}^{\prime} \%>10 \%$
PW $(12 \%)=-\$ 3.97$ tells us that $\mathrm{i}^{\prime} \%<12 \%$ (but close!)
$\therefore \quad$ IRR $=11.95 \%$
Select (b)

5-77 $\quad \mathrm{V}_{\mathrm{N}}=\mathrm{C}(\mathrm{P} / \mathrm{F}, \mathrm{i} \%, \mathrm{~N})+\mathrm{rZ}(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N})=\$ 981$
$\mathrm{N}=8$ periods
$r=10 \%$ per period $\quad(\$ 1,000 / \$ 100=10 \%)$
$\mathrm{C}=\mathrm{Z}=\$ 1,000$
$\$ 981=\$ 1,000(\mathrm{P} / \mathrm{F}, \mathrm{i} \%, 8)+(.10)(\$ 1,000)(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 8)$
$\$ 981=\$ 1,000(\mathrm{P} / \mathrm{F}, \mathrm{i} \%, 8)+\$ 100(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 8)$
Try $\mathrm{i}=10 \% ; \quad \$ 466.50+\$ 533.49=\$ 999.99$
Try $\mathrm{i}=12 \% ; \quad \$ 403.90+\$ 496.76=\$ 900.66$
By observation, $\mathrm{i} \%$ is > 10% but very close to 10%
\therefore rate of return $=10.35 \%$

$\underline{\text { Select (c) }}$

5-78 $\mathrm{CW}(10 \%)=-\$ 5,123+\$ 1,110 / 0.10=\$ 5,977$.

Select (b)

5-79 $\mathrm{AW}=(\$ 5,000+\$ 500(\mathrm{~A} / \mathrm{G} .1 \% 24))^{*}(\mathrm{~F} / \mathrm{P}, 1 \%, 12)$ $=(\$ 5,000+\$ 500 * 11.02337) * 1.0100 * 12.6825$ = \$134,649

Select (e)

$$
\begin{aligned}
& i=12 \% \\
& \bar{f}=5 \%
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{PW}(12 \%) & =\$ 9,000+\frac{\$ 7000[1-(\mathrm{P} / \mathrm{F}, 12 \%, 6)(\mathrm{F} / \mathrm{P}, 5 \%, 6)]}{0.12-0.05} \\
& =\$ 9,000+\frac{\$ 7000[1-(0.5066)(1.3401)]}{0.07} \\
& =\$ 41,110.53 \\
\mathrm{AW}(12 \%) & =\$ 41,110.53(\mathrm{~A} / \mathrm{P}, 12 \%, 6)=\$ 41,110.53(0.2432) \\
& =\$ 9,998.08
\end{aligned}
$$

$\underline{\text { Select (c) }}$

By trial and error (or Excel) we can determine that $\mathrm{i}^{\prime}=8.8 \%$ per year.

Select (c)

5-82 $\quad \mathrm{P}=\$ 386(\mathrm{P} / \mathrm{A}, 1 \%, 38)(\mathrm{P} / \mathrm{F}, 1 \%, 1)=\$ 12,033$

Select (b)

5-83 The simple payback period is $\$ 5,000 / \$ 725$ per year $=6.9$ years (call it seven years). So the discounted payback period will be equal to or greater than the simple payback period. We want the discounted savings to be marginally greater than $\$ 5,000$ in the following table:

N	$\mathrm{PW}(6 \%)$ of savings
7	$\$ 4,047$
8	$\$ 4,502$
9	$\$ 4,931$
10	$\$ 5,336$

Thus, the discounted payback period is ten years.
Select (d).

Solutions to Problems in Appendix

5-A-1 $[\$ 50+\$ 360(\mathrm{P} / \mathrm{F}, 8 \%, 2)](\mathrm{F} / \mathrm{P}, \mathrm{ERR}, 3)=\$ 235(\mathrm{~F} / \mathrm{P}, 8 \%, 2)+\$ 180$
$\$ 358.63(1+\mathrm{ERR})^{3}=\$ 454.10$
$E R R=8.19 \%$ per year
A maximum of three IRR values are suggested by Descartes' rule of signs.

5-A-2 $[\$ 5,000+\$ 1,000(\mathrm{P} / \mathrm{F}, 12 \%, 2)](\mathrm{F} / \mathrm{P}, \mathrm{ERR}, 3)=\$ 6,000(\mathrm{~F} / \mathrm{P}, 12 \%, 2)+\$ 4,000$
$\$ 5,797.20(1+E R R)^{3}=\$ 11,526.40$
$E R R=25.75 \%$ per year.

Nordstrom's criterion indicates that a unique IRR exists since there is only one sign change in the cumulative cash flow. A plot of PW v. i confirms a single IRR value of 45%.

5-A-3 Descartes' rule allows for the possiblity of two IRRs. A plot of PW v. i confirms this $(26.73 \%$ and 37.12%). The ERR metric is a more useful measure in this situation.
$[\$ 1,810(\mathrm{P} / \mathrm{F}, 10 \%, 4)](\mathrm{F} / \mathrm{P}, \mathrm{ERR}, 10)=\$ 120(\mathrm{~F} / \mathrm{P}, 10 \%, 10)+\$ 90(\mathrm{~F} / \mathrm{P}, 10 \%, 9)+\ldots+\$ 100$
$\$ 1,236.23(1+E R R)^{10}=\$ 3,624.30$
$E R R=11.36 \%$ per year

5-A-4 Assume $\$$ P savings at the end of each 5-year inteval, or $\mathrm{P} / 5$ on an annual basis. Assume residual value of the building is negligible.

This is a unique IRR - no multiple IRRs exist for this situation.

Solutions to Chapter 6 Problems

6-1 (a) Acceptable alternatives are those having a $\mathrm{PW}(15 \%) \geq 0$.

$$
\begin{aligned}
\text { Alt I: PW }(15 \%) & =-\$ 100,000+\$ 15,200(\mathrm{P} / \mathrm{A}, 15 \%, 12)+\$ 10,000(\mathrm{P} / \mathrm{F}, 15 \%, 12) \\
& =-\$ 15,738 \\
\text { Alt II: PW }(15 \%) & =-\$ 152,000+\$ 31,900(\mathrm{P} / \mathrm{A}, 15 \%, 12) \\
& =\$ 20,917 \\
\text { Alt III: PW }(15 \%) & =-\$ 184,000+\$ 35,900(\mathrm{P} / \mathrm{A}, 15 \%, 12)+\$ 15,000(\mathrm{P} / \mathrm{F}, 15 \%, 12) \\
& =\$ 13,403 \\
\text { Alt IV: PW }(15 \%) & =-\$ 220,000+\$ 41,500(\mathrm{P} / \mathrm{A}, 15 \%, 12)+\$ 20,000(\mathrm{P} / \mathrm{F}, 15 \%, 12) \\
& =\$ 8,693
\end{aligned}
$$

Alternative I is economically infeasible, and Alternative II should be selected because it has the highest positive PW value.
(b) If total investment capital is limited to $\$ 200,000$, Alternative II should be selected since it is within the budget and is also economically feasible.
(c) Rule 1; the net annual revenues are present and vary among the alternatives.

6-2 Present Worth Method, MARR $=12 \%$ per year
$\mathrm{PW}_{\mathrm{D} 1}(12 \%)=-\$ 600,000-\$ 780,000(\mathrm{P} / \mathrm{A}, 12 \%, 10)=-\$ 5,007,156$
$\mathrm{PW}_{\mathrm{D} 2}(12 \%)=-\$ 760,000-\$ 728,000(\mathrm{P} / \mathrm{A}, 12 \%, 10)=-\$ 4,873,346$
$\mathrm{PW}_{\mathrm{D} 3}(12 \%)=-\$ 1,240,000-\$ 630,000(\mathrm{P} / \mathrm{A}, 12 \%, 10)=-\$ 4,799,626$
$\mathrm{PW}_{\mathrm{D} 4}(12 \%)=-\$ 1,600,000-\$ 574,000(\mathrm{P} / \mathrm{A}, 12 \%, 10)=-\$ 4,843,215$
Select Design D3 to minimize the present worth of costs.
Future Worth Method, MARR $=12 \%$ per year
$\mathrm{FW}_{\mathrm{D} 1}(12 \%)=-\$ 600,000(\mathrm{~F} / \mathrm{P}, 12 \%, 10)-\$ 780,000(\mathrm{~F} / \mathrm{A}, 12 \%, 10)=-\$ 15,551,446$
$\mathrm{FW}_{\mathrm{D} 2}(12 \%)=-\$ 760,000(\mathrm{~F} / \mathrm{P}, 12 \%, 10)-\$ 728,000(\mathrm{~F} / \mathrm{A}, 12 \%, 10)=-\$ 15,135,862$
$\mathrm{FW}_{\mathrm{D} 3}(12 \%)=-\$ 1,240,000(\mathrm{~F} / \mathrm{P}, 12 \%, 10)-\$ 630,000(\mathrm{~F} / \mathrm{A}, 12 \%, 10)=-\$ 14,906,873$
$\mathrm{FW}_{\mathrm{D} 4}(12 \%)=-\$ 1,600,000(\mathrm{~F} / \mathrm{P}, 12 \%, 10)-\$ 574,000(\mathrm{~F} / \mathrm{A}, 12 \%, 10)=-\$ 15,042,234$
Select Design D3 to minimize the future worth of costs.
Annual Worth Method, MARR $=12 \%$ per year
$\mathrm{AW}_{\mathrm{D} 1}(12 \%)=-\$ 600,000(\mathrm{~A} / \mathrm{P}, 12 \%, 10)-\$ 780,000=-\$ 886,200$
$\mathrm{AW}_{\mathrm{D} 2}(12 \%)=-\$ 760,000(\mathrm{~A} / \mathrm{P}, 12 \%, 10)-\$ 728,000=-\$ 862,520$
$\operatorname{AW}_{\mathrm{D} 3}(12 \%)=-\$ 1,240,000(\mathrm{~A} / \mathrm{P}, 12 \%, 10)-\$ 630,000=-\$ 849,480$
$\operatorname{AW}_{\mathrm{D} 4}(12 \%)=-\$ 1,600,000(\mathrm{~A} / \mathrm{P}, 12 \%, 10)-\$ 574,000=-\$ 857,200$
Select Design D3 to minimize the annual worth of costs.

6-3 1 inch of insulation:
Investment cost $=(1,000$ feet $)(\$ 0.60$ per foot $)=\$ 600$
Annual cost of heat lost $=(\$ 2$ per ft per yr) $(1,000$ feet $)(1-0.88)=\$ 240$ per year $\operatorname{AW}(6 \%)=-\$ 600(\mathrm{~A} / \mathrm{P}, 6 \%, 10)-\$ 240=-\$ 321.54$

2 inches of insulation:
Investment cost $=(1,000$ feet $)(\$ 1.10$ per foot $)=\$ 1,100$
Annual cost of heat lost $=(\$ 2$ per ft per yr) $(1,000$ feet $)(1-0.92)=\$ 160$ per year $\operatorname{AW}(6 \%)=-\$ 1,100(\mathrm{~A} / \mathrm{P}, 6 \%, 10)-\$ 160=-\$ 309.49$

Two inches of insulation should be recommended.

6-4 Assume all units are produced and sold each year.

$$
\begin{aligned}
\mathrm{AW}_{\mathrm{A}}(20 \%) & =-\$ 30,000(\mathrm{~A} / \mathrm{P}, 20 \%, 10)+15,000(\$ 3.10-\$ 1.00)-\$ 15,000+\$ 10,000(\mathrm{~A} / \mathrm{F}, 20 \%, 10) \\
& =\$ 9,730 \\
\mathrm{AW}_{\mathrm{B}}(20 \%) & =-\$ 6,000(\mathrm{~A} / \mathrm{P}, 20 \%, 10)+20,000(\$ 4.40-\$ 1.40)-\$ 30,000+\$ 10,000(\mathrm{~A} / \mathrm{F}, 20 \%, 10) \\
& =\$ 16,075 \\
\mathrm{AW}_{\mathrm{C}}(20 \%) & =-\$ 40,000(\mathrm{~A} / \mathrm{P}, 20 \%, 10)+18,000(\$ 3.70-\$ 0.90)-\$ 25,000+\$ 10,000(\mathrm{~A} / \mathrm{F}, 20 \%, 10) \\
& =\$ 16,245
\end{aligned}
$$

Select Design C to minimize the annual worth.

6-5 Let's examine this problem incrementally. The labor savings for the new system are 32 hours per month (which is 20% of 160 hours per month for the used system) x $\$ 40$ per hour $=\$ 1,280$ per month. The additional investment for the new system is $\$ 75,000$, and the incremental market value after five years is $\$ 30,000$. So we have:
$\mathrm{PW}($ of difference at 1% per month $)=-\$ 75,000+\$ 1,280(\mathrm{P} / \mathrm{A}, 1 \%, 60)+\$ 30,000(\mathrm{P} / \mathrm{F}, 1 \%, 60)=-\$ 946$
The extra investment for the new system is not justified. But the margin in favor of the used system is quite small, so management may select the new system because of intangible factors (improved reliability, improved image due to new technology, etc.).

$$
\begin{gathered}
-40\left(\frac{200 h p}{0.9}\right)\left(\frac{0.746 k w}{h p}\right)(8,760 \mathrm{hr} / \mathrm{yr})(\$ 0.022 / \mathrm{kWh}) \\
-20\left(\frac{150 h p}{0.9}\right)\left(\frac{0.746 \mathrm{kw}}{h p}\right)(8,760 \mathrm{hr} / \mathrm{yr})(\$ 0.022 / \mathrm{kWh})-\$ 150,000 \\
=-\$ 372,300-\$ 1,277,948-\$ 479,230-\$ 150,000=-\$ 2,279,478 / \mathrm{yr} .
\end{gathered}
$$

Wet Tower, Natural Draft

$$
\begin{aligned}
\operatorname{AW}(12 \%)= & -\$ 8,700,00(\mathrm{~A} / \mathrm{P}, 12 \%, 30) \\
& -20\left(\frac{150 h p}{0.9}\right)\left(\frac{0.746 \mathrm{kw}}{h p}\right)(8,760 \mathrm{hr} / \mathrm{yr})(\$ 0.022 / \mathrm{kWh})-\$ 100,000 \\
& -\$ 1,076,670-\$ 479,230-\$ 100,000=-\$ 1,658,900 / \mathrm{yr} .
\end{aligned}
$$

Dry Tower, Mechanical Draft
$\mathrm{AW}(12 \%)=-\$ 5,100,000(\mathrm{~A} / \mathrm{P}, 12 \%, 30)$

$$
\begin{aligned}
& -20\left(\frac{200 h p}{0.9}\right)\left(\frac{0.746 k w}{h p}\right)(8,760 \mathrm{hr} / \mathrm{yr})(\$ 0.022 / \mathrm{kWh}) \\
& -40\left(\frac{100 h p}{0.9}\right)\left(\frac{0.746 \mathrm{kw}}{h p}\right)(8,760 \mathrm{hr} / \mathrm{yr})(\$ 0.022 / \mathrm{kWh})-\$ 170,000 \\
= & -\$ 632,910-\$ 638,974-\$ 638,974-\$ 170,000-\$ 2,080,858 / \mathrm{yr} .
\end{aligned}
$$

Dry Tower, Natural Draft
$\operatorname{AW}(12 \%)=-\$ 9,000,000(\mathrm{~A} / \mathrm{P}, 12 \%, 30)$

$$
\begin{aligned}
& \quad-40\left(\frac{100 h p}{0.9}\right)\left(\frac{0.746 \mathrm{kw}}{h p}\right)(8,760 \mathrm{hr} / \mathrm{yr})(\$ 0.022 / \mathrm{kWh})-\$ 120,000 \\
& =-\$ 1,116,900-\$ 638,974-\$ 120,000=-\$ 1,875,874 / \mathrm{yr} .
\end{aligned}
$$

The wet cooling tower with natural draft heat removal from the condenser water is the most economical (i.e., least costly) alternative.

Non-economic factors include operating considerations and licensing the plant in a given location with its unique environmental characteristics.

6-7 $\mathrm{PW}_{\mathrm{A}}(20 \%)=-\$ 28,000+(\$ 23,000-\$ 15,000)(\mathrm{P} / \mathrm{A}, 20 \%, 10)+\$ 6,000(\mathrm{P} / \mathrm{F}, 20 \%, 10)$ $=\$ 6,509$
$\mathrm{PW}_{\mathrm{B}}(20 \%)=-\$ 55,000+(\$ 28,000-\$ 13,000)(\mathrm{P} / \mathrm{A}, 20 \%, 10)+\$ 8,000(\mathrm{P} / \mathrm{F}, 20 \%, 10)$ $=\$ \underline{9,180}$
$\mathrm{PW}_{\mathrm{C}}(20 \%)=-\$ 40,000+(\$ 32,000-\$ 22,000)(\mathrm{P} / \mathrm{A}, 20 \%, 10)+\$ 10,000(\mathrm{P} / \mathrm{F}, 20 \%, 10)$ $=\$ 3,540$

Select Alternative B to maximize present worth.
Note: If you were to pick the alternative with the highest total IRR, you would have incorrectly selected Alternative A.

6-8 ILB: Installation cost is $\$ 2,000$ plus the cost of the bulbs ($\$ 500$) for an investment cost of $\$ 2,500$. This is assumed to occur at the beginning of each year in the 8 -year study period. The cost of electricity for $60,000 \mathrm{kWh}$ at $\$ 0.12$ per kWh is $\$ 7,200$ per year. Let's assume that the electricity expense is incurred at the end of each year for eight years:

$$
\operatorname{PW}(12 \%)=-\$ 2,500-\$ 2,500(\mathrm{P} / \mathrm{A}, 12 \%, 7)-\$ 7,200(\mathrm{P} / \mathrm{A}, 12 \%, 8)=-\$ 49,677
$$

CFL: Installation cost is $\$ 3,000$ plus the cost of the 1,000 CFLs for a total investment cost of $\$ 5,000$. This is assumed to be incurred at the beginning of the 8 -year study period. The cost of electricity for $13,000 \mathrm{kWh}$ at $\$ 0.12$ per kWh is $\$ 1,560$ at the end of each year for eight years:

$$
\operatorname{PW}(12 \%)=-\$ 5,000-\$ 1,560(\mathrm{P} / \mathrm{A}, 12 \%, 8)=-\$ 12,749
$$

The boss will be happy to learn that CFLs offer tremendous cost savings over the ILBs. CFLs cost about 26% of the PW of cost of the ILBs over the 8 -year study period. A side note: In Europe ILBs will not be sold in stores beginning in September of 2009. ILBs are simply too energy inefficient and create too much of a carbon footprint! Let's become "enlightened" and make the change.

6-9 Jean's future worth at age 65 will be $\$ 1,000(\mathrm{~F} / \mathrm{A}, 6 \%, 10)(\mathrm{F} / \mathrm{P}, 6 \%, 25)=\$ 56,571$. Doug's future worth will be $\$ 1,000(\mathrm{~F} / \mathrm{A}, 6 \%, 25)=\$ 54,865$. Jean's future worth will be greater than Doug's even though she stopped making payments into her plan before Doug started making payments into his plan! The moral is to start saving for retirement at an early age (the earlier the better).

6-10 Let's use the EUAC method.
$\operatorname{EUAC}_{A}(8 \%)=\$ 30,000(\mathrm{~A} / \mathrm{P}, 8 \%, 20)+\mathrm{X}+\$ 7,500=\$ 10,557+\mathrm{X}$
$\operatorname{EUAC}_{\mathrm{B}}(8 \%)=\$ 55,000(\mathrm{~A} / \mathrm{P}, 8 \%, 20)+\mathrm{X}=\$ 5,604.50+\mathrm{X}$
$\operatorname{EUAC}_{C}(8 \%)=\$ 180,000(\mathrm{~A} / \mathrm{P}, 8 \%, 20)+\mathrm{X}-\$ 1,500=\$ 16,842+\mathrm{X}$
Because X is equal for all fuel types, select B as the most economical.

6-11 Tool B should not be considered further since its IRR $<8 \%$.

$$
\begin{aligned}
& \mathrm{PW}_{\mathrm{A}}=-\$ 55,000+(\$ 18,250-\$ 6,250)(\mathrm{P} / \mathrm{A}, 8 \%, 7)+\$ 18,000(\mathrm{P} / \mathrm{F}, 8 \%, 7)=\$ 17,980 \\
& \mathrm{PW}_{\mathrm{C}}=-\$ 80,000+(\$ 20,200-\$ 3,200)(\mathrm{P} / \mathrm{A}, 8 \%, 7)+\$ 22,000(\mathrm{P} / \mathrm{F}, 8 \%, 7)=\$ 21,346
\end{aligned}
$$

Select Tool C.

6-12 Design A: All components have a 20 year life.

Capital Investment

Concrete pavement: $(\$ 90 / \mathrm{ft})(5,280 \mathrm{ft} / \mathrm{mi}) \quad=\$ 475,200 / \mathrm{mile}$
Paved ditches: $2 \times(\$ 3 / \mathrm{ft})(5,280 \mathrm{ft} / \mathrm{mi}) \quad=\$ 31,680 / \mathrm{mile}$
Box culverts: (3 culverts/mile)(\$9,000/culvert) $=\$ 27,000 / \mathrm{mile}$
Total Capital Investment $=\$ 533,880 / \mathrm{mile}$
Maintenance
Annual maintenance: \$1,800/mile
Periodic cleaning of culverts*:
$(3$ culverts/mile $)(\$ 450 /$ culvert $)=\$ 1,350 /$ mile every 5 years
$\mathrm{AW}_{\mathrm{A}}(6 \%)=-\$ 533,880(\mathrm{~A} / \mathrm{P}, 6 \%, 20)-\$ 1,800-\$ 1,350(\mathrm{~A} / \mathrm{F}, 6 \%, 5)^{*}=-\$ 48,594 / \mathrm{mile}$
$\mathrm{PW}_{\mathrm{A}}(6 \%)=-\$ 533,880-[\$ 1,800+\$ 1,350(\mathrm{~A} / \mathrm{F}, 6 \%, 5)](\mathrm{P} / \mathrm{A}, 6 \%, 20)=-\$ 557,273 / \mathrm{mile}$

* assumes a cleaning also occurs at the end of year 20.

Design B: All components have a 10 year life.
Capital Investment (Year 0)
Bituminous pavement: $(\$ 45 / \mathrm{ft})(5,280 \mathrm{ft} / \mathrm{mi}) \quad=\$ 237,600 / \mathrm{mile}$
Sodded ditches: $2 \times(\$ 1.50 / \mathrm{ft})(5,280 \mathrm{ft} / \mathrm{mi}) \quad=\$ 15,840 / \mathrm{mile}$
Pipe culverts: $(3$ culverts $/ \mathrm{mile})(\$ 2,250 /$ culvert $)=\$ 6,750 / \mathrm{mile}$

$$
\text { Total } \quad=\$ 260,190 / \mathrm{mile}
$$

Capital Investment (EOY 10)

Bituminous pavement: $(\$ 45 / \mathrm{ft})(5,280 \mathrm{ft} / \mathrm{mi}) \quad=\$ 237,600 / \mathrm{mile}$
Sodded ditches: $2 \times(\$ 1.50 / \mathrm{ft})(5,280 \mathrm{ft} / \mathrm{mi}) \quad=\$ 15,840 / \mathrm{mile}$
Replacement culverts:
(3 culverts $/ \mathrm{mile}$) $(\$ 2,400 /$ culvert $)=\$ 7,200 / \mathrm{mile}$
Total $\quad=\$ 260,640 / \mathrm{mile}$
Maintenance
Annual pavement maintenance: $\quad=\$ 2,700 / \mathrm{mile}$
Annual cleaning of culverts:
(3 culverts/mile)(\$225/culvert) $\quad=\$ 675 / \mathrm{mile}$
Annual ditch maintenance:

$$
2 \times(\$ 1.50 / \mathrm{ft})(5280 \mathrm{ft} / \mathrm{mi}) \quad=\$ 15,840 / \mathrm{mile}
$$

Total $\quad=\$ 19,215 / \mathrm{mile}$
$\mathrm{AW}_{\mathrm{B}}(6 \%)=-[\$ 260,190+\$ 260,640(\mathrm{P} / \mathrm{F}, 6 \%, 10)](\mathrm{A} / \mathrm{P}, 6 \%, 20)-\$ 19,215=-\$ 54,595 / \mathrm{mile}$
$\mathrm{PW}_{\mathrm{B}}(6 \%)=-\$ 260,190-\$ 260,640(\mathrm{P} / \mathrm{F}, 6 \%, 10)-\$ 19,215(\mathrm{P} / \mathrm{A}, 6 \%, 20)=-\$ 626,126 / \mathrm{mile}$
Select Design A (concrete pavement) to minimize costs.

6-13 Method: Incremental PW
Order alternatives by increasing capital investment: ER3, ER1, ER2.
Is ER3 an acceptable base alternative?
$\operatorname{PW}_{\text {ER3 }}(12 \%)=-\$ 81,200+\$ 19,750(\mathrm{P} / \mathrm{A}, 12 \%, 6)=\$ 0.15 \approx 0$.
Since $\operatorname{PW}($ MARR $=12 \%) \geq 0$, ER3 is an acceptable base alternative.
Analyze Δ (ER1 - ER3)

$$
\begin{aligned}
\mathrm{PW}_{\Delta}(12 \%) & =-(\$ 98,600-\$ 81,200)+\frac{\$ 25,800[1-(P / F, 12 \%, 6)(F / P, 6 \%, 6)]}{0.12-0.06}-\$ 19,750(\mathrm{P} / \mathrm{A}, 12 \%, 6) \\
& =-\$ 17,400+\frac{\$ 25,800(0.2814)}{0.06}-\$ 19,750(4.1114) \\
& =\$ 22,402>0
\end{aligned}
$$

The additional capital investment earns more than the MARR. Therefore, design ER1 is preferred to design ER3.

Analyze Δ (ER2 - ER1)

$$
\begin{aligned}
\mathrm{PW}_{\Delta}(12 \%)= & -(\$ 115,000-\$ 98,600)+\$ 29,000(\mathrm{P} / \mathrm{A}, 12 \%, 6)+\$ 150(\mathrm{P} / \mathrm{G}, 12 \%, 6) \\
& -\frac{\$ 25,800[1-(P / F, 12 \%, 6)(F / P, 6 \%, 6)]}{0.12-0.06} \\
= & -\$ 16,400+\$ 29,000(4.1114)+\$ 150(8.93)-\frac{\$ 25,800(0.2814)}{0.06} \\
= & -\$ 16,832<0
\end{aligned}
$$

The additional capital investment required by design ER2 has a negative PW (earns less than the MARR). Therefore, design ER1 is preferred to design ER2.

Decision: Recommend Design ER1

6-14 $\mathrm{PW}_{\mathrm{A}}=\$ 15,500(\mathrm{P} / \mathrm{A}, 12 \%, 10)+\$ 500(\mathrm{P} / \mathrm{G}, 12 \%, 10)=\$ 97,705$
$\mathrm{PW}_{\mathrm{B}}=\$ 12,000(\mathrm{P} / \mathrm{A}, 12 \%, 10)+\$ 2,000(\mathrm{P} / \mathrm{G}, 12 \%, 10)=\$ 108,310$
Based on property tax assessments, Parcel A is preferred to Parcel B.

6-15 (a) $\quad \mathrm{PW}_{1}(10 \%)=\$ 2,745 ; \quad \mathrm{PW}_{2}(10 \%)=\$, 2566 ; \quad \mathrm{PW}_{3}(10 \%)=\$ 2,429$
(b) $\quad \mathrm{IRR}_{1}=25 \% ; \quad \mathrm{IRR}_{2}=26.5 \% ; \quad \mathrm{IRR}_{3}=22.2 \%$
(c) Select Project 1 to maximize profitability.
(d) This is because the IRR method assumes reinvestment of cash flows at the IRR whereas the PW method assumes reinvestment at the MARR.

6-16 (a) Cost of electricity for the 90% efficient motor:
$[30 \mathrm{hp} / 0.90](0.746 \mathrm{~kW} / \mathrm{hp})(\$ 0.10 / \mathrm{kWh})(4,000 \mathrm{hr} / \mathrm{yr})=\$ 9,946.67$ per year
Cost of electricity of the 93% efficient motor:
$[30 \mathrm{hp} / 0.93](0.746 \mathrm{~kW} / \mathrm{hp})(\$ 0.10 / \mathrm{kWh})(4,000 \mathrm{hr} / \mathrm{yr})=\$ 9,625.81$ per year
$\mathrm{PW}_{90 \%}(15 \%)=-\$ 2,200-\$ 9,946.67(\mathrm{P} / \mathrm{A}, 15 \%, 8)=-\$ 46,834$
$\mathrm{PW}_{93 \%}(15 \%)=-\$ 3,200-\$ 9,625.81(\mathrm{P} / \mathrm{A}, 15 \%, 8)=-\$ 46,394$
The 93% efficient motor is the better choice. Notice that energy expense dominates the analysis. For instance, the 93% efficient motor has a PW of energy expense that is $\$ 43,194 / \$ 3,200$, or over 13 times its purchase price. Generally speaking, the potential for savings is enourmous for high efficiency motors and pumps.
(b) $\$ 9,946.67-\$ 9,625.81=\$ 320.86$ per year savings
$\mathrm{PW}(15 \%)$ of savings $=\$ 320.86(\mathrm{P} / \mathrm{A}, 15 \%, 8)=\$ 1,440$, which exceeds the extra investment cost of $\$ 1,000$, so the more efficienct motor is preferred. Thus, the PW of the incremental investment is \$440.

6-17 Cost of electricity of the 90% efficient motor $=\$ 9,946.67(0.60)=\$ 5,968$ per year Cost of electricity of the 93% efficient motor $=\$ 9,625.81(0.60)=\$ 5,775$ per year
$\mathrm{PW}_{90 \%}(15 \%)=-\$ 2,200-\$ 5,968(\mathrm{P} / \mathrm{A}, 15 \%, 8)=-\$ 28,980$
$\mathrm{PW}_{93 \%}(15 \%)=-\$ 3,200-\$ 5,775(\mathrm{P} / \mathrm{A}, 15 \%, 8)=-\$ 29,114$
In this case, the 90% efficient motor should be selected by a slim margin.

6-18 (a) $\quad \mathrm{PW}_{\mathrm{A}}(15 \%)=-\$ 179,645$
$\mathrm{PW}_{\mathrm{B}}(15 \%)=-\$ 189,593$
$\mathrm{PW}_{C}(15 \%)=-\$ 177,958$, so the rank order is $\mathrm{C}>\mathrm{A}>\mathrm{B}(\mathrm{C}$ is the best $)$.
(b) The extra investment of $\$ 42,000$ in Equipment C [i.e. $\Delta(\mathrm{C}-\mathrm{B})$] will produce savings of $\$ 16,000$ per year for years one through five. Thus, the breakeven interest rate can be determined as follows: $0=$ $-\$ 42,000+\$ 16,000\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 5\right)$, or $\mathrm{i}^{\prime}=26.19 \%$. If the MARR is greater than 26.19%, select Equipment B; otherwise select Equipment C.
(a) $\quad \mathrm{PW}_{\mathrm{X}}(15 \%)=\$ 21,493$
$\mathrm{PW}_{\mathrm{Y}}(15 \%)=\$ 35,291$. Recommend Alternative Y .
(b) IRR on the incremental cash flow ($-\$ 50,000$ in year one, $-\$ 51,000$ in year two, and $\$ 145,760$ in year 3) is 27.19%. This favors Y when the MARR is 15%.
(c) If the MARR is $27.5 \%, \mathrm{PW}_{\mathrm{X}}=-\$ 464$ and $\mathrm{PW}_{\mathrm{Y}}=-\$ 727$. Choose X if one alternative must be selected.
(d) The simple payback period for Alt. X is 2 years; for Alt. Y it is 3 years.
(e) Based on the answer to parts (a) and (b), Alternative Y should be recommended.

6-20 $\quad \Delta$ Investment $=(0.10)\left(\$ 120 / \mathrm{ft}^{2}\right)\left(2,000 \mathrm{ft}^{2}\right)=\$ 24,000$
Savings $=(0.50)(\$ 200 /$ month $)=\$ 100 /$ month or $\$ 1,200 /$ year
$\$ 24,000=\$ 1,200\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime} \%, 20\right)$
$\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime} \%, 20\right)=20$

$$
i^{\prime} \%=0 \%
$$

6-21 (a) $\$ 50,000 / \$ 20,000$ per year $=2.5$ years, so $\theta=3$ years. This is marginally acceptable.
(b) Try $\mathrm{N}=3: \mathrm{PW}(20 \%)=-\$ 50,000+\$ 20,000(\mathrm{P} / \mathrm{A}, 20 \%, 3)=-\$ 4,336$

Try $\mathrm{N}=4: \mathrm{PW}(20 \%)=-\$ 50,000+\$ 20,000(\mathrm{P} / \mathrm{A}, 20 \%, 4)=+\$ 7,100$, so $\theta^{\prime}=4$ years. Again, this is marginal.
(c) $0=-\$ 50,000+\$ 20,000\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 5\right)+\$ 5,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 5\right)$, or $\mathrm{i}^{\prime}=30 \%$ per year. This exceeds the MARR, so the investment is a profitable one.

6-22 List the alternatives in increasing order of initial cost: DN, B, D, A, C.
In general, we have $\mathrm{P}=\mathrm{A}\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 80\right)$ which becomes $\mathrm{i}^{\prime}=\mathrm{A} / \mathrm{P}$ when the MARR is 12% and $\mathrm{N}=80$ years, where i^{\prime} is the IRR of the project or the incremental cash flows. The incremental comparisons follow:
$\Delta(B-D N)=8 / 52=0.154(15.4 \%)$, so select B.
$\Delta(D-B)=1 / 3=0.333(33.3 \%)$, so select D.
$\Delta(A-D)=1 / 7=0.143(14.3 \%)$, so select A.
$\Delta(C-A)=10 / 88=0.114(11.4 \%)$, so keep A.
Therefore, we recommend Alternative A even though it does not have the largest IRR or the largest $\Delta I R R$.

6-23 Examine Δ (New Baghouse - New ESP):
Incremental investment $=\$ 147,500$
Incremental annual expenses $=\$ 42,000$ per year for 10 years
Therefore, by inspection, the extra investment required by the new baghouse is producing extra annual expenses, so the new ESP should be recommended.

Doublecheck: PW(15\%) for the new baghouse $=-\$ 1,719,671$
$\mathrm{PW}(15 \%)$ for the new $\mathrm{ESP}=-\$ 1,359,876$
The economic advantage of the ESP may not be sufficient enough to overcome its inability to meet certain design specifications under varying operating conditions.

6-24 The extra investment in the hybrid vehicle is $\$ 5,000$. The gasoline-fueled car will consume
$(15,000 \mathrm{mi} . / \mathrm{yr}.) / 25 \mathrm{mpg}=600$ gallons per year, for an annual cost of $\$ 2,400$.
On the other hand, the hybrid will use ($15,000 \mathrm{mi} . / \mathrm{yr}$.) / $46 \mathrm{mpg}=326$ gallons of gasoline per year, costing $\$ 1,304$ per year. Thus, the annual fuel saving for the hybrid car amounts to $\$ 1,096$. We can determine the IRR on the incremental investment as follows:

$$
\begin{aligned}
& 0=-\$ 5,000+\$ 1,096\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime} \%, 5\right)+\$ 2,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 5\right) \\
& \mathrm{i}^{\prime}=12.6 \% \text { per year. }
\end{aligned}
$$

This is a respectable return. Notice that the simple payback period is five years, which is not very appealing to most buyers.

6-25 Rank order: $\mathrm{C} \rightarrow \mathrm{A} \rightarrow \mathrm{B}$
$C \rightarrow A: 0=-\$ 200,000+\$ 58,060\left(P / A, i^{\prime}, 10\right)$, so $i^{\prime}=26.2 \%>10 \%$, so choose A.
$A \rightarrow B: 0=-\$ 1,100,000+\$ 178,130\left(P / A, i^{\prime}, 10\right)$, so $i^{\prime}=9.88 \%<10 \%$, so keep A.

Recommend Alternative A.

6-26 Rank alternatives by increasing capital investment: A,B,C,D and E. Since the ERR on Equipment A > MARR, it is an acceptable base alternative. Therefore, ERR_{Δ} on $\Delta(\mathrm{B}-\mathrm{A})$ must be examined.
$\Delta(\mathrm{B}-\mathrm{A})$
$(\$ 50,000-\$ 38,000)\left(\mathrm{F} / \mathrm{P}, \mathrm{i}^{\prime}{ }_{\Delta}, 10\right)=(\$ 14,100-\$ 11,000)(\mathrm{F} / \mathrm{A}, 18 \%, 10)$
$\mathrm{i}^{\prime}{ }_{\Delta}=19.8 \%>\operatorname{MARR}$, therefore select B.
$\Delta(\mathrm{C}-\mathrm{B})$
$\$ 5,000\left(\mathrm{~F} / \mathrm{P}, \mathrm{i}^{\prime} \Delta, 10\right)=\$ 2,200(\mathrm{~F} / \mathrm{A}, 18 \%, 10)$
$\mathrm{i}^{\prime}{ }_{\Delta}=26.3 \%>$ MARR, therefore select C.
$\Delta(\mathrm{D}-\mathrm{C})$
$\$ 5,000\left(\mathrm{~F} / \mathrm{P}, \mathrm{i}^{\prime}{ }_{\Delta}, 10\right)=\$ 500(\mathrm{~F} / \mathrm{A}, 18 \%, 10)$
$\mathrm{i}^{\prime}{ }_{\Delta}=8.9 \%$ < MARR, therefore keep C.
$\Delta(\mathrm{E}-\mathrm{C})$
$\$ 15,000\left(\mathrm{~F} / \mathrm{P}, \mathrm{i}^{\prime}{ }_{\Delta}, 10\right)=\$ 2,900(\mathrm{~F} / \mathrm{A}, 18 \%, 10)$
$\mathrm{i}^{\prime}{ }_{\Delta}=16.4 \%$ < MARR, therefore keep C as best.

Answer: Select C.

D1 \rightarrow D2: $\$ 160,000\left(1+\mathrm{i}^{\prime}\right)^{10}=\$ 42,000(\mathrm{~F} / \mathrm{A}, 12 \%, 10) \quad \mathrm{i}^{\prime}=19 \%$, select D2
$\mathrm{D} 2 \rightarrow \mathrm{D} 3: \$ 480,000\left(1+\mathrm{i}^{\prime}\right)^{10}=\$ 98,000(\mathrm{~F} / \mathrm{A}, 12 \%, 10) \quad \mathrm{i}^{\prime}=11.5 \%$, keep D2
$\mathrm{D} 2 \rightarrow \mathrm{D} 4: \$ 840,000\left(1+\mathrm{i}^{\prime}\right)^{10}=\$ 204,000(\mathrm{~F} / \mathrm{A}, 12 \%, 10) \quad \mathrm{i}^{\prime}=15.6 \%$, select D4
Recommend D4.

6-28 (a) Use AW to deal with different useful lives

$$
\begin{aligned}
& \mathrm{AW}_{\text {lead acid }}(5 \%)=-\$ 6,000(\mathrm{~A} / \mathrm{P}, 5 \%, 12)-\$ 2,500=-\$ 3,176.80 \\
& \mathrm{AW}_{\text {lithium ion }}(5 \%)=-\$ 14,000(\mathrm{~A} / \mathrm{P}, 5 \%, 18)+\$ 2,800(\mathrm{~A} / \mathrm{F}, 5 \%, 18)-\$ 2,400=-\$ 3,497.60
\end{aligned}
$$

Select Alternative X (could also calculate PW over 36 years and compare)
(b) $\quad \mathrm{PW}_{\text {lead acid }}(5 \%)=-\$ 6,000-\$ 2,500(\mathrm{P} / \mathrm{A}, 5 \%, 12)-\$ 8,000(\mathrm{P} / \mathrm{A}, 5 \%, 6)(\mathrm{P} / \mathrm{F}, 5 \%, 12)$

$$
=-\$ 50,767.45
$$

$\mathrm{PW}_{\text {lithium ion }}(5 \%)=-\$ 3,497.60(\mathrm{P} / \mathrm{A}, 5 \%, 18)=-\$ 40,885.54$
Select lithium ion battery system (could also calculate AW over 18 years and compare).

6-29 (a) Assume repeatability so that AWs can be directly compared (over a 15-year study period).

$$
\begin{aligned}
\mathrm{AW}_{\mathrm{A}}(8 \%)= & -\$ 1,200(\mathrm{~A} / \mathrm{P}, 8 \%, 3)-\$ 160 \\
& -\frac{60 h p}{0.90}(0.746 \mathrm{~kW} / \mathrm{hp})(800 \mathrm{hrs} / \mathrm{yr} .)(\$ 0.07 / \mathrm{kWh}) \\
= & -\$ 3,410.67 \\
\mathrm{AW}_{\mathrm{B}}(8 \%)= & -\$ 1,000(\mathrm{~A} / \mathrm{P}, 8 \%, 5)-\$ 100 \\
& -\frac{60 h p}{0.80}(0.746 \mathrm{~kW} / \mathrm{hp})(800 \mathrm{hrs} / \mathrm{yr} .)(\$ 0.07 / \mathrm{kWh}) \\
= & -\$ 3,483.70
\end{aligned}
$$

By a slim margin, select Motor A
(b) Increased capital investment of Motor A (relative to Motor B) is being traded off for improved electrical efficiency and lower annual energy expenses.

6-30 Skyline: $C W(10 \%)=-\$ 500,000-\$ 30,000 / 0.10+\$ 10,000(\mathrm{P} / \mathrm{A}, 10 \%, 20)$

- \$200,000(A/F, 10\%, 20)/0.10
$=-\$ 749,864$
Prairie View: $\mathrm{CW}(10 \%)=-\$ 700,000-\$ 300,000(\mathrm{P} / \mathrm{F}, 10 \%, 30)-\$ 10,000 / 0.10$ $=-\$ 817,190$

The Skyline proposal is less expensive over an indefinitely long study period and would be the recommended choice based on economics alone.

6-31 Number of machines needed:
D1: $\frac{3,450}{2,000(0.8)(0.9)}=2.40(3$ machines $)$
D2: $\frac{2,350}{2,000(0.75)(0.8)}=1.96(2$ machines $)$
Annual equivalent cost of ownership:
D1: $\$ 16,000(3)(\mathrm{A} / \mathrm{P}, 15 \%, 6)-\$ 3,000(3)(\mathrm{A} / \mathrm{F}, 15 \%, 6)=\$ 11,653.80$
D2: $\$ 24,000(2)(\mathrm{A} / \mathrm{P}, 15 \%, 8)-\$ 4,000(2)(\mathrm{A} / \mathrm{F}, 15 \%, 8)=\$ 10,116.00$
Annual operating expenses (assume repeatability):
D1: $\$ 5,000(3)=\$ 15,000$
D2: $\$ 7,500(2)=\$ 15,000$
Total equivalent annual cost:
D1: $\$ 11,653.60+\$ 15,000=\$ 26,653.80$
D2: $\$ 10,116.00+\$ 15,000=\$ 25,116.00$
Select Machine D2 to minimize total equivalent annual cost.
(a) $\mathrm{PW}_{\mathrm{A}}(15 \%)=-\$ 272,000-\$ 28,800(\mathrm{P} / \mathrm{A}, 15 \%, 9)+\$ 25,000(\mathrm{P} / \mathrm{F}, 15 \%, 6)$

$$
-\$ 66,000(\mathrm{P} / \mathrm{A}, 15 \%, 3)(\mathrm{P} / \mathrm{F}, 15 \%, 6)
$$

$=-\$ 463,758$
$\mathrm{PW}_{\mathrm{B}}(15 \%)=-\$ 346,000-\$ 19,300(\mathrm{P} / \mathrm{A}, 15 \%, 9)+\$ 40,000(\mathrm{P} / \mathrm{F}, 15 \%, 9)$
$=-\$ \underline{26,720}$
Select B to minimize equivalent cost.
(b) Alternative A is the base alternative because it requires the least capital investment.

Year	$\Delta(\mathrm{B}-\mathrm{A})$ cash flow	
0	$-\$ 346,000-(-\$ 272,000)$	$=-\$ 74,000$
$1-5$	$-19,300-(-\$ 28,800)$	$=$
6,500		
$7-8$	$-19,300-(-\$ 28,800+\$ 25,000)$	$=-15,500$
9	$-19,300-(-\$ 94,800)$	$=$
	$-19,500+500$	

$$
\begin{aligned}
\mathrm{PW}_{\Delta}\left(\mathrm{i}^{\prime}{ }_{\Delta} \%\right)=0=- & \$ 74,000+\$ 9,500\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}{ }_{\Delta} \%, 5\right)-\$ 15,500\left(\mathrm{P} / \mathrm{F}, \mathrm{i}_{\Delta}^{\prime} \%, 6\right) \\
& +\$ 75,500\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}{ }_{\Delta} \%, 2\right)\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}{ }_{\Delta} \%, 6\right)+\$ 115,500\left(\mathrm{P} / \mathrm{F}, \mathrm{i}_{\Delta}{ }_{\Delta} \%, 9\right)
\end{aligned}
$$

By trial and error, $\mathrm{i}^{\prime}{ }_{\Delta} \%=22.5 \%>$ MARR. Therefore the incremental investment is justified and Alternative B should be selected. Note that there are multiple sign changes. It is possible that there are multiple $\mathrm{IRR}_{\Delta} \mathrm{s}$.
(c) Again, Alternative A would be the base alternative. Using the incremental cash flows computed in part (b), the $E R R_{\Delta}$ is found by solving the following equation:

$$
\begin{aligned}
\mid-\$ 74,000 & -\$ 15,500(\mathrm{P} / \mathrm{F}, 15 \%, 6) \mid\left(\mathrm{F} / \mathrm{P}, \mathrm{i}^{\prime}{ }_{\Delta} \%, 9\right) \\
& =\$ 9,500(\mathrm{~F} / \mathrm{A}, 15 \%, 5)(\mathrm{F} / \mathrm{P}, 15 \%, 4)+\$ 75,500(\mathrm{~F} / \mathrm{A}, 15 \%, 3)+\$ 40,000
\end{aligned}
$$

$\$ 80,701\left(1+\mathrm{i}^{\prime}{ }_{\Delta}\right)^{9}=\$ 404,202$
$E R R_{\Delta}=19.9 \%>$ MARR. Therefore, select Alternative B
(d) $\mathrm{PW}_{\mathrm{L}}(15 \%)=-\$ 94,800(\mathrm{P} / \mathrm{A}, 15 \%, 9)$ $=-\$ 452,348$

Thus, leasing crane A is not preferred to the selected alternative (B), but would be preferred to the purchase of crane A.

6-33 $\mathrm{CW}_{\mathrm{A}}(10 \%)=\frac{[-\$ 50,000(\mathrm{~A} / \mathrm{P}, 10 \%, 25)+\$ 5,000(\mathrm{~A} / \mathrm{F}, 10 \%, 25)-\$ 1,200]}{0.10}$

$$
=-\$ 66,590
$$

$\mathrm{CW}_{\mathrm{B}}(10 \%)=\frac{-\$ 90,000(\mathrm{~A} / \mathrm{P}, 10 \%, 50)-\$ 5,000(\mathrm{P} / \mathrm{A}, 10 \%, 15)(\mathrm{A} / \mathrm{P}, 10 \%, 50)-\$ 1,000}{0.10}$ $=-\$ 139,183$

Select Plan A to minimize costs.
(a) $\mathrm{PW}_{1}(8 \%)=-\$ 100,000-\$ 80,000(\mathrm{P} / \mathrm{F}, 8 \%, 5)+\$ 20,000(\mathrm{P} / \mathrm{F}, 8 \%, 10)$

+ \$28,000(P/A, $8 \%, 10)$
$=\$ 42,699$
$\mathrm{PW}_{2}(8 \%)=-\$ 150,000+\$ 30,000(\mathrm{P} / \mathrm{A}, 8 \%, 10)=\$ 51,303$
Therefore, select alternative 2 to maximize profitability.
(b) $\quad \mathrm{PW}_{1}(15 \%)=\$ 5,694$

$$
\mathrm{PW}_{2}(15 \%)=\$ 564
$$

If the MARR is changed to 15% per year, alternative 1 becomes the better choice. The principal assumption in parts (a) and (b) is the repeatability of cash flows for alternative 1.

6-35 Assume a common 40 yr. life and use the AW method (PW could be used if 2 life cycles of Boiler A are explicitly considered over a 40 year study period.)

$$
\begin{aligned}
\mathrm{AW}_{\mathrm{A}}(10 \%)= & -\$ 50,000(\mathrm{~A} / \mathrm{P}, 10 \%, 20)+\$ 10,000(\mathrm{~A} / \mathrm{F}, 10 \%, 20)-\$ 9,000 \\
= & -\$ 14,704 \\
\mathrm{AW}_{\mathrm{B}}(10 \%)= & -\$ 120,000(\mathrm{~A} / \mathrm{P}, 10 \%, 40)+\$ 20,000(\mathrm{~A} / \mathrm{F}, 10 \%, 40)-\$ 3,000 \\
& -\$ 300(\mathrm{~A} / \mathrm{G}, 10 \%, 40)=-\$ 17,962
\end{aligned}
$$

or $\mathrm{PW}_{\mathrm{A}}(10 \%)=-\$ 143,735$ over 40 years; $\mathrm{PW}_{\mathrm{B}}(10 \%)--\$ 175,580$ over 40 years.

6-36 Assume repeatability.

$$
\begin{aligned}
\mathrm{AW}_{\mathrm{A}}(20 \%)= & -\$ 2,000(\mathrm{~A} / \mathrm{P}, 20 \%, 5)+(\$ 3,200-\$ 2,100)+\$ 100(\mathrm{~A} / \mathrm{F}, 20 \%, 5) \\
& =\$ 444.64 \\
\mathrm{AW}_{\mathrm{B}}(20 \%)= & -\$ 4,200(\mathrm{~A} / \mathrm{P}, 20 \%, 10)+(\$ 6,000-\$ 4,000)+\$ 420(\mathrm{~A} / \mathrm{F}, 20 \%, 10) \\
& =\$ 1,014.47 \\
\mathrm{AW}_{\mathrm{C}}(20 \%) & =-\$ 7,000(\mathrm{~A} / \mathrm{P}, 20 \%, 10)+(\$ 8,000-\$ 5,100)+\$ 600(\mathrm{~A} / \mathrm{F}, 20 \%, 10) \\
& =\$ \underline{1,253.60}
\end{aligned}
$$

Select Alternative C to maximize annual worth

6-37 $\mathrm{CW}_{\mathrm{D} 1}(10 \%)=\frac{[-\$ 50,000(\mathrm{~A} / \mathrm{P}, 10 \%, 20)+\$ 10,000(\mathrm{~A} / \mathrm{F}, 10 \%, 20)-\$ 9,000]}{0.10}$

$$
=-\$ 147,000
$$

$$
\begin{aligned}
\mathrm{CW}_{\mathrm{D} 2}(10 \%) & =\frac{[-\$ 120,000(\mathrm{~A} / \mathrm{P}, 10 \%, 50)+\$ 20,000(\mathrm{~A} / \mathrm{F}, 10 \%, 50)-\$ 5,000]}{0.10} \\
& =-\$ 170,900
\end{aligned}
$$

Select Design D1 to minimize costs.

6-38 $\mathrm{AW}_{2 \mathrm{~cm}}(15 \%)=-\$ 20,000(\mathrm{~A} / \mathrm{P}, 15 \%, 4)+\$ 5,000=-\$ 2,006$ per year $\mathrm{AW}_{5 \mathrm{~cm}}(15 \%)=-\$ 40,000(\mathrm{~A} / \mathrm{P}, 15 \%, 6)+\$ 7,500=-\$ 3,068$ per year

Therefore, the 2 cm thickness should be recommended.

6-39 $\mathrm{CR}_{5 \mathrm{~cm}}(15 \%)=\$ 40,000(\mathrm{~A} / \mathrm{P}, 15 \%, 6)=\$ 10,568$
$\mathrm{MV}_{5 \mathrm{~cm}}$ after four years $=\$ 10,568(\mathrm{P} / \mathrm{A}, 15 \%, 2)=\$ 17,180$
$\mathrm{AW}_{5 \mathrm{~cm}}(15 \%)=-\$ 40,000(\mathrm{~A} / \mathrm{P}, 15 \%, 4)+\$ 7,500+\$ 17,180(\mathrm{~A} / \mathrm{F}, 15 \%, 4)=-\$ 3,071$
Still recommend 2 cm thickness.

6-40 Assume repeatability.
(a) Machine A:

CR cost $/ \mathrm{yr}=\$ 35,000(\mathrm{~A} / \mathrm{P}, 10 \%, 10)-\$ 3,500(\mathrm{~A} / \mathrm{F}, 10 \%, 10)=\$ 5,475.05$
Maint. Cost/yr $=\$ 1,000$
CR and maintenance cost/part $=\frac{\$ 5,475.05+\$ 1,000}{10,000 \text { parts }}=\$ 0.6475$
Labor cost $/$ part $=\frac{\$ 16 / h r}{3 \text { parts } / h r}=\$ 5.3333$
Total cost $/$ part $($ to nearest cent $)=\$ 5.98$

Machine B:

CR cost $/ \mathrm{yr}=\$ 150,000(\mathrm{~A} / \mathrm{P}, 10 \%, 8)-\$ 15,000(\mathrm{~A} / \mathrm{F}, 10 \%, 8)=\$ 26,799$
Maint. Cost/yr $=\$ 3,000$
CR and maintenance cost $/$ part $=\frac{\$ 26,799+\$ 3,000}{10,000 \text { parts }}=\$ 2.98$
Labor cost $/$ part $=\frac{\$ 20 / h r}{6 \text { parts } / h r}=\$ 3.33$
Total cost/part $($ to nearest cent $)=\$ 6.31$
Select Machine A to minimize total cost per part.
(b) Machine A:

Labor cost $/$ part $=\frac{\$ 8 / h r}{3 \text { parts } / h r .}=\$ 2.67$
(other costs remain unchanged)
Total cost/part (to nearest cent) $=\$ 3.31$
Machine B:
Labor cost/part $=\frac{\$ 10 / h r}{6 \text { parts } / h r}=\$ 1.67$
(other costs remain unchanged)
Total cost/part (to nearest cent) $=\$ 4.65$
Select Machine A to minimize total cost per part.

6-41 (a) Assume repeatability.
$A W_{A}=-\$ 20,000(\mathrm{~A} / \mathrm{P}, 20 \%, 5)-\$ 5,500+\$ 1,000(\mathrm{~A} / \mathrm{F}, 20 \%, 5)=-\$ 12,053.60$
$A W_{B}=-\$ 38,000(\mathrm{~A} / \mathrm{P}, 20 \%, 10)-\$ 4,000+\$ 4,200(\mathrm{~A} / \mathrm{F}, 20 \%, 10)=-\$ 12,901.30$

Select A

(b) $\mathrm{AW}_{\mathrm{A}}(20 \%)=-\$ 12,053.60$
$\mathrm{AW}_{\mathrm{B}}(20 \%)=-\$ 38,000(\mathrm{~A} / \mathrm{P}, 20 \%, 5)-\$ 4,000+\$ 15,000(\mathrm{~A} / \mathrm{F}, 20 \%, 5)$

$$
=-\$ 14,691.20
$$

Select A

6-42 Trail on Flat Terrain:

Paving cost $=\left(\$ 3 / \mathrm{m}^{2}\right)(2 \mathrm{~m})(14,000 \mathrm{~m})=\$ 84,000$
Site preparation $=(0.2)(\$ 84,000)=\$ 16,800$
Annual Maintenance $=(0.05)(\$ 84,000)=\$ 4,200$
$\mathrm{CW}=-\$ 16,800-\$ 84,000-\$ 4,200 / 0.06=-\$ 170,800$

Trail on Hilly Terrain:

Paving cost $=\left(\$ 3 / \mathrm{m}^{2}\right)(2 \mathrm{~m})(12,000 \mathrm{~m})=\$ 72,000$
Site preparation $=(0.2)(\$ 72,000)=\$ 14,400$
Annual Maintenance $=(0.08)(\$ 72,000)=\$ 5,760$
$\mathrm{CW}=-\$ 14,400-\$ 72,000-\$ 5,760 / 0.06=-\$ 182,400$
Recommend the trail on flat terrain.

6-43 Compare the annual worths of the two infinite series:

$$
\begin{aligned}
& \mathrm{AW}_{\mathrm{A}}(10 \%)=\$ 1,000+[\$ 500 / 0.10](\mathrm{P} / \mathrm{F}, 10 \%, 10)(\mathrm{A} / \mathrm{P}, 10 \%, \infty)=\$ 1,192.75 \\
& \mathrm{AW}_{\mathrm{B}}(10 \%)=\$ 1,200+[\$ 100 / 0.10](\mathrm{P} / \mathrm{F}, 10 \%, 10)(\mathrm{A} / \mathrm{P}, 10 \%, \infty)=\$ 1,238.55
\end{aligned}
$$

Select Trust B.

6-44 Assume repeatability (repeating cash flow patterns, etc.)
$\mathrm{AW}(15 \%)$ of Caterpillar $=-\$ 22,000(\mathrm{~A} / \mathrm{P}, 15 \%, 4)+\$ 4,000(\mathrm{~A} / \mathrm{F}, 15 \%, 4)+\$ 7,000=\$ 94.60$
$\operatorname{AW}(15 \%)$ of Deere $=-\$ 26,200(\mathrm{~A} / \mathrm{P}, 15 \%, 3)+\$ 5,000(\mathrm{~A} / \mathrm{F}, 15 \%, 3)+\$ 9,500=-\$ 535.60$
$\mathrm{AW}(15 \%)$ of Case $=-\$ 17,000(\mathrm{~A} / \mathrm{P}, 15 \%, 5)+\$ 3,500(\mathrm{~A} / \mathrm{F}, 15 \%, 5)+\$ 5,200=\$ 647.95$
To maximize AW(15\%), select the Case equipment.

6-46 Assume a 24 -year study period. Alternative 1 (no auxiliary equipment) has a negative cash flow of $\$ 30,000$ now and another $\$ 30,000$ at EOY 12. Alternative 2 (auxiliary equipment) has a negative cash flow of ($\$ 30,000+$ Aux $\$$) now and positive savings of $\$ 400$ at EOYs $1-24$. So we can equate $P W(6 \%)$ of Alt. 1 to PW(6%) of Alt. 2 and solve for Aux\$.

$$
-\$ 30,000-\$ 30,000(\mathrm{P} / \mathrm{F}, 6 \%, 12)=-(\$ 30,000+\mathrm{Aux} \$)+\$ 400(\mathrm{P} / \mathrm{A}, 6 \%, 24)
$$

$$
\text { Aux } \$=\$ 19,925
$$

The managers of the plan can afford to spend up to $\$ 19,925$ for the auxiliary equipment.

6-47 $\mathrm{CW}_{\mathrm{L}}(15 \%)=\frac{[-\$ 274,000(\mathrm{~A} / \mathrm{P}, 15 \%, 83)-\$ 10,000-\$ 50,000(\mathrm{~A} / \mathrm{F}, 15 \%, 6)]}{0.15}$

$$
=-\$ 378,733
$$

$$
\begin{aligned}
\mathrm{CW}_{\mathrm{H}}(15 \%) & =\frac{[-\$ 326,000(\mathrm{~A} / \mathrm{P}, 15 \%, 92)-\$ 8,000-\$ 42,000(\mathrm{~A} / \mathrm{F}, 15 \%, 7)]}{0.15} \\
& =-\$ 404,645
\end{aligned}
$$

Select Bridge Design L to minimize cost.

6-48 Back Scatter (B)

```
\(\mathrm{PW}_{\mathrm{B}}(15 \%)=-\$ 210,000-\$ 31,000(\mathrm{P} / \mathrm{A}, 15 \%, 6)-\$ 2,000(\mathrm{P} / \mathrm{G}, 15 \%, 6)\)
        \(+\$ 21,000(\mathrm{P} / \mathrm{F}, 15 \%, 6)\)
    \(=-\$ 334,118\)
```

Millimeter Wave (W)
Calculate an imputed MV at EOY 6:
Capital Recovery Amount $=-\$ 264,000(\mathrm{~A} / \mathrm{P}, 15 \%, 10)+\$ 38,000(\mathrm{~A} / \mathrm{F}, 15 \%, 10)$

$$
=-\$ 50,742
$$

$$
\begin{aligned}
& \mathrm{MV}_{6}=|-\$ 50,742|(\mathrm{P} / \mathrm{A}, 15 \%, 4)+\$ 38,000(\mathrm{P} / \mathrm{F}, 15 \%, 4)=\$ 166,597 \\
& \mathrm{i}_{\mathrm{CR}}=\frac{0.15-0.057}{1.057}=0.088 \text { or, } 8.8 \% ;(\mathrm{P} / \mathrm{A}, 8.8 \%, 6)=\frac{(1.088)^{6}-1}{0.088(1.088)^{6}}=4.5128 \\
& \mathrm{PW}_{\mathrm{W}}(15 \%)=-\$ 264,000-\frac{\$ 19,000}{1.057}(\mathrm{P} / \mathrm{A}, 8.8 \%, 6)+\$ 166,597(\mathrm{P} / \mathrm{F}, 15 \%, 6) \\
& \quad=-\underline{-\$ 273,100}
\end{aligned}
$$

Select Millimeter Wave.

6-49 Assume repeatability.
$\mathrm{AW}_{\mathrm{A}}(10 \%)=-\$ 30,000(\mathrm{~A} / \mathrm{P}, 10 \%, 5)-\$ 450-\$ 6,000=-\$ 14,364$
$\mathrm{AW}_{\mathrm{B}}(10 \%)=-\$ 38,000(\mathrm{~A} / \mathrm{P}, 10 \%, 4)-\$ 600-\$ 4,000=-\$ 16,589$
Recommend Proposal A, assuming a proposal must be chosen.
(a) $\quad \mathrm{PW}_{\mathrm{A}}(8 \%)=[-\$ 250+\$ 40.69(\mathrm{P} / \mathrm{A}, 8 \%, 10)][1+(\mathrm{P} / \mathrm{F}, 8 \%, 10)]=\$ 33.70$
$\mathrm{PW}_{\mathrm{B}}(8 \%)=-\$ 375+\$ 44.05(\mathrm{P} / \mathrm{A}, 8 \%, 20)=\$ 57.49$
$\left.\mathrm{PW}_{\mathrm{C}}(8 \%)=[-\$ 500(\mathrm{~A} / \mathrm{P}, 8 \%, 5)+\$ 131.90](\mathrm{P} / \mathrm{A}, 8 \%, 20)\right]=\$ 65.29$
Select C to maximize PW over a common 20-year study period.
(b) $\quad \mathrm{PW}_{\mathrm{A}}(8 \%)=-\$ 250+\$ 40.69(\mathrm{P} / \mathrm{A}, 8 \%, 10)=\$ 23.03$
$\mathrm{PW}_{\mathrm{B}}(8 \%)=-\$ 375+\$ 44.05(\mathrm{P} / \mathrm{A}, 8 \%, 20)=\$ 57.49$
$\mathrm{PW}_{\mathrm{C}}(8 \%)=-\$ 500+\$ 131.90(\mathrm{P} / \mathrm{A}, 8 \%, 5)=\$ 26.64$
Select B to maximize PW over a common 20-year study period with reinvestment in alternatives A and C occurring at 8% per year (instead of at 10% per year as in Part a). Notice that we continue to analyze MEAs over a common 20-year period.

$$
\mathrm{CW}(15 \%)=\mathrm{AW}(15 \%) / 0.15=-\$ 63,407
$$

$\operatorname{ABY}: \operatorname{AW}(15 \%)=-\$ 45,000(\mathrm{~A} / \mathrm{P}, 15 \%, 10)+\$ 4,000(\mathrm{~A} / \mathrm{F}, 15 \%, 10)-\$ 1,500=-\$ 10,271$
$\mathrm{CW}(15 \%)=\mathrm{AW}(15 \%) / 0.15=-\$ 68,473$

Recommend the $\mathrm{RX}-1$ system because it has the lesser negative (higher) CW .

DN \rightarrow III: $\mathrm{IRR}=22.9 \%$ (given) $>10 \%$; select III

$$
\begin{aligned}
& \text { III } \rightarrow \text { II: } 0=-\$ 10,000+\$ 400\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 20\right)+\$ 20,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 10\right) \\
& \mathrm{i}^{\prime}=11.3 \%>10 \% ; \text { select II } \\
& \text { II } \rightarrow \text { I: } \quad 0=-\$ 10,000+\$ 750\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 20\right) \\
& \mathrm{i}^{\prime}=4 \%<10 \% ; \text { keep II }
\end{aligned}
$$

Invest in alternative II.

6-53 The IRR (found via Excel) of the fish nets is 28.9% and the IRR of the electric barriers is 21.7%. Both alternatives are acceptable. We must examine the incremental IRR to make a correct choice.

Set AW (i') of fish nets equal to AW (i') of electric barriers:
$\left[-\$ 1,000,000+\$ 600,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 1\right)+\$ 500,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 2\right)+\$ 500,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 3\right)\right]\left(\mathrm{A} / \mathrm{P}, \mathrm{i}^{\prime}, 3\right)$

$$
=\left[-\$ 2,000,000+\$ 1,200,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 1\right)+\$ 1,500,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 2\right)\right]\left(\mathrm{A} / \mathrm{P}, \mathrm{i}^{\prime}, 2\right)
$$

The breakeven interest rate (i^{\prime}) is close to 10%. This is less than the MARR so the fish nets should be recommended.

6-54 $\$ 95,000\left(\mathrm{~F} / \mathrm{P}, \mathrm{i}^{\prime}, 20\right)=\$ 12,500(\mathrm{~F} / \mathrm{A}, 10 \%, 20)+\$ 5,000(\mathrm{~F} / \mathrm{P}, 10 \%, 10)$ $\mathrm{i}^{\prime}=10.7 \%>$ MARR

Since the ERR of the incremental investment required for Alternative A is greater than the MARR, Alternative A is preferred.

6-55 All alternatives will be compared with the present worth technique over a 10-year study period.
For Alt. I the annual capital recovery cost is

$$
\mathrm{CR}_{\mathrm{I}}=\$ 40,000(\mathrm{~A} / \mathrm{P}, 10 \%, 20)=\$ 40,000(0.1175)=\$ 4,700
$$

The imputed market (salvage) value at the end of year 10 is

$$
\mathrm{MV}_{10}=\$ 4,700(\mathrm{P} / \mathrm{A}, 10 \%, 10)=\$ 4,700(6.1446)=\$ 28,880
$$

The PW of Alt. I is

$$
\mathrm{PW}_{\text {II }}=-\$ 40,000+\$ 6,400(\mathrm{P} / \mathrm{A}, 10 \%, 10)+\$ 28,880(\mathrm{P} / \mathrm{F}, 10 \%, 10)=\$ 10,459 .
$$

For Alt. II the annual capital recovery cost is

$$
\mathrm{CR}_{I I}=\$ 30,000(\mathrm{~A} / \mathrm{P}, 10 \%, 20)=\$ 30,000(0.1175)=\$ 3,525 .
$$

The imputed market value at the end of year 10 is

$$
\mathrm{MV}_{10}=\$ 3,525(\mathrm{P} / \mathrm{A}, 10 \%, 10)=\$ 21,660 .
$$

The PW of Alt. II is

$$
\mathrm{PW}_{\mathrm{II}}=-\$ 30,000+\$ 5,650(\mathrm{P} / \mathrm{A}, 10 \% 10)+\$ 21,660(\mathrm{P} / \mathrm{F}, 10 \%, 10)=\$ 13,067 .
$$

For Alt. III the PW over 10 years is

$$
\mathrm{PW}_{\mathrm{III}}=-\$ 20,000+\$ 5,250(\mathrm{P} / \mathrm{A}, 10 \% 10)=\$ 12,259 .
$$

Therefore, Alternative II is the best choice. This is identical with the recommendation in Problem 6-52 (which it should be).

The IRR of the Gravity-fed exceeds 15%, so it is acceptable. We must next consider the incremental difference, $\Delta(\mathrm{V}-1-\mathrm{G}-\mathrm{f})$ as follows: $0=-\$ 13,400+\$ 24,500\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 5\right)$. The IRR on this increment is 12.8%, so we reject Vacuum-led and stick with Gravity-fed as our choice.

6-57 Assume repeatability. Let:
$\mathrm{N}_{\mathrm{A}}=$ life of blower costing \$42,000
$\mathrm{N}_{\mathrm{B}}=$ life of the more efficient blower
$\mathrm{H}=$ hours of operation per year
C = cost of electricity per kilowatt-hour
$\mathrm{X}=$ cost of the more efficient blower
Operation Cost of $\mathrm{A}=\mathrm{OC}_{\mathrm{A}}=\frac{90 \mathrm{hp}(0.746 \mathrm{~kW} / \mathrm{hp})(\mathrm{H} \mathrm{hrs} / \mathrm{yr})(\mathrm{C} \mathrm{\$} \mathrm{/} \mathrm{kW-hr)}}{0.72}$
$\mathrm{AW}_{\mathrm{A}}(20 \%)=-\$ 42,000\left(\mathrm{~A} / \mathrm{P}, 20 \%, \mathrm{~N}_{\mathrm{A}}\right)-\left(\mathrm{OC}_{\mathrm{A}}\right)$
Operation Cost of $\mathrm{B}=\mathrm{OC}_{\mathrm{B}}=\frac{90 \mathrm{hp}(0.746 \mathrm{~kW} / \mathrm{hp})(\mathrm{H} \mathrm{hrs} / \mathrm{yr})(\mathrm{C} \mathrm{\$} \mathrm{/} \mathrm{~kW}-\mathrm{hr})}{0.81}$
$\mathrm{AW}_{\mathrm{B}}(20 \%)=-\mathrm{X}\left(\mathrm{A} / \mathrm{P}, 20 \%, \mathrm{~N}_{\mathrm{B}}\right)-\left(\mathrm{OC}_{\mathrm{B}}\right)$
Set $A W_{A}(20 \%)=A W_{B}(20 \%)$ and solve for X .

$$
\$ 42,000\left(\mathrm{~A} / \mathrm{P}, 20 \%, \mathrm{~N}_{\mathrm{A}}\right)-\mathrm{X}\left(\mathrm{~A} / \mathrm{P}, 20 \%, \mathrm{~N}_{\mathrm{B}}\right)=\mathrm{OC}_{\mathrm{B}}-\mathrm{OC}_{\mathrm{A}}
$$

6-58 The incremental IRR in Problem 6-53 would now be 16.4%, which is less than the MARR of 20%. So the Fish Nets option would still be recommended.

6-59 PW of home filtered water $=-\$ 75-182.5 \mathrm{gal} / \mathrm{yr}(\$ 0.01$ per gal. $)(\mathrm{P} / \mathrm{A}, 10 \%, 3)$

$$
\begin{aligned}
& =-\$ 75-\$ 1.825(2.4869) \\
& =-\$ 79.54
\end{aligned}
$$

PW of bottled water $=-\$ 1.29 /$ bottle $(4$ bottles $/ \mathrm{gal})(182.5 \mathrm{gal} / \mathrm{yr}).(\mathrm{P} / \mathrm{A}, 10 \%, 3)=-\$ 2,342$
The high cost of bottled water vs. filtered tap water is borderline unbelievable! Let's go with the tap water from home to save money and keep the environment free of used plastic water bottles that take thousands of years to degrade in a landfill (or they can be re-cycled).

6-60 For Edward, the future worth of his account in 36 months will be

$$
\$ 3,000(\mathrm{~F} / \mathrm{P}, 1.5 \%, 36)=\$ 3,000(1.7091)=\$ 5,127
$$

The future worth of Jorge's account in 36 months will be

$$
\$ 3,000(\mathrm{~F} / \mathrm{P}, 0.60833 \%, 36)=\$ 3,000(1.2440)=\$ 3,732 .
$$

So over a period of three years, Edward will repay $\$ 1,395$ more on his credit card than Jorge will have to repay. Clearly, the idea is to keep a "clean" credit score so you can save big bucks on loans.
$\mathrm{PW}($ savings $)=\$ 60(\mathrm{P} / \mathrm{A}, 10 \%, 6)=\$ 261$
(a) $\mathrm{F}=\$ 10,000$ with interest-only being repaid each month.
(b) $\mathrm{F}=\$ 5,000(\mathrm{~F} / \mathrm{P}, 0.75 \%, 48)+\$ 5,000(\mathrm{~F} / \mathrm{P}, 0.75 \%, 24)=\$ 13,139$ with no interest repaid while in school.
(c) Monthly payment (interest repaid each month) $=\$ 10,000(\mathrm{~A} / \mathrm{P}, 0.75 \%, 60)=\$ 208$

Monthly payment with no interest repaid $=\$ 13,139(\mathrm{~A} / \mathrm{P}, 0.75 \%, 60)=\$ 273.29$
(d) Total interest (interest paid while in school) $=\$ 37.50(48)+\$ 37.50(24)$

$$
+\$ 208(60)-\$ 10,000=\$ 5,180
$$

Total interest (with no interest paid while in school) $=\$ 273.29(60)-\$ 10,000$

$$
=\$ 6,397
$$

Therefore the difference is $\$ 1,217$ more interest if Sara does not repay any interest while she is in school. This is 23.5% higher than the $\$ 5,180$ Sara repays when interest-only is paid while she is attending college.

6-63 $\mathrm{A}=\$ 200,000(\mathrm{~A} / \mathrm{P}, 7 \% / 12,360)=\$ 1,330.60$ per month with $7 \% \mathrm{APR}$. $\mathrm{A}=\$ 200,000(\mathrm{~A} / \mathrm{P}, 8 \% / 12,360)=\$ 1,467.53$ per month with 8% APR.

This represents a $(\$ 136.93 / \$ 1,330.60) \times 100 \%=10.3 \%$ increase in monthly payment, so the realtor's claim is not correct. Maybe his claim is based on the $(1 \% / 7 \%) \times 100 \%=14.3 \%$ increase in the APR itself.
$\mathrm{CD}: \mathrm{FW}=\$ 7,500(\mathrm{~F} / \mathrm{P}, 6.25 \%, 5)=\$ 7,500(1.3541)=\$ 10,155.80(\mathrm{IRR}=6.25 \%)$
The CD is better, assuming comparable risk in both investments.

The incremental amount that you have available to invest now on the certificate of deposit is $\$ 3,800$ (if you pay $\$ 4,200$ now and invest the remainder). It can grow to $\$ 3,800(1.03)=\$ 3,914$ by January 1 . It will not cover the $\$ 4,200$ due at that time, so the discounted plan should be chosen.

6-66 Electrical demand $/$ year (incandescent bulbs) $=1,000$ Watts $\times 3,000$ hours $=3,000 \mathrm{kWh}$
Annual energy cost (incandescent bulbs) $=3,000 \mathrm{kWh} \times \$ 0.10 / \mathrm{kWh}=\$ 300$
Annual purchase cost of incandescent bulbs $=10 \times \$ 0.75=\$ 7.50$
Annual CO_{2} penalty for incandescent bulbs $=(150 \mathrm{lb} / \mathrm{bulb})(10 \mathrm{bulbs})(\$ 0.02 / \mathrm{lb})=\$ 30$
Total annual expenses $=\$ 300+\$ 7.5+30=\$ 337.50$
$\mathrm{PW}($ costs of incandescent $)=\$ 500+\$ 337.50(\mathrm{P} / \mathrm{A}, 8 \%, 10)=\$ 2,765$
Now the maximum affordable cost (X) for the CFB fixtures and bulbs is as follows:

$$
\text { Annual energy cost }(\mathrm{CFB})=\$ 300(1-0.7)=\$ 90
$$

$10 \mathrm{X}+\$ 90(\mathrm{P} / \mathrm{A}, 8 \%, 10)=\$ 2,765$
So, $\mathrm{X}=\$ 216$ (which includes the CFB fixture and a CFB bulb that will last 10 years). If a CFB bulb costs $\$ 5$, this leaves $\$ 211$ for the purchase of each CFB fixture. Because CFB fixtures generally cost less than $\$ 211$, it is economical for Bob and Sally to install fluorescent lighting in their new home. Ask your students to list non-monetary advantages and disadvantages of fluorescent and incandescent lighting. Is their choice the same based on economics alone?
(a) How many machines will be needed?

$$
6,150 /(3,000 * 0.85 * 0.95)=2.54(3 \text { lathes of type L1 }
$$

Or
$4,400 /(3,000 * 0.90 * 0.90)=1.81(2$ lathes of type L2)
(b) The annual cost of ownership, based on capital investment, is
$\$ 18,000 * 3 *(\mathrm{~A} / \mathrm{P}, 18 \%, 7)=\$ 14,169.60$ for lathe L1
and
$\$ 25,000 * 2 *(\mathrm{~A} / \mathrm{P}, 18 \%, 11)=\$ 10,740.00$ for L2.
Repeatability is assumed.
(c) Since the workers are paid for idle time we cannot make any reductions in annual expenses. Thus, annual expenses for 3 L 1 is $3 * \$ 5,000=\$ 15,000 / \mathrm{yr}$. For 2 L 2 s , the annual expense equals $2 * \$ 9,500$ $=\$ 19,000 / \mathrm{yr}$.
(d) The total equivalent annual cost for the two options equals: $\$ 14,169.60+\$ 15,000=\$ 29,169.60$ for lathe L1 and $\$ 10,740.00+\$ 19,000=\$ 29,740.00$ for lathe L2. Hence, lathe L1 is the preferred choice to minimize equivalent annual choice.

Solutions to Spreadsheet Exercises

6-68 (a)

$\begin{gathered} \text { EOY } \\ 0 \end{gathered}$	P1		P2		P3		P4	
	\$	$(24,000)$	\$	$(30,400)$	\$	$(49,600)$	\$	$(52,000)$
1	\$	10,020	\$	15,737	\$	18,638	\$	19,600
2	\$	10,020	\$	15,737	\$	18,638	\$	19,600
3	\$	10,020	\$	15,737	\$	18,638	\$	19,600
4	\$	10,020	\$	15,737	\$	18,638	\$	19,600
5	\$	10,020	\$	15,737	\$	18,638	\$	19,600
PW =	\$	9,589	\$	22,353	\$	12,877	\$	13,702
AW =	\$	2,860	\$	6,668	\$	3,842		4,088
FW =	\$	19,286	\$	44,960	\$	25,901	\$	27,560

For a MARR $=15 \%$ per year, P 2 is still the recommended alternative. The overall ranking of the alternatives remains $\mathrm{P} 2>\mathrm{P} 4>\mathrm{P} 3>\mathrm{P} 1$.

MARR =	10\%				An	I Output		120,000
Useful Life =		5				price $=$	\$	0.500
Expenses		P1		P2		P3		P4
Capital								
Investment	\$	24,000	\$	30,400	\$	49,600	\$	52,000
Power	\$	2,720	\$	2,720	\$	4,800	\$	5,040
Labor	\$	26,400	\$	24,000	\$	16,800	\$	14,800
Maintenance	\$	1,600	\$	1,800	\$	2,600	\$	2,000
Tax \& Insurance	\$	480	\$	608	\$	992	\$	1,040
Reject Rate		8.4\%		0.3\%		2.6\%		5.6\%
Revenue	\$	54,960	\$	59,820	\$	58,440	\$	56,640
EOY		P1		P2		P3		P4
0	\$	$(24,000)$	\$	$(30,400)$	\$	$(49,600)$	\$	$(52,000)$
1	\$	23,760	\$	30,692	\$	33,248	\$	33,760
2	\$	23,760	\$	30,692	\$	33,248	\$	33,760
3	\$	23,760	\$	30,692	\$	33,248	\$	33,760
4	\$	23,760	\$	30,692	\$	33,248	\$	33,760
5	\$	23,760	\$	30,692	\$	33,248	\$	33,760
PW =	\$	66,069	\$	85,947	\$	76,436	\$	75,977
AW =	\$	17,429	\$	22,673	\$	20,164	\$	20,043
FW =	\$	106,405	\$	138,418	\$	123,101	\$	122,362

For a selling price of $\$ 0.50, \mathrm{P} 2$ is still the recommended alternative.
However, the overall ranking of the alternatives is now $\mathrm{P} 2>\mathrm{P} 3>\mathrm{P} 4>\mathrm{P} 1$.
(c)

MARR = Useful Life =	10\%				Annual Output Capacity		120,000	
	5				Selling price $=$ Scrap Price $=$		\$	0.375
							\$	0.100
Expenses	P1		P2		P3		P4	
Capital Investment	\$	24,000	\$	30,400	\$	49,600	\$	52,000
Power	\$	2,720	\$	2,720	\$	4,800	\$	5,040
Labor	\$	26,400	\$	24,000	\$	16,800	\$	14,800
Maintenance	\$	1,600	\$	1,800	\$	2,600	\$	2,000
Tax \& Insurance	\$	480	\$	608	\$	992	\$	1,040
Reject Rate		8.4\%		0.3\%		2.6\%		5.6\%
Revenue	\$	42,228	\$	44,901	\$	44,142	\$	43,152

$\begin{gathered} \text { EOY } \\ 0 \end{gathered}$	P1		P2		P3		P4	
	\$	$(24,000)$	\$	$(30,400)$	\$	$(49,600)$	\$	$(52,000)$
1	\$	11,028	\$	15,773	\$	18,950	\$	20,272
2	\$	11,028	\$	15,773	\$	18,950	\$	20,272
3	\$	11,028	\$	15,773	\$	18,950	\$	20,272
4	\$	11,028	\$	15,773	\$	18,950	\$	20,272
5	\$	11,028	\$	15,773	\$	18,950	\$	20,272
PW =	\$	17,805	\$	29,392	\$	22,235	\$	24,847
AW =	\$	4,697	\$	7,754	\$	5,866	\$	6,555
FW =	\$	28,675	\$	47,336	\$	35,810	\$	40,016

Including a scrap price of $\$ 0.10, \mathrm{P} 2$ is still the recommended alternative. The overall ranking of the alternatives remains $\mathrm{P} 2>\mathrm{P} 4>\mathrm{P} 3>\mathrm{P} 1$.
(d)

When all changes occur simultaneously, P2 is still the recommended alternative. The overall ranking of the alternatives remains $\mathrm{P} 2>\mathrm{P} 4>\mathrm{P} 3>\mathrm{P} 1$.

Investment Amount Interest Rate			\$4,000				
			5\%				
Class A:		Class B:					
		Account Value			Fee	Account Value	
	Fee		t EOY				EOY
0	5\%	\$	3,800.00	0	0	\$	4,000.00
1	0.61\%	\$	3,966.82	1	2.35\%	\$	4,106.00
2	0.61\%	\$	4,140.96	2	0.34\%	\$	4,297.34
3	0.61\%	\$	4,322.75	3	1.37\%	\$	4,453.33
4	0.61\%	\$	4,512.52	4	1.37\%	\$	4,614.99
5	0.61\%	\$	4,710.62	5	1.37\%	\$	4,782.51
6	0.61\%	\$	4,917.42	6	1.37\%	\$	4,956.12
7	0.61\%	\$	5,133.29	7	1.37\%	\$	5,136.03
8	0.61\%	\$	5,358.64	8	1.37\%	\$	5,322.46
9	0.61\%	\$	5,593.89	9	1.37\%	\$	5,515.67
10	0.61\%	\$	5,839.46	10	1.37\%	\$	5,715.89

It takes eight years for the Class A account to be preferred to the Class B account.

6-70 (a)
MARR 20\%

	SP240		HEPS9	
Capital investment	\$	33,200	\$	47,600
Annual energy expense	\$	2,165	\$	1,720
Annual maintenance: Starting year		1		4
First year	\$	1,100	\$	500
Increase per year	\$	500	\$	100
Useful life (years)		5		9
Market Value	\$	-	\$	5,000
EOY		P240		EPS9
4	\$	$(4,765)$	\$	$(2,220)$
5		$(5,265)$	\$	$(2,320)$
6				$(2,420)$
7			\$	$(2,520)$
8			\$	$(2,620)$
9			\$	2,280
AW(20\%)		$(15,187)$		$(13,621)$

MARR 20\%					
	SP240		HEPS9		
Capital investment	\$	28,519	\$	47,600	
Annual energy expense \$ 2,165 \$ 1,720 Annual maintenance:					
Starting year		1		4	
First year	\$	1,100	\$	500	
Increase per year	\$	500	\$	100	
Useful life (years)		5		9	
Market Value	\$	-	\$	5,000	
EOY	SP240		HEPS9		
0	\$	$(28,519)$	\$	$(47,600)$	
1	\$	$(3,265)$	\$	$(1,720)$	
2	\$	$(3,765)$	\$	$(1,720)$	
3	\$	$(4,265)$	\$	$(1,720)$	
4	\$	$(4,765)$	\$	$(2,220)$	
5	\$	$(5,265)$	\$	$(2,320)$	
6			\$	$(2,420)$	
7			\$	$(2,520)$	
8			\$	$(2,620)$	
9			\$	2,280	
					Difference
AW(20\%)	\$	$(13,621)$	\$	$(13,621)$	\$ -

If the capital investment for SP240 was $\$ 28,519$, we would be indifferent as to which pump was implemented.

Investment cost		A	B	C
		\$28,000	\$55,000	\$40,000
Annual expenses		\$15,000	\$13,000	\$22,000
Annual revenues		\$23,000	\$28,000	\$32,000
Market value		\$6,000	\$8,000	\$10,000
Useful life		10 years	10 years	10 years
MARR	20\%			
	A - DN	C-A	B-A	
	$(\$ 28,000)$	$(\$ 12,000)$	$(\$ 27,000)$	
	\$8,000	\$2,000	\$7,000	
	\$8,000	\$2,000	\$7,000	
	\$8,000	\$2,000	\$7,000	
	\$8,000	\$2,000	\$7,000	
	\$8,000	\$2,000	\$7,000	
	\$8,000	\$2,000	\$7,000	
	\$8,000	\$2,000	\$7,000	
	\$8,000	\$2,000	\$7,000	
	\$8,000	\$2,000	\$7,000	
	\$14,000	\$6,000	\$9,000	
IRR	26.4\%	13.1\%	22.8\%	
Good?	Yes	No	Yes	

Invest in alternative B.

Solutions to Case Study Exercises

6-72 Other factors that could be included are distribution costs to grocers, storage costs at grocery stores and projected revenues in the likely event that half gallons are sold for less than twice the price of a quart, and quarts are sold for less than twice the price of a pint. Such non-proportional pricing is common for consumer food products.

6-73 If landfill costs double, the recommendation for the assumptions given in the case study will be to "produce ice cream and yogurt in half-gallon containers."

6-74 At your grocery store you will probably discover that the profit associated with a smaller container of ice cream is greater than that of a larger container. For a fixed amount of consumption (e.g. 20,000,000 gallons per year), it is likely that packaging in pint containers is the way to go. Ned and Larry's Ice Cream Company apparently already knows this to be true.

Solutions to FE Practice Problems

6-75 The up-front savings in commission is $0.0575(\$ 23,000)=\$ 1,322.50$. Try $\mathrm{i}=12 \%$ to determine whether this equation is met: $\$ 1,322.50=\$ 4,000(\mathrm{P} / \mathrm{F}, 12 \%, 10)$. So $\$ 1,322.50$ is quite close to $\$ 1,288$ and the correct choice is (b).

Select (b)

6-76 Savings per plan $=\$ 40,000-\$ 30,000=\$ 10,000 /$ year
Let $X=$ number of planes operated per year.
$\$ 500,000=\$ 10,000(\mathrm{X})(\mathrm{P} / \mathrm{A}, 10 \%, 15)+\$ 100,000(\mathrm{P} / \mathrm{F}, 10 \%, 15)$
$X=\frac{\$ 500,000-\$ 100,000(0.2394)}{\$ 10,000(7.6061)}$
$X=6.26$ or 7 planes per year

Select (a)

$\underline{\text { Select (b) }}$ - Alternative A to maximize PW

6-78 $\mathrm{FW}_{\mathrm{C}}(12 \%)=-\$ 13,000(\mathrm{~F} / \mathrm{P}, 12 \%, 10)-\$ 500(\mathrm{~F} / \mathrm{A}, 12 \%, 10)+\$ 1,750=-\$ 47,400$
Select (c) - Alternative C to minimize costs.

6-79 $\mathrm{AW}_{\mathrm{A}}(12 \%)=-\$ 12,000(\mathrm{~A} / \mathrm{P}, 12 \%, 4)+\$ 4,000+\$ 3,000(\mathrm{~A} / \mathrm{F}, 12 \%, 4)=\$ 677$
$\mathrm{AW}_{\mathrm{B}}(12 \%)=-\$ 15,800(\mathrm{~A} / \mathrm{P}, 12 \%, 4)+\$ 5,200+\$ 3,500(\mathrm{~A} / \mathrm{F}, 12 \%, 4)=\$ 730$
$\mathrm{AW}_{\mathrm{C}}(12 \%)=-\$ 8,000(\mathrm{~A} / \mathrm{P}, 12 \%, 4)+\$ 3,000+\$ 1,500(\mathrm{~A} / \mathrm{F}, 12 \%, 4)=\$ 680$
Select (b)

6-80 IRR on $\Delta(\mathrm{B}-\mathrm{C})$:
$0=-\$ 3,000+(\$ 460-\$ 100)\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 6\right)+\$ 3,350\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 6\right)$ $\mathrm{i}^{\prime}=13.4 \%>10 \%$

Select (c) - Alternative B

6-81 $\Delta \mathrm{PW}_{\mathrm{W} \rightarrow \mathrm{X}}(15 \%)=-\$ 550+\$ 15(\mathrm{P} / \mathrm{A}, 15 \%, 8)+\$ 200(\mathrm{P} / \mathrm{F}, 15 \%, 8)$

$$
=-\$ 417.31<0
$$

Select (a) - Alternative W

6-82 Rank Order: $\mathrm{DN} \rightarrow \mathrm{D} \rightarrow \mathrm{C} \rightarrow \mathrm{A} \rightarrow \mathrm{E} \rightarrow \mathrm{B}$
Assuming the MARR $\leq 42.5 \%$, Alternative D is the base alternative. The first Comparison to be made based on the tank ordering would be $\mathrm{D} \rightarrow \mathrm{C}$.

Select (e)

$$
\begin{aligned}
\mathrm{PW}_{\mathrm{A} \rightarrow \mathrm{~B}}(15 \%)=[- & \$ 90,000-(-\$ 60,000)]+(\$ 12,000-\$ 20,000)(\mathrm{P} / \mathrm{A}, 15 \%, 10) \\
& +(\$ 15,000-\$ 10,000)(\mathrm{P} / \mathrm{F}, 15 \%, 10) \\
= & -\$ 68,914
\end{aligned}
$$

Select (a)

6-84 $\quad \mathrm{PW}_{\mathrm{A}}\left(\mathrm{i}^{\prime}\right)=0=-\$ 60,000+\$ 20,000\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, 10\right)$

$$
\mathrm{i}^{\prime}=31.5 \%
$$

Select (a)

6-85 Eliminate Alt. B and Alt. E (IRR < 15\%)

$$
\begin{aligned}
\mathrm{PW}_{\mathrm{A}}(15 \%) & =-\$ 60,000+\$ 20,000(\mathrm{P} / \mathrm{A}, 15 \%, 10)+\$ 10,000(\mathrm{P} / \mathrm{F}, 15 \%, 10) \\
& =\$ 42,848 \\
\mathrm{PW}_{\mathrm{C}}(15 \%) & =-\$ 40,000+\$ 13,000(\mathrm{P} / \mathrm{A}, 15 \%, 10)+\$ 10,000(\mathrm{P} / \mathrm{F}, 15 \%, 10) \\
& =\$ 27,716 \\
\mathrm{PW}_{\mathrm{D}}(15 \%) & =-\$ 30,000+\$ 13,000(\mathrm{P} / \mathrm{A}, 15 \%, 10)+\$ 10,000(\mathrm{P} / \mathrm{F}, 15 \%, 10) \\
& =\$ 37,716
\end{aligned}
$$

Select (b) - Alternative A to maximize PW.

6-86 $\mathrm{AW}_{\mathrm{X}}(10 \%)=-\$ 500,000(\mathrm{~A} / \mathrm{P}, 10 \%, 5)+\$ 131,900=0$
$\mathrm{AW}_{\mathrm{Y}}(10 \%)=-\$ 250,000(\mathrm{~A} / \mathrm{P}, 10 \%, 10)+\$ 40,690=\$ 15$
$\mathrm{AW}_{\mathrm{Z}}(10 \%)=-\$ 400,000(\mathrm{~A} / \mathrm{P}, 10 \%, 20)+\$ 44,050=-\$ 2,950$

Select (b)

Solutions to Chapter 7 Problems

7-1 The actual magnitude of depreciation cannot be determined until the asset is retired from service (it is always paid or committed in advance). Also, throughout the life of the asset we can only estimate what the annual or periodic depreciation cost is. Another difference is that relatively little can be done to control depreciation cost once an asset has been acquired, except through maintenance expenditures. Usually much can be done to control the ordinary out-of-pocket expenses such as labor and material.

7-2 To be considered depreciable, a property must be:

1) used in a business to produce income;
2) have a determinable life of greater than one year; and
3) lose value through wearing out, becoming obsolete, etc.

7-3 Personal property is generally any property that can be moved from one location to another, such as equipment or furniture. Real property is land and anything erected or growing on it.

7-4 The cost basis is usually the purchase price of the property, plus any sales taxes, transportation costs, and the cost of installation or improving the property to make it fit for intended use. Salvage value is not considered, nor is the cost of the land the property is on.

7-5 Under MACRS, the ADS might be preferred to the GDS in several cases. If profits are expected to be relatively low in the near future, but were going to increase to a fairly constant level after that, the ADS would be a way to "save up" depreciation for when it is needed later. In essence, income taxes would be deferred until a later time when the firm is financially more able to pay them.
(a) $\mathrm{d}_{2}=(\$ 120,000-\$ 10,000) / 10=\$ \underline{11,000}$
(b) $\mathrm{BV}_{1}=\$ 120,000-\$ 11,000=\$ \underline{109,000}$
(c) $\mathrm{BV}_{10}=\$ 120,000-\$ 11,000(10)=\$ \underline{10,000}$
(a) $\mathrm{d}_{\mathrm{k}}=\mathrm{d}_{3}=(\$ 190,000-\$ 40,000) / 5=\$ 30,000$
$\mathrm{BV}_{3}=\$ 190,000-(3)(\$ 30,000)=\$ 100,000$
(b) $\mathrm{BV}_{2}=\$ 190,000-(2)(\$ 30,000)=\$ 130,000$ $\mathrm{R}=2 / 3$ for the double declining balance method $\mathrm{BV}_{4}=\$ 130,000(1-2 / 3)^{2}=\$ 14,444.44$

7-8 \quad Basis $=\$ 60,000$ and $\mathrm{SV}_{\mathrm{N}}=\$ 12,000$. Find d_{3} and BV_{5}.
(a) $\mathrm{d}_{3}=\mathrm{d}_{\mathrm{k}}=\frac{\mathrm{B}-\mathrm{SV}_{\mathrm{N}}}{\mathrm{N}}=\frac{\$ 60,000-\$ 12,000}{14}=\$ \underline{3,428.57}$

$$
B V_{5}=\$ 60,000-(5)(\$ 3,428.57)=\$ \underline{42,857.15}
$$

(b)

Year, k	(1) Beginning of Year BV ${ }^{\text {a }}$	(2) (3) Depreciation Method		(4)
		200\% Declining Balance Method ${ }^{\text {b }}$	Straight-Line Method ${ }^{\text {c }}$	Depreciation Amount Selected ${ }^{\text {d }}$
1	\$ 60,000.00	\$8,571.43	\$3,428.57	\$8,571.43
2	51,428.57	7,346.94	3,032.97	7,346.94
3	44,081.63	6,297.38	2,673.47	6,297.38
4	37,784.25	5,397.75	2,344.02	5,397.75
5	32,386.50	4,626.64	2,038.65	4,626.64

${ }^{\text {a }}$ Column 1 for year k - column 4 for year $\mathrm{k}=$ the entry in column 1 for year $\mathrm{k}+1$
${ }^{\text {b }}$ Column $1 \times(2 / 14)$
${ }^{c}$ Column 1 minus estimated SV_{N} divided by remaining years from the beginning of the current year through the fourteenth year.
${ }^{\mathrm{d}}$ Select the larger amount of column 2 or column 3.
From the above table,

$$
\mathrm{d}_{3}=\$ \underline{6,297.38} \text { and } \mathrm{BV}_{5}=\$ 32,386.50-\$ 4,626.64=\$ \underline{27,759.86}
$$

(c) From Table 7-2, the GDS recovery period is 7 years.
$\mathrm{d}_{3}=\$ 60,000(0.1749)=\$ \underline{10,494}$
$\mathrm{BV}_{5}=\$ 60,000-\$ 60,000(0.1429+0.2449+0.1749+0.1249+0.0893)$
$=\$ \underline{13,386}$
(d) From Table 7-2, the ADS recovery period is 14 years.
$\mathrm{d}_{1}=\mathrm{d}_{15}=(0.5)\left(\frac{\$ 60,000}{14}\right)=\$ 2,142.86$
$\mathrm{d}_{2}=\mathrm{d}_{3}=\cdots=\mathrm{d}_{14}=\left(\frac{\$ 60,000}{14}\right)=\$ \underline{4,285.71}$
$\mathrm{BV}_{5}=\$ 60,000-[\$ 2,142.86+4(\$ 4,285.71)]=\$ \underline{40,714.30}$

$$
\mathrm{d}_{2}=\frac{2}{7}\left[\left(\frac{5}{7}\right)(\$ 35,000)\right]=\$ \underline{7,142.86}
$$

(b) GDS recovery period $=5$ years (from Table 7-4)

$$
\mathrm{d}_{2}=0.32(\$ 35,000)=\$ \underline{11,200}
$$

(c) Assuming the ADS recovery period is 7 years (that is, equal to the class life):

$$
\mathrm{d}_{2}=\frac{1}{7}(\$ 35,000)=\underline{\$ 5,000}
$$

7-10 From Table 7-2, the GDS recovery period is seven years. The MACRS depreciation deductions from Table 7-3 are the following: $\$ 100,000(0.1429)=\$ 14,290$ in 2007; $\$ 24,490$ in 2008; $\$ 17,490$ in 2009 ; $\$ 12,490$ in 2010; $\$ 8,930$ in 2011; $\$ 8,920$ in 2012; $\$ 8,930$ in 2013 ; and $\$ 4,460$ in 2014 . Notice that salvage value is ignored by MACRS.

7-11 From Table 7-2, the GDS recovery period is 3 years.
(a) Basis $=\$ 195,000$

$$
\mathrm{d}_{3}^{*}=\$ 195,000(0.3333+0.4445+0.1481)=\$ \underline{180,550.50}
$$

(b) $\mathrm{d}_{4}=0.0741(\$ 195,000)=\$ \underline{14,449.50}$
(c) $\mathrm{BV}_{2}=\$ 195,000(1-0.3333-0.4445)=\$ 43,329$

7-12 A general purpose truck has a GDS recovery period of five years, so MACRS depreciation in year five is $\$ 100,000(0.1152)=\$ 11,520$. Straight-line depreciation in year five would be $(\$ 100,000-\$ 8,000) / 8=$ $\$ 11,500$. The difference in depriciation amounts is $\$ 20$.

7-13 (a) From Table 7-2, the GDS recovery period is 5 years and the ADS recovery period is 6 years.
GDS depreciation deductions:

$$
\begin{array}{ll}
\mathrm{d}_{1}=0.2000(\$ 300,000)=\$ 60,000 & \mathrm{~d}_{4}=0.1152(\$ 300,000)=\$ 34,560 \\
\mathrm{~d}_{2}=0.3200(\$ 300,000)=\$ 96,000 & \mathrm{~d}_{5}=0.1152(\$ 300,000)=\$ 34,560 \\
\mathrm{~d}_{3}=0.1920(\$ 300,000)=\$ 57,600 & \mathrm{~d}_{6}=0.0576(\$ 300,000)=\$ 17,280
\end{array}
$$

ADS depreciation deductions:

$$
\begin{aligned}
& d_{1}=d_{7}=(0.5)\left(\frac{\$ 300,000}{6}\right)=\$ 25,000 \\
& d_{2}=d_{3}=\cdots=d_{6}=\frac{\$ 300,000}{6}=\$ 50,000
\end{aligned}
$$

(b) Assume calculation of PW at time of purchase and the depreciation deduction is taken at the end of the year.

$$
\begin{aligned}
\mathrm{PW}_{\mathrm{GDS}}= & \$ 60,000(\mathrm{P} / \mathrm{F}, 12 \%, 1)+\$ 96,000(\mathrm{P} / \mathrm{F}, 12 \%, 2)+\$ 57,600(\mathrm{P} / \mathrm{F}, 12 \%, 3) \\
& \quad+\$ 34,560(\mathrm{P} / \mathrm{F}, 12 \%, 4)+\$ 34,560(\mathrm{P} / \mathrm{F}, 12 \%, 5)+\$ 17,280(\mathrm{P} / \mathrm{F}, 12 \%, 6) \\
= & \$ \underline{221,431.15} \\
\mathrm{PW}_{\mathrm{ADS}}= & \$ 25,000(\mathrm{P} / \mathrm{F}, 12 \%, 1)+\$ 50,000(\mathrm{P} / \mathrm{A}, 12 \%, 5)(\mathrm{P} / \mathrm{F}, 12 \%, 1) \\
& +\$ 25,000(\mathrm{P} / \mathrm{F}, 12 \%, 7)
\end{aligned}
$$

Difference $=\mathrm{PW}_{\Delta}=\$ 221,431.15-\$ 194,566.30=\$ \underline{26,864.85}$

7-14 From Table 7-4, the GDS recovery period is 5 years.
Cost basis $=\$ 99,500+\$ 15,000$ trade in $=\$ 114,500$
(a) $\mathrm{d}_{3}=0.192(\$ 114,500)=\$ \underline{21,984}$
(b) $\mathrm{BV}_{4}=\$ 114,500-\$ 114,500(0.2+0.32+0.192+0.1152)=\$ \underline{19,786}$
(c) $\mathrm{R}=2 / 9.5=0.2105$

$$
\mathrm{d}_{4}^{*}=\$ 114,500\left[1-(1-0.2105)^{4}\right]=\$ \underline{70,015}
$$

7-15 (a) Cost basis $=\$ 1,500,000+\$ 35,000+\$ 50,000=\$ 1,585,000$
(b) From Table 7-2, the class life is 10 years.
(c) The GDS recovery period is seven years. Thus, the MACRS depreciation in year five is $\$ 1,585,000(0.0893)=\$ 141,540.50$.
(d) Remember that only half the normal depreciation amount can be claimed in the year an asset is disposed of. $\mathrm{BV}_{6}=(1-0.8215)(\$ 1,585,000)=\$ 282,922.50$. The depreciation recaptured is MV_{6} $-\mathrm{BV}_{6}=\$ 360,000-\$ 282,922.50=\$ 77,077.50$.

7-16 Depreciation per unit of production $=\frac{\$ 25,000-\$ 5,000}{100,000 \text { units }}=\$ 0.20 / \mathrm{unit}$
$\mathrm{d}_{4}=(10,000$ units $)(\$ 0.2 /$ unit $)=\$ 2,000$
$\mathrm{BV}_{4}=\$ 25,000-(60,000$ units $+10,000$ units $)(\$ 0.20 /$ unit $)=\$ \underline{11,000}$

7-17 Total units of production over the five year life $=100,000$ cubic yards

$$
\begin{aligned}
\mathrm{d}_{3}= & (36,000 / 100,000)(\$ 60,000-\$ 10,000)=\$ 18,000 \\
\mathrm{BV}_{2} & =\$ 60,000-\left(\mathrm{d}_{1}+\mathrm{d}_{2}\right)=\$ 60,000-[(0.16)(\$ 50,000)+(0.24)(\$ 50,000)] \\
& =\$ 60,000-(\$ 8,000+\$ 12,000) \\
& =\$ 40,000
\end{aligned}
$$

$\mathrm{R}-\mathrm{E}-\mathrm{d}=\$ 9,800,000$
Federal taxes owed $($ from Table 7-5 $)=\$ 113,000+0.34[\$ 9,800,000-\$ 335,000]=\$ 3,332,000$

7-19 $\quad \mathrm{t}=$ state + local + federal $(1-$ state - local $)$
$=$ federal $+(1-$ federal $)($ state $)+(1-$ federal $)($ local $)$
$=0.35+0.65(0.06)+0.65(0.01)$
$=0.3955$ (round it to 40%)

7-20 $t=0.06+0.34(1-0.06)=0.3796$, or $\underline{37.96} \%$; $\mathrm{t}=0.12+0.34(1-0.12)=0.4192$, or $\underline{41.92} \%$

7-21 $t=0.5+(1-0.5)(0.39)=0.4205($ effective income tax rate $)$
After-tax MARR $=0.18(1-0.4205)=0.1043(10.43 \%)$

7-22 $\quad \mathrm{BV}_{3}=\$ 125,000-(3)(\$ 125,000 / 5)=\$ 50,000$
(a) Gain on disposal $=\$ 70,000-\$ 50,000=\$ 20,000$

Tax liability on gain $=0.4(\$ 20,000)=\$ 8,000$
Net cash inflow $=\$ 70,000-\$ 8,000=\$ 62,000$
(b) Loss on disposal $=\$ 50,000-\$ 20,000=\$ 30,000$

Tax credit from loss $=0.4(\$ 30,000)=\$ 12,000$
Net cash inflow $=\$ 30,000+\$ 12,000=\$ 42,000$

7-23 (a) Before-tax $\mathrm{MARR}=\frac{\text { After }-\operatorname{tax} \mathrm{MARR}}{1-\mathrm{t}}=\frac{0.15}{1-0.40}=0.25$, or 25%
(b) Year Depreciation

1	$\$ 12,861$
2	22,041
3	15,741
4	11,241

Year	Depreciation
5	$\$ 8,037$
6	8,028
7	8,037
8	4,014

(c) $\mathrm{BV}_{8}=0$, therefore $\mathrm{TI}_{8}=\$ 10,000$ (Property having a 7 -year recovery period is fully depreciated after $\mathrm{N}+1=8$ years.)
(d)

EOY	BTCF	$\begin{gathered} \stackrel{\text { BB }}{ }_{\text {Depr }} \end{gathered}$	$\begin{gathered} (\mathrm{C})=(\mathrm{A})-(\mathrm{B}) \\ \mathrm{TI} \end{gathered}$	$\begin{aligned} & \hline(\mathrm{D})=-\mathrm{t}(\mathrm{C}) \\ & \mathrm{T}(40 \%) \end{aligned}$	$\begin{gathered} (\mathrm{E})=(\mathrm{A})+(\mathrm{D}) \\ \text { ATCF } \end{gathered}$	PW (15\%)
0	-\$90,000	---	---	---	-\$90,000	-\$90,000
1	15,000	\$12,861	\$2,139	-\$856	14,144	12,299
2	15,000	22,041	-7,041	2,816	17,816	13,472
3	15,000	15,741	-741	296	15,296	10,058
4	15,000	11,241	3,759	-1,504	13,496	7,717
5	15,000	8,037	6,963	-2,785	12,215	6,073
6	15,000	8,028	6,972	-2,789	12,211	5,279
7	15,000	8,037	6,963	-2,785	12,215	4,592
8	15,000	4,014	10,986	-4,394	10,606	3,467
8	10,000	---	10,000	-4,000	6,000	1,961
					PW $(15 \%)=$	-\$25,082

(e) No, reject the project because $\mathrm{PW}(\mathrm{ATCF})<0$ at $\mathrm{MARR}=15 \%$.

7-24

 Machine 1:| Year | BTCF | d | TI | $\mathrm{T}(40 \%)$ | ATCF |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 0 | $-\$ 60,000$ | | | | $-\$ 60,000$ |
| 1 | $-\$ 16,000$ | $\$ 12,000$ | $-\$ 28,000$ | $\$ 11,200$ | $-\$ 4,800$ |
| 2 | $-\$ 16,000$ | $\$ 19,200$ | $-\$ 35,200$ | $\$ 14,080$ | $-\$ 1,920$ |
| 3 | $-\$ 16,000$ | $\$ 11,520$ | $-\$ 27,520$ | $\$ 11,008$ | $-\$ 4,992$ |
| 4 | $-\$ 16,000$ | $\$ 6,912$ | $-\$ 22,912$ | $\$ 9,165$ | $-\$ 6,835$ |
| 5 a | $-\$ 16,000$ | $\$ 3,456$ | $-\$ 19,456$ | $\$ 7,782$ | $-\$ 8,218$ |
| 5 b | $\$ 0$ | | $-\$ 6,912$ | $\$ 2,765$ | $\$ 2,765$ |

$\mathrm{AW}_{\mathrm{M} 1}(12 \%)=-\$ 21,307$
Machine 2:

Year	BTCF	d	TI	$\mathrm{T}(40 \%)$	ATCF
0	$-\$ 66,000$				$-\$ 66,000$
1	$-\$ 18,000$	$\$ 13,200$	$-\$ 31,200$	$\$ 12,480$	$-\$ 5,520$
2	$-\$ 18,000$	$\$ 21,120$	$-\$ 39,120$	$\$ 15,648$	$-\$ 2,352$
3	$-\$ 18,000$	$\$ 12,672$	$-\$ 30,672$	$\$ 12,269$	$-\$ 5,731$
4	$-\$ 18,000$	$\$ 7,603$	$-\$ 25,603$	$\$ 10,241$	$-\$ 7,759$
5	$-\$ 18,000$	$\$ 7,603$	$-\$ 25,603$	$\$ 10,241$	$-\$ 7,759$
6	$-\$ 18,000$	$\$ 3,802$	$-\$ 21,802$	$\$ 8,721$	$-\$ 9,279$
7	$-\$ 18,000$		$-\$ 18,000$	$\$ 7,200$	$-\$ 10,800$
8 a	$-\$ 18,000$		$-\$ 18,000$	$\$ 7,200$	$-\$ 10,800$
8 b	$\$ 0$		$\$ 0$	$\$ 0$	$\$ 0$

$\mathrm{AW}_{\mathrm{M} 2}(12 \%)=-\$ 20,163$
Therefore, select M2.

7-25

	(A)	(B)	$(\mathrm{C})=(\mathrm{A})-$ (B)	$(\mathrm{D})=-\mathrm{t}(\mathrm{C})$	$(\mathrm{E})=(\mathrm{A})+(\mathrm{D})$
EOY	BTCF	Depr.	TI	T (40%)	ATCF
0	$-\$ 15,000$	--	--	--	$-\$ 15,000$
1	7,000	$\$ 3,000$	$\$ 4,000$	$-\$ 1,600$	5,400
2 a	7,000	2,400	4,600	$-1,840$	5,160
2 b	10,000		400	-160	9,840

$\mathrm{d}_{2}=\$ 15,000(0.32)(0.5)=\$ 2,400$
$\mathrm{BV}_{2}=\$ 15,000-\$ 3,000-\$ 2,400=\$ 9,600$
$\mathrm{MV}_{2}=\$ 15,000-\$ 2,500(2)=\$ 10,000$
$\operatorname{PW}(15 \%)=-\$ 15,000+\$ 5,400(\mathrm{P} / \mathrm{F}, 15 \%, 1)+(\$ 5,160+\$ 9,840)(\mathrm{P} / \mathrm{F}, 15 \%, 2)=\$ 1,037.81$
$\operatorname{AW}(15 \%)=\$ 1,037.81(\mathrm{~A} / \mathrm{P}, 15 \%, 2)=\$ 638.36 \geq 0$, so the investment is a profitable one.

7-26 (a)

EOY	BTCF	d	TI	T(40\%)	ATCF
0	$-\$ 200,000$				$-\$ 200,000$
1	36,000	$\$ 20,000$	$\$ 16,000$	$-\$ 6,400$	29,600

The IRR is found as follows: $0=-\$ 200,000+\$ 29,000\left(P / A, i^{\prime}, 10\right)$. Solving yields $i^{\prime}=7.85 \%$. Because this after-tax IRR is less than 8%, the robot should not be acquired.
(b)

EOY	BTCF	d	TI	T(40\%)	ATCF
0	$-200,000$				$-200,000$
1	36,000	28,580	7,420	-2968	33,032
2	36,000	48,980	$-12,980$	5192	41,192
3	36,000	34,980	1,020	-408	35,592
4	36,000	24,980	11,020	-4408	31,592
5	36,000	17,860	18,140	-7256	28,744
6	36,000	17,840	18,160	-7264	28,736
7	36,000	17,860	18,140	-7256	28,744
8	36,000	8,920	27,080	-10832	25,168
9	36,000		36,000	-14400	21,600
10	36,000		36,000	-14400	21,600
				PW (8%)	$\$ 6,226.76$
				IRR	8.76%

7-27 The sales revenue is $\$ 40$ per ticket x 60,000 tickets per year $=\$ 2,400,000$ per year and the investment in working capital is $(1 / 12)(\$ 2,400,000)=\$ 200,000$. The the total investment is $\$ 800,000=\$ 200,000=$ $\$ 1,000,000$ and depreciation is $\$ 800,000 / 4=\$ 200,000$ per year. Total annual operating costs are $\$ 24$ $(60,000$ tickets $)+\$ 400,000=\$ 1,840,000$.

EOY	(A) BTCF	(B)	$\begin{gathered} \hline(\mathrm{C})=(\mathrm{A})- \\ \text { (B) } \\ \text { TI } \\ \hline \end{gathered}$	(D) $=-\mathrm{t}(\mathrm{C})$ $\mathrm{T}(50 \%)$	$(\mathrm{E})=(\mathrm{A})+(\mathrm{D})$ ATCF
0	-\$1,000,000	---	---	---	-
					\$1,000,000
1	\$560,000	\$200,000	\$360,000	-\$122,400	\$437,600
2	\$560,000	\$200,000	\$360,000	-\$122,400	\$437,600
3	\$560,000	\$200,000	\$360,000	-\$122,400	\$437,600
4a	\$560,000	\$200,000	\$360,000	-\$122,400	\$437,600
4b	\$200,000	--	--	--	\$200,000

$$
\begin{aligned}
\mathrm{PW}(15 \%) & =-\$ 1,000,000+\$ 437,600(\mathrm{P} / \mathrm{A}, 15 \%, 4)+\$ 200,000(\mathrm{P} / \mathrm{F}, 15 \%, 4) \\
& =\$ 363,690 \gg 0 ; \text { the investment should be made. }
\end{aligned}
$$

7-28

EOY	BTCF	d	TI	T (35\%)	ATCF
0	$-\$ 1,350,000$				$-\$ 1,350,000$
1	780,000	$\$ 270,000$	$\$ 510,000$	$-\$ 178,500$	601,500
2	780,000	432,000	348,000	$-121,800$	658,200
3	780,000	259,200	520,800	$-182,280$	597,720
4 a	780,000	77,760	702,240	$-245,784$	534,216
4 b	63,750	---	$-247,290$	86,552	150,302

$\operatorname{PW}(20 \%)=\$ 284,347$
$\operatorname{IRR}=30.6 \%$
Recommend the investment.

EOY	BTCF	d	TI	T	ATCF
0	$-\$ 200,000$				$-\$ 200,000$
1	$-65,000$	$\$ 40,000$	$-\$ 105,000$	$\$ 42,000$	$-23,000$
2	$-65,000$	64,000	$-129,000$	51,600	$-13,400$
3 a	$-65,000$	19,200	$-84,200$	33,680	$-31,320$
3 b	70,000		$-6,800$	2,720	72,720

$$
\begin{aligned}
\operatorname{EUAC}(12 \%)= & {[\$ 200,000+\$ 23,000(\mathrm{P} / \mathrm{F}, 12 \%, 1)+\$ 13,400(\mathrm{P} / \mathrm{F}, 12 \%, 2)} \\
& +(\$ 31,320-\$ 72,720)(\mathrm{P} / \mathrm{F}, 12 \%, 3)](\mathrm{A} / \mathrm{P}, 12 \%, 3) \\
= & \$ 83,989
\end{aligned}
$$

7-30

EOY	$\begin{gathered} \hline \text { (A) } \\ \text { BTCF } \end{gathered}$	(B) Depr*	$\begin{gathered} \hline(\mathrm{C})=(\mathrm{A})-(\mathrm{B}) \\ \mathrm{TI} \end{gathered}$	$\begin{gathered} \hline(\mathrm{D})=-\mathrm{t}(\mathrm{C}) \\ \mathrm{T}(50 \%) \end{gathered}$	$\begin{gathered} (\mathrm{E})=(\mathrm{A})+(\mathrm{D}) \\ \text { ATCF } \end{gathered}$
0	-\$160,000	---	---	---	-\$160,000
1	\$35,000	\$26,000	\$9,000	-\$4,500	\$30,500
2	\$35,000	\$41,600	-\$6,600	\$3,300	\$38,300
3	\$35,000	\$24,960	\$10,040	-\$5,020	\$29,980
4	\$35,000	\$14,976	\$20,024	-\$10,012	\$24,988
5	\$35,000	\$7,488	\$27,512	-\$13,756	\$21,244
5	\$30,000**	---	$0-\$ 14,976^{* *}$	\$7,488	\$37,488

* $\mathrm{d}=\$ 130,000 \cdot \mathrm{r}_{\mathrm{k}}(\mathrm{p})$ (see Table 7-3)
**Assume land recovered at original cost of $\$ 30,000$
***MV - BV; Market Value of equipment (purchased) is negligible at the end of year 5.
Assume $1 / 2$ year on year 5 depreciation (recapture $=\$ 14,976$)

$$
\begin{aligned}
\mathrm{PW}(5 \%)= & -\$ 160,000+\$ 30,500(\mathrm{P} / \mathrm{F}, 5 \%, 1)+\$ 38,300(\mathrm{P} / \mathrm{F}, 5 \%, 2)+\$ 29,980(\mathrm{P} / \mathrm{F}, 5 \%, 3) \\
& +\$ 24,988(\mathrm{P} / \mathrm{F} 5 \%, 4)+(\$ 21,244+\$ 37,488)(\mathrm{P} / \mathrm{F}, 5 \%, 5) \\
= & -\$ 160,000+\$ 30,500(0.9524)+\$ 38,300(0.9070)+\$ 29,980(0.8638) \\
& +\$ 24,988(0.8227)+\$ 58,732(0.7835) \\
= & -\$ 3,742.83
\end{aligned}
$$

$\left.\underline{\text { PW(MARR }}{ }_{A T}\right)<0$, not a profitable investment

7-31

EOY	BTCF	Depreciation	Taxable Income	Income Tax	ATCF
0	$-\$ \mathrm{P}$	---	---	---	$-\$ \mathrm{P}$
$1-5$	$\$ 15,000$	$\$ \mathrm{P} / 5$	$\$ 15,000-\$ \mathrm{P} / 5$	$-\$ 6,000+0.08 \mathrm{P}$	$\$ 9,000+$
$\$ 0.08 \mathrm{P}$					

$$
\begin{aligned}
& \mathrm{P} \leq \$ 9,000(\mathrm{P} / \mathrm{A}, 12 \%, 5)+0.08 \mathrm{P}(\mathrm{P} / \mathrm{A}, 12 \%, 5) \\
& \mathrm{P} \leq \$ 32,443.20+0.2884 \mathrm{P} \\
& \mathrm{P} \leq \$ 45,592 \text { for the proposed system. }
\end{aligned}
$$

7-32 $\mathrm{X}=$ annual production level

EOY	BTCF	d	Taxable Income	Income Tax	ATCF
0	$-\$ 500,000$	---	---	---	$-\$ 500,000$
$1-5$	$-35,000+42.5 \mathrm{X}$	$\$ 100,000$	$-\$ 135,000+\$ 42.5 \mathrm{X}$	$\$ 54,000-\$ 17 \mathrm{X}$	$19,000+25.5 \mathrm{X}$

$$
\mathrm{AW}=0=-\$ 500,000(\mathrm{~A} / \mathrm{P}, 10 \%, 5)+\$ 19,000+\$ 25.5 \mathrm{X}
$$

$X=4,427.40$ or 4,428 units per year must be produced (and sold) for this project to be economically viable.

EOY	$\begin{gathered} \text { (A) } \\ \text { BTCF } \end{gathered}$	(B) Depr	$\begin{gathered} \hline(\mathrm{C})=(\mathrm{A})-(\mathrm{B}) \\ \mathrm{TI} \\ \hline \end{gathered}$	$\begin{gathered} \hline(\mathrm{D})=-\mathrm{t}(\mathrm{C}) \\ \mathrm{T}(40 \%) \\ \hline \end{gathered}$	$(\mathrm{E})=(\mathrm{A})+(\mathrm{D})$ ATCF
0	-\$50,000	---	---	---	-\$50,000
1	14,000	\$10,000	\$4,000	-\$1,600	12,400
2	14,000	10,000	4,000	-1,600	12,400
3	14,000	10,000	4,000	-1,600	12,400
4	14,000	10,000	4,000	-1,600	12,400
5	14,000	10,000	4,000	-1,600	12,400
6	14,000	0	14,000	-5,600	8,400
-	14,000	0	14,000	-5,600	8,400
-	14,000	0	14,000	-5,600	8,400
N	14,000	0	14,000	-5,600	8,400

Let $\mathrm{X}=\mathrm{N}-5$ years. Set $\mathrm{PW}(10 \%)=0$ and solve for X :

$$
\begin{aligned}
& 0=-\$ 50,000+\$ 12,400(\mathrm{P} / \mathrm{A}, 10 \%, 5)+\$ 8,400(\mathrm{P} / \mathrm{A}, 10 \%, \mathrm{X})(\mathrm{P} / \mathrm{F}, 10 \%, 5) \\
& (\mathrm{P} / \mathrm{A}, 10 \%, \mathrm{X})=0.5741
\end{aligned}
$$

$X \approx 1$ year. Thus, $N=5+X=\underline{6}$ years

EOY	BTCF	d	TI	T	ATCF
0	$-\$ 12,000$				$-\$ 12,000$
1	4,000	4,000	$\$ 0$	$\$ 0$	4,000
2	4,000	5,334	$-1,334$	534	4,534
3	4,000	1,777	2,223	-889	3,111
4	4,000	889	3,111	$-1,244$	2,756
4	3,000	---	3,000	$-1,200$	1,800
				A: PW	$\$$

EOY	BTCF	d	TI	T	ATCF
0	$-\$ 15,800$				$-\$ 15,800$
1	5,200	$\$ 5,266$	$-\$ 66$	$\$ 26$	5,226
2	5,200	7,023	$-1,823$	729	5,929
3	5,200	2,340	2,860	$-1,144$	4,056
4	5,200	1,171	4,029	$-1,612$	3,588
4	3,500	---	3,500	$-1,400$	
				B: PW	$\$$

EOY	BTCF	d	TI	T	ATCF
0	$-\$ 8,000$				$-\$ 8,000$
1	3,000	$\$ 2,666$	$\$ 334$	$-\$ 133$	2,867
2	3,000	3,556	-556	222	3,222
3	3,000	1,185	1,815	-726	2,274
4	3,000	593	2,407	-963	2,037
4	1,500	---	1,500	-600	900
				PW	$\$$

Choose alternative B to maximize after-tax PW. Alternative B was also chosen when a before-tax analysis was done in Problem 6-79.
7.35 $\mathrm{t}=\mathrm{s}+\mathrm{f}(1-\mathrm{s})=0.04+0.34(1-0.04)=0.3664$, or 36.64%

EOY	(A) Investment	(B) Revenue s	(C) Expenses	$(\mathrm{D})=(\mathrm{A})+(\mathrm{B})+(\mathrm{C})$ BTCF	(E) $\mathrm{Depr}^{\mathrm{a}}$
0	$-\$ 1,000,000$	---	---	$-\$ 1,000,000$	---
1		X	$\$ 636,000$	$\mathrm{X}-636,000$	$\$ 139,986$
2		X	674,160	$\mathrm{X}-674,160$	186,690
3		X	714,610	$\mathrm{X}-714,610$	$31,101^{\mathrm{b}}$
3	$280,000^{\mathrm{c}}$	---	---	280,000	---
3	$580,000^{\text {d }}$	---	---	580,000	---

${ }^{\text {a }}$ Cost basis for depreciation calculations $=\$ 420,000$
${ }^{\mathrm{b}}$ Only a half-year of depreciation is allowable
${ }^{c}$ Market value of depreciable investment
${ }^{\mathrm{d}}$ Assumed value of non-depreciable investment (land and working capital)

	$(\mathrm{F})=(\mathrm{D})-(\mathrm{E})$	$(\mathrm{G})=-\mathrm{t}(\mathrm{F})$	$(\mathrm{H})=(\mathrm{D})+(\mathrm{G})$
EOY	TI	$\mathrm{T}(36.64 \%)$	ATCF
0	---	0	$-\$ 1,000,000$
1	$\mathrm{X}-775,986$	$-0.3664 \mathrm{X}+284,321$	$0.6336 \mathrm{X}-351,679$
2	$\mathrm{X}-860,850$	$-0.3664 \mathrm{X}+315,415$	$0.6336 \mathrm{X}-358,745$
3	$\mathrm{X}-745,711$	$-0.3664 \mathrm{X}+273,229$	$0.6336 \mathrm{X}-441,381$
3	$217,777^{\mathrm{e}}$	$-79,793$	200,207
3	---	---	580,000

${ }^{\mathrm{e}} \mathrm{MV}-\mathrm{BV}_{3}=\$ 280,000-\$ 62,223=\$ 217,777$
$\operatorname{PW}(10 \%)=0=-\$ 1,000,000+(0.6336 \mathrm{X})(\mathrm{P} / \mathrm{A}, 10 \%, 3)-\$ 351,679(\mathrm{P} / \mathrm{F}, 10 \%, 1)$
$-\$ 358,745(\mathrm{P} / \mathrm{F}, 10 \%, 2)-\$ 441,381(\mathrm{P} / \mathrm{F}, 10 \%, 3)+\$ 780,207(\mathrm{P} / \mathrm{F}, 10 \%, 3)$
$X=\frac{\$ 1,361,618}{(2.4869)(0.6336)}=\$ 864,135 /$ year

7-36 Assume repeatability.
Alternative A: Plastic
$\mathrm{d}=(\$ 5000-\$ 1000) / 5=\$ 800$

EOY	(A) BTCF	(B) Depr.	$\begin{gathered} \hline(\mathrm{C})=(\mathrm{A})- \\ (\mathrm{B}) \\ \text { TI } \end{gathered}$	$\begin{gathered} \hline(\mathrm{D})=-\mathrm{t}(\mathrm{C}) \\ \mathrm{T}(40 \%) \\ \hline \end{gathered}$	(E) $=(\mathrm{A})+$ (D) ATCF
0	-\$5,000	---	---	---	- \$5,000
1-5	-\$300	\$800	-\$1,100	\$440	\$140
5	0	---	-\$1,000	\$400	\$400

$\mathrm{AW}_{\mathrm{A}}(12 \%)=-\$ 5,000(\mathrm{~A} / \mathrm{P}, 12 \%, 5)+\$ 140+\$ 400(\mathrm{~A} / \mathrm{F}, 12 \%, 5)=-\$ 1,184$
Alternative B: Copper
$\mathrm{d}=(\$ 10,000-\$ 5,000) / 10=\$ 500$

	(A)	(B)	$(\mathrm{C})=(\mathrm{A})-$ (B)	$(\mathrm{D})=-\mathrm{t}(\mathrm{C})$	$(\mathrm{E})=(\mathrm{A})+(\mathrm{D})$
EOY	BTCF	Depr.	TI	T (40%)	ATCF
0	$-\$ 10,000$	--	--	---	$-\$ 10,000$
$1-10$	$-\$ 100$	$\$ 500$	$-\$ 600$	$\$ 240$	$\$ 140$
10	0	---	$-\$ 5,000$	$\$ 2,000$	$\$ 2,000$

$\mathrm{AW}_{\mathrm{B}}(12 \%)=-\$ 10,000(\mathrm{~A} / \mathrm{P}, 12 \%, 10)+\$ 140+\$ 2,000(\mathrm{~A} / \mathrm{F}, 12 \%, 5)=-\$ 1,516$
Select Alternative A: Plastic.

EOY	BTCF	d	TI	T	ATCF
0	$-\$ 1,140,000$				$-\$ 1,140,000.0$
1	$-115,500$	$\$ 162,906$	$-\$ 278,406$	$\$ 111,362.4$	$-4,137.6$
2	$-115,500$	279,186	$-394,686$	$157,874.4$	$42,374.4$
3	$-115,500$	199,386	$-314,886$	$125,954.4$	$10,454.4$
4	$-115,500$	142,386	$-257,886$	$103,154.4$	$-12,345.6$
5	$-115,500$	101,802	$-217,302$	$86,920.8$	$-28,579.2$
6	$-115,500$	101,688	$-217,188$	$86,875.2$	$-28,624.8$
7	$-115,500$	101,802	$-217,302$	$86,920.8$	$-28,579.2$
8	$-115,500$	50,844	$-166,344$	$66,537.6$	$-48,962.4$
9	$-115,500$		$-115,500$	$46,200.0$	$-69,300.0$
10	$-115,500$		$-115,500$	$46,200.0$	$-69,300.0$
EOY					
0	$-\$ 992,500$				
1	$-73,200$	$\$ 141,828$	$-\$ 215,028$	$\$ 86,011.3$	$-\$ 955,661$
2	$-73,200$	243,063	$-316,263$	$126,505.3$	$12,811.3$
3	$-73,200$	173,588	$-246,788$	$98,715.3$	$25,305.3$
4	$-73,200$	123,963	$-197,163$	$78,865.3$	$5,665.3$
5	$-73,200$	88,630	$-161,830$	$64,732.1$	$-8,467.9$
6	$-73,200$	88,531	$-161,731$	$64,692.4$	$-8,507.6$
7	$-73,200$	88,630	$-161,830$	$64,732.1$	$-8,467.9$
8	$-73,200$	44,266	$-117,466$	$46,986.2$	$-26,213.8$
9	$-73,200$		$-73,200$	$29,280.0$	$-43,920.0$
10	$-73,200$		$-73,200$	$29,280.0$	$-43,920.0$

Select new ESP to maximize after-tax present worth.

7-38 Assume repeatability.
Purchase Option: From Table 7-2, the ADS recovery period is 6 years (asset class 36.0). Applying the half year convention, depreciation deductions can be claimed over a 7 -year period.
$\mathrm{d}_{1}=\mathrm{d}_{7}=(0.5)(\$ 30,000 / 6)=\$ 2,500$
$\mathrm{d}_{2}=\mathrm{d}_{3}=\ldots . .=\mathrm{d}_{6}=(\$ 30,000 / 6)=\$ 5,000$

	(A) EOY	BTCF	Depr.	$(\mathrm{C})=(\mathrm{A})-$ (B)	(D) $=-\mathrm{t}(\mathrm{C})$ TI
0	$-\$ 30,000$	---	---	T $(40 \%)=(\mathrm{A})+(\mathrm{D})$	
1	0	$\$ 2,500$	$-\$ 2,500$	$\$ 1,000$	ATCF
2	0	5,000	$-5,000$	2,000	1,000
3	0	5,000	$-5,000$	2,000	2,000
4	$-10,000$	5,000	$-15,000$	6,000	$-4,000=-10,000+6,000$
5	0	5,000	$-5,000$	2,000	2,000
6	0	5,000	$-5,000$	2,000	2,000
7	0	2,500	$-2,500$	1,000	1,000
8	0	---	0	0	0

$$
\begin{aligned}
\mathrm{PW}(12 \%) & =-\$ 30,000+\$ 1,000(\mathrm{P} / \mathrm{A}, 12 \%, 7)+\$ 1,000(\mathrm{P} / \mathrm{A}, 12 \%, 5)(\mathrm{P} / \mathrm{F}, 12 \%, 1)-\$ 6,000(\mathrm{P} / \mathrm{F}, 12 \%, 4) \\
& =-\$ 26,030.47 \\
\mathrm{AW}(12 \%) & =-\$ 26,030.47(\mathrm{~A} / \mathrm{P}, 12 \%, 8)=-\$ 5,240
\end{aligned}
$$

Leasing Option

ATCF $=-(1-0.40)($ Leasing Cost $)=\mathrm{AW}(12 \%)$
For the leasing option to be more economical than the purchase option,
$-(0.6)($ Leasing Cost) $<-\$ 5,240$
Leasing Cost $<\$ 8,733$
If Leasing Cost < \$8,733 per year, lease the tanks; otherwise, purchase the tanks.

7-39 Assume repeatability.

Fixture X

	(A)	(B)	$(\mathrm{C})=(\mathrm{A})-(\mathrm{B})$	$(\mathrm{D})=-\mathrm{t}(\mathrm{C})$	$(\mathrm{E})=(\mathrm{A})+(\mathrm{D})$
EOY	BTCF	Depr.	TI	T (50%)	ATCF
0	$-\$ 30,000$	---	--	--	$-\$ 30,000$
$1-5$	$-\$ 3,000$	$\$ 6,000$	$-\$ 9,000$	$\$ 4,500$	$\$ 1,500$
6	$-\$ 3,000$	0	$-\$ 3,000$	$\$ 1,500$	$-\$ 1,500$
6^{*}	$\$ 6,000$	---	$\$ 6,000^{*} *$	$-\$ 3,000$	$\$ 3,000$

*Market Value **Depreciation Recapture
$\mathrm{AW}_{\mathrm{X}}(8 \%)=\underline{-\$ 4,989}$

Fixture Y

	(A) EOY	BTCF	Depr.	$(\mathrm{C})=(\mathrm{A})-(\mathrm{B})$ TI	$(\mathrm{D})=-\mathrm{t}(\mathrm{C})$ T (50%)
$(\mathrm{E})=(\mathrm{A})+(\mathrm{D})$					
ATCF					
0	$-\$ 40,000$	---	---	---	$-\$ 40,000$
2	$-\$ 2,500$	$\$ 8,000$	$-\$ 10,500$	$\$ 5,250$	$\$ 2,750$
3	$-\$ 2,500$	$\$ 12,800$	$-\$ 15,300$	$\$ 7,650$	$\$ 5,150$
4	$-\$ 2,500$	$\$ 7,680$	$-\$ 10,180$	$\$ 5,090$	$\$ 2,590$
5	$-\$ 2,500$	$\$ 4,608$	$-\$ 7,108$	$\$ 3,554$	$\$ 1,054$
6	$-\$ 2,500$	$\$ 2,304$	$-\$ 7,108$	$\$ 3,554$	$\$ 1,054$
7	$-\$ 2,500$	0	$-\$ 4,804$	$\$ 2,402$	$-\$ 98$
8	$-\$ 2,500$	0	$-\$ 2,500$	$\$ 1,250$	$-\$ 1,250$
8	$\$ 4,000^{*}$	---	$-\$ 2,500$	$\$ 1,250$	$-\$ 1,250$

* Market Value
$\operatorname{AW}_{\mathrm{B}}(8 \%)=-\$ 5,199$

Select Fixture X.

7-40 Pump A:

EOY	BTCF	d	TI	T(40\%)	ATCF
0	$-\$ 2,000$				$-\$ 2,000$
1	-400	$\$ 400$	$-\$ 800$	$\$ 320$	-80
2	-400	400	-800	320	-80
3	-400	400	-800	320	-80
4	-400	400	-800	320	-80
5	-400	400	-800	320	-80
5	400		400	-160	240
				$\mathrm{PW}_{\mathrm{A}}(10 \%)$	$-\$ 2,154$

Pump B:

EOY	BTCF	d	TI	T(40\%)	ATCF
0	$-\$ 1,000$				$-\$ 1,000.00$
1	-800	$\$ 333.30$	$-\$ 1,133.35$	$\$ 453.34$	-346.71
2	-800	444.50	$-1,244.55$	497.82	-302.23
3	-800	148.10	-948.15	379.26	-420.79
4	-800	74.10	-874.15	349.66	-450.39
5	-800	--	-800.05	320.02	-480.03
5	200		200	-80	120.00

Incremental Analysis (A - B):

EOY	$\Delta \mathrm{ATCF}$
0	$-\$ 1,000.00$
1	266.71
2	222.23
3	340.79
4	370.39
5	520.03
IRR	18.4%

The incremental investment is justified, select Pump A.

7-41 Machine A:

	(A)	(B)	$(\mathrm{C})=(\mathrm{A})-(\mathrm{B})$	$(\mathrm{D})=-\mathrm{t}(\mathrm{C})$	(E) $=(\mathrm{A})+(\mathrm{D})$
EOY	BTCF	Depr	TI	T (40%)	ATCF
0	$-\$ 20,000$	---	---	---	$-\$ 20,000$
$1-12$	$\$ 12,000$	$\$ 1,333.33$	$\$ 10,666.67$	$-\$ 4,266.67$	$\$ 7,733.33$
12	$\$ 4,000$	---	0	0	$\$ 4,000$

0.1468
0.0468
$\mathrm{AW}=-\$ 20,000(\mathrm{~A} / \mathrm{P}, 10 \%, 12)+\$ 7733.33+\$ 4,000(\mathrm{~A} / \mathrm{F}, 10 \%, 12)=\$ 4,984.53$

Machine B:

	(A)	(B)	$(\mathrm{C})=(\mathrm{A})-(\mathrm{B})$	$(\mathrm{D})=-\mathrm{t}(\mathrm{C})$	$(\mathrm{E})=(\mathrm{A})+(\mathrm{D})$
EOY	BTCF	Depr	TI	T (40%)	ATCF
0	$-\$ 30,000$	--	---	--	$-\$ 30,000$
$1-8$	$\$ 18,000$	$\$ 3,750$	$\$ 14,250$	$-\$ 5,700$	$\$ 12,300$

0.1874
$A W=-\$ 30,000(\mathrm{~A} / \mathrm{P}, 10 \%, 8)+\$ 12,300=\$ 6,678$

7-42 Assume repeatability and compare AW over useful life.
Design A:

EOY	BTCF	d	TI	T (40%)	ATCF
0	$-\$ 1,000,000$				$-\$ 1,000,000$
1	200,000	$\$ 200,000$	$\$ 0$	$\$ 0$	200,000
2	200,000	320,000	$-120,000$	48,000	248,000
3	200,000	192,000	8,000	$-3,200$	196,800
4	200,000	115,200	84,800	$-33,920$	166,080
5	200,000	115,200	84,800	$-33,920$	166,080
6	200,000	57,600	142,400	$-56,960$	143,040
7 a	200,000		200,000	$-80,000$	120,000
7 b	$1,000,000$		$1,000,000$	$-400,000$	600,000
				PW (10%)	$\$$
				AW (10%)	$\$ 1,409$
					41,371

Design B:

EOY	BTCF	d	TI	T(40\%)	ATCF
0	$-\$ 2,000,000$				$-\$ 2,000,000$
1	400,000	$\$ 400,000$	$\$ 0$	$\$ 0$	400,000
2	400,000	640,000	$-240,000$	96,000	496,000
3	400,000	384,000	16,000	$-6,400$	393,600
4	400,000	230,400	169,600	$-67,840$	332,160
5	400,000	230,400	169,600	$-67,840$	332,160
6	400,000	115,200	284,800	$-113,920$	286,080
6	$1,100,000$		$1,100,000$	$-440,000$	660,000
				PW (10%)	$\$$
				AW (10%)	$\$$
					8,424

Select Design A to maximize after-tax AW.

7-43 (a) Straight-line depreciation:

Method I

	(A)	(B)	$(\mathrm{C})=(\mathrm{A})-(\mathrm{B})$	$(\mathrm{D})=-\mathrm{t}(\mathrm{C})$	(E) $=(\mathrm{A})+(\mathrm{D})$
EOY	BTCF	Depr	TI	T (40%)	ATCF
0	$-\$ 10,000$	---	--	--	$-\$ 10,000$
$1-5$	$\$ 14,150$	$\$ 1,800$	$-\$ 15,950$	$\$ 6,380$	$-\$ 7,770$
5	$\$ 1,000$	---	0	0	$\$ 1,000$

$\mathrm{PW}_{0}(12 \%)=-\$ 10,000-\$ 7,770(\mathrm{P} / \mathrm{A}, 12 \%, 5)+\$ 1,000(\mathrm{P} / \mathrm{F}, 12 \%, 5)=-\$ 37,441,68$
To have a basis for computation, assume that Method I is duplicated for years 6-10. Transform the additional $\mathrm{PW}_{5}(12 \%)=-\$ 37,449.68$ to the present and get:

$$
\mathrm{PW}(12 \%)=\mathrm{PW}_{0}(12 \%)+(\mathrm{P} / \mathrm{F}, 12 \%, 5) \mathrm{PW}_{5}(12 \%)=-\$ 58,867.10
$$

Method II

	(A) EOY	BTCF	Depr	(C) $=(\mathrm{A})-(\mathrm{B})$	$(\mathrm{D})=-\mathrm{t}(\mathrm{C})$
TI	(E) $=(\mathrm{A})+(\mathrm{D})$				
0	$-\$ 40,000$	--	---	---	$-\$ 40,000$
$1-10$	$-\$ 7,000$	$\$ 3,500$	$-\$ 10,500$	$\$ 4,200$	$-\$ 2,800$
10	$\$ 5,000$	---	0	0	$\$ 5,000$

$$
\mathrm{PW}(12 \%)=-\$ 40,000-\$ 2,800(\mathrm{P} / \mathrm{A}, 12 \%, 10)+\$ 5,000(\mathrm{P} / \mathrm{F}, 12 \%, 10)=-\$ 54,210.76
$$

Thus, Method II is the better alternative.
(b) MACRS depreciation:

Method I

Assume that MV_{5} is $\$ 1,000$. The MACRS property class is 5 years. This means that the tax-life is 6 years which is greater than the useful life of 5 years.

EOY	(A) BTCF	(B) Depr	$(\mathrm{C})=(\mathrm{A})-(\mathrm{B})$ TI	$(\mathrm{D})=-\mathrm{t}(\mathrm{C})$ $\mathrm{T}(40 \%)$	(E) $=(\mathrm{A})+(\mathrm{D})$ ATCF
0	$-\$ 10,000$	---	---	--	$-\$ 10,000$
1	$-\$ 14,150$	$\$ 2,000$	$-\$ 16,150$	$\$ 6,460$	$-\$ 7,690$
2	$-\$ 14,150$	$\$ 3,200$	$-\$ 17,350$	$\$ 6,940$	$-\$ 7,210$
3	$-\$ 14,150$	$\$ 1,920$	$-\$ 16,070$	$\$ 6,428$	$-\$ 7,722$
4	$-\$ 14,150$	$\$ 1,152$	$-\$ 15,302$	$\$ 6,120.80$	$-\$ 8,029.20$
5	$-\$ 14,150$	$\$ 1,152$	$-\$ 15,302$	$\$ 6,120.80$	$-\$ 8,029.20$
5	$\$ 1,000$	---	$\$ 1,000$	$-\$ 400$	$\$ 600$
6	0	$\$ 576$	$-\$ 576$	$\$ 230.40$	$\$ 230.40$

PW $(12 \%)=-\$ 37,311.71$
$\operatorname{PW}(12 \%)$ over 10 years $=-\$ 37,311[1+(\mathrm{P} / \mathrm{F}, 12 \%, 5)]=-\$ 58,482$
To get a figure for comparison, convert $\mathrm{PW}(12 \%)$ to annual worth over the useful life of 5 years:

$$
\mathrm{AW}(12 \%)=-\$ 37,311.71(\mathrm{~A} / \mathrm{P}, 12 \%, 5)=-\$ 10,350.63
$$

With straight line depreciation the annual worth is $\mathrm{AW}_{\mathrm{SL}}(12 \%)=-\$ 37,441.68(\mathrm{~A} / \mathrm{P}, 12 \%, 5)=$ $\$ 10,368.69$. We note that the annual worths are basically the same. This is due to the fact that, whatever depreciation method we use, the depreciation deductions are small relative to the annual expenses.

Method II

The MACRS class life is 7 years. Assume that MV_{5} is $\$ 5,000$

EOY	(A) BTCF	(B) Depr	$(\mathrm{C})=(\mathrm{A})-(\mathrm{B})$ TI	$(\mathrm{D})=-\mathrm{t}(\mathrm{C})$ $\mathrm{T}(40 \%)$	$(\mathrm{E})=(\mathrm{A})+(\mathrm{D})$ ATCF
0	$-\$ 40,000$	---	---	---	$-\$ 40,000$
1	$-\$ 7,000$	$\$ 5,716$	$-\$ 12,716$	$\$ 5,086.40$	$-\$ 1,913.60$
2	$-\$ 7,000$	$\$ 9,796$	$-\$ 16,796$	$\$ 6,718.40$	$-\$ 281.60$
3	$-\$ 7,000$	$\$ 6,996$	$-\$ 13,996$	$\$ 5,598.40$	$-\$ 1,401.60$
4	$-\$ 7,000$	$\$ 4,996$	$-\$ 11,996$	$\$ 4,798.40$	$-\$ 2,201.60$
5	$-\$ 7,000$	$\$ 3,572$	$-\$ 10,572$	$\$ 4,228.80$	$-\$ 2,771.20$
6	$\$ 7,000$	$\$ 3,568$	$-\$ 10,568$	$\$ 4,227.20$	$-\$ 2,772.80$
7	$\$ 7,000$	$\$ 3,572$	$-\$ 10,572$	$\$ 4,228.80$	$-\$ 2,771.20$
8	$\$ 7,000$	$\$ 1,784$	$-\$ 8,784$	$\$ 3,513.60$	$-\$ 3,486.40$
9	$\$ 7,000$	0	$-\$ 7,000$	$\$ 2,800$	$-\$ 4,200$
10	$\$ 7,000$	0	$-\$ 7,000$	$\$ 2,800$	$-\$ 4,200$
10	$\$ 5,000$	---	$\$ 5,000$	$-\$ 2,000$	$\$ 3,000$

$\operatorname{PW}(12 \%)=-\$ 51,869.57$
AW over the useful life of 10 years: $\mathrm{AW}(12 \%)-\$ 51,869.67(\mathrm{~A} / \mathrm{P}, 12 \%, 10)=-\$ 9,180.11$

Thus, Method II is chosen also in this case.
$\mathrm{AW}_{\mathrm{SL}}(12 \%)=-\$ 54,210.76(\mathrm{~A} / \mathrm{P}, 12 \%, 10)=-\$ 9,594.45$
We notice a more significant difference in this case. Here, the timing of the depreciation deductions is of greater importance.

7-44 Freezer 1:

EOY	BTCF	d	TI	T(40\%)	ATCF	$\begin{gathered} \text { Total } \\ \text { ATCF } \end{gathered}$
0	-11,000				-11,000	-11,000
1	3,000	3,000	0	0	3,000	3,000
2	3,000	3,000	0	0	3,000	3,000
3	3,000	3,000	0	0	3,000	3,000
4	3,000		3,000	-1,200	1,800	1,800
5a	3,000	---	3,000	-1,200	1,800	3,800
5b	2,000	---	0	0	2,000	
					PW(12\%)	-\$494.35

Freezer 2:

						Total
EOY	BTCF	d	TI	T(40\%)	ATCF	ATCF
0	$-33,000$				$-33,000.00$	$-33,000.00$
1	9,000	$10,998.90$	$-1,998.90$	799.56	$9,799.56$	$9,799.56$
2	9,000	$14,668.50$	$-5,668.50$	$2,267.40$	$11,267.40$	$11,267.40$
3	9,000	$4,887.30$	$4,112.70$	$-1,645.08$	$7,354.92$	$7,354.92$
4	9,000	$2,445.30$	$6,554.70$	$-2,621.88$	$6,378.12$	$6,378.12$
5 a	9,000	---	9,000	-3600	$5,400.00$	$6,600.00$
5 b	2,000	---	2,000	-800.00	$1,200.00$	
					PW (12%)	$-\$ 2,234.58$

Hence, if one freezer must be seleccted, it should be Freezer 1.

7-45 Manufacturing designed for varying degrees of automation:
(A)

	(A)	(B)	(C) $=(\mathrm{A})-$ (B)	(D) $=-\mathrm{t}$ (C)	(E) $=(\mathrm{A})+(\mathrm{D})$
EOY	BTCF	Depr	TI	T (40\%)	ATCF
0	-\$10,000	---	---	---	-\$10,000
1-5	-\$9,500	\$2,000	-\$11,500	\$4,600	-\$4,900

Straight Line Depreciation: $(\$ 10,000-0) / 5=\$ 2,000$
(B)

EOY	(A) BTCF	(B) Depr	$\begin{gathered} \hline(\mathrm{C})=(\mathrm{A})-(\mathrm{B}) \\ \mathrm{TI} \end{gathered}$	$\begin{gathered} \hline(\mathrm{D})=-\mathrm{t}(\mathrm{C}) \\ \mathrm{T}(40 \%) \end{gathered}$	$(\mathrm{E})=(\mathrm{A})+(\mathrm{D})$ ATCF
0	-\$14,000	---	---	---	-\$14,000
1-5	-\$8,300	\$2,800	-\$11,100	\$4,440	-\$3,860

Depreciation: $(\$ 14,000-0) / 5=\$ 2,800$
(C)

EOY	(A) BTCF	(B) Depr	$(\mathrm{C})=(\mathrm{A})-(\mathrm{B})$ TI	$(\mathrm{D})=-\mathrm{t}(\mathrm{C})$ $\mathrm{T}(40 \%)$	$(\mathrm{E})=(\mathrm{A})+(\mathrm{D})$ ATCF
0	$-\$ 20,000$	---	--	--	$-\$ 20,000$
$1-5$	$-\$ 6,000$	$\$ 4,000$	$-\$ 10,000$	$\$ 4,000$	$-\$ 2,000$

Depreciation: $(\$ 20,000-0) / 5=\$ 4,000$
(D)

	(A)	(B)	(C) $=(\mathrm{A})-(\mathrm{B})$	(D) $=-\mathrm{t}(\mathrm{C})$	(E) $=(\mathrm{A})+(\mathrm{D})$
EOY	BTCF	Depr	TI	T (40%)	ATCF
0	$-\$ 30,000$	---	---	--	$-\$ 30,000$
$1-5$	$-\$ 4,500$	$\$ 6,000$	$-\$ 10,500$	$\$ 4,200$	$-\$ 300$

Depreciation: $(\$ 30,000-0) / 5=\$ 6,000$

$$
\begin{aligned}
& \mathrm{AW}_{\mathrm{A}}=-\$ 10,000(\mathrm{~A} / \mathrm{P}, 15 \%, 5)-\$ 4,900=-\$ 7,883 \\
& \mathrm{AW} \\
& \mathrm{~B}=-\$ 14,000(\mathrm{~A} / \mathrm{P}, 15 \%, 5)-\$ 3,860=-\$ 8,036.20 \\
& A W_{\mathrm{C}}=-\$ 20,000(\mathrm{~A} / \mathrm{P}, 15 \%, 5)-\$ 2,000=-\$ 7,966 \\
& A W_{\mathrm{D}}=-\$ 30,000(\mathrm{~A} / \mathrm{P}, 15 \%, 5)-\$ 300=-\$ 9,249
\end{aligned}
$$

Select to automate to Degree A.

7-46 Use a study period of 3 years
Quotation I

EOY	BTCF Capital	BTCF Operating	Depr. Fact.	Depr.	Book Value	Gain (Loss) On Disp.	Δ in Ord. Inc	Δ Cash Flow for IT (Cap)	Δ Cash Flow for IT (Oper)	ATCF
0	$\$(180,000)$				$\$ 180,000$					$\$(180,000)$
1	---	$\$(28,000)$	0.2000	$\$(36,000)$	$\$ 144,000$		$\$(64,000)$		$\$ 25,600$	$\$$
2	--	$\$(28,000)$	0.3200	$\$(57,600)$	$\$ 86,400$		$\$(85,600)$		$\$ 34,240$	$\$$
3	$\$ 50,000$	$\$(28,000)$	0.0960	$\$(17,280)$	$\$ 69,120$	$\$(19,120)$	$\$(45,280)$	$\$ 7,648$	$\$ 18,112$	$\$ 47,760$

PW of ATCF, Quotation I: $\$(143,174)$
IT = Income Taxes
Quotation II

EOY	BTCF Capital	BTCF Operating	Depr. Fact.	Depr.	Book Value	Gain (Loss) On Disp.	Δ in Ord. Inc	Δ Cash Flow for IT (Cap)	Δ Cash Flow for IT (Oper)	ATCF
0	$\$(200,000)$				$\$ 200,000$					$\$(200,000)$
1	---	$\$(17,000)$	0.2000	$\$(40,000)$	$\$ 160,000$		$\$(57,000)$		$\$ 22,800$	$\$$
2	---	$\$(17,000)$	0.3200	$\$(64,000)$	$\$ 96,000$		$\$(81,000)$		$\$ 32,400$	$\$$
3	$\$ 60,000$	$\$(17,000)$	0.0960	$\$(19,200)$	$\$ 76,800$	$\$(16,800)$	$\$(36,200)$	$\$ 6,720$	$\$ 14,480$	$\$$

PW of ATCF, Quotation II: $\$(136,848)$
IT = Income Taxes
Accept Quotation II.

Year	$\mathrm{BV}_{\mathrm{k}-1}$	r_{k}	d_{k}	BV_{k}
1	$\$ 345,000$	0.2000	$\$ 69,000$	$\$ 276,000$
2	276,000	0.3200	110,400	165,600
3	165,600	0.1920	66,240	99,360
4	99,360	0.1152	39,744	59,616
5	59,616	0.1152	39,744	19,872
6	19,872	0.0576	19,872	0

(a) Economic Value Added (EVA):

EOY	BTCF	Depr	TI	$\left.\begin{array}{c}-t=-0.5 \\ T \\ \hline\end{array} 50 \%\right)$	NOPAT
1	$\$ 112,000^{\mathrm{a}}$	$\$ 69,000$	$\$ 43,000$	$-\$ 21,500$	$\$ 21,500$
2		110,400	1,600	-800	800
3		66,240	45,760	$-22,880$	22,880
4		39,744	72,256	$-36,128$	36,128
5		39,744	72,256	$-36,128$	36,128
6	112,000	19,872	92,128	$-46,064$	46,064
6	$120,000^{\mathrm{b}}$		$120,000^{\mathrm{c}}$	$-60,000$	60,000

${ }^{\mathrm{a}} \mathrm{BTCF}_{\mathrm{k}}=\$ 120,000-\$ 8,000=\$ 112,000$
${ }^{\mathrm{b}} \mathrm{MV}_{6}=\$ 120,000$
${ }^{\mathrm{c}}$ Gain on disposal $=\mathrm{MV}_{6}-\mathrm{BV}_{6}=\$ 120,000-0=\$ 120,000$

EOY	EVA	PW(10\%)
1	$\$ 21,500-0.10(\$ 345,000)=-\$ 13,000$	$-\$ 11,818$
2	$800-0.10(276,000)=-26,800$	$-22,148$
3	$22,880-0.10(165,600)=$	6,320
4	$36,128-0.10(99,360)=$	26,192
5	$36,128-0.10(59,616)=$	30,166
6	$46,064-0.10(19,872)=$	44,077
6		60,000

The present equivalent of the $\mathrm{EVA}=\underline{\$ 66,150}$.

7-47 (b) After-tax cash flow (ATCF):

EOY	BTCF	T(50\%)	ATCF	PW(10\%)
0	-\$345,000	0	-\$345,000	-\$345,000
1	112,000	- \$21,500	90,500	82,274
2		- 800	111,200	91,896
3		- 22,880	89,120	66,957
4		-36,128	75,872	51,822
5		-36,128	75,872	47,109
6	112,000	- 46,064	65,936	37,222
6	120,000	-60,000	60,000	33,870
				Total: \$66,150

Yes; the $\operatorname{PW}(10 \%)$ of the $\operatorname{ATCF}(\$ 66,150)$ is the same as the present equivalent of the annual EVA amounts.

7-48 Beginning-of-year book values:

Year	$\mathrm{BV}_{\mathrm{k}-1}$	$\mathrm{~d}_{\mathrm{k}}$	BV_{k}
1	$\$ 180,000$	$\$ 36,000$	$\$ 144,000$
2	144,000	57,600	86,400
3	86,400	34,560	51,840
4	51,840	20,736	31,104
5	31,104	20,736	10,368
6	10,368	10,368	0

EOY	NOPAT $^{\mathrm{a}}$	$(0.10) \mathrm{BV}_{\mathrm{k}-1}$	EVA $^{\mathrm{b}}$
1	0	$\$ 18,000$	$-\$ 18,000$
2	$-\$ 13,392$	14,400	$-27,720$
3	893	8,640	$-7,747$
4	9,464	5,184	4,280
5	9,464	3,110	6,354
6	15,892	1,037	14,855
7	22,320	0	22,320
8	22,320	0	22,320
9	22,320	0	22,320
10	22,320	0	22,320
10	18,600	---	18,600

${ }^{\text {a }}$ From Table 7-6: Column (C) algebraically added to Column (D).
${ }^{\mathrm{b}}$ Equation 7-22: $\mathrm{EVA}_{\mathrm{k}}=\mathrm{NOPAT}_{\mathrm{k}}-\mathrm{i} \bullet \mathrm{BV}_{\mathrm{k}-1}$

$$
\begin{aligned}
\mathrm{PW}(10 \%)= & -\$ 18,000(\mathrm{P} / \mathrm{F}, 10 \%, 1)-\cdots+\$ 14,855(\mathrm{P} / \mathrm{F}, 10 \%, 6) \\
& +\$ 22,320(\mathrm{P} / \mathrm{A}, 10 \%, 4)(\mathrm{P} / \mathrm{F}, 10 \%, 6)+\$ 18,600(\mathrm{P} / \mathrm{F}, 10 \%, 10) \\
= & \underline{\$ 17,208}
\end{aligned}
$$

Depreciation schedule (3-year property class). The cost basis (B) is assumed to be $\$ 84,000$.

Year	$\mathrm{BV}_{\mathrm{k}-1}$	r_{k}	d_{k}	BV_{k}
1	$\$ 84,000$	0.3333	$\$ 28,000$	$\$ 56,000$
2	56,000	0.4445	37,338	18,662
3	18,662	0.1481	12,440	6,222
4	6,222	0.0741	6,222	0

After-tax cash flow (ATCF):

EOY	BTCF	Depr	TI	$\begin{gathered} -\mathrm{t}=-0.5 \\ \mathrm{~T}(50 \%) \\ \hline \end{gathered}$	ATCF
0	- \$ 84,000	0	0	0	- \$ 84,000
1	40,000	\$ 28,000	\$ 12,000	- \$ 6,000	34,000
2	40,000	37,338	2,662	- 1,331	38,669
3	40,000	12,440	27,560	- 13,780	26,220
4	40,000	6,222	33,778	- 16,889	23,111

$$
\begin{aligned}
\mathrm{PW}(12 \%) & =-\$ 84,000+\$ 34,000(\mathrm{P} / \mathrm{F}, 12 \%, 1)+\cdots+\$ 23,111(\mathrm{P} / \mathrm{F}, 12 \%, 4) \\
& =\$ 10,535 \\
\mathrm{AW}(12 \%) & =\$ 10,535(\mathrm{~A} / \mathrm{P}, 12 \%, 4)=\underline{\$ 3,468}
\end{aligned}
$$

Economic Value Added (EVA):

EOY	NOPAT $^{\mathrm{a}}$	(0.12) BV $_{\mathrm{k}-1}$	EVA $^{\mathrm{b}}$
1	$\$ 6,000$	$\$ 10,080$	$-\$ 4,080$
2	1,331	6,720	$-5,389$
3	13,780	2,239	11,541
4	16,889	747	16,142

${ }^{\text {a }}$ From ATCF analysis above: NOPAT $_{k}=(\mathrm{TI})_{k}-[\mathrm{T}(50 \%)]_{\mathrm{k}}$
${ }^{\mathrm{b}}$ Equation 7-22: $\mathrm{EVA}_{\mathrm{k}}=\mathrm{NOPAT}_{\mathrm{k}}-\mathrm{i} \bullet \mathrm{BV}_{\mathrm{k}-1}$
$\operatorname{PW}(12 \%)=-\$ 4,080(\mathrm{P} / \mathrm{F}, 12 \%, 1)-\cdots+\$ 16,142(\mathrm{P} / \mathrm{F}, 12 \%, 4)$ $=\$ 10,535$
$\mathrm{AW}(12 \%)^{*}=\$ 10,535(\mathrm{~A} / \mathrm{P}, 12 \%, 4)=\$ 3,468$

* Annual equivalent EVA.

EOY	BTCF (A)	Depr	Interest	Principal Payment (B)	TI	Taxes Payable (40%) (C)	ATCF $(A)+(B)$ $+(C)$
0	$-\$ 75,000$	--			--	-	$-\$ 75,000$
0	$-\$ 55,000$	0	0	0	$-\$ 55,000$	$\$ 22,000$	$-\$ 33,000$
1	$-\$ 55,000$	0	0	0	$-\$ 55,000$	$\$ 22,000$	$-\$ 33,000$
2	$-\$ 55,000$	0	0	0	$-\$ 55,000$	$\$ 22,000$	$-\$ 33,000$
3	$-\$ 55,000$	0	0	0	$-\$ 55,000$	$\$ 22,000$	$-\$ 33,000$
4	$-\$ 55,000$	0	0	0	$-\$ 55,000$	$\$ 22,000$	$-\$ 33,000$
5	$+\$ 75,000$					$\$ 75,000$	

Purchasing Option: $\mathrm{PW}(10 \%)=-\$ 191,197 ; \mathrm{AW}(10 \%)=-\$ 50,438$

EOY	BTCF (A)	Depr	Interest	Principal Payment (B)	TI	Taxes Payable (40\%) (C)	$\begin{gathered} \text { ATCF } \\ (\mathrm{A})+(\mathrm{B}) \\ +(\mathrm{C}) \end{gathered}$
0	-\$350,000	--		\$350,000	--	--	\$0
1	-\$20,000	\$116,655	-\$28,000	-\$107,800	-\$164,655	\$65,862	-\$89,938
2	-\$20,000	\$155,575	-\$19,376	-\$116,424	-\$194,951	\$77,980	-\$77,820
3	-\$20,000	\$51,835	-\$10,062	-\$125,738	-\$81,897	\$32,759	-\$123,04
4	-\$20,000	\$25,935	0	0	-\$45,935	\$18,374	1 $-\$ 1,626$
5a	-\$20,000	0	0	0	-\$20,000	\$8,000	-\$12,000
5b	+\$150,000	--	--	--	+\$150,000	-\$60,000	+\$90,000

Payment $=-\$ 350,000(\mathrm{~A} / \mathrm{P}, 8 \%, 3)=-\$ 135,800$
Select the lease.

7-52 $\quad \mathrm{F}=\$ 5,000(1-0.28)(\mathrm{F} / \mathrm{P}, 8 \%, 30)=\$ 36,226$

7-53 $\mathrm{PW}(\mathrm{i})=0=-\$ 9,000+(\$ 10,000)(0.10 / 2)(1-0.28)(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 15)$

$$
+[\$ 10,000-(\$ 10,000-\$ 9,000)(0.28)](\mathrm{P} / \mathrm{F}, \mathrm{i} \%, 15)
$$

$=-\$ 9,000+\$ 360(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 15)+\$ 9,720(\mathrm{P} / \mathrm{F}, \mathrm{i} \%, 15)$

$\frac{\mathrm{i} \%}{4 \%}$	$\underline{\mathrm{PW}(\mathrm{i})}$
$\mathrm{i} \%$	0400.14
5%	$-\$ 587.99$

$\mathrm{i} \%=4.4 \% / 6$ months, $\mathrm{r}=8.8 \% /$ year, $\mathrm{i}_{\text {eff. }}=8.99 \% /$ year

Thus, the 529 plan accumulates 38.9% more in future worth compared to the Roth IRA. It's a much better deal if the parents can meet the withdrawal restrictions placed on the 529 fund.

7-55 (a) Roth IRA: F = \$1,440(F/A, 8\%, 30) $=\$ 163,128$
Tax-deductible IRA: $\mathrm{F}=\$ 2,000(\mathrm{~F} / \mathrm{A}, 8 \%, 30)(1-0.28)=\$ 163,128$
Both plans are equivalent when the income tax rate is constant at 28% (a big assumption).
(b) Roth IRA: F $=163,128$

Tax-deductible IRA: $\mathrm{F}=\$ 2,000(\mathrm{~F} / \mathrm{A}, 8 \%, 30)(1-0.30)=\$ 158,596$
For this assumption, the Roth IRA is better. In reality, the income tax rate will vary year-by-year, so it's virtually impossible to get an "actual" comparison between the two plans. The ROTH IRA has more flexibility regarding how it can be cashed out over multiple years after the retiree reaches age 70.5 .

7-56 Left to student.

Solutions to Spreadsheet Exercises

7-57

MARR	10%
Cost Basis	$\$ 500,000$
Useful Life	10
Market Value	$\$ 20,000$
DB Rate	200%
MACRS	7
Recovery Period	

EOY	SL Method DB Method	MACRS Method	
1	$\$ 48,000$	$\$ 100,000$	$\$ 71,429$
2	$\$ 48,000$	$\$ 80,000$	$\$ 122,449$
3	$\$ 48,000$	$\$ 64,000$	$\$ 87,464$
4	$\$ 48,000$	$\$ 51,200$	$\$ 62,474$
5	$\$ 48,000$	$\$ 40,960$	$\$ 44,624$
6	$\$ 48,000$	$\$ 32,768$	$\$ 44,624$
7	$\$ 48,000$	$\$ 26,214$	$\$ 44,624$
8	$\$ 48,000$	$\$ 20,972$	$\$ 22,312$
9	$\$ 48,000$	$\$ 16,777$	
10	$\$ 48,000$	$\$ 13,422$	
PW(10\%)	$\$ 294,939$	$\$ 319,534$	$\$ 360,721$

The MACRS method results in the largest PW of the depreciation deductions. See P7-58.xls. Goal seek was used to find the solution below.

M1						
		d	TI	T	ATCF	ATCF
0	-\$60,000				-\$60,000	-\$60,000
1	-\$16,000	\$12,000	-\$28,000	\$11,200	-\$4,800	-\$4,800
2	-\$16,000	\$19,200	-\$35,200	\$14,080	-\$1,920	-\$1,920
3	-\$16,000	\$11,520	-\$27,520	\$11,008	-\$4,992	-\$4,992
4	-\$16,000	\$6,912	-\$22,912	\$9,165	-\$6,835	-\$6,835
5 a	-\$16,000	\$3,456	-\$19,456	\$7,782	-\$8,218	\$1,816
5b	\$12,114		\$5,202	-\$2,081	\$10,033	
	PW(12\%)	-\$72,683		MV	\$3,029	
	AW(12\%)	-\$20,163		(for each M1)		
M2						
0	-\$66,000				-\$66,000	
1	-\$18,000	\$13,200	-\$31,200	\$12,480	-\$5,520	
2	-\$18,000	\$21,120	-\$39,120	\$15,648	-\$2,352	
3	-\$18,000	\$12,672	-\$30,672	\$12,269	-\$5,731	
4	-\$18,000	\$7,603	-\$25,603	\$10,241	-\$7,759	
5	-\$18,000	\$7,603	-\$25,603	\$10,241	-\$7,759	
6	-\$18,000	\$3,802	-\$21,802	\$8,721	-\$9,279	
7	-\$18,000		-\$18,000	\$7,200	-\$10,800	
8	-\$18,000		-\$18,000	\$7,200	-\$10,800	
	PW(12\%)	-\$100,165				
	AW(12\%)	-\$20,163				

Table Entries are Before-tax Rate of Returns on taxable bonds.

		Federal Income Tax Rate		
		15%	28%	35%
After-Tax Rate of Return on Municipal Bonds	4%	4.71%	5.56%	6.15%
	5%	5.88%	6.94%	7.69%
	6%	7.06%	8.33%	9.23%

Natural Gas-Fired Plant				
				Units
Investment	\$1.12 billion	\$	1,120,000,000	\$
Capacity Factor	80\%		80\%	
Max Capacity	800 MW		800000	kW
Efficiency	40\%		40\%	
Annual o\&M	\$0.01/kWhr		\$0.01	\$/kWhr
Cost of gas	\$8.00 per million Btu	\$	0.000008	\$/Btu
CO2 tax	\$15 / MT CO2	\$	15.00	\$/MT CO2
CO2 emitted	55 MT CO2 / billion Btu		0.000000055	MT CO2/Btu
Conversion	$1 \mathrm{kWhr}=3413 \mathrm{Btu}$		3413	Btu/kWhr
	Annual Output	640000		kW
	Hours per Year	8760		Hr
	Annual Output		5606400000	kWhr
	Annual O\&M	\$	56,064,000	
	Annual Cost of Gas	\$	382,692,864	
	Annual CO2 Tax	\$	39,465,202	
	Total Annual Cost	\$	478,222,066	
	Annual CO2 emitted		2631013.44	
			1195.9152	MT

Coal-Fired Plant				
				Units
Investment	\$1.12 billion	\$	1,120,000,000	\$
Capacity Factor	80\%		80\%	
Max Capacity	800 MW		800000	kW
Efficiency	35\%		35\%	
Annual o\&M	\$0.02 / kWhr		\$0.02	\$/kWhr
Cost of coal	\$3.50 / million Btu	\$	0.0000035	\$/Btu
CO2 tax	\$15/ MT CO2	\$	15.00	\$/ MT CO2
CO2 emitted	$90 \mathrm{MT} \mathrm{CO2} \mathrm{/} \mathrm{billion} \mathrm{Btu}$		0.00000009	MT CO2/Btu
Conversion	$1 \mathrm{kWhr}=3413 \mathrm{Btu}$		3413	Btu/kWhr
	Annual Output	640000		kW
	Hours per Year	8760		hr
	Annual Output	5,606,400,000.00		kWhr
	Annual O\&M	\$	112,128,000	
	Annual Cost of Gas	\$	191,346,432	
	Annual CO2 Tax	\$	73,805,052	
	Total Annual Cost	\$	377,279,484	
	Annual CO2 emitted		4920336.823	
			2236.516738	MT

After-tax Analysis:					
BTCF	D	TI	T	ATCF	ATCF + CR
Natural Gas: $\$(478,222,066)$	$\$ 37,333,333$	$\$(515,555,399)$	$\$ 206,222,160$	$\$(271,999,906)$	$\$(390,808,664)$
Coal:					
$\$(377,279,484)$	$\$ 37,333,333$	$\$(414,612,818)$	$\$ 165,845,127$	$\$(211,434,357)$	$\$(330,243,115)$

AT cost of electricity	
Natural Gas:	$\$$
Coal:	$\$$

Solutions to FE Practice Problems

7-61 $\mathrm{d}_{2}=\$ 150,000(0.4445)=\$ 66,675$

Select (b)

7-62 $\quad \mathrm{BV}_{2}=\$ 150,000(1-0.3333-0.4445)=\$ 33,330$

$\underline{\text { Select (d) }}$

Select (d)

7-64 $\mathrm{d}_{\mathrm{k}}=(\$ 550,000-\$ 25,000) / 10=\$ 52,500$

Select (c)

Select (b)

$B V_{10}=\$ 550,000-(10)(\$ 52,500)=\$ 25,000$
$\mathrm{MV}_{10}-\mathrm{BV}_{10}=\$ 35,000-\$ 25,000=\$ 10,000$

Select (d)

7-67 From Table 7-2, the GDS recovery period is 10 years (asset class 13.3).

$\underline{\text { Select (d) }}$

7-68 From Table 7-2, the GDS recovery period for woord products equipment (Asset Class 24.4) is 7 years.

Select (b)

$$
\mathrm{d}_{\mathrm{k}}=\frac{\$ 110,000-\$ 5,000}{10}=\$ 10,500
$$

Select (a)

Select (c)

7-71 $\mathrm{d}_{6}=\$ 110,000(0.0892)=\$ 9,812$

Select (a)

7-72 Using the half year convention:

$$
\begin{aligned}
\mathrm{d}_{5} *= & \$ 110,000[0.1429+0.2449+0.1749+0.0893(0.5)] \\
& =\$ 80,547.50 \\
\mathrm{BV}_{5}= & \$ 110,000-\$ 80,547.50=\$ 29.452 .50
\end{aligned}
$$

Select (a)

7-73 $\quad \mathrm{BV}_{4}=\$ 16,000(1-2 / 8)^{4}=\$ 5,062.50$

$\underline{\text { Select (d) }}$

7-74 $\mathrm{d}_{\mathrm{k}}=\frac{\$ 12,000-\$ 2,000}{8}=\$ 1,250$
Select (d)

$$
\mathrm{d}_{\mathrm{A}} *=\$ 12,000(0.1429+0.2449+0.1749+0.1249)=\$ 8,251.20
$$

$$
\mathrm{BV}_{4}=\$ 12,000-\$ 8,251.20=\$ 3,748.80
$$

Select (a)

7-76 $\quad t=0.05+0.35(0.95)=38.25 \%$

Select (c)

$0.40=0.20+$ federal rate $(1-0.20)$
federal rate $=0.25$ or 25%
Select (b)

7-78 After-tax MARR $=(1-0.4)(18 \%)=10.8 \%$

Select (c)

7-79 $\mathrm{ATCF}_{\mathrm{k}}=(\$ 110,000-\$ 65,000)-0.40(\$ 110,000-\$ 65,000-\$ 25,000)=\$ 37,000$

Select (e)

7-80 \quad BTCF5 $=(\mathrm{R}-\mathrm{E})+\mathrm{MV}=[\$ 40,000+\$ 30,000]+\$ 40,000=\$ 110,000$

Select (e)

7-81 $\quad \mathrm{TI}_{3}=\$ 70,000-\$ 135,000(0.1481)=\$ 41,120$

Select (d)

7-82 After Tax MARR $=(1-0.40)(20 \%)=12 \%$
$\mathrm{PW}(12 \%)=\$ 70,000(1-0.40)(\mathrm{P} / \mathrm{A}, 12 \%, 5)$ $=\$ 42,000(3.6048)=\$ 151,402$

Select (c)

7-83 $\quad \mathrm{BV}_{3}=\$ 195,000-\$ 195,000\left(0.3333+0.4445+\frac{0.1481}{2}\right)=\$ 28,889$
Deprecitaion Recapture $=\$ 50,000-\$ 28,889=\$ 21,111$
Taxes $=0.40(\$ 21,111)=\$ 8,444$

Select (a)

7-84 Select the alternative with the highest PW.

Select (b).

Solutions to Chapter 8 Problems

A Note To Instructors: Because of volatile energy prices in today's world, the instructor is encouraged to vary energy prices in affected problems (e.g. the price of a gallon of gasoline) plus and minus 50 percent and ask students to determine whether this range of prices changes the recommendation in the problem. This should make for stimulating in-class discussion of the results.

8-1 At 3% annual inflation, it will take $72 / 3=24$ years to half the value of today's money. At 4% annual inflation, it will take $72 / 4=18$ years to dwindle to half of today's value.

8-2 $\quad \mathrm{A}=\$ 1,000 ; \mathrm{N}=10$
(a) $\mathrm{f}=6 \%$ per year; $\mathrm{i}_{\mathrm{r}}=4 \%$ per year

In Part (a), the $\$ 1,000$ is an $\mathrm{A} \$$ uniform cash flow (annuity)
$\mathrm{i}_{\mathrm{m}}=0.04+0.06+(0.04)(0.06)=0.1024$, or 10.24% per year
$\mathrm{PW}\left(\mathrm{i}_{\mathrm{m}}\right)=\$ 1,000(\mathrm{P} / \mathrm{A}, 10.24 \%, 10)=\$ 1,000(6.0817)=\$ \underline{6,082}$
(b) In Part (b), the $\$ 1,000$ is a $\mathrm{R} \$$ uniform cash flow (annuity) because the $\mathrm{A} \$$ cash flow is $\$ 1,000$ $(1.06)^{\mathrm{k}}$ where $1 \leq \mathrm{k} \leq 10$; i.e.,

$$
(\mathrm{R} \$)_{\mathrm{k}}=(\mathrm{A} \$)_{\mathrm{k}}\left(\frac{1}{1+\mathrm{f}}\right)^{\mathrm{k}-\mathrm{b}}=\$ 1,000(1.06)^{\mathrm{k}}\left(\frac{1}{1+0.06}\right)^{\mathrm{k}-0}=\$ 1,000 ; 1 \leq \mathrm{k} \leq 10
$$

$\operatorname{PW}\left(\mathrm{i}_{\mathrm{r}}\right)=\$ 1,000(\mathrm{P} / \mathrm{A}, 4 \%, 10)=\$ \underline{8,111}$

8-3 The average rate of inflation is 10% per year, and the market place interest rate is

$$
\begin{gathered}
5 \%+10 \%+(5 \%)(10 \%)=15.5 \% \text { per year. } \\
\mathrm{PW}_{2}=(\$ 1,000) \frac{[1-(P / F, 15.5 \%, 23)(F / P, 10 \%, 23)]}{0.155-0.10}=\$ 12,262.36
\end{gathered}
$$

$$
\mathrm{PW}_{0}=\$ 12,262.36(\mathrm{P} / \mathrm{F}, 15.5 \%, 2)=\$ 9,192 .
$$

8-4 In ten years a service/commodity that increases at the 4% general inflation rate will cost $(\mathrm{F} / \mathrm{P}, 4 \%, 10)=$ 1.4802 times its current cost. But health care costs will increase to $(\mathrm{F} / \mathrm{P}, 12 \%, 10)=3.1058$ times their current value. The ratio of 3.1058 to 1.4802 is 2.10 , which means that health care will cost 210% more than an inflation-indexed service/commodity in ten years.

8-5 \quad Situation a: $\mathrm{FW}_{5}(\mathrm{~A} \$)=\$ 2,500(\mathrm{~F} / \mathrm{P}, 8 \%, 5)=\$ 2,500(1.4693)=\$ 3,673$
Situation b: $\mathrm{FW}_{5}(\mathrm{~A} \$)=\$ 4,000$ (given)
Choose situation \mathbf{b}. (Note: The general inflation rate, 5%, is a distractor not needed in the solution.)
$f=6 \%$ per year; $i_{r}=9 \%$ per year; $b=0$
Alternative A: Estimates are in actual dollars, so the combined (market) interest rate must be used to compute the present worth (PW).

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{m}}=\mathrm{i}_{\mathrm{r}}+\mathrm{f}+\left(\mathrm{i}_{\mathrm{r}}\right)(\mathrm{f})=0.09+0.06+(0.09)(0.06)=0.1554 \text { or } 15.54 \% \text { per year } \\
& \begin{aligned}
\mathrm{PW}(15.54 \%)= & \$ 120,000(\mathrm{P} / \mathrm{F}, 15.54 \%, 1)-\$ 132,000(\mathrm{P} / \mathrm{F}, 15.54 \%, 2) \\
& \quad-\$ 148,000(\mathrm{P} / \mathrm{F}, 15.54 \%, 3)-\$ 160,000(\mathrm{P} / \mathrm{F}, 15.54 \%, 4) \\
= & \$ 120,000(0.8655)-\$ 132,000(0.7491)-\$ 148,000(0.6483) \\
& -\$ 160,000(0.5611) \\
= & \$ 388,466
\end{aligned}
\end{aligned}
$$

Alternative B: Estimates are in real dollars, so the real interest rate must be used to compute the present worth (PW).

$$
\begin{aligned}
\mathrm{PW}(9 \%) & =-\$ 100,000(\mathrm{P} / \mathrm{A}, 9 \%, 4)-\$ 10,000(\mathrm{P} / \mathrm{G}, 9 \%, 4) \\
& =-\$ 100,000(3.2397)-\$ 10,000(4.511) \\
& =-\$ 369,080
\end{aligned}
$$

Alternative B has the least negative equivalent worth in the base time period (a PW value in this case since $b=0$).

8-7 (a) $\$ 6.58=\$ 50\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime}, 50\right)$, or $\mathrm{i}^{\prime}=-3.97 \%$ (annual average loss in purchasing power)
(b) $\$ 1,952=\$ 50\left(\mathrm{~F} / \mathrm{P}, \mathrm{i}^{*}, 50\right)$, or $\mathrm{i}^{*}=7.6 \%$ (which is the market interest rate). The real rate earned on the investment in stocks is $(7.6 \%-3.97 \%) / 1.0397=3.5 \%$.

8-8 $\quad \$ 40=\$ 0.01(\mathrm{~F} / \mathrm{P}, \mathrm{i} \%, 4)=\$ 0.01(1+\mathrm{i})^{4}$
$(1+i)^{4}=4,000$
$1+i=7.95$
$\mathrm{i}=6.95$ or 695%

8-9 The engineer's salary has increased by $6.47 \%, 7.18 \%$, and 6.96% in years 2,3 , and 4 , respectively. These are annual rates of change. By using Equation 8-1, but with each year's general price inflation taken into account separately, the R\$ equivalents in year 0 dollars are calculated as follows.

EOY	Salary $(\mathrm{R} \$$ in Year 0)	
1	$\$ 34,000(\mathrm{P} / \mathrm{F}, 7.1 \%, 1)$	$=\$ 31,746$
2	$\$ 36,200(\mathrm{P} / \mathrm{F}, 7.1 \%, 1)(\mathrm{P} / \mathrm{F}, 5.4 \%, 1)$	$=32,069$
3	$\$ 38,800(\mathrm{P} / \mathrm{F}, 7.1 \%, 1)(\mathrm{P} / \mathrm{F}, 5.4 \%, 1)(\mathrm{P} / \mathrm{F}, 8.9 \%, 1)$	$=31,564$
4	$\$ 41,500(\mathrm{P} / \mathrm{F}, 7.1 \%, 1)(\mathrm{P} / \mathrm{F}, 5.4 \%, 1)(\mathrm{P} / \mathrm{F}, 8.9 \%, 1)(\mathrm{P} / \mathrm{F}, 11.2 \%, 1)$	$=30,361$

8-10 Tennessee index-adjusted salary $=(95 / 132) \times \$ 70,000=\$ 50,379$ per year
Tennessee actual salary $=(1.00-0.11) \times \$ 70,000=\$ 62,300$ per year
"Savings" $=\$ 62,300-\$ 50,379=\$ 11,921$ per year
$\mathrm{FW}(10 \%)=\$ 11,921(\mathrm{~F} / \mathrm{A}, 10 \%, 5)=\$ 72,779$. Paul is not penalized at all!

8-11 $\quad \mathrm{R} \$_{10}^{(0)}=\$ 400 \mathrm{M}(1.75)=\$ 700 \mathrm{M}$
$\mathrm{A} \$_{10}=\$ 920 \mathrm{M}=\$ 700 \mathrm{M}(1+\mathrm{f})^{10}$
$1.314=(1+\mathrm{f})^{10}$
$\mathrm{f}=\sqrt[10]{1.314}-1=0.0277$ or 2.77%

8-12 After-tax nominal return per year $=6 \%(1-0.33)=4 \%$
Approximate real return per year $=4 \%-3 \%=1 \%$ each year.
$\mathrm{F}($ in today's purchasing power $)=\$ 100,000(\mathrm{~F} / \mathrm{P}, 1 \%, 10)=\$ 110,460$

8-13 $\quad \mathrm{F}=\$ 100,000(\mathrm{~F} / \mathrm{P}, 10 \%, 10)=\$ 259,370 \quad$ Taxable Earnings $=\$ 159,370$
After-tax $\mathrm{F}=\$ 159,370(1-0.33)+\$ 100,000=\$ 206,778$
$\mathrm{F}($ in today's purchasing power $)=\$ 206,778(\mathrm{P} / \mathrm{F}, 3 \%, 10)=\$ 153,864$
Your younger brother is ahead by about $\$ 43,400$ with his concern over performance (total return) rather than risk avoidance (safety).

8-14 Unit cost (8 years ago) $=\$ 89 / \mathrm{ft}^{2}$

$$
\mathrm{S}_{\mathrm{B}}=80,000 \mathrm{ft}^{2}
$$

$\mathrm{X}=0.92$

$$
\mathrm{S}_{\mathrm{A}}=125,000 \mathrm{ft}^{2}
$$

$\mathrm{e}_{\mathrm{C}}=5.4 \%$ per year
$\mathrm{i}_{\mathrm{m}}=\mathrm{MARR}_{\mathrm{c}}=12 \%$ per year
$\mathrm{e}_{\mathrm{AE}}=5.66 \%$ per year
(a) Using the power sizing technique (exponential cost estimating model) from Section 3.4.1, with an adjustment for the price increase in construction costs, we have:

$$
\begin{align*}
\mathrm{C}_{\mathrm{A}} & =\mathrm{C}_{\mathrm{B}}\left(\frac{\mathrm{~S}_{\mathrm{A}}}{\mathrm{~S}_{\mathrm{B}}}\right)^{\mathrm{X}}\left(1+\mathrm{e}_{\mathrm{C}}\right)^{8} \\
& =\left(\$ 89 / \mathrm{ft}^{2}\right)\left(80,000 \mathrm{ft}^{2}\right)\left(\frac{125,000}{80,000}\right)^{0.92} \tag{1.054}\\
& =\$ 16,350,060
\end{align*}
$$

$$
\begin{aligned}
\text { Total Capital Investment } & =\$ 16,350,060(1+0.05+0.042+0.08+0.31) \\
& =\$ \underline{24,230,790}
\end{aligned}
$$

(b) Note: The building is not being sold at the end of the 10 years. Therefore, working capital is not considered to be recovered at that time.

$$
\begin{aligned}
\operatorname{PW}(12 \%) & =-\$ 24,230,790-(\$ 5)\left(125,000 \mathrm{ft}^{2}\right) \frac{[1-(P / F, 12 \%, 10)(F / P, 5.66 \%, 10)]}{0.12-0.0566} \\
& =-\$ 24,230,790-\frac{625,000(0.4416)}{0.0634} \\
& =-\$ 28,584,102
\end{aligned}
$$

(c) $\quad \mathrm{i}_{\mathrm{r}}=\frac{0.12-0.0769}{1.0769}=0.04$ or 4% per year

Assuming the base year to be the present $(b=0)$, we have:

$$
\mathrm{AW}(4 \%)=-\$ 28,584,102(\mathrm{~A} / \mathrm{P}, 4 \%, 10)=-\$ 3,524,420
$$

$\mathbf{8 - 1 5} \quad$ (a) $\$ 10,000(6.07)=\$ 60,700$
(b) $\mathrm{R} \$_{20}=\$ 60,700(\mathrm{P} / \mathrm{F}, 6 \%, 20)=\$ 18,926.50$
(c) $\$ 10,000\left(1+\mathrm{i}_{\mathrm{r}}\right)^{20}=\$ 18,926.50$
$\mathrm{i}_{\mathrm{r}}=3.24 \%$
(d) $\mathrm{P}_{2}=\$ 10,000(1-0.18)(1-0.33)=\$ 5,658$
$\$ 5,658\left(1+\mathrm{i}_{\mathrm{m}}\right)^{18}=\$ 60,700$
$\mathrm{i}_{\mathrm{m}}=14.1 \%$

8-16 We can equate future worth's in 20 years. The FW of her savings plan will be $\mathrm{P}(1.05)^{20}$ and the FW of the $\$ 400,000$ if it were to inflate at 7% per year is $\$ 400,000(1.07)^{20}$. P is what we are trying to determine. So we can equate these two amounts as follows:

$$
\mathrm{P}(1.05)^{20}=\$ 400,000(1.07)^{20} \text { or } \mathrm{P}=\$ 400,000(1.07 / 1.05)^{20} .
$$

This equals $\$ 400,000(1.01905)^{20}=\$ 583,377$. She must now put away more than $\$ 400,000$ because inflation each year is greater than the interest rate on her savings account. This demonstrates the injurious effect of high inflation in an economy.

8-17 In 10 years, the investor will receive the original $\$ 10,000$ plus interest that has accumulated at 10% per year, in actual dollars. Therefore, the market rate of return $\left(\mathbb{R R}_{m}\right)$ is 10%.

Then, based on Equation 8-5, the real rate of return $\left(\operatorname{IRR}_{r}\right)$ is:

$$
\mathrm{i}_{\mathrm{r}}^{\prime}=\frac{\mathrm{i}_{\mathrm{m}}-\mathrm{f}}{1+\mathrm{f}}=0.0185, \text { or } 1.85 \% \text { per year }
$$

8-18 (a) Lump sum interest in $2010=(\$ 2.4$ billion $/ 5)(\mathrm{F} / \mathrm{A}, 10 \%, 5)-2.4$ billion $=\$ 530,448,000$
(b) $\mathrm{C}_{2005}=(\$ 2.4$ billion $)\left(\frac{200,000}{150,000}\right)^{0.91}=\$ 3.12$ billion
(c) $\mathrm{C}_{2015}=(\$ 3.12$ billion $)(\mathrm{F} / \mathrm{P}, 9.2 \%, 10)=\$ 7.52$ billion

8-19 (a) $\quad \mathrm{R} \$_{28}=\$ 690(\mathrm{P} / \mathrm{F}, 3.2 \%, 28)=\$ 285.64$
(b) $\$ 850=\$ 690(1.032)^{\mathrm{N}} ; \quad \mathrm{N}=6.62$ years
(c) $\$ 285.56=\$ 850\left(1+i_{\mathrm{r}}\right)^{28} ; \mathrm{i}_{\mathrm{r}}=-3.82 \%$

This was not a good investment to have made in January of 1980.

8-20 (a) Cost in year $2020=\$ 15,000(\mathrm{~F} / \mathrm{P}, 6 \%, 15)=\$ 35,949$
Cost in year $2021=\$ 38,106$
Cost in year 2022 $=\$ 40,392$
Cost in year $2023=\$ 42,816$
Total (un-discounted dollars) $=\$ 157,263$
(b) Because $\mathrm{i}_{\mathrm{m}}=\bar{f}, \mathrm{P}_{2020}=4(\$ 35,949)=\$ 143,796$
so $\mathrm{A}=\$ 143,796(\mathrm{~A} / \mathrm{P}, 0.5 \%, 156$ months)
$=\$ 143,796$ (0.00925)
$=\$ 1,330$ per month

8-21 (a) $\mathrm{R} \$=\$ 7.50(1.018)^{22}=\$ 11.10$ per thousand cubic feet
(b) $\mathrm{A} \$=\$ 7.50(1.032)^{22}=\$ 22.20$ per thousand cubic feet

8-22 (a) From Equation (8-1), we see that real dollars as of year $\mathrm{k}=0$ (today) is $\$ 1,107,706(\mathrm{P} / \mathrm{F}, 3 \%, 60)=$ $\$ 187,978$ which is still a tidy sum of purchasing power.
(b) When $\mathrm{f}=2 \%$ per year, we have $\mathrm{R} \$_{0}=\$ 1,107,706(\mathrm{P} / \mathrm{F}, 2 \%, 60)=\$ 337,629$. The impact of inflation is clear when you compare the results of Parts (a) and (b).
$\mathbf{8 - 2 3}$ (a) Cost in 10 years $=(\$ 3.75 / \mathrm{lb})(400 \mathrm{lb})\left(\frac{2,400 \mathrm{ft}^{2}}{2,200 \mathrm{ft}^{2}}\right)(1.085)^{10}=\$ 3,700$
(b) Left to student.

8-24 You've got to be kidding! You have foregone 10% per year earnings on your money to save 5% per year on postage stamps? Give me a break. The U.S. Postal Service might just get away with this ruse. Only time will tell.

$$
\mathrm{PW}=\$ 2.5 \text { billion } \frac{[1-(0.0668)(3.2620)]}{0.07-0.03}=\$ 48.88 \text { billion and } \mathrm{AW}=\$ 3.67 \text { billion. }
$$

With inflation considered in this problem, the taxpayers can afford to increase the subsidy for the F-T technology.

8-26 $\quad \$ 20,000=\$ 10,000\left(\mathrm{~F} / \mathrm{P}, \mathrm{i}_{\mathrm{m}}, 11\right)$ or $\mathrm{i}_{\mathrm{m}}=0.065(6.5 \%)$ per year. $\mathrm{i}_{\mathrm{r}}=\left(\mathrm{i}_{\mathrm{m}}-\mathrm{f}\right) /(1+\mathrm{f})=(0.065-0.03) /(1.03)=0.03398$ or 3.4% per year.

This is a failrly good return in real terms. Historically, real returns have been in the $2-3 \%$ per year ball park.

8-27 $\quad \mathrm{i}_{\mathrm{r}}=10.05 \%$ per year; $f=4.5 \%$ per year; $\bar{f}=\mathrm{e}_{\mathrm{j}}=6.3 \%$ per year

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{m}}=0.1005+0.045+(0.1005)(0.045)=0.15 \text { or } 15 \% \text { per year } \\
& \mathrm{i}_{\mathrm{CR}}=(0.15-0.063) / 0.063=0.0818 \text { or } 8.18 \% \text { per year } \\
& \mathrm{MV}_{7}=(0.15)(\$ 838,000)=\$ 125,700
\end{aligned}
$$

$$
\mathrm{PW}(15 \%)=-\$ 838,000-\$ 92,600(\mathrm{P} / \mathrm{A}, 8.18 \%, 7)+\$ 125,700(\mathrm{P} / \mathrm{F}, 15 \%, 7)=-\$ 1,269,908
$$

Annual Revenue $=\$ 1,269,908(\mathrm{~A} / \mathrm{P}, 15 \%, 7)=\$ 305,286$

8-28 Device A:

EOY	BTCF	d	TI	T(50\%)	ATCF
0	$-\$ 100,000$				$-\$ 100,000$
1	$-5,000$	$\$ 20,000$	$-\$ 25,000$	$\$ 12,500$	7,500
2	$-5,500$	32,000	$-37,500$	18,750	13,250
3	$-6,050$	19,200	$-25,250$	12,625	6,575
4	$-6,655$	11,520	$-18,175$	9,088	2,433
5	$-7,321$	11,520	$-18,841$	9,420	2,100
6	$-8,053$	5,760	$-13,813$	6,906	$-1,146$
				PW(8\%)	$-\$ 73,982$

Device B:

EOY	BTCF	d	TI	T(50\%)	ATCF
0	$-\$ 150,000$				$-\$ 150,000$
1	$-3,000$	$\$ 30,000$	$-\$ 33,000$	$\$ 16,500$	13,500
2	$-3,300$	48,000	$-51,300$	25,650	22,350
3	$-3,630$	28,800	$-32,430$	16,215	12,585
4	$-3,993$	17,280	$-21,273$	10,637	6,644
5	$-4,392$	17,280	$-21,672$	10,836	6,444
6	$-4,832$	8,640	$-13,472$	6,736	1,904
				PW(8\%)	$-\$ 97,879$

Device A should be selected to maximize after-tax present worth.

8-29
$\frac{\$ 20(\mathrm{~F} / \mathrm{P}, 22.5 \%, \mathrm{~N})}{\$ 10(\mathrm{~F} / \mathrm{P}, 13.1 \%, \mathrm{~N})}>5$. One approach would be to find the minimum value of N by trial and error.
At $\mathrm{N}=12$ years, the cost of an RA dose is $\$ 228.38$ and the cost of a diabetes inhaler use is $\$ 43.81$. The ratio of RA to diabetes is 5.21 , so $\mathrm{N}=12$ years wil "git 'er done."

8-30 Option 1: Software with 3 year upgrade agreement.

Year	(A) BTCF $(A \$)$	(B) Depreci- ation	Taxable Income: $\mathrm{C}=\mathrm{A}+\mathrm{B}$	Cash Flow for Income Taxes $\mathrm{D}=-\mathrm{t}(\mathrm{C})$	ATCF $(\mathrm{A} \$)$ $\mathrm{A}+\mathrm{D}$
0	$-\$ \mathrm{X}$	---	--	--	$-\$ \mathrm{X}$
1	0	$\$ \mathrm{X} / 3$	$-\$ \mathrm{X} / 3$	$\$ 0.1133 \mathrm{X}$	$\$ 0.1133 \mathrm{X}$
2	0	$\$ \mathrm{X} / 3$	$-\$ \mathrm{X} / 3$	$\$ 0.1133 \mathrm{X}$	$\$ 0.1133 \mathrm{X}$
3	0	$\$ \mathrm{X} / 3$	$-\$ \mathrm{X} / 3$	$\$ 0.1133 \mathrm{X}$	$\$ 0.1133 \mathrm{X}$

$\mathrm{PW}_{1}(20 \%)=-\$ \mathrm{X}+\$ 0.1133 \mathrm{X}(\mathrm{P} / \mathrm{A}, 20 \%, 3)$

Year	(A) BTCF $(A \$)$	(B) Depreci- ation	Taxable Income: C=A+B	Cash Flow for Income Taxes D $=-\mathrm{t}(\mathrm{C})$	ATCF $(\mathrm{A} \$)$ A+D
1	$-\$ 20,000$	---	$-\$ 20,000$	$\$ 6,800$	$-\$ 13,200$
2	$-22,000$	---	$-22,000$	7,480	$-14,520$
3	$-24,200$	---	$-24,200$	8,228	$-15,972$

$\mathrm{PW}_{2}(20 \%)=-\$ 13,200(\mathrm{P} / \mathrm{F}, 20 \%, 1)-\$ 14,520(\mathrm{P} / \mathrm{F}, 20 \%, 2)-\$ 15,972(\mathrm{P} / \mathrm{F}, 20 \%, 3)$ $=-\$ 30,326$

Set $\mathrm{PW}_{1}=\mathrm{PW}_{2}$ and solve for X .

$$
\begin{aligned}
-\$ \mathrm{X}+\$ 0.1133 \mathrm{X}(\mathrm{P} / \mathrm{A}, 20 \%, 3) & =-\$ 30,326 \\
-\$ 0.761 \mathrm{X} & =-\$ 30,326 \\
X & =\$ 39,836
\end{aligned}
$$

Therefore, $\$ 39,836$ could be spent for software with a 3 year upgrade agreement (i.e., Option 1).

8-31 $\quad \$ 1 / 0.55$ pound $=\$ 1.82$ per pound
$\$ 1.82$ per pound / 1.4 euro per pound $=\$ 1.30$ per euro, or 1 U.S. dollor will buy 0.77 euro.

8-32 In 2005 there was parity between the U.S. dollar and the Real. But in 2010 one Real is worth $\$ 0.50$ U.S., so the investment is now worth $\$ 50$ million and the bank has suffered a major loss. Conventional wisdom would be to cut the losses instead of chasing bad money with good money (i.e. sell out).

8-33 (a) In two years: $\$ 1(1.026)^{2}=6.4 \mathrm{X}$
or, $\$ 1=6.4 \mathrm{X} /(1.026)^{2}=6.08$ units of X .
(b) In three years: $\$ 1=(6.4 \mathrm{X})(1.026)^{3}$ $=6.91$ units of X .

8-34 (a) The value of 0.5 pound Sterling is 90 cents, so 5 cents can be saved on each item purchased in U.S. dollars.
(b) 100,000 items $\times \$ 0.05=\$ 5,000$ can be saved by purchasing in the U.S.
(a) $\mathrm{f}_{\mathrm{e}}=8 \%$ per year
$\mathrm{i}_{\mathrm{fm}}=0.26+0.08+(0.26)(0.08)=0.3608$, or 36.08% per year
(IRR on project in Country A currency)
(b) $f_{e}=-6 \%$ per year $\mathrm{i}_{\mathrm{fm}}=0.26+(-0.06)+(0.26)(-0.06)=0.1844$, or 18.44% per year (IRR on project in Country B currency)

8-36 Left to student.

EOY	NCF $(T-$ marks	Exchange Rate $(\mathrm{T}-$ marks/\$)	NCF $(\$)$	PW(18\%)
0	$-\$ 3,600,000$	20.000	$-\$ 180,000$	$-\$ 180,000$
1	450,000	22.400	20,089	17,025
2	$1,500,000$	25.088	59,790	42,941
3	$1,500,000$	28.099	53,383	32,489
4	$1,500,000$	31.470	47,664	24,585
5	$1,500,000$	35.247	42,557	18,602
6	$1,500,000$	39.476	37,998	14,074
7	$1,500,000$	44.214	33,926	10,649

Project is not economically acceptable.
(b) $\quad \mathrm{IRR}_{\mathrm{fm}}$ in terms of $\mathrm{T}-$ marks:

$$
\begin{aligned}
\mathrm{PW}\left(\mathrm{i}^{\prime} \%\right)=-3,600,000 & +450,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime} \%, 1\right) \\
& +1,500,000\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime} \%, 6\right)\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime} \%, 1\right)
\end{aligned}
$$

By linear interpolation, $\mathrm{i}^{\prime} \%=\mathrm{IRR}_{\mathrm{fm}}=0.2798$, or 28.0% per year.
(c) From Equation 8-7, we have:
$(\operatorname{IRR})_{U S}=\frac{\mathrm{IRR}_{\mathrm{fm}}-\mathrm{f}_{\mathrm{e}}}{1+\mathrm{f}_{\mathrm{e}}}=\frac{0.28-0.12}{1.12}=0.1429$, or $14.29 \%<18 \%$
Note: This confirms our recommendation in part (a).

8-38 100 euros $\times \$ 1.24=\$ 124$. The cost in U.S. dollars is $\$ 124+\$ 40=\$ 164$. Sanjay may think he is paying too much for the jewelry, but he goes ahead with the purchase anyway. He could have converted his 100 euros into U.S. dollars, but there is a 7.5 euro commission on the transaction. Or he could have kept his 100 euros for the next trip he makes to Europe and simply charge the purchase to his credit card.

8-39 $\quad i_{f m}=20 \%$ per year; $f_{e}=-2.2 \%$ per year
Current exchange rate $=\$ 1$ per 92 Z-Krons

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{US}}=\frac{0.20-(-0.022)}{1-0.022}=22.7 \% \\
& \begin{aligned}
\mathrm{PW}(22.7 \%) & =-\$ 168,000,000-\$ 32,000,000(\mathrm{P} / \mathrm{F}, 22.7 \%, 1) \\
& +\$ 69,000,000(\mathrm{P} / \mathrm{A}, 22.7 \%, 9)(\mathrm{P} / \mathrm{F}, 22.7 \%, 1) \\
& =-\$ 168,000,000-\$ 32,000,000(0.8150)+\$ 69,000,000(3.7065)(0.8150) \\
= & \$ 14,355,028>0
\end{aligned}
\end{aligned}
$$

Yes, this project will meet the company's economic decision criteria.
(a)

(b) $\mathrm{i}_{\mathrm{m}}=(1.05)(1.09524)-1=0.15=\underline{15 \%}$ per year

$$
\begin{aligned}
\mathrm{PW}= & -\$ 50,640(\mathrm{P} / \mathrm{F}, 15 \%, 1)-\$ 38,904(\mathrm{P} / \mathrm{F}, 15 \%, 2)-\$ 33,194(\mathrm{P} / \mathrm{F}, 15 \%, 3) \\
& -\$ 33,514(\mathrm{P} / \mathrm{F}, 15 \%, 4)-\$ 33,865(\mathrm{P} / \mathrm{F}, 15 \%, 5)-\$ 34,252(\mathrm{P} / \mathrm{F}, 15 \%, 6) \\
= & -\$ 146,084
\end{aligned}
$$

$$
\mathrm{EUAC}=\$ 146,084(\mathrm{~A} / \mathrm{P}, 15 \%, 6)=\$ 38,595
$$

8-41 Demand $=500$ million BTU/year; Efficiency $=80 \%, N=12$ years
$\mathrm{f}=10 \%$ per year; $\mathrm{b}=0$
MARR $=\mathrm{i}_{\mathrm{m}}=18 \%$ per year

$$
\text { Annual gas demand }=\left(\frac{500 \text { million Btu }}{0.8}\right)\left(\frac{1,000 \mathrm{ft}^{3} \text { of gas }}{\text { million Btu }}\right)=625,000 \mathrm{ft}^{3} \text { of gas }
$$

$$
\mathrm{A}_{1}=\frac{\$ 7.50(1.1)}{1000 \mathrm{ft}^{3}}=\frac{\$ 8.25}{1000 \mathrm{ft}^{3}}
$$

$$
\begin{aligned}
\operatorname{PW}(18 \%) & =-\left(625,000 \mathrm{ft}^{3}\right)\left(\frac{\$ 8.25}{1000 \mathrm{ft}^{3}}\right) \frac{[1-(\mathrm{P} / \mathrm{F}, 18 \%, 12)(\mathrm{F} / \mathrm{P}, 10 \%, 12)]}{0.18-0.10} \\
& =-\left(625,000 \mathrm{ft}^{3}\right)\left(\frac{\$ 8.25}{1000 \mathrm{ft}^{3}}\right)(7.1176) \\
& =\underline{-\$ 36,700}
\end{aligned}
$$

8-42 (a) Cost of compressor replacement at EOY $8(\mathrm{~A} \$)=\$ 500(1+0.06)^{8}=\$ 797$
Annual maintenance expense: $\mathrm{A}_{1}(\mathrm{~A} \$)=\$ 100(1.06)=\$ 106$
Annual electricity expense: $\mathrm{A}_{1}(\mathrm{~A} \$)=\$ 680(1.10)=\$ 748$
$\mathrm{PW}(15 \%)=-\$ 2,500-\$ 797(\mathrm{P} / \mathrm{F}, 15 \%, 8)$

$$
\begin{gathered}
-\$ 106 \frac{[1-(P / F, 15 \%, 15)(F / P, 6 \%, 15)]}{0.15-0.06} \\
-\$ 748 \frac{[1-(P / F, 15 \%, 15)(F / P, 10 \%, 15)]}{0.15-0.10} \\
=\$ 2,500-\$ 797(0.3269)-\frac{\$ 106(0.70546)}{0.09}-\frac{\$ 748(0.48662)}{0.05}
\end{gathered}
$$

$$
=-\$ 10,871
$$

$\mathrm{A} \$: \mathrm{AW}(15 \%)=-\$ 10.871(\mathrm{~A} / \mathrm{P}, 15 \%, 15)=-\$ 1,859$
(b) $\mathrm{i}_{\mathrm{r}}=\frac{0.15-0.06}{1.06}=0.085$ or 8.5% per year $=-\$ 10,871(0.1204)=-\$ 1,309$

$$
\mathrm{d}_{\mathrm{k}}=(\$ 150,000-0) / 3=\$ 50,000
$$

Year	(A) Revenues (A\$)	(B) Expenses (A\$)	$\begin{gathered} \text { (C) } \\ \text { BTCF } \\ (\mathrm{A} \$) \\ \mathrm{A}+\mathrm{B} \end{gathered}$	(D)Depreci- ation	$\begin{gathered} \hline \text { (E) } \\ \text { Taxable } \\ \text { Income: } \\ C-D \end{gathered}$	(F) Cash Flow for Income Taxes $-\mathrm{t}(\mathrm{E})$	$\begin{gathered} \text { (G) } \\ \text { ATCF } \\ \text { (A\$) } \\ \text { C+F } \end{gathered}$
0		-\$150,000	-\$150,000	---	---	---	-\$150,000
1	\$84,000	-21,800	62,200	\$50,000	\$12,200	-\$6,100	56,100
2	88,200	-23,762	64,438	50,000	14,438	-7,219	57,219
3	92,610	-25,900	66,709	50,000	16,709	-8,355	58,354

For discounting purposes, $\mathrm{i}_{\mathrm{m}}=26 \%$ would be used since the ATCFs are expressed in actual dollars.

8-44 Annual revenues in year $k(A \$)=\$ 360,000(1.025)^{\mathrm{k}}$
Annual expenses in year $k(A \$)=-\$ 239,000(1.056)^{k}$
(a) The values in the following table are expressed in $\mathrm{A} \$$.

EOY	Annual Revenues	Annual Expenses	BTCF	Depr	TI	T(39\%)	ATCF (A\$)
0			$-\$ 220,000$	---	---	---	$-\$ 220,000$
1	$\$ 369,000$	$-\$ 252,384$	116,616	$\$ 44,000$	$\$ 72,616$	$-\$ 28,320$	88,296
2	378,225	$-266,518$	111,707	70,400	41,307	$-16,110$	95,597
3	387,681	$-281,442$	106,239	42,240	63,999	$-24,960$	81,279
4	397,373	$-297,203$	100,170	25,344	74,826	$-29,182$	70,988
5	407,307	$-313,847$	93,460	25,344	68,116	$-26,565$	66,895
6	417,490	$-331,422$	86,068	12,672	73,396	$-28,624$	57,444
6			40,000	--	40,000	$-15,600$	24,400

$\operatorname{PW}(10 \%)=\sum_{\mathrm{k}=0}^{6} \mathrm{ATCF}_{\mathrm{k}}(\mathrm{P} / \mathrm{F}, 10 \%, \mathrm{k})=\$ 136,557$
Total investment that can be afforded (including new equipment) $=$

$$
\$ 136,557+\$ 220,000=\$ 356,557
$$

(b) $\quad \mathrm{ATCF}_{\mathrm{k}}(\mathrm{R} \$)=\mathrm{ATCF}_{\mathrm{k}}(\mathrm{A} \$)(\mathrm{P} / \mathrm{F}, 4.9 \%, \mathrm{k})$

Year, k	ATCF k $(\mathrm{A} \$)$	$(\mathrm{P} / \mathrm{F}, 4.9 \%, \mathrm{k})$	$\mathrm{ATCF}_{\mathrm{k}}$ $(\mathrm{R} \$)$
0	$-\$ 220,000$	1.0000	$-\$ 220,000$
1	88,296	0.9533	84,173
2	95,597	0.9088	86,879
3	81,279	0.8663	70,412
4	70,988	0.8258	58,622
5	66,895	0.7873	52,666
6	57,444	0.7505	43,112
6	24,400	0.7505	18,312

8-45 Purchase (A\$ Analysis):

EOY	Investment / Market Value	Oper., Ins. \& Other Expenses (O,I,OE)		Maintenance Expense		BTCF		
0	-\$600,000	- \$27,560 ${ }^{\text {b }}$		- \$34,880 ${ }^{\text {c }}$		- \$600,000		
1				- 62,440				
2		- 29,214					38,019	- 67,233
3		- 30,966			41,441	- 72,407		
4		- 32,824			45,171	- 77,995		
5		- 34,794			49,236	- 84,030		
6		- 36,881		- 53,667		- 90,549		
6	101,355 ${ }^{\text {a }}$			101,355				
EOY	BTCF	Depr ${ }^{\text {d }}$	TI		T(34\%)	$\overline{\text { ATCF }}$		
EOY	- \$600,0							\$600,000
1	- 62,440	\$120,000	- \$182	440	\$62,030	- 410		
2	- 67,233	192,000	- 259	233	88,139	20,906		
3	- 72,407	115,200	- 187	607	63,786	- 8,621		
4	- 77,995	69,120	- 147	115	50,019	- 27,976		
5	- 84,030	69,120	- 153	150	52,071	- 31,959		
6	- 90,549	34,560	- 125	108	42,537	- 48,012		
6	101,355		101	355	- 34,461	66,894		

Notes:
${ }^{\mathrm{a}}(\mathrm{MV})_{6}=\$ 90,000(1.02)^{6}=\$ 101,355$
${ }^{\mathrm{b}}(\mathrm{O}, \mathrm{I}, \mathrm{OE})_{\mathrm{k}}=\$ 26,000(1.06)^{\mathrm{k}}$
${ }^{c}(\text { Maint })_{k}=\$ 32,000(1.09)^{k}$
${ }^{\mathrm{d}}$ Cost Basis $=\$ 600,000$
$\mathrm{i}_{\mathrm{m}}=0.13208+0.06+(0.13208)(0.06)=0.20$, or 20% per year
$\mathrm{FW}_{6}(\mathrm{~A} \$)=\sum_{\mathrm{k}=0}^{6} \mathrm{ATCF}_{\mathrm{k}}(\mathrm{F} / \mathrm{P}, 20 \%, 6-\mathrm{k})=-\$ 1,823,920$

Lease (A\$ Analysis):

EOY	Leasing Costs	 Other Expenses	Maint. Expense	BTCF
1	$-\$ 300,000$	$-\$ 27,560$	$-\$ 34,880$	$-\$ 362,440$
2	$-200,000$	$-29,214$	$-38,019$	$-267,233$
3	$-200,000$	$-30,966$	$-41,441$	$-272,407$
4	$-200,000$	$-32,824$	$-45,171$	$-277,995$
5	$-200,000$	$-34,794$	$-49,236$	$-284,030$
6	$-200,000$	$-36,881$	$-53,667$	$-290,549$

EOY	BTCF	Depr	TI	T(34\%)	ATCF $($ A $\$)$
1	$-\$ 362,440$	0	$-\$ 362,440$	$\$ 123,230$	$-\$ 239,210$
2	$-267,233$	0	$-267,233$	90,859	$-176,374$
3	$-272,407$	0	$-272,407$	92,618	$-179,789$
4	$-277,995$	0	$-277,995$	94,518	$-183,477$
5	$-284,030$	0	$-284,030$	96,570	$-187,460$
6	$-290,549$	0	$-290,549$	98,787	$-191,762$

$\mathrm{FW}_{6}(\mathrm{~A} \$)=\sum_{\mathrm{k}=0}^{6} \mathrm{ATCF}_{\mathrm{k}}(\mathrm{F} / \mathrm{P}, 20 \%, 6-\mathrm{k})=-\$ 1,952,551$
Therefore choose Purchase Alternative due to smaller FW of costs.

8-46 Assuming that EOY 1 cost for purchased components is $\$ 85,000,000$

EOY	Cash Flow (w)	Cash Flow (w/o)
0	$-20,000,000$	0
1	$-85,000,000$	$-85,000,000$
2	$-80,750,000$	$-85,000,000$
3	$-76,712,500$	$-85,000,000$
4	$-72,876,875$	$-85,000,000$
5	$-69,233,031$	$-85,000,000$
PW	$-300,467,957$	$-306,405,977$

$\mathrm{i}(\mathrm{r})=0.178947368$
$(\mathrm{P} / \mathrm{A}, \mathrm{i}(\mathrm{r}), 5)=3.134641881$
$\mathrm{PW}(\mathrm{w})=-20,000,000-(85,000,000 /(1-.05))[\mathrm{P} / \mathrm{A},((0.12+0.05) /(1-0.05)), 5]$ $=-300,467,957.81$
$\mathrm{PW}(\mathrm{w} / \mathrm{o})=-85,000,000(\mathrm{P} / \mathrm{A}, 12 \%, 5)=-306,405,977.20$
PW $($ Difference $)=\$ 5,938,019.39$
$\mathrm{AW}($ Difference $)=\$ 1,647,264.37$
Assuming that EOY 1 cost for purchased components is $\$ 85,000,000(1-0.05)$

EOY	Cash Flow (w)	Cash Flow (w/o)
0	$-20,000,000.00$	0.00
1	$-80,750,000.00$	$-85,000,000.00$
2	$-76,712,500.00$	$-85,000,000.00$
3	$-72,876,875.00$	$-85,000,000.00$
4	$-69,233,031.25$	$-85,000,000.00$
5	$-65,771,379.69$	$-85,000,000.00$
PW	$-286,444,559.92$	$-306,405,977.20$

$\mathrm{i}(\mathrm{r})=0.178947368$
$(\mathrm{P} / \mathrm{A}, \mathrm{i}(\mathrm{r}), 5)=3.134641881$
$\mathrm{PW}(\mathrm{w})=-20,000,000-85,000,000[\mathrm{P} / \mathrm{A},((0.12+0.05) /(1-0.05)), 5]$ $=-286,444,559.92$
$\mathrm{PW}(\mathrm{w} / \mathrm{o})=-85,000,000(\mathrm{P} / \mathrm{A}, 12 \%, 5)=-306,405,977.20$
$\mathrm{PW}($ Difference $)=\$ 19,961,417.28$
AW $($ Difference $)=\$ 5,537,491.42$

8-47 Left to student.

8-48 This is intended to be a tailor-made exercise (at the discretion of the instructor).
Assumptions:

- Salary and fringe benefits for the new analyst will be $\$ 28,000(1.3)=\$ 36,400$ in year 1 purchasing power. This increases 6% per year thereafter.
- Staff retirements occur at the end of the year. Therefore, there are no realized savings in year 1. Savings of $\$ 16,200$ in year $2, \$ 32,400$ in year 3 , and $\$ 48,600$ each year thereafter are expressed in real purchasing power keyed to year 0 .
- First-year savings on purchases are 3% of $\$ 1,000,000(1.10)=\$ 33,000$ and this increases by 10% per year thereafter.
- Contingency costs will not be considered as cash flows until they are spent (we assume they won't be spent).
- The effective income tax rate is $=38 \%$.
- There is no market value at the end of the 6 -year project life.

EOY	Capital Investment	Service Contract	New Analyst	Manpower Savings	Savings on Purchases	Total BTCF
0	$-\$ 80,000$					$-\$ 80,000$
1		$-\$ 6,000$	$-\$ 36,400$	$\$$	0	$\$ 33,000$
2		$-6,000$	$-38,584$	18,202	36,300	9,900
3		$-6,000$	$-40,899$	38,588	39,930	31,619
4		$-6,000$	$-43,353$	61,356	43,923	55,926
5		$-6,000$	$-45,954$	65,037	48,315	61,398
6		$-6,000$	$-48,711$	68,940	53,147	67,376

EOY	BTCF	Depr.	TI	T(38\%)	ATCF (A\$)
0	$-\$ 80,000$	--	--	--	$-\$ 80,000$
1	$-9,400$	$\$ 16,000$	$-\$ 25,400$	$\$ 9,652$	252
2	9,918	25,600	$-15,682$	5,959	15,877
3	31,619	15,360	16,259	$-6,178$	25,441
4	55,926	9,216	46,710	$-17,750$	38,176
5	61,398	9,216	52,182	$-19,829$	41,569
6	67,376	4,608	62,768	$-23,852$	43,524

$\operatorname{PW}(15 \%)=\sum_{\mathrm{k}=0}^{6} \operatorname{ATCF}_{\mathrm{k}}(\mathrm{P} / \mathrm{F}, 15 \%, \mathrm{k})=\$ 10,263$

In view of MARR of 15%, this investment should be undertaken. The instructor may wish to ask the class to explore various "what if" questions involving changes in the assumptions listed above. For example, how much change would occur in the PW value if we assume staff retirements occur at the beginning of the year?)

Solutions to Spreadsheet Exercises

8-49 See P8-49.xls.
Typical solution for $\left({ }^{*}\right)$ is $(\mathrm{P} / \mathrm{F}, 4 \%, 10)=0.6756$, so 32.44% of purchasing power has been lost due to inflation. This rounds to -32%.

	Erosion of Money's Purchasing Powe (years)			
		10	15	25
Inflation	2\%	-18\%	-26\%	-39\%
Rate	3\%	-26\%	-36\%	-52\%
	4\%	-32\%*	-44\%	-62\%

8-50 See P8-50.xls.

8-51 $f=4.5 \%$ per year; $i_{m}($ after $-\operatorname{tax})=12 \%$ per year; $t=40 \% ; b=0$
increase rate $=6 \%$ per year (applies to annual expenses, replacement costs, and market value)
Analysis period $=20$ years; Useful life $=10$ years
MACRS (GDS) 5-year property class
Capital investment (and cost basis, B) $\quad=-\$ 260,000$
Market value (at end of year 10) in year 0 dollars $=\$ 50,000$
Annual expenses (in year 0 dollars) $=-\$ 6,000$
Annual property tax $=4 \%$ of capital investment (does not inflate)
Assume like replacement at end of year 10.

EOY	Annual Expenses	Property Taxes	BTCF	Depr.	TI	T(40\%)	ATCF (A\$)	ATCF (R\$)
0			$-\$ 260,000$				$-\$ 260,000$	$-\$ 260,000$
1	$-\$ 6,360$	$-\$ 10,400$	$-16,760$	52,000	$-68,760$	27,504	10,744	10,281
2	$-6,742$	$-10,400$	$-17,142$	83,200	$-100,342$	40,137	22,995	21,057
3	$-7,146$	$-10,400$	$-17,546$	49,920	$-67,466$	26,986	9,440	8,272
4	$-7,575$	$-10,400$	$-17,975$	29,952	$-47,927$	19,171	1,196	1,003
5	$-8,029$	$-10,400$	$-18,429$	29,952	$-48,381$	19,352	923	741
6	$-8,511$	$-10,400$	$-18,911$	14,976	$-33,887$	13,555	$-5,356$	$-4,113$
7	$-9,022$	$-10,400$	$-19,422$	0	$-19,422$	7,769	$-11,653$	$-8,563$
8	$-9,563$	$-10,400$	$-19,963$	0	$-19,963$	7,985	$-11,978$	$-8,423$
9	$-10,137$	$-10,400$	$-20,537$	0	$-20,537$	8,215	$-12,322$	$-8,292$
10	$-10,745$	$-10,400$	$-21,145$	0	$-21,145$	8,458	$-12,687$	$-8,170$
10			89,542		89,542	$-35,817$	53,725	34,595
10			$-465,620$				$-465,620$	$-299,826$
11	$-11,390$	$-18,625$	$-30,015$	93,124	$-123,139$	49,256	19,241	11,856
12	$-12,073$	$-18,625$	$-30,698$	148,998	$-179,696$	71,878	41,180	24,282
13	$-12,798$	$-18,625$	$-31,423$	89,399	$-120,822$	48,329	16,906	9,540
14	$-13,565$	$-18,625$	$-32,190$	53,639	$-85,829$	34,332	2,142	1,157
15	$-14,379$	$-18,625$	$-33,004$	53,639	$-86,643$	34,657	1,653	854
16	$-15,242$	$-18,625$	$-33,867$	26,820	$-60,687$	24,275	$-9,592$	$-4,743$
17	$-16,157$	$-18,625$	$-34,782$	0	$-34,782$	13,913	$-20,869$	$-9,875$
18	$-17,126$	$-18,625$	$-35,751$	0	$-35,751$	14,300	$-21,451$	$-9,713$
19	$-18,154$	$-18,625$	$-36,779$	0	$-36,779$	14,712	$-22,067$	$-9,562$
20	$-19,243$	$-18,625$	$-37,868$	0	$-37,868$	15,147	$-22,721$	$-9,421$
20			160,357		160,357	$-64,143$	96,214	39,894

* $\operatorname{ATCF}(\mathrm{R} \$)=\operatorname{ATCF}(\mathrm{A} \$) \times 1 /(1.045)^{\mathrm{k}}$
$\mathrm{i}_{\mathrm{r}}=\frac{0.12-0.045}{1.045}=0.0718$ or 7.18% per year
$\mathrm{PW}=\sum_{\mathrm{k}=0}^{20} \mathrm{ATCF}_{\mathrm{k}}(\mathrm{A} \$)(\mathrm{P} / \mathrm{F}, 12 \%, \mathrm{k})=\sum_{\mathrm{k}=0}^{20} \mathrm{ATCF}_{\mathrm{k}}(\mathrm{R} \$)(\mathrm{P} / \mathrm{F}, 7.18 \%, \mathrm{k})=-\$ 359,665$

Solutions to Case Study Exercises

8-52 $\quad \operatorname{PW}($ maintenance costs $)=\frac{A_{1}[1-(P / F, 8 \%, 5)(F / P, 4 \%, 5)]}{0.08-0.04}$

$$
=A_{1}(4.29785)
$$

where $A_{1}=\$ 1,000$ for the induction motor and $A_{1}=\$ 1,250$ for the synchronous motor.

$$
\begin{aligned}
\mathrm{PW}(\text { electricity costs }) & =\frac{A_{1}[1-(P / F, 8 \%, 5)(F / P, 5 \%, 5)]}{0.08-0.05} \\
& =A_{1}(4.37834)
\end{aligned}
$$

where $A_{1}=\$ 50,552$ for the induction motor and $A_{1}=\$ 55,950$ for the synchronous motor.

$$
\begin{aligned}
\mathrm{PW}_{\mathrm{TC}}(\text { induction motor }) & =\$ 17,640+\$ 1,000(4.29785)+\$ 50,552(4.37834) \\
& =\$ 17,640+\$ 4,298+\$ 221,334 \\
& =\$ 243,272
\end{aligned} \quad \begin{aligned}
& \\
&=\$ 274,840 \\
&=\$ 24,500+\$ 1,250(4.29785)+\$ 55,950(4.37834) \\
& \\
& \\
& \\
& \mathrm{PW}_{\mathrm{TC}}(\text { synchronous motor })=\$ 272+\$ 244,968 \\
&=(3)(\$ 243,272)+[\$ 17,640+\$ 4,298+(350 / 400)(\$ 221,334)] \\
&=\$ 945,421 \\
& \mathrm{PW}_{\mathrm{TC}}(\mathrm{~B})=(3)(\$ 274,840)+[\$ 24,500+\$ 5,372+(50 / 500)(\$ 244,968)] \\
&=\$ 878,889 \\
& \mathrm{PW}_{\mathrm{TC}}(\mathrm{C})=(3)(\$ 243,272)+[\$ 24,500+\$ 5,372+(350 / 500)(\$ 244,968)] \\
&=\$ 931,166 \\
& \mathrm{PW}_{\mathrm{TC}}(\mathrm{D})=(3)(\$ 274,840)+[\$ 17,640+\$ 4,298+(50 / 400)(\$ 221,334)] \\
&=\$ 874,125
\end{aligned}
$$

Option (D) has the lowest present worth of total costs. Thus, the recommendation is still to power the assembly line using three 500 hp synchronous motors operated at a power factor of 1.0 and one 400 hp induction motor.

8-53 PW(electricity costs) $=\frac{A_{1}[1-(P / F, 8 \%, 8)(F / P, 6 \%, 8)]}{0.08-0.06}$

$$
=A_{1}(6.9435)
$$

where $A_{1}=\$ 50,552$ for the induction motor and $A_{1}=\$ 55,950$ for the synchronous motor.

$$
\begin{aligned}
\mathrm{PW}_{\mathrm{TC}}(\text { induction motor }) & =\$ 17,640+\$ 1,000(6.5136)+\$ 50,552(6.9435) \\
& =\$ 17,640+\$ 6,514+\$ 351,008 \\
& =\$ 375,162 \\
& \\
& \\
& =\$ 421,131 \\
\mathrm{PW}_{\mathrm{TC}}(\text { synchronous motor }) & =\$ 24,500+\$ 1,250(6.5136)+\$ 55,950(6.9435) \\
& =\$ 24,500+\$ 8,142+\$ 388,489 \\
& \\
\mathrm{PW}_{\mathrm{TC}}(\mathrm{~A}) & =(3)(\$ 375,162)+[\$ 17,640+\$ 6,514+(350 / 400)(\$ 351,008)] \\
& =\$ 1,456,772 \\
\mathrm{PW}_{\mathrm{TC}}(\mathrm{~B}) & =(3)(\$ 421,131)+[\$ 24,500+\$ 8,142+(50 / 500)(\$ 388,489)] \\
& =\$ 1,334,884 \\
\mathrm{PW}_{\mathrm{TC}}(\mathrm{C}) & =(3)(\$ 375,162)+[\$ 24,500+\$ 8,142+(350 / 500)(\$ 388,489)] \\
& =\$ 1,430,070 \\
\mathrm{PW}_{\mathrm{TC}}(\mathrm{D}) & =(3)(\$ 421,131)+[\$ 17,640+\$ 6,514+(50 / 400)(\$ 351,008)] \\
& =\$ 1,331,423
\end{aligned}
$$

Option (D) has the lowest present worth of total costs. Thus, the recommendation is still to power the assembly line using three 500 hp synchronous motors operated at a power factor of 1.0 and one 400 hp induction motor.

8-54 The following four options will be considered:
(A) Four induction motors (three at 400 hp , one at 100 hp)
(B) Three synchronous motors (two at 500 hp , one at 300 hp)
(C) Three induction motors at 400 hp plus one synchronous motor at 100 hp
(D) Two synchronous motors at 500 hp plus one induction motor at 300 hp .

$$
\begin{aligned}
\mathrm{PW}_{\mathrm{TC}}(\mathrm{~A}) & =(3)(\$ 364,045)+[\$ 17,640+\$ 6,514+(100 / 400)(\$ 339,891)] \\
& =\$ 1,201,262 \\
& \\
\mathrm{PW}_{\mathrm{TC}}(\mathrm{~B}) & =(2)(\$ 408,827)+[\$ 24,500+\$ 8,142+(300 / 500)(\$ 376,185)] \\
& =\$ 1,076,007 \\
\mathrm{PW}_{\mathrm{TC}}(\mathrm{C}) & =(3)(\$ 364,045)+[\$ 24,500+\$ 8,142+(100 / 500)(\$ 376,185)] \\
& =\$ 1,200,014 \\
& \\
\mathrm{PW}_{\mathrm{TC}}(\mathrm{D}) & =(2)(\$ 408,827)+[\$ 17,640+\$ 6,514+(300 / 400)(\$ 339,891)] \\
& =\$ 1,096,726
\end{aligned}
$$

Option (B) has the lowest present worth of total costs. Thus, the recommendation is to power the assembly line using three 500 hp synchronous motors: two operated at 500 hp and one at 300 hp .

Solutions to FE Practice Problems

8-55 Expected cost of Machine in $2004=\$ 2,550(1.07)^{4}=\$ 3,342.53$
True percentage increzse in cost $=\frac{\$ 3,930-\$ 3.342 .53}{\$ 3,343.53} \times 100 \%=17.58 \%$
Select (d)

8-56 $\quad i_{r}=0.07 ; f=0.09$
$\mathrm{i}_{\mathrm{m}}=0.07+0.09+(0.07)(0.09)=0.1663$

Select (a)

8-57 By using Equation (8-1), we have $\mathrm{R} \$=\$ 1(\mathrm{P} / \mathrm{F}, 2.4 \%, 44)=\$ 0.3522$.

Select (b)

8-58 A\$ Analysis: $\mathrm{i}_{\mathrm{m}}-0.098+0.02+(0.098)(0.02)=0.12$ or 12%
$\mathrm{PW}_{\mathrm{A}}(12 \%)=-\$ 27,000+\$ 4,000(\mathrm{P} / \mathrm{A}, 12 \%, 5)=-\$ 2,581$
$\mathrm{PW}_{\mathrm{B}}(12 \%)=-\$ 19,000+\$ 5,000(\mathrm{P} / \mathrm{A}, 12 \%, 5)=-\$ 976$
Neither alternative is acceptable.
Select (c)

8-59 $\quad \mathrm{A}_{1}=\$ 25,000(1.04)=\$ 26,000$

$$
\begin{aligned}
\mathrm{PW} & =\frac{\$ 26,000[1-(P / F, 7 \%, \infty)(F / P, 4 \%, \infty]}{0.07-0.04} \\
& =\frac{\$ 26,000}{0.03}\left[1-\frac{(1.07)^{\infty}}{(1.07)^{\infty}}\right] \\
& =\$ 866,667
\end{aligned}
$$

Select (a)

Select (c)

8-61 \$1 U.S. = 0.75 Euro
$\$ 67$ U.S. $=67(0.75)=50.25$ Euro

Select (b)

Solutions to Chapter 9 Problems

9-1 Defender (old lift truck):

Using the outsider viewpoint, the investment value of the old lift truck is its current market value.
Defender: $\quad \mathrm{PW}(20 \%)=-\$ 7,000-\$ 8,000(\mathrm{P} / \mathrm{A}, 20 \%, 5)=-\$ 30,925$
Challenger: $\mathrm{PW}(20 \%)=-\$ 22,000-\$ 5,100(\mathrm{P} / \mathrm{A}, 20 \%, 5)+\$ 9,000(\mathrm{P} / \mathrm{F}, 20 \%, 5)$ $=-\$ 33,635$

Keep the old lift truck $\left(\mathrm{PW}_{\text {Defender }}>\mathrm{PW}_{\text {Challenger }}\right)$.

9-2 $\mathrm{AW}_{\text {Defender }}(20 \%)=-\$ 40,200(\mathrm{~A} / \mathrm{P}, 20 \%, 6)-\$ 1,400-\$ 1,500(\mathrm{~A} / \mathrm{F}, 20 \%, 6)=-\$ 13,579$
$\mathrm{AW}_{\text {Challenger }}(20 \%)=-\$ 56,600(\mathrm{~A} / \mathrm{P}, 20 \%, 10)-\$ 1,000+\$ 7,000(\mathrm{~A} / \mathrm{F}, 20 \%, 10)=-\$ 14,206$
Select the Defender.

9-3 Old Crane (Defender):

Using the outsider viewpoint, the investment value of the defender is its current market value plus the cost of the overhaul required to keep it in service.

Capital investment $=\$ 8,000+\$ 4,000=\$ 12,000$
Annual O\&M costs $=\$ 3,000$
Market value (EOY 10) = \$0
$\mathrm{AW}(10 \%)=-\$ 12,000(\mathrm{~A} / \mathrm{P}, 10 \%, 10)-\$ 3,000=-\$ 4,952$
New Crane (Challenger):
Capital investment $=\$ 18,000$
Annual O\&M costs $=\$ 1,000$
Market value $($ EOY 10 $)=\$ 4,000$
$\operatorname{AW}(10 \%)=-\$ 18,000(\mathrm{~A} / \mathrm{P}, 10 \%, 10)-\$ 1,000+\$ 4,000(\mathrm{~A} / \mathrm{F}, 10 \%, 10)=-\$ 3,678$
Replace the old crane $\left(\mathrm{AW}_{\text {Challenger }}>\mathrm{AW}_{\text {Defender }}\right)$.
(a)

	BOY					
EOY k	Amount	Deprec.	Interest	C_{k} Oper. Exp.	Total Cost For Year k (with Obsol.)	Average Cost
1	$\$ 80,000$	$\$ 80,000$	0	$\$ 10,000$	$\$ 94,000$	$\$ 94,000$
2	0	0	0	16,000	20,000	57,000
3	0	0	0	22,000	26,000	46,667
4	0	0	0	28,000	32,000	43,000
5	0	0	0	34,000	38,000	42,000
6	0	0	0	40,000	44,000	42,333

The economic life is 5 years.
(b)

	BOY EOY k Amount	Deprec.	Interest	C_{k} Oper. Exp.	Total Cost For Year k (no Obsol.)	Average Cost
1	$\$ 80,000$	$\$ 80,000$	0	$\$ 10,000$	$\$ 90,000$	$\$ 90,000$
2	0	0	0	16,000	16,000	53,000
3	0	0	0	22,000	22,000	42,667
4	0	0	0	28,000	28,000	39,000
5	0	0	0	34,000	34,000	38,000
6	0	0	0	40,000	40,000	38,333

The economic life is 5 years. This is the same answer as for Part (a), so a constant expense over time can be ignored in calculating economic life.

9-5 \quad For $\mathrm{N}=1, \mathrm{EUAC}=\$ 13,200$
For $\mathrm{N}=2$, EUAC $=\$ 6,914$
For $\mathrm{N}=3$, EUAC $=\$ 4,825$
For $\mathrm{N}=4$, EUAC $=\$ 4,217$
For $\mathrm{N}=5$, EUAC $=\$ 3,854$
For $\mathrm{N}=6, \mathrm{EUAC}=\$ 3,937$
For higher years, the EUAC increases, so $\mathrm{N}^{*}=5$ years for the challenger.

EOY	Market Value	O\&M	Market Value	O\&M
0	$\$ 42,500$	--	$\$ 25,000$	--
1	$\$ 31,00$	$\$ 10,000$	$\$ 17,000$	$\$ 14,000$
2	$\$ 25,000$	$\$ 12,500$	--	--

Challenger

Year	Market Value	Loss in Value	Cost of Capital	O\&M	Marginal Cost	EUAC
0	$\$ 42,500.00$	--	--	--	--	--
1	$\$ 31,000.00$	$\$ 11,500.00$	$\$ 6,375.00$	$\$ 10,000.00$	$\$ 27,875.00$	$\$ 27,875.00$
2	$\$ 25,000.00$	$\$ 6,000.00$	$\$ 4,650.00$	$\$ 12,500.00$	$\$ 23,150.00$	$\$ 25,677.33$

Defender

Year	Market Value	Loss in Value	Cost of Capital	O\&M	Marginal Cost	EUAC
0	$\$ 25,000.00$	--	--	--	--	--
1	$\$ 17,000.00$	$\$ 8,000.00$	$\$ 3,750.00$	$\$ 14,000.00$	$\$ 25,750.00$	Not necessary to calculate EUAC!

Min(EUAC) of Challenger < Marginal Cost of keeping Defender for 1 additional year; therefore, Replace Immediately

EOY	MV@EOY	Loss in Value	Cost of Capital	O\&M	Marginal Cost	EUAC
0	$\$ 50,000.00$	--	--	--	---	--
1	$\$ 40,000.00$	$\$ 10,000.00$	$\$ 5,000.00$	$\$ 13,000.00$	$\$ 28,000.00$	$\$ 28,000.00$
2	$\$ 32,000.00$	$\$ 8,000.00$	$\$ 4,000.00$	$\$ 15,500.00$	$\$ 27,500.00$	$\$ 27,761.90$
3	$\$ 24,000.00$	$\$ 8,000.00$	$\$ 3,200.00$	$\$ 18,000.00$	$\$ 29,200.00$	$\$ 28,196.37$
4	$\$ 16,000.00$	$\$ 8,000.00$	$\$ 2,400.00$	$\$ 20,500.00$	$\$ 30,900.00$	$\$ 28,778.93$

Defender

EOY	MV@EOY	Loss in Value	Cost of Capital	O\&M	Marginal Cost	EUAC
0	$\$ 35,000.00$	--	--	--	---	--
1	$\$ 25,000.00$	$\$ 10,000.00$	$\$ 3,500.00$	$\$ 18,500.00$	$\$ 32,000.00$	
2	$\$ 21,000.00$	$\$ 4,000.00$	$\$ 2,500.00$	$\$ 21,000.00$	$\$ 27,500.00$	$\$ 29,857.14$
3	$\$ 17,000.00$	$\$ 4,000.00$	$\$ 2,100.00$	$\$ 23,500.00$	$\$ 29,600.00$	
4	$\$ 13,000.00$	$\$ 4,000.00$	$\$ 1,700.00$	$\$ 26,000.00$	$\$ 31,700$	

The minimum EUAC of the Challenger is less than the marginal cost of keeping the Defender for one more year. Therefore, the Defender should be replaced immediately.

Year	Capital Recovery Amount	Expenses for Year	Total	EUAC
1	$\$ 4,000(0.15)+(4,000-3,000)=\$ 1,600$	$\$ 20,000$	$\$ 21,600$	$\$ 21,600^{*}$
2	$\$ 3,000(0.15)+(3,000-2,500)=\$ 950$	$\$ 25,000$	$\$ 25,950$	$\$ 23,622$
3	$\$ 2,500(0.15)+(2,500-2,000)=\$ 875$	$\$ 30,000$	$\$ 30,875$	$\$ 25,713$

*The economic life of the "defender" is 1 year, and the EUAC during this year is $\$ \underline{21,600}$.
Improved Machine (Challenger)
Useful life is 12 years; Find EUAC(15\%) over this period of time.

$$
\operatorname{EUAC}(15 \%)=\$ 30,000(\mathrm{~A} / \mathrm{P}, 15 \%, 12)-\$ 2,000(\mathrm{~A} / \mathrm{F}, 15 \%, 12)+\$ 16,000=\$ \underline{1,466}
$$

Because $\$ 21,466$ is less than $\$ 21,600$, the new improved machine should replace the present machine immediately.

9-10 The repeatability assumption and the AW method (over one useful life cycle) are used in the comparison of the two robots. The use of repeatability as a simplified modeling approach can be supported in this case.

The estimated annual expenses for the defender are a geometric cash flow sequence (Chapter 4). The negative estimated market value $(-\$ 1,500)$ indicates an expected net cost for the disposal of the asset at the end of six years.

$$
\begin{aligned}
\mathrm{AW}_{\mathrm{D}}(25 \%)= & -(\$ 38,200+\$ 2,000)(\mathrm{A} / \mathrm{P}, 25 \%, 6) \\
& -\frac{\$ 1,400[1-(\mathrm{P} / \mathrm{F}, 25 \%, 6)(\mathrm{F} / \mathrm{P}, 8 \%, 6)]}{0.25-0.08}(\mathrm{~A} / \mathrm{P}, 25 \%, 6) \\
= & -\$ 15,383
\end{aligned}
$$

and, for the challenger, the AW over its useful life is

$$
\begin{aligned}
A W_{C}(25 \%)= & -(\$ 51,000+\$ 5,500)(A / P, 25 \%, 10) \\
& -[\$ 1,000(P / A, 25 \%, 10)+\$ 150(P / G, 25 \%, 10)](A / P, 25 \%, 10) \\
& +\$ 7,000(A / F, 25 \%, 10) \\
= & -\$ 17,035
\end{aligned}
$$

The defender should be retained because the AW over its useful life has the least negative value (-\$15,382).

9-11 The overpass can be reinforced to extend its life for 5 years and then be replaced by a new concrete overpass. An alternative is to build the new concrete overpass immediately. Coterminate the study period at 40 years.

Cash Flow Analysis:

EOY	Reinforce Now, Replace Later	Replace with New Overpass Now	Δ (Replace Now - Reinforce)
0	$-\$ 36,000^{\mathrm{a}}$	$-\$ 140,000$	$-\$ 104,000$
1	0	$3,200^{\mathrm{b}}$	3,200
2	0	3,200	3,200
3	0	3,200	3,200
4	0	3,200	3,200
5	0	3,200	3,200
5	$-\$ 124,000^{\mathrm{c}}$	0	124,000
$6 \rightarrow 40$	0	0	0^{d}

${ }^{\text {a }}-\$ 22,000$ (reinforcement) $-\$ 14,000(\mathrm{MV}$ of scrap foregone) $=-\$ 36,000$
${ }^{\mathrm{b}}$ Savings in annual expenses
${ }^{\text {c }} \$ 16,000$ (scrap value) $-\$ 140,000($ investment in new overpass) $=-\$ 124,000$
${ }^{d}$ The same overpass is in place during years $6-40$, thus there is no difference in the annual expenses.

$$
\begin{aligned}
\mathrm{PW}_{\Delta}(10 \%) & =-\$ 104,000+\$ 3,200(\mathrm{P} / \mathrm{A}, 10 \%, 5)+\$ 124,000(\mathrm{P} / \mathrm{F}, 10 \%, 5) \\
& =-\$ 14,880<0
\end{aligned}
$$

It is more economical to reinforce the existing bridge and delay its replacement.

9-12 (a) 3,600 gallons of gasoline will be required to drive the car averaging 27.5 mpg , and 2,750 gallons will be required at 36 mpg . The fuel savings will be 850 gallons over the life of the car. At $\$ 3$ per gallon, this amounts to a savings of $\$ 2,550$ over 99,000 miles of driving. The carbon dioxide emissions "saved" $=(0.1 \mathrm{lb} / \mathrm{mi})(99,000 \mathrm{mi})=9,900 \mathrm{lb}$ of CO_{2}.
(b) CO_{2} penalty for defender $=\$ 0 \cdot 02(9,900)=\$ 198$. This places an extra burden on the defender.

Annual Expenses $=\$ 300,000+\$ 250,000+\$ 500,000(0.04)+\$ 8,000=\$ 578,000$
$\operatorname{EUAC}_{\mathrm{D}}(10 \%)=\$ 150,000(\mathrm{~A} / \mathrm{P}, 10 \%, 8)-\$ 50,000(\mathrm{~A} / \mathrm{F}, 10 \%, 8)+\$ 578,000=\$ 601,740$
Challenger:
$\operatorname{EUAC}_{C}(10 \%)=\$ 250,000+\$ 100,000+\$ 100,000=\$ 450,000$
Decision: Sell the defender and lease a new machine to minimize EUAC.

9-14 Defender: Assume that MV $=0$ five years from now.
$\mathrm{EUAC}=\$ 6,000(\mathrm{~A} / \mathrm{P}, 15 \%, 5)+\$ 900+\$ 100(\mathrm{~A} / \mathrm{G}, 15 \%, 5)=\$ 2,862$
Challenger:
$\mathrm{EUAC}=\$ 11,000(\mathrm{~A} / \mathrm{P}, 15 \%, 5)-\$ 3,000(\mathrm{~A} / \mathrm{F}, 15 \%, 5)+\$ 150=\$ 2,986$
Keep the existing machine.

Keep for $\mathrm{N}=1$ year:
PW $(10 \%)=-\$ 7,500+(\$ 6,200+\$ 2,000)(\mathrm{P} / \mathrm{F}, 10 \%, 1)=-\$ 45$
Keep for $\mathrm{N}=2$ years:
PW $(10 \%)=-\$ 7,500+\$ 2,000(\mathrm{P} / \mathrm{A}, 10 \%, 2)+\$ 5,200(\mathrm{P} / \mathrm{F}, 10 \%, 2)=\$ 268$
Keep for $\mathrm{N}=3$ years:
PW $(10 \%)=-\$ 7,500+\$ 2,000(\mathrm{P} / \mathrm{A}, 10 \%, 3)+\$ 4,000(\mathrm{P} / \mathrm{F}, 10 \%, 3)=\$ \underline{479}$
Keep for $\mathrm{N}=4$ years:
PW $(10 \%)=-\$ 7,500+\$ 2,000(\mathrm{P} / \mathrm{A}, 10 \%, 4)+\$ 2,200(\mathrm{P} / \mathrm{F}, 10 \%, 4)=\$ 342$
Keep for $\mathrm{N}=5$ years:
$\operatorname{PW}(10 \%)=-\$ 7,500+\$ 2,000(\mathrm{P} / \mathrm{A}, 10 \%, 5)=\$ 82$
PW (10%) is a maximum at 3 years. Therefore, the centrifuge should be retained for three years before abandonment.

9-16

EOY,	Market Value	Loss in Value	Cost of Capital	Annual Expenses	Approximate After-Tax Total (Marginal) Cost ${ }^{\text {a }}$
0	$\$ 8,000$	---	---	---	---
1	4,700	$\$ 3,300$	$\$ 560$	$\$ 3,000$	$\$ 4,116$
2	3,200	1,500	329	3,000	2,897
3	2,200	1,000	224	3,500	2,834
4	1,450	750	154	4,000	2,942
5	950	500	102	4,500	3,061
6	600	350	67	5,250	3,400
7	300	300	42	6,250	3,955
8	0	300	21	7,750	4,843

EOY,	MACRS BV	Interest on Tax Credit $^{\mathrm{b}}$	Adjusted After-Tax Total Marginal) Cost $^{\mathrm{c}}$	PW(7\%)	EUAC
0	$\$ 8,000$	---	---	---	---
1	6,400	$\$ 224$	$\$ 4,340$	$\$ 4,056$	$\$ 4,340$
2	3,840	179	3,076	2,687	3,729
3	2,304	108	2,942	2,402	3,485
4	1,382	65	3,007	2,294	3,377
5	461	39	3,100	2,210	$3,329^{*}$
6	0	13	3,413	2,274	3,341
7	0	0	3,955	2,463	3,412
8	0	0	4,843	2,819	3,552

${ }^{\text {a }}$ Approx. After-Tax Total Cost $=(0.6)($ Loss in Value + Cost of Capital + Annual Expenses $)$
${ }^{\mathrm{b}}$ Interest on tax credit $=(0.07)(0.4) \mathrm{BV}_{\mathrm{k}-1}$
${ }^{\mathrm{c}}$ Adj. After-Tax Total Cost = Approx. After-Tax Total Cost + Interest on tax credit

* The economic life of this equipment is 5 years.
$\mathrm{BV}_{0}=\$ 62,000(1-0.2-0.32-0.192-0.1152)=\$ 10,714$
$\mathrm{MV}_{0}=\$ 12,000$
Expense for year 0 repair work $=\$ 4,000$
Using the format presented in Figure 9-5 with an additional row entry for the repair expense:

EOY	BTCF	Depr	TI	T (39\%)	ATCF
0	$-\$ 12,000$	---	$-(\$ 12,000-\$ 10,714)$	$\$ 520$	$-\$ 11,498$
0	$-4,000$	---	$=\$ 1,286$ 0	$-24,000$	1,560

The total after-tax investment in the defender is $\$ 13,938$. This value includes the opportunity foregone by not selling the current asset for $\$ 12,000$ (modified by the tax consequence of the income taxes that won't be paid on the gain of $\$ 12,000-\$ 10,714=\$ 1,286)$ as well as the after-tax expense of the required repair work.

9-18
(a)

	Defender	Challenger
Year, k	EUAC through year k	EUAC through year k
1	$\$ 15,702^{*}$	$\$ 20,866$
2	16,627	20,458
3	17,932	$20,037^{*}$
4	---	21,503
5	---	21,612

*The economic life of the defender is 1 year. The economic life of the challenger is 3 years.
(b)

	Defender
Year	Marginal Cost for Year
1	$\$ 15,702$
2	17,662
3	21,038

Based on this analysis, the defender should be kept for two years before being replaced by the challenger. Although the economic life of the defender is 1 year, the marginal cost of keeping the defender for the second year is less than the minimum EUAC of the challenger.
(c) Assumptions: Infinite analysis period with repetitive cycles of replacement with challenger (every three years) starting at the end of the second year.

EOY	BTCF	Depr	TI	T (40%)	ATCF
0	$-\$ 57,000$	---	$-\$ 27,000^{\mathrm{a}}$	$\$ 10,800$	$-\$ 46,200$
$1 \rightarrow 5$	$-27,000$	6,000	$-33,000$	13,200	$-13,800$
5	$21,656^{\mathrm{b}}$	---	21,656	$-8,662$	12,994

${ }^{\mathrm{a}}$ Gain on disposal $=\$ 57,000-\$ 30,000=\$ 27,000$ (if sold now).
${ }^{\mathrm{b}} \mathrm{MV}_{5}=\$ 18,500(1.032)^{5}=\$ 21,656$

Replace with Challenger:

EOY	BTCF	Depr	TI	T (40\%)	ATCF
0	0	---	--	---	0
$1-5$	$-\$ 36,500$	0	$-\$ 36,500$	$\$ 14,600$	$-\$ 21,900$

EOY	Incremental Cash Flows Δ (Def. - Chal.)
0	$-\$ 46,200$
$1-5$	8,100
5	12,994

To find the incremental IRR, solve

$$
\mathrm{AW}\left(\mathrm{i}^{\prime}\right)=0=-\$ 46,200\left(\mathrm{~A} / \mathrm{P}, \mathrm{i}^{\prime}, 5\right)+\$ 8,100+\$ 12,994\left(\mathrm{~A} / \mathrm{F}, \mathrm{i}^{\prime}, 5\right)
$$

for $\mathrm{i}^{\prime}=4.36 \%$. This is less than the after-tax MARR of 9%, so the challenger should be accepted.

9-20 (a) Keep the Defender:

EOY	BTCF	Depr	TI	T (40%)	ATCF
0	$-\$ 14,000$	---	$-\$ 4,000^{\mathrm{a}}$	$\$ 1,600$	$-\$ 12,400$
$1 \rightarrow 6$	0	0	0	0	0
6	0	---	$-10,000^{\mathrm{b}}$	$\$ 4,000$	4,000

${ }^{\text {a }}$ Gain on disposal $=\$ 14,000-\$ 10,000=\$ 4,000$ (if sold now).
${ }^{\mathrm{b}}$ Loss on disposal for defender when sold 6 years from now.

Replace with Challenger:

EOY	BTCF	Depr	TI	T (40%)	ATCF
0	$-\$ 80,000$	---	---	---	$-\$ 80,000$
1	7,000	$\$ 16,000$	$-\$ 9,000$	$\$ 3,600$	10,600
2	10,500	25,600	$-15,100$	6,040	16,540
3	11,000	15,360	$-4,360$	1,744	12,744
4	11,500	9,216	2,284	-914	10,586
5	12,000	9,216	2,784	$-1,114$	10,886
6	12,500	4,608	7,892	$-3,157$	9,343
6	20,000	---	20,000	$-8,000$	12,000

EOY	Incremental Cash Flows Δ (Challenger - Defender)
0	$-\$ 67,600$
1	10,600
2	16,540
3	12,744
4	10,586
5	10,886
6	9,343
6	8,000

(b) ERR Analysis $(\varepsilon=12 \%)$
$\$ 67,600\left(\mathrm{~F} / \mathrm{P}, \mathrm{i}^{\prime}{ }_{\Delta} \%, 6\right)=\sum_{\mathrm{k}=1}^{6} \Delta \mathrm{ATCF}_{\mathrm{k}}(\mathrm{F} / \mathrm{P}, 12 \%, 6-\mathrm{k})$
$\$ 67,600\left(1+i_{\Delta}^{\prime}\right)^{6}=\$ 105,425$
$\mathrm{i}^{\prime}{ }_{\Delta} \%=\mathrm{ERR}_{\Delta}=7.7 \%$
Since $E R R_{\Delta}<$ MARR, the defender should not be replaced with the challenger.

9-21 Assume study period $=10$ years.

Keep Pumping Station (defender)

EOY	BTCF	Depr	TI	T (50\%)	ATCF
0	$-\$ 75,000$	---	---	---	$-\$ 75,000$
$1-10$	$-7,500$	$\$ 3,000$	$-10,500$	5,250	$-2,250$
10	$+30,000$	---	$-15,000$	7,500	37,500

$B V_{15}=\$ 90,000-15(\$ 3,000)=\$ 45,000$
$\operatorname{EUAC}_{\mathrm{D}}(5 \%)=\$ 75,000(\mathrm{~A} / \mathrm{P}, 5 \%, 10)-\$ 37,500(\mathrm{~A} / \mathrm{F}, 5 \%, 10)+\$ 2,250=\$ 8,981$
Sell Pumping Station (challenger)

EOY	BTCF	Depr	TI	T (50\%)	ATCF
$1-10$	$-\$ 10,000$	---	$-\$ 10,000$	$+\$ 5,000$	$-\$ 5,000$

$\operatorname{EUAC}_{C}(5 \%)=\$ 5,000$
Decision: Sell the pumping station $(\$ 5,000<\$ 8,981)$.

9-22 Use the outsider viewpoint to determine after-tax cash flow (ATCF) of the defender and challenger.

Defender ATCF: EOY $0 \quad-\$ 20,400$ (which is $-\$ 14,000-\$ 6,400$)
EOY 1-3 - $\$ 6,800$
EOY 3 After-Tax MV $=\$ 13,200$ (which is $\$ 10,000+\$ 3,200$)
$\mathrm{AW}(10 \%)=-\$ 20,400(\mathrm{~A} / \mathrm{P}, 10 \%, 3)-\$ 6,800+\$ 13,200(\mathrm{~A} / \mathrm{F}, 10 \%, 3)=-11,015$
$\begin{array}{lll}\text { Challenger ATCF: } & \text { EOY 0 } & -\$ 65,000 \\ & \text { EOY } 1-20 & -\$ 4,300 \\ & \text { EOY } 20 & \text { MV }=\$ 10,000\end{array}$
$\operatorname{AW}(10 \%)=-\$ 65,000(\mathrm{~A} / \mathrm{P}, 10 \%, 20)-\$ 4,300+\$ 10,000(\mathrm{~A} / \mathrm{F}, 10 \%, 20)=-11,763$
By a slim margin the defender should be kept at least one more year.

9-23 Keep the Defender:

EOY	BTCF	Depr	TI	T (40\%)	ATCF
0	$-\$ 57,000$	---	$-\$ 30,000^{\mathrm{a}}$	$\$ 12,000$	$-\$ 45,000$
$1-4$	$-27,000$	$\$ 6,000$	$-33,000$	13,200	$-13,800$
5	$-27,000$	3,000	$-30,000$	12,000	$-15,000$
5	18,500	---	18,500	$-7,400$	11,100

${ }^{\text {a }}$ Gain (if sold) $=\$ 57,000-\$ 27,000=\$ 30,000$

Replace with Challenger:

EOY	BTCF	Depr	TI	T (40%)	ATCF
$1-5$	$-\$ 36,500$	0	$-\$ 36,500$	14,600	$-21,900$

Incremental Analysis Δ (Defender - Challenger):
Capital Investment: - \$45,000
Annual Expenses:
Years 1-4 $\quad-\$ 13,800-(-\$ 21,900)=\$ 8,100$ (Savings)
Year $5 \quad-\$ 15,000-(-\$ 21,900)=\$ 6,900$ (Savings)
Market Value (ATCF): \$11,100-\$0 = \$11,100
$\mathrm{PW}\left(\mathrm{i}^{\prime} \%\right)=0=-\$ 45,000+\$ 8,100\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime} \%, 4\right)+(\$ 6,900+\$ 11,100)\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{\prime} \%, 5\right)$
By trial and error, $\mathrm{i}^{\prime} \%=3.44 \%<$ MARR.
Therefore, lease the challenger.

9-24 Keep diesel-electric unit:

EOY	BTCF	Depr	TI	T (50\%)	ATCF
0	$-\$ 35,000$	--	$-\$ 10,000^{\mathrm{a}}$	$\$ 5,000$	$-\$ 30,000$
$1-5$	$-19,000$	$\$ 5,000$	$-24,000$	12,000	$-7,000$

$\operatorname{AW}(15 \%)=-\$ 30,000(\mathrm{~A} / \mathrm{P}, 15 \%, 5)-\$ 7,000=-\$ 15,949$
${ }^{\mathrm{a}} \mathrm{MV}-\mathrm{BV}=\$ 35,000-\$ 25,000=\$ 10,000$, which is shown as an opportunity cost.
Buy power from a utility:

EOY	BTCF	Depr	TI	T (50%)	ATCF
$1-5$	$-\$ 30,000$	---	$-\$ 30,000$	$+\$ 15,000$	$-\$ 15,000$

$\mathrm{AW}(15 \%)=-\$ 15,000$
Therefore, the company should consider buying power from the soutside source and selling the dieselelectric unit now.

9-25 Use the capitalized worth method and the repeatability assumption due to the indefinitely long study period. Note that all market values are completely offset by the removal costs.

Alternative a: Do not relocate existing transformers
Site A: Property tax for existing transformers (years $1-10$)

$$
=-(\$ 2,100+\$ 475)(0.02)=-\$ 51.50
$$

Capital investment for replacement transformers (EOY 10 and every 30 years thereafter)

$$
=-\$ 900-\$ 340=-\$ 1,240
$$

Property tax for replacment transformers (years $11-\infty$)

$$
=-(\$ 900+\$ 340)(0.02)=-\$ 24.80
$$

Site B: Capital investment for new transformers (EOY 0 and every 30 years thereafter)

$$
=-\$ 2,100-\$ 475=-\$ 2,575
$$

Property tax for new transformers (years $1-\infty)=-\$ 2,575(0.02)=-\$ 51.50$

$$
\begin{aligned}
\mathrm{CW}_{\mathrm{a}}(8 \%)= & -\$ 51.50(\mathrm{P} / \mathrm{A}, 8 \%, 10)-\left[\frac{\$ 1,240(\mathrm{~A} / \mathrm{P}, 8 \%, 30)+\$ 24.80}{0.08}\right](\mathrm{P} / \mathrm{F}, 8 \%, 10) \\
& -\left[\frac{\$ 2,575(\mathrm{~A} / \mathrm{P}, 8 \%, 30)+\$ 51.50}{0.08}\right] \\
= & -\$ 4,629
\end{aligned}
$$

Alternative b: Relocate existing transformers

Cost to remove existing transformers from site A and reinstall at site B (EOY 0)

$$
=-\$ 110-\$ 475=-\$ 585
$$

Site A: Capital investment for replacing transformers (EOY 0 and every 30 years thereafter)

$$
=-\$ 900-\$ 340=-\$ 1,240
$$

Property tax for new transformers (years $1-\infty$)

$$
=-\$ 1,240(0.02)=-\$ 24.80
$$

Site B: Property tax for relocated transformers (years 1 - 10)

$$
=-(\$ 2,100+\$ 475)(0.02)=-\$ 51.50
$$

Capital investment for replacement transformers (EOY 10 and every 30 years thereafter)

$$
=-\$ 2,100-\$ 475=-\$ 2,575
$$

Property tax for replacement transformers (years $11-\infty$)

$$
=-\$ 2,575(0.02)=-\$ 51.50
$$

$$
\begin{aligned}
\mathrm{CW}_{\mathrm{b}}(8 \%)= & -\$ 585-\left[\frac{\$ 1,240(\mathrm{~A} / \mathrm{P}, 8 \%, 30)+\$ 24.80}{0.08}\right]-\$ 51.50(\mathrm{P} / \mathrm{A}, 8 \%, 10) \\
& -\left[\frac{\$ 2,575(\mathrm{~A} / \mathrm{P}, 8 \%, 30)+\$ 51.50}{0.08}\right](\mathrm{P} / \mathrm{F}, 8 \%, 10) \\
= & -\$ 4,239
\end{aligned}
$$

It is more economical to relocate the existing transformers (Alternative \mathfrak{b}).

EOY	MV	Loss in Value	Cost of Capital	O\&M	Marginal Cost (M.C.)	EUAC
0	$\$ 70,000.00$					
1	$\$ 56,000.00$	$\$ 14,000.00$	$\$ 7,000.00$	$\$ 5,500.00$	$\$ 26,500.00$	$\$ 26,500.00$
2	$\$ 44,000.00$	$\$ 12,000.00$	$\$ 5,600.00$	$\$ 6,800.00$	$\$ 24,400.00$	$\$ 25,500.00$
3	$\$ 34,000.00$	$\$ 10,000.00$	$\$ 4,400.00$	$\$ 7,400.00$	$\$ 21,800.00$	$\$ 24,382,18$
4	$\$ 22,000.00$	$\$ 12,000.00$	$\$ 3,400.00$	$\$ 9,700.00$	$\$ 25,100.00$	$\$ 24,536.85$

Economic Life $=3$ years
(b)

EOY	BTCF	Depr	TI	Taxes Payable	ATCF
0	$-\$ 40,000.00$		$-\$ 28,768.00$	$\$ 11,507.20$	$-\$ 28,492.80$
0	$-\$ 12,000.00$		0.00	0.00	$-\$ 12,000.00$
1	$-\$ 8,500.00$	$-\$ 11,488.00$	$-\$ 19,988.00$	$\$ 7,995.20$	$-\$ 504.80$
2	$-\$ 10,500.00$	$-\$ 7,744.00$	$-\$ 18,244.00$	$\$ 7,297.60$	$-\$ 3,202.40$
3	$-\$ 14,000.00$	$-\$ 4,000.00$	$-\$ 18,000.00$	$\$ 7,200.00$	$-\$ 6,800.00$
4	$-\$ 16,000.00$	0.00	$-\$ 16,000.00$	$\$ 6,400.00$	$-\$ 9,600.00$

BV (now) $=\$ 11,232.00 ; \mathrm{MV}$ (now) $=\$ 40,000.00 ; \mathrm{MV}($ now $)-\mathrm{BV}($ now $)=\$ 28,768.00$

Solutions to Spreadsheet Exercises

$9-27 \quad$ (a)

	A	B	C	D	E	F	G	H	I
1	MARR =	7.73\%							
2									
3	EOY	End of Year MV	CR Amount	Annual Expense	PW of Annual Exp.	EUAC of Ann. Exp.	Cumulative EUAC		
4	0	\$ 20,000							
5	1	\$ 15,000	\$ 6,546	\$ 2,000	\$ 1,856	\$ 2,000	\$ 8,546		
6	2	\$ 11,250	\$ 5,758	\$ 3,000	\$ 2,585	\$ 2,481	\$ 8,240	<- Min EUAC	
7	3	\$ 8,500	\$ 5,098	\$ 4,620	\$ 3,695	\$ 3,142	\$ 8,240		
8	4	\$ 6,500	\$ 4,554	\$ 8,000	\$ 5,939	\$ 4,224	\$ 8,778		
9	5	\$ 4,750	\$ 4,159	\$ 12,000	\$ 8,270	\$ 5,557	\$ 9,716		
10									
11									

(b)

	A	B	C	D	E	F	G	H	1
1	MARR =	38.15\%							
2									
3	EOY	End of Year MV	CR Amount	Annual Expense	PW of Annual Exp.	EUAC of Ann. Exp.	Cumulative EUAC		
4	0	\$ 20,000							
5	1	\$ 15,000	\$ 12,630	\$ 2,000	\$ 1,448	\$ 2,000	\$ 14,630		
6	2	\$ 11,250	\$ 11,304	\$ 3,000	\$ 1,572	\$ 2,420	\$ 13,724		
7	3	\$ 8,500	\$ 10,311	\$ 4,620	\$ 1,752	\$ 2,933	\$ 13,243		
8	4	\$ 6,500	\$ 9,579	\$ 8,000	\$ 2,196	\$ 3,664	\$ 13,243	<- Min EUAC	
9	5	\$ 4,750	\$ 9,073	\$ 12,000	\$ 2,385	\$ 4,453	\$ 13,526		
10									
11									

MARR 15\%					
Defender:					
Percent Change in Annual Expenses $=$				-0.7\%	
			CR		
EOY k	MV	Expenses	Amount	Total	$E^{\text {E }}$ AC ${ }_{\text {k }}$
0	4,000				
1	3,000	19,860	1,600	21,460	\$21,460.00
2	2,500	24,825	950	25,775	\$23,466.98
3	2,000	29,790	875	30,665	\$25,539.84

Challenger:			
$\|$Investment $\$ 30,000$ EUAC	$\$ 21,465.46$		
Annual Expenses	$\$ 16,000$		
Economic Life	12		
MV after 12 years	$\$ 2,000$		

If the annual expenses of the defender were to lower by 0.7%, the replacement would be delayed by at least one year.

Solutions to Case Study Exercises

9-29 The defender would be the preferred alternative for annual lease rates greater than $\$ 51,818$.

9-30 A study period of five years still favors the challenger.

$\begin{gathered} \text { Year } \\ 0 \end{gathered}$	BT CF		$80 \mathrm{~kW} \mathrm{~d}(\mathrm{k})$		$40 \mathrm{~kW} \mathrm{~d}(\mathrm{k})$		Taxable Income		Cash Flow for Income Taxes		ATCF		Adjusted ATCF	
	\$	$(230,000)$					\$	$(43,145)$	\$	17,258	\$	(212,742)	\$	$(212,742)$
1	\$	$(35,464)$	\$	18,742	\$	20,000	\$	$(74,206)$	\$	29,682	\$	$(5,782)$	\$	$(5,782)$
2	\$	$(36,883)$	\$	18,742	\$	34,286	\$	$(89,910)$	\$	35,964	\$	(918)	\$	(918)
3	\$	$(38,358)$	\$	9,371	\$	24,490	\$	$(72,219)$	\$	28,888	\$	$(9,470)$	\$	$(9,470)$
4	\$	$(39,892)$			\$	17,493	\$	$(57,385)$	\$	22,954	\$	$(16,938)$	\$	$(16,938)$
5	\$	$(41,488)$			\$	12,495	\$	$(53,983)$	\$	21,593	\$	$(19,895)$	\$	37,646
5	\$	75,077					\$	43,841	\$	$(17,536)$	\$	57,541		

		80 kW	40 kW	
Year 5 BV	$\$$	-	$\$$	31,237

9-31 The defender would be preferred to the new challenger; however, the original challenger is still the preferred alternative.

Effective Tax Rate		40 kW (per				
$=$	40\%			unit)		tal
		Capital				
After tax MARR =	12\%	Investment Annual O \& M	\$	120,000	\$	360,000
Class Life =	7	Expenses / hr. Other Annual	\$	35	\$	105
DB Rate =	200\%	Expenses	\$	1,000	\$	3,000
Annual Expense						
Rate of Increase /		MV at end of life	\$	38,000	\$	114,000
yr. =	4\%					
MV Rate of						
increase / yr.=	2\%					
Operating Hours /						
yr. =	260	NOTE: All estimates expressed in year 0 dollars				

Solutions to FE Practice Problems

9-32 Machine A (Defender):
$\mathrm{PW}_{\mathrm{A}}(12 \%)=-\$ 10,400-\$ 2,000(\mathrm{P} / \mathrm{A}, 12 \%, 5)+\$ 2,000(\mathrm{P} / \mathrm{F}, 12 \%, 5)=-\$ 16,475$

Machine B (Challenger):
$\mathrm{PW}_{\mathrm{B}}(12 \%)=-\$ 14,000=\$ 1,400(\mathrm{P} / \mathrm{A}, 12 \%, 5)+\$ 1,400(\mathrm{P} / \mathrm{F}, 12 \%, 5)=-\$ 18,252$
Continue with Machine A.

Select (a)

9-33 Let $\mathrm{X}=$ repair cost for existing machine (defender)
$\mathrm{PW}_{\mathrm{D}}(12 \%)=-\$ 15,000-\mathrm{X}$
$\mathrm{PW}_{\mathrm{C}}(12 \%)=-\$ 44,000+\$ 6,000(\mathrm{P} / \mathrm{A}, 12 \%, 5)=-\$ 22,371$

Set $\left.\mathrm{PW}_{\mathrm{D}} 12 \%\right)=\mathrm{PW}_{\mathrm{C}}(12 \%)$ and solve for X .
$-\$ 15,000-X=-\$ 22,271 ; \quad X=\$ 7,371$

Select (c)

9-34 $\mathrm{EUAC}_{\mathrm{A}}(12 \%)=\$ 7,000(\mathrm{~A} / \mathrm{P}, 12 \%, 7)+\$ 1,000-\$ 1,000(\mathrm{~A} / \mathrm{F}, 12 \%, 7)$ $=\$ 2,435$
$\underline{\text { Select (e) }}$

9-35 $\begin{aligned} & \mathrm{EUAC}_{\mathrm{B}}(12 \%)=\$ 50,000 \mathrm{~A} / \mathrm{P}, 12 \%, 10)+\$ 600-\$ 5,000(\mathrm{~A} / \mathrm{F}, 12 \%, 10) \\ &=\$ 9,165\end{aligned}$ $=\$ 9,165$

Select (d)

9-36 If sold:

ATCF
$\$ 40,500-\$ 1,740=\$ 38,760$

Select (c)

Solutions to Chapter 10 Problems

10-1 $\quad \mathrm{B} / \mathrm{C}=\frac{\$ 460,000}{\$ 3,000,000(\mathrm{~A} / \mathrm{P}, 10 \%, \infty)+\$ 57,000}=\frac{\$ 460,000}{\$ 357,000}=1.29>1$

Because the B - C ratio is greater than one, the project is economically attractive.
$\mathrm{AW}=\$ 20,000(\mathrm{~A} / \mathrm{P}, 10 \%, 30)=\$ 2,122$
For $\mathrm{B} / \mathrm{C} \geq 1$, the annual savings in heating and cooling expense needs to be greater than or equal to $\$ 2,122$. If this savings represents 15% of the total annual expense, the total annual expenditure would have to be in the neighborhood of $\$ 2,122 / 0.15=\$ 14,147$ (compare this with $\$ 3,000$). This is quite high in most parts of the United States, so green homes without subsidies are difficult to justify on economic grounds alone.

10-3 (a) Sum of benefits minus dis-benefits $=\$ 650,000$ per year
B / C Ratio $=\$ 650,000 /(0.08 \times \$ 7,000,000)=1.16$
Thus plan is acceptable because $\mathrm{B} / \mathrm{C}>1.0$
(b) B / C Ratio $=\$ 650,000 /(\mathrm{A} / \mathrm{P}, 10 \%, 20)(\$ 7,000,000)=0.79$ This plan is no longer acceptable to the town.

10-4 Conventional $\mathrm{B} / \mathrm{C}=\frac{(300,000)(\$ 0.10)(\mathrm{P} / \mathrm{A}, 15 \%, 6)}{\$ 120,000-\$ 8,000(\mathrm{P} / \mathrm{F}, 15 \%, 6)}=\frac{\$ 113,535}{\$ 116,542}<1$
The project is not acceptable.

$$
\operatorname{PW}(18 \%)=\$ 30,000(1.04) \frac{[1-(\mathrm{P} / \mathrm{F}, 18 \%, 6)(\mathrm{F} / \mathrm{P}, 4 \%, 6)]}{0.18-0.04}=\$ 118,410
$$

The present worth of cost is $\$ 120,000$. The ratio of benefits to cost is 0.99 , so the project is still unacceptable.

10-6 In the following analysis, resale values will be considered as reductions in cost rather than benefits.

	Design A	Design B	Design $(\mathrm{C}-\mathrm{B})$
Capital recovery cost per yr.	$\$ 144,000$	$\$ 184,000$	$\$ 192,250$
Annual benefits	$\$ 120,000$	$\$ 300,000$	$\$ 150,000$
Benefit-cost ratio	0.833	1.63	0.78
Is increment justified?	No	Yes	No

From the above analysis, Design B should be recommended.

10-7 $\mathrm{PW}($ benefits $)=\frac{\$ 2,500,000[1-(P / F, 10 \%, 30)(F / P, 2.25 \%, 30)]}{0.10-0.0225}$

$$
\begin{aligned}
& =\$ 2,5000,000(11.4619) \\
& =\$ 28,654,750
\end{aligned}
$$

$\mathrm{PW}($ costs $)=\$ 17,500,000^{*}+\$ 325,000(\mathrm{P} / \mathrm{A}, 10 \%, 30)$

$$
+\$ 1,250,000(\mathrm{~A} / \mathrm{F}, 10 \%, 5)(\mathrm{P} / \mathrm{A}, 10 \%, 25)
$$

$$
=\$ 22,422,258
$$

$B / C=\frac{\$ 28,654,750}{\$ 22,422,258}=1.28>1$
Therefore, the toll bridge should be constructed.

* The above analysis assumes that the initial surfacing of the bridge is included in the $\$ 17,500,000$. Even if this assumption is relaxed, the toll bridge should be constructed.

$$
\mathrm{B} / \mathrm{C}=\frac{\$ 28,654,750}{\$ 22,422,258+\$ 1,250,000}=1.21>1
$$

10-8 Assumption: Initial investment includes initial surfacing of the bridge.
(a) PW (Benefits) $=\frac{\$ 3,000,000}{0.10}=\$ 30,000,000$

PW (Costs) $=\$ 22,500,000+\frac{\$ 250,000+\$ 1,000,000(\mathrm{~A} / \mathrm{F}, 10 \%, 7)+\$ 1,750,000(\mathrm{~A} / \mathrm{F}, 10 \%, 20)}{0.1}$

$$
=\$ 26,360,250
$$

$\mathrm{CW}(10 \%)=$ PW (benefits) $-\mathrm{PW}($ costs $)=\$ 30,000,000-\$ 26,360,250=\$ 3,639,750$
(b) $\quad \mathrm{B} / \mathrm{C}=\frac{\$ 30,000,000}{\$ 26,360,250}=1.14$
(c) Assume repeatability for the initial design
$\Delta \mathrm{B} / \Delta \mathrm{C}=\frac{\$ 30,000,000(\mathrm{~A} / \mathrm{P}, 10 \%, \infty)-\$ 28,652,800(\mathrm{~A} / \mathrm{P}, 10 \%, 30)}{\$ 26,360,250(\mathrm{~A} / \mathrm{P}, 10 \%, \infty)-\$ 22,422,258(\mathrm{~A} / \mathrm{P}, 10 \%, 30)}=\frac{-\$ 40,062}{\$ 257,023}=-0.16<1$
The initial design (described in Problem 10-15) should be selected.
(a) Figures are in thousands.

Project	Annual Benefits	Annual Costs	B/C ratio
A	$\$ 1,800$	$\$ 2,000$	0.90
B	5,600	4,200	1.33
C	8,400	6,800	1.24
D	2,600	2,800	0.93
E	6,600	5,400	1.22

Projects B,C and E are acceptable. Recall that these projects are independent,
(b) The best project is B, followed closely by C and E. (The instructor might suggest that students rework this problem assuming the projects are mutually exclusive. An incremental analysis then leads to the conclusion that Project C should be chosen.)
(c) When considerable judgement regarding the value of intangible factors is present, project B should be selected because it allows for a greater degree of error in benefits estimation.
(a)

Plan	PW of Costs	PW of Benefits	B/C ratio
A	$\$ 123,000$	$\$ 139,000$	1.13
B	135,000	150,000	1.11
C	99,000	114000	1.15

From the above analysis, all three plans (A, B, and C) should be selected.
(b) Reclassifying 10\% of costs as disbenefits in the numerator of the B / C ratio produces these results:

Plan	PW of Costs	PW of Benefits	B/C ratio	\% change
A	$\$ 110,700$	$\$ 126,700$	1.14	+0.9
B	121,500	136,500	1.12	+0.9
C	89,100	104,100	1.17	+1.7

(c) A constant amount subtracted from the denominator and numerator of the B / C ratio does not appreciably affect the recomputed ratio.

10-11 After ordering according to increasing costs, $B \rightarrow E \rightarrow A \rightarrow C \rightarrow D$

Alternative or Investment Considered	B/C Ratio	Justified?
B	$\frac{\$ 810}{\$ 900}=0.9(<1)$	No
E	$\frac{\$ 1,140}{\$ 990}=1.15(>1)$	Yes
$\Delta(\mathrm{A}-\mathrm{E})$	$\frac{\$ 1,110-\$ 1,140}{\$ 1,050-\$ 990}=-0.5(<0)$	No
$\Delta(\mathrm{C}-\mathrm{E})$	$\frac{\$ 1,390-\$ 1,140}{\$ 1,230-\$ 990}=1.0471(>0)$	Yes
$\Delta(\mathrm{D}-\mathrm{C})$	$\frac{\$ 1,500-\$ 1,390}{\$ 1,350-\$ 1,230}=0.917(<0)$	No

Therefore, Alternative C should be adopted.

10-12 $\mathrm{DN} \rightarrow \mathrm{A}: \quad \mathrm{B} / \mathrm{C}=\frac{\$ 80,000(\mathrm{P} / \mathrm{A}, 10 \%, 4)-\$ 10,000(\mathrm{P} / \mathrm{G}, 10 \%, 4)}{\$ 160,000}=\frac{\$ 209,812}{\$ 160,000}=1.31>1$, so select system A vs. DN.
$\mathrm{A} \rightarrow \mathrm{C}: \frac{\Delta \mathrm{B}}{\Delta \mathrm{C}}=\frac{-\$ 10,000(\mathrm{P} / \mathrm{A}, 10 \%, 4)+\$ 10,000(\mathrm{P} / \mathrm{G}, 10 \%, 4)}{\$ 40,000}=\frac{\$ 12,081}{\$ 40,000}=0.3$. The incremental B-C ratio is less than one, so keep system A.
$\mathrm{A} \rightarrow \mathrm{B}: \quad \frac{\Delta \mathrm{B}}{\Delta \mathrm{C}}=\frac{\$ 40,000(\mathrm{P} / \mathrm{A}, 10 \%, 4)-\$ 10,000(\mathrm{P} / \mathrm{G}, 10 \%, 4)}{\$ 85,000}=\frac{\$ 83,016}{\$ 85,000}=0.98<1$. Therefore system
A is the best choice.

10-13 The conventional B / C ratio for Alternative A is:

$$
\frac{\$ 1,000,000+\$ 500,000}{\$ 20,000,000(\mathrm{~A} / \mathrm{P}, 5 \%, 50)+\$ 200,000}=\frac{\$ 1,500,000}{\$ 1,296,000}=1.16
$$

The conventional B / C ratio for Alternative B is:

$$
\frac{\$ 800,000+\$ 1,300,000}{\$ 30,000,000(\mathrm{~A} / \mathrm{P}, 5 \%, 50)+\$ 100,000}=\frac{\$ 2,100,000}{\$ 1,744,000}=1.20
$$

Both alternatives are acceptable. An incremental analysis is required to determine which alternative should be chosen.

Incremental Analysis: $\Delta(\mathrm{B}-\mathrm{A})$
Δ Capital investment $=\$ 10,000,000$
Δ Annual O \& M costs $=\$ 1,000,000$
Δ Annual power sales $\quad=-\$ 200,000$
Δ Other annual benefits $=\$ 800,000$
$\Delta \mathrm{B} / \Delta \mathrm{C}=\frac{\$ 800,000-\$ 200,000}{\$ 10,000,000(\mathrm{~A} / \mathrm{P}, 5 \%, 50)-\$ 100,000}=\frac{\$ 600,000}{\$ 448,000}=1.34>1$
Select Alternative B.

10-14 (a) System 2 is inferior to both System 1 and System 3, so it can be dropped from consideration.

System	1	3	4	5
B-C ratio	8.0	3.5	1.6	2.0

System 1 has the largest B-C ratio, but it would not be selected for this reason. We must examine the incremental B-C ratios for the four systems. Notice that the systems are rank ordered from low PW of costs to high PW of costs. System 1 is an acceptable alternative to use to start the incremental comparisons.
(b) B-C ratios for: $\Delta(3-1)=\$ 6,000 / \$ 3,000=2.00$. Select 3, drop 1 .

$$
\begin{aligned}
& \Delta(4-3)=\$ 2,000 / \$ 6,000=0.33 . \text { Keep } 3, \text { drop } 4 . \\
& \Delta(5-3)=\$ 10,000 / \$ 8,000=1.25 . \text { Select System } 5 .
\end{aligned}
$$

System 3 has the highest incremental B-C ratio, but it wouldn't be chosen for that reason.
(c) The last increment with a B-C ratio greater than or equal to one was System 5. This is the best alternative.

$$
\begin{aligned}
& \mathrm{PW}_{(\text {Benefits,A) }}=\$ 21,316,851 \\
& \mathrm{PW}_{(\text {Benefits,B) }}=\$ 22,457,055 \\
& \mathrm{PW}_{(\text {Benefits,C) }}=\$ 24,787,036
\end{aligned}
$$

$\mathrm{PW}($ Costs, A$)=\$ 8,500,000+\$ 750,000(\mathrm{P} / \mathrm{A}, 10 \%, 50)=\$ 15,936,100$
$\mathrm{PW}($ Costs, B$)=\$ 10,000,000+\$ 725,000(\mathrm{P} / \mathrm{A}, 10 \%, 50)=\$ 17,188,230$
$\mathrm{PW}($ Costs, C$)=\$ 12,000,000+\$ 700,000(\mathrm{P} / \mathrm{A}, 10 \%, 50)=\$ 18,940,360$
Rank order: $\mathrm{DN} \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C}$
$B-C(A)=\frac{\$ 21,316,851}{\$ 15,936,100}=1.3376>1.0$
Therefore, Project A is acceptable.

$$
\frac{\Delta B}{\Delta C}(\mathrm{~B}-\mathrm{A})=\frac{\$ 22,457,055-\$ 21,316,851}{\$ 17,188,230-\$ 15,936,100}=0.9106<1.0
$$

Increment required for Project B is not acceptable.
$\frac{\Delta B}{\Delta C}(\mathrm{C}-\mathrm{A})=\frac{\$ 24,787,036-\$ 21,316,851}{\$ 18,940,360-\$ 15,936,100}=1.1551>1.0$
Increment required for Project C is acceptable. Recommend Project C .
Note that MV $=\$ 0$ had little impact on the values of the $\mathrm{B}-\mathrm{C}$ ratios. This is due to the length of the study period.

Alternative	Total Equivalent Annual Cost	Annual Benefits	B/C Ratio
No Control	$\$ 100,000$	$\$ 0$	0.00
Levees	110,000	112,000	1.02
Small Dam	105,000	110,000	1.05

(a) Maximum benefit - choose levees.
(b) Minimum cost - choose no flood control.
(c) Maximum (B/C) - choose the small dam.
(d) Largest investment having incremental B / C ratio larger than 1:

Rank alternatives by increasing total annual cost:
No Control, Small Dam, Levees
Δ (Small Dam - No Control): $\quad \Delta \mathrm{B} / \Delta \mathrm{C}=\frac{\$ 110,000}{\$ 5,000}=22>1$
Select the small dam over no control.

$$
\Delta(\text { Levees }- \text { Small Dam }): \quad \Delta \mathrm{B} / \Delta \mathrm{C}=\frac{\$ 2,000}{\$ 5,000}=0.4<1
$$

Choose the small dam.
(e) Largest B / C ratio - choose the small dam (which is coincidentally the correct choice). The correct choice based on incremental analysis would be to select the small dam as seen in part (d).

10-17 $\mathrm{B} \rightarrow \mathrm{D}: \Delta \mathrm{B} / \Delta \mathrm{C}=\$ 1,000 /[\$ 3,000(0.12)]=2.78>1$, so choose D . $\mathrm{D} \rightarrow \mathrm{A}: \Delta \mathrm{B} / \Delta \mathrm{C}=\$ 1,000 /[\$ 7,000(0.12)]=1.19>1$, so choose A . $\mathrm{A} \rightarrow \mathrm{C}: \Delta \mathrm{B} / \Delta \mathrm{C}=\$ 10,000 /[\$ 88,000(0.12)]=0.95<1$, so keep A .

10-18 CR cost of Verizon $=\$ 9,860$
CR cost of Cellgene $=\$ 23,935$
Modified B-C ratio of Verizon $=(\$ 23,800-\$ 10,800) / \$ 9,860=1.32$
Modified B-C ratio of Cellgene $=1.15$
Both are acceptable, but we must be careful to avoid the temptation of selecting the tower with the larger B-C ratio. We next examine the incremental difference of Cellgene - Verizon:

$$
\Delta[(\mathrm{B}-\text { oper. expenses }) / \mathrm{CR} \text { costs }]=\$ 14,500 / \$ 14,075=1.03
$$

so you should recommend the Cellgene cell tower.

$10-19$	Construction Cost	Annual Maint. Cost	Total Annual Benefits	Total PW Costs	Total PW Benefits	B/C Ratio
A	$\$ 185,000$	$\$ 2,000$	$\$ 8,500$	$\$ 209,467$	$\$ 103,985$	0.50
B	220,000	3,000	15,000	256,701	183,503	0.71
C	290,000	4,000	20,800	338,934	254,457	0.75

*Assume that a roadway must be constructed.
Sample calculation for A:
Total PW Cost $=\$ 185,000+\$ 2,000(\mathrm{P} / \mathrm{A}, 8 \%, 50)=\$ 209,467$
Total PW Benefits $=\$ 8,500(\mathrm{P} / \mathrm{A}, 8 \%, 50)=\$ 103,985$
B/C Ratio $=\$ 103,985 / \$ 209,467=0.50$

Comparison of routes	$\Delta \mathrm{B} / \Delta \mathrm{C}$	Decision
$\Delta(\mathrm{B}-\mathrm{A})$	1.68	Select Alternative B
$\Delta(\mathrm{C}-\mathrm{B})$	0.86	Keep Alternative B

From an incremental analysis, route B is the "least objectionable" alternative. If B is chosen, it simply means that the state will be receiving less than an 8% return on its capital. If another alternative could be identified that had a B / C ratio greater than or equal to one, it should be recommended.

10-20 (a) $\quad \mathrm{DN} \rightarrow \mathrm{B}: \$ 13,000(\mathrm{P} / \mathrm{A}, 8 \%, 10) / \$ 50,000=1.74$; choose B .
$\mathrm{B} \rightarrow \mathrm{C}: \$ 2,300(\mathrm{P} / \mathrm{A}, 8 \%, 10) / \$ 15,000=1.03$; choose C .
$\mathrm{C} \rightarrow \mathrm{A}: \$ 700(\mathrm{P} / \mathrm{A}, 8 \%, 10) / \$ 10,000=0.47$; keep C.
(b) $\mathrm{DN} \rightarrow \mathrm{B}: \$ 18,000 /[\$ 50,000(\mathrm{~A} / \mathrm{P}, 8 \%, 10)+\$ 5,000]=1.44$; choose B .
$\mathrm{B} \rightarrow \mathrm{C}: \$ 2,000 /[\$ 15,000(\mathrm{~A} / \mathrm{P}, 8 \%, 10)-\$ 300]=1.03$; choose C .
$\mathrm{C} \rightarrow \mathrm{A}: 0 /$ difference in costs $=0$; keep C .
(c) Although the incremental B-C values are not identical, the recommendation should be the same.

	I. Improve	II.	III. Dam and
Channel Benefits	Dam	Channel	
Flood reduction	$\$ 200,000$	$\$ 550,000$	$\$ 650,000$
Irrigation	---	175,000	175,000
Recreation	---	45,000	45,000
Total Benefits	$\$ 200,000$	$\$ 770,000$	$\$ 870,000$

Annual Costs	I. Improve Channel	II.	III. Dam and Channel
CR Amount	$\$ 293,750$	$\$ 850,000$	$\$ 1,143,750$
O\&M	80,000	50,000	130,000
Total Costs	$\$ 373,750$	$\$ 900,000$	$\$ 1,273,750$

Benefit - Cost Ratio	0.54	0.86	0.68

Although all three values are less than one, assume that one of the alternatives has to be chosen (i.e. doing nothing is not an acceptable alternative).

Incremental Analysis: I, II, III (ordered by increasing capital recovery amount)
Δ (II - I)
$\Delta \mathrm{B} / \Delta \mathrm{C}=\frac{\$ 570,000}{\$ 526,250}=1.08>1$, Select II.
$\Delta \mathrm{B} / \Delta \mathrm{C}=\frac{\$ 100,000}{\$ 373,750}=0.27<1$, Keep II.
If one option must be selected, recommend building the dam (II).

10-22 (a) The port manager's analysis is in error due to failure to consider the time value of money. Whether or not capital would have to be borrowed, it has earning power which must be considered. He also does not consider the cost of capital relative to the recovery of invested capital.
(b) Assuming capital to be worth 5\%, and that piers will be needed indefinitely:

$$
\begin{aligned}
& \mathrm{AW}_{\text {old }}(5 \%)=-\$ 40,000(\mathrm{~A} / \mathrm{P}, 5 \%, 40)-\$ 27,000=-\$ 29,332 \\
& \mathrm{AW}_{\text {new }}(5 \%)=-\$ 600,000(\mathrm{~A} / \mathrm{P}, 5 \%, 50)-\$ 2,000=-\$ 34,880
\end{aligned}
$$

It is more economical to retain the steel pier.

10-23 One must be chosen (DN not an option). Choose Gravity-fed unless $\Delta \mathrm{B} / \Delta \mathrm{C} \geq 1$.
$\Delta \mathrm{B} / \Delta \mathrm{C}=\frac{\$ 24,000(\mathrm{P} / \mathrm{F}, 15 \%, 5)}{\$ 37,900-\$ 24,500}=\frac{\$ 12,181}{\$ 13,400}<1$. Stay with Gravity-fed.
Although annual benefits are the same, not having to re-invest in five year is an added benefit of the Vacuum-led.

10-24 Construct Levee:

AW (benefits) $=\$ 1,500,000$
AW $($ costs $)=\$ 25,000,000(\mathrm{~A} / \mathrm{P}, 8 \%, 25)+\$ 725,000=\$ 3,067,500$
Dredge Channel:
AW (benefits) $=\$ 0$
AW $($ costs $)=\$ 15,000,000(\mathrm{~A} / \mathrm{P}, 8 \%, 25)+\$ 375,000=\$ 1,780,500$
$\Delta($ Levee - Channel)

$$
\Delta \mathrm{B} / \Delta \mathrm{C}=\frac{\$ 1,500,000-\$ 0}{\$ 3,067,500-\$ 1,780,500}=1.17>1
$$

Construct the levee.

10-25 Design A:

$$
\begin{aligned}
& \mathrm{CW}(\text { benefits })=\frac{\$ 2,150,000}{0.1}=\$ 21,500,000 \\
& \mathrm{CW}(\text { costs })=\$ 17,000,000+\frac{\$ 12,000(\mathrm{P} / \mathrm{A}, 10 \%, 34)(\mathrm{A} / \mathrm{P}, 10 \%, 35)}{0.1} \\
& \quad+\frac{\$ 40,000(\mathrm{~A} / \mathrm{F}, 10 \%, 7)}{0.1}+\frac{\$ 3,000,000(\mathrm{~A} / \mathrm{F}, 10 \%, 35)}{0.1} \\
& \quad=\$ 17,272,729
\end{aligned}
$$

Design B:

$$
\begin{aligned}
\mathrm{CW}(\text { benefits }) & =\frac{\$ 1,900,000}{0.1}=\$ 19,000,000 \\
\mathrm{CW}(\text { costs })= & \$ 14,000,000+\frac{\$ 17,500(\mathrm{P} / \mathrm{A}, 10 \%, 24)(\mathrm{A} / \mathrm{P}, 10 \%, 25)}{0.1} \\
& +\frac{\$ 40,000(\mathrm{~A} / \mathrm{F}, 10 \%, 5)}{0.1}+\frac{\$ 3,500,000(\mathrm{~A} / \mathrm{F}, 10 \%, 25)}{0.1} \\
= & \$ 14,595,790
\end{aligned}
$$

Design C:

$$
\begin{aligned}
\mathrm{CW}(\text { benefits }) & =\frac{\$ 1,750,000}{0.1}=\$ 17,500,000 \\
\mathrm{CW}(\text { costs })= & \$ 12,500,000+\frac{\$ 20,000(\mathrm{P} / \mathrm{A}, 10 \%, 24)(\mathrm{A} / \mathrm{P}, 10 \%, 25)}{0.1} \\
& +\frac{\$ 40,000(\mathrm{~A} / \mathrm{F}, 10 \%, 5)}{0.1}+\frac{\$ 3,750,000(\mathrm{~A} / \mathrm{F}, 10 \%, 25)}{0.1} \\
= & \$ 13,146,043
\end{aligned}
$$

Order alternative designs by increasing investment: C, B, A.

	C	$\Delta(\mathrm{B}-\mathrm{C})$	$\Delta(\mathrm{A}-\mathrm{B})$
$\Delta \mathrm{CW}$ (benefits)	$\$ 17,500,000$	$\$ 1,500,000$	$\$ 2,500,000$
$\Delta \mathrm{CW}$ (costs)	$13,146,043$	$1,449,747$	$2,676,939$
$\Delta \mathrm{~B} / \Delta \mathrm{C}$	1.33	1.03	0.93
Increment justified?	Yes	Yes	No
Current best design	C	B	B

Decision: Select Design B.

Solutions to FE Practice Problems

10-26 $\mathrm{AW}_{\mathrm{B}}(12 \%)=\$ 20,000$
$\mathrm{AW}_{\mathrm{C}}(12 \%)=\$ 50,000(\mathrm{~A} / \mathrm{P}, 12 \%, 6)+\$ 6,000=\$ 18,160$
$\mathrm{B}-\mathrm{C}$ Ratio $=\frac{\$ 20,000}{\$ 18,160}=1.1$
Select (d)

10-27 Truck X is acceptable (results of Problem 10-22). Check $B-C$ ratio of incremental investment required for Truck Y.
$\Delta \mathrm{AW}_{\mathrm{B}}(12 \%)=\$ 22,000-\$ 20,000=\$ 2,000$
$\left.\Delta \mathrm{AW}_{\mathrm{C}}(12 \%)=\$ 64,000-\$ 50,000\right)(\mathrm{A} / \mathrm{P}, 12 \%, 6)+(\$ 5,000-\$ 6,000)$

$$
=\$ 2,405
$$

$\Delta \mathrm{B}-\mathrm{C}=\frac{\$ 2,000}{\$ 2,405}=0.83<1$

Select (b)

Incremental investment required by Truck Y is not justified. Purchase Truck X.

10-28 For $\mathrm{B}-\mathrm{C}$ to equal $1, \mathrm{AW}_{\mathrm{B}}(12 \%)=\mathrm{AW}_{\mathrm{C}}(12 \%)$
$\mathrm{AW}_{\mathrm{B}}(12 \%)=\$ 600,000(\mathrm{~F} / \mathrm{P}, 12 \%, 2.5)(\mathrm{A} / \mathrm{F}, 12 \%, 5)$
$=\$ 126,776$
$\mathrm{PW}_{\mathrm{B}}(12 \%)=\$ 126,776(\mathrm{P} / \mathrm{A}, 12 \%, 15)=\$ 843,026$
$\underline{\text { Select (c) }}$

10-29 $\mathrm{PW}_{\mathrm{B}}(12 \%)=\$ 24,000(\mathrm{P} / \mathrm{A}, 12 \%, 14)(\mathrm{P} / \mathrm{F}, 12 \%, 2)$

$$
=\$ 126,816
$$

$\mathrm{PW}_{\mathrm{C}}(12 \%)=\$ 60,000+\$ 5,000(\mathrm{P} / \mathrm{A}, 12 \%, 16)=\$ 94,870$
Conventional B-C $=\frac{\$ 126,816}{\$ 94,870}=1.337$

Select (b)

10-30 $\mathrm{PW}_{\text {В-О\&м }}(12 \%)=\$ 24,000(\mathrm{P} / \mathrm{A}, 12 \%, 14)(\mathrm{P} / \mathrm{F}, 12 \%, 2)-\$ 5,000(\mathrm{P} / \mathrm{A}, 12 \%, 16)$

$$
=\$ 91,946
$$

$\mathrm{PW}_{\mathrm{C}}(12 \%)=\$ 60,000$
Modified B-C $=\frac{\$ 91,946}{\$ 60,000}=1.53$

Select (a)

Solutions to Chapter 11 Problems

11-1 Letting X denote the annual sales of the product, the annual worth for the venture can be determined as follows:

$$
\begin{aligned}
\operatorname{AW}(15 \%) & =-\$ 200,000(\mathrm{~A} / \mathrm{P}, 15 \%, 5)-\$ 50,000-0.1(\$ 25) \mathrm{X}+\$ 12.50 \mathrm{X} \\
& =-\$ 109,660+\$ 10 \mathrm{X}
\end{aligned}
$$

From this equation, we find that $X=10,996$ units per year. If it is believed that at least 10,966 units can be sold each year, the venture appears to be economically worthwhile. Even though the firm does not know with certainty how many units of the new device will be sold annually, the information provided by the breakeven analysis will assist management in deciding whether or not to undertake the venture.

11-2 The unknown is now the mileage driven each year (instead of fuel cost).

$$
\begin{aligned}
& \text { EUAC }_{\mathrm{H}}=\$ 30,000(\mathrm{~A} / \mathrm{P}, 3 \%, 5)+(\$ 3.50 / \mathrm{gal})(\mathrm{X} \mathrm{mi} / \mathrm{yr}) /(30 \mathrm{mpg}) \\
& \text { EUAC }_{\mathrm{G}}=\$ 28,000(\mathrm{~A} / \mathrm{P}, 3 \%, 5)+(\$ 3.50 / \mathrm{gal})(\mathrm{X} \mathrm{mi} / \mathrm{yr}) /(25 \mathrm{mpg})
\end{aligned}
$$

Setting $\mathrm{EUAC}_{\mathrm{H}}=\mathrm{EUAC}_{\mathrm{G}}$, we find the breakeven mileage to be $\mathrm{X}=30,300$ miles per year.

11-3 The annual operating expenses of long-haul tractors equipped with the various deflectors are calculated as a function of mileage dirven per year, X :

$$
\begin{aligned}
\text { Windshear: } & {[(\mathrm{X} \mathrm{mi} / \mathrm{yr})(0.92)(0.2 \mathrm{gal} / \mathrm{mi})(\$ 3.00 / \mathrm{gal})]=\$ 0.552 \mathrm{X} / \mathrm{yr} } \\
\text { Blowby: } & {[(\mathrm{X} \mathrm{mi} / \mathrm{yr})(0.96)(0.2 \mathrm{gal} / \mathrm{mi})(\$ 3.00 / \mathrm{gal})]=\$ 0.576 \mathrm{X} / \mathrm{yr} } \\
\text { Air-vantage: } & {[(\mathrm{X} \mathrm{mi} / \mathrm{yr})(0.90)(0.2 \mathrm{gal} / \mathrm{mi})(\$ 3.00 / \mathrm{gal})]=\$ 0.540 \mathrm{X} / \mathrm{yr} }
\end{aligned}
$$

EUAC can now be written in terms of X .

$$
\begin{aligned}
& \text { EUAC }_{\mathrm{W}}=\$ 1,000(\mathrm{~A} / \mathrm{P}, 10 \%, 10)+\$ 10+\$ 0.552 \mathrm{X}=\$ 172.70+\$ 0.552 \mathrm{X} \\
& \text { EUAC }_{\mathrm{B}}=\$ 400(\mathrm{~A} / \mathrm{P}, 10 \%, 10)+\$ 5+\$ 0.576 \mathrm{X}=\$ 70.08+\$ 0.576 \mathrm{X} \\
& \text { EUAC }_{A}=\$ 1,200(\mathrm{~A} / \mathrm{P}, 10 \%, 5)+\$ 5+\$ 0.540 \mathrm{X}=\$ 321.56+\$ 0.540 \mathrm{X}
\end{aligned}
$$

The breakeven values can be computed between each pair of deflectors by equating their EUAC equations and solving for X .

Windshear and Blowby: $X=4,276$ miles per year
Blowby and Air-vantage: $X=6,986$ miles per year
Air-vantage and Windshear: $\mathrm{X}=12,405$ miles per year
The range over which each deflector is preferred is:

$$
\begin{aligned}
\mathrm{X} \leq 4,276 & \text { Select Blowby } \\
4,276 \leq \mathrm{X} \leq 12,405 & \text { Select Windshear } \\
12,405 \leq \mathrm{X} & \text { Select Air-vantage }
\end{aligned}
$$

11-4 The break-even deferment period, T^{\prime}, is determined as follows:
$\begin{array}{ll}\text { Provide now: } & \mathrm{PW}(\text { costs })=\$ 1,400,000+\$ 850,000\left(\mathrm{P} / \mathrm{F}, 10 \%, \mathrm{~T}^{\prime}\right) \\ \text { No Provision: } & \mathrm{PW}(\text { costs })=\$ 1,250,000+\$ 1,150,000\left(\mathrm{P} / \mathrm{F}, 10 \%, \mathrm{~T}^{\prime}\right)\end{array}$
If the difference between the two alternatives is examined, it can be seen that $\$ 150,000$ now is being traded off against $\$ 300,000$ at a later date. The question is, what "later date" constitutes the break-even point? By equating the PW (costs) and solving, we have $0.5=\left(\mathrm{P} / \mathrm{F}, 10 \%, \mathrm{~T}^{\prime}\right)$ and $\mathrm{T}^{\prime}=\log (2) / \log (1.1)=$ 7.27. Or, from Appendix C, we see that T^{\prime} is approximately seven years. Thus, if the additional space will be required in less than seven years, it would be more economical to make immediate provision in the foundation and structural details. If the addition would not likely be needed until after seven years, greater economy would be achieved by making no such provision in the first structure.

11-5
(a) $\mathrm{AW}_{1}(15 \%)=-\$ 4,500(\mathrm{~A} / \mathrm{P}, 15 \%, 8)+\$ 1,600-\$ 400+\$ 800(\mathrm{~A} / \mathrm{F}, 15 \%, 8)$
$=-\$ 4,500(0.2229)+\$ 1,200+\$ 800(0.0729)$
$=\$ 255$

$$
\begin{aligned}
\mathrm{AW}_{2}(15 \%) & =-\$ 6,000(\mathrm{~A} / \mathrm{P}, 15 \%, 10)+\$ 1,850-\$ 500+\$ 1,200(\mathrm{~A} / \mathrm{F}, 15 \%, 10) \\
& =-\$ 6,000(0.1993)+\$ 1,350+\$ 1,200(0.0493) \\
& =\$ 213
\end{aligned}
$$

Therefore, the initial decision is to select Alternative 1. To determine the capital investment of Alternative $2\left(\mathrm{I}_{2}\right)$ so that the initial decision would be reversed, equate the AWs:

$$
\begin{aligned}
& \mathrm{AW}_{1}(15 \%)=\mathrm{AW}_{2}(15 \%) \\
& \$ 255=-\mathrm{I}_{2}(\mathrm{~A} / \mathrm{P}, 15 \%, 10)+\$ 1,350+\$ 1,200(\mathrm{~A} / \mathrm{F}, 15 \%, 10) \\
& \$ 255=-\mathrm{I}_{2}(0.1993)+\$ 1,350+\$ 1,200(0.0493) \\
& \mathrm{I}_{2}=\$ 5,791
\end{aligned}
$$

The capital investment of Alternative 2 would have to be $\$ 5,791$ or less for the initial decision to be reversed.
(b) Set $\mathrm{AW}_{1}(15 \%)=\mathrm{AW}_{2}(15 \%)$ and solve for N assuming market values remain constant.

$$
\begin{aligned}
& -\$ 4,500(\mathrm{~A} / \mathrm{P}, 15 \%, \mathrm{~N})+\$ 1,200+\$ 800(\mathrm{~A} / \mathrm{F}, 15 \%, \mathrm{~N})=\$ 213 \\
& -\$ 4,500(\mathrm{~A} / \mathrm{P}, 15 \%, \mathrm{~N})+\$ 986.64+\$ 800(\mathrm{~A} / \mathrm{F}, 15 \%, \mathrm{~N})=0
\end{aligned}
$$

By trial and error, $\mathrm{N}=\underline{7.3 \text { years. }}$

11-6 (a) Let $\mathrm{X}=$ operating hours per year

$$
\begin{aligned}
\mathrm{EUAC}_{\mathrm{A}}(12 \%)= & \$ 2,410(\mathrm{~A} / \mathrm{P}, 12 \%, 8)-\$ 80(\mathrm{~A} / \mathrm{F}, 12 \%, 8) \\
& +(15 \mathrm{hp})(0.746 \mathrm{~kW} / \mathrm{hp})(\$ 0.06 / \mathrm{kWh})(\mathrm{X}) /(0.6) \\
= & \$ 478.63+\$ 1.119 \mathrm{X}
\end{aligned}
$$

$\operatorname{EUAC}_{\mathrm{B}}(12 \%)=\$ 4,820(\mathrm{~A} / \mathrm{P}, 12 \%, 8)+(10 \mathrm{hp})(0.746 \mathrm{~kW} / \mathrm{hp})(\$ 0.06 / \mathrm{kWh})(\mathrm{X}) /(0.75)$

$$
=\$ 970.27+\$ 0.5968 \mathrm{X}
$$

Setting $\mathrm{EUAC}_{A}=\mathrm{EUAC}_{\mathrm{B}}$ we find $\mathrm{X}=941$ hours per year. At annual operating hours greater than 941 (including 2,000), we prefer the more efficient pump, Pump B. This is confirmed by calculating the EUAC with $\mathrm{X}=2,000$.
$\operatorname{EUAC}_{\mathrm{A}}(12 \%)=\$ 2,716$
$\operatorname{EUAC}_{\mathrm{B}}(12 \%)=\$ 2,164$
(b) Let $\eta_{\mathrm{A}}=$ breakeven efficiency of pump A at 2,000 operating hours per year. We already know that $\operatorname{EUAC}_{\mathrm{B}}(12 \%)=\$ 2,164$ at 2,000 hours per year.

$$
\begin{aligned}
\mathrm{EUAC}_{\mathrm{A}}(12 \%)=\$ 2,164=\$ 2,410 & (\mathrm{~A} / \mathrm{P}, 12 \%, 8)-\$ 80(\mathrm{~A} / \mathrm{F}, 12 \%, 8) \\
& +(15 \mathrm{hp})(0.746 \mathrm{~kW} / \mathrm{hp})(\$ 0.06 / \mathrm{kWh})(\mathrm{X}) / \eta_{\mathrm{A}}
\end{aligned}
$$

Solving, we get $\eta_{A}=79.67 \%$

11-7 Assume repeatability. Set $\mathrm{AW}_{\mathrm{A}}(10 \%)=\mathrm{AW}_{\mathrm{B}}(10 \%)$ and solve for breakeven value of X .
$\mathrm{AW}_{\mathrm{A}}(10 \%)=-\$ 5,000(\mathrm{~A} / \mathrm{P}, 10 \%, 5)+\$ 1,500+\$ 1,900(\mathrm{~A} / \mathrm{F}, 10 \%, 5)=\$ 492,22$
$\mathrm{AW}_{\mathrm{B}}(10 \%)=-\mathrm{X}((\mathrm{A} / \mathrm{P}, 10 \%, 7)+\$ 1,400+\$ 4,00(\mathrm{~A} / \mathrm{F}, 10 \%, 7)$

$$
=-0.2054 \mathrm{X}+\$ 1,821.60
$$

$\$ 492.22=-0.2054 \mathrm{X}+\$ 1,821.60$
$\mathrm{X}=(\$ 1,821.60-\$ 492.22) /(0.2054)=\$ 6,472.15$
At $X=0, \mathrm{AW}_{\mathrm{B}}(10 \%)=\$ 1,821.60>\$ 492.22$, so Alt. B is preferred.
At $X=\$ 6,500, \mathrm{AW}_{\mathrm{B}}(10 \%)=\$ 486.50<\$ 492.22$, so Alt. A is preferred.
Select Alt. B for $0 \leq \mathrm{X} \leq \$ 6,472.15$

11-8

Alternative	A	B	C
Investment Capital	12,000	15,800	8,000
Annual Savings	4,000	5,200	3,000
MV (after 4 years)	3,000	3,500	1,500

MARR	AW(A)	AW(B)	AW(C)
4%	1,401	1,671	1,149
8%	1,043	1,206	918
12%	677	730	680
16%	304	244	437
20%	-77	-251	189

11-9 After-tax, A\$ Analysis: Let $\mathrm{X}=$ annual before-tax revenue requirement.

EOY	Investment	Annual Revenue	Annual Expenses	BTCF (A\$)
0	$-\$ 1,166,000^{1}$			$-\$ 1,166,000$
1		X	$-\$ 519,750^{3}$	$-519,750+\mathrm{X}$
2		X	$-545,738$	$-545,738+\mathrm{X}$
3		X	$-573,024$	$-573,024+\mathrm{X}$
4		X	$-601,676$	$-601,676+\mathrm{X}$
4	$441,741^{2}$			441,741

${ }^{1}$ Capital Investment $=(55$ trucks $)(\$ 21,000 /$ truck $)=\$ 1,166,000$
${ }^{2}$ Market Value $=\mathrm{MV}_{4}=0.35(\$ 1,166,000)(1.02)^{4}=\$ 441,741$
${ }^{3}$ Annual Expenses in year $\mathrm{k}=(55$ trucks $)(20,000 \mathrm{mi} /$ truck $)(\$ 0.45 / \mathrm{mi})(1.05)^{\mathrm{k}}$

$$
=\$ 495,000(1.05)^{\mathrm{k}}
$$

EOY	BTCF (A\$)	Depr.	TI	T(38\%)	ATCF (A\$)
0	$-\$ 1,166,000$	---	--	--	$-\$ 1,166,000$
1	$-519,750+\mathrm{X}$	$\$ 388,628$	$-908,378+\mathrm{X}$	$345,184-0.38 \mathrm{X}$	$-174,566+0.62 \mathrm{X}$
2	$-545,738+\mathrm{X}$	518,287	$-1,064,025+\mathrm{X}$	$404,330-0.38 \mathrm{X}$	$-141,408+0.62 \mathrm{X}$
3	$-573,024+\mathrm{X}$	172,685	$-745,709+\mathrm{X}$	$283,369-0.38 \mathrm{X}$	$-289,655+0.62 \mathrm{X}$
4	$-601,676+\mathrm{X}$	86,401	$-688,077+\mathrm{X}$	$261,469-0.38 \mathrm{X}$	$-340,207+0.62 \mathrm{X}$
4	441,741	--	441,741	$-167,862$	273,879

$$
\begin{aligned}
& \mathrm{PW}(15 \%)=0=-\$ 1, 166,000-\$ 174,566(\mathrm{P} / \mathrm{F}, 15 \%, 1)-\$ 141,408(\mathrm{P} / \mathrm{F}, 15 \%, 2) \\
&-\$ 289,655(\mathrm{P} / \mathrm{F}, 15 \%, 3)-\$ 340,207(\mathrm{P} / \mathrm{F}, 15 \%, 4) \\
&+\$ 273,879(\mathrm{P} / \mathrm{F}, 15 \%, 4)+0.62 \mathrm{X}(\mathrm{P} / \mathrm{A}, 15 \%, 4) \\
& 0=-\$ 1,653,096+1.77 \mathrm{X}
\end{aligned}
$$

Thus, $X=\$ 1,653,096 / 1.77=\$ \underline{933,953}$ in annual revenues per year.
Breakeven Point Interpretation: The equivalent uniform annual revenue of $\$ 933,953$ per year is the breakeven point between signing the contract (and purchasing the trucks, etc.), and not signing the contract (and making no change in current operations).

11-10 (a) Annual Revenues $=(150$ rooms $)(0.6)\left(\frac{\$ 45}{\text { room-day }}\right)\left(\frac{365 \text { days }}{\text { year }}\right)=\$ 1,478,250$

$$
\begin{aligned}
\operatorname{AW}(10 \%)= & \$ 1,478,250-\$ 125,000-\$ 5,000,000(\mathrm{~A} / \mathrm{P}, 10 \%, 15) \\
& +(0.2)(\$ 5,000,000)(\mathrm{A} / \mathrm{F}, 10 \%, 15)-\$ 1,875,000(\mathrm{~A} / \mathrm{P}, 10 \%, 5) \\
= & \$ 232,625>0
\end{aligned}
$$

Yes, the project is economically feasible.
(b) Sensitivity with respect to Decision Reversal

Capital Investment: $\$ 232,625^{*}-\$ 5,000,000(\mathrm{~A} / \mathrm{P}, 10 \%, 15) \mathrm{X}=0$

$$
X=0.3538 \text { or } \underline{35.38 \%}
$$

* Market value is assumed to remain constant at $\$ 1,000,000$.

Occupancy Rate: $\quad \$ 232,625+45(150)(365)(0.6) \mathrm{X}=0$

$$
X=-0.1574 \text { or }-15.74 \%
$$

MARR: (find the IRR and calculate \% change)
By trial and error, $I R R=14.3 \%$.
Therefore, the MARR must increase by $14.3 / 10-1=\underline{43 \%}$
The decision is most sensitive to changes in occupancy rate (requires the smallest percent change to reverse the decision).
(c) Annual worth is a linear function with respect to capital investment and occupancy rate - we can construct the plot using points from parts (a) and (b). Annual worth is non-linear with respect to the MARR, therefore additional data points are necessary.

i	\% change	AW
6%	-40%	$\$ 557,200$
8%	-20%	378,559
10%	0	232,625
12%	20%	112,679
14%	40%	12,808

11-10 (c) continued

11-11 (a) Let $\mathrm{X}=$ hours per day for new system.

$$
\begin{gathered}
\mathrm{EUAC}_{\text {New }}=\$ 150,000(\mathrm{~A} / \mathrm{P}, 1 \%, 60)-\$ 50,000(\mathrm{~A} / \mathrm{F}, 1 \%, 60)+(\$ 40 / \mathrm{hr})(\mathrm{X})(20 \text { days } / \mathrm{mo}) \\
\mathrm{EUAC}_{\text {Used }}=\$ 75,000(\mathrm{~A} / \mathrm{P}, 1 \%, 60)-\$ 20,000(\mathrm{~A} / \mathrm{F}, 1 \%, 60) \\
+(\$ 40 / \mathrm{hr})(8 \mathrm{hr} / \text { day })(20 \text { day } / \mathrm{mo})
\end{gathered}
$$

Set $\mathrm{EUAC}_{\text {New }}=\mathrm{EUAC}_{\text {Used }}$ and solve for $\mathrm{X}=6.38$ hours per day. This corresponds to an $[(8-$ $6.38) / 8] \times 100 \%=20.3 \%$ reduction in labor hours.
(b) If the new system is expected to reduce labor hours by only 20%, the used system would be recommended. This conclusion is confirmed by computing the PW of the incremental investment $(\$ 75,000)$ required the new system, $\mathrm{PW}_{\Delta}=-\$ 946$. But the margin of victory for the used system is small, and management may elect to go ahead and purchase the new system because of intangible factors such as reliability and prestige value of having the latest technology.

11-12
$\left.\begin{array}{lrc}\hline \text { Most Likely Estimates } & & \\ & & \text { New } \\ & \text { Used } \\ \text { Capital Investment } & & \$ 150,000 \\ \text { Market Value } & \$ 50,000 & \$ 20,000 \\ \text { Annual Labor Cost } & & \$ 5,120\end{array}\right) \$ 6,400$

Incremental AW

\% Change	MARR		MV (New)		Productivity (New)	
-40%	$\$$	205	$\$$	(266)	$\$$	
(778)						
-30%	$\$$	149	$\$$	(205)	$\$$	
-20%	$\$$	93	$\$$	(143)	$\$$	
	(399)					
-10%	$\$$	36	$\$$	(82)	$\$$	
0%	$\$$	(21)	$\$$	(21)	$\$$	
(21)						
10%	$\$$	(79)	$\$$	40	$\$$	
168						
20%	$\$$	(136)	$\$$	101	$\$$	
30%	$\$$	(195)	$\$$	163	$\$$	
40%	$\$$	(254)	$\$$	224	$\$$	

| | $\$ 1,000$ |
| :---: | :---: | :---: | :---: |
| | $\$ 800$ |

11-13 The entries in the following table are AW values and were generated using the following equation:
$\mathrm{AW}(6 \%)=-\$ 30,000,000(\mathrm{~A} / \mathrm{P}, 6 \%, 40)-300(\$ 4,000)+$ occupancy rate \times rental fee $\times 300$

	\mid					
Rental Fee	75%	80%	85%	90%	95%	100%
$\$ 6,000$	$(\$ 1,843,846)$	$(\$ 1,753,846)$	$(\$ 1,663,846)$	$(\$ 1,573,846)$	$(\$ 1,483,846)$	$(\$ 1,393,846)$
$\$ 7,000$	$(\$ 1,618,846)$	$(\$ 1,513,846)$	$(\$ 1,408,846)$	$(\$ 1,303,846)$	$(\$ 1,198,846)$	$(\$ 1,093,846)$
$\$ 8,000$	$(\$ 1,393,846)$	$(\$ 1,273,846)$	$(\$ 1,153,846)$	$(\$ 1,033,846)$	$(\$ 913,846)$	$(\$ 793,846)$
$\$ 9,000$	$(\$ 1,168,846)$	$(\$ 1,033,846)$	$(\$ 898,846)$	$(\$ 763,846)$	$(\$ 628,846)$	$(\$ 493,846)$
$\$ 10,000$	$(\$ 943,846)$	$(\$ 793,846)$	$(\$ 643,846)$	$(\$ 493,846)$	$(\$ 343,846)$	$(\$ 193,846)$
$\$ 11,000$	$(\$ 718,846)$	$(\$ 553,846)$	$(\$ 388,846)$	$(\$ 223,846)$	$(\$ 58,846)$	$\$ 106,154$
$\$ 12,000$	$(\$ 493,846)$	$(\$ 313,846)$	$(\$ 133,846)$	$\$ 46,154$	$\$ 226,154$	$\$ 406,154$
$\$ 13,000$	$(\$ 268,846)$	$(\$ 73,846)$	$\$ 121,154$	$\$ 316,154$	$\$ 511,154$	$\$ 706,154$
$\$ 14,000$	$(\$ 43,846)$	$\$ 166,154$	$\$ 376,154$	$\$ 586,154$	$\$ 796,154$	$\$ 1,006,154$
$\$ 15,000$	$\$ 181,154$	$\$ 406,154$	$\$ 631,154$	$\$ 856,154$	$\$ 1,081,154$	$\$ 1,306,154$
$\$ 16,000$	$\$ 406,154$	$\$ 646,154$	$\$ 886,154$	$\$ 1,126,154$	$\$ 1,366,154$	$\$ 1,606,154$
$\$ 17,000$	$\$ 631,154$	$\$ 886,154$	$\$ 1,141,154$	$\$ 1,396,154$	$\$ 1,651,154$	$\$ 1,906,154$
$\$ 18,000$	$\$ 856,154$	$\$ 1,126,154$	$\$ 1,396,154$	$\$ 1,666,154$	$\$ 1,936,154$	$\$ 2,206,154$

11-14 (a) Analysis at most likely estimates:

$$
\begin{aligned}
\operatorname{PW}(15 \%) & =-\$ 30,000+(\$ 20,000=\$ 5,000)(\mathrm{P} / \mathrm{A}, 15 \%, 5)+\$ 1,000(\mathrm{P} / \mathrm{F}, 15 \%, 5) \\
& =\$ 20,780.20
\end{aligned}
$$

Sensitivity to changes in capital investment:

$$
\begin{aligned}
+5 \%: \mathrm{PW}(15 \%)=- & \$ 30,000(1.05)-(\$ 20,000-\$ 5,000)(\mathrm{P} / \mathrm{A}, 15 \%, 5)+ \\
& \$ 1,000(\mathrm{P} / \mathrm{F}, 15 \%, 5)=-\$ 19,280.20 \\
-5 \%: \mathrm{PW} * 15 \%)=- & \$ 30,000(0.95)+(\$ 20,000-\$ 5,000)(\mathrm{P} / \mathrm{A}, 15 \%, 5)+ \\
& \$ 1,000(\mathrm{P} / \mathrm{F}, 15 \%, 5)=\$ 22,280.20
\end{aligned}
$$

Breakeven percent change:

$$
\begin{aligned}
\mathrm{PW}(15 \%)=0= & -\$ 30,000(1+\mathrm{x} \%)+(\$ 20,000-\$ 5,000)(\mathrm{P} / \mathrm{A}, 15 \%, 5)+ \\
& \$ 1,000(\mathrm{P} / \mathrm{F}, 15 \%, 5) \\
\mathrm{x}= & 0.693 \text { or }+69.3 \% \text { increase in capital investment cost }
\end{aligned}
$$

Sensitivy to changes in annual expenses:

$$
\begin{aligned}
+10 \%: \mathrm{PW}(15 \%)=- & \$ 30,000+[\$ 20,000-\$ 5,000(1.1)](\mathrm{P} / \mathrm{A}, 15 \%, 5)+ \\
& \$ 1,000(\mathrm{P} / \mathrm{F}, 15 \%, 5)=\$ 19,104.10 \\
-10 \%: \mathrm{PW}(15 \%)= & -\$ 30,000+[\$ 20,000-\$ 5,000)(0.9)](\mathrm{P} / \mathrm{A}, 15 \%, 5)+ \\
& \$ 1,000(\mathrm{P} / \mathrm{F}, 15 \%, 5)=\$ 22,456.30
\end{aligned}
$$

Breakeven percent change:

$$
\begin{aligned}
\mathrm{PW}(15 \%)=0= & -\$ 30,000+[\$ 20,000-\$ 5,000(1+\mathrm{x} \%)](\mathrm{P} / \mathrm{A}, 15 \%, 5)+ \\
& \$ 1,000(\mathrm{P} / \mathrm{F}, 15 \%, 5) \\
\mathrm{x}= & 1.24 \text { or }+124 \% \text { increase in annual expenses }
\end{aligned}
$$

Sensitivity to changes in annual revenue:

$$
\begin{aligned}
+20 \%: \mathrm{PW}(15 \%) & =-\$ 30,000+[\$ 20,000(1.2)-\$ 5,000](\mathrm{P} / \mathrm{A}, 15 \%, 5)+\$ 1,000(\mathrm{P} / \mathrm{F}, 15 \%, 5) \\
& =\$ 34,189 \\
-20 \%: \mathrm{PW}(15 \%) & =-\$ 30,000+[\$ 20,000(0.8)-\$ 5,000](\mathrm{P} / \mathrm{A}, 15 \%, 5)+\$ 1,000(\mathrm{P} / \mathrm{F}, 15 \%, 5) \\
& =\$ 7,371.40
\end{aligned}
$$

Breakeven percent change:

$$
\begin{aligned}
\mathrm{PW}(15 \%)=0 & =-\$ 30,000+[\$ 20,000(1+\mathrm{x} \%)=\$ 5,000](\mathrm{P} / \mathrm{A}, 15 \%, 5)+\$ 1,000(\mathrm{P} / \mathrm{F}, 15 \%, 5) \\
\mathrm{x} & =-0.31 \text { or }-31 \%(\text { decrease in annual revenues })
\end{aligned}
$$

11-14 (a) continued

Sensitivity to changes in market value:

$$
\begin{aligned}
+20 \%: \mathrm{PW}(15 \%) & =-\$ 30,000+(\$ 20,000-\$ 5,000)(\mathrm{P} / \mathrm{A}, 15 \%, 5)+\$ 1,000(1.2)(\mathrm{P} / \mathrm{F}, 15 \%, 5) \\
& =\$ 20,879.64 \\
-20 \%: \mathrm{PW}(15 \%) & =-\$ 30,000+(\$ 20,000-\$ 5,000)(\mathrm{P} / \mathrm{A}, 15 \%, 5)+\$ 1,000(0.8)(\mathrm{P} / \mathrm{F}, 15 \%, 5) \\
& =\$ 20,680.76
\end{aligned}
$$

Breakeven percent change:

$$
\begin{aligned}
& \mathrm{PW}(15 \%)=0=-\$ 30,000+(\$ 20,000-\$ 5,000)(\mathrm{P} / \mathrm{A}, 15 \%, 5)+ \\
& \$ 1,000(1+\mathrm{x} \%)(\mathrm{P} / \mathrm{F}, 15 \%, 5) \\
& \quad \mathrm{x}=-41.79 \text { or }-417.9 \%(\text { decrease in market value })
\end{aligned}
$$

Sensitivity to changes in useful life:

$$
\begin{aligned}
\mathrm{At}+20 \%, \mathrm{n}= & 6 \\
\mathrm{PW}(15 \%) & =-\$ 30,000+(\$ 20,000-\$ 5,000)(\mathrm{P} / \mathrm{A}, 15 \%, 6)+\$ 1,000(\mathrm{P} / \mathrm{F}, 15 \%, 6) \\
& =\$ 22,199.80 \\
\mathrm{At}-20 \%, \mathrm{n}= & 4 \\
\mathrm{PW}(15 \%) & =-\$ 30,000+(\$ 20,000-\$ 5,000)(\mathrm{P} / \mathrm{A}, 15 \%, 4)+\$ 1,000(\mathrm{P} / \mathrm{F}, 15 \%, 4) \\
& =\$ 13,396.80
\end{aligned}
$$

Breakeven percent change:
At $\mathrm{n}=3(-40 \%)$:
$\mathrm{PW}(15 \%)=-\$ 30,000+(\$ 20,000-\$ 5,000)(\mathrm{P} / \mathrm{A}, 15 \%, 3)+\$ 1,000(\mathrm{P} / \mathrm{F}, 15 \%, 3)$

$$
=\$ 4,905.50
$$

At $\mathrm{n}=2(-60 \%)$:
$\mathrm{PW}(15 \%)=-\$ 30,000+(\$ 20,000-\$ 5,000)(\mathrm{P} / \mathrm{A}, 15 \%, 2)+\$ 1,000(\mathrm{P} / \mathrm{F}, 15 \%, 2)$

$$
=-\$ 4,858.40
$$

Breakeven life ≈ 2.5 years, $a-50 \%$ change

11-14 (a) continued

Recommendation: Proceed with the project. PW is positive for values of factors (changed individually) within stated accuracy ranges. However, if all factors are at their worst values, PW $(15 \%)=-\$ 1,065$ [capital investment at $+5 \%$, annual expenses at $+10 \%$, annual revenues, market value, and useful life at $-20 \%]$.

(b) Factors can be ranked base on the breakeven percent change.

Highest need	Annual Revenues	-31%
	Useful Life	-50%
	Capital Investment	$+69.3 \%$
	Annual Expense	$+124 \%$
Lowest need	Market Value	-418%

11-15 Repair cost $=\$ 5,000$:
$\mathrm{PW}\left(\mathrm{i}^{\prime} \%\right)=0=-\$ 10,000+\$ 4,000\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime} \%, 5\right)-\$ 5,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i} \mathrm{i}^{\prime} \%, 3\right)$
By trial and error, $\operatorname{IRR}=15.5 \%$
Repair cost $=\$ 7,000$:
$\mathrm{PW}\left(\mathrm{i}^{\prime} \%\right)=0=-\$ 10,000+\$ 4,000\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime} \%, 5\right)-\$ 7,000\left(\mathrm{P} / \mathrm{F}, \mathrm{i} \mathrm{i}^{\prime} \%, 3\right)$
By trial and error, $\operatorname{IRR}=9.6 \%$
Repair cost $=\$ 3,000$
$\mathrm{PW}\left(\mathrm{i}^{\prime} \%\right)=0=-\$ 10,000+\$ 4,000\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime} \%, 5\right)-\$ 3,000(\mathrm{P} / \mathrm{F}, \mathrm{i} \%, 3)$
By trial and error, $\operatorname{IRR}=21 \%$
The sensitivity analysis indicates that if the repairs at the end of year 3 cost $\$ 5,000$ or less, it will be economical to invest in the machine. However, if the repairs cost $\$ 7,000$, the IRR of the purchase is less than the MARR.

A follow-up analysis would be to determine the maximum repair cost that would still result in the desired return of 10%. Let $\mathrm{R}=$ repair cost at the end of year 3 .

$$
\begin{gathered}
\mathrm{PW}(10 \%)=0=-\$ 10,000+\$ 4,000(\mathrm{P} / \mathrm{A}, 10 \%, 5)-\mathrm{R}(\mathrm{P} / \mathrm{F}, 10 \%, 3) \\
0.7513(\mathrm{R})=\$ 4,163.20 \\
\mathrm{R}=\$ \underline{6,872}
\end{gathered}
$$

As long as the repair cost at the end of year 3 does not exceed $\$ 6,872$ (which represents a 37.44% increase over the estimated cost of $\$ 5,000$), the IRR of the purchase will be $\geq 10 \%$.

11-16 Let $x=$ amount of rebate. Then the purchase price with 2.9% financing is $\$ 30,000$ and the purchase price with the 8.9% financing is $\$ 30,000-x$. We want to find the value of x such that the monthly payment is the same. Using Excel we can easily find the monthly payment of the 2.9% plan: $\operatorname{PMT}(0.029 / 12,48,-30,000)=\$ 662.70$. Then

$$
30,000-x=\operatorname{PV}(0.089 / 12,48,-662.70)=\$ 26,681.53
$$

and $x=\$ 3,318.47$. If you are offered a rebate less than this amount then you should take the 2.9% financing offer.

1) Assume salvage value for each system $=0$
2) The difference in user cost will be projected as a savings for system \#2. Savings $=\$ 0.02 /$ vehicle
3) There are approximately 8,760 hours/year

System 1: AW method
$\mathrm{CR}=\$ 32,000(\mathrm{~A} / \mathrm{P}, 10 \%, 10)=\$ 5,206.40$
Annual Maintenance $=\$ 75$
Operation Cost $=\frac{(28 \mathrm{~kW})(8,760 \mathrm{hr} / \mathrm{yr})(\$ 0.08 / \mathrm{kWh})}{0.78}=\$ 25,157$ per year
$\mathrm{AC}_{\# 1}=\$ 5,206.40+\$ 75+\$ 25,157=\$ \underline{30,438.40}$

System \#2:

$C R=\$ 45,000(\mathrm{~A} / \mathrm{P}, 10 \%, 15)=\$ 5,917.50$
Annual Maintenance $=\$ 100$
Operation Cost $=\frac{(34 \mathrm{~kW})(8,760 \mathrm{hr} / \mathrm{yr})(\$ 0.08 / \mathrm{kWh})}{0.90}=\$ 26,475$
Let $\mathrm{N}=$ \# vehicles using intersection
Savings per vehicle $=(\$ 0.24-\$ 0.22) \mathrm{N}=\$ 0.02 \mathrm{~N}$
$\mathrm{AC}_{\# 2}=\$ 5,917.50+\$ 100+\$ 26,475-0.2 \mathrm{~N}=\$ 32,492.50-\$ 0.02 \mathrm{~N}$
For Breakeven point:

$$
\$ 30,438.40=\$ 32,492.50-\$ 0.02 \mathrm{~N} \text { and } \mathrm{N}=102,705 \text { cars per year }
$$

For ADT = Average Daily Traffic

$$
\mathrm{N}=\frac{102,705}{365}=282 \text { vehicles/day (rounded to next highest integer) }
$$

11-18 Let $\mathrm{X}=$ annual Btu requirement (in $\left.10^{3} \mathrm{Btu}\right)$

$$
\begin{aligned}
\mathrm{AW}_{\text {oil }}(10 \%) & =-\$ 80,000(\mathrm{~A} / \mathrm{P}, 10 \%, 20)+\$ 4,000-(\$ 2.20 / 140)(\mathrm{X}) \\
& =-\$ 5,400-\$ 0.0157 \mathrm{X} \\
\mathrm{AW}_{\text {gas }}(10 \%) & =-\$ 60,000(\mathrm{~A} / \mathrm{P}, 10 \%, 20)+\$ 6,000-(\$ 0.04 / 1)(\mathrm{X}) \\
& =-\$ 1,050-\$ 0.04 \mathrm{X}
\end{aligned}
$$

To find breakeven value of X , set $\mathrm{AW}_{\text {oil }}(10 \%)=\mathrm{AW}_{\text {gas }}(10 \%)$ and solve for X .

$$
\begin{aligned}
& -\$ 5,400-\$ 0.0157 \mathrm{X}=-\$ 1,050-\$ 0.04 \mathrm{X} \\
& X=179,012 \text { or } 179,012,000 \text { Btu per year }
\end{aligned}
$$

Now let's examine the sensitivity of the decision to changes in the annual Btu requirement. The following table and graph indicate that the conversion to natural gas is preferred if the annual Btu requirement is less than the breakeven point, else the conversion to oil is preferred.

	Annual Worth	
\% change in X	Oil	Gas
-30	$-\$ 7,430$	$-\$ 6,125$
-20	$-7,720$	$-6,850$
-10	$-8,010$	$-7,575$
0	$-8,300$	$-8,300$
10	$-8,590$	$-9,025$
20	$-8,880$	$-9,750$
30	$-9,170$	$-10,475$

11-19 (a) $\mathrm{AW}($ optimistic $)=-\$ 90,000(\mathrm{~A} / \mathrm{P}, 10 \%, 12)+\$ 35,000+\$ 30,000(\mathrm{~A} / \mathrm{F}, 10 \%, 12)$

$$
=\$ 23,192
$$

$$
\begin{aligned}
\mathrm{AW}(\text { most likely }) & =-\$ 100,000(\mathrm{~A} / \mathrm{P}, 10 \%, 10)+\$ 30,000+\$ 20,000(\mathrm{~A} / \mathrm{F}, 10 \%, 10) \\
& =\$ 14,984
\end{aligned}
$$

$$
\mathrm{AW}(\text { pessimistic })=-\$ 120,000(\mathrm{~A} / \mathrm{P}, 10 \%, 6)+\$ 20,000
$$

$$
=-\$ 7,552
$$

(b)

		Net Annual Cash Flow		
		O	M	P
Useful Life	O	$\$ 21,256$	$\$ 16,256$	$\$ 6,256$
	M	19,984	14,984	4,984
	P	14,632	9,632	-368

11-20 Build 4-lane bridge now:

$\mathrm{PW}(12 \%)=-\$ 350,000$
Build two-lane bridge now:
Optimistic: widen bridge to four lanes in 7 years
$\mathrm{PW}(12 \%)=-\$ 200,000-[\$ 200,000+(7)(\$ 25,000)](\mathrm{P} / \mathrm{F}, 12 \%, 7)=-\$ 369,613$

Most Likely: widen bridge to four lanes in 5 years
$\mathrm{PW}(12 \%)=-\$ 200,000-[\$ 200,000+(5)(\$ 25,000)](\mathrm{P} / \mathrm{F}, 12 \%, 5)=-\$ 384,405$
Pessimistic: widen bridge to four lanes in 4 years

$$
\overline{\mathrm{PW}(12 \%)}=-\$ 200,000-[\$ 200,000+(4)(\$ 25,000)](\mathrm{P} / \mathrm{F}, 12 \%, 4)=-\$ 390,650
$$

Recommend building the 4 -lane bridge now. In this problem, there is no difficulty in interpreting the results since building the 4 -lane bridge now is preferred to a delay in widening the bridge for 7 years (optimistic estimate).

The advantage of pessimistic, most likely, and optimistic estimates is that the uncertainty involved is made explicit. Therefore, the information should be more useful in decision-making. However, when mixed results are obtained, significant judgement is required in reaching a decision. Mixed results would occur in this problem, for example, if the PW of a 7-year delay in widening the bridge were less than $\$ 350,000$.

11-21 Let $\mathrm{X}=$ miles driven per year.
$\mathrm{EUAC}_{\text {Dart }}=\$ 13,000(\mathrm{~A} / \mathrm{P}, 10 \%, 5)+(\mathrm{X} / 100 \mathrm{mpg})(\$ 8 / \mathrm{gal})$
$\mathrm{EUAC}_{\text {Other }}=\$ 10,000(\mathrm{~A} / \mathrm{P}, 10 \%, 5)+(\mathrm{X} / 50 \mathrm{mpg})(\$ 8 / \mathrm{gal})$
Setting $\mathrm{EUAC}_{\text {Dart }}=E U A C_{\text {Other }}$, we can solve for $\mathrm{X}=9,892.5$ miles per year. If you are planning on driving 10,000 miles or more per year, the Dart is the most economical vehicle.

11-22 (a) Alternative A:

EOY	BTCF	Depr	TI	T(40\%)	ATCF
0	- \$108,000,000	---	---	---	- \$108,000,000
1	- 3,460,000	\$5,400,000	- \$8,860,000	\$3,544,000	84,000
2	- 3,460,000	10,260,000	- 13,720,000	5,488,000	2,028,000
3	- 3,460,000	9,234,000	- 12,694,000	5,077,600	1,617,600
4	- 3,460,000	8,316,000	- 11,776,000	4,710,400	1,250,400
5	- 3,460,000	7,484,400	- 10,944,400	4,377,760	917,760
6	- 3,460,000	6,728,400	- 10,188,400	4,075,360	615,360
7	- 3,460,000	6,372,000	- 9,832,000	3,932,800	472,800
8	- 3,460,000	6,372,000	- 9,832,000	3,932,800	472,800
9	- 3,460,000	6,382,800	- 9,842,800	3,937,120	477,120
10	- 3,460,000	6,372,000	- 9,832,000	3,932,800	472,800
11	- 3,460,000	6,382,800	- 9,842,800	3,937,120	477,120
12	- 3,460,000	6,372,000	- 9,832,000	3,932,800	472,800
13	- 3,460,000	6,382,800	- 9,842,800	3,937,120	477,120
14	- 3,460,000	6,372,000	- 9,832,000	3,932,800	472,800
15	- 3,460,000	6,382,800	- 9,842,800	3,937,120	477,120
16	- 3,460,000	3,186,000	- 6,646,000	2,658,400	- 801,600
17	- 3,460,000	0	- 3,460,000	1,384,000	- 2,076,000
18	- 3,460,000	0	- 3,460,000	1,384,000	- 2,076,000
19	- 3,460,000	0	- 3,460,000	1,384,000	- 2,076,000
20	- 3,460,000	0	- 3,460,000	1,384,000	- 2,076,000
20	43,200,000	---	43,200,000	- 17,280,000	25,920,000

$$
\operatorname{PW}(10 \%)=\sum_{\mathrm{k}=0}^{20} \mathrm{ATCF}_{\mathrm{k}}(\mathrm{P} / \mathrm{F}, 10 \%, \mathrm{k})=-\$ 99,472,154
$$

11-22 (a) continued

Alternative B: Compute ATCFs for current estimate of capital investment.
Using the ATCFs shown in the following table:

$$
\operatorname{PW}(10 \%)=\sum_{\mathrm{k}=0}^{20} \mathrm{ATCF}_{\mathrm{k}}(\mathrm{P} / \mathrm{F}, 10 \%, \mathrm{k})=-\$ 79,065,532
$$

ATCFs for Alternative B given original capital investment amount:

EOY	BTCF	Depr	TI	T(40\%)	ATCF
0	$-\$ 17,000,000$	---	---	--	$-\$ 17,000,000$
1	$-12,400,000$	$\$ 850,000$	$-\$ 13,250,000$	$\$ 5,300,000$	$-7,100,000$
2	$-12,400,000$	$1,615,000$	$-14,015,000$	$5,606,000$	$-6,994,000$
3	$-12,400,000$	$1,453,500$	$-13,853,500$	$5,541,400$	$-6,858,600$
4	$-12,400,000$	$1,309,000$	$-13,709,000$	$5,483,600$	$-6,916,400$
5	$-15,400,000$	$1,178,100$	$-16,578,100$	$6,631,240$	$-8,768,760$
6	$-12,400,000$	$1,059,100$	$-13,459,100$	$5,383,640$	$-7,016,360$
7	$-12,400,000$	$1,003,000$	$-13,403,000$	$5,361,200$	$-7,038,800$
8	$-12,400,000$	$1,003,000$	$-13,403,000$	$5,361,200$	$-7,038,800$
9	$-12,400,000$	$1,004,700$	$-13,404,700$	$5,361,880$	$-7,038,120$
10	$-15,400,000$	$1,003,000$	$-16,403,000$	$6,561,200$	$-8,838,800$
11	$-12,400,000$	$1,004,700$	$-13,404,700$	$5,361,880$	$-7,038,120$
12	$-12,400,000$	$1,003,000$	$-13,403,000$	$5,361,200$	$-7,038,800$
13	$-12,400,000$	$1,004,700$	$-13,404,700$	$5,361,880$	$-7,038,120$
14	$-12,400,000$	$1,003,000$	$-13,403,000$	$5,361,200$	$-7,038,800$
15	$-15,400,000$	$1,004,700$	$-16,404,700$	$6,561,880$	$-8,838,120$
16	$-12,400,000$	501,500	$-12,901,500$	$5,160,600$	$-7,239,400$
17	$-12,400,000$	0	$-12,400,000$	$4,960,000$	$-7,440,000$
18	$-12,400,000$	0	$-12,400,000$	$4,960,000$	$-7,440,000$
19	$-12,400,000$	0	$-12,400,000$	$4,960,000$	$-7,440,000$
20	$-12,400,000$	0	$-12,400,000$	$4,960,000$	$-7,440,000$
20	0	---	0	0	

11-22 (a) continued

Alternative B (revised to include extra investment permissible to breakeven)

EOY	BTCF	Depr	TI	T(40\%)	ATCF
0	$-\$ 42,731,490$	---	--	---	$-\$ 42,731,490$
1	$-12,400,000$	$\$ 2,136,574$	$-\$ 14,536,574$	$\$ 5,814,630$	$-6,585,370$
2	$-12,400,000$	$4,059,492$	$-16,459,492$	$6,583,997$	$-5,816,203$
3	$-12,400,000$	$3,653,542$	$-16,053,542$	$6,421,417$	$-5,978,583$
4	$-12,400,000$	$3,290,325$	$-15,690,325$	$6,276,130$	$-6,123,870$
5	$-15,400,000$	$2,961,292$	$-18,361,292$	$7,344,517$	$-8,055,483$
6	$-12,400,000$	$2,662,172$	$-15,062,172$	$6,024,869$	$-6,375,131$
7	$-12,400,000$	$2,521,158$	$-14,921,158$	$5,968,463$	$-6,431,537$
8	$-12,400,000$	$2,521,158$	$-14,921,158$	$5,968,463$	$-6,431,537$
9	$-12,400,000$	$2,525,431$	$-14,925,431$	$5,970,172$	$-6,429,828$
10	$-15,400,000$	$2,521,158$	$-17,921,158$	$7,168,463$	$-8,231,537$
11	$-12,400,000$	$2,525,431$	$-14,925,431$	$5,970,172$	$-6,429,828$
12	$-12,400,000$	$2,521,158$	$-14,921,158$	$5,968,463$	$-6,431,537$
13	$-12,400,000$	$2,525,431$	$-14,925,431$	$5,970,172$	$-6,429,828$
14	$-12,400,000$	$2,521,158$	$-14,921,158$	$5,968,463$	$-6,431,537$
15	$-15,400,000$	$2,525,431$	$-17,925,431$	$7,170,172$	$-8,229,828$
16	$-12,400,000$	$1,260,579$	$-13,660,579$	$5,464,232$	$-6,935,768$
17	$-12,400,000$	0	$-12,400,000$	$4,960,000$	$-7,440,000$
18	$-12,400,000$	0	$-12,400,000$	$4,960,000$	$-7,40,000$
19	$-12,400,000$	0	$-12,400,000$	$4,960,000$	$-7,40,000$
20	$-12,400,000$	0	$-12,400,000$	$4,960,000$	$-7,440,000$
20	0	---	0	0	0

The above solution for Alternative B is the result of a trial and error procedure for obtaining identical present worths of ATCFs.

$$
\text { Extra Capital }=\$ 42,731,490-\$ 17,000,000=\$ 25,731,490
$$

This solution takes into account depreciation credits arising from the extra capital that can be invested in Alternative B to breakeven with Alternative A.

11-22 (b) Coterminate both alternatives at the end of year 10.
Alternative A:

EOY	BTCF	Depr	II	T(40\%)	ATCF
0	$-\$ 108,000,000$	---	---	---	$-\$ 108,000,000$
1	$-3,460,000$	$\$ 5,400,000$	$-\$ 8,860,000$	$\$ 3,544,000$	84,000
2	$-3,460,000$	$10,260,000$	$-13,720,000$	$5,488,000$	$2,028,000$
3	$-3,460,000$	$9,234,000$	$-12,694,000$	$5,077,600$	$1,617,600$
4	$-3,460,000$	$8,316,000$	$-11,776,000$	$4,710,400$	$1,250,400$
5	$-3,460,000$	$7,484,400$	$-10,944,400$	$4,377,760$	917,760
6	$-3,460,000$	$6,728,400$	$-10,188,400$	$4,075,360$	615,360
7	$-3,460,000$	$6,372,000$	$-9,832,000$	$3,932,800$	472,800
8	$-3,460,000$	$6,372,000$	$-9,832,000$	$3,932,800$	472,800
9	$-3,460,000$	$6,382,800$	$-9,842,800$	$3,937,120$	477,120
10	$-3,460,000$	$3,186,000$	$-6,646,000$	$2,658,400$	$-801,600$
10	$43,200,000$	---	$4,935,600$	$-1,974,240$	$41,225,760$

${ }^{*} \mathrm{MV}_{10}=\$ 43,200,000 ; \mathrm{BV}_{10}=\$ 38,264,400$

$$
\operatorname{PW}(10 \%)=\sum_{\mathrm{k}=0}^{10} \mathrm{ATCF}_{\mathrm{k}}(\mathrm{P} / \mathrm{F}, 10 \%, \mathrm{k})=-\$ 87,010,230
$$

Alternative B:

EOY	BTCF	Depr	II	T(40\%)	ATCF
0	$-\$ 17,000,000$	---	--	---	$-\$ 17,000,000$
1	$-12,400,000$	$\$ 850,000$	$-\$ 13,250,000$	$\$ 5,300,000$	$-7,100,000$
2	$-12,400,000$	$1,615,000$	$-14,015,000$	$5,606,000$	$-6,794,000$
3	$-12,400,000$	$1,453,500$	$-13,853,500$	$5,541,400$	$-6,858,600$
4	$-12,400,000$	$1,309,000$	$-13,709,000$	$5,483,600$	$-6,916,400$
5	$-15,400,000$	$1,178,100$	$-16,578,100$	$6,631,240$	$-8,768,760$
6	$-12,400,000$	$1,059,100$	$-13,459,100$	$5,383,640$	$-7,016,360$
7	$-12,400,000$	$1,003,000$	$-13,403,000$	$5,361,200$	$-7,038,800$
8	$-12,400,000$	$1,003,000$	$-13,403,000$	$5,361,200$	$-7,038,800$
9	$-12,400,000$	$1,004,700$	$-13,404,700$	$5,361,880$	$-7,038,120$
10	$-15,400,000$	501,500	$-15,901,500$	$6,360,600$	$-9,039,400$
10	0	--	$-6,023,100$	$2,409,240$	$2,409,240$

$$
\begin{aligned}
& { }^{*} \mathrm{MV}_{10}=0 ; \mathrm{BV}_{10}=\$ 6,023,100 \\
& \qquad \mathrm{PW}(10 \%)=\sum_{\mathrm{k}=0}^{10} \mathrm{ATCF}_{\mathrm{k}}(\mathrm{P} / \mathrm{F}, 10 \%, \mathrm{k})=-\$ 60,788,379
\end{aligned}
$$

11-22 (b) continued

If the study period is reduced to 10 years, Alternative B would still be recommended.
Sensitivity of Alternative B to cotermination at EOY 10:

$$
\left(\frac{-\$ 79,065,532+\$ 60,788,379}{-\$ 79,065,532}\right) \times 100 \%=23.1 \% \text { less expensive. }
$$

(c) If our annual operating expenses of Alternative B double, the extra present worth of cost in part (a) equals:

$$
(-\$ 2.1 \text { million })(1-0.4) \cdot(\mathrm{P} / \mathrm{A}, 10 \%, 20)=-\$ 10,727,090 .
$$

This makes the total present worth of Alternative B equal to:

$$
-\$ 79,065,532-\$ 10,727,090=-\$ 89,792,622 .
$$

Because $-\$ 89,792,622>-\$ 99,472,154$, the initial decision to adopt Alternative B is not reversed.

EOY	BTCF	Depr	TI	T (40%)	ATCF
0	$-\$ 17,000,000$	---	--	---	$-\$ 17,000,000$
1	$-14,500,000$	$\$ 850,000$	$-\$ 15,350,000$	$\$ 6,140,000$	$-8,360,000$
2	$-14,500,000$	$1,615,000$	$-16,115,000$	$6,446,000$	$-8,054,000$
3	$-14,500,000$	$1,453,500$	$-15,953,500$	$6,381,400$	$-8,118,600$
4	$-14,500,000$	$1,309,000$	$-15,809,000$	$6,323,600$	$-8,176,400$
5	$-17,500,000$	$1,178,100$	$-18,678,100$	$7,471,240$	$-10,028,760$
6	$-14,500,000$	$1,059,100$	$-15,559,100$	$6,223,640$	$-8,276,360$
7	$-14,500,000$	$1,003,000$	$-15,503,000$	$6,201,200$	$-8,298,800$
8	$-14,500,000$	$1,003,000$	$-15,503,000$	$6,201,200$	$-8,298,800$
9	$-14,500,000$	$1,004,700$	$-15,504,700$	$6,201,880$	$-8,298,120$
10	$-17,500,000$	$1,003,000$	$-18,503,000$	$7,401,200$	$-10,098,800$
11	$-14,500,000$	$1,004,700$	$-15,504,700$	$6,201,880$	$-8,298,120$
12	$-14,500,000$	$1,003,000$	$-15,503,000$	$6,201,200$	$-8,298,800$
13	$-14,500,000$	$1,004,700$	$-15,504,700$	$6,201,880$	$-8,298,120$
14	$-14,500,000$	$1,003,000$	$-15,503,000$	$6,201,200$	$-8,298,800$
15	$-17,500,000$	$1,004,700$	$-18,504,700$	$7,401,880$	$-10,098,120$
16	$-14,500,000$	501,500	$-15,001,500$	$6,000,600$	$-8,499,400$
17	$-14,500,000$	0	$-14,500,000$	$5,800,000$	$-8,700,000$
18	$-14,500,000$		0	$-14,500,000$	$5,800,000$
19	$-14,500,000$	0	$-14,500,000$	$5,800,000$	$-8,700,000$
20	$-14,500,000$	0	$-14,500,000$	$5,800,000$	$-8,700,000$
20	0	---		0	0

Solutions to Spreadsheet Exercises

11-23 Left as an individual exercise. See F11-6.xls.

11-24 See P11-24.xls

Single Factor Change:				Fuel Economy of Gas Engine (mpg)				
					24	25	26	27
Extra Cost		\$1,200		12\%	\$287.41	\$262.60	\$239.69	\$218.49
\$/ gal		\$3.00	MARR	13\%	\$279.12	\$254.31	\$231.41	\$210.20
Miles/yr		20,000		14\%	\$270.76	\$245.95	\$223.05	\$201.84
				15\%	\$262.32	\$237.51	\$214.61	\$193.40
Fuel Economy (mpg):								
Gas engine		25						
\% Improvement		33\%						
Diesel engine		33.25						
MARR		14\%						
AW(fuel savings)	\$	595.49						
Net AW	\$	245.95						

11-25 See P11-25.xls.

MARR	20%	Useful Life Operating Hours per Year	20
Installation		8,760	
Expense (\$/in.)	150	Cost of Heat Loss $(\$ / B t u)$	0.00004
Annual Tax and			
Insurance Rate	5%		

Insulation Thickness (in.)	Heat Loss (Btu/hr)	Installation Expense	Annual Taxes and Insurance	Cost of Heat Removal (\$/yr.)	Equiv. Uniform Annual Cost
3	4,400	450	22.5	1541.76	$\$ 1,656.67$
4	3,400	600	30.0	1191.36	$\$ 1,344.57$
5	2,800	750	37.5	981.12	$\$ 1,172.64$
6	2,400	900	45.0	840.96	$\$ 1,070.78$
7	2,000	1050	52.5	700.80	$\$ 968.92$
8	1,800	1200	60.0	630.72	$\$ 937.15$

Change in Cost of Heat Loss	Equivalent Uniform Annual Cost					
	3	4	5	6	7	8
-50\%	\$885.79	\$748.89	\$682.08	\$650.30	\$618.52	\$621.79
-40\%	\$1,039.97	\$868.03	\$780.19	\$734.40	\$688.60	\$684.86
-30\%	\$1,194.14	\$987.17	\$878.30	\$818.49	\$758.68	\$747.93
-20\%	\$1,348.32	\$1,106.30	\$976.41	\$902.59	\$828.76	\$811.00
-10\%	\$1,502.49	\$1,225.44	\$1,074.53	\$986.68	\$898.84	\$874.08
0\%	\$1,656.67	\$1,344.57	\$1,172.64	\$1,070.78	\$968.92	\$937.15
10\%	\$1,810.85	\$1,463.71	\$1,270.75	\$1,154.88	\$1,039.00	\$1,000.22
20\%	\$1,965.02	\$1,582.85	\$1,368.86	\$1,238.97	\$1,109.08	\$1,063.29
30\%	\$2,119.20	\$1,701.98	\$1,466.97	\$1,323.07	\$1,179.16	\$1,126.36
40\%	\$2,273.37	\$1,821.12	\$1,565.09	\$1,407.16	\$1,249.24	\$1,189.44
50\%	\$2,427.55	\$1,940.25	\$1,663.20	\$1,491.26	\$1,319.32	\$1,252.51

MARR	20%	Useful Life Installation	Operating Hours per Yr. Cost of Heat	80
Expense (\$/in.) Annual Tax and	$\$$	150	Coss (\$/Btu)	$\$$

Insulation Thickness (in.)	Heat Loss (Btu/hr)	Installation Expense		Annual Taxes and Insurance		Cost of Heat Removal (\$/yr)		Equivalent Annual Worth	
3	4,400	\$	(450)	\$	(22.50)	\$	(770.88)	\$	(885.79)
4	3,400	\$	(600)	\$	(30.00)	\$	(595.68)	\$	(748.89)
5	2,800	\$	(750)	\$	(37.50)	\$	(490.56)	\$	(682.08)
6	2,400	\$	(900)	\$	(45.00)	\$	(420.48)	\$	(650.30)
7	2,000	\$	$(1,050)$	\$	(52.50)	\$	(350.40)	\$	(618.52)
8	1,800	\$	$(1,200)$	\$	(60.00)	\$	(315.36)	\$	(621.79)

	Equivalent Annual Worth											
		3		4		5		6		7		8
-50\%	\$	(500.35)	\$	(451.05)	\$	(436.80)	\$	(440.06)	\$	(443.32)	\$	(464.11)
-40\%	\$	(577.44)	\$	(510.62)	\$	(485.85)	\$	(482.11)	\$	(478.36)	\$	(495.64)
-30\%	\$	(654.53)	\$	(570.19)	\$	(534.91)	\$	(524.16)	\$	(513.40)	\$	(527.18)
-20\%	\$	(731.61)	\$	(629.76)	\$	(583.97)	\$	(566.20)	\$	(548.44)	\$	(558.72)
-10\%	\$	(808.70)	\$	(689.33)	\$	(633.02)	\$	(608.25)	\$	(583.48)	\$	(590.25)
0\%	\$	(885.79)	\$	(748.89)	\$	(682.08)	\$	(650.30)	\$	(618.52)	\$	(621.79)
10\%	\$	(962.88)	\$	(808.46)	\$	(731.13)	\$	(692.35)	\$	(653.56)	\$	(653.32)
20\%	\$	$(1,039.97)$	\$	(868.03)	\$	(780.19)	\$	(734.40)	\$	(688.60)	\$	(684.86)
30\%	\$	(1,117.05)	\$	(927.60)	\$	(829.25)	\$	(776.44)	\$	(723.64)	\$	(716.40)
40\%	\$	$(1,194.14)$	\$	(987.17)	\$	(878.30)	\$	(818.49)	\$	(758.68)	\$	(747.93)
50\%	\$	(1,271.23)	\$	$(1,046.73)$	\$	(927.36)	\$	(860.54)	\$	(793.72)	\$	(779.47)

11-26 See P11-26.xls.

	O	ML	P
Capital Investment	$\$ 90,000$	$\$ 100,000$	$\$ 120,000$
Useful Life (years)	12	10	6
Market Value	$\$ 30,000$	$\$ 20,000$	$\$ 0$
Net annual cash flow	$\$ 35,000$	$\$ 30,000$	$\$ 20,000$
MARR	11%	11%	11%
Annual Worth	$\$ 22,458$	$\$ 14,216$	$-\$ 8,365$

	Net Annual Cash Flow		
	O	ML	P
Useful Life	$\$ 35,000$	$\$ 30,000$	$\$ 20,000$
O	12	$\$ 20,478$	$\$ 15,478$
ML	10	$\$ 19,478$	
P	6	$\$ 13,890$	$\$ 14,216$

11-27 See P11-27.xls.

Most Likely Estimates:

Investment	$\$ 10,000,000$
Market Value	$\$ 5,000,000$
Annual Savings	$\$ 2,800,000$
MARR	15%
Present Worth	$\$ 852,706$

Breakeven Points:

Investment	$\mathbf{\$ 1 0 , 8 5 2 , 7 0 6}$
Market Value	$\$ 5,000,000$
Annual Savings	$\$ 2,800,000$
	15%
MARR	
	$\$ 0.00$

Investment	$\$ 10,000,000$
Market Value	$\$ 3,508,613$
Annual Savings	$\$ 2,800,000$
MARR	15%
Present Worth	$\$ 0$

Investment	$\$ 10,000,000$
Market Value	$\$ 5,000,000$
Annual Savings	$\$ 2,501, \mathbf{3 2 7}$
MARR	15%
Present Worth	$\$ 0$

\% Change	Inv.	MV	Ann. Sav.
-40%	$\$ 4,852,706$	$(\$ 290,801)$	$(\$ 2,344,870)$
-30%	$\$ 3,852,706$	$(\$ 4,924)$	$(\$ 1,545,476)$
-20%	$\$ 2,852,706$	$\$ 280,952$	$(\$ 746,082)$
-10%	$\$ 1,852,706$	$\$ 566,829$	$\$ 53,312$
0%	$\$ 852,706$	$\$ 852,706$	$\$ 852,706$
10%	$(\$ 147,294)$	$\$ 1,138,582$	$\$ 1,652,100$
20%	$(\$ 1,147,294)$	$\$ 1,424,459$	$\$ 2,451,494$
30%	$(\$ 2,147,294)$	$\$ 1,710,336$	$\$ 3,250,887$
40%	$(\$ 3,147,294)$	$\$ 1,996,212$	$\$ 4,050,281$

Ann. Sav.
(\$2,344,870)
($1,545,476)$
\$53,312
\$852,706
\$1,652,100
$\$ 3,250,887$
\$4,050,281

11-28 See P11-28.xls.

	CFL			ILB
Investment Cost (per bulb)	$\$$	2.00	$\$$	0.50
Installation Cost (per bulb)	$\$$	3.00	$\$$	2.00
Wattage		13		60
Life (years)	3		1	
Disposal cost (per bulb)	$\$$	-	$\$$	-
Capital Recovery	$\$$	$(2,082)$	$\$$	$(2,800)$
Electricity	$\$$	-	$\$$	-
Disposal	$\$$	-	$\$$	-
Total Annual Cost	$\$$	$(2,082)$	$\$$	$(2,800)$
Present Worth	$\$$	$(10,341)$	$\$$	$(13,909)$

This spreadsheet was used to compile the following table of results.

Part a) Table of Results

	CFL			ILB	Decision
PW(disposal $=\$ 1 / \mathrm{bulb}$)	$\$$	$(13,153)$	$\$$	$(49,676)$	CFL
PW(disposal $=\$ 2 / \mathrm{bulb})$	$\$$	$(13,557)$	$\$$	$(49,676)$	CFL
PW(disposal $=\$ 3 / \mathrm{bulb})$	$\$$	$(13,961)$	$\$$	$(49,676)$	CFL
PW(disposal $=\$ 4 / \mathrm{bulb})$	$\$$	$(14,365)$	$\$$	$(49,676)$	CFL
PW(disposal $=\$ 5 / \mathrm{bulb}$)	$\$$	$(14,769)$	$\$$	$(49,676)$	CFL

Decision Reversal:
Disposal Cost / CFL bulb \$ 91.43

Part b) Table of Results

	CFL			ILB
Decision				
PW(Electricity $=\$ 0.04 / \mathrm{kWh}$	$\$$	$(7,583)$	$\$$	$(25,832)$
CFL				
PW(Electricity $=\$ 0.06 / \mathrm{kWh})$	$\$$	$(8,875)$	$\$$	$(31,793)$
CFL				
PW(Electricity $=\$ 0.08 / \mathrm{kWh})$	$\$$	$(10,166)$	$\$$	$(37,754)$
CFL				
PW(Electricity $=\$ 0.10 / \mathrm{kWh})$	$\$$	$(11,458)$	$\$$	$(43,715)$
PW(Electricity $=\$ 0.12 / \mathrm{kWh})$	$\$$	$(12,750)$	$\$$	$(49,676)$
CFL				
PW(Electricity $=\$ 0.14 / \mathrm{kWh})$	$\$$	$(14,041)$	$\$$	$(55,638)$
CFL				
PW(Electricity $=\$ 0.16 / \mathrm{kWh})$	$\$$	$(15,333)$	$\$$	$(61,599)$

Part c) Table of Results Assume Repeatability

	CFL			ILB	Decision
AW(CFL life $=5$ years)	$\$$	$(2,947)$	$\$$	$(10,000)$	CFL
AW(CFL life $=6$ years)	$\$$	$(2,776)$	$\$$	$(10,000)$	CFL
AW(CFL life $=7$ years)	$\$$	$(2,656)$	$\$$	$(10,000)$	CFL
AW(CFL life $=8$ years)	$\$$	$(2,567)$	$\$$	$(10,000)$	CFL
AW(CFL life $=9$ years)	$\$$	$(2,498)$	$\$$	$(10,000)$	CFL
AW(CFL life $=10$ years)	$\$$	$(2,445)$	$\$$	$(10,000)$	CFL
AW(CFL life $=1$ year)	$\$$	$(5,600)$	$\$$	$(2,800)$	ILB
AW(CFL life $=2$ years)	$\$$	$(2,958)$	$\$$	$(2,800)$	ILB
AW(CFL life $=3$ years)	$\$$	$(2,082)$	$\$$	$(2,800)$	CFL

11-29 See P11-29.xls.

Difference in Purchase	\$ $(5,000)$		Hybrid mpg	46
Difference in Resale	\$ 2,000		Gas mpg	25
Miles Driven / year	15,000			
Cost of Gas/gallon	4			
Study Period	5			
Gasoline Savings	\$ 1,095.65			
Incremental Cash Flows	Year			
	0	\$ $(5,000)$		
	1	\$ 1,095.65		
	2	\$ 1,095.65		
	3	\$ 1,095.65		
	4	\$ 1,095.65		
	5	\$ 3,095.65		
	IRR	12.6\%		

This spreadsheet was used to compile the following table of results for the posed "what if" questions.

Ownership Period	IRR
3	2.4%
4	8.7%
5	12.6%
6	15.1%
7	16.8%

Resale Difference		IRR
$\$$	1,000	8.4%
$\$$	2,000	12.6%
$\$$	3,000	16.1%
$\$$	4,000	19.2%

Cost of Gasoline		IRR
$\$$	3.00	5.7%
$\$$	4.00	12.6%
$\$$	5.00	19.2%

Solutions to FE Practice Problems

11-30 Existing Bridge:
$\mathrm{PW}_{\mathrm{E}}(12 \%)=-\$ 1,6000,000-\$ 20,000(\mathrm{P} / \mathrm{A}, 12 \%, 20)-\$ 70,000[(\mathrm{P} / \mathrm{F}, 12 \%, 5)$ $+(\mathrm{P} / \mathrm{F}, 12 \%, 10)+(\mathrm{P} / \mathrm{F}, 12 \%, 15)]=-\$ 1,824,435$

New Bridge:

$$
\begin{aligned}
\mathrm{PW}_{\mathrm{N}}(12 \%)= & -\mathrm{X}-[\$ 24,000+(5)(\$ 10,000)](\mathrm{P} / \mathrm{A}, 12 \%, 20)+ \\
& (\$ 0.25)(4000,000)(\mathrm{P} / \mathrm{A}, 12 \%, 20) \\
= & -\mathrm{X}+\$ 194,204
\end{aligned}
$$

Set $\operatorname{PWE}(12 \%)=\operatorname{PWN}(12 \%)$ and solve for X .
$-\$ 1,824,435=-X+\$ 194,204$
$\mathrm{X}=\$ 2,018,639$

Select (b)

11-31 $X=$ average number of vehicles per day

$$
\begin{aligned}
& \text { AW }(12 \%)=0=-\$ 117,000 / \mathrm{mile}(\mathrm{~A} / \mathrm{P}, 12 \%, 25)-\frac{(0.03)(\$ 117,000)}{\text { mile }} \\
& \quad+(\mathrm{X} \text { vehicles/day })(365 \text { days/yr })(\$ 1,200 / \text { accident })\left(\frac{1,250-710 \text { accidents }}{1,000,000 \text { vehicle }- \text { miles }}\right)
\end{aligned}
$$

$$
\mathrm{X}=77.91 \text { vehicles/day }
$$

$\underline{\text { Select (a) }}$

11-32 $\mathrm{AW}(12 \%)=-\$ 8,000(\mathrm{~A} / \mathrm{P}, 12 \%, 7)+\mathrm{X}(\$ 0.50-\$ 0.26)-\$ 2,000=0$

$$
X=15,637
$$

Select (e)

11-33 $\mathrm{AW}(12 \%)=-\$ 16,000(\mathrm{~A} / \mathrm{P} .12 \%, 7)+\mathrm{X}(\$ 0.50-\$ 0.16)-\$ 4,000=0$

$$
X=22,076
$$

Select (c)

11-34 $\mathrm{AW}_{\mathrm{A}}(12 \%)-\$ 8,000(\mathrm{~A} / \mathrm{P}, 12 \%, 7)+35,000(\$ 0.50-\$ 0.26)-\$ 2,000=\$ 4,647$
$\mathrm{AW}_{\mathrm{B}}(12 \%)=-\$ 16,000(\mathrm{~A} / \mathrm{F}, 12 \%, 7)+35,000(\$ 0.50-\$ 0.16)-\$ 4,000=\$ 4,394$
$\underline{\text { Select (b) - Install Machine A }}$

11-35 False

11-36 False

11-37 False

11-38 True

11-39 False

11-40 Equate EUACs for both motors and solve for the unknown cost of electricity:
$\$ 2,500(\mathrm{~A} / \mathrm{P}, 12 \%, 10)+\$ 400+[90 \mathrm{hp}(0.746 \mathrm{~kW} / \mathrm{hp})(500 \mathrm{hrs} . / \mathrm{yr}).(\$ \mathrm{X} / \mathrm{kW}-\mathrm{hr})] /$.0.74
$=\$ 3,200(\mathrm{~A} / \mathrm{P}, 12 \%, 10)+\$ 600+[90 \mathrm{hp}(0.746 \mathrm{~kW} / \mathrm{hp})(500 \mathrm{hrs} . / \mathrm{yr}).(\$ \mathrm{X} / \mathrm{kW}-\mathrm{hr})] / 0.89.$.
By solving for $\$ \mathrm{X} / \mathrm{kW}-\mathrm{hr}$. we find that $\mathrm{X}=\$ 0.0424 / \mathrm{kW}-\mathrm{hr}$. Therefore, Phillips is preferred over General Electric when X is greater than or equal $\$ 0.0424 / \mathrm{kW}$-hr.and the answer is (d).

Select (d).

Solutions to Chapter 12 Problems

12-1 $\quad \mathrm{EUAC}_{\text {nothing }}=(0.01)(\$ 1,000,000)=\$ 10,000$
$\mathrm{EUAC}_{\text {culvert }}=\left(\$ 50,000+\frac{\$ 2,000[1-(\mathrm{P} / \mathrm{F}, 7 \%, 20)(\mathrm{F} / \mathrm{P}, 5 \%, 20)]}{0.07-0.05}\right)(\mathrm{A} / \mathrm{P}, 7 \%, 20)=\$ 7,688$
The EUAC of building the culvert is less than the EUAC of a mudslide (with no culvert). Building the culvert is economical.

12-2 Build the 4-lane bridge now:

$P W=-\$ 3,500,000$

Build 2-lane bridge now, add two lanes later:

Year of Expansion k	PW of Expansion Expenses
3	$-[\$ 2,000,000+(3)(\$ 250,000)](\mathrm{P} / \mathrm{F}, 12 \%, 3)=-\$ 1,957,450$
4	$-[\$ 2,000,000+(4)(\$ 250,000)](\mathrm{P} / \mathrm{F}, 12 \%, 4)=-\$ 1,906,500$
5	$-[\$ 2,000,000+(5)(\$ 250,000)](\mathrm{P} / \mathrm{F}, 12 \%, 5)=-\$ 1,844,050$
6	$-[\$ 2,000,000+(6)(\$ 250,000)](\mathrm{P} / \mathrm{F}, 12 \%, 6)=-\$ 1,773,100$

$$
\begin{aligned}
\mathrm{E}(\mathrm{PW})= & -\$ 2,000,000-\$ 1,957,450(0.1)-\$ 1,906,500(0.2)-\$ 1,844,050(0.3) \\
& -\$ 1,773,100(0.4) \\
= & -\$ 3,839,500
\end{aligned}
$$

Decision: The four-lane bridge should be built now.

12-3 Set $\mathrm{E}(\mathrm{PW})$ of the difference between the two alternatives equal to zero and use a trial and error procedure to solve for the interest rate.
$\mathrm{E}(\mathrm{PW})_{\Delta}=0=-\$ 3,500,000+\$ 2,000,000$

$$
+\sum_{\mathrm{N}=3}^{6}[\$ 2,000,000+\$ 250,000(\mathrm{~N})]\left(\mathrm{P} / \mathrm{F}, \mathrm{i}_{\Delta}^{\prime}, \mathrm{N}\right) \operatorname{Pr}(\mathrm{N})
$$

i	$\mathrm{E}(\mathrm{PW})_{\Delta}$
12%	$\$ 339,500$
15	113,875
18	$-78,368$

An interest rate of $\mathrm{i}=15 \%$ will not reverse the initial decision to build the four-lane bridge now. The two-lane bridge would be preferred for interest rates greater than:

$$
\mathrm{i}=0.15+0.03\left(\frac{113,875}{192,243}\right)=0.1678 \text { or } 16.78 \%
$$

12-4 (a) $260,000 \mathrm{ft}^{3}$ per day $\times \$ 8$ per thousand $\mathrm{ft}^{3}=\$ 2,080$ per day (revenue)
Profit per year $=(365$ days $/ \mathrm{yr})(\$ 2,080 /$ day $)(0.9)=\$ 683,280$
$\mathrm{E}(\mathrm{PW})=\$ 683,280(\mathrm{P} / \mathrm{A}, 15 \%, 10)-\$ 250,000=\$ 92,925 \geq 0$, a good investment.
(b) $\mathrm{E}(\mathrm{PW})=\$ 683,289(\mathrm{P} / \mathrm{A}, 15 \%, 7)(0.1)-\$ 250,000=\$ 34,272$ (still okay)
(c) Left to instructor.

12-5 $\mathrm{E}(\mathrm{X})=0(0.5)+1(0.45)+2(0.30)+3(0.30)=1.65$

$$
\begin{aligned}
& \mathrm{E}(\mathrm{~S})=5(0.40)+6(0.20)+8(0.40)=6.4 \\
& \mathrm{E}(\mathrm{P})=\mathrm{E}(\mathrm{X}) \cdot \mathrm{E}(\mathrm{~S})=(1.65) \cdot(6.4)=\underline{10.56} \\
& \mathrm{~V}(\mathrm{X})=(0)^{2}(0.05)+(1)^{2}(0.45)+(2)^{2}(0.3)-(1.65)^{2} \\
& \mathrm{~V}(\mathrm{X})=0.7275 \\
& \mathrm{~V}(\mathrm{~S})=25(0.40)+36(0.20)+64(0.40)-(6.4)^{2}=1.84 \\
& \mathrm{~V}(\mathrm{X} \cdot \mathrm{~S})=(\mathrm{E}(\mathrm{x}))^{2} \mathrm{~V}(\mathrm{~S})+\left(\mathrm{E}(\mathrm{~S})^{2}\right) \mathrm{V}(\mathrm{X})+\mathrm{V}(\mathrm{X}) \cdot \mathrm{V}(\mathrm{~S}) \\
& \mathrm{V}(\mathrm{X} \cdot \mathrm{~S})=(1.65)^{2} 1.84+(6.4)^{2}(0.7275)+(0.7275)(1.84) \\
& \mathrm{V}(\mathrm{X} \cdot \mathrm{~S})=\mathrm{V}(\mathrm{P})=\underline{36.146} \\
& \quad \sigma_{p}=6.012
\end{aligned}
$$

Hurricane Category	Annual Cost of Financing the Rebuild (A)	Expected Annual Property Damage (B)	Expected Total Annual Cost (A) $+(\mathrm{B})$
5	$\$ 5,082,000$	$\$ 500,000$	$\$ 5,582,000$
4	$\$ 3,630,000$	$\$ 1,000,000$	$\$ 4,630,000$
3	$\$ 2,541,000$	$\$ 3,000,000$	$\$ 5,541,000$
2	$\$ 1,452,000$	$\$ 5,000,000$	$\$ 6,452,000$
1	$\$ 726,000$	$\$ 10,000,000$	$\$ 10,726,000$

$(\mathrm{A})=$ Capital Investment $\times(\mathrm{A} / \mathrm{P}, 6 \%, 30)$
$(B)=\$ 100,000,000 \times$ Probablility of storm exceeding levee height
Therefore, protect the city from a category 4 hurricane.

12-7 Expected equivalent annual costs given that one main power failure occurs and the backup generator is needed:

Alternative	Capital Recovery Amount	Annual O\&M Expenses	Annual Cost of Backup Failure	Total Annual Cost
R	$-\$ 30,032$	$-\$ 5,000$	$-(\$ 400,000)(0.04)=-\$ 16,000$	$-\$ 51,032$
S	$-26,092$	$-7,000$	$-(\$ 400,000)(0.05)=-20,000$	$-53,092$
T	$-32,435$	$-4,000$	$-(\$ 400,000)(0.02)=-8,000$	$-44,435$

*From Chapter 5, CR(10\%) $=-($ Capital Invest. $)(\mathrm{A} / \mathrm{P}, 10 \%, 10)+(\mathrm{MV})(\mathrm{A} / \mathrm{F}, 10 \%, 10)$
To minimize total annual cost, recommend Alternative T.
If two main power failures occur per year, the expected equivalent costs become:
Alternative R

$$
\begin{array}{lll}
\operatorname{Pr}\{0 \text { failures }\} & =(0.96)(0.96) & =0.9216 \\
\operatorname{Pr}\{1 \text { failure }\} & =2(0.96)(0.04) & =0.0768 \\
\operatorname{Pr}\{2 \text { failures }\} & =(0.04)(0.04) & =\underline{0.0016}
\end{array}
$$

Annual cost of Backup Failure $=-\$ 400,000(0.0768)+2(-\$ 400,000)(0.0016)$

$$
=-\$ 32,000
$$

Alternative S

$$
\begin{array}{lll}
\operatorname{Pr}\{0 \text { failures }\} & =(0.95)(0.95) & =0.9025 \\
\operatorname{Pr}\{1 \text { failure }\} & =2(0.95)(0.05) & =0.0950 \\
\operatorname{Pr}\{2 \text { failures }\} & =(0.05)(0.05) & =\underline{0.0025}
\end{array}
$$

Annual cost of Backup Failure $=-\$ 400,000(0.0950)+2(-\$ 400,000)(0.0025)$

$$
=-\$ 40,000
$$

Alternative T

$\operatorname{Pr}\{0$ failures $\} \quad=(0.98)(0.98) \quad=0.9604$
$\operatorname{Pr}\{1$ failure $\}=2(0.98)(0.02)=0.0392$
$\operatorname{Pr}\{2$ failures $\}=(0.02)(0.02)=\underline{0.0004}$
Annual cost of Backup Failure $=-\$ 400,000(0.0392)+2(-\$ 400,000)(0.0004)$

$$
=-\$ 16,000
$$

	Capital Recovery * Amount *	Annual O\&M Expenses	Annual Cost of Backup Failure *	Total Annual Cost
R	$-\$ 30,032$	$-\$ 5,000$	$-\$ 32,000$	$-\$ 67,032$
S	$-26,092$	$-7,000$	$-40,000$	$-73,092$
T	$-32,435$	$-4,000$	$-16,000$	$-52,435$

*Note for each alternative, the annual cost of "failure" given 2 occurences per year is twice the cost given 1 occurrence per year. A logical result.

Again, Alternative T is selected. This answer should be obvious since Alternative T is the most reliable alternative.

12-8

Skiing Days	Annual Revenues	Annual Expenses	Net Annual Receipts (NAR)
80	$(500)(80)(\$ 10)=\$ 400,000$	$-\$ 1,500(80)=-\$ 120,000$	$\$ 280,000$
100	$\$ 400,000+(400)(20)(\$ 10)=\$ 480,000$	$-\$ 1,500(100)=-\$ 150,000$	$\$ 330,000$
120	$\$ 480,000+(300)(20)(\$ 10)=\$ 540,000$	$-\$ 1,500(120)=-\$ 180,000$	$\$ 360,000$

$\mathrm{E}(\mathrm{NAR})=\$ 280,000(0.60)+\$ 330,000(0.3)+\$ 360,000(0.10)=\$ 303,000$
$\mathrm{i}=25 \% / \mathrm{yr} . ; \mathrm{N}=5 \mathrm{yr} . ;$ Project cost $=\$ 900,000$
$\mathrm{E}(\mathrm{PW})=-\$ 900,000+\$ 303,000(\mathrm{P} / \mathrm{A}, 25 \%, 5)=-\$ \underline{85,142}<0$
Do not build the lift.

12-9 Capital Investment $=\$ 900,000$; Annual $O \& M$ expenses $=\$ 1,500$ per day

Total Days Per Year	No. of People/Day			Demand (X) Person-Days Per Year	p (X)
	500	Next 20	Next 20	-	-
40,000	0.6				
100	500	400	-	48,000	0.3
120	500	400	300	54,000	0.1

Annual Revenue (R) = \$10 (Person-Days/Year)

80-Day Season (40,000 Person-Days)

EOY	BTCF	Depr.	TI	T(40\%)	ATCF
0	$-\$ 900,000$	---	---	---	$-\$ 900,000$
1	280,000	$\$ 64,286$	$\$ 215,714$	$-\$ 86,286$	193,714
2	280,000	128,571	151,429	$-60,571$	219,429
3	280,000	128,571	151,429	$-60,571$	219,429
4	280,000	128,571	151,429	$-60,571$	219,429
5	280,000	128,571	151,429	$-60,571$	219,429
6	280,000	128,571	151,429	$-60,571$	219,429
7	280,000	128,571	151,429	$-60,571$	219,429
8	280,000	64,286	215,714	$-86,286$	193,714

$$
\begin{aligned}
\mathrm{PW}_{80}(15 \%)= & -\$ 900,000+[\$ 193,714+\$ 219,429(\mathrm{P} / \mathrm{A}, 15 \% 6)](\mathrm{P} / \mathrm{F}, 15 \% 1) \\
& +\$ 193,714(\mathrm{P} / \mathrm{F}, 15 \%, 8) \\
= & \$ 53,920
\end{aligned}
$$

100-Day Season (48,000 Person-Days)

EOY	BTCF	Depr.	TI	T(40\%)	ATCF
0	$-\$ 900,000$	---	---	---	$-\$ 900,000$
1	330,000	$\$ 64,286$	$\$ 265,714$	$-\$ 106,286$	223,714
2	330,000	128,571	201,429	$-80,571$	249,429
3	330,000	128,571	201,429	$-80,571$	249,429
4	330,000	128,571	201,429	$-80,571$	249,429
5	330,000	128,571	201,429	$-80,571$	249,429
6	330,000	128,571	201,429	$-80,571$	249,429
7	330,000	128,571	201,429	$-80,571$	249,429
8	330,000	64,286	265,714	$-106,286$	223,714

$$
\begin{aligned}
\mathrm{PW}_{100}(15 \%)= & -\$ 900,000+[\$ 223,714+\$ 249,429(\mathrm{P} / \mathrm{A}, 15 \%, 6)](\mathrm{P} / \mathrm{F}, 15 \%, 1) \\
& +\$ 223,714(\mathrm{P} / \mathrm{F}, 15 \%, 8) \\
= & \$ 188,545
\end{aligned}
$$

120-Day Season (54,000 Person-Days)

EOY	BTCF	Depr.	TI	T(40\%)	ATCF
0	$-\$ 900,000$	--	---	---	$-\$ 900,000$
1	360,000	$\$ 64,286$	$\$ 295,714$	$-\$ 118,286$	241,714
2	360,000	128,571	231,429	$-92,571$	267,429
3	360,000	128,571	231,429	$-92,571$	267,429
4	360,000	128,571	231,429	$-92,571$	267,429
5	360,000	128,571	231,429	$-92,571$	267,429
6	360,000	128,571	231,429	$-92,571$	267,429
7	360,000	128,571	231,429	$-92,571$	267,429
8	360,000	64,286	295,714	$-118,286$	241,714

$$
\begin{aligned}
\mathrm{PW}_{120}(15 \%)= & -\$ 900,000+[\$ 241,714+\$ 267,429(\mathrm{P} / \mathrm{A}, 15 \%, 6)](\mathrm{P} / \mathrm{F}, 15, \% 1) \\
& +\$ 241,714(\mathrm{P} / \mathrm{F}, 15 \%, 8) \\
= & \$ 269,320
\end{aligned}
$$

Days of Skiing (X)	p (X)	PW(ATCF)	E[PW(X)]	$[\mathrm{PW}(\mathrm{X})]^{2}$	$\mathrm{p}(\mathrm{X})[\mathrm{PW}(\mathrm{X})]^{2}$
80	0.6	53,920	32,352	2,907,366,400	1,744,419,840
100	0.3	188,545	56,564	35,549,217,025	10,664,765,108
120	0.1	269,320	26,932	72,533,262,400	7,253,326,240
		$\mathrm{E}(\mathrm{PW})=\$ 115,848$		$\mathrm{E}\left[(\mathrm{PW})^{2}\right]=19,662,511,188(\$)^{2}$	

$\mathrm{E}(\mathrm{PW})=\Sigma[\mathrm{p}(\mathrm{X}) \mathrm{PW}(\mathrm{ATCF})]=\$ \underline{115,848}$
$\mathrm{V}(\mathrm{PW})=\Sigma\left\{\mathrm{p}(\mathrm{X})[\mathrm{PW}(\mathrm{X})]^{2}\right\}-[\mathrm{E}(\mathrm{PW})]^{2}=19,662,511,188-(115,848)^{2}$
$=\underline{6,241,752,084}(\$)^{2}$
$\mathrm{SD}(\mathrm{PW})=[\mathrm{V}(\mathrm{PW})]^{1 / 2}=\$ \underline{79,005}$

Recommend that the lift be installed since $\mathrm{E}(\mathrm{PW})=\$ 115,848>0$ and one $\mathrm{SD}(\$ 79,005)$ is only 68% of E(PW).

12-10 Depreciation

SL amount $=\frac{0.8(\$ 100,000)}{4}=\$ 20,000$

ADS: $\mathrm{d}_{1}=\mathrm{d}_{5}=\$ 20,000 / 2=\$ 10,000$
$\mathrm{d}_{2}=\mathrm{d}_{3}=\mathrm{d}_{4}=\$ 20,000$
After-tax analysis
Let ${ }^{\$} \mathrm{~A}_{1, \mathrm{~L}}=$ cost savings in first year (before-taxes) for performance level L .
$\mathrm{PW}_{\mathrm{AT}}(12 \%)=-\$ 100,000+(0.4)(0.2)(\$ 100,000)$

$$
\begin{aligned}
& +(1-0.4) \frac{\$ A_{1, L}[1-(P / F, 12 \%, 5)(F / P, 6 \%, 5)]}{0.12-0.06} \\
& +0.4(\$ 20,000)(\mathrm{P} / \mathrm{A}, 12 \%, 3)(\mathrm{P} / \mathrm{F}, 12 \%, 1) \\
& +0.4(\$ 10,000)[(\mathrm{P} / \mathrm{F}, 12 \%, 1)+(\mathrm{P} / \mathrm{F}, 12 \%, 5)] \\
= & -\$ 92,000+2.407\left({ }^{\$} \mathrm{~A}_{1, \mathrm{~L}}\right)+\$ 17,157+\$ 5,841 \\
= & 2.407\left({ }^{\$} \mathrm{~A}_{1, \mathrm{~L}}\right)-\$ 69,002, \mathrm{~L}=1,2,3,4
\end{aligned}
$$

Performance Level (L)	$\mathrm{p}(\mathrm{L})$	$\mathrm{PW}_{\mathrm{AT}}(12 \%)$	$\mathrm{E}\left(\mathrm{PW}_{\mathrm{AT}}\right)$
1	0.15	$-\$ 14,854$	$-\$ 2,227$
2	0.25	15,243	3,811
3	0.35	37,387	13,085
4	0.25	74,937	18,734
	Total: $\$ 33,403$		

$\mathrm{E}\left(\mathrm{PW}_{\mathrm{AT}}\right)=\$ 33,403$; implement the project.

12-11 (a) $\mathrm{PW}(\mathrm{N})=-\$ 418,000+\$ 148,000(\mathrm{P} / \mathrm{A}, 15 \%, \mathrm{~N})$

				In Millions	
N	$\mathrm{PW}(\mathrm{N})$	$\mathrm{p}(\mathrm{N})$	$\mathrm{PW}(\mathrm{N}) \cdot \mathrm{p}(\mathrm{N})$	$[\mathrm{PW}(\mathrm{N})]^{2}$	$[\mathrm{PW}(\mathrm{N})]^{2} \cdot \mathrm{p}(\mathrm{N})$
3	$-\$ 80,086$	0.1	$-\$ 8,009$	$6,413.77$	641.38
4	4,540	0.1	454	20.61	2.06
5	78,126	0.2	15,625	$6,103.67$	$1,220.73$
6	142,106	0.3	42,632	$20,194.12$	$6,058.24$
7	197,739	0.2	39,548	$39,100.71$	$7,820.14$
8	246,120	0.1	24,612	$60,575.05$	$6,057.57$
$\mathrm{E}(\mathrm{PW})=\$ 114,862$				$\mathrm{E}\left[(\mathrm{PW})^{2}\right]=21,800.06 \times 10^{6}(\$)^{2}$	

$\mathrm{V}(\mathrm{PW})=21,800.06 \times 10^{6}-(114,862)^{2}=8,606.78 \times 10^{6}(\$)^{2}$
$\mathrm{SD}(\mathrm{PW})=\left(8,606.78 \times 10^{6}\right)^{1 / 2}=\$ \underline{92,773}$
(b)
$\operatorname{Pr}\{\mathrm{PW}<0\}=\underline{0.1} \quad$ (From work table above)
Recommend purchase of equipment: $\mathrm{E}(\mathrm{PW})=\$ 114,862$ is favorable; $\mathrm{SD}(\mathrm{PW})=\$ 92,773$ is less than the $\mathrm{E}(\mathrm{PW})$; and $\operatorname{Pr}\{\mathrm{PW}<0\}=0.1$ is low.

12-12 (a)

	EOY Net Cash Flow			$\mathrm{PW}(\mathrm{j})$
j	0	1	2	
1	$-\$ 29,000$	$\$ 6,000$	$\$ 17,500$	$-\$ 10,551$
2	$-29,000$	6,000	19,000	$-9,417$
3	$-29,000$	6,000	23,000	$-6,392$
4	$-29,000$	12,000	20,000	$-3,443$
5	$-29,000$	12,000	24,600	35
6	$-29,000$	12,000	28,000	2,606
7	$-29,000$	19,000	22,400	4,459
8	$-29,000$	19,000	27,500	8,315
9	$-29,000$	19,000	31,000	10,962

				In Millions	
j		$P W(\mathrm{j})$	$\mathrm{p}(\mathrm{j})$	$P W(\mathrm{j}) \cdot \mathrm{p}(\mathrm{j})$	$[P W(\mathrm{j})]^{2}$
$[P W(\mathrm{j})]^{2} \cdot \mathrm{p}(\mathrm{j})$					
1	$-\$ 10,551$	0.02	$-\$ 211$	111.32	2.23
2	$-9,417$	0.04	-377	88.67	3.55
3	$-6,392$	0.14	-895	40.86	5.72
4	$-3,443$	0.12	-413	11.85	1.42
5	35	0.30	11	-	-
6	2,606	0.18	469	6.79	1.22
7	4,459	0.06	268	19.88	1.19
8	8,315	0.08	665	69.14	5.53
9	10,962	0.06	658	120.15	7.21

$\mathrm{V}(\mathrm{PW})=28.07 \times 10^{6}-(175)^{2}=\underline{28.04} \times 10^{6}(\$)^{2}$
$\mathrm{SD}(\mathrm{PW})=\left(28.04 \times 10^{6}\right)^{1 / 2}=\$ \underline{5,295}$
(b) $\operatorname{Pr}\{\mathrm{PW}>0\}=0.30+0.18+0.06+0.08+0.06=\underline{0.68}$

12-13 (a) $\mathrm{i}_{\mathrm{m}}=\mathrm{MARR}=15 \%$; General inflation rate $(\mathrm{f})=4 \%$
Increase rate for annual revenues $=6.48 \%$
$\mathrm{PW}(\mathrm{N})=-\$ 100,000+\frac{\$ 40,000[1-(P / F, 15 \%, N)(F / P, 6.48 \%, N)}{0.15-0.0648}$

				In Millions	
N	$\mathrm{PW}(\mathrm{N})$	$\mathrm{p}(\mathrm{N})$	$\mathrm{PW}(\mathrm{N}) \cdot \mathrm{p}(\mathrm{N})$	$[\mathrm{PW}(\mathrm{N})]^{2}$	$[\mathrm{PW}(\mathrm{N})]^{2} \cdot \mathrm{p}(\mathrm{N})$
1	$-\$ 65,218$	0.03	$-\$ 1,957$	$\$ 4,253.39$	127.60
2	$-33,012$	0.10	$-3,301$	$1,089.79$	108.98
3	$-3,192$	0.30	-958	10.19	3.06
4	24,418	0.30	7,325	596.24	178.87
5	49,983	0.17	8,497	$2,498.30$	424.71
6	73,654	0.10	7,365	$5,424.91$	542.49
$\mathrm{E}(\mathrm{PW})=\$ 16,971$				$\mathrm{E}\left[(\mathrm{PW})^{2}\right]=1,385.71 \times 10^{6}(\$)^{2}$	

$\mathrm{V}(\mathrm{PW})=1,385.71 \times 10^{6}-(16,971)^{2}=\underline{1,097.7 \times 10^{6}}(\$)^{2}$
$\mathrm{SD}(\mathrm{PW})=\left(1,097.7 \times 10^{6}\right)^{1 / 2}=\$ \underline{33,131}$
(b) $\operatorname{Pr}(\mathrm{PW}>0\}=0.30+0.17+0.10=\underline{0.57}$
(c) $\mathrm{i}_{\mathrm{r}}=\frac{0.15-0.04}{1.04}=0.10577$ or 10.577%
$\mathrm{E}(\mathrm{AW})_{\mathrm{RS}}=\sum_{\mathrm{N}=1}^{6} \mathrm{PW}(\mathrm{N})(\mathrm{A} / \mathrm{P}, 10.577 \%, \mathrm{~N}) \mathrm{p}(\mathrm{N})=\$ \underline{1,866}$
The project appears questionable. The $\mathrm{E}(\mathrm{PW})$ is positive but the $\mathrm{SD}(\mathrm{PW})$ is approximately two times the expected value. Also the $\operatorname{Pr}\{\mathrm{PW}>0\}=0.57$ is only somewhat attractive.

Notice that the probable extra capital investment for project B is a negative consideration to the selection of this project. But let's examine the expected value and variance of cash inflows for both projects to see if they might compensate for the higher capital investment for project B . The expected cash inflow for project A is $\$ 1,840$ per year, while the expected cash inflow for project B is $\$ 1,670$. The variance of project A is $86,400 \2 and the variance of project B is $1,374,100 \2, so project A has a greater expected value of cash inflows and smaller variance of cash inflows than project B. Project A appears to be the clear choice (it probably has a lower capital investment too). Note that in this problem, risk and reward do not travel in the same direction. As the risk (variance) of project B goes up, its reward (expected annual cash flow becomes lower.

12-15 From the normal probability tables (App. E):
$1.28=\frac{X-\mu}{\sigma}=\frac{30,000-25,000}{\sigma}=\frac{5,000}{\sigma}$
so $\sigma-3,906.25$ pounds per hour and the
variance $=\sigma^{2}=15.26 \times 10^{6}(\mathrm{lbs} / \mathrm{hr})^{2}$

12-16 Normally distributed random variable: $\mathrm{E}(\mathrm{X})=\$ 175, \mathrm{~V}(\mathrm{X})=25(\$)^{2}$

$$
\begin{array}{ll}
\operatorname{Pr}\{\mathrm{X} \geq 171\}=? & \mathrm{Z}=\frac{\mathrm{X}-\mu}{\sigma}=\frac{171-175}{\sqrt{25}}=-0.8 \\
\operatorname{Pr}\{\mathrm{X} \geq 171\}=\operatorname{Pr}\{\mathrm{Z} \geq-0.8\}=1-\operatorname{Pr}\{\mathrm{Z} \leq-0.8\}=1-0.2119=\underline{0.7881}
\end{array}
$$

12-17 (a)

k	$\mathrm{E}\left(\mathrm{X}_{\mathrm{k}}\right)$	C_{k}	$\mathrm{E}\left(\mathrm{F}_{\mathrm{k}}\right)$	$(\mathrm{P} / \mathrm{F}, 15 \%, \mathrm{k})$	$\mathrm{PW}\left[\mathrm{E}\left(\mathrm{F}_{\mathrm{k}}\right)\right]$
0	$-\$ 41,167$	1	$-\$ 41,167$	1.0000	$-\$ 41,167$
1	$-2,208$	2	$-4,416$	0.8696	$-3,840$
2	10,600	1	10,600	0.7561	8,015
3	6,067	4	24,268	0.6575	15,956
4	4,817	5	24,085	0.5718	13,772
5	17,333	1	17,333	0.4972	8,618
k	$\mathrm{V}\left(\mathrm{X}_{\mathrm{k}}\right)$	$\left.\mathrm{C}_{\mathrm{k}}(\mathrm{P} / \mathrm{F})\right]^{2}$	$\mathrm{~V}\left[\mathrm{PW}\left(\mathrm{F}_{\mathrm{k}}\right)\right]$		
0	$1,361,111$	1.0000	$1,361,111$		
1	11,736	3.0248	35,499		
2	71,111	0.5717	40,653		
3	17,778	6.9169	122,969		
4	6,944	18.1739	56,759		
5	90,000	0.2472	22,249		

$$
\begin{aligned}
& \mathrm{E}(\mathrm{PW})=\sum_{\mathrm{k}=0}^{5} \mathrm{PW}\left[\mathrm{E}\left(\mathrm{~F}_{\mathrm{k}}\right)\right]=\underline{\$ 1,354} \\
& \mathrm{~V}(\mathrm{PW})=\sum_{\mathrm{k}=0}^{5} \mathrm{~V}\left[\mathrm{PW}\left(\mathrm{~F}_{\mathrm{k}}\right)\right]=\underline{1,639,240(\$)^{2}}
\end{aligned}
$$

(b) Assumption: The PW of the net cash flow is a normally distributed random variable with $\mu=$ $\mathrm{E}(\mathrm{PW})$ and $\sigma^{2}=\mathrm{V}(\mathrm{PW})$.

$$
\begin{aligned}
\operatorname{Pr}\{\mathrm{PW} \geq 0\} & =1-\operatorname{Pr}\{\mathrm{PW} \leq 0\}=1-\operatorname{Pr}\left\{\mathrm{Z} \leq \frac{0-\$ 1,354}{\sqrt{1,639,240}}\right\} \\
& =1-\operatorname{Pr}\{\mathrm{Z} \leq-1.06\} \\
& =1-0.1446 \\
& =\underline{0.8554}
\end{aligned}
$$

(c) Yes; if PW $($ at $i=M A R R)>0$ then the $\operatorname{IRR}>\operatorname{MARR}$. Therefore, it is correct to conclude that $\operatorname{Pr}\{\operatorname{IRR} \geq \operatorname{MARR}\}=\operatorname{Pr}\{P W \geq 0\}$.

12-18 Notice that these are cost alternatives.

$$
\begin{aligned}
& \mathrm{E}\left[\mathrm{PW}_{\mathrm{A}}(15 \%)\right]=-[13,000+5,000(\mathrm{P} / \mathrm{A}, 15 \%, 8)-2,000(\mathrm{P} / \mathrm{F}, 15 \%, 8)]=-\$ 34,783 \\
& \mathrm{~V}\left[\mathrm{PW}_{\mathrm{A}}(15 \%)\right]=\frac{(500)^{2}(P / A, 15 \%, 16)}{2.15}+(800)^{2}(\mathrm{P} / \mathrm{F}, 15 \%, 16)=770,746 \$^{2} \\
& \mathrm{E}\left[\mathrm{PW}_{\mathrm{B}}(15 \%)\right]=-[7,500(\mathrm{P} / \mathrm{A}, 15 \%, 8)]=-\$ 33,655 \\
& \mathrm{~V}\left[\mathrm{PW}_{\mathrm{B}}(15 \%)\right]=\frac{(750)^{2}(P / A, 15 \%, 16)}{2.15}=1,557,794 \$^{2}
\end{aligned}
$$

Now let $\mathrm{Y}=\mathrm{PW}_{\mathrm{A}}-\mathrm{PW}_{\mathrm{B}}($ i.e., $\mathrm{B} \rightarrow \mathrm{A})$ and find $\operatorname{Pr}(\mathrm{Y}>0)$.

$$
\begin{aligned}
& \mathrm{E}(\mathrm{Y})=\mathrm{E}\left(\mathrm{PW}_{\mathrm{A}}\right)-\mathrm{E}\left(\mathrm{PW}_{\mathrm{B}}\right)=-1,128 \\
& \mathrm{~V}(\mathrm{Y})=\mathrm{V}\left(\mathrm{PW}_{\mathrm{A}}\right)+\mathrm{V}\left(\mathrm{PW}_{\mathrm{B}}\right)=2,318,540 \\
& \begin{aligned}
& \operatorname{Pr}(\mathrm{Y} \geq 0)=\operatorname{Pr}\left(S \geq \frac{0-(-1,128)}{\sqrt{2,318,540}}\right) \\
& \quad \quad=\operatorname{Pr}(\mathrm{S} \geq 0.741)=\operatorname{Pr}(\mathrm{S} \leq-0.741) \cong 0.23
\end{aligned}
\end{aligned}
$$

12-19

EOY	$\mathbf{E}(\mathbf{B}-\mathbf{A})$	$\mathbf{V}(\mathbf{B}+\mathbf{A})$
0	$-\$ 4,000$	$(500)^{2}=250,000$
1	$\$ 500$	$(300)^{2}+(600)^{2}=450,000$
2	$-\$ 1,500$	$(300)^{2}+(600)^{2}=450,000$
3	$\$ 500$	$(300)^{2}+(800)^{2}=730,000$
4	$-\$ 1,500$	$(300)^{2}+(800)^{2}=730,000$

At $\mathrm{i}=15 \%$
$\mathrm{E}[\mathrm{PW}(\mathrm{B}-\mathrm{A})]=-4,000+500(\mathrm{P} / \mathrm{F}, 15 \%, 1)-1,500(\mathrm{P} / \mathrm{F}, 15 \%, 2)+500(\mathrm{P} / \mathrm{F}, 15 \%, 3)$ $-1,500(\mathrm{P} / \mathrm{F}, 15 \%, 4)=-\$ 5,228$
$\mathrm{V}[\mathrm{PW}(\mathrm{B}-\mathrm{A})]=250,000+450,00(\mathrm{P} / \mathrm{F}, 15 \%, 2)+450,000(\mathrm{P} / \mathrm{F}, 15 \%, 4)$ $+730,000(\mathrm{P} / \mathrm{F}, 15 \%, 6)+730,000(\mathrm{P} / \mathrm{F}, 15 \%, 8)=1,401,791$
$\sigma\left(\mathrm{PW}_{\mathrm{A} \rightarrow \mathrm{B}}\right)=\$ \underline{1,183.97}$

12-20 (a)

Random Number	Life $\left[\mathbf{3}+\frac{R N}{100}(\mathbf{5}-\mathbf{3})\right]$	Nearest Whole Number	Investment $\mathbf{\$ 1 2 0 , 0 0 0}(\mathbf{A} / \mathbf{P}, \mathbf{1 5 \%} \mathbf{N}$ \boldsymbol{p}	Salvage $\mathbf{S V}(\mathbf{A} / \mathbf{F}, \mathbf{1 5 \%}, \mathbf{N})$	Equivalent $\mathbf{A W}$
13	3.26	3	$-\$ 52,560$	5,184	$-\$ 47,376$
51	4.02	4	$-\$ 42.036$	2,404	$-\$ 39,632$
35	3.7	4	$-\$ 42,036$	2.404	$-\$ 39,632$
90	4.8	5	$-\$ 35,796$	890	$-\$ 34,906$
				SUM	$-\$ 161,546$
				$\mu=$	$-\$ 40,387$

(b) Variance $=\frac{(-\$ 47,376-\mu)^{2}+(-\$ 39,632-\mu)^{2}+(-\$ 39,632-\mu)^{2}+(-\$ 34,906-\mu)^{2}}{3}$
with $\mu=-\$ 40,387$

Random Normal Deviate RND	$\begin{gathered} \hline \text { Investment } \\ 200,000+ \\ \text { RND * } \\ 10,000 \\ \text { P } \end{gathered}$	Three Random Numbers RN	$\begin{gathered} \text { Project Life, } \mathrm{N} \\ =5+ \\ \text { RN/999(15-5) } \\ \text { N } \end{gathered}$	N to Nearest Integer N	One Random Number R	Annual Receipts A	$\begin{gathered} \mathrm{AW} \\ {[-\mathrm{P}(\mathrm{~A} / \mathrm{P}, 10 \%, \mathrm{~N})+\mathrm{A}} \\ +\mathrm{MV}(\mathrm{~A} / \mathrm{F}, 10 \%, \mathrm{~N}] \end{gathered}$ AW
1.102	211,020	131	6.311311	6	4	16,000	-34,450.192
0.148	201,480	513	10.13514	10	5	16,000	-187,80.796
2.372	223,720	350	8.503504	9	4	16,000	-24,837.792
-0.145	198,550	904	14.04905	14	7	16,000	-12,943.235
0.104	201,040	440	9.404404	9	9	22,000	-14,900.544
1.419	214,190	107	6.071071	6	4	16,000	-35,178.024
0.069	200,690	507	10.07508	10	5	16,000	-18,652.263
0.797	207,970	782	12.82783	13	6	16,000	-15,282.176
-0.393	196,070	258	7.582583	8	8	22,000	-16,743.518
-0.874	191,260	504	10.04505	10	3	16,000	-17,118.002
						SUM	-208,886.54

The estimate of AW based on ten repititions of the experiment is $-\$ 208,886.54$.
An estimate of the standard deviation of AW can be found by:

$$
\sigma[A W]=\frac{\sqrt{\sum_{i=1}^{K}\left(A W_{i}-E[W]\right)^{2}}}{\sqrt{K-1}}
$$

$\sigma=7,992.784$
Due to reasons of space only 10 of the simulation trials are presented here. It can be noticed that these estimates are within the range of the real value and will get even closer with more trials.

12-22 Although the present worth of Alternative 2 is higher than the present worth of Alternative 1 , it may be wise to select Alternative 1 since the probability of present worth being greater than zero for Alternative 1 is greater and there is less variability in present worth for Alternative 1.

12-23 Given: MARR $=8 \%$ per year; Analysis Period $=8$ years
$\mathrm{PW}_{\text {New Product }}=\quad-\$ 1,000,000(\mathrm{P} / \mathrm{F}, 8 \%, 2)$ $+[0.6(\$ 200,000)+0.4(\$ 280,000)](\mathrm{P} / \mathrm{A}, 8 \%, 6)(\mathrm{P} / \mathrm{F}, 8 \%, 2)$
$=\$ \underline{62,165}$
$\mathrm{PW}_{\text {Do Nothing }}=\$ 0 ; \underline{\text { Select New Product }}$

12-24 $\mathrm{E}[\mathrm{PW}(15 \%)]=-300^{\mathrm{k}}+100^{\mathrm{k}}(\mathrm{P} / \mathrm{A}, 15 \%, \mathrm{~N})+20^{\mathrm{k}}(\mathrm{P} / \mathrm{F}, 15 \%, \mathrm{~N})$
$\mathrm{V}[\mathrm{PW}(15 \%)]=0+\frac{\left(7^{k}\right)^{2}(P / A, 15 \%, 2 N)}{2.15}+\left(3^{\mathrm{k}}\right)^{2}(\mathrm{P} / \mathrm{F}, 15 \%, 2 \mathrm{~N})$
$\operatorname{Pr}(\operatorname{IRR} \geq 15 \%) \geq 0.90$ or $\operatorname{Pr}(\mathrm{PW} \geq 0 \mid \mathrm{i}=15 \%) \geq 0.90$
Step 1: Try $\mathrm{N}=4$ years, $\mathrm{E}[\mathrm{PW}(15 \%)]=-300^{\mathrm{k}}+285.5^{\mathrm{k}}+11.4^{\mathrm{k}}=-3.1^{\mathrm{k}}$

$$
\begin{aligned}
& \mathrm{V}[\mathrm{PW}(15 \%)]=\frac{\left(49 \times 10^{6}\right)(P / A, 15 \%, 8)}{2.15}+\left(9 \times 10^{6}\right)(\mathrm{P} / \mathrm{F}, 15 \%, 8) \\
& \\
& =\left(102.27 \times 10^{6}\right)+\left(2.94 \times 10^{6}\right) \\
& \\
& =105.21 \times 10^{6} ;(\sigma=\$ 10,257) \\
& \operatorname{Pr}(\mathrm{PW} \geq 0 \mid \mathrm{i}=15 \%)=\operatorname{Pr}\left[S \geq \frac{0-\left(-3.1^{k}\right)}{10.257^{k}}\right] \\
& \\
& =\operatorname{Pr}(\mathrm{S} \geq 0.30) \cong 0.38
\end{aligned}
$$

Step 2: Try $\mathrm{N}=5$ years, $\mathrm{E}[\mathrm{PW}(15 \%)]=-300+335,2+9.9=45.1^{\mathrm{k}}$

$$
\begin{aligned}
& \begin{aligned}
\mathrm{V}[\mathrm{PW}(15 \%)] & =\frac{\left(49 \times 10^{6}\right)(P / A, 15 \%, 10)}{2.15}+\left(9 \times 10^{6}\right)(\mathrm{P} / \mathrm{F}, 15 \%, 10) \\
& =\left(114.38 \times 10^{6}\right)+\left(2.22 \times 10^{6}\right) \\
& =116.6 \times 10^{6} ;(\sigma=\$ 10,798)
\end{aligned} \\
& \begin{aligned}
& \operatorname{Pr}(\mathrm{PW} \geq 0 \mid \mathrm{i}=15 \%)=\operatorname{Pr}\left[S \geq \frac{0-\left(45.1^{k}\right)}{10.798^{k}}\right] \\
&=\operatorname{Pr}(\mathrm{S} \geq-4.18) \cong 0.99
\end{aligned}
\end{aligned}
$$

Hence, $\mathrm{N}=5$ years is the smallest value permissible.

12-25 Start at $\quad 2$: $\mathrm{PW}(10) \%)$ for $\mathrm{BA}=-250^{\mathrm{k}}(\mathrm{P} / \mathrm{A}, 10 \%, 5)(0.75)$

$$
\begin{aligned}
& -150^{\mathrm{k}}(\mathrm{P} / \mathrm{A}, 10 \%, 5)(0.25)-5,500^{\mathrm{k}}+2,000^{\mathrm{k}}(\mathrm{P} / \mathrm{F}, 10 \%, 5) \\
& =-5,111,14^{\mathrm{k}}
\end{aligned}
$$

Therefore, select RA
If at

$$
\operatorname{PW}(10 \%) \text { for } \mathrm{RA}=-1,000^{\mathrm{k}}(\mathrm{P} / \mathrm{A}, 10 \%, 5)(0.60)
$$

$$
-1,200^{\mathrm{k}}(\mathrm{P} / \mathrm{A}, 10 \%, 5)(0.50)-25^{\mathrm{k}}=-4,119.06^{\mathrm{k}}
$$

Bottom branch at 1 : $\operatorname{PW}_{\text {BUILD }}(10 \%)=\left[-200^{\mathrm{k}}(\mathrm{P} / \mathrm{A}, 10 \%, 5)\right.$

$$
\begin{aligned}
& -4,119.06^{\mathrm{k}}(\mathrm{P} / \mathrm{F}, 10 \%, 50\}(0.2)-150^{\mathrm{k}}(\mathrm{P} / \mathrm{A}, 10 \%, 10)(0.6) \\
& -300^{\mathrm{k}}(\mathrm{P} / \mathrm{A}, 10 \%, 10)(0.2)-10,500^{\mathrm{k}}+17,00^{\mathrm{k}}(\mathrm{P} / \mathrm{F}, 10 \%, 10) \\
& =-\$ 5,531.33^{\mathrm{k}}
\end{aligned}
$$

Top branch at 1 : $\operatorname{PW}_{\text {RENT }}(10 \%)=-900^{\mathrm{k}}[1-(\mathrm{P} / \mathrm{F}, 10 \%, 10)(\mathrm{F} / \mathrm{P}, 7 \%, 10)](0.55)$

$$
\begin{aligned}
& -700^{\mathrm{k}}[10(\mathrm{P} / \mathrm{F}, 10 \%, 1)](0.45)-25^{\mathrm{k}} \\
= & -\$ 6,875,73^{\mathrm{k}}
\end{aligned}
$$

Therefore, choose to build.

Solutions to Spreadsheet Exercises
12-26

	A	B	C	D	E	F
1	MARR =	1:2\%		Useful Life	Probability	
2	Capital Investment =	$\$ \quad 521,00$		14	0.3	
3	Annual Savings =	\$ 48,600		15	0.4	
4	Increased Revenue =	\$ 31,000		16	0.3	
5						
6						
7	Useful Life	prob (N)	PW	E(PW)	PW^2	$\mathrm{p}(\mathrm{N})[\mathrm{PW}]^{\wedge} 2$
8	14	0.3	\$ 6,602	\$ 1,981	$4.359 \mathrm{E}+07$	$1.308 \mathrm{E}+07$
9	15	0.4	\$ 21,145	\$ 8,458	$4.471 \mathrm{E}+08$	$1.788 \mathrm{E}+08$
10	16	0.3	\$ 34,129	\$ 10,239	$1.165 \mathrm{E}+09$	$3.494 \mathrm{E}+08$
11	Totals =			\$ 20,677		\$ 541,360,618
12						
13	E(PW)	\$ 20,677				
14	$\mathrm{V}(\mathrm{PW})=$	\$ 113,806,908				
15	SD(PW) =	\$ 10,668				
16						
17						
18	The revised estimates for useful life have resulted in an increased $E(P W)$ and a reduced $\operatorname{SD}(\mathrm{PW})$.					

12-27 Left as an individual exercise.

Solutions to Chapter 13 Problems

13-1 NOPAT $=(1-0.4)(\$ 8$ million $-\$ 4$ million $-\$ 2$ million $)=\$ 1.2$ million

13-2 $e_{a}=0.25+1.28(0.084)=0.1325$ or 13.25%

13-3 Recommendations differ for Projects A and C. These differences occur because the WACC is indifferent to market volatility, whereas the CAPM strives to take market risk into account. This is the basic difference shown by the slope of the CAPM line in the diagram on page 548.

13-4 $R s=0.06+0.04=0.10=10 \%$

13-5 In this case, $\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{\prime}, \infty\right)=12$, so $1 / \mathrm{i}^{\prime}=12$ and $\mathrm{i}^{\prime}=0.0833$. The after-tax return on this stock is 8.33%. With a higher P/E ratio, the implied IRR will drop because investors are more concerned about growth in the price of the common stock and are willing to trade earnings for growth.

13-6 Degrees of dependency between two or more projects range over a continuum from "prerequisite" to "mutually exclusive" as explained in Table 13-2.

In general, complementary projects should be included as part of a given proposal package. However, where the decision regarding complementary projects is sufficiently important to be made by higher levels of management, combinations of projects should be submitted in the form of sets of mutually exclusive alternatives.

13-7 (a) Keep Old:

Capital recovery $=(\$ 6,000-\$ 1,000)(\mathrm{NP}, 15 \%, 3)+\$ 1,800(0.15)=\$ 2,110$
Operating Disbursements 720

$$
\text { Total Annual Cost }=\quad \$ 2,830
$$

Lease:
30 days $(\$ 30)+3,000$ miles $(\$ 0.40)=\$ 2,100$
Thus, leasing a truck is better.
(b) The annual cost of having to operate without a truck, $\$ 2,000$, is less than the minimum cost alternative in (a). Hence, it is better to operate without a truck.

13-8 (a)

Keep Old

Yr.	BTCF	Depr.	TI	T (t=0.40)	ATCF
0	$-\$ 6,000$	-	$(-)+\$ 1,000^{(1)}$	$(+)-\$ 400$	$-\$ 5,600$
$1-3$	-720	$-\$ 1,000$	$-1,720$	+688	-32
3	$+1,800$	-	$-200^{(2)}$	+80	$+1,880$

Lease

Yr.	BTCF	Depr.	TI	T $(\mathbf{t}=\mathbf{0 . 4 0})$	ATCF
$1-3$	$-\$ 2,100$	-	$(-) \$ 2,100$	$(+) \$ 840$	$-\$ 1,260$

(1) Cap. gain if we sell $=\$ 6,000-\$ 5,000=\$ 1,000$
(2) Cap. loss if we sell $=[\$ 5,000-3(\$ 1,000)-\$ 1,800=-\$ 200$

PW(Keep Old): $-\$ 5,600-\$ 32(\mathrm{P} / \mathrm{A}, 5 \%, 3)+\$ 1,880(\mathrm{P} / \mathrm{F}, 5 \%, 3)=-\$ 4,063$
PW(Lease): $-\$ 1,260(\mathrm{P} / \mathrm{A}, 5 \%, 3)=-\$ 3,431$
Thus leasing is better.
(b) Presumably the extra cost of having to operate without a truck would be tax deductible.

Thus, the extra cost after income taxes would be $\$ 2,000-40 \%(\$ 2,000)=\$ 1,200 / \mathrm{yr}$.
$\mathrm{PW}($ without truck $)=-\$ 1,200(\mathrm{P} / \mathrm{A}, 5 \%, 3)=-\$ 3,268$
Thus, operating without a truck is still more economical.

13-9 (a) Purchase:

$\begin{array}{ll}\text { Cash Inflows } & =\$ 20,000 \\ \text { CR Cost }=(\$ 56,000-\$ 10,000)(\text { AIP }, 10 \%, 3)+\$ 10,000(0.10) & =\$ 19,497\end{array}$		
	Net AW	\$ 503
Lease:		
Cash Inflows Lease Payments (converted to end-of-year)		= \$20,000
		$=\$ 24,200$
	Net AW	-\$4,200

It is better to purchase the lathe.
(b) If the value of the lathe (as measured by cash inflows) is only $\$ 18,000$, the lathe should not be acquired by purchase or lease.

13-10 Based on the use of equity money of the firm.

Buy	Yr.	BTCF	Depr.	Taxable Inc.	$\mathrm{t}=0.40$ Income Taxes	ATCF
	0	0				0
	1-20	-\$ 100,000	-\$100,000	-\$200,000	+\$80,000	-\$ 20,000
If (a)	20	-2,000,000				-2,000,000
If (b)	20	- 1,500,000		+ 500,000*	-200,000	- 1,700,000

*Capital gain $=\$ 2,000,000-\$ 1,500,000=\$ 500,000$

Lease

Yr.	BTCF	Depr.	Taxable Inc.	$\mathrm{t}=0.40$ Income Taxes	ATCF
$1-20$	$-\$ 125,000$	--	$-\$ 125.000$	$+\$ 50,000$	$-\$ 75,000$

Annual Worths

Buy and (a) $\$ 0$ salvage:
$-\$ 20,000-\$ 2,000,000(\mathrm{~A} / \mathrm{F}, 5 \%, 20)=-\$ 80.400<-\$ 75.000$

Therefore, Lease.
Buy and (b) \$500,000 salvage:
$-\$ 20,000-\$ 1,700,000(\mathrm{~A} / \mathrm{F}, 5 \%, 20)=-\$ 71.340>-\$ 75,000$
Thus leasing is better for case a, but buying is better for case b.

	Yr.	BTCF	Depr.	Taxable Income	$\mathbf{t}=\mathbf{0 . 2 5}$ Taxes
Lease	Beginning				
	Of each	$-\$ 35,000$	$-\$ 35,000$	$+\$ 8,750$	$-\$ 26,250$
	Year				$-\$ 100,000$
	0	$-\$ 100,000$			$+4,250$
Purchase	$1-5$	$-\$ 1,000-\$ 20,000(1)-\$ 21,000$	$+\$ 5,250$	+0	

Depr. $=(\$ 100,000-\$ 0) / 5=\$ 20,000$

Annual Worths

Lease: $($ Adjusted to end - of - year $)=-\$ 26,250(\mathrm{~F} / \mathrm{P}, 10 \%, 1)=-\$ 28,875$
Purchase: $-\$ 100,000(\mathrm{~A} / \mathrm{P}, 10 \%, 5)+\$ 4,250=-\$ 22,130$ Thus, purchasing is better if the life is 5 years.

To illustrate the iterative calculations to find the breakeven life, here are the figures for a 3-year life

Purchase	0	$-\$ 100,000$	-	-	--	--
Last 3	$1-3$	$-\$ 1,000$	$-\$ 20,000$	$-\$ 21,000$	$+\$ 5,250$	$+\$ 4,250$
Years	3	0	--	$-\$ 40,000^{(2)}$	$+\$ 10,000$	$+\$ 10,000$

(2) Capital Loss $=$ Book Value - Selling Price

$$
=[\$ 100,000-3(\$ 20,000)]-\$ 0=\$ 40,000
$$

Annual Worths

Lease: (see above) $=-\$ 28,875$
Purchase, last 3 yrs $.=-\$ 100,000(\mathrm{~A} / \mathrm{P}, 10 \%, 3)+\$ 4,250+\$ 10,000(\mathrm{~A} / \mathrm{F}, 10 \%, 3)$

$$
=-\$ 32,939
$$

Thus, leasing is better if the life is 3 years. It appears that a breakeven life is 4 years (to the nearest whole year).

13-12

	EOY	Capital Investment	Annual Net Cash Income	PW(10\%)
	A1	-500000	90000	53014
A	A2	$-650,000$	110,000	25,906
	A3	$-700,000$	115,000	6,629
	B1	$-600,000$	105,000	45,183
B	B2	$-675,000$	112,000	13,195
	C1	$-800,000$	150,000	121,690
C	C2	$-1,000,000$	175,000	75,305

Maximize: $\mathrm{PW}=53,014 \mathrm{X}_{\mathrm{A} 1}+25,906 \mathrm{X}_{\mathrm{A} 2}+6629 \mathrm{X}_{\mathrm{A} 3}+45,183 \mathrm{X}_{\mathrm{B} 1}+13,195 \mathrm{X}_{\mathrm{B} 2}+$ $121,690 \mathrm{X}_{\mathrm{C} 1}+75,305 \mathrm{X}_{\mathrm{C} 2}$

Subject to: $500,000 \mathrm{X}_{\mathrm{A} 1}+650,000 \mathrm{X}_{\mathrm{A} 2}+700000 \mathrm{X}_{\mathrm{A} 3}+600,000 \mathrm{X}_{\mathrm{B} 1}+675,000 \mathrm{X}_{\mathrm{B} 2}$
$+800,000 \mathrm{X}_{\mathrm{C} 1}+1,000,000 \mathrm{X}_{\mathrm{C} 2} \leq 2,100,000$
$\mathrm{X}_{\mathrm{A} 1}+\mathrm{X}_{\mathrm{A} 2}+\mathrm{X}_{\mathrm{A} 3} \leq 1$
$\mathrm{X}_{\mathrm{B} 1}+\mathrm{X}_{\mathrm{B} 2} \leq 1$
$\mathrm{X}_{\mathrm{C} 1}+\mathrm{X}_{\mathrm{C} 2} \leq 1$
$\mathrm{X}_{\mathrm{A} 1}+\mathrm{X}_{\mathrm{A} 2} \mathrm{X}_{\mathrm{A} 3}+\mathrm{X}_{\mathrm{B} 1} \mathrm{X}_{\mathrm{B} 2}+\mathrm{X}_{\mathrm{C} 1} \mathrm{X}_{\mathrm{C} 2}=0$ or 1
Solution: $\mathrm{X}_{\mathrm{A} 1}=1 ; \mathrm{X}_{\mathrm{B} 1}=1 ; \mathrm{X}_{\mathrm{C} 1}=1$
Objective function value $=\$ 219.89$

	Proposal				
MEC	A	B	C	D	Investment
1	0	0	0	0	0
2	1	0	0	0	$\$ 100,000$
3	0	0	1	0	$\$ 120,000$
4	1	1	0	0	$\$ 120,000$
5	1	0	0	1	$\$ 130,000$
6	0	1	1	0	$\$ 140,000$
7	0	0	1	1	$\$ 150,000^{*}$

*MEC \#7 is not feasible due to budget limitations
For the objective function coefficients
$\mathrm{PW}_{\mathrm{A}}(15 \%)=-\$ 100,000+\$ 40,000(\mathrm{P} / \mathrm{A}, 15 \%, 3)+\$ 20,000(\mathrm{P} / \mathrm{F}, 15 \%, 3)=\$ 4,478$

$$
\begin{aligned}
\mathrm{PW}_{\mathrm{B}}(15 \%) & =-20,000+\$ 6,000(\mathrm{P} / \mathrm{F}, 15 \%, 1)+\$ 10,000(\mathrm{P} / \mathrm{A}, 15 \%, 2)(\mathrm{P} / \mathrm{F}, 15 \%, 1) \\
& =-\$ 645
\end{aligned}
$$

$\mathrm{PW}_{\mathrm{C}}(15 \%)=-120,000+\$ 25,000(\mathrm{P} / \mathrm{F}, 15 \%, 1)+\$ 50,000(\mathrm{P} / \mathrm{F}, 15 \%, 2)$

$$
+85,000(\mathrm{P} / \mathrm{F}, 15 \%, 3)=-\$ 4,729
$$

Integer L.P. Setup:
Maximize $P W=4,478 X_{A}-645 X_{B}-4,568 X_{C}-4,729 X_{D}$
Subject to: $\quad \mathrm{X}_{\mathrm{A}}+\mathrm{X}_{\mathrm{C}} \leq 1$
$\mathrm{X}_{\mathrm{B}}+\mathrm{X}_{\mathrm{D}} \leq 1$
$100,000 X_{A}+20,000 X_{B}+120,000 X_{C}+30,000 X_{D} \leq 140,000$
$\mathrm{X}_{\mathrm{A}}, \mathrm{X}_{\mathrm{B}}, \mathrm{Xc}, \mathrm{X}_{\mathrm{D}}=0$ or 1
Solving yields: $\mathrm{X}_{\mathrm{A}}=1, \mathrm{X}_{\mathrm{B}}=0, \mathrm{Xc}=0$ and $\mathrm{X}_{\mathrm{D}}=0$
Objective function value $=\underline{\$ 4,478}$

13-14 Maximize $\mathrm{PW}=0.12 \mathrm{X}_{\mathrm{A}}+2.47 \mathrm{X}_{\mathrm{B}}+1.85 \mathrm{Xc}$
Subject to $4 X_{A}+4.5 X_{B}+X c \leq 5$
$\mathrm{X}_{\mathrm{A}}+\mathrm{X}_{\mathrm{B}} \leq 1$
$\mathrm{Xc} \leq \mathrm{X}_{\mathrm{A}}$
$7,000 \mathrm{X}_{\mathrm{A}}+9,000 \mathrm{X}_{\mathrm{B}}+3,000 \mathrm{Xc} \leq 10,000$
$\mathrm{X}_{\mathrm{A}}, \mathrm{X}_{\mathrm{B}}, \mathrm{Xc}=0$ or 1
Solving yields: $\mathrm{X}_{\mathrm{A}}=0, \mathrm{X}_{\mathrm{B}}=1, \mathrm{X}_{\mathrm{C}}=0$
Objective function $=\underline{\$ 2.47}$

14-1 Left to student.

14-2 Noncompensatory Models: Full dimensional Advantages:

1) Quick and easy to apply to eliminate one or more of the alternatives.
2) All attributes are considered in the analysis.
3) Simple, easy to understand, requires little computation if any.

Disadvantages:

1) Very often does not lead to a final selection.
2) May not eliminate any of the alternatives.
3) Tends to "satisfice" rather than optimize.

Compensatory Models: Single dimensional
Advantages:

1) Trade offs are taken into account in arriving at the final decision.
2) Will almost always arrive at a final choice, and method may be developed to break a tie quantitatively.
3) Numerical answers seem to parallel intuitive choices.
4) All "worths" reduced to a single scale, makes complex problem computationally tractable.

Disadvantages:

1) Weighting is still subjective.
2) Compression to numerical values for qualitative subjective data is often difficult and time consuming, and may not be meaningful;
3) Translation of numerical or subjective values to a single scale may not be plausible for all individuals.

14-3 Left to student.

14-4 Some of the difficulties of developing nonlinear functions or nondimensional scaling of qualitative (subjective) data are as follows:
(a) Dimensionless attributes will contain implicit weighting factors
(b) Dimensionless attributes will not follow same trend with respect to desirability
(c) A non-dimensionalizing procedure could inaccurately rate each attribute in terms of its fractional accomplishment of the highest attainable value.
(d) Higher (lower) values could dominate the solution.

14-5 (a) Assume "ideal" means "maximum"
Attribute A for alternatives 2 and 3 is acceptable: $70 \leq \mathrm{A} \leq 100$
Attribute B for all alternatives is acceptable: $6 \leq \mathrm{B} \leq 10$
Only alternative 2 attribute C is acceptable: Good $\leq \mathrm{C}_{2} \leq$ Excellent
Attribute D for all alternatives is accceptable: $6 \leq \mathrm{D} \leq 10$
Only alternative 2 is acceptable because it is the only one whose attributes all lie in acceptable ranges.
(b) No alternative dominates another.
(c) Alternative 3 has the best value of the top ranked attribute "D".
(a) Dominance

Attribute	Vendor I vs. Vendor II	I vs. III	I vs. Retain	II vs. III	III vs. Retain
Reduction in throughput time	Better	Worse	Better	Worse	Better
Flexibility	Worse	Worse	Better	Equal	Better
Reliability	Better	Better	Better	Equal	Better
Quality	Worse	Worse	Better	Equal	Better
Cost of System	Better	Worse	Worse	Worse	Worse
Dominance?	No	No	No	Yes	No

Vendor II is removed from consideration.
(b) Satisficing

Attribute	"Worst" Acceptable Value	Unacceptable Alternative
Reduction in throughput time	50%	Retain
Flexibility	Good	Retain
Reliability	Good	Retain
Quality	Good	Retain
Cost of System	$\$ 350,000$	None

Remove "Retain Existing System" from consideration
(c) Disjunctive Resolution

All alternatives still available ("Retain" already eliminated) pass because all options are acceptable in at least one attribute.
(d) Lexicography

Attribute	Number of times "greater"	Alternative Ranking
Reduction in throughput time	0	III $>$ I $>$ II
Flexibility	2	$\mathrm{II}=$ III $>\mathrm{I}$
Reliability	1	$\mathrm{I}>\mathrm{II}=\mathrm{III}$
Quality	2	$\mathrm{II}=$ III $>$ I
Cost of System	4	$\mathrm{I}>\mathrm{III}>\mathrm{II}$

[^0]
14-7 Left to student.

14-8
 (a)

Dominance:

Attribute	A vaired Comparison		
1	better	B vs. C	A vs. C
2	worse	Worse	worse
3	better ${ }^{*}$	better	better
4	worse	Worse	worse
5	worse	better	better
Dominance?	no	no	better
	no	no	

No alternatives can be eliminated based on the dominance method.
*Assume that knowing the safety value is better than any unknown value.
Satisficing:

Attribute	Feasible Range	Unacceptable Alternatives
1	$\$ 80,000-\$ 100,000$	none
2	Fair - Excellent	none
3	Good - Excellent	Alternative A has unknown value *
4	$94-99 \%$	none
5	Fair - Excellent	none
*if the same assumption is used (as in the dominance model) alternative A would be		
eliminated using the satisficing model		

Lexicography:

Paired comparisons - using given weighting: $5>1>4>3>2$

Attribute	Ordinal Ranking	Ranking
1	3	$\mathrm{C}>\mathrm{A}>\mathrm{B}$
2	0	$\mathrm{~B}>\mathrm{A}>\mathrm{C}$
3	1	$\mathrm{C}>\mathrm{B}>\mathrm{A}$
4	2	$\mathrm{~B}>\mathrm{A}>\mathrm{C}$
5	4	$\mathrm{~B}>\mathrm{A}=\mathrm{C}$

** 4 is most important rank.
The selection, based on highest ranked attribute (\#5), would be Alternative B.
Because all alternatives meet at least one acceptability range, no alternatives are rejected.

14-8
 (a) continued

Non-dimensional scaling

Attribute	Value	Rating Procedure	Dimensionless Value
1	$\$ 100,000$	$(\$ 180,000-$ Cost $) / \$ 80,000$	1.0
	$\$ 140,000$		0.5
	$\$ 180,000$		0.0
2	Excellent	$\frac{\text { Relative rank }-1}{2}$	1.0
	Good		0.5
	Fair		0.0
3	Excellent	$\underline{\text { Relative rank }-1}$	1.0
	Good	2	0.5
	Not known		0.0
4	99%	$\underline{\text { Reliability } \%-94}$	$99-94$
	98%		0.0
	94%	$\frac{\text { Relative rank }-1}{2}$	0.0
5	Excellent	1.0	
	Good		0.0

Non-Dimensional Value

Attribute		$\underline{\mathrm{A}}$	$\underline{\mathrm{B}}$	$\underline{\mathrm{C}}$
		0.5	0.0	1.0
2		0.5	1.0	0.0
3		0.0	0.5	1.0
4		0.8	1.0	0.0
5		0.0	1.0	0.0

Additive Weighting (using given weights)

Attribute	Weight	A	B	C
1. Initial Cost	0.25	$0.5(0.25)=0.125$	$0.0(0.25)=0$	$1.0(0.25)=0.25$
2. Maintenance	0.10	$0.5(0.10)=0.05$	$1.0(0.10)=0.1$	$0.0(0.10)=0.0$
3. Safety	0.15	$0.0(0.15)=0.00$	$0.5(0.15)=0.075$	$1.0(0.15)=0.15$
4. Reliability	0.20	$0.8(0.20)=0.16$	$1.0(0.20)=0.2$	$0.0(0.20)=0.0$
5. Prod. Quality	0.30	$0.0(0.30)=0.00$	$1.0(0.30)=0.3$	$0.0(0.30)=0$

Using Additive Weighting Alternative B would be selected.
(b) If two (or more) attributes are dependent, including them in the analysis will result in the same ranking of alternatives for these attributes, essentially double (or triple, or more) counting those decision elements. This can be a false representation of the decision maker's true attitudes. When attributes are entirely dependent, they are more appropriately modeled as a single attribute and weighted appropriately (note that in these cases, the weight of these combined attributes may not necessarily be the sum of the individual weights of the original attributes). Once this is accomplished, the decision analysis proceeds as in part (a).
(a)

Attribute	Relative Rank	Normalized Rank
Social Climate	1.00	$1 / 2.08=0.481$
Starting Salary	0.50	$0.5 / 2.08=0.240$
Career Adv.	0.33	$0.33 / 2.08=0.159$
Weather/Sports	$\underline{0.25}$	$0.25 / 2.08=\underline{0.120}$
	2.08	

(b)

Attribute	Apex (N.Y.)	Sycon (L.A.)	Sigma (GA.)	Mc-Graw-Wesley (AZ.)
Starting Salary	$\$ 35,000$	$\$ 30,000$	$\$ 34,500$	$\$ 31,500$

Dimensionless
$\begin{array}{lllll}\text { Equivalent }(\mathrm{DE}) & 1.0 & 0.0 & 0.9 & 0.3\end{array}$
$\mathrm{DE}=\frac{\text { Worst Outcome }- \text { Outcome Being Made Dimensionless }}{\text { Worst Outcome }- \text { Best Outcome }}$
(c)

Attribute	Normalized Apex Weight	Sycon	Sigma	Mc-Graw Wesley	
Social	0.48	1×0.48	1×0.48	0.5×0.48	0×0.48

Climate
$\begin{array}{llllll}\text { Starting } & 0.24 & 1 \times 0.24 & 1 \times 0.24 & 0.9 \times 0.24 & 0.3 \times 0.25\end{array}$
Salary
$\begin{array}{llllll}\text { Career } & 0.16 & 0 x 0.16 & 0 x 0.16 & 0.6 x 0.16 & 1 x 0.16\end{array}$
Adv.
Weather/
Sports
0.12

0x0.12
$\underline{0 \times 0.12}$
0.33×0.12
$\underline{0.67 \times 0.12}$

Sum
0.72
0.63
0.59
0.31

Using lexicography we conclude that social climate is the most important attribute and Apex is selected.
Additive weighting also selects Apex.

14-10 (a) Wright dominates Alott - Alott is removed from further consideration.
(b) Only Wright meets the minimum performance levels for all attributes.
(c) All candidates would be retained under disjunctive resolution.
(d) Lexicography - Based on project management skills (most important attribute), Busy is eliminated. Looking next at general attitude, Surley is eliminated. Lastly, looking at years manufacturing experience, Wright would be selected.

14-11 Left to student.

14-12 (a) Left to student - no unique answer.
(b) Select a mathematical model similar to additive weighting. Let each judge set his/her own weightings and develop a score for each contestant. Then, sum the three scores for each contestant. The contestant with the highest total score is the winner.

This method will allow each judge to be as subjective about each attribute as he/she desires while making the final selection objective.

14-13 Assume all attributes are of equal importance.

Attribute	Alott	Surley	Busy	Wright
Total years	0.33	0.00	1.00	0.67
Manufacturing years	0.33	1.00	0.00	0.67
Project management skills	1.00	1.00	0.00	1.00
Management years	0.00	0.50	0.50	1.00
General attitude	1.00	0.00	0.50	1.00
Total Score	2.66	2.50	2.00	4.34

Wright would be selected.

By inspection \quad Rank $_{\mathrm{j}=1}=2.0$
Rank $_{\mathrm{j}=2}=1.0$
Filling in blanks,

$\underline{\mathrm{i}}$	$\underline{\mathrm{W}} \underline{\mathrm{i}}$	$\underline{\text { Rank }}$
1	1.0	1
2	0.5	4
3	0.8	2
4	0.7	3

	Keep Existing Tool	Purchase new machine Tool
Rank	2.0	1.0
$\mathrm{X}_{1 \mathrm{j}}$	1.0	0.7
Rank	2.0	1.0
$\mathrm{X}_{2 \mathrm{j}}$	0.8	1.0
Rank	1.0	2.0
$\mathrm{X}_{3 \mathrm{j}}$	1.0	0.5
Rank	2.0	1.0
$\mathrm{X}_{4 \mathrm{j}}$	$\underline{0.7}$	$\underline{1.0}$
$\mathrm{~V}_{\mathrm{j}}$	2.69	2.30
$\mathrm{~V}_{\mathrm{j}}$ norm	1.0	0.86

14-15 Left to student.

14-16 Left to student.

14-17 Left to student.

780
© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Solutions to Spreadsheet Exercises

14-18

	A	B	C	D	E	F	G
1	Attribute	Dr. Molar	Dr. Feelgood	Dr. Whoops	Dr. Pepper		
2	Cost	\$ 50	\$ 80	\$ 20	\$ 40		
3	Anesthesia	Novocaine	Acupuncture	Hypnosis	Laughing Gas		
4	Distance	15	20	5	30		
5	Office Hours	40	25	40	40		
6	Quality	Excellent	Fair	Poor	Good		
7							
8	Qu			Anes	hesia		
9	Excellent	4		Acupuncture	1		
10	Fair	2		Hypnosis	4		
11	Good	3		Laughing Gas	2		
12	Poor	1		Novocaine	3		
13							
14	Attribute	Dr. Molar	Dr. Feelgood	Dr. Whoops	Dr. Pepper		
15	Cost	0.50	0.00	1.00	0.67		
16	Anesthesia	0.67	0.00	1.00	0.33		
17	Distance	0.60	0.40	1.00	0.00		
18	Hours	1.00	0.00	1.00	1.00		
19	Quality	1.00	0.33	0.00	0.67		
20	Sum =	3.77	0.73	4.00	2.67		
21				\wedge choice ${ }^{\text {best }}$			
22							
23							
24	With novocaine rated as the preferred method of anesthesia, Dr. Whoops becomes						
25	the dentist of choice.						

[^0]: Select Vendor III

