The University of Jordan Faculty of Science Department of Physics

First Semester 2014/2015

Date: 27/10/2014 Time: 5:00-6:00

General Physics I (0302101) First Exam

النا عام العالم 0147176 Instructor:-

Rania Al

Saber Constants: $g = 9.8 \text{ m/s}^2$.

Answer Sheet

List your final answer in this table. Only the answer in this table will be graded.

	e .	a	6	C	d	0	a	d	a	C
Question	Q1,	Q2	Q3,	Q4 A	Q5	Q6	Q7	Q8	Q9	Q10
Answer	d	e/	V	4	de	9	a	d	a	6
	<u> </u>		-/\}		<i></i>	·/		<i></i>		-/-

- $\widehat{\mathbf{D}}$ If vector $\vec{\mathbf{B}}$ is added to vector $\vec{\mathbf{A}}$, the result is $6\hat{\mathbf{i}} + \hat{\mathbf{j}}$. If $\vec{\mathbf{B}}$ is subtracted from $\vec{\mathbf{A}}$, the result is $-4\hat{i} + 7\hat{j}$. What is the magnitude of \vec{A} ?
 - (a) 1.4 (b) 4.6
- (c) 6.1
- (d) 5.1
- (e) 4.1
- (2) At t = 0? a particle leaves the origin with a velocity of 12 m/s in the positive x direction and moves in the xy plane with a constant acceleration of $(-2.0\hat{i} + 4.0\hat{j})$ m/s². At the instant the y coordinate of the particle is 18 m, what is the x coordinate of the particle?
 - (a) 27 m
- (b) zero
- (c) 23 m
- (d) 38 m
- 3. Two forces are the only forces acting on a 3.0 kg object which moves with an acceleration of 3.0 m/s² in the control of 3.0 m/s acceleration of 3.0 m/s^2 in the positive y direction. If one of the forces acts in the positive x direction and has a magnitude of 8.0 N, what is the magnitude of the other force?
 - (a) 14 N
- (b) 12 N
- (c) 11 N
- (d) 10 N
- (e) 16 N

	two vectors i	S:				
	(a) 44	(b) 48	(c) 58	(d) 63	(e) 68	
5. Th	e position of a	particle movin	g along the r a	vis is given by	$c = (21 + 22t - 6.0t^2)$)
	where t is in	s. What is the $.0$ s to $t = 3.0$	average veloci	ty (in units of m	$\frac{1}{2} - \frac{1}{2}i + \frac{2}{2}i - 0.0i$ /s) during the time	JIII ,
	(a) -14	(b) 8.0	(c) 14	(d) -2.0	(e) -8.0	
6. T	wo vectors lyin	g in the xz plar	ne are given by	the equations A	$\hat{\mathbf{a}} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{k}}$ and	
	$\vec{\mathbf{B}} = -\hat{\mathbf{i}} + 2\hat{\mathbf{k}}$	The value of	$\vec{A} \times \vec{B}$ is:	Transpa		
	(a) 7 ĵ	(b) $\hat{\mathbf{j}}$	(c) $\hat{\mathbf{i}} + 5\hat{\mathbf{k}}$	$(d) - 7\hat{k}$	$(e) - 7\hat{i}$	
7. A	the block sho	ies down the in	ncline, its acce	of a rough (خشن) Leration is 3.0 m. riction acting on	30° inclined plane. /s² down the incline the block.	As
	(a) 3.4 N	(b) 7.0 N	(c) 5.21			
8. St	until it reach	ed its cruising	القصوى) speed	Then it c). Then	accelerated at 1.0 places accelerated accele	m/s ² vi-0
	(a) 44	(b) 48	(c) 58	(d) 30	(e) 90	all so
					en parente e promonente enovemble discussos	
9 Δ	hall leaves the	ground at an a	nala af 200 al		throat and a land	1.0
/	m/s What is	the movimum	haight magain	ove the norizonta	al and at a speed of	10

4. Two vectors $\vec{A} = 6\hat{i} - 5\hat{j} + 3\hat{k}$ and $\vec{B} = 3\hat{i} - 8\hat{j}$. The scalar (Dot) product of these

10. A force accelerates a body of mass M. The same force applied to a second body produces nine times the acceleration. What is the mass of the second body?

(a) 18M

(a) 1.3 m

(b) 9M

(b) 6.8 m

(c) M/9

(c) 7.9 m

(d) 2M/9

(d) 5.1 m

(e) 2M

(e) 2.9 m