0907231 Digital Logic	First Exam	Spring 2015
6 Problems, 4 Pages	70 Minutes	March 17, 12:50 PM
الاســم: : الرقم الجامعي:		

Problem 1. Solve the following short problems.
a) $(213)_{4} \quad$ is equal to $(\quad)_{2}$
b) $(\text { C. } 9)_{16} \quad$ is equal to $(\quad)_{8}$
c) If $F(x, y, z)=\sum_{m}(0,2)$, then the Boolean expression of \bar{F} as a product of maxterms is: \qquad .

Problem 2. Using Boolean algebra only, prove that:

$$
\begin{equation*}
\bar{x}+x y+x \bar{z}+x \bar{y} \bar{z}=\bar{x}+y+\bar{z} \tag{2points}
\end{equation*}
$$

(Note: specify the name of any algebraic theorem when used)

Problem 3. Assume designing a display system for a weight scale. The minimum weight is 0 kilos and the maximum weight is 140 kilos and weights can only be integers (the weight range is $0,1,2, \ldots, 140)$.
a) What is the minimum number of digits required to represent the weight in binary?
b) What is the minimum number of digits required to represent the weight in octal?
c) What is the minimum number of digits required to represent the weight in BCD ?
d) What is the minimum radix of a number system that can represent the weight in two digits only?

Problem 4: Write the Boolean expression for F.
(2 points)

$$
F(X, Y)=
$$

\qquad

Problem 5: For the following function F answer the questions below.

$$
\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=(\mathbf{A B C}+\overline{\mathbf{D}}) \cdot \overline{\mathbf{C}}
$$

a) What is the gate input cost with invertors counted (GN) for \mathbf{F}.
b) Draw the logic diagram for F using only AND and Invertor gates (do not simplify \mathbf{F}).
c) Draw and Fill the K-map of \mathbf{F}.

Problem 6. Consider the following k-map for the function F(A, B, C, D).

(6 points)
a) Specify the Boolean expressions of all prime implicants.
b) Specify the Boolean expressions of all essential prime implicants.
c) Write the Boolean expression of $\overline{\boldsymbol{F}}$ as an optimized Sum of Products (SoP).

