Q1: Find the area of the surface obtained by rotating the curve $y=\frac{1}{6} x^{3}+\frac{1}{2} x^{-1}, \quad 1 \leq x \leq \sqrt{2}$ about x-axis

$x \rightarrow 2$
$2 \pi \int_{1}^{\sqrt{2}} 2 \pi\left(\frac{x^{3}}{6}+\frac{1}{2 x}\right) \sqrt{4}$

Q2: The base of the solid S is the region bounded by $y=x^{2}-1$ and $\frac{1}{2}=\underline{d e c}$
 the base and one angle equal to 30°.

$\int_{0}^{1} \frac{x}{2} \frac{5^{2}}{4} d x+\int_{0}^{-1} \frac{x}{2} \frac{5^{2}}{4} d x$
$\int_{0}^{1}\left(\frac{x^{2}-1}{4}\right)+\int_{0}^{-1}\left(\frac{x^{2}-1}{4}\right)$
$\int_{0}^{1} \frac{x^{2}}{4}-\frac{1}{4}+\int_{0}^{-1} \frac{x^{2}}{9}-\frac{1}{4} \Rightarrow \frac{3 x^{3}}{4} \int_{0}^{2}-\frac{1}{9}+\frac{3 x^{3}}{9}-\frac{1}{9}=$

Q3: Find the sum

$$
\sum_{n=1}^{\infty}\left(\frac{1}{(n+1)(n+3)}+\frac{5}{7^{n+2}}\right) \quad \sum \frac{1}{(n+1)(n+3)}+\sum \frac{5}{7^{n+2}}
$$

$$
\frac{a}{n+1}+\frac{b}{n+3}
$$

$$
1=a(n+3)+b(n+1)
$$

$$
n=-3 \rightarrow b=-\frac{1}{2}
$$

$$
n=-1 \quad \Rightarrow \quad a=\frac{1}{2}
$$

$$
\sum_{1}^{\infty} \frac{\frac{1}{2}}{n+1}+\frac{\frac{-1}{2}}{n+3}
$$

$$
\left(\left(\frac{1}{2}+\frac{-1}{2}\right)+\left(\frac{1}{4}\right)+\frac{-1}{10}\right)+\left(\frac{1}{2} /+\frac{-1}{12}\right)+\left(\frac{1}{10}+\frac{-1}{14}\right) \cdots\left(\frac{1}{(n+1)+1}+\frac{1}{2}+\frac{1}{2} / \frac{1}{\ln -1)+3}\left(\frac{1}{2} \frac{1}{n+1}+\frac{-1}{1} / 1\right.\right.
$$

$$
\frac{1}{2}+\frac{1}{4}+\frac{\frac{1}{2}}{n}-\frac{1}{2} \Rightarrow \frac{1}{2}+\frac{1}{4}+\lim \frac{1}{2}-\operatorname{li} n \frac{1}{2 n+2}=\frac{1}{2}+\frac{1}{4}+0+0=\frac{1}{8}
$$

Q4: Set up the integral that gives the volume of the solid generated by
revolving the region bounded by $y=x^{3}, y=27, x=0$ about the line $x=-3$.
(a) Using washer method, (Do not evaluate the integral).
$\int_{0}^{27} 2 \pi(r)^{2} d y=\int_{0}^{27} 2 \pi(\sqrt{y}+3)^{2} \sqrt{y}$

(b) Using cylindrical shell method, (Do not evaluate the integral).

3 8

$$
\int_{0}^{0} 2 \pi r(h) d x
$$

$$
\int_{0}^{3} 2 \pi(x+3)\left(27-x^{3}\right) d x .
$$

$$
\int \frac{n}{c^{n^{2}}} \frac{1}{c^{n}} \cdot n
$$

$$
u \sin e^{n^{2}}-e^{n^{2}}
$$

(a) $\sum_{n=1}^{\infty} n e^{-n^{2}}=\sum \frac{n}{e^{n^{2}}}$

$$
\operatorname{liv} \int_{1}^{\infty} \frac{x}{e^{x^{2}}} d x \Rightarrow \int_{1}^{t} \frac{x}{e^{x^{2}}} d x
$$

$$
\text { 1.mx-2xe } e^{r^{2}}-\int \frac{x^{2}}{x}-2 x e^{x^{2}}=\operatorname{lin} t 2 t e^{-t^{2}}+/ \frac{\sqrt{2} e^{-t^{2}}}{0+0 \geq 0} \underline{d_{i} v}
$$

(1)

$\rightarrow P$ series

$$
p>1
$$

Since $\frac{1}{h^{2}}$ conve

cnz $\quad \lim \frac{a_{n}}{b_{n}}=0 \stackrel{\text { und }}{\Rightarrow}$ since b_{n} is conr so a_{n} is conrergart
Q6: A sequence $\left\{a_{n}\right\}_{n=1}^{x}$ whose sequence of partial sums is $\left\{S_{n}\right\}_{n=1}^{x}$, where $S_{n}=\frac{3 n}{n+1}$, find a_{n}

$$
S_{n}=a_{n}+S_{n-1}
$$

$$
\begin{aligned}
a_{n} & =S_{n}-S_{n-1} \\
& =\frac{3 n}{n+1}-\frac{3(n-1)}{(n-1)+1}
\end{aligned}
$$

$$
\frac{3 n}{n+1}-\frac{3 n-3}{n}
$$

$$
\frac{3 n^{2}-(3 n-3(n+1))}{n(n+1)}=\frac{3 n^{2}-3 h^{2}-3 / n+3 / n+3}{n^{2}+1}
$$

$$
a_{n}=\frac{3}{n^{2}+n}
$$

