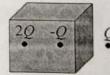
The University of Jordan School of Science Department of Physics

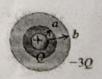
2nd Summer Semester 2017 General Physics-2 First Exam, August 9, 2017

Name (In Arabic): Student Number:

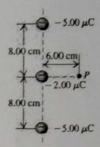
Instructor: Section:


 $k = 1/4\pi\varepsilon_0 = 9 \times 10^9 \text{ N.m}^2/\text{C}^2$; $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$; $e = 1.6 \times 10^{-19} \text{ C}$; $g = 9.8 \text{ m/s}^2$

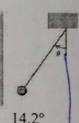
Write the letter corresponding to the correct answer in the table


- 1) The magnitude of the electric field (in N/C) at a point that is 3.0 m away from a 2.0 μC point charge is
- a) 230
- b) 2300
- (c) 2000
- d) 1000
- e) 4600
- 2) Two point charges, 3.5 μC and 1.0 μC, are separated by 1 cm. The magnitude of the force (in N) exerted by one charge on the other is
- a) 135
- (b) 315
- c) 225
- d) 405
- 3) The magnitude of the acceleration (in m/s²) of a proton ($m = 1.67 \times 10^{-27}$ kg) in a uniform electric field of magnitude 6 × 10⁴ N/C is
- a) 1.9×10^{12}

- b) 3.8×10^{12} c) 2.9×10^{12} d) 6.7×10^{12} e) 5.7×10^{12}
- 4) The local surface charge density at a point on the surface of an arbitrarily shaped conductor is 1 nC/m². The magnitude of the electric field at that point (in N/C) is
- (a) 113
- b) 452
- c) 678
- d) 340
- e) 1130
- 5) The figure shows a closed cubical surface with the charges 2Q and -Q inside the cube and the charges -2Qand Q outside the cube. If Q = 6 nC the net electric flux (in N.m²/C) through the surface of the cube is



- a) 282
- b) 0
- (c) 678
- d) 339
- e) 565
- -6) A conducting spherical shell with inner radius a and outer radius b has a positive point charge Q located at its center. The total charge on the shell is -3Q, and it is insulated from its surroundings. The surface charge density on the outer surface of the conducting shell



- a) $\frac{-3Q}{4\pi a^2}$ (b) $\frac{-3Q}{4\pi b^2}$ c) $\frac{-Q}{2\pi b^2}$ d) $\frac{3Q}{4\pi a^2}$ e) $\frac{-Q}{4\pi a^2}$

- 7) The electric field at a distance of 0.145 m from the surface of a solid insulating sphere with radius 0.355 m is 1750 N/C. Assuming the sphere's charge is uniformly distributed, the electric field (in N/C) inside the sphere at a distance of 0.300 m from the center is
 - a) 0
- (b) 1750
- c) 2940
- d) 1960
- e) 980
- 8) Three negative point charges lie along a line as shown in the figure. The magnitude of the electric field (in N/C) this combination of charges produces at point P, which lies 6.00 cm from the -2.00μ C charge measured perpendicular to the line connecting the three charges is

- (a) 1.0×10^7 (d) 2.4×10^5
- b) 2.0×10^7 e) 1.0×10^5
- 9) A small sphere with mass 4.00×10^{-6} kg and charge 4.00×10^{-8} C hangs from a thread near a very large, charged insulating sheet. The charge density on the surface of the sheet is uniform and equal to -2.50×10^{-9} C/m2. The angle of the thread is

- a) 8.2°
- b) 12.2°
- c) 10.2°
- (d) 9.2°

c) 0.5×10^7

- 10) Positive charge Q is distributed uniformly along the xaxis from x = 0 to x = a. A positive point charge q is located on the positive x-axis at x = a + r, a distance r=a/4 to the right of the end of Q. The force (magnitude and direction) that the charge distribution Q exerts on q is

- a) $\frac{qQ}{3\pi\varepsilon_0 a^2}(-\hat{i})$ b) $\frac{qQ}{3\pi\varepsilon_0 a^2}\hat{i}$ c) $\frac{4qQ}{5\pi\varepsilon_0 a^2}(-\hat{i})$ d) $\frac{4qQ}{5\pi\varepsilon_0 a^2}\hat{i}$ e) $\frac{qQ}{4\pi\varepsilon_0 a^2}\hat{i}$

0	1	2	3	1	5	-	-			The state of
Angway	-	ī	-	7	3	0	7	8	9.	10
Answer	0	6	e	a	(h	14	A'		n 1

