ABET Outcomes Assessment: c

Grade: 7 3 5/30

University of Jordan			School of Engineering			Electrical Engineering Department		
EE482: Powe	r System Ana	alysis (2)	Final Exam	1 st Semeste	er 2017-2018	10/01/20	018 Time:	09:00-11:00
Q # 1 (5)	Q # 2 (3)	Q # 3 (8)	Q # 4 (3)	Q # 5 (4)	Q # 6 (5)	*Q#7(7)c	Q#8 (10)	GRADE
5	3	8	3	4	5	7	7.5	42.5/45

62 12/12/120 20 Student ID#: 0/44276 Serial#: 4 **Student Name:**

Question # 1 (5 points)

Draw the protection zones for the following power system (Gen, TX, Motor, TL, etc) taking into consideration zones overlaps.

Question # 2 (3 points)

A 100 hp, 480 V, 0.85 PF, motor consumes 88 kW at full-load condition. If the motor is not allowed to work beyond full-load condition, select:

a.	the appropriate CT ratio with 5 A secondary	CTR =	150	15	A
b.	the current tap setting of the IFC53 OC relay	CS =	5		A
1		C75	P		

- For the IFC53, the available ampere-tap (AT) settings are 0.5, 0.6, 0.7, 0.8, 1, 1.2, 1.5, 2, 2.5, 3,
- Use CTs with Ratios: 100/5, 150/5, 200/5, 250/5, 400/5, 600/5, 800/5

The single-line diagram of a small power system along with its parameters is shown below.

Generator: 100 MVA, 20 kV; $X^+ = X^- = 20\%$, $X^0 = 4\%$, $X_n = 5\%$ Transformer T₁: 100 MVA, $20\Delta/220Y$ kV; $X^+ = X^- = X^0 = 10\%$ Transformer T₂: 100 MVA, $20\Delta/220Y$ kV; $X^+ = X^- = X^0 = 10\%$

Transmission line: on base of 100 MVA, 220 kV the reactance are

From A to P: $X^+ = X^- = 20\%$, $X^0 = 50\%$ From **B** to **P**: $X^+ = X^- = 10\%$, $X^0 = 30\%$

MVAb = 100MVA

If the pre-fault voltage at point P is 220 kV, determine the fault current in per unit and in amperes if 2.4194 PV a <u>line-to-ground fault</u> occurs at point P 634.85

Question # 4 (3 points)

A Y-connected synchronous generator has sequence reactances $X^0 = 0.09$, $X^+ = 0.22$ and $X^- = 0.36$ all in p.u. The neutral point of the generator is grounded through a reactance of 0.09 p.u. The generator is running on no-load with rated terminal voltage when it suffers unsymmetrical fault. The fault currents out of the generator are

 $I_a = 0.0 p.u$ $I_b = 3.75 \angle 150^0 p.u$ $I_c = 3.75 \angle 30^0 p.u$ Determine: the type of the fault. LL LLL The voltage of the neutral point of the generator with respect to the ground. Iresidnal = IB + IC => BE-Fearth = IB+ IC = 3.75 × 90 50 [V/= [In] x 10.09 = 0.3375 Volt

i. The circuit shown below has a line-to-line fault of 10 kA going out of line B and back on line C. Choose the current through line B to be as the reference line and show the directions of current flow through the CTs and relays, then calculate:

	now through the C15 and 24 y	A
a.	the currents through the OC phase relays	$I'_{A} = \begin{array}{c c} O & A \\ I'_{B} = \begin{array}{c c} O & 2 & A \\ \hline I'_{C} = \begin{array}{c c} I & O & 2 & A \\ \hline \end{array}$
b.	the current through the EF relay, I_r	$I_r = O$

- 500/5 IONAXO 51-C 51-B 51-A
- ii. If a LLG fault occurred on phases B and C with $I_B =$ $10\angle 150^{\circ}$ kA and $I_C = 10\angle 30^{\circ}$ kA, show the directions of current flow through the CTs and relays, then calculate:

		$I'_A =$	0	Α
a.	the currents through the OC phase relays	$I_B' =$	100 X150	A
		$I_C' =$	100 \$ 300	A
b.	the current through the EF relay, Ir	$I_r =$	100×90°	A

IB =	10000 X150 =	100×150°/
I _c ' =	100 X 30° A	
Tra	IB' + 70'	" Made
	IB'+7C' - 100×90	A :

Question # 6 (5 points)

Assume that a CT has rated current ratio of 600/5A. The impedance of the secondary winding $Z_s = 0.1 \pm 0.5$ C. The $0.1 + j0.5 \Omega$ and the burden impedance $Z_b = 6.8 + j1.5 \Omega$. The lead impedance is negligible. The core X-section area $A = 2.8 \times 10^{-3} \text{ m}^2$. The CT must operate at maximum primary current of 1500 A. The core is built from silicon steel with a 60 Hz frequency magnetization characteristics as shown below. If the lower limit of saturation occurs at $B_m = 1.2$ T, calculate:

$I_s =$	12.5 16 20 A
$V_s =$	39.8 X10-2 V
	Yes No 7
I _o =	0.15 A
$\varepsilon =$	4.7 %
	1e

1		.OC A		
) -	600 -	2.5 A	0.15	• • • • • • • • • • • • • • • • • • • •
	5			
		• • • • • • • • • • • • • • • • • • • •		
1/	TVO	10 0	11 -1	

V5 = 75 X 9 (Total = 12.5 x (Zs + Zb)

= 12.5 (6.9 + j2) - 89.8 × 16.2°

VK = 4.44 BAFN = 107.4 volt

so it won't saturate.

from the curve Ie = 0-15 A

E = Te = 0.15 × 100%,

ABET outcome c Assessment

A simple 11 kV radial system, with a single infeed at bus 1 and five loads at busbars (1 - 5). The sysem is protected with <u>numerical O/C</u> relays $R_1 - R_4$ with standard inverse (SI) characteristics

$$t_p = \left(\frac{0.14}{I_r^{0.02} - 1}\right) \times TMS$$

Based on the maximum load current in the feeder, the CT ratios have been selected for CTs 1 - 4, as shown below. The maximum fault current (I_{fmax}) at the buses 1-5 are shown below. If the TMS of R_4 is set at 0.05 and the grading time ΔT is 0.3 sec, find

a.	the %PS settings for relays R4, R3, R2, and R1	%PS ₄ = 80%, %PS ₃ = 88%, %PS ₂ = 97%, %PS ₁ = 84,4%,
b.	the TMS settings for relays R3, R2, and R1	$ \begin{array}{rcl} $

$$T_{45} = 160 \text{ A} \qquad for Ry : T_{p} = \frac{160}{200} = 0.8 \Rightarrow 30\%. \quad T_{R} = 0.3A$$

$$T_{34} = 176A \qquad R_{3} : T_{p} = \frac{176}{200} = 0.83 \Rightarrow 88\%. \quad T_{P_{3}} = 0.88A$$

$$T_{12} = 211A \qquad R_{2} : T_{p} = \frac{194}{200} = 0.97\%. \quad T_{2} = 0.97A$$

$$T_{12} = 211A \qquad R_{2} : T_{p} = \frac{211}{200} = 0.844 \Rightarrow 34.4\%. \quad T_{P_{3}} = 0.844A$$

$$T_{M} = 0.0.5$$

$$t_{0} = \frac{0.14}{(630/200)^{0.02}} \times 0.05 = 0.1238 \text{ sec} \Rightarrow t_{0} = 0.376/273 = 0.538 \text{ sec}$$

$$\frac{(530/200)^{0.02}}{(0.82)^{-1}} \times 1000 = 0.105 \Rightarrow 1000 = 0.14$$

$$t_{0} = 0.763 \text{ sec} = \frac{(840/200)^{0.02}}{(0.97)^{0.02}} \times 1000 = 0.162 \Rightarrow 1000 = 0.162$$

$$t_{0} = 0.763 \text{ sec} = \frac{(840/200)^{0.02}}{(0.97)^{0.02}} \times 1000 = 0.162 \Rightarrow 1000 = 0.162$$

$$t_{0} = 0.763 \text{ sec} = \frac{(840/200)^{0.02}}{(0.97)^{0.02}} \times 1000 = 0.162 \Rightarrow 1000$$

Question #8 (10 points)

For the 66 kV power system shown below, the feeder protection breaker CB₁ is operated by a modern digital relay programmed with Standard Inverse (SI), Instantaneous and E/F overcurrent protection scheme.

The fault level at the location of CB_1 is 5000A. Strong faults (above 2500A) will be cleared by the instantaneous overcurrent element of R_{IN1} . Weaker faults towards the end of the feeder (≤ 2500 A) will be cleared by the SI element of R_{SI1} .

- Relay R_{SI2} is the backup to R_{SI1} and has SI element only.
- The pickup current for R_{SII} element must be set for 45MVA or 50% above the maximum load current.
- The pickup current of R_{SI2} is equivalent to 60MVA.
- The TSM_1 of R_{SI1} is set to 0.1 s.
- CT_1 and CT_2 are rated at 45MVA and 60MVA, respectively.
- CTI = 0.3 s.

>2500 TEN <2500 TEN

Relays:

- Standard Inverse (SI) $\Rightarrow t = \frac{0.14}{I^{0.02} 1} \times TSM$
- SI pickup range: 1 12 A, Step = 0.5 A
- TMS range: 0.1 1, Step = 0.05
- Instantaneous pickup range: 6 144 A, Step = 1 A

CT's:

- a. Secondary: 5A
- b. CTRs to select: 100/5, 250/5, 400/5, 600/5, 800/5

i. Calculate:

a.	the CT ratios for CT_1 and CT_2 .	$CTR_1 =$	400/8	Α
	the CT fatios for CT and CT2.	$CTR_2 =$	60015	A
		$I_{pIN1}^{\circ} =$	(secondary)	A
b.	the pickup currents for the instantaneous OC		(primary)	A
	element of R_{INI1} and the SI element of R_{SI1}	$\Gamma_{pSI1} =$	5 Secondary)	A
			400 (primary)	Α
c.	the pickup current for the SI element of R_{SI2} .	$\Gamma_{pSD} =$	4.5 (secondary)	A
			540 (primary)	A
d.	the TSM_2 for R_{SI2} to have a discrimination time of 0.3s for a fault of 2500 A.	$TSM_2 =$	0.15/	s

ii. Draw the t-I characteristics for both relays. $7MS_{2} = 0.15$ 0.46 $7MS_{2} = 0.15$ 0.375 $7MS_{2} = 0.15$ $7MS_{2} = 0.15$ $7MS_{2} = 0.15$ $7MS_{3} = 0.5$ $7MS_{2} = 0.15$

