University of Jordan Faculty of Science Department of Physics Second Semester 2014/2015

Date: 18/3/2015 Time: 3:30-4:30

General Physics II (0302102)
First Exam

Omar Abedrabbo

Number: - 50 Instructor: د. زياد آيو وعم

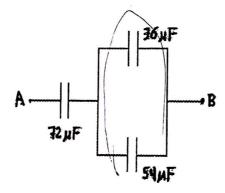
0144364

Constants: $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$, $e = 1.602 \times 10^{-19} \text{C}$, $m_e = 9.11 \times 10^{-31} \text{ kg}$, $k_e = 9 \times 10^9 \text{ N.m}^2/\text{C}^2$

Answer Sheet

List your final answer in this table. Only the answer in this table will be graded.

List your n	Hai ans	WEI III	tillib tetto	101 0 111				_	_	
	/					X				1010
	01	02	102	04	05	06	07	Q8	Q9	Q10
Question	QI	Q2	\Q3,	Q +	105			1	P	C
Answer	9	2	d	Ь	d	a		b		


- 1. Three point charges, two positive and one negative, each having a magnitude of 20 μ C are placed at the vertices of an equilateral triangle (30 cm on a side). What is the magnitude of the electrostatic force on the negative charge?
 - (a) 69 N
- (b) 39 N
- (c) 25 N
- (d) 58 N
- (e) 85 N
- 2. Charge of uniform density 4.0 nC/m is distributed along the x axis from x = -2.0 m to $\ddot{x} = +3.0$ m. What is the magnitude of the electric field at the point x = +5.0 m on the x axis?
 - (a) 49 N/C
- (b) 66 N/C
- (c) 13 N/C
- (d) 16 N/C
- (e) 19 N/C
- 3. A conducting sphere of radius 10 cm is charged with a total positive charge 100 nC. What is the potential difference between two points, one located 3.0 cm away from the center and the other at the surface?
 - (a) 28 V
- (b) 66 V
- (c) 57 V
- (e) 85 V

wer unit

4. Over a certain region of space, the electric potential is $V = 2xy-x^2z+z^3y^2$.

What is the magnitude of the electric field at the point P that has coordinates of (1.0, 2.0, -1.0) m?

- (a) 49 N/C
- (b) 13 N/C
- (c) 19 N/C
- (d) 66 N/C
- (e) 22 N/C
- 5. A charge of uniform volume density (40 nC/m³) fills a cube with 8.0 cm edges. What is the total electric flux (in units of N.m²/C) through the surface of this cube?
 - (a) 4.6
- (b) 1.1
- (c) 5.7
- (e) 3.5
- 6. A long straight metal rod has a radius of 2.0 mm and a surface charge of density 0.40 nC/m². Determine the magnitude of the electric field 3.0 mm from the axis.
 - (a) 45 N/C
- (b) 30 N/C
- (c) 15 N/C
- (d) 75 N/C
- (e) 60 N/C $= \frac{6 R}{6 F}$
- 7. The electric field (in N/C) of a point charge q = 8.0 nC at a point located 2.0 m from the charge is:
 - (a) 27
- (b) 72
- (c) 18
- (d) 36
- (e) 68
- 8. If $V_A V_B = 50$ V, how much energy is stored in the 54 μ F capacitor?

- C. 17
- (a) 1.6 mJ
- (b) 13 mJ
- (c) $8.9 \, \text{mJ}$
- (d) 19 mJ
- (e) 23 mJ
- 9. Which of the following is not a capacitance? (K is the dielectric constant)

- (a) $\frac{\varepsilon_0 A}{d}$ (b) $\frac{\kappa \varepsilon_0 A}{d}$ (c) $\frac{ab}{k_e (b-a)}$ (d) $\frac{l}{2k_e \ln(b/a)}$ (e) $\frac{k_e \varepsilon_0 A}{d}$
- 10. How much charge is on each plate of a 4.00 μF capacitor when it is connected to a 12.0 V battery?
 - (a) $20\mu C$
- (b) 77μ C
- (d) 68 µC
- (e) 32μ C

sanfoor mohandes