	University of Jordan		
Numerical Methods 903301 Student Name:	Elect. Eng. Dept. First Exam Reg. No.	Tuesday 6/3/2018	
Answers should be written in ink	Exam Duration: 70 min	Mark out of 30	44
	g is used, and 1,1,2,and 2 deciment, and the significand (mantis	umber normalization. For floating mal digits are allocated for the nussa) respectively. With this computes	mber
what is the maximum positiv	e floating point number given by	y this computer.	
What floating point answ	ver will this computer give for (0.	5×10 ⁵⁵) ² .	
	,		
What result does this com	puter give for $\frac{\sqrt{19}}{\sqrt{5}}$?.		
Is this computer good for as a floating point	representing ($1/250$) $_{10}$ exactly?.	If yes, what is the answer representation	ented
b) Assuming a computer follo	ows a 1114 decimal digit allocation	n with number chopping.	
	gives for $\sqrt{x^2+1}-x$ at $x=65$.		
		•	
Suggest an equivalent rear	rrangement to improve the accuracy	y. What is the new result now?	A STATE OF
		108	
c) A base 5 computer follows a 111.	3 digit allocation with number cho	opping. Using this computer.	
i)What is the floating point number rep	presentation of (2.5) ₁₀ ?		
What is the percent true relative err	ror involved?		

ii) What is the signed minimum integer number that is possible with this computer.

iii) Without numerical validation, Can 3.03235 2143 in base 5 represent π ? Why?

Q2) Write a MATLAB m.file program to determine a zero of the function $e^x - 2x - 1$ using the bisection method. The program stops when it satisfies an approximate relative error of 10-8. It prints out a table containing the iteration number as integer, the value of the approximate zero, and the percent relative error at that iteration. The print out should show 6 digits to the right of the decimal point of the floating point variables being printed out. (7 marks)

Space for your final $g(x)$	Results of the first 4 iterations
	2
First choice to determine GR	*
	100
	La la
Second choice to determine GR	
	**
Third choice to determine the second zero	•
Third choice to determine the second 2016	
	ja
"	

Q4 To confirm the value of GR obtained in Q3, use the <u>false position method</u> in the interval [1 2]. Perform <u>two</u> iterations only. (5 marks)