

THE UNIVERSITY OF JORDAN

Pysics Department

GENERAL PHYSICS II (0302102) / SECOND EXAM / APRIL 17th 2016 SECOND SEMESTER 2015/2016

	56	38	7-10	الرقم الجامعم
- (رقم الشعبة

اسم الطالب: رعد محمد را هددى أبو السموه ه اسم العدرس:

01		O2	B	Q3	A	Q4	AB	Q5	E
Q6	BA	07	BO	Q8	C	Q9	_E_	Q10	B
Q11	CA	Q12	ED	Q13	A	Q14	<	Q15	

 $\epsilon_{\rm o} = 8.85 \times 10^{-12} {\rm C^2/N.m^2}, k_e = 9 \times 10^9 {\rm N.m^2/C^2}, {\rm g} = 10 {\rm m/s^2}, {\rm \mu C} = 10^{-6} {\rm C}, {\rm nC} = 10^{-9} {\rm C}, {\rm pC} = 10^{-12} {\rm C}, {\rm m_e} = 9.11 \times 10^{-31} {\rm kg}, {\rm m_p} = 1.67 \times 10^{-27} {\rm kg}, {\rm p} ({\rm Copper}) = 1.7 \times 10^{-8} {\rm \Omega.m}, {\rm n_e} ({\rm Copper}) = 8.456 \times 10^{28} {\rm e/m^3}, 1 {\rm eV} = 1.6 \times 10^{-19} {\rm J}$

Answer All The Following Questions

Q1. Consider the circuit. $C_1 = 6.00 \ \mu\text{F}$, $C_2 = 3.00 \ \mu\text{F}$, $\Delta V = 20.0 \ V$. If S_1 is closed and S_2 is opened until C_1 is fully charged. Now open S_1 and close S_2 and find the final charge (in μ C) on C_1 .

A) 40.0
(C) 80.0
E) 0.00

B) 120.0 D) 11.5

Q2. Find the equivalent capacitance, between a and b, for the combination (in μ F).

A)	10.9
(B)	12.9
C)	8.90
D)	14.9
E)	22.9

Q3. Given the drift velocity of free electrons in a copper wire = 5.58×10^{-4} m/s, calculate the electric field in this wire (in V/m).

A) 0.13

B) 0.95

C) 18.6

D) 4.7

E) 0.18

Q4. In the circuit shown, all the resistors are identical. What is the charge on the capacitor after a very long time?

B)
$$Q = C\mathcal{E}/2$$

C)
$$Q = CE/3$$

D)
$$Q = CE/4$$

E)
$$Q = 2C\varepsilon$$

= 8

Q5. The SI unit of the quantity $(\frac{1}{2}\varepsilon_o E^2)$ is:

A) J/F

B) J/C

C) J

D) J/V

E) J/m³

4:00 - 5:15

1

