PARTIAL

DR.BANAN

BY: ASEEL ABU QADDOUM

$F: \mathbb{R}^{2}$ — \mathbb{R}^{2} scalar.
$F(x, y)=x^{2}+y^{2}-2 \quad$ (scalar field) "Scalar function"

$$
F(1,2)=3
$$

$F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
$F(x, y)=2 x \underline{i}+y^{2} \underline{j} \rightarrow$ the result is rector.

$$
F(1,1)=2 \underline{i}+j \quad \rightarrow\langle 2,1\rangle
$$

* vector field $=$ function with vetor result" vector vang"
\#let F be avector field $\rightarrow F \rightarrow \operatorname{div} F$
$v(t)=2 t \underline{i}+j-t^{2} \underline{k} \quad \mathbb{R} \longrightarrow \mathbb{R}^{3}$ "vector field "V

$$
\left\langle 2 t, 1,-t^{2}\right\rangle
$$

$v(t)=2+i+x j \rightarrow$ Scalar + vector \rightarrow Not vector.
Scalar * Vector \rightarrow vector.

$$
F(x, y, z)=f(x, y, z) \underline{\underline{i}}+g(x, y, z) \underline{j}+h(f, y, z) \underline{k}
$$

$$
\operatorname{div} F=f_{x}+g_{y}+h_{z}=\nabla \cdot F
$$

let $\underline{F}=2 x^{2} y \underline{i}+x^{2} y^{2} \underline{j}+x^{2} z \underline{K}$
$\operatorname{div} \underline{F}=4 x y+2 x^{2} y+x^{2} \rightarrow$ scalar. (III) div F is scanter fie
$\begin{aligned} \text { \# let } F & =f_{i}+g \underline{j}+h k \\ \text { the curl } \underline{F} & =\underline{\nabla} \underline{F}\end{aligned} \sim\left|\begin{array}{ccc}\hat{i} & \hat{i} & \hat{k} \\ \frac{d}{d x} & \frac{d}{d y} & \frac{d}{d z} \\ f & g & k\end{array}\right|$

$$
=\left(\frac{d h_{1}}{d x}-\frac{d g}{d y}\right) i-\left(\frac{d h}{d t}-\frac{d f}{d z}\right) j+\left(\frac{d g}{d t}-\frac{d f}{d y}\right) k
$$

$$
\begin{aligned}
& \text { * } F=f_{\underline{i}}+9 \underline{j}+h \underline{k} \quad \text {, ar project } \\
& \left.\nabla=\frac{d}{d x} i+\frac{d}{d y} \underline{j}+\frac{d}{d z} \underline{k} \right\rvert\, \underline{\nabla} \underline{F}=\operatorname{div} F=f_{x}+g_{y}+z h_{z} \\
& \text { vector sector }
\end{aligned}
$$

$$
F(x, y, z)=x y z+x z \underline{j}+x^{2} z \underline{k}
$$

II Find divF ता curl F

$$
\operatorname{div} F=y+x^{2}
$$

$$
\text { cort } F=-x_{\underline{i}}+(2 x z-0) \underline{j}+(z-x) \underline{k}=-x_{\underline{i}}-2 x z \underline{j}+(z-x) \underline{k}
$$

* Remuirk

$$
\left\langle-x_{1},-2 x z,(z-x)\right\rangle
$$

$$
F(x, y, z)=x^{2} y^{2}+z^{2} \quad \text { "Scaler" }
$$

$$
\begin{aligned}
\because F= & \frac{d F}{\partial x}+\frac{d F}{d y} \underline{j}+\frac{d F}{d z} \underline{t}= \\
& 2 x y^{2} \underline{2}+2 x^{2} y \underline{j}+2 z k \\
& \left\langle 2 x y^{2}, 2 x^{2} y, 2 z\right\rangle
\end{aligned}
$$

(III

$$
\text { "length tivecler" } \simeq \text { vector. }
$$

$$
F=\frac{G m \mu}{r^{2}}+\left(-\hat{a}_{r}\right)=\frac{G m \mu}{r^{2}}+\frac{\bar{r}}{r}=\frac{G m \mu r}{r^{3}}
$$

$$
\begin{aligned}
& \bar{r}(\text { distonca })=x i+y j+z k \\
& \text { according }\langle x, y, z\rangle \\
& \text { to origin. } \\
& r \overbrace{\text { distanc } u} \text { or }\|r\|=\sqrt{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

(III Let F, G be a vector field; p : scalar field
then:

$$
\begin{aligned}
& \operatorname{div}(\underline{F}+\underline{G})=\operatorname{div} F+\operatorname{dir} \underline{G} \\
& \operatorname{div}(K F)=K \operatorname{div} F \\
& \operatorname{div}(\infty \underline{F})=\infty \operatorname{div} F+\nabla \infty \cdot F
\end{aligned}
$$

$\operatorname{dir}($ curl) $=$ zero. L dot not crows "berawe dir is sear
\rightarrow zero scalar

$$
\begin{aligned}
& \operatorname{curl}(F+G)=\operatorname{curl}(F+\operatorname{curl} G \\
& \operatorname{curl}(K E)=k \operatorname{corl}(E) \\
& \operatorname{curl}(\infty F)=\infty \operatorname{curl} F+\nabla \rho \times F \\
& \operatorname{curl}(\nabla \rho)=\operatorname{zero} \underline{0}
\end{aligned}
$$

$\underset{\text { gradimant }}{\sim} \rightarrow$ zero vector.
*. Example.
let $F(x, y, z)=f(x, y, z) \underline{i}+g(x, y, z) \dot{j}+h(x, y, z) k$
I: scalar function
show that:-

$$
\begin{aligned}
& \operatorname{div}(\infty E)=\mathscr{\infty} \operatorname{div} F+\nabla \cdot \infty \cdot F \\
& \rightarrow \infty F=\infty f(x, y, z) \underline{i}+\infty g(x, y, z) \underline{j}+\infty h(x, y, z) \hat{E} \\
& \operatorname{div}(\infty F)=\frac{d \infty f}{d t}+\frac{d \rho g}{d y}+\frac{d \rho h}{d z} \\
& \mathscr{P} f_{x}+f \mathscr{s}_{x}+\mathscr{g _ { y }}+\operatorname{sff}_{y}+v \mathscr{f}_{z}+h \mathscr{f}_{z} \\
& \rightarrow \nabla \cdot \infty=\rho_{x} i+\infty_{y} j+\mathcal{S}_{t} k \quad(\nabla \cdot \infty \cdot F) \\
& \nabla \cdot \infty \cdot \underline{F}=\rho_{x} f_{z}+\infty_{y} g+\infty_{z} h
\end{aligned}
$$

\# $\varphi\left(f_{x}+g_{y}+h z\right)+\nabla \cdot \rho \cdot F$.
\checkmark div $\mathrm{F}+\nabla \cdot \infty \cdot \underline{F}$ \#Dow.

4

* Exampl: Dees ture exsit a vectar frell $G \rightarrow$ arl $G=E$

$$
\text { l.t } F=2 x i+y j+z k
$$

- Suppose that thuse is G

$$
\begin{gathered}
\text { curl } G=F \\
\operatorname{div}(\text { curl } G)=\operatorname{divF} \\
\text { Zsoo }=2+1+1
\end{gathered}
$$

Zer $\neq 4$, so thene is no G that curl of $i t=F$.
*)

$$
\begin{aligned}
& r=x i+y j+z k \\
& \|r\|=\sqrt{x^{2}+y^{2}+z^{2}}
\end{aligned}\left\{\quad \frac{d r}{d x}=\frac{x}{r} ; \frac{d r}{d y}=\frac{y}{r} ; \frac{d r}{d z}=\frac{z}{r}\right.
$$

(1) $\frac{d\left(r^{2}\right)}{d x}=2 r r^{\prime}=2 r \frac{x}{r}=2 x$
[2] $\frac{d \sqrt{r}}{d y}=\frac{r^{\prime}}{2 \sqrt{r}}=\frac{y}{2 r \sqrt{r}}$
13) let $F=r^{3} r$ Find div E

$$
\begin{aligned}
& \underline{E}=r^{3}\langle x, 4, z\rangle=x r^{3} \underline{i}+y r^{3} \underline{j}+z r^{3} \underline{k} \\
& \operatorname{div} F=\underbrace{\frac{d\left(x r^{3}\right)}{d x}}+\underbrace{d y}_{r^{d\left(y r^{3}\right)}}+\underbrace{\frac{d\left(z r^{3}\right.}{d z}}_{\tau} \\
& \text { y. } 3 r^{2} \cdot r^{\prime}+r^{3} z \cdot 3 r^{2} \cdot r^{\prime}+r^{3} \\
& x \cdot 3 r^{2} \cdot r^{\prime}+r^{3} \quad 3 y^{2} r+r^{3} \quad 3 z^{2} r+r^{3} \\
& x \cdot 3 r^{2} \cdot \frac{x}{r}+r^{3} \square \\
& \operatorname{div} F=3 x^{2} r+3 y^{2} r+3 z^{2} r+3 r^{3}=3 r(\underbrace{x^{2}+y^{2}+z^{2}}_{r^{2}})+3 r^{3}=6 r^{3}
\end{aligned}
$$

H. W
$\bar{F}=e^{r} \cdot \underline{r}$ find $\operatorname{div} F$

$$
\begin{aligned}
& \operatorname{div}\left(e^{\prime} \cdot r\right)=\operatorname{dir}\left(x e^{r} \underline{i}+y e^{r} j+z e^{r} k\right) \\
& x e^{r} \cdot r^{\prime}+e^{r}+y e^{r} \cdot r^{\prime}+e^{r}+z e^{r} \cdot r^{\prime}+e^{r} \\
& 3 e^{r}+e^{r}\left(\frac{x^{2}}{r}+\frac{y^{2}}{r}+\frac{z^{2}}{r}\right)=3 e^{r}+\frac{e^{r}}{r}\left(x^{2}+y^{2}+z^{2}\right)=3 e^{r}+e^{r} \cdot r
\end{aligned}
$$

* Arc Length

$$
\overbrace{a}^{y=f(x)} \quad L=\int_{a}^{b} \underset{\sim}{b} \text {; where } d s=\sqrt{1+f^{\prime}(x)^{2}} d x
$$

* Parametric curves.
line.

$$
\int_{A}^{B(2,3,5)} \begin{array}{ll}
B & \\
\langle 1,2,1) & \rightarrow 1,2,1\rangle+\langle 1,1,4\rangle t \\
\langle 1+t, 2+t, 1+4 t\rangle
\end{array}
$$

position tangent.
vector

$$
0 \leq t<1
$$

$$
\left.\begin{array}{l}
x(t)=1+t \cdot \\
y(t)=2+t \cdot \\
z(t)=1+4 t .
\end{array}\right\}
$$

"parametrization"
circle.

$$
\left.\begin{array}{l}
x(t)=2 \cos t \cdot \\
y(t)=2 \sin t
\end{array}\right\} \quad 0 \leqslant t \leqslant 2 \pi
$$

$$
x(t)=2 \cos t \cdot\} \quad 0 \leqslant t \leqslant \pi
$$

$$
y(t)=2 \sin t
$$

Anetrar bay for lime.

$$
\begin{aligned}
& \left.\begin{array}{l}
x(t)=3 \\
y(t)=1+4 t
\end{array}\right\} \quad 0 \leqslant t \leqslant 1 \\
& \left.\begin{array}{l}
\text { iesinus। } \\
x(t)=3 \\
y(t)=t
\end{array}\right\} \quad 1 \leqslant t \leqslant 5
\end{aligned}
$$

* ck. 16

Vector integral, 5 sec 10.1 , line integral.

$$
\begin{aligned}
\int_{a}^{b} f(x) d x ., r(x) & =\langle x(t), y(t), z(t)\rangle \\
r(x) & =x(t) i+y(t) j+z(t) k \\
\int_{c} f(r) d r & =\int_{a}^{b} F(r(t)), r^{\prime}(t) d t
\end{aligned}
$$

chore closed curve $\rightarrow \oint$

Example.
curve. Jul cirús

Example.

$$
\begin{gathered}
F\langle x+y, z+y, z+x\rangle \\
c: r=\langle 4 \cos t, \sin t, 0\rangle \\
0 \leqslant t \leqslant \pi
\end{gathered}
$$

$$
\begin{aligned}
\rightarrow F(r(t)) & =\langle 4 \cos t+\sin t, \sin t, 4 \cos t\rangle \\
r^{\prime}(t) & =\langle-4 \sin t, \cos t, 0\rangle \\
\int_{C} F(r(t)) d t & =\int_{0}^{\pi} F(r(t)) \cdot r^{\prime}(t) d t
\end{aligned}
$$

$$
\begin{aligned}
& F(r)=\langle-y,-x y\rangle \\
& r(t)=\langle\cos t, \sin t\rangle \quad 0 \leqslant t \leqslant 2 \pi \\
& \rightarrow F(r(t))=\langle-\sin t,-\cos t \sin t\rangle \\
& \rightarrow r^{\prime}(t)=\langle-\sin t, \cos t\rangle \\
& 2 \pi \\
& \int_{0}^{2 \pi}\langle-\sin t,-\cos t \sin t\rangle,\langle-\sin t, \cos t\rangle d t \\
& \left.=\frac{1}{2}\left(t-\frac{\sin 2 t}{2}\right)\right]_{0}^{2 \pi}-0 \\
& \text { * } \int K F d r=k \int F d r \text {. } \\
& \text { * } \int F+G d r=\int F d r+\int G d r \text {. } \\
& \text { * } \int F d r=\int_{c_{1}} F d r+\int_{c_{2}} F d r
\end{aligned}
$$

$$
F=\left\langle y^{2},-x^{2}\right\rangle
$$

ac: $y=4 x^{2}$
$(0,0) \rightarrow(1,4)$
\rightarrow solution

$$
\left.\begin{array}{l}
x=\cos t \\
y=\sin t
\end{array}\right\} \text { rips } u
$$

$$
\begin{aligned}
r(t) & =\left\langle\sin t, 4 \cos ^{2} t\right\rangle \\
1 & =\cos t \rightarrow t=2 \pi \\
& 0 \leqslant t \leqslant 2 \pi .
\end{aligned}
$$

(7) $\int_{0}^{2 \pi}\left\langle\sin ^{2} t,-\cos ^{2} t\right\rangle .\langle\cos t,-8 \cos t \sin t\rangle$

example

$$
\begin{array}{rlr}
F & =\left\langle x^{2}, z^{2}, x^{2}\right. \\
r & =\langle 3 \cos t, 3 \sin t, 2 t\rangle & \\
& 0 \leqslant t \leqslant 4 \pi &
\end{array} \quad \rightarrow \int(r(t) .
$$

28 * Th direction - pro per preserving parametric Transformatio * any representation of curve that give you the same value of the lin

Example

$$
\begin{aligned}
& F(t)=\langle x y, y z, z\rangle \\
& r(t)=\langle\cos t, \sin t\rangle \\
& \text { ort }\langle 2 \pi
\end{aligned}
$$

$F(r(t)=\langle\cos t t \sin t, 3 t \sin t, 3 t\rangle$
$r(\in)=\langle-\sin t$, cost, 3\rangle
$\left.\int_{c} F(r) d r=\int_{0}^{2 \pi}\langle\cos t+\sin t, 3 t \sin t, 3 t\rangle .\langle-\sin t, c\rangle t, 3\right\rangle d t$.

Dir: Banana.

* Def: The are length of carve from a to b is:

$$
\begin{aligned}
& L=\int_{a}^{b} \sqrt{r^{\prime}(t) \cdot r^{\prime}(t)} \cdot d t . \\
& r^{\prime}(t)=x^{\prime}(t) i+y^{\prime}(t) j+z(t) k \\
& r^{\prime}(t) \cdot r^{\prime}(t)=\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}
\end{aligned}
$$

Ex: find the Are Length, where: $r(t)=[t, \cosh t]$ from $t=0$ to $t=1$

Solution.

$$
\begin{aligned}
& r^{\prime}(t)=\langle 1, \sinh t\rangle \\
& r^{\prime}(t) \cdot r^{\prime}(t)=1+\sinh ^{2} t=\cosh ^{2} t \quad\left[\cosh h^{2} t-\sinh ^{2} t=1\right] \\
& L=\int_{0}^{1} \sqrt{\cosh ^{2} t} d t=\left.\sinh t\right|_{0} ^{1}=\sinh 1-\sinh _{0}=0=\sinh 1
\end{aligned}
$$

Ex: find Arc length of the circular helix with porometric representation $r(t)=\cos t i+\sin t j+t k$
from points $(1,0,0) \rightarrow(1,0,2 \pi)$
solution. $r(t)=\langle\cos t, \sin t, t\rangle$

$$
\begin{aligned}
& r^{\prime}(t)=-\sin t i+\cos t j+1 k=\langle-\sin t, \cos t, 1\rangle \\
& r^{\prime}(t) \cdot r^{\prime}(t)=\sin ^{2} t+\cos ^{2} t+1=|2|
\end{aligned}
$$

So

$$
L=\int_{0}^{2 \pi} \sqrt{2} d t=2 \sqrt{2} \pi
$$

points

$$
\text { points } \begin{gathered}
\langle 1,0,0\rangle \\
=0, t=0 \quad\langle 1,0,2 \pi\rangle \\
\cos t=1 \quad \sin t=0 \\
0 \\
2 \pi
\end{gathered}
$$

* D-f. The Are lo-yth function of a curve from a :$S(t)=\int_{a}^{t} \sqrt{r^{\prime}(u) \cdot r^{\prime}(u)} d u$.
" ehapter 10
"Line Integration"
Def: let $F(t)=F_{1}(t) i+F_{2}(t) j+F_{3}(t) k$ twen:-

$$
\int_{a}^{b} F(t) d t=\int_{a}^{b} F_{1}(t) d t+\int_{a}^{b} F_{2}(t) d t+\int_{c}^{b} F_{3}(t) d t .
$$

path

$$
\begin{aligned}
& A \underbrace{B} \text { "termined point' } \\
& r(t)=\frac{x(t) i+y(t) j+z(t) k}{\text { poramotric wpresentation. }} \text {, }
\end{aligned}
$$

D-f: let $F(r)=F_{1}(r) i+F_{2}(r) j+F_{3}(r) \underline{k}$; be a veetor feild. $F(t)=F(r(t))=F(x, y, z)$, then the line integral is given ?
(1) $\int_{c} F(r) \frac{d r}{=}=\int_{t \rightarrow}^{t_{1}} F\left(r(t) \cdot \frac{r^{\prime}(t) \cdot d t}{L}\right.$
$\square r^{\prime}(t)=\frac{d r}{d t}$
|2] $\int_{C} F(r) d r=\int F_{1}(x, y, z) d x+\int F_{2}(x, y, z) d y+\int F_{3}(x, y, z) d z$
(13) Whare : $d x=x^{\prime}(t) \cdot d t, d y=y^{\prime}(t) \cdot d t, \quad d z=z^{\prime}(t) \cdot d t$.

$$
\begin{aligned}
\int_{c} F(t) \cdot d r & =\int F_{1} x^{\prime}(t) \cdot d t+\int F_{2} y^{\prime}(t) d t+\int F_{3} z^{\prime}(t) \cdot d t . \\
& =\int\left[F_{1} x^{\prime}(t)+F_{2} y^{\prime}(t)+F_{3} z^{\prime}(t)\right] \cdot d t .
\end{aligned}
$$

pe closed bath:
Note: if two bath of integration c is closed curve thun we write.

$$
\int_{c} F \cdot d r=\oint F \cdot d r .
$$

* Propocities of line integration:-

$$
\begin{aligned}
& \rightarrow \int K F \cdot d r=k \int F \cdot d r \\
& \rightarrow \int_{C} F \pm G \cdot d r=\int F \cdot d r \pm \int G \cdot d r \\
& \rightarrow \int_{C} F \cdot d r=\int_{C_{1}} F \cdot d r+\int_{C_{2}} F \cdot d r \\
& \rightarrow \int_{-c} F \cdot d r=-\int_{C} F \cdot d r
\end{aligned}
$$

\rightarrow page lost.

* $r(t)=\cos t i+\sin t ;$
os t $\$ 2 \pi$. "clorox path"
(e) $\overline{\text { Ir }}(2 \pi)$ so it is closed path
- we ane looking for point zero \& 2π not th limit of t we are case of images not domain"
* find \int_{F}. or where.

$$
F(r)=\left[y^{2}, x\right]
$$

(a) c_{1} : live segment form $\underset{r(t)}{(-5,-3)}$ to $(0,2)$

$$
\begin{aligned}
r(t)= & r_{0}+\left(r, r_{0}\right) t \\
\leqslant & -5,3\rangle+(\langle 0,2\rangle-\langle-5,-3\rangle) t \\
& \langle-5+5 t,-3+5 t\rangle
\end{aligned}
$$ pavonetric form".

$$
0 \leqslant t \leqslant 1
$$

(b) C_{2} are pain of the parabola $x=4-y^{2}$ from $(-5,3)$ to $(0,2)$
(b) c_{2}

$$
\begin{aligned}
& x=4-y^{2} \quad \int_{c} F \cdot d r=\int_{t_{0}}^{L_{1}} F \cdot r^{\prime} d t \\
& (-5,-3) \rightarrow(0,2) \quad \\
& \rightarrow y=t \\
& x=4-t^{2} \quad-3 \leqslant t \leqslant 2 \\
& r(t)=x(t) i+y(t) j \\
& \quad\left(4-t^{2}\right) i+t j ;-3 \leqslant t \leqslant 2 \\
& F(r(t))=t^{2} ;+4-t^{2} j ; \quad r^{\prime}(t)=-2 t i+j \\
& \int F \cdot d r \quad=\int_{c}^{2}\left(-2 t^{3}+4-t^{2}\right) d t \quad=\frac{245}{6}
\end{aligned}
$$

pis
line integral depends on $\longrightarrow F$
path. (path dependents)

Hew
Find $\int_{c} y d x+z d y+d z$
when c consider of the line segment from $(2,0,0)$ to $(3,4,5)$ followed by the vertical line segment c_{2} from $(3,4,5)$ to $(3,4,0)$
10.2 path independence of line integral.
*. The line integral $\int F$. dr is path independent if it has same value of all path in a domain.

* Theorems.
π in line integral $\int_{c} F$ or where F_{1}, F_{2}, F_{3} are continuous is poth independunt if and only if F is the gradiant of somme function (f)

$$
F=\nabla \cdot f \longrightarrow \text { potential. }
$$

conservative field
then. $\int_{A}^{B} F d r=f(B)-f(A)$ for one path. (c).

EX.
show that: $\int_{c} F \cdot d r=\int 3 x^{2} d x+2 y z d y+y^{2} d z$ is path in dependence. that find $\int_{(0,1,2)}^{(1,-1,7)} F \cdot d r$.

$$
(0,1,2)
$$

\rightarrow Solution.

$$
\begin{gathered}
F=3 x^{2} i+2 y z j+y^{2} k=\nabla f \\
3 x^{2}=\frac{d f}{\partial x} \quad 2 y z=\frac{d f}{d y} \quad y^{2}=\frac{d f}{d z} . \\
L 3 x^{2} d x=\int \partial f \\
x^{3}+g(y, z)=f(x, y, z)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d f}{d y}=2 y z . \\
& d 0+\frac{d g(y, z}{d y}=2 y z \rightarrow \int d g=\int 2 y z d y \\
& \\
&
\end{aligned}
$$

So

$$
\begin{aligned}
& =f(x, y, z)=x^{3}+y^{2} z+h(z) \\
& \frac{d f}{d z}=y^{2} \\
& 0+y^{Z^{2}}+h^{\prime}(z)=y^{2} \\
& h^{\prime}(z)=0 \\
& \int d h(z) \text { fodz } \\
& h(z)=\text { constant } t=z e r o .
\end{aligned}
$$

$f(x, y, z)=x^{3}+y^{2} z$. So, the line integral is independant

So

$$
\int_{(0,1,2)} F \cdot d r=f(1,-1,7)-f(0,1,2)
$$

Path. Jo is lésluoine
P.S \rightarrow IF $\int F . d r$ is path independent \& $A=B$ then $\int_{A}^{B} F \cdot \delta n=$ zero.

Ex. Find $\int_{c} 3 x^{2} d x+2 y z d y+y^{2} d z$

$$
\begin{aligned}
c: r(t)=[\cos t, \sin t, 0] \quad & \text { ort } t \leqslant 2 \pi \\
& { }^{(0))^{\prime}=(1,0,0)} \stackrel{\longrightarrow}{ } r(2 \pi)=(1,0,0)
\end{aligned}
$$

from the previous exp.
F is lime independent \& $A=B$ so \int_{c} f. or = Zero.

Them [2] The line integral fF.dr is path independont.. if and only if $\oint_{c} F . d r=$ zero for any cloced path. of c.
\rightarrow Note:

$$
\begin{aligned}
& \text { Frt } F=F_{1} i+F_{2} j+F_{3} k=\nabla f \\
& F_{\cdot} d r=F_{1} d x+F_{2} d y+F_{3} \cdot d z
\end{aligned}
$$

$\Delta f=\frac{\partial f}{\partial x} \cdot d x+\frac{\partial f}{\partial y} \cdot \partial y+\frac{d f}{\partial z} \cdot \partial z \quad$ this form is differential form if $F i d r=d f$.
\rightarrow The line integral is path independent if and only if the differential form has Oundions coefficent F_{1}, F_{2}, F_{3} is exact in D.

Than 13
let F_{1}, F_{2}, F_{3} be continues and have cont. first partial derivative in D.

$$
F=\left[F_{1}, F_{2}, F_{3}\right] \text {, then }
$$

if Fife is exact in D (Fi.dr pall independent)
Hun:
Curl $\vec{F}=\overrightarrow{0}$
 -i be un

* curl $\vec{F}=\overrightarrow{0}$
* and domain D is simply connected
\rightarrow Hen n

$$
\int F \cdot d r \text { is exact }\left(\int_{\text {Path indep. })}^{(F \cdot d r \text { is }}\right.
$$

Demure．

\rightarrow simply connected．

－multiple connected
（b） 5 ，\rightarrow nor connected

Monad 任
－$f 1 / \operatorname{ld}(1)$

Ex．
Show that the differential form under the lime integral．

$$
I=\int_{c} 2 x y z^{2} d x+\left(x^{2} z^{2}+z \cos (y z)\right) d y+2 x^{2} y z+y \cos (y x) d z \text {. }
$$

is exact，then find

$$
I=\int_{(0,0,1)}^{(1, \pi / 4,2)}
$$

Solution．

Method 1
1．find f^{*}

$$
\begin{array}{ll}
\frac{d f}{d x}=2 x y z^{2} \rightarrow \frac{d f}{d y}=x^{2} y^{2} z^{2}+z \cos (y z) \\
f=x^{2} y z^{2}+g(y, z) & x^{2} z^{2}+\frac{d y}{\partial y}=x^{2} / z^{2}+z \cos (y z) \\
& g(y, z)=\sin (y z)+h(z)
\end{array}
$$

$$
\begin{aligned}
& f=x^{2} y z^{2}+\sin (y z)+h(z) \\
& \frac{d f}{d z}=2 x^{3} y z+y \operatorname{con}(y z)+h^{\prime}(z)=2 x^{2} y z+y \cos (y z) \\
& h^{\prime}(z)=0 \\
& h(z)=0 \\
& f(x, y, z)=2 x^{2} y z+y \cos (y z)
\end{aligned}
$$

F. or is exact inset. So, \int F. dr is puth inner.

Method 2

Since the domain apply annected.
then find curl F

the. $f\left(1, \frac{\pi}{2}, 2\right)-f(0,0,1)=\pi+1$

Ex.
Let $F=\left[F_{1}, F_{2}, F_{3}\right]$

$$
F_{1}=\frac{-y}{x^{2}+y^{2}} \quad ; \quad F_{2}=\frac{x}{x^{2}+y^{2}} \quad, \quad F_{3}=0
$$

Let the domain $(D)=\frac{1}{2}<\sqrt{x^{2}+y^{2}}<\frac{3}{2}$
Find $\int_{c} F . d r ; c: x^{2}+y^{2}=1$
clos

$$
\begin{aligned}
& \frac{d F_{1}}{d y}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{d F_{1}}{d x}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

$$
\left|\begin{array}{ccc}
i & j & k \\
\text { or or } & \text { dod } & d / \partial z \\
F_{1} & F_{2} & e
\end{array}\right|
$$

not simply
connected.
$\leftarrow \operatorname{curlF}$ ss we $\omega \leftarrow$ Zero Jr से 21

$$
\operatorname{cor} \left\lvert\, F=\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)=\right.\text { zero }
$$

Ali ins

* De dx
* But since D is not Simply Connect
we cant say that \oint F.ds = Zero.
\rightarrow so, we must enlculate $\int_{c} F . d r$.

Solution.

$$
\left.\begin{array}{c}
r=\cos t i+\sin t j \\
r^{\prime}=-\sin t i \rightarrow \cos t j \\
\int_{2 \pi} \frac{-y}{x^{2}+y^{2}} i+\frac{x}{x^{2}+y^{2}} j \\
=\int_{2 \pi}\left(\frac{-\sin t}{\sin ^{2} t}+\cos ^{2} t\right. \\
-\sin t)+\frac{\cos t}{\sin ^{2} t} \cdot \cos 2 \\
2
\end{array}\right) d t .
$$

Ex. find

$$
\int_{c} y d x+(x+z) d y+y d z
$$

when C.

$$
r(t)=\frac{t^{2}+1}{t^{2}-1},+\cos (\pi t) j+2 t \sin (\pi t) k, \quad 0 \leqslant t \leqslant \frac{1}{2}
$$

$$
F=\nabla \cdot f . \quad \partial \mu
$$

$$
F_{1}=\frac{\partial f}{\partial x}, F_{2}=\frac{\partial f}{\partial y}, F_{3}=\frac{\partial f}{\partial z}
$$

(i) $y^{\dot{y}}=\frac{\partial f}{\partial x} \Rightarrow f(x, y, z)=y x+g(y, z)$
(12)

$$
\begin{aligned}
& h+z=k+\frac{d g}{d y} \\
& g(y, z)=z y+h(z)
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \text { (3) } \begin{aligned}
y= & 0+y+h^{\prime}(z) \rightarrow h^{\prime}(z)=0 \rightarrow h(z)=0 \\
f(x, y, z) & =x y+y z \\
\text { so } & \int_{c} y d x+(x+z) d y+y d z=f(B)-f(A) \\
& t \rightarrow 0 \rightarrow A(-1,1,0) \\
& \in \rightarrow 1 / 2 \rightarrow B\left(-\frac{5}{3}, 0,1\right) \\
& =f\left(-\frac{5}{3}, 0,1\right)-f(-1,1,0)=0 \cdots=\text { II }
\end{aligned}
\end{aligned}
$$

HOMEWORK

$$
\int_{c} \text { F.or whane } F=\left[\frac{x}{1+x^{2}+y^{2}+z^{2}} ; \frac{y}{1+x^{2}+y^{2}+z^{2}} ; \frac{z}{1+x^{2}+y^{2}+z^{2}}\right]
$$

when $c: r(t)=\left[t, t^{2}, t^{4}\right]$ ort $\leqslant \mid$
solution

$$
f=\frac{1}{2} \ln \left(x^{2}+y^{2}+z^{2}+1\right)
$$

10.4 Double integral

$$
\iint_{R} f(x, y) d A .
$$

\#Type I

$$
\iint_{R} f(x, y) \cdot d A=\int_{C}^{D} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d x d y
$$

\# Type II

$$
\iint_{R} f(x, y) d A=\iint_{A} h_{1}(y) f(x, y) d y \cdot d x
$$

* Polar coordinate :-

$$
\begin{gathered}
x=r \cos \theta, y=r \sin \theta \\
r^{2}=x^{2}+y^{2} \\
\iint_{R} f(x, y) \cdot d A=\iint_{\theta_{1}} \alpha(\theta) f(r \cos \theta, r \sin \theta) \cdot r \cdot d r . d \theta .
\end{gathered}
$$

+ Applications:-
(1) $\iint_{R} \ldots . d A$ "Anear of region R " \&e,
(2) $\iint_{R} f(x, y) \cdot \partial A=$ volume of $z=f(x, y)>0$

2 above region R in the $x y$-plane.:

EX. 9. p. 432 .
Find the volume of the region $z=4 x^{2}+9 y^{2}$ and above the negtangle with vertices

$$
\begin{array}{lll}
& (0,0),(3,0),(3,2),(0,2) & \text { in the } x y- \\
\hline(2,0) & \int_{0}^{2} \int_{0}^{3}\left(4 x^{2}+9 y^{2}\right) d x \cdot d y=144
\end{array}
$$

Ex.
Find the volume of the region above the $x y$-plane 2. belwo $z=1-\left(x^{2}+y^{2}\right) \quad \longrightarrow$ so $z=0$就 $\nu 1$ 品

$$
0=1-\left(x^{2}+y^{2}\right)
$$

$x y$-plane $J 1$ es

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 1-\left(x^{2}+y^{2}\right) d y \cdot d x
$$

$$
\begin{aligned}
& y^{2}=1-x^{2} \\
& y= \pm \sqrt{1-x^{2}}
\end{aligned}
$$

\downarrow or in polar

$$
\begin{aligned}
& \iint_{R} 1-\left(x^{2}+y^{2}\right) d x \cdot d y . \\
& \int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2}\right) \cdot r \cdot d r \cdot d \theta .
\end{aligned}
$$

$\sec 10.4$.

* Green's Tho:-
(transphormation between double integral $\&$ line integral).

Tho:-
let P be a closed bounded region in the $x y$-plane boundary C. consist of finite many smith Curves, let $F_{1}(x, y), F_{2}(x, y)$ be functions that are continuous 2 have continuous partial derevative $\frac{d F_{1}}{d y}, \frac{d F_{2}}{d x}$ everywhere in domain Containing R, then :-

$$
\iint_{R}\left(\frac{d F_{2}}{d y}-\frac{d F_{1}}{d x}\right) d x d y=\oint F_{1} d x+F_{z^{\prime}} d y
$$

Ea.

$$
\begin{aligned}
& F_{1}=y^{2}+7 x, F_{2}=2 x y+x . \\
& c: x^{2}+y^{2}=1, \quad[0: 2 \pi]
\end{aligned}
$$

Solo:-

$$
\begin{aligned}
& x=\cos t, y=\sin t . \\
& r(t)=\cos t ;+\sin t j \\
& r^{\prime}(t)=-\sin t i+\cos t \dot{j} \\
& \left.\oint_{0}\left(F_{1} \epsilon^{\prime}+F_{2}{ }^{2}\right\rangle\right) \cdot d t . \\
& =\int_{0}^{2 \pi}\left[\left(\sin ^{2} t-7 \sin t\right) \cdot \sin t+(2 \cos t \cdot \sin t+\cos t) \cdot \cos t\right] \cdot d t \\
& =\int_{0}^{2 \pi}-\sin ^{3} t-7 \sin t+2 \cos ^{2} t \sin t+\cos ^{2} t \cdot d t=9 \pi
\end{aligned}
$$

Sou 2:

$$
\begin{aligned}
& \iint_{R}\left(\frac{d F_{2}}{\partial x}-\frac{d F_{1}}{\partial y}\right) d x d y, \frac{d F_{2}}{\partial x}=2 y+1, \frac{d F_{1}}{d y}=2 y-7 . \\
& \int_{R}(2 y+1)-(2 y-7), d x d y=\underline{=}=
\end{aligned}
$$

Ex. $\oint x y \cdot \delta x+x^{2} y^{3} \cdot d y \quad \rightarrow \quad F_{1}=x y \quad F_{2}=x^{2} y^{3}$

$$
R(0,0),(1,0),(1,2) \quad \text { 图 } \frac{d F_{1}}{d y}=x, \frac{d F_{2}}{d x}=2 x y^{3}
$$

$$
\int_{0}^{2 x} \int_{0}^{1}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \cdot d x d y=\frac{(2 x)^{y}}{4}-\frac{(2 x)^{2}}{4}
$$

Ex.

$$
F=\left[6 y^{2}=2 x-2 y^{4}\right]
$$

R : square with vertices $\pm(2,2), \mp(2,-2)$

Sole:-

$$
\begin{array}{c|l}
-2 \leqslant x \leqslant 2 & F_{1}=6 y^{2} \rightarrow d F_{1} \mid \partial y=12 y \\
-2 \leqslant y \leqslant 2 & F_{2}=2 t-2 y^{2} \rightarrow d F_{2} \mid d x=2 \\
\left.\rightarrow \int_{-2}^{2} \int_{-2}^{2} 2-12 y \cdot d x \cdot \partial y=\int_{-2}^{2} 2 x-12 y x\right]_{-2}^{2} \cdot d y=\int_{-2}^{2} 8-48 y \cdot d x \\
=8 y-\left.\frac{42}{2} y^{2}\right|_{-2} ^{2}
\end{array}
$$

* Some app of Green's The
(III) Area of aplane as line integral on the boundary.

$$
\begin{aligned}
& F_{1}=0, \quad F_{2}=x . \\
& \oint F(r(t)) \cdot d r=\iint_{R} 1 . d x \cdot d y \\
& A=\frac{1}{2} \oint x \cdot \delta y-y \delta x \quad, F_{1}=-y, F_{2}=0 \\
& \iint_{R}-d x d y \\
& x=a \cos t, y=b \sin t, x^{\prime}=-a \sin t, y^{\prime}=b \cos t \\
& A=\frac{1}{2} \int_{0}^{2 \pi} a \cos t * b \cos t-b \sin t^{*}(-a \sin t) \cdot d t \\
& A=\frac{1}{2} \int_{0}^{2 \pi} a b \cos ^{2} t+a b \sin ^{2} t . d t=\int_{0}^{\frac{1}{2}} a b . d t=a b \pi .
\end{aligned}
$$

(III) Area of plane Res. Region on polar coordinate.

$$
\begin{aligned}
& x=r \cos \theta \rightarrow x^{\prime}=\rightarrow \cos \theta \cdot d r-r \sin \theta \cdot d \theta . \\
& y=r \sin \theta \rightarrow r^{\prime}=\sin \theta \cdot d r+r \cos \theta \cdot d \theta . \\
& A=\frac{1}{2} \oint r \cos \theta(r \sin \theta \cdot d r+r \cos \theta \cdot d \theta)-r \sin \theta(\cos \theta \cdot d r-r \sin \theta \cdot d \theta) \\
& A=\frac{1}{2} \oint r \cos \theta \sin \theta \cdot d r+r^{2} \cos ^{2} \theta \cdot d \theta-r \sin \theta \cos \theta \cdot d r+r^{2} \sin ^{2} \theta \cdot d \theta
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{1}{2} \oint r^{2} \cos ^{2} \theta d \theta+r^{2} \sin 2 \theta d \theta \\
& =\frac{1}{2} \oint r^{2}\left(\cos ^{2} t+\sin ^{2} t\right) \cdot \partial \theta
\end{aligned}
$$

) $\underset{\substack{\text { in polar }}}{A}=\frac{1}{2} \oint r^{2} \cdot d \theta$.

$$
\begin{aligned}
& r=a(1-\cos \theta), 0 \sin \theta 2 \pi \\
& A=\frac{1}{2} \int_{0}^{2 \pi} a^{2}\left(1-2 \cos \theta+\cos ^{2} \theta\right) \cdot d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi} a^{2}\left(1-2 \cos \theta+\frac{1}{2}(1+\cos 2 \theta) \cdot d \theta\right.
\end{aligned}
$$

(III transphormation of double integral of laplacian of a function into a line integral of its normal derivative.
$\omega(x, y) \Rightarrow F_{1}=d \omega / d y, F_{2}=d \omega / d x$, cont. on R.

$$
\begin{aligned}
& \frac{d F_{1}}{d y}=\frac{d^{2} \omega}{d y^{2}}, \frac{d F_{2}}{\partial x}=\frac{d^{2} \omega}{\partial x^{2}} \\
& \oint F_{1} d x+F_{2} d y \\
& \oint\left(F_{1} \frac{d x}{d s}+F_{2} \frac{d y}{\partial s}\right) \cdot d s=\oint\left(-\frac{d \omega}{\partial y} \cdot \frac{d x}{d s}+\frac{d \omega}{d x} \cdot \frac{d y}{d s}\right) \cdot d s \\
& \operatorname{grad}(\omega) \cdot n=\left[\frac{d \omega}{\partial x}, \frac{d \omega}{d y}\right] \cdot\left[\frac{d y}{d s}, \frac{d x}{d s}\right]=\frac{d \omega}{d x}: \frac{d y}{d s}-\frac{d \omega}{d y} \cdot \frac{\partial x}{d s}
\end{aligned}
$$

كـامْرَ

* Green's the.

$$
\int_{R}^{c} \iint_{R}\left(\frac{d F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \cdot \frac{\partial x \cdot d y}{\delta A}=\oint F_{1} d x+F_{2} d y
$$

OR:
J \int_{R} curl $F \cdot K d x \cdot d y=\oint F \cdot d r$ where:

$$
F=F_{1} i+F_{2} j+0 k .
$$

Ex.
Find $\int_{c} x^{4} \cdot d x+x y \cdot d y$.
where:
C : triangle a consisting line segments from $(0,0)$ to $(1,0)$ 2 from $(1,0)$ to $(0,1) \rightarrow L_{2}$ Line 1 2 from $(0,1)$ to $(0,0) \rightarrow L 3$

Sulu:-

L3, L2, L1 us div uर्ट金》 ito
ا

$$
\text { Od } \Sigma^{-} \stackrel{N}{=} d \Sigma
$$ J path. indef.

$$
\begin{align*}
& y=1-x,(x=1-y) \\
& \left.\oint_{c} x_{F_{1}}^{x^{y}} \cdot d x+\int_{F_{2}}^{x y}\right) \cdot d y=\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)=\int_{0}^{1} \int_{0}^{1-y}(y-0) \cdot d x \cdot d y= \tag{1}
\end{align*}
$$

Ex.
(a) let $F=\left[-e^{-x} \cos y_{1}-e^{-x} \sin y\right]$

$$
R: \text { is semidisk } x^{2}+y^{2} \leqslant 16, x \geqslant 0
$$

find:
$\int_{c} F \cdot d r$ counter clock wise around c.

$$
F=-e^{-x} \cos y i-e^{-x} \sin y j
$$

then
we can find f thot $\nabla \cdot f=F\left(f=e^{-x} \cos y\right)$
so $\int F$.dr is puth independent
So, $\int F \cdot d r=$ zero.
(b)

Find $\int_{c 1}$ F.dr where
c_{1} : is the opper half of $x^{2}+y^{2}=16$

Solv:

$$
\begin{aligned}
& \int F \cdot d r . \\
& r=4 c u m \ldots
\end{aligned}
$$

Greenthm Ju siv so

U R, R, graen Jlar.

$$
\left(\int_{c} F \cdot d r\right)=\int_{c_{1}} F \cdot d r+\int_{c_{2}} F \cdot d r
$$

$$
\text { closed } \sim c J \rightarrow \overbrace{c_{2}}^{c 1}
$$

So $\rightarrow \mathrm{Li}+\mathrm{Clis}$

$$
\begin{aligned}
r(t)= & r_{0}+\left(r_{1}-r_{0}\right) t . \\
& {[-4,0]+[8,0] t } \\
r(t)= & {[-4+8 t, 0], 0, t \leqslant 1 } \\
r^{\prime}(t)= & {[8,0] } \\
1 & \int_{0}^{1}-e^{-(-4+2 t)} \cos \cos i-e^{-(-4+8 t)} \sin (0) j \\
= & e^{4}-e^{-4} \#
\end{aligned}
$$

elosed.
aver Jotsul line.
10.5 Surfaces for surface integral
"Surface in $x y z$ - space are $z=f(x, y)$ or $g(x, y, z)=0$.

* parametric representation of a surface s is

$$
r(u, v)=[x(u, v), y(u, v), z(u, v)]
$$

* Tangent plane \& surface normal.
\rightarrow normal. vector of a surface (s) at point (p) is

$$
N=r_{u} \times r_{v} \neq 0
$$

 parametric repusentiontm
unit normal : $n=\frac{N}{|N|}$: IF S repuesented by

$$
\begin{aligned}
& g(x, y, z)=0 \\
& n=\frac{\nabla g}{|\nabla g|}
\end{aligned}
$$

\rightarrow to write plane equation 1 needed.
II normal vector 12 point init.
Vector equation $-f$ the plane $=n\left(r-r_{0}\right)=0$

$$
n=[u, b, c]
$$

$$
\left[x_{0}, y_{0}, z_{0}\right]
$$

$p_{0}\left(x_{0}, y_{0}, z z_{0}\right)$ is normal (point in plane.)
Corthogonal)
vector to
the plane.
 make 2 vectors from the 3 points then by cross product find the normal.

Ex.
Find the tangent plane to the surface S with parametric $e q$.

$$
x=u^{2}, y=v^{2}, z=u+2 v ; \text { at the point }(1,1,3)
$$

$$
\left.\begin{array}{l}
r_{u}=2 u i+0 j+k \\
v_{v}=0 i+2 v j+2 k
\end{array}\right\} \text { cross }
$$

$$
W=r_{u} \times r_{v}=\left|\begin{array}{lll}
i & j & k \\
2 u & 0 & 1 \\
0 & 2 v & 2
\end{array}\right|=-2 v i+4 u j+4 u v k
$$

at point $(1,1,3)$

$$
x=1 \quad \frac{1}{y}=1 \quad z=3
$$

So:

$$
\begin{aligned}
& x=u^{2}=1 \\
& y=v^{2}=1 \rightarrow u= \pm 1 \\
& z=u+2 v
\end{aligned}
$$

$$
\begin{array}{llll}
u=1 & v=1 & z=3 v & \text { So, Normal rector } \\
u=-1 & v=-1 & z \neq 3 \times & N=C 2 i,-4 j \\
u=-1 & v=1 & z \neq 3 \times & N=-2 i-4 j+4 k .
\end{array}
$$

Jain surface il cis parametric eq wapineserts

$$
u=1 \quad v=-1 \quad z \neq 3 \quad x
$$

* tangent plane eq is:

$$
\begin{aligned}
& \langle-2,-4,4\rangle .\langle x-1, y-1, z-3\rangle=0 \\
& -2 x-4 y+4 z-2=0
\end{aligned}
$$

\# parametric eq of plane is:-

$$
\begin{aligned}
& r(u, v) \\
& r(u, v)=\left[u, v, \frac{-1}{c}(a u+b v+d)\right]
\end{aligned}
$$

$$
\begin{aligned}
& a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 \\
& a x+b y+c z+d=0 \\
& z=\text { function }(x, y) \\
& z=\frac{(-a x-b y-d)}{c}, \text { let } x=u ; y=v
\end{aligned}
$$

$z=\frac{-a u-b v-d}{c}$, so parametric eq of plane is.
So

$$
\left[u, v, \frac{-1}{c}(a u+b v+d)\right]
$$

\# parametric eq of surface:-

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}=a^{2} \\
& r(u, v)=[a \cos v \cos u, a \cos v \sin u, a \sin v]
\end{aligned}
$$

\rightarrow find unit normal vector of the plane

$$
g(x, y, z)=x^{2}+y^{2}+z^{2}-a^{2}
$$

first way $r_{e} \times r_{r}=N$
Hon $n=\frac{N}{|N|}$
secund way.

$$
\begin{aligned}
& \nabla g=2 x i+2 y j+2 z k \\
&|\nabla g|= \sqrt{4 x^{2}+4 y^{2}+4 z^{2}}=2 \sqrt{a^{2}}=2 a \\
& n=\frac{\nabla g}{(\nabla g \mid}=\frac{2 x i+2 y j+2 z k}{2 a}=\frac{1}{a}(x i+y j+z k) \\
& \quad[\text { center of } \\
&(0,0)]
\end{aligned}
$$

HeW
find parametric neporsentation

$$
z=4 x^{2}+y^{2} \text { then }
$$

find unit normal vector.

* parametric eq of circular cylinder

$$
\begin{array}{cl}
x^{2}+y^{2}=a^{2},-1 \leqslant z \leqslant 1 & \\
r(u, v)=[a \cos u, a \sin u, v] & 0<u \leqslant 2 \pi \\
& -1 \leqslant v \leqslant 1
\end{array}
$$

* Find parametric representation of der cylinder

$$
\begin{gathered}
\frac{x^{2}}{9}+\frac{z^{2}}{4}=1 \quad, 0 \leqslant y \leqslant 1 \\
\left.\begin{array}{l}
x=3 \cos u \\
y=2 \sin u \\
y=v
\end{array}\right\} r(u r v)=[3 \cos u, 2 \sin u, v] \\
\begin{array}{c}
0 \leqslant u \leqslant 2 \pi \\
0 \leqslant v \leqslant 1
\end{array}
\end{gathered}
$$

* parametric representation of circular cone

$$
\begin{aligned}
z^{2} & =x^{2}+y^{2} \\
-a & \leqslant z \leqslant a \\
r(u, v) & =[\cos v, a \sin v, u]
\end{aligned}
$$

EN \rightarrow Find unit normal of circular care
Sole \rightarrow

$$
\begin{aligned}
g & =x^{2}+y^{2}-z^{2} \\
\nabla g & =2 x i+2 y j-2 z k \\
\log 1 & =\sqrt{4 x^{3}+4 y^{2}+4 z^{2}}=2 \sqrt{x^{2}+y^{2}+z^{2}}=\sqrt[2]{z^{2}+z^{2}}=2 \sqrt{2} z \\
n & =\frac{1}{\sqrt{2}}\left(\frac{x}{2} i+\frac{y}{2} j+\frac{z}{2} k\right)
\end{aligned}
$$

