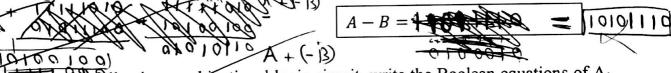
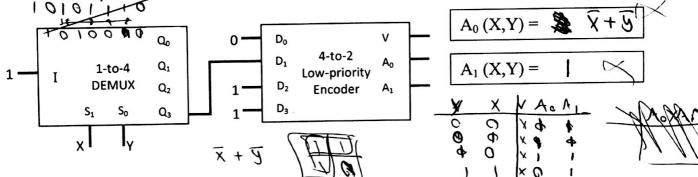


Problem 1. Answer the following short questions.

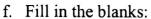

- a. What is the decimal value of the binary number (10111)₂ if it represents:
 - 1. Sign-Magnitude number: 1 (011) = -7
 - 2. 2's complement signed number: (1011) = -9
- b. Does the following operation $(110001)_2 + (110111)_2$ result in an overflow or not when the number are: (You must Justify your answer)
 - 1. Unsigned numbers: 110001 averflow because the curry

 10011+ 1's 1 and the result


 101000 the allowed bit

2's complement signed numbers: $C_{N-1} \oplus C_{N} = 0$ No over flow $C_{N-1} \oplus C_{N} = 0$ $C_{N-1} \oplus C_{N} =$

c. Given two <u>2's complement signed numbers</u> $A = (1010)_2$ and $B = (010111100)_2$. In the given blank write the result of A - B using an <u>8-bit adder/subtractor</u>?



d Given the following combinational logic circuit, write the Boolean equations of A₀ and A₁ as functions of variables X and Y:

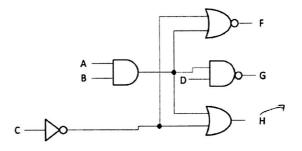
e. We want to build a 64-to-1 multiplexer using only 8-to1 multiplexers. How many 8-to-1 multiplexers are needed?

Answer = 8 + 1 = 9

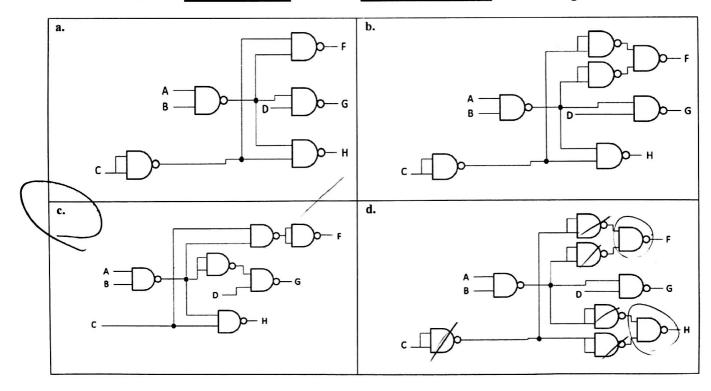
Fill in the blanks:
$$3777$$

 $(765)_8 + (303)_8 = ($

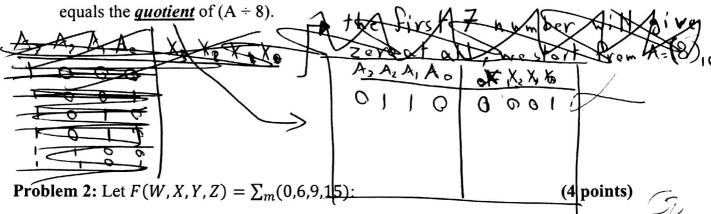
A=10 B=11 C=12 D=13

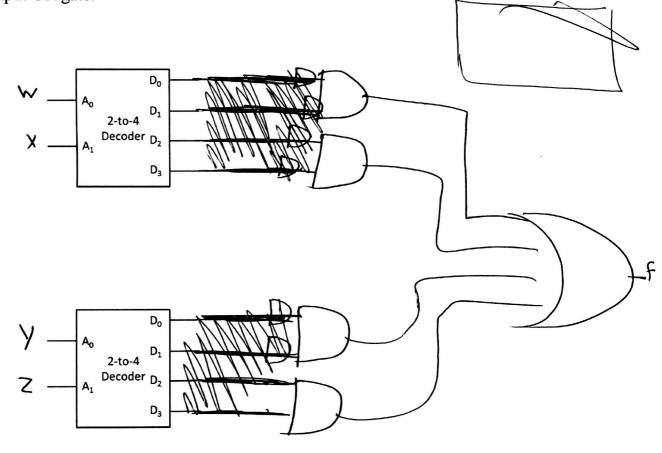

$$(6PA8)_{16} - (4ED9)_{16} = ($$
 2 0 B \rightarrow)₁₆

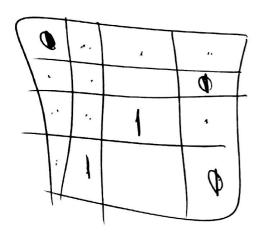
$$(1000\ 0111\ 0011)_{BCD} + (0000\ 1001\ 1001)_{BCD} = ($$



(1001 0140 0010)

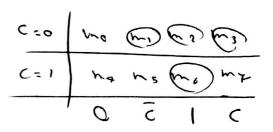

g. We want to implement the following logic diagram using only NAND gates:


Choose the <u>correct answer</u> that uses <u>minimum number</u> of NAND gates



h. Draw the logic diagram of a combinational circuit that has a <u>4-bit unsigned</u> number (A) as an input and produces a <u>4-bit unsigned</u> number (B) as an output such that B equals the *quotient* of $(A \pm 8)$

Draw the logic diagram of F using <u>two</u> 2-to-4 line decoders, <u>four</u> 2-input AND gates, and <u>one</u> 4-input OR gate.

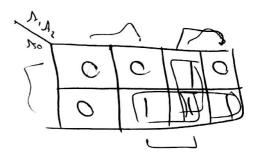

Problem 3: Let F(A, B, C) be given by the below truth table.

(3 points)

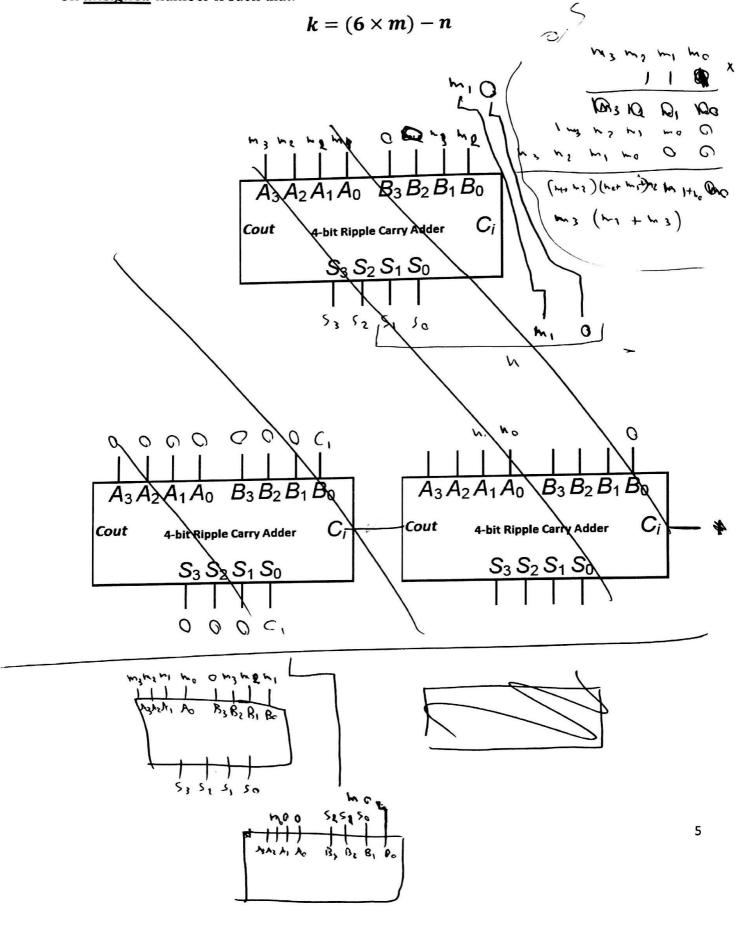
Draw the logic diagram of F using a single 4-to-1 Multiplexer and a single inverter.

O	 lo				
C	 l ₁	4-t	o-1 UX	Υ	 F
1	l ₂	М	UX	·	
_	l ₃	S ₁	S ₀		
		B	A		

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0



9,7


Problem 4: Write the truth table for a combinational circuit that takes a 3-bit input and produces 1-bit output. The output is 1 if there is <u>at least</u> two consecutive 1's in the input.

(4 points)

A	2	Ac	<u> </u> F
0	0	0	9
0	0	١	0
0	1	0	0
0	1	J	1
ł	0	0	0
)	Q	(1
1	j	0	
1	l)	1
,			

Problem 5: Assume **m** and **n** are 4-bit <u>unsigned</u> numbers. Using <u>only</u> the following three 4-bit ripple carry adders and <u>any logic gates</u> you need, design a circuit that outputs an 8-bit <u>unsigned</u> number **k** such that: (5 points)

