

Q1: Solve the following differential equation

$$
x y^{\prime}=y^{2}+y
$$

$$
\begin{aligned}
& y=v x \\
& y^{\prime}=v+x v^{\prime}
\end{aligned}
$$

$$
x\left(v+x v^{\prime}\right)=v^{2} x^{2}+v x
$$

$$
x y+x^{x^{2}} v^{\prime}=v^{2} x^{x} y x^{x}
$$

$$
v=v^{2}
$$

$$
\frac{d v}{d x}=v^{2}
$$

$$
d v=v^{2} d x
$$

$$
\begin{aligned}
& \frac{V^{-1}}{-1}=x+c \\
& -\frac{1}{V}=x+c \\
& V=\frac{y}{x} \\
& -\frac{1}{\frac{y}{x}}=x+c \\
& -\frac{x}{y}=x+c
\end{aligned}\left\{\begin{array}{l}
\quad-\frac{y}{x}=\frac{1}{x+c} \\
-y=\frac{x}{x+c} \\
y=\frac{-x}{x+c}
\end{array}\right.
$$

$$
\int \frac{d v}{v^{2}}=\int d x
$$

Q2: Solve the following differential equation

$$
x y^{\prime \prime}+2 y^{\prime \prime}+x y=0
$$

$$
\text { Given a solution }, y_{1}=\frac{\cos x}{x}
$$

$$
\int x^{3} \tan (x) d x
$$

$$
\frac{x}{x} y^{\prime \prime}+\frac{2 y^{\prime}}{x}+\frac{x}{x}=\frac{0}{x}
$$

$$
\hat{g} u=\tan (x)
$$

$$
\begin{array}{ll}
u=\tan (x) & d v=x^{4} d x \\
d u=\sec ^{2}(x) d x & v=\frac{x^{4}}{4} \\
x^{4} \tan (x)-\int x^{4} \sec ^{2}(x) d d^{2}
\end{array}
$$

$$
\begin{aligned}
& d u=\sec (x d x \\
& \frac{x^{u}}{4} \tan (x)-\iint^{u} \sec ^{2}(x) d x \\
& u=\frac{x^{u}}{a} \\
& \hline
\end{aligned}
$$

$$
y^{\prime \prime}+\frac{2}{x} y^{\prime}+y=0
$$

$$
\begin{aligned}
& \int \frac{x^{x}}{4} \sec ^{2}(x) d d^{2 x} \\
& u=\sec ^{2}(x) d x \\
& d u=\frac{x^{3}}{4} d x \quad d=\tan (x)
\end{aligned}
$$

$$
y_{2}=y_{1} \bigcup_{\sim}
$$

$$
\xrightarrow{U} \int \frac{1}{y_{1}^{2}} e^{-\int \frac{2}{x} d x} d x
$$

$$
\int \frac{x^{2}}{\cos ^{2}(x)} e^{\int_{2}^{2} d x} d x
$$

$$
y_{2}=\frac{\cos (x)}{x}\left(\tan (x)-\frac{x^{4}}{1.25}\right)
$$

$$
\begin{aligned}
& \int \frac{x}{\cos ^{2}(x)} \operatorname{l\operatorname {ln}x} d x=\int \frac{x^{2}}{\cos ^{2}(x)} x^{\cos x^{2}} d x=\int \frac{x^{4}}{\cos ^{2}(x)} d x \\
& =\int x^{4} \sec ^{2}(x) d x \\
& \left.\tan (x)-\frac{x^{4}}{1.25}\right)
\end{aligned}
$$

$$
y_{2}=\frac{\cos (x)}{x} x^{8}\left(\tan (x)-\frac{1}{1.25}\right)
$$

$$
y_{2}=x^{3} \cos (x) \tan (x)-\frac{\cos (x)}{1.25}
$$

$$
y=y_{1}+y_{2}
$$

$$
\begin{array}{ll}
u=x^{4} & d v=\sec ^{2}(x) \sqrt{d x} \\
d u=4 x^{3} d x & 1-\tan (x)
\end{array}
$$

$$
d y=4 x^{3} d x
$$

$$
v=\tan (x)
$$

$$
x^{4} \tan (x)-\sqrt[4]{x^{3} \tan (x) d x}
$$

4: Solve the following differential equation

$$
\frac{x^{2} y^{\prime \prime}-3 x y^{\prime}}{6 x^{\prime \prime}}+3 y=3 \ln x-4
$$

$$
\frac{x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0}{-0}
$$

$$
\begin{aligned}
& y=x^{r-x-x} \\
& y^{\prime}=r x^{r-1} \\
& y^{\prime \prime}=r(r-1) x^{r-2} \\
& \left(r^{2}-r\right) x^{r-2} \cdot x^{k}-3 x^{x} r x^{r-1}+3 x^{r}=0
\end{aligned}
$$

$$
r^{2} x^{r}-r x^{r}-3 y x^{r}+3 x^{r}=0
$$

$$
r^{2} x^{r}-2 r x^{r}+3 x^{r}=0
$$

$$
x^{r}\left(r^{2}-2 r+\beta\right)=0
$$

$$
\begin{aligned}
& \Delta= b^{2}-4 a c \\
& 4-4(1)(
\end{aligned}
$$

$$
\Delta=4-12=-8
$$

$$
r_{1}=\frac{2+\sqrt{8} i}{2(1)}=\frac{1}{\alpha}+\frac{\sqrt{8}}{\frac{2}{\beta}} i
$$

$$
\sqrt{2}=1-\frac{\sqrt{8}}{2} i
$$

$$
\left.y_{h}=C_{1} \frac{x^{\prime} \cos \left(\frac{\sqrt{8}}{2} x\right)}{y_{1}}+d_{2} \frac{x^{\prime} \sin \left(\frac{\sqrt{8}}{2} x\right)}{y_{2}}\right)
$$

$y_{p}=-y_{1} \int \frac{y_{2} G(x)}{\omega} d x+y_{2} \int \frac{y_{1} G(x)}{\omega} d x$

$$
G(x)=\frac{g(x)}{a}=\frac{3 \ln |x|-4}{x^{2}}
$$

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

$$
\begin{aligned}
& \left.\frac{\left(x^{2}+y^{2}\right)}{M}\right)^{2}-2 x y d y=0 \text {. } \\
& M_{y}=2 y \quad N_{x}=2 y \rightarrow \text { Exact } \\
& \int U_{x}=M=\int_{x^{2}}+y^{2} d x=M_{y} \\
& \int U_{x}=M=\int x^{2}+y^{2} d x \\
& U=\frac{x^{3}}{3}+x y^{2}+g(y) \cdots * \\
& U_{y}=N=2 x y+g^{\prime}(y)=2 x y \\
& g(y)=0 \\
& g(y)=k \rightarrow \text { cost. } \\
& V=\frac{x^{3}}{3}+x y^{2}+k=0
\end{aligned}
$$

