lan 3

رقم المتسلسل:

رقم الشعبة:

The University of Jordan Faculty of Science Physics Department General Physics (1) (0302101) Second Exam First Semester 2016/2017

Student's Name:	** **	Student's ID	

<u>Note 1:</u> Following are 10 multiple-choice questions. Write the symbol of correct answer in the answers' table. <u>Only</u> the answers in the table will be graded.

Note 2: Ignore air resistance in all problems and take $|g| = 9.8 \text{ m/s}^2$ at the Earth's surface.

Note 2: Ignore all resistance in an problems and take |g| - 9.8 m/s at the Earth's surre.

Note 3: The significant digit notation is not taken into account throughout the given answers.

					Ansv	wers	'Ta	ble							
Question Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Symbol of Correct	B	E	C	D	A	D	E	B	C	A	В	D	B	E,	B
Answer	0	1	0	1		X	0	V	/	V	X	1/	1/	V	V

Q.1: A force $\vec{F} = (12\hat{i} - 10\hat{j})N$ acts on an object. The work (in J) that this force does as the object moves from the origin (0, 0, 0) to the point (13, 11, 0) m is:

[Hint: the displacement of the particle is: $\Delta \vec{r} = (13\hat{i} + 11\hat{j})m$]

a. 246

(b)46

c. 37

d. 62

e. 100

Q.2: The work performed as a function of time for a process is given by $W = at^3$, where $a = 2.4 \text{ J/s}^3$. The instantaneous power output (measured in W) at t = 3.7 sec is:

a.138

b. 69

c. 125

d. 207

@ 99

Q.3: In the adjacent figure, two identical ideal massless springs have unstretched lengths of 0.25 m and spring constants of 700 N/m. The springs are attached to a small cube and stretched to a length L of 0.30 m as in Figure A. An external force P pulls the cube a distance D = 0.020 m to the right and holds it there. (See Figure B.) The external force P, that holds the cube in place in Figure B, is:

a. 14 N

b. 25 N

c. 28 N

d. 18 N

e. 21 N

Q.4: A force $F = bx^3$ acts in the x direction, where the value of b is 3.7 N/m³. The work (in J) done by this force in moving an object from x = 0.00 m to x = 2.6 m is:

a. 18.4

b. 67.3

c. 50.4

(1) 42.2

e. 9.8

Q.5: In the adjacent figure, a block of mass M hangs at rest. The rope that is fastened to the wall is horizontal and has a tension off 52 N. The rope that is fastened to the ceiling has a tension of 91 N, and makes an angle θ with the ceiling. The angle θ (measured in degrees) is:

M

255°

b. 35°

c. 30°

d. 75°

e. 45°

Q.6: Weight $W_1 = 20 \text{ N}$ rests on a second weight $W_2 = 50 \text{ N}$ on a perfectly smooth horizontal floor as shown in the adjacent figure. When a horizontal force F = 15 N is applied on the lower box (see figure), both boxes move together. The magnitude (in N) and direction of the net external force on the upper box is:

c. 6.48 N to the right

d. 6.48 N to the left

e. Zero

Q.7: A 5.00-kg box slides 4.00 m across a horizontal floor before coming to rest. If the box had an initial speed of 3.00 m/s, then, the coefficient of kinetic friction (μ_K) between the floor and the box is:

a. 0.412

b. 0.587

c. 0.321

d. 0.229

(e)0.115

Q.8: A system comprising blocks, a light frictionless pulley. a frictionless incline, and connecting ropes is shown in the adjacent figure. The 9.0-kg block accelerates downward when the system is released from rest. The tension in the rope connecting the 6.0-kg block and the 4.0-kg block (measured in N) is:

a. 30

b) 42

c. 16

d. 99

e. 73

0.9: Two objects are connected by a very light flexible string that passes over a very light and frictionless pulley as shown in the adjacent figure. Neglecting air resistance. If M = 0.60 kg and m = 0.40 kg, the tension in the string (measured in N) is:

a. 10

b. 1.1

C 4.7

d. 9.3

e. 19

O.10: True or False:

"The action and reaction forces are equal in magnitude, opposite in direction and act on different objects"

a. True

b. False

Q.11: Two moons orbit a planet in nearly circular orbits. Moon A has orbital radius r, and moon B has orbital radius 4r. Moon A takes 20 days to complete one orbit. Neglecting gravitational interactions between the two moons, the time (measured in days) needed for moon B to complete an orbit is:

a. 20

も)40

c. 80

d. 160

e. 320

Q.12: Planet X has a mass equal to 1/3 that of Earth, a radius equal to 1/3 that of Earth, and an axial spin rate 1/2 that of Earth. With g representing, as usual, the acceleration due to gravity on the surface of Earth, the acceleration due to gravity on the surface of planet X is:

a. g/3

b. g/9

c. 6g

d. 3g

e. 9g

Q.13: A block is on a frictionless horizontal table, on earth. This block accelerates at 1.9 m/s² when a 90 N horizontal force is applied to it. The block and table are then set up on the moon where the acceleration due to gravity is 1.62 m/s². The weight (measured in N) of the block on the moon is:

a. 93.7

(b) 76.7

c. 58.3

d. 48.2

e. 36.8

Q.14: The adjacent figure shows a setup of three masses that are connected by three wires. The whole system is under static equilibrium. If $m_1 = 10 \text{ kg}$, $m_2 = 30 \text{ kg}$ and $m_3 = 30 \text{ kg}$, The tension (T_1) in the first wire (measured in Newtons) is:

a. 980

b. 518

c. 294

d. 426

(e) 686

Q. 15: True or False:

"Any accelerating frame of reference is considered as an inertial reference frame"

a. True

b. False

Good Luck!!

