Student Name: T

Question # 1 (8 points)

Question No.	1.1	1.2	1.3	1.4	1.5	1.6	/ 1.7 /	1.8
Answer	C/	4	do	as	51	1	DK	(/
Question No.	1.9	1.20	1.3\	1.42	1.53	1.6 4	1.78	1.8 6
Answer	5/	cx	20	b/	D	C/	4	D

Circle the correct answer of Question #1 and fill in the provided Table.

- In case of L-G fault, the fault current is equal to

/20

- The various power system faults can be arranged in the order of increasing severity is
- L-G, L-L, L-L-G, L-L-L-G L-L-L-G, L-L-G, L-L, L-G
- b. L-L-G, L-L-G, L-G, L-L

Student ID #:

- d. L-L-L-G, L-L-G, L-G, L-L
- The zero sequence current in Δ winding of a Y/ Δ transformer is found

- if neutral point of Y winding is not earthed
- whether the neutral point of the star winding is earthed or not earthed
- b. if neutral point of Y winding is earthed none of these.
- For a Y-∆ transformer Y-side grounded, the zero sequence current
- exists in the lines on the Y-side (a.)
- b. exists in the lines on both Y and Δ sides.
- exists in the lines on the Δ -side
- d. has no path to ground
- with the line . A CT is connected in
- across a.
- series
- c. not connected d. both A and B
- is one of the attributes of power system protection philosophy. It is defined as the ability to 1.6 detect and isolate the faulty item only.
- Sensitivity
- b. Speed
- (c.) Selectivity d. Security
- An efficient and a well designed protective relaying should have
- high speed and selectivity b. economy and simplicity c. good reliability (d.) All of the above

- Burden of a protective relay is the power 1.8
- required to operate the circuit breaker absorbed by the circuit of relay d. developed by the relay circuit d. none of the above

PE = IF = 200 ver Unit

- The standard current ratings of the electromagnetic relay are 1.9
- 5 A and 15 A 2.
- (b.) 1 A and 5 A
- c. 15 A and 20 A d. Any one of the above
- The standard voltage ratings of the electromagnetic relay are

a. 110V/63.5 V b. 230V/154V c. 220V/110V d. 400V/231V $P = \frac{I_{\text{Pick}}}{I_{\text{vol}}} = \frac{$

1.12 A 50-Hz single-phase CVT has $C_1 = 0.5$ mF and $C_2 = 4.5$ mF. The leakage inductance (L) of the transformer should be equal to..., such that there is no phase displacement between the line voltage and the output of the CVT.

a. L = 1 mH

b. L = 2 mH

c. L = 0.5 mH

d. L = 5 mH

- 1.13 A 500:5 CT with class C250 has a rated burden impedance Z_{burden} of
- b. 5.0 Ω
- c. 0.5 Ω

1.14 A 1200/5 CT has a burden resistance of 1 Ω , C.T. secondary resistance of 2 Ω , and total lead resistance of 2 Ω. If the fault current seen by the CT primary is 9.6 kA, then the terminal voltage that 9600 40 develops across the terminals of the CT secondary will be

- b. 100 V
- (c.) 200 V

V d. 280 V
$$\frac{1500}{6.75} \qquad M = \frac{\Gamma_{\rm f}}{\Gamma_{\rm Pich}}$$

A 5A-IDMT OC relay with normal inverse characteristic $t = \frac{3.0}{\log(M)} \times TMS$ is supplied via a 100/5

Tpickupasses of PS=175%. If the relay should operate after 1.2 sec for a fault current $I_f = 1.5$ kA, the time multiplier setting (TMS) will be 1.2 = 3

- 0.5 a.
- (b.) 0.4
- c. 0.7

1.16 The circuit shown below has 400:5 class C100 CTs. For a SLG fault of phase A to ground on the line, with fault current magnitude of 8000 A. The phase and residual lead currents are equal to

- $I_{res} = 2.0 \text{ A}$
- b. $I_{res} = 20 \text{ A}$ c. $I_{res} = 8.0 \text{ A}$

Question #3 (2.5 points)

The circuit of Fig.Q3 has 1000:5 class C100 CTs. Given the following:

CT Winding Resistance $R_C = 0.342 \Omega$

Burden resistance for phase relay $R_{ph} = 0.50 \; \Omega$

Burden resistance for E/F relay $R_{\text{E}} = 0.59 \; \Omega$

Leed Resistance $R_L = 0.224 \Omega$

Determine,

- a. the LG fault current seen by the secondary of the CT, I_{fLGS} .
- b. the LLL fault current seen by the secondary of the CT,

d. the CT secondary voltage (V_{sLLL}) for a three fault on the lines, with fault current magnitude I_{JLLL} of 18 kA.
 e. In which case the CT does saturate? (L-G fault) Since VFLG > workerer

Fig.Q3

						T/		
	I_{fLG}	IfLGs	V.10	IfLLL	IJLLLS	VsLLL		
	12000 A	I _{fLGs}	1/2.8	18000 A	(90	(05.94		
IFLG	= 12 k An 1	> (Ittl =18 k					
Ific	= 12k+	5 = 6	0/			5 = 90		
V =	I STELLES	* Z to b			I - Ztol			
2	= RC + R	iph FRLA	2 + RF	Zbok	= R _ + R	Ph + PL		
Ltot	= 1.88			-	1.066			
				N = A	5.94			
√ :	= 112.8			1				
Power Unit								
		1						

Power Unit 4

Question # 4 (7 points) ABET outcome 'C' Assessment

OTE

Consider the 13.8 kV radial system shown in FigQ4. For the above system, an overcurrent protection system has to be designed for three-phase faults. The relays at each bus 1, 2, 3, and 4 are designated by R1, R2, R3, and R4, respectively. The maximum fault current, CTRs, relay current tap settings (CTS) are given in the Table below. The IFC-53 is a very inverse overcurrent relay whose characteristic equation is given below. Determine the relay time dial settings (TDS) for relays R3-R1, assuming a grading step time Δt of 0.3 s and the TDS of R4 is set at 0.5.

