The University of Jordan Electrical Eng. Dept. Second Exam

Electromagnetism I EE251
Student Name in Arabic
Answers should be written in ink.
Example 1. Example 2. Exampl

Exam Duration: 70 min

Tues. 12/8/2014
Registration #: Olloway
Mark out of 30:

Question 1

- a) Two point charges of 2 nC, 4 nC, positioned at (-1,0,0), (0,-2,0), respectively. Calculate the potential at (0,0,1). Also, calculate the energy of that system of charges, Given $\varepsilon_0 = 10^{-9} / 36\pi$ F/m.
- b) Write down the **general expression** used in calculating the **capacitance**, and use it to <u>derive</u> the capacitance of a **coaxial cable** of length L m, with inner and outer conductors have radii a, and b respectively (b>a). Hence, or otherwise, determine the **resistance** of the dielectric material between the conductors.

Question 2

Given a circular current loop of radius 12 cm situated in the xy plane at z = 0 cm, and passing a current of 8 A. Use **Biot-Savart** law to **derive** the **magnetic field intensity H**; expressed in cylindrical coordinates. Hence, calculate **H** at (0,0,5) cm. Given $\mu_0 = 4\pi x 10^{-7}$ A/m.

Question 3

- a) Consider an infinitely long transmission line consisting of two concentric cylinders having their axes along the z-axis. The inner conductor has radius a and carries current I while the outer conductor has inner radius b and thickness w and carries return current -I. Assuming that current is uniformly distributed in both conductors, determine H, for $b \le \rho \le b + w$ and $\rho \ge b + w$.
- b) Write down the point form of Maxwell's equations.

√ Question 4

A particle of mass 2 kg having a 4 C charge starts at the origin with velocity $8a_z$ m/s and travels in a region where $B = 5 a_y$ Wb/m². At t = 4 s, calculate

- (a) The velocity and acceleration of the particle
- (b) The magnetic force on it

F= QE

dir = ax

Du

Ux Uy Uv

MO