Q1: Find the area of the surface obtained by rotating the curve

$$\int_{3}^{1} 5 \sqrt{1} \left(\frac{2}{\lambda_{3}} + \frac{1}{1} \right) \sqrt{1 + \left(\frac{4 + \lambda_{4}}{\lambda_{3} - 5 \times \lambda_{4} + 1} \right)}$$

$$511 \left(\frac{2}{x_3} + \frac{5x}{1}\right) \sqrt{4}$$

Q2: The base of the solid S is the region bounded by $y = x^2 - 1$ and $y = 1 - x^2$. Find the volume of S if every cross section perpendicular to $\frac{1}{2} = \frac{4 \cdot 2 \cdot 1}{2 \cdot 2 \cdot 1}$ the x-axis is a right triangle (مثلث قائم الزاویة) with its hypotenuse (الوتر) on $\frac{2 \cdot 2 \cdot 1}{2 \cdot 2 \cdot 1} = \frac{2 \cdot 2 \cdot 1}{2 \cdot 2 \cdot 1}$ the base and one angle equal to 30°.

 $| -x^{2} = x^{2} - 1$ $| +1 - x^{2} + x^{2}$ $\frac{2}{x^{2}} = \frac{2}{x^{2}} x^{2}$ $| +1 - x^{2} + x^{3} - 1$

x = ±1

Q3: Find the sum

$$\sum_{n \neq 1} \frac{1}{n+1} + \frac{2}{n+3}$$

Q4: Set up the integral that gives the volume of the solid generated by revolving the region bounded by $y=x^3$, y=27, x=0 about the line

(a) Using washer method, (Do not evaluate the integral).

$$\int_{\mathbb{R}} 2\pi (r)^2 dy = \int_{\mathbb{R}} 2\pi (\sqrt{r})^2 dy$$

(b) Using cylindrical shell method, (Do not evaluate the integral).

