

$$
\left[\begin{array}{rrr}
-3 & -3 & -3 \\
12 & 25 & 18 \\
14 & 18 & 12
\end{array}\right]
$$

Q2. (6 points) If $|A|=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1}^{4} & b_{2} & b_{3} \\ c_{1}^{c} & c_{2}^{2} & c_{3}^{4}\end{array}\right|=5$, find the determinants of the following matrices:
a) $B=\left[\begin{array}{lll}c_{1} & c_{2} & c_{3} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right]=5$ (as we c change the rows the Jet

b) $C=\left[\begin{array}{ccc}a_{1}-b_{1} & a_{2}-b_{2} & a_{3}-b_{3} \\ 3 b_{1} & 3 b_{2} & 3 b_{3} \\ 2 c_{1} & 2 c_{2} & 2 c_{3}\end{array}\right]=\begin{aligned} & \text { as we substruct amy tho } \\ & \text { rows it will git zero } \\ & \text { interning }\end{aligned}$
c) $M=\left[\begin{array}{ccc}4 a_{1} & 4 a_{2} & 4 a_{3} \\ b_{1} & b_{2} & b_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right]=5$ as we wwii Ply H y a constant

Q3. (7 points) Given a system

$$
Y^{\prime}=\left[\begin{array}{cc}
2 & 4 \\
1 & -1
\end{array}\right] Y+\left[\begin{array}{c}
e^{-2 i} \\
5
\end{array}\right] \quad \Rightarrow
$$

a) Solve the corresponding homogeneous system .
b) Find a suitable form for the particular solution Y_{p}, if the method of undetermined coefficients to be used.

$$
\begin{gathered}
\stackrel{a}{=}\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\left[\begin{array}{cc}
2 & 4 \\
1 & -1
\end{array}\right)\binom{y_{1}}{y_{2}} \\
\vec{x}(A-\lambda I)=0 \\
{\left[\begin{array}{cc}
2-\lambda & 4 \\
1 & -1-\lambda
\end{array}\right]=0} \\
(2-\lambda)(-1-\lambda)-4=0 \\
-2+\lambda-2 \lambda+\lambda^{2}-4=0 \\
\lambda^{2}-1 \lambda-6=0 \\
\lambda=3 \\
\lambda=-2
\end{gathered}
$$

when $\lambda=3$

$$
\overrightarrow{x \lambda}=\binom{a}{b}
$$

$$
\left[\begin{array}{cc}
-1 & 4 \\
1 & 4
\end{array}\right]\binom{a}{b}=\binom{a}{a}
$$

$$
-a+4 b=0
$$

$$
\begin{aligned}
& x_{d_{2}} \Rightarrow\binom{c}{d} \\
& {\left[\begin{array}{ll}
4 & 4 \\
1 & 1
\end{array}\right]\binom{c}{d}=\binom{0}{d}} \\
& 4 c+4 d=0 \\
& d=-c \quad \begin{array}{l}
c=t \\
d=-t
\end{array}
\end{aligned}
$$

$$
\text { ic } x \lambda_{2}=t\binom{1}{-1}
$$

$$
y_{h}=C_{1}\binom{1}{\frac{1}{4}} e^{3 t}+C_{2}\binom{1}{-1} e^{-2 \frac{t}{t}}
$$

b

$$
y_{b}=(\vec{U} t+\vec{V}) e^{-2 t}
$$

$a \Rightarrow$ free faricille

$$
\begin{array}{ll}
b=\frac{a}{4} & a=t \\
b=\frac{t}{4}
\end{array}
$$

$$
\therefore \quad x \lambda_{1}=t\binom{1}{\frac{1}{4}}
$$

Q4. (7 points) Find a power series solution for $(x-1) y^{\prime \prime}+y^{\prime}=0$ about $x_{0}=0$.

$$
\text { By } x-\left.1\right|_{x_{0}=0}=0-1=-1 \neq 0 \Rightarrow \text { ordinary } \not x
$$

$$
x_{0}=0
$$

$$
\begin{aligned}
& y=\sum_{0}^{\infty} a_{n} x^{n} \geq 10 \\
& y^{\prime}=\sum_{9}^{\infty} \text { a } \quad \text { o } x^{n-1} \\
& y^{\prime}=\sum_{2}^{\infty} \operatorname{an}(n)(n-1) x^{n-2} \\
& \text { Sb in the qu. } \\
& (x-1) \sum_{2}^{\infty} \operatorname{arn}(n)(n-1) x^{n-2} \\
& +\sum_{1}^{\infty} a_{n}(n) x^{n-1}=0 \\
& \sum_{2}^{\infty} \operatorname{an}(n)(n-1) x^{n-1} \neq \sum_{2}^{\infty} \operatorname{an}(n)(n-1) x^{n-2} \\
& +\sum_{1}^{\infty} a_{n}(n) x^{n-1}=0 \\
& \theta+\sum_{1}^{\infty} \operatorname{ain}(n)(n-1) x^{n-1}-\sum_{1}^{\infty} a(n+1)^{(n+1) n x^{n-1}} \\
& +\sum_{1} a_{n}(n) x^{n-1}=0 \\
& \text { II powers are equal } \\
& \text { (2) roubles ane equal } \\
& \left\{\begin{array}{c}
\sum_{1}^{\infty}\left[\begin{array}{c}
a_{n}(n)(n-1)+a_{n+1}(n+1)(n) \\
+a n(n)
\end{array}\right] x=a_{n}^{n-1} \\
1
\end{array}\right. \\
& a_{n}(n)(n-1)+a_{n}(n)=a_{n+1}(n+1)(n) \\
& \rightarrow a_{n}(k)(n+1+1)=a n+1 \\
& n+1 \text { (ny } \quad \frac{a_{n} y(n-1)}{n+1(n x}+\frac{\operatorname{an}(N)}{n+1} \\
& \int \frac{a_{n}(n)}{n+1}=a_{n+1} \quad \frac{a_{n}(n+1)+a_{n}}{n+1} \\
& n=0 \Rightarrow a_{1}=\frac{a_{0} 0}{a+1}=0 \quad h 7,1 \\
& n=1 \Rightarrow a_{2}=\frac{a_{1}+1}{a^{2}}=\frac{a_{1}}{2}=0
\end{aligned}
$$

