
1/31/2015

1

Lecture 1: What is MATLAB?

Dr. Mohammed Hawa
Electrical Engineering Department

University of Jordan

EE201: Computer Applications. See Textbook Chapter 1.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

MATLAB

• MATLAB (MATrix LABoratory) is a numerical
computing environment and programming language.

• Developed by MathWorks.
• MATLAB is widely used to solve engineering and

science problems in academic and research institutions
as well as the industry.

• In MATLAB, problems are expressed in familiar
mathematical notation.

• MATLAB is an interactive system whose basic data
element is a matrix (remember C/C++ arrays!).

• Open-source alternative is: GNU Octave.
• Paid alternative: LabVIEW MathScript

2

1/31/2015

2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

MATLAB can be used for:

• Matrix manipulations (math computations).
• Data analysis, exploration, and plotting.
• Implementation of algorithms.
• Creation of user interfaces.
• Data acquisition.
• Interfacing with programs written in other

languages, (e.g., C, C++, Java, and Fortran).
• An optional toolbox (with MuPAD symbolic

engine) allows accessing symbolic computing.
• An additional package, Simulink®, adds graphical

simulation and model-based design.

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Like a VERY advanced calculator

Would you go to an
engineering exam
without a calculator?

4

1/31/2015

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Solving Simultaneous Equations

• Find the values of x
and y that satisfy the
following equations
simultaneously :

• Can be solved by
hand to get:
x = 1, y = 2

• Remember how?

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Simultaneous Equations

• Solving simultaneous
equations:

• Can be solved by
hand to get:

x = 1.2, y = 2.8,
z = 0.6

• How?

6

1/31/2015

4

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Solving Simultaneous Equations

• Many variables:

• Humans are note good at this.
MATLAB (a computer software) is!

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

MATLAB solution

8

1/31/2015

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

MATLAB is powerful!

• We often need to solve systems with 10,000
or 100,000 simultaneous equations (could be
non-linear or differential equations too)

• Can be done very quickly using a computer

• This is common in engineering
– Electrical circuits

– Image recognition

– Communication systems (MIMO, OFDM, etc)

– Operations research

– Mechanics and dynamics, etc

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

MATLAB vs. Programming languages

• MATLAB is a vector-based numerical
analysis language:
– Can be used as an advanced calculator and

graphing tool
– Also can be used as a programming language

• This is different than the programming
languages you are familiar with (C, C++, …)
– Can be a little frustrating since it takes time and

effort to write code in MATLAB
– But the code is very effective and can be refined

gradually

10

1/31/2015

6

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Know about MATLAB

• MATLAB is easy to begin with but needs hard work to
master.

• MATLAB is optimized for performing matrix operations.
• MATLAB is interpreted

– for the most part slower than a compiled language such as C++
– but interactive and simplifies fixing errors

• Although primarily procedural, MATLAB does have some
object-oriented elements.

• MATLAB is NOT a general purpose programming language
• MATLAB is designed for scientific computation and is not

suitable for some things (such as parsing text)
• MATLAB is very useful for data analysis and rapid

prototyping, but is not designed for large-scale system
development.

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Let us run MATLAB …

12

1/31/2015

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

MATLAB Environment

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

MATLAB as a Calculator

• You can enter
expressions at the
command line and
evaluate them right
away.

• The >> symbols
indicate where
commands are
typed.

14

1/31/2015

8

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Mathematical Operators

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Order of Precedence (BEDMAS)

• B = Brackets
• E = Exponentials
• D = Division
• M = Multiplication
• A = Addition
• S = Subtraction

• Careful using brackets:
check that opening and
closing brackets are
matched up correctly.

16

1/31/2015

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Order of Precedence

Precedence Operation
First Parentheses (), evaluated starting with the

innermost pair.
Second Exponentiation (power) ^ , evaluated from

left to right.
Third Multiplication * and division / with equal

precedence, evaluated from left to right.
Fourth Addition + and subtraction - with equal

precedence, evaluated from left to right.

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise:
Try it

yourself

>> 8 + 3*5

ans =

 23

>> 8 + (3*5)

ans =

 23

>> (8 + 3)*5

ans =

 55

>> 4^2-12- 8/4*2

ans =

 0

>> 4^2-12- 8/(4*2)

ans =

 3

18

1/31/2015

10

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Entering Commands

• MATLAB retains your previous keystrokes.
• Use the ↑ key to scroll back through previous

commands.
• Press the ↑ key once to see the previous entry, and

so on.
• Use the ↓ key to scroll forward.
• Edit a line using the ← and → arrow keys, the

Backspace key, and the Delete key.
• Press the Enter key to execute the command.
• You can copy (highlight & ctrl+c) from Command

History window to the Command Window.

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Built-in Math Constants

pi �: ratio of circle's
circumference to its diameter

i √−1: Imaginary unit

j √−1: Imaginary unit

Inf ∞: Infinity

NaN Not-a-Number

intmax Largest value of integer type

intmin Smallest value of integer type

ans Temporary variable
containing the most recent
answer

eps The accuracy of floating
point precision

 …

>> 2*pi

ans =

 6.2832

>> Inf+100000

ans =

 Inf

>> format long g

>> 2*pi

ans =

6.28318530717959

>> 1+ans

ans =

7.28318530717959

20

1/31/2015

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise
>> 1/0

ans =

 ???

>> 0/0

ans =

 ???

>> 7/2*i

ans =

 ???

>> 7/2i

ans =

 ???

21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise: Answers
>> 1/0

ans =

 Inf

>> 0/0

ans =

 NaN

>> 7/2*i

ans =

 0 + 3.5000i

>> 7/2i

ans =

 0 - 3.5000i

22

1/31/2015

12

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Possible Formats

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Built-in Functions

• Like a calculator,
MATLAB has many
built-in mathematical
functions.

24

>> log2(131072)

ans =

 17

>> sqrt(4)

ans =

 2

>> abs(-3)

ans =

 3

>> exp(-1)

ans =

0.367879441171442

1/31/2015

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Common Built-in Functions

25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise: Discussed Later…

x = 0:pi/100:2*pi;

y = sin(x);

plot(x,y)

• By the way, what is

the purpose of the
semicolon at the end
of the command?

26

1/31/2015

14

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise: Discussed Later…

x = 0:pi/100:2*pi;

y = sin(x);

plot(x,y)

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

27

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise 2: Discussed Later…

[X,Y] = meshgrid(-10:0.25:10,-10:0.25:10);

f = sinc(sqrt((X/pi).^2+(Y/pi).^2));

surf(X,Y,f);

axis([-10 10 -10 10 -0.3 1])

28

1/31/2015

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise 2: Discussed Later…

[X,Y] = meshgrid(-10:0.25:10,-10:0.25:10);

f = sinc(sqrt((X/pi).^2+(Y/pi).^2));

surf(X,Y,f);

axis([-10 10 -10 10 -0.3 1])

-10

-5

0

5

10

-10

-5

0

5

10

-0.2

0

0.2

0.4

0.6

0.8

1

xy

s
in

c
 (

R
)

29

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

To Know More: help
>> help

HELP topics:

matlab\general - General purpose commands.

matlab\ops - Operators and special characters.

matlab\lang - Programming language constructs.

matlab\elmat - Elementary matrices and matrix manipulation.

matlab\randfun - Random matrices and random streams.

matlab\elfun - Elementary math functions.

matlab\specfun - Specialized math functions.

matlab\matfun - Matrix functions - numerical linear algebra.

matlab\datafun - Data analysis and Fourier transforms.

matlab\polyfun - Interpolation and polynomials.

matlab\funfun - Function functions and ODE solvers.

matlab\sparfun - Sparse matrices.

matlab\scribe - Annotation and Plot Editing.

matlab\graph2d - Two dimensional graphs.

matlab\graph3d - Three dimensional graphs.

matlab\specgraph - Specialized graphs.

matlab\graphics - Handle Graphics.

matlab\uitools - Graphical User Interface Tools.

matlab\strfun - Character strings.

matlab\imagesci - Image and scientific data

matlab\plottools - Graphical User Interface Tools.

fuzzy\fuzzy - Fuzzy Logic Toolbox

images\images - Image Processing Toolbox

signal\signal - Signal Processing Toolbox

wavelet\wavelet - Wavelet Toolbox

...

30

1/31/2015

16

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Go inside: help
>> help elfun

 Elementary math functions.

 Trigonometric.

 sin - Sine.

 sind - Sine of argument in degrees.

 sinh - Hyperbolic sine.

 asin - Inverse sine.

 asind - Inverse sine, result in degrees.

 asinh - Inverse hyperbolic sine.

 cos - Cosine.

 ...

 Exponential.

 exp - Exponential.

 expm1 - Compute exp(x)-1 accurately.

 log - Natural logarithm.

 log1p - Compute log(1+x) accurately.

 log10 - Common (base 10) logarithm.

 log2 - Base 2 logarithm and dissect floating point num.

 pow2 - Base 2 power and scale floating point number.

 realpow - Power that will error out on complex result.

 reallog - Natural logarithm of real number.

 ...

 Rounding and remainder.

 fix - Round towards zero.

 floor - Round towards minus infinity.

 ceil - Round towards plus infinity.

 round - Round towards nearest integer.

 mod - Modulus (signed remainder after division).

 rem - Remainder after division.

 sign - Signum.

31

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

For a specific function: help exp

>> help exp

 EXP Exponential.

 EXP(X) is the exponential of the elements of X, e to the X.

 For complex Z=X+i*Y, EXP(Z) = EXP(X)*(COS(Y)+i*SIN(Y)).

 See also expm1, log, log10, expm, expint.

 Overloaded methods:

 codistributed/exp

 fints/exp

 Reference page in Help browser

 doc exp

32

1/31/2015

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

To Know More: doc abs

33

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Where do you get more help?

• Read your textbook.

• Practice the end-of-chapter examples.

• References in the syllabus.

• MATLAB Central:
http://www.mathworks.com/matlabcentral/

• Google

• YouTube

34

1/31/2015

1

Lecture 2: Variables, Vectors
and Matrices in MATLAB

Dr. Mohammed Hawa
Electrical Engineering Department

University of Jordan

EE201: Computer Applications. See Textbook Chapter 1 and Chapter 2.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Variables in MATLAB
• Just like other programming

languages, you can define
variables in which to store
values.

• All variables can by default
hold matrices with scalar or
complex numbers in them.

• You can define as many
variables as your PC memory
can hold.

• Values in variables can be
inspected, used and changed

• Variable names are case-
sensitive, and show up in the
Workspace.

>> A = 5

A =

 5

>> d = 7

d =

 7

>> LightSpeed = 3e8

LightSpeed =

 300000000

2

1/31/2015

2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Variables

• You can change the
value in the variable by
over-writing it with a
new value

• Remember that variables
are case-sensitive (easy
to make a mistake)

• Always left-to right
>> variable = expression

>> a = 7

a =

 7

>> b = 12

b =

 12

>> b = 14

b =

 14

>> B = 88

B =

 88

>> c = a + b

c =

 21

>> c = a / b

c =

 0.5000

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

• Develop MATLAB
code to find Cylinder
volume and surface
area.

• Assume radius of 5 m
and height of 13 m.

� = ��
2
ℎ

� = 2��2 + 2��ℎ = 2���� + ℎ�

4

1/31/2015

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Solution

5

>> r = 5

r =

 5

>> h = 13

h =

 13

>> Volume = pi * r^2 * h

Volume =

 1.0210e+003

>> Area = 2 * pi * r * (r + h)

Area =

 565.4867

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Useful MATLAB commands

6

1/31/2015

4

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Vectors and Matrices (Arrays)

• So far we used MATLAB variables to
store a single value.

• We can also create MATLAB arrays that
hold multiple values
– List of values (1D array) called Vector

– Table of values (2D array) called Matrix

• Vectors and matrices are used
extensively when solving engineering
and science problems.

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Row Vector

• Row vectors are special cases of matrices.

• This is a 7-element row vector (1 × 7 matrix).

• Defined by enclosing numbers within square
brackets [] and separating them by , or a space.

>> C = [10, 11, 13, 12, 19, 16, 17]

C =

 10 11 13 12 19 16 17

>> C = [10 11 13 12 19 16 17]

C =

 10 11 13 12 19 16 17

8

1/31/2015

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Column Vector

• Column vectors are special cases of matrices.

• This is a 7-element column vector (7 × 1 matrix).

• Defined by enclosing numbers within [] and
separating them by semicolon ;

>> R = [10; 11; 13; 12; 19; 16; 17]

R =

 10

 11

 13

 12

 19

 16

 17

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix
• This is a 3 × 4-element matrix.
• It has 3 rows and 4 columns (dimension 3 × 4).
• Spaces or commas separate elements in different columns,

whereas semicolons separate elements in different rows.
• A dimension n × n matrix is called square matrix.

>> M = [1, 3, 2, 9; 6, 7, 8, 1; 7, 4, 6, 0]

M =

 1 3 2 9

 6 7 8 1

 7 4 6 0

>> M = [1 3 2 9; 6 7 8 1; 7 4 6 0]

M =

 1 3 2 9

 6 7 8 1

 7 4 6 0

10

1/31/2015

6

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Transpose of a Matrix

• The transpose operation interchanges the rows and
columns of a matrix.

• For an m × n matrix A the new matrix AT (read
“ A transpose”) is an n × m matrix.

• In MATLAB, the A’ command is used for transpose.

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

>> A = [1 2 3; 5 6 7]

A =

 1 2 3

 5 6 7

>> A'

ans =

 1 5

 2 6

 3 7

>> B = [5 6 7 8]

B =

 5 6 7 8

>> B'

ans =

 5

 6

 7

 8

• What happens to a row vector when transposed?

• What happens to a column vector when transposed?

12

1/31/2015

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Useful Functions
length(A) Returns either the number of elements of A if A

is a vector or the largest value of m or n if A is an
m × n matrix

size(A) Returns a row vector [m n] containing the
sizes of the m × n matrix A.

max(A) For vectors, returns the largest element in A.
For matrices, returns a row vector containing the
maximum element from each column.

If any of the elements are complex, max(A)
returns the elements that have the largest
magnitudes.

[v,k] = max(A) Similar to max(A) but stores the maximum
values in the row vector v and their indices in
the row vector k.

min(A)

and
[v,k] = min(A)

Like max but returns minimum values.

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

More Useful Functions

sort(A) Sorts each column of the array A in ascending
order and returns an array the same size as A.

sort(A,DIM,MODE) Sort with two optional parameters:
 DIM selects a dimension along which to sort.
 MODE is sort direction ('ascend' or 'descend').

sum(A) Sums the elements in each column of the array A
and returns a row vector containing the sums.

sum(A,DIM) Sums along the dimension DIM.

14

1/31/2015

8

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercises
>> M = [1 6 4; 3 7 2]

>> size(M)

>> length(M)

>> max(M)

>> [a,b] = max(M)

>> sort(M)

>> sort(M, 1, 'descend')

>> sum(M)

>> sum(M, 2)

>> X = [4 9 2 5]

X =

 4 9 2 5

>> length(X)

ans =

 4

>> size(X)

ans =

 1 4

>> min(X)

ans =

 2

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Solution
>> M = [1 6 4; 3 7 2]

M =

 1 6 4

 3 7 2

>> size(M)

ans =

 2 3

>> length(M)

ans =

 3

>> max(M)

ans =

 3 7 4

>> [a,b] = max(M)

a =

 3 7 4

b =

 2 2 1

>> sort(M)

ans =

 1 6 2

 3 7 4

>> sort(M, 1, 'descend')

ans =

 3 7 4

 1 6 2

>> sum(M)

ans =

 4 13 6

>> sum(M, 2)

ans =

 11

 12

16

1/31/2015

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The Variable Editor [from
Workspace or openvar('A')]

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Creating Big Matrices

• What if you want to create a Matrix that
contains 1000 element (or more)?

• Writing each element by hand is difficult,
time-consuming and error-prone.

• MATLAB allows simple ways to quickly
create matrices, such as:

• Using the colon : operator (very popular).

• Using linspace() and logspace()
functions (less popular, but useful).

18

1/31/2015

10

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Using the colon operator

• MATLAB command X = J:D:K creates vector
X = [J, J+D, ..., J+m*D] where m = fix((K-J)/D).

• In other words, it creates a vector X of values
starting at J, ending with K, and with spacing D.

• Notice that the last element is K if K - J is an
integer multiple of D. If not, the last value is less
than J.

• MATLAB command J:K is the same as J:1:K.
• Note:

– J:K is empty if J > K.
– J:D:K is empty if D == 0, if D > 0 and J > K, or if

D < 0 and J < K.

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example 1

>> x = 0:2:8

x =

 0 2 4 6 8

>> x = 0:2:7

x =

 0 2 4 6

>> x = 4:7

x =

 4 5 6 7

>> x = 7:2

x =

 Empty matrix: 1-by-0

20

1/31/2015

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example 2

>> x = 7:-1:2

x =

 7 6 5 4 3 2

>> x = 5:0.1:5.9

x =

 Columns 1 through 5

 5.0000 5.1000 5.2000 5.3000 5.4000

 Columns 6 through 10

 5.5000 5.6000 5.7000 5.8000 5.9000

>> y = 5:0.1:5.9; % what happened here?!

>>

>> % now create a ‘column’ vector from 1 to 10 using :

21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Alternatives to colon

• linspace command creates a linearly spaced row
vector, but instead you specify the number of
values rather than the increment.

• The syntax is linspace(x1,x2,n), where x1 and
x2 are the lower and upper limits and n is the
number of points.

• If n is omitted, the number of points defaults to 100.
• logspace command creates an array of

logarithmically spaced elements.
• Its syntax is logspace(a,b,n), where n is the

number of points between 10a and 10b.
• If n is omitted, the number of points defaults to 50.

22

1/31/2015

12

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

>> x = linspace(5,8,3)

x =

 5.0000 6.5000 8.0000

>> x = logspace(-1,1,4)

x =

 0.1000 0.4642 2.1544 10.0000

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Special: ones, zeros, rand
>> a = ones(2,4)

a =

 1 1 1 1

 1 1 1 1

>> b = zeros(4, 3) % null matrix

b =

 0 0 0

 0 0 0

 0 0 0

 0 0 0

>> c = rand(2, 4)

c =

 0.8147 0.1270 0.6324 0.2785

 0.9058 0.9134 0.0975 0.5469

% random values drawn from the standard

% uniform distribution on the open

% interval(0,1)

 24

1/31/2015

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Null and
Identity
Matrix

>> eye(4) % identity matrix

ans =

 1 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

 1 2 3

 4 5 6

 7 8 9

>> I = eye(3)

I =

 1 0 0

 0 1 0

 0 0 1

>> A*I

ans =

 1 2 3

 4 5 6

 7 8 9

 25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Determinant & Inverse

>> A = [1 2 3; 2 3 1; 3 2 1]

A =

 1 2 3

 2 3 1

 3 2 1

>> det(A) % determinant

ans =

 -12

>> inv(A) % inverse

ans =

 -0.0833 -0.3333 0.5833

 -0.0833 0.6667 -0.4167

 0.4167 -0.3333 0.0833

>> A^-1

ans =

 -0.0833 -0.3333 0.5833

 -0.0833 0.6667 -0.4167

 0.4167 -0.3333 0.0833

26

1/31/2015

14

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Accessing Matrix Elements

>> C = [10, 11, 13, 12, 19, 16, 17]

C =

 10 11 13 12 19 16 17

>> C(4)

ans =

 12

>> C(1,4)

ans =

 12

>> C(20)

??? Index exceeds matrix dimensions.

27

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Notes

• Use () not [] to access matrix elements.

• The row and column indices are NOT zero-
based, like in C/C++.

• The first is row number, followed by the
column number.

• For matrices and vectors, you can use one of
three indexing methods: matrix row and
column indexing; linear indexing; and logical
indexing.

• You can also use ranges (shown later).

28

1/31/2015

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Accessing Matrix Elements
>> M = [1, 3, 2, 9; 6, 7, 8, 1; 7, 4, 6, 0]

M =

 1 3 2 9

 6 7 8 1

 7 4 6 0

>> M(2, 3)

ans =

 8

>> M(3, 1)

ans =

 7

>> M(0, 1)

??? Subscript indices must either be real

positive integers or logicals.

>> M(9)

ans =

 6

 29

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Linear Indexing

30

1/31/2015

16

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Indexing: Sub-matrix

• v(2:5) represents the second through fifth elements
– i.e., v(2), v(3), v(4), v(5).

• v(2:end) represents the second till last element of v.
• v(:) represents all the row or column elements of vector v.

• A(:,3) denotes all elements in the third column of matrix A.
• A(:,2:5) denotes all elements in the second through fifth

columns of A.
• A(2:3,1:3) denotes all elements in the second and third

rows that are also in the first through third columns.
• A(end,:) all elements of the last row in A.
• A(:,end) all elements of the last column in A.
• v = A(:) creates a vector v consisting of all the columns of A

stacked from first to last.

31

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise
>> v = 10:10:70

v =

 10 20 30 40 50 60 70

>> v(2:5)

ans =

 20 30 40 50

>> v(2:end)

ans =

 20 30 40 50 60 70

>> v(:)

ans =

 10

 20

 30

 40

 50

 60

 70

32

1/31/2015

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise
>> A = [4 10 1 6 2; 8 1.2 9 4 25; 7.2 5 7 1

11; 0 0.5 4 5 56; 23 83 13 0 10]

A =

 4.0000 10.0000 1.0000 6.0000 2.0000

 8.0000 1.2000 9.0000 4.0000 25.0000

 7.2000 5.0000 7.0000 1.0000 11.0000

 0 0.5000 4.0000 5.0000 56.0000

 23.0000 83.0000 13.0000 0 0.0000

>> A(:,3)

ans =

 1

 9

 7

 4

 13

>> A(:,2:5)

ans =

 10.0000 1.0000 6.0000 2.0000

 1.2000 9.0000 4.0000 25.0000

 5.0000 7.0000 1.0000 11.0000

 0.5000 4.0000 5.0000 56.0000

 83.0000 13.0000 0 10.0000

>> A(2:3,1:3)

ans =

 8.0000 1.2000 9.0000

 7.2000 5.0000 7.0000

>> A(end,:)

ans =

 23 83 13 0 10

>> A(:,end)

ans =

 2

 25

 11

 56

 10

>> v = A(:)

v =

 4.0000

 8.0000

 7.2000

 0

 23.0000

 10.0000

 1.2000

 5.0000

 0.5000

 83.0000

 1.0000

 9.0000

 7.0000

 4.0000

 13.0000

 6.0000

 4.0000

 1.0000

 5.0000

 0

 2.0000

 25.0000

 11.0000

 56.0000

 10.0000

 33

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Linear indexing: Advanced

>> A = 5:5:50

A =

 5 10 15 20 25 30 35 40 45 50

>> A([1 3 6 10])

ans =

 5 15 30 50

>> A([1 3 6 10]')

ans =

 5 15 30 50

>> A([1 3 6; 7 9 10])

ans =

 5 15 30

 35 45 50

% indexing into a vector with a nonvector,

the shape of the indices is honored

34

1/31/2015

18

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Linear indexing is useful: find
>> A = [1 2 3; 4 5 6; 7 8 9]

A =

 1 2 3

 4 5 6

 7 8 9

>> B = find(A > 5) % returns linear index

B =

 3

 6

 8

 9

>> A(B) % same as A(find(A > 5))

ans =

 7

 8

 6

 9

35

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Advanced: Logical indexing
>> A = [1 2 3; 4 5 6; 7 8 9]

A =

 1 2 3

 4 5 6

 7 8 9

>> B = logical([0 1 0; 1 0 1; 0 0 1])

B =

 0 1 0

 1 0 1

 0 0 1

>> A(B)

ans =

 4

 2

 6

 9

36

1/31/2015

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Logical indexing is also useful!
>> A = [1 2 3; 4 5 6; 7 8 9]

A =

 1 2 3

 4 5 6

 7 8 9

>> B = (A > 5) % true or false

B =

 0 0 0

 0 0 1

 1 1 1

>> A(B) % same as A(A > 5)

ans =

 7

 8

 6

 9

 37

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Subscripting Examples

38

1/31/2015

20

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

More dimensions possible
>> rand(4,4,3)

ans(:,:,1) =

 0.7431 0.7060 0.0971 0.9502

 0.3922 0.0318 0.8235 0.0344

 0.6555 0.2769 0.6948 0.4387

 0.1712 0.0462 0.3171 0.3816

ans(:,:,2) =

 0.7655 0.4456 0.2760 0.1190

 0.7952 0.6463 0.6797 0.4984

 0.1869 0.7094 0.6551 0.9597

 0.4898 0.7547 0.1626 0.3404

ans(:,:,3) =

 0.5853 0.5060 0.5472 0.8407

 0.2238 0.6991 0.1386 0.2543

 0.7513 0.8909 0.1493 0.8143

 0.2551 0.9593 0.2575 0.2435

• The first index references array
dimension 1, the row.

• The second index references
dimension 2, the column.

• The third index references
dimension 3, the page.

39

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Extending Matrices

• You can add extra elements to a matrix by creating them
directly using ()

• Or by concatenating (appending) them using [,] or
[;]

• If you don’t assign array elements, MATLAB gives them
a default value of 0

>> h = [12 11 14 19 18 17]

h =

 12 11 14 19 18 17

>> h = [h 13]

h =

 12 11 14 19 18 17 13

>> h(10) = 1

h =

 12 11 14 19 18 17 13 0 0 1

40

1/31/2015

21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example
>> a = [2 4 20]

a =

 2 4 20

>> b = [9, -3, 6]

b =

 9 -3 6

>> [a b]

ans =

 2 4 20 9 -3 6

>> [a, b]

ans =

 2 4 20 9 -3 6

>> [a; b]

ans =

 2 4 20

 9 -3 6

 41

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Functions on Arrays

• Standard MATLAB functions (sin, cos, exp, log, etc) can
apply to vectors and matrices as well as scalars.

• They operate on array arguments to produce an array
result the same size as the array argument x.

• These functions are said to be vectorized functions.
• In this example y is [sin(1), sin(2), sin(3)]
• So, when writing functions (later lectures) remember

input might be a vector or matrix.

>> x = [1, 2, 3]

x =

 1 2 3

>> y = sin(x)

y =

 0.8415 0.9093 0.1411

42

1/31/2015

22

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise
>> x = linspace(0, 2*pi, 9) % OR x = linspace(0, 2*pi, 31)

x =

 0 0.7854 1.5708 2.3562 3.1416 3.9270 4.7124 5.4978 6.2832

>> y = sin(x)

y =

 0 0.7071 1.0000 0.7071 0.0000 -0.7071 -1.0000 -0.7071 -0.0000

>> plot(x,y)

43

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix vs. Array Arithmetic

• Multiplying and dividing vectors and
matrices is different than multiplying and
dividing scalars (or arrays of scalars).

• This is why MATLAB has two types of
arithmetic operators:
– Array operators: where the arrays operated on

have the same size. The operation is done
element-by-element (for all elements).

– Matrix operators: dedicated for matrices and
vectors. Operations are done using the matrix as
a whole.

44

1/31/2015

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix vs. Array Operators

Symbol Operation Symbol Operation
+ Matrix addition + Array addition
- Matrix subtraction - Array subtraction
* Matrix multiplication .* Array multiplication
/ Matrix division ./ Array division
\ Left matrix division .\ Left array division
^ Matrix power .^ Array power
* idivide() allows integer division with rounding options

45

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix/Array Addition/Subtraction

• Matrices and arrays are
treated the same when
adding and subtracting.

• The two matrices should
have identical size.

• Their sum or difference
has the same size, and is
obtained by adding or
subtracting the
corresponding elements.

• Addition and subtraction
are associative and
commutative.

46

1/31/2015

24

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

More …

• A scalar value at either side of the operator is
expanded to an array of the same size as the
other side of the operator.

47

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Array Multiplication

• Element-by-element
multiplication.

• Only for arrays that
are the same size.

• Use the .* operator
not the * operator.

• Not the same as
matrix multiplication.

• Useful in
programming, but
students make the
mistake of using *

48

1/31/2015

25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Using Array Multiplication (Plot)

• Plot the
following
function:

• Notice the use
of .* operator

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

>> t = 0:0.003:0.5;

>> y = exp(-8*t).*sin(9.7*t+pi/2);

>> plot(t,y)

49

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Multiplication

• If A is an n × m
matrix and B is a
m × p matrix, their
matrix product AB
is an n × p matrix, in
which the m entries
across the rows of A
are multiplied with
the m entries down
the columns of B.

• In general, AB ≠ BA
for matrices. Be
extra careful.

50

1/31/2015

26

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Multiplication

>> A = [6,-2;10,3;4,7];

>> B = [9,8;-5,12];

>> A*B

ans =

 64 24

 75 116

 1 116

51

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Array Division

• Element-by-element
division.

• Only for arrays that
are the same size.

• Use the ./ operator
not the / operator.

• Not the same as
matrix division.

• Useful in
programming, but
students make the
mistake of using /

52

1/31/2015

27

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Division

• An n × n square
matrix B is called
invertible (also
nonsingular) if
there exists an
n × n matrix B-1

such that their
multiplication is
the identity matrix.

�

�
= � �

−1

� �
−1

= �

53

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Division

>> A = [1 2 3; 3 2 1; 2 1 3];

>> B = [4 5 6; 6 5 4; 4 6 5];

>> A/B

ans =

 0.7000 -0.3000 0

 -0.3000 0.7000 0.0000

 1.2000 0.2000 -1.0000

>> format rat

>> A/B

ans =

 7/10 -3/10 0

 -3/10 7/10 *

 6/5 1/5 -1

54

1/31/2015

28

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Left Division

• Use the left division
operator (\) (back slash)
to solve sets of linear
algebraic equations.

• If A is n × n matrix and B
is a column vector with n
elements, then x = A\B is
the solution to the
equation Ax = B.

• A warning message is
displayed if A is badly
scaled or nearly singular.

55

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework: Mesh Analysis
KVL @ mesh 2:

1(i2 − i1) + 2i2 + 3(i2 − i3) = 0
KVL @ supermesh 1/3:

−7 +1(i1 − i2) + 3(i3 − i2) + 1i3 = 0
@ current source:

7 = i1 − i3

Three equations:
−i1 + 6i2 − 3i3 = 0
i1 − 4i2 + 4i3 = 7
i1 − i3 = 7
Solution:
i1 = 9A, i2 = 2.5A, i3 = 2A

56

1/31/2015

29

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Just between us…

• Matrix division and matrix left division
are related in MATLAB by the equation:

B/A = (A'\B')' % reversing

• To see the details, type: doc mldivide
or type: doc mrdivide

57

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Array Left Division

• The array left division
A.\B (back slash)
divides each entry of B
by the corresponding
entry of A.

• Just like B./A
• A and B must be arrays

of the same size.
• A scalar value for either

A or B is expanded to
an array of the same
size as the other.

>> A = [-4 5; 3 2];

>> B = [24 20; -9 4];

>> A.\B % notice the back slash

ans =

 -6 4

 -3 2

>> B./A

ans =

 -6 4

 -3 2

58

1/31/2015

30

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Array Power

59

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Power

• A^k computes matrix
power (exponent).

• In other words, it
multiplies matrix A by
itself k times.

• The exponent k requires
a positive, real-valued
integer value.

• Remember: this is
repeated matrix
multiplication

>> A = [1 2; 3 4];

>> A^3

ans =

 37 54

 81 118

>> A*A*A

ans =

 37 54

 81 118

60

1/31/2015

31

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Manipulation Functions

• diag: Diagonal matrices and diagonal of a
matrix.

• det: Matrix determinant

• inv: Matrix inverse

• cond: Matrix condition number (for inverse)

• fliplr: Flip matrices left-right

• flipud: Flip matrices up and down

• repmat: Replicate and tile a matrix

61

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Manipulation Functions

• rot90: rotate matrix 90º

• tril: Lower triangular part of a matrix

• triu: Upper triangular part of a matrix

• cross: Vector cross product

• dot: Vector dot product

• eig: Evaluate eigenvalues and
eigenvectors

• rank: Rank of matrix

62

1/31/2015

32

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

63

>> fliplr(A)

ans =

3 2 1

6 5 4

9 8 7

>> flipud(A)

ans =

7 8 9

4 5 6

1 2 3

>> rot90(A)

ans =

3 6 9

2 5 8

1 4 7

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

>> diag(A)

ans =

1

5

9

>> det(A)

ans =

6.6613e-016

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

64

>> [V, D] = eig(A)

V =

-0.2320 -0.7858 0.4082

-0.5253 -0.0868 -0.8165

-0.8187 0.6123 0.4082

D =

16.1168 0 0

0 -1.1168 0

0 0 -0.0000

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

>> tril(A)

ans =

1 0 0

4 5 0

7 8 9

>> triu(A)

ans =

1 2 3

0 5 6

0 0 9

1/31/2015

33

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

• Define matrix A of dimension 2 by 4 whose (i,j) entries
are A(i,j) = i+j

• Extract two 2 by 2 matrices A1 and A2 out of matrix A.

– A1 contains the first two columns of A

– A2 contains the last two columns of A

• Compute matrix B to be the sum of A1 and A2

• Compute the eigenvalues and eigenvectors of B

• Solve the linear system B x = b, where b has all entries = 2

• Compute the determinant of B, inverse of B, and the
condition number of B

• NOTE: Use only MATLAB native functions for all above.

65

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Solution
>> b = [2; 2]

b =

 2

 2

>> B\b

ans =

 -1.0000

 1.0000

>> det(B)

ans =

 -4

>> inv(B)

ans =

 -1.5000 1.0000

 1.0000 -0.5000

>> cond(B)

ans =

 17.9443

>> A =[0 1 2 3; 1 2 3 4]

A =

 0 1 2 3

 1 2 3 4

>> A1 = A(:,1:2)

A1 =

 0 1

 1 2

>> A2 = A(:,3:4)

A2 =

 2 3

 3 4

>> B = A1 + A2

B =

 2 4

 4 6

66

1/31/2015

34

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

• Solve as many problems from Chapter 1
as you can

• Suggested problems:

• 1.3, 1.8, 1.15, 1.26, 1.30

• Solve as many problems from Chapter 2
as you can

• Suggested problems:

• 2.3, 2.10, 2.13, 2.25, 2.26

67

2/7/2015

1

Lecture 3: Array Applications,
Cells, Structures & Script Files

Dr. Mohammed Hawa
Electrical Engineering Department

University of Jordan

EE201: Computer Applications. See Textbook Chapter 2 and Chapter 3.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Euclidean Vectors

• An Euclidean vector (or geometric vector, or
simply a vector) is a geometric entity that has
both magnitude and direction.

• In physics, vectors are used to represent
physical quantities that have both magnitude
and direction, such as force, acceleration,
electric field, etc.

• Vector algebra: adding and subtracting
vectors, multiplying vectors, scaling vectors,
etc.

2

2/7/2015

2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Euclidean Vectors in MATLAB

• We specify a vector using
its Cartesian coordinates.

• Hence, the vector p can be
specified by three
components: x, y and z,
and can be written in
MATLAB as:

p = [x, y, z];

• MATLAB supports 2-D
and 3-D vectors, and even
higher dimensional ones.

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Magnitude, Length, Absolute Value

• In MATLAB, length() of a
vector is not its magnitude.
It is the number of elements
in the vector.

• The absolute value of a
vector a is a vector whose
elements are the absolute
values of the elements of a.

• The magnitude of a vector is
its Euclidean norm or
geometric length as shown:

� � ��� � ��� � ���

� � ��
� � ��

� � ��
�

‖�‖ = �22 + �−4�2 + 52 = ��2 −4 5� 	 2

−4

5

 = 6.7082

4

>> a = [2, -4, 5]

a =

 2 -4 5

>> length(a)

ans =

 3

>> abs(a)

ans =

 2 4 5

>> sqrt(a*a') % magnitude

ans =

 6.7082

>> sqrt(sum(a.*a)) %magnitude

ans =

 6.7082

2/7/2015

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Vector Scaling

• For vector:
� � ��� � ��� � ���

• Scaling this vector by
a factor of 2 gives:

• � � 2�

� 2��� � 2��� � 2���

• This is just like
MATLAB scalar
multiplication of a
vector:

• v = 2*[x, y, z];

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Adding and Subtracting Vectors

• Vector addition by
geometry: The
parallelogram law.

• Or, mathematically:
� � ��� � ��� � ���

� � 	�� � 	�� � 	��

� � � � �� � 	� �

� �� � 	� �

� �� � 	� �

• Same as vector addition
and subtraction in
MATLAB.

6

2/7/2015

4

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise
>> a = [2 -4 6]

a =

 2 -4 6

>> b = [3 -1 -1]

b =

 3 -1 -1

>> c = a + b

c =

 5 -5 5

>> d = a - b

d =

 -1 -3 7

>> e = 2*a

e =

 4 -8 12

 7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Dot Product

• The dot product of
vectors results in a
scalar value.

• � ∙ �

� ���� � ���� � ����

� � � cos �

>> a = [2 -4 6];

>> b = [3 -1 -1];

>> c = a * b'

c =

 4

>> c = sum(a .* b)

c =

 4

>> c = dot(a, b)

c =

 4

8

2/7/2015

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Cross Product
>> a = [2 -4 6];

>> b = [3 -1 -1];

>> cross(a, b)

ans =

 10 20 10

>> syms x y z

>> det([x y z; 2 -4 6; 3 -1 -1])

ans =

 10*x + 20*y + 10*z

>> cross([1 0 0], [0 1 0])

ans =

 0 0 1

� � 	 � � 	 sin
 �

� � 	 �

� � �

�� �� ��

�� �� ��

� � 	 �
�� ��

�� ��
� �

�� ��
�� ��

� �
�� ��

�� ��
�

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Complex
Numbers

10

>> a = 7 + 4j

a =

 7.0000 + 4.0000i

>> [theta, rho] = cart2pol(real(a), imag(a))

theta =

 0.5191

rho =

 8.0623

>> rho = abs(a) % magnitude of complex number

rho =

 8.0623

>> theta = atan2(imag(a), real(a))

theta =

 0.5191

% atan2 is four quadrant inverse tangent

>> b = 3 + 4j

b =

 3.0000 + 4.0000i

>> a+b

ans =

 10.0000 + 8.0000i

>> a*b

ans =

 5.0000 + 40.0000i

2/7/2015

6

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Polynomials

• A polynomial can be written in the form:
���� � �������� �⋯� ���� � ��� � ��

• Or more concisely:

�����

�

���

• We can use MATLAB to find all the roots
of the polynomial, i.e., the values of x that
makes the polynomial equation equal 0.

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

>> a = [1 -7 40 -34];

>> roots(a)

ans =

3.0000 + 5.0000i

3.0000 - 5.0000i

1.0000

>> poly([1 3+5i 3-5i])

ans =

1 -7 40 -34

• Polynomial Roots:
x3 – 7x2 + 40x – 34 = 0

• Roots are x = 1, x = 3 ± 5i.

• We can also build
polynomial coefficients
from its roots.

• We can also multiply
(convolution) and divide
(deconvolution) two
polynomials.

12

2/7/2015

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Just for fun… Plot…

>> x = -2:0.01:5;

>> f = x.^3 - 7*(x.^2) + 40*x - 34;

>> plot(x, f)

-2 -1 0 1 2 3 4 5
-150

-100

-50

0

50

100

150

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Cell Array

• The cell array is an array in which each
element is a cell. Each cell can contain an
array.

• So, it is an array of different arrays.
• You can store different classes of arrays in

each cell, allowing you to group data sets
that are related but have different
dimensions.

• You access cell arrays using the same
indexing operations used with ordinary
arrays, but using {} not ().

14

2/7/2015

8

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Useful functions

C = cell(n) Creates n × n cell array C of empty matrices.

C = cell(n,m) Creates n × m cell array C of empty matrices.

celldisp(C) Displays the contents of cell array C.

cellplot(C) Displays a graphical representation of the cell
array C.

C = num2cell(A) Converts a numeric array A into a cell array C.

iscell(C) Returns a 1 if C is a cell array; otherwise,
returns a 0.

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise
>> C = cell(3)

C =

 [] [] []

 [] [] []

 [] [] []

>> D = cell(1, 3)

D =

 [] [] []

>> A(1,1) = {'Walden Pond'};

>> A(1,2) = {[1+2i 5+9i]};

>> A(2,1) = {[60,72,65]};

>> A(2,2) = {[55,57,56;54,56,55;52,55,53]};

>> A

A =

 'Walden Pond' [1x2 double]

 [1x3 double] [3x3 double]

16

2/7/2015

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise (Continue)
>> celldisp(A)

A{1,1} =

Walden Pond

A{2,1} =

 60 72 65

A{1,2} =

 1.0000 + 2.0000i 5.0000 + 9.0000i

A{2,2} =

 55 57 56

 54 56 55

 52 55 53

>> B = {[2,4], [6,-9;3,5]; [7;2], 10}

B =

 [1x2 double] [2x2 double]

 [2x1 double] [10]

>> B{1,2}

ans =

 6 -9

 3 5

 17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Structures (strcut.memebr)

18

2/7/2015

10

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Create and Add to Structure
>> student.name = 'John Smith';

>> student.SSN = '392-77-1786';

>> student.email = 'smithj@myschool.edu';

>> student.exam_scores = [67,75,84];

>> student

student =

 name: 'John Smith'

 SSN: '392-77-1786'

 email: 'smithj@myschool.edu'

 exam_scores: [67 75 84]

>> student(2).name = 'Mary Jones';

>> student(2).SSN = '431-56-9832';

>> student(2).email = 'jonesm@myschool.edu';

>> student(2).exam_scores = [84,78,93];

>> student

student =

1x2 struct array with fields:

 name

 SSN

 email

 exam_scores

 19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Investigate Structure
>> student(2)

ans =

 name: 'Mary Jones'

 SSN: '431-56-9832'

 email: 'jonesm@myschool.edu'

 exam_scores: [84 78 93]

>> fieldnames(student)

ans =

 'name'

 'SSN'

 'email'

 'exam_scores'

>> max(student(2).exam_scores)

ans =

 93

>> isstruct(student)

ans =

 1

20

2/7/2015

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Script files

• You can save a particular sequence of MATLAB
commands for reuse later in a script file (.m file)

• Each line is the same as typing a command in the
command window.

• From the main menu, select File | New | Script,
then save the file as mycylinder.m

21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Remember Example?

• Develop MATLAB
code to find Cylinder
volume and surface
area.

• Assume radius of 5 m
and height of 13 m.

� = ��
2
ℎ

� = 2��2 + 2��ℎ = 2���� + ℎ�

22

2/7/2015

12

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Solution

23

>> r = 5

r =

 5

>> h = 13

h =

 13

>> V = pi * r^2 * h

V =

 1.0210e+003

>> A = 2 * pi * r * (r + h)

A =

 565.4867

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 24

Exercise

2/7/2015

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Be ware…
• Script File names MUST begin with a letter, and

may include digits and the underscore character.
• Script File names should NOT:

– include spaces
– start with a number
– use the same name as a variable or an existing

command

• If you do any of the above you will get unusual
errors when you try to run your script.

• You can check to see if a command, function or
file name already exists by using the exist
command.

25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Running .m files

• Run sequence of
commands by typing

mycylinder

in the command
window

• Make sure the current
folder is set properly

26

>> mycylinder

r =

 5

h =

 13

V =

 1.0210e+003

A =

 565.4867

2/7/2015

14

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

When you type mycylinder

When multiple commands have the same name in the current scope
(scope includes current file, optional private subfolder, current folder,
and the MATLAB path), MATLAB uses this precedence order:

1. Variables in current workspace: Hence, if you create a variable with
the same name as a function, MATLAB cannot run that function
until you clear the variable from memory.

2. Nested functions within current function

3. Local functions within current file

4. Functions in current folder

5. Functions elsewhere on the path, in order of appearance

Precedence of functions within the same folder depends on file type:

1. MATLAB built-in functions have precedence

2. Then Simulink models

3. Then program files with .m extension

27

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Comments in MATLAB

• Comment lines start with a % not //
• Comments are not executed by MATLAB; it is

there for people reading the code.
• Helps people understand what the code is doing

and why!
• Comments are VERY IMPORTANT.
• Comment anything that is not easy to understand.
• Good commenting is a huge help when

maintaining/fixing/extending code.
• Header comments show up when typing the help

command.

28

2/7/2015

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Bad vs. Good Comments/Code

% set x to zero

x = 0

% calculate y

y = x * 9/5 + 32

% Convert freezing point of

% water from celsius to

% farenheit

c = 0

f = c * 9/5 + 32

29

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

30

2/7/2015

16

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Header comments

>> help temperature

 temperature.m Convert the boiling point for

 water from degrees Celsius (C) to Farenheit (F)

 Author: Dr. Mohammed Hawa

>> temperature

C =

 100

F =

 212

31

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Simple User Interaction: I/O

• Use input command to get input from
the user and store it in a variable:

h = input('Enter the height:')

• MATLAB will display the message
enclosed in quotes, wait for input and
then store the entered value in the variable

32

2/7/2015

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Simple User Interaction: I/O

• Use disp command to show something to
a user

disp('The area of the cylinder is: ')

disp(A)

• MATLAB will display any message
enclosed in quotes and then the value of
the variable.

33

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

34

r = input('Enter the radius:');

h = input('Enter the height:');

V = pi * r^2 * h;

A = 2 * pi * r * (r + h);

disp('The volume of the cylinder is: ');

disp(V);

disp('The area of the cylinder is: ');

disp(A);

>> mycylinder

Enter the radius:5

Enter the height:13

The volume of the cylinder is:

 1.0210e+003

The area of the cylinder is:

 565.4867

2/7/2015

18

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Summary

35

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

• The speed v of a falling object dropped
with zero initial velocity is given as a
function of time t by � � ��, where g is the
gravitational acceleration.

• Plot v as a function of t for 0 ≪ � ≪ ��,

where tf is the final time entered by the
user.

• Use a script file with proper comments.

36

2/7/2015

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Solution

% Plot speed of a falling object
% Author: Dr. Mohammed Hawa

g = 9.81; % Acceleration in SI units

tf = input('Enter final time in seconds:');

t = [0:tf/500:tf]; % array of 501 time instants
v = g*t; % speed

plot(t,v);
xlabel('t (sseconds)');
ylabel('v m/s)');

37

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

• Solve as many problems from Chapter 2
as you can

• Suggested problems:

• 2.33, 2.34, 2.35, 2.36, 2.39, 2.41, 2.45, 2.48

38

2/7/2015

1

Lecture 4: Complex Numbers
Functions, and Data Input

Dr. Mohammed Hawa
Electrical Engineering Department

University of Jordan

EE201: Computer Applications. See Textbook Chapter 3.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

What is a Function?

• A MATLAB Function (e.g. y = func(x1, x2))
is like a script file, but with inputs and outputs
provided automatically in the commend window.

• In MATLAB, functions can take zero, one, two or
more inputs, and can provide zero, one, two or
more outputs.

• There are built-in functions (written by the
MATLAB team) and functions that you can define
(written by you and stored in .m file).

• Functions can be called from command line, from
wihtin a script, or from another function.

2

2/7/2015

2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Functions are Helpful

• Enable “divide and conquer” strategy
– Programming task broken into smaller tasks

• Code reuse
– Same function useful for many problems

• Easier to debug
– Check right outputs returned for all possible

inputs

• Hide implementation
– Only interaction via inputs/outputs, how it is

done (implementation) hidden inside the
function.

4

2/7/2015

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Finding Useful Functions

• You can use the lookfor command to find
MATLAB functions that are relevant to your
application.

• Example: >> lookfor imaginary

• Gets a list of functions that deal with
imaginary numbers.

• i - Imaginary unit.

• j - Imaginary unit.

• complex - Construct complex result
from real and imaginary parts.

• imag - Complex imaginary part.

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Calling Functions

• Function names are case sensitive (meshgrid,
meshGrid and MESHGRID are interpreted as
different functions).

• Inputs (called function arguments or function
parameters) can be either numbers or
variables.

• Inputs are passed into the function inside of
parentheses () separated by commas.

• We usually assign the output to variable(s) so
we can use it later. Otherwise it is assigned to
the built-in variable ans.

6

2/7/2015

4

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Rules

• To evaluate sin 2 in
MATLAB, we type
sin(2), not sin[2]

• For example
sin[x(2)] gives an
error even if x is
defined as an array.

• Inputs to functions in
MATLAB can be
sometimes arrays.

>> x = -3 + 4i;

>> mag_x = abs(x)

mag_x =

 5

>> mag_y = abs(6 - 8i)

mag_y =

 10

>> angle_x = angle(x)

angle_x =

 2.2143

>> angle(x)

ans =

 2.2143

>> x = [5,7,15]

x =

 5 7 15

>> y = sqrt(x)

y =

 2.2361 2.6458 3.8730

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Function Composition

• Composition: Using a function as an
argument of another function

• Allowed in MATLAB.

• Just check the number and placement of
parentheses when typing such
expressions.

• sin(sqrt(x)+1)

• log(x.^2 + sin(5))

8

2/7/2015

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Which expression is correct?

• You want to find sin� � . What do you write?

• (sin(x))^2

• sin^2(x)

• sin^2x

• sin(x^2)

• sin(x)^2

• Solution: Only first and last expressions are
correct.

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Trigonometric Functions

10

2/7/2015

6

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Hyperbolic functions

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

User-Defined Functions

• Functions must be saved to a file with .m extension.
• Filename (without the .m) must match EXACTLY

the function name.
• First line in the file must begin with a function

definition line that illustrates inputs and outputs.

function [output variables] = name(input variables)

• This line distinguishes a function M-file from a
script M-file.

• Output variables are enclosed in square brackets.
• Input variables must be enclosed with parentheses.

12

2/7/2015

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Functions Names

• Function names may only use
alphanumeric characters and the
underscore.

• Functions names should NOT:
– include spaces

– start with a number

– use the same name as an existing command

• Consider adding a header comment, just
under the function definition (for help).

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise: Your Own pol2cart

• Make sure you set you Current Folder to
Desktop (or where you saved the .m file).

14

2/7/2015

8

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Test your newly defined function

>> [a, b] = polar_to_cartesian(3, pi)

a =

 -3

b =

 3.6739e-016

>> polar_to_cartesian(3, pi)

ans =

 -3

>> [a, b] = polar_to_cartesian(3, pi/4)

a =

 2.1213

b =

 2.1213

>> [a, b] = polar_to_cartesian([3 3 3], [pi pi/4 pi/2])

a =

 -3.0000 2.1213 0.0000

b =

 0.0000 2.1213 3.0000

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

MATLAB has pol2cart
>> help pol2cart

 POL2CART Transform polar to Cartesian coordinates.

 [X,Y] = POL2CART(TH,R) transforms corresponding elements of data

 stored in polar coordinates (angle TH, radius R) to Cartesian

 coordinates X,Y. The arrays TH and R must the same size (or

 either can be scalar). TH must be in radians.

 [X,Y,Z] = POL2CART(TH,R,Z) transforms corresponding elements of

 data stored in cylindrical coordinates (angle TH, radius R, height

 Z) to Cartesian coordinates X,Y,Z. The arrays TH, R, and Z must be

 the same size (or any of them can be scalar). TH must be in radians.

 Class support for inputs TH,R,Z:

 float: double, single

 See also cart2sph, cart2pol, sph2cart.

 Reference page in Help browser

 doc pol2cart

16

2/7/2015

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Just like your code!
>> type pol2cart

function [x,y,z] = pol2cart(th,r,z)

%POL2CART Transform polar to Cartesian coordinates.

% [X,Y] = POL2CART(TH,R) transforms corresponding elements of data

% stored in polar coordinates (angle TH, radius R) to Cartesian

% coordinates X,Y. The arrays TH and R must the same size (or

% either can be scalar). TH must be in radians.

%

% [X,Y,Z] = POL2CART(TH,R,Z) transforms corresponding elements of

% data stored in cylindrical coordinates (angle TH, radius R, height

% Z) to Cartesian coordinates X,Y,Z. The arrays TH, R, and Z must be

% the same size (or any of them can be scalar). TH must be in radians.

%

% Class support for inputs TH,R,Z:

% float: double, single

%

% See also CART2SPH, CART2POL, SPH2CART.

% L. Shure, 4-20-92.

% Copyright 1984-2004 The MathWorks, Inc.

% $Revision: 5.9.4.2 $ $Date: 2004/07/05 17:02:08 $

x = r.*cos(th);

y = r.*sin(th);

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise: Spiral
>> r = linspace(0, 10, 20);

>> theta = linspace(0, 2*pi, 20);

>> [x, y] = polar_to_cartesian(r, theta);

>> plot(x,y);

18

2/7/2015

10

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Possible Cases
• One input:
function [o1, o2, o3] = myfunc(i1)

• Three inputs:
function [o1, o2, o3] = myfunc(i1, i2, i3)

• No inputs:
function [o1, o2, o3] = myfunc()

function [o1, o2, o3] = myfunc

• One output:
function [o1] = myfunc(i1, i2, i3)

function o1 = myfunc(i1, i2, i3)

• No output:
function [] = myfunc(i1, i2, i3)

function myfunc(i1, i2, i3)

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Local Variables

• The variables x, y, u, z are local to the function
fun, so their values will not be available in the
workspace outside the function.

• See example below.

function z = fun(x,y)

u = 3*x;

z = u + 6*y.^2;

% return missing is fine at end of file

20

2/7/2015

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example
>> x = 3;

>> b = 7;

>> q = fun(x, b);

>> x

x =

 3

>> y

??? Undefined function or variable 'y'.

>> u

??? Undefined function or variable 'u'.

>> z

??? Undefined function or variable 'z'.

>> q

q =

 303

 21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

function show_date

clear

clc

date

% how many inputs and outputs do we have?

22

2/7/2015

12

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

function [dist, vel] = drop(vO, t)
% Compute the distance travelled and the
% velocity of a dropped object, from
% the initial velocity vO, and time t
% Author: Dr. Mohammed Hawa

g = 9.80665; % gravitational acceleration (m/s^2)
vel = g*t + vO;
dist = 0.5*g*t.^2 + vO*t;

>> t = 0:0.1:5;

>> [distance_dropped, velocity] = drop(10, t);

>> plot(t, velocity)

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Local vs. Global Variables

• The variables inside a function are local. Their scope is
only inside the function that declares them.

• In other words, functions create their own workspaces.
• Function inputs are also created in this workspace

when the function starts.
• Functions do not know about any variables in any

other workspace.
• Function outputs are copied from the function

workspace when the function ends.
• Function workspaces are destroyed after the function

ends.
– Any variables created inside the function “disappear”

when the function ends.

24

2/7/2015

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Local vs. Global Variables

• You can, however, define global variables
if you want using the global keyword.

• Syntax: global a x q

• Global variables are available to the basic
workspace and to other functions that
declare those variables global (allowing
assignment to those variables from
multiple functions).

25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Subfunctions

• An M-file may contain more than one user-defined function.
• The first defined function in the file is called the primary

function, whose name is the same as the M-file name.
• All other functions in the file are called subfunctions. They can

serve as subroutines to the primary function.
• Subfunctions are normally “visible” only to the primary

function and other subfunctions in the same file; that is, they
normally cannot be called by programs or functions outside
the file.

• However, this limitation can be removed with the use of
function handles.

• We normally use the same name for the primary function and
its file, but if the function name differs from the file name, you
must use the file name to invoke the function.

26

2/7/2015

14

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

• The following example shows how the MATLAB
M-function mean can be superceded by our own
definition of the mean, one which gives the root-
mean square value.

function y = subfun_demo(a)

y = a - mean(a);

function w = mean(x)

w = sqrt(sum(x.^2))/length(x);

27

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example

• A sample session follows.

>>y = subfn_demo([4 -4])

y =

1.1716 -6.8284

• If we had used the MATLAB M-function mean, we would
have obtained a different answer; that is,

>>a = [4 -4];

>>b = a - mean(a)

b =

4 -4

28

2/7/2015

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Function Handles

• You can create a function handle to any function by
using the @ sign before the function name.

• You can then use the handle to reference the function.

function y = f1(x)

y = x + 2*exp(-x) - 3;

• You can pass the function as an argument to another
function using the handle. Example: fzero function
finds the zero of a function of a single variable x.

• >> x0 = 3; % initial guess

• >> fzero(@f1, x0)

29

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Handle vs. Return Value

t = -1:0.1:5;

plot(t, f1(t));

• There is a zero
near �	 � 	�0.5	

and one
near �	 � 	3.

-1 0 1 2 3 4 5
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

30

2/7/2015

16

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

fzero(@function,x0)

• where @function
is the function
handle, and x0 is
a user-supplied
initial guess for
the zero.

>> fzero(@f1, -0.5)

ans =

 -0.5831

>> fzero(@f1, 3)

ans =

 2.8887

>> fzero(@sin, 0.1)

ans =

 6.6014e-017

>> fzero(@cos, 2)

ans =

 1.5708

>> pi/2

ans =

 1.5708

31

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Finding the Minimum

• The fminbnd function finds the minimum of a
function of a single variable x in the interval
x1 ≤ x ≤ x2.

• fminbnd(@function, x1, x2)

• fminbnd(@cos, 0, 4) returns 3.1416

• function y = f2(x)

• y = 1-x.*exp(-x);

• x = fminbnd(@f2, 0, 5) returns x = 1
• How would I find the min value of f2? (i.e. 0.6321)

32

2/7/2015

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

• For the function:

• 		 � 	0.025�� 	� 	0.0625�� 	� 	0.333�� 	� 	��

• Find the minimum in
the intervals:

• � ∈ �1, 4

• � ∈ 1, 4

• � ∈ 2, 4

• � ∈ �1, 1

33

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Old vs. New

• New syntax for function handles:

fzero(@f1, -0.5)

• Older syntax for function handles :

fzero('f1', -0.5)

• The new syntax is preferred, though both
will work just fine.

• Which one gives the correct answer:
fzero('sin', 3)or fzero(@sin, 3)

34

2/7/2015

18

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The fminsearch function

• fminsearch finds minimum of a function of more than one variable.

• To find where the minimum of � � ��� ����� , define it in an M-file,
using the vector x whose elements are x(1) = x and x(2) = y.

function f = f4(x)

f = x(1).*exp(-x(1).^2-x(2).^2);

• Suppose we guess that the minimum is near �	 � 0, �	 � 	0.

>>fminsearch(@f4,[0,0])

ans =

-0.7071 0.000

• Thus the minimum occurs at �	 � 		0.7071, �	 � 	0.

35

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Inline Function

• No need to save the
function in an M-file.

• Useful for small size
functions defined on
the fly.

• You can use a string
array to define the
function.

• Anonymous functions
are similar (see next).

>> f4 = inline('x.^2-4')

f4 =

 Inline function:

 f4(x) = x.^2-4

>> [x, value] = fzero(f4, 0)

x =

 -2

value =

 0

>> f5str = 'x.^2-4'; % string array

>> f5 = inline(f5str)

f5 =

 Inline function:

 f5(x) = x.^2-4

>> x = fzero(f5, 3)

x =

 2

>> x = fzero('x.^2-4', 3)

x =

 2

>> f6 = inline('x.*y')

f6 =

 Inline function:

 f6(x,y) = x.*y

36

2/7/2015

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Anonymous functions

• Here is a simple function called sq to calculate
the square of a number.

>> sq = @(x) x.^2;

>> sq = @(x) (x.^2)

sq =

 @(x)(x.^2)

>> sq([5 7])

ans =

 25 49

>> fminbnd(sq, -10, 10)

ans =

 0

37

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise
>> sqrtsum = @(x,y) sqrt(x.^2 + y.^2);

>> sqrtsum(3, 4)

ans =

 5

>> A = 6; B = 4;

>> plane = @(x,y) A*x + B*y;

>> z = plane(2,8)

z =

 44

>> f = @(x) x.^3; % try by hand!

>> g = @(x) 5*sin(x);

>> h = @(x) g(f(x));

>> h(2)

ans =

 4.9468

38

2/7/2015

20

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Variables in Anonymous Functions

• When the function is created MATLAB, it
captures the values of these variables and
retains those values for the lifetime of the
function handle. If the values of A or B are
changed after the handle is created, their
values associated with the handle do not
change.

• This feature has both advantages and
disadvantages, so you must keep it in mind.

39

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

For Speed Use Handles

• The function handle provides speed
improvements.

• Another advantage of using a function
handle is that it provides access to
subfunctions, which are normally not
visible outside of their defining M-file.

40

2/7/2015

21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Importing Data: ASCII

• Make the ‘data’ folder your
Current Folder.

• Delimited ASCII files are
common to save data from
experiments.

• dlmread/dlmwrite

>> a = dlmread('ascii.txt')

a =

1 2 3 4

5 6 7 8

9 10 11 12

41

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Importing Data: Excel

• Make the ‘data’ folder your
Current Folder.

• MATLAB can also read and
write to Excel Files.

• xlsread/xlswrite

>> a = xlsread('data.xls')

a =

10 30 50 60

15 20 25 30

30 31 32 33

80 82 84 86

42

2/7/2015

22

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Importing Data: Images

• Make the ‘data’ folder your
Current Folder.

• Read and write images:

• imread/imwrite

>> c = imread('cat.jpg');

>> imshow(c);

>>

>> imshow(255-c); % inverse

43

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Importing Data: Sound Files

% use a script file (fourier.m)

[y,Fs,bits] = wavread('bequiet');

N = length(y);

t = (1/Fs)*(1:N);

plot(t, y);

xlabel('Time (s)');

ylabel('Amplitude');

f = Fs*(-N/2:N/2-1)/N;

y_fft = fftshift(abs(fft(y)));

figure;

plot(f, y_fft);

xlabel('Frequency (Hz)');

ylabel('Amplitude');

44

2/7/2015

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

bequiet.wav (BW of human voice!)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

A
m

p
lit

u
d
e

-6000 -4000 -2000 0 2000 4000 6000
0

50

100

150

Frequency (Hz)

A
m

p
lit

u
d
e

45

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

triangle.wav

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time (s)

A
m

p
lit

u
d
e

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Frequency (Hz)

A
m

p
lit

u
d
e

46

2/7/2015

24

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

tuningA4.wav (frequency?)

0 1 2 3 4 5 6 7 8 9
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time (s)

A
m

p
lit

u
d
e

-1.5 -1 -0.5 0 0.5 1 1.5

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Frequency (Hz)

A
m

p
lit

u
d
e

47

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 48

2/7/2015

25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

guitar.wav

0 0.5 1 1.5 2 2.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time (s)

A
m

p
lit

u
d
e

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

Frequency (Hz)

A
m

p
lit

u
d
e

49

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

• Solve as many problems from Chapter 3
as you can

• Suggested problems:

• 3.1, 3.3, 3.6, 3.9, 3.14, 3.18, 3.24

50

2/20/2015

1

Lecture 5: Programming
using MATLAB

Dr. Mohammed Hawa
Electrical Engineering Department

University of Jordan

EE201: Computer Applications. See Textbook Chapter 4.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Algorithms and Control Structures

• Algorithm: a sequence of instructions that
performs some task in a finite amount of time.

• The algorithm uses a control structure to execute
instructions in a certain order.

• Control structure categories:
– Sequential operations: Instructions executed in order.

– Conditional operations: First ask a question to be
answered with a true/false answer and then select the
next instruction based on the answer.

– Iterative operations (loops): Repeat the execution of a
block of instructions.

2

2/20/2015

2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Before Programming

• Before writing a program, we need a plan.

• A plan helps us focus on the problem, not
the code.

• Common methods to show a plan are:

– Flowchart: A graphical description of the
program flow.

– Pseudocode: A verbal description of the
program details.

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Flowcharts

• Flowcharts are geometric symbols to describe
the program steps.

• They capture the “flow” of the program.

• Flowcharts are useful for developing and
documenting programs that contain
conditional statements, because they can
display the various paths (called “branches”)
that a program can take, depending on how
the conditional statements are executed.

4

2/20/2015

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Examples

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Flowchart
Symbols

6

2/20/2015

4

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Pseudocode

• In pseudocode, natural language and
mathematical expressions are used to
construct statements that look like
computer statements but without detailed
syntax.

• Each pseudocode instruction may be
numbered, but should be unambiguous
and computable.

• Similar to a recipe.

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Pseudocode Example

8

2/20/2015

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 10

During and After Programming

• Make sure to provide effective
documentation along with the program.
This can be accomplished using:
– Proper selection of variable names to reflect

the quantities they represent.

– Using comments within the program.

• Debugging a program is the process of
finding and removing the “bugs” or errors
in a program.

2/20/2015

6

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Bugs

Bugs usually fall into one of two categories:
1. Syntax errors: such as omitting a parenthesis or

comma, or spelling a command name
incorrectly. MATLAB usually detects the more
obvious errors and displays a message
describing the error and its location.

2. Errors due to an incorrect mathematical
procedure. These are called runtime errors.
They do not necessarily occur every time the
program is executed; their occurrence often
depends on the particular input data. A
common example is division by zero.

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Finding Bugs: Debugging

To locate runtime errors, try the following:

1. Always test your program with a simple
version of the problem, whose answers
can be checked by hand calculations.

2. Display any intermediate calculations by
removing semicolons at the end of
statements.

12

2/20/2015

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Operator Meaning

< Less than.

<= Less than or equal to.

> Greater than.

>= Greater than or equal to.

== Equal to.

~= Not equal to.

Relational Operators

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Examples

>> x = [6 3 9];

>> y = [14 2 9];

>> z = (x < y)

z =

 1 0 0

>> z = x ~= y

z =

 1 1 0

>> z = x > 8

z =

 0 0 1

>> a = 3;

>> b = 4;

>> a == b

ans =

 0

>> a ~= b

ans =

 1

>> a < b

ans =

 1

>> b >= -4

ans =

 1

 14

2/20/2015

8

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Relational operators can be used for array addressing.

For example

>> x = [6,3,9];

>> y = [14,2,9];

>> x<y

ans =

1 0 0

>> z = x(x<y)

z =

6

finds all the elements in x that are less than the
corresponding elements in y. The result is z = 6.

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The arithmetic operators +, -, *, /, and \ have precedence

over the relational operators. Thus the statement

z = 5 > 2 + 7

is equivalent to

z = 5 > (2+7)

and returns the result z = 0.

We can use parentheses to change the order of
precedence; for example, z = (5 > 2) + 7 evaluates

to z = 8.

16

2/20/2015

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The logical Class

When the relational operators are used, such as

x = (5 > 2)

they create a logical variable, in this case, x.

Logical variables may have only the values 1 (true)

and 0 (false).

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Just because an array contains only 0s and 1s, however, it

is not necessarily a logical array. For example, in the
following session k and w appear the same, but k is a

logical array and w is a numeric array, and thus an error

message is issued.

>>x = -2:2;

>>k = (abs(x)>1)

k =

1 0 0 0 1

>>z = x(k)

z =

-2 2

>>w = [1,0,0,0,1]; v = x(w)

??? Subscript indices must either be real

positive... integers or logicals.

18

2/20/2015

10

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Accessing Arrays Using Logical Arrays

When a logical array is used to address another array,

it extracts from that array the elements in the

locations where the logical array has 1s.

So typing A(B), where B is a logical array of the

same size as A, returns the values of A at the indices

where B is 1.

Given A =[5,6,7;8,9,10;11,12,13] and B =

logical(eye(3)), we can extract the diagonal

elements of A by typing C = A(B) to obtain C =

[5;9;13].

See our earlier discussion of logical indexing.

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Operator Name Definition

~ NOT ~A returns an array the same dimension as A; the new
array has ones where A is zero and zeros where A is

nonzero.

& AND A & B returns an array the same dimension as A and B;
the new array has ones where both A and B have
nonzero elements and zeros where either A or B is zero.

| OR A | B returns an array the same dimension as A and B;
the new array has ones where at least one element in A
or B is nonzero and zeros where A and B are both zero.

&& Short-Circuit AND Short-circuiting means the second operand (right

hand side) is evaluated only when the result is not fully
determined by the first operand (left hand side)
A & B (A and B are evaluated)
A && B (B is only evaluated if A is true)

|| Short-Circuit OR | can operate on arrays but || only operates on scalars

Logical Operators

20

2/20/2015

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Examples
>> a = 3;

>> b = 4;

>> c = 5;

>> x = ~(a == b)

x =

 1

>> (a < b) & (b < c)

ans =

 1

>> (a < b) && (b < c)

ans =

 1

>> 5 && 0

ans =

 0

>> [1 2] && [3 4]

??? Operands to the || and && operators must

be convertible to logical scalar values.

 21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Precedence Operator type

First Parentheses; evaluated starting with the

innermost pair.

Second Arithmetic operators and logical NOT (~);

evaluated from left to right.

Third Relational operators; evaluated from left to

right.

Fourth Logical AND.

Fifth Logical OR.

Order of precedence for operators

22

2/20/2015

12

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Logical function Definition

ischar(A) Returns a 1 if A is a character array

and 0 otherwise.
isempty(A) Returns a 1 if A is an empty matrix and

0 otherwise.
isinf(A) Returns an array of the same

dimension as A, with ones where

A has ‘inf’ and zeros elsewhere.

isnan(A) Returns an array of the same

dimension as A with ones where

A has ‘NaN’ and zeros elsewhere.

(‘NaN’ stands for “not a

number,” which means an undefined

result.)

Logical functions

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Logical Functions

isnumeric(A) Returns a 1 if A is a numeric
array and 0 otherwise.

isreal(A) Returns a 1 if A has no
elements with imaginary parts
and 0 otherwise.

logical(A) Converts the elements of the
array A into logical values.

xor(A,B) Returns an array the same
dimension as A and B; the new
array has ones where either A
or B is nonzero, but not both,
and zeros where A and B are
either both nonzero or both
zero.

24

2/20/2015

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Logical Operators and the find Function

Consider the session

>> x = [5, -3, 0, 0, 8];

>> y = [2, 4, 0, 5, 7];

>> x&y

ans =

1 1 0 0 1

>> z = find(x&y)

z =

1 2 5

Note that the find function returns the indices, and

not the values.

25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Conditional Statements: The if Statement

The if statement’s basic form is

if logical expression

statements
end

Every if statement must have an accompanying end

statement. The end statement marks the end of the

statements that are to be executed if the logical

expression is true.

26

2/20/2015

14

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The else Statement

The basic structure for the use of the else statement is

if logical expression

statement group 1
else

statement group 2
end

When the test, if logical expression, is performed, where

the logical expression may be an array,

the test returns a value of true only if all the elements of

the logical expression are true!

27

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The elseif Statement

The general form of the if statement is

if logical expression 1

statement group 1

elseif logical expression 2

statement group 2

else

statement group 3

end

The else and elseif statements may be omitted if not

required. However, if both are used, the else statement

must come after the elseif statement to take care of all

conditions that might be unaccounted for.

28

2/20/2015

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

File: test.m

a = 5;

b = 4;

if a == b

 disp(a);

 disp(b);

elseif a < b

 disp(a);

else

 disp(b);

end

Matlab command prompt

>> test

 4

>>

29

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example

function y = test(x)

if x >= 9

y = 15*sqrt(4*x) + 10

elseif x >= 0 % already less than 9

y = 10*x + 10

else

y = 10

end

• Suppose that we want to
compute y, which is given by
the equation:

30

2/20/2015

16

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example: if we fail to recognize how the test works, the

following statements do not perform the way we might

expect.

x = [4 -9 25];

if x < 0

disp(’Cant find square root of negative.’)

else

y = sqrt(x)

end

When this program is run it gives the result

y =

2 0 + 3.000i 5

31

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Instead, consider what happens if we test for x positive.

x = [4, -9, 25];

if x >= 0

y = sqrt(x)

else

disp(’Cant find square root of negative.’)

end

When executed, it produces the following message:

Cant find square root of negative.

The test if x < 0 is false, and the test if x >= 0 also

returns a false value because x >= 0 returns the vector
[1,0,1].

32

2/20/2015

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Loops

• Often in your programs you will want to
“loop”
– repeat some commands multiple times

• If you know how many times you want to
loop
– use a for loop

• If you want to loop until something happens
(a condition is satisfied)
– use a while loop

• If you find yourself typing similar lines more
than a couple of times, use a loop

33

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

for Loops

A simple example of a for loop is:

m = 0;

x(1) = 10;

for k = 2:3:11;

m = m + 1;

x(m+1) = x(m) + k^2;

end

k takes on the values 2, 5, 8, 11. The variable m

indicates the index of the array x. When the loop

is finished the array x will have the values

x(1)=14, x(2)=39, x(3)=103, x(4)=224.

34

2/20/2015

18

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Note the following rules when using for loops with the loop
variable expression k = m:s:n:

· The step value s may be negative.

Example: k = 10:-2:4 produces k = 10, 8, 6, 4.

· If s is omitted, the step value defaults to 1.

· If s is positive, the loop will not be executed if m is greater

than n.

· If s is negative, the loop will not be executed if m is less

than n.

· If m equals n, the loop will be executed only once.

· If the step value s is not an integer, round-off errors can

cause the loop to execute a different number of

passes than intended.

35

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

File: loop.m

for i = 1:1:5

 disp(i)

end

Matlab command prompt

>> loop

 1

 2

 3

 4

 5

>>

36

2/20/2015

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Strings and Conditional Statements

A string is a variable that contains characters. Strings are

useful for creating input prompts and messages and for

storing and operating on data such as names and

addresses.

To create a string variable, enclose the characters in single

quotes. For example, the string variable name is created as

follows:

>>name = ’Mohammed Ali’

name =

Mohammed Ali

37

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The following string, number, is not the same as the

variable number created by typing number = 123.

>>number = ’123’

number =

123

38

2/20/2015

20

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The following prompt program is a script file that allows the
user to answer Yes by typing either Y or y or by pressing the

Enter key. Any other response is treated as a No answer.

response = input(’Continue? Y/N [Y]: ’,’s’);

if (isempty(response))|(response ==

’Y’)|(response == ’y’)

response = ’Y’

else

response = ’N’

end

39

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 40

Programming Exercise #1

• Write a MATLAB program that does the
following:

• The program asks you to enter your name.
• It waits for you to enter your name and hit

Enter.
• The program reads your name, counts its

characters and any blank spaces in the name,
then displays something like this:

• You name is “Mohammed Ali”. It has 11
characters and 1 blank space.

2/20/2015

21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Using loops is slower than arrays in MATLAB

We can use the mask technique to compute the square root
of only those elements of A that are no less than 0 and add

50 to those elements that are negative. The program is

A = [0, -1, 4; 9, -14, 25; -34, 49, 64];

C = (A >= 0);

A(C) = sqrt(A(C))

A(~C) = A(~C) + 50

41

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

while Loops

The while loop is used when the looping process

terminates because a specified condition is satisfied, and

thus the number of passes is not known in advance.

A simple example of a while loop is

x = 5;

while x < 25

disp(x)

x = 2*x - 1;

end

The results displayed by the disp statement are 5, 9, 17.

42

2/20/2015

22

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The typical structure of a while loop follows.

while logical expression

statements

end

For the while loop to function properly, the following two

conditions must occur:

1. The loop variable must have a value before the while

statement is executed.

2. The loop variable must be changed somehow by the

statements.

43

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise
File: loop2.m

i = 1;

while i^2 <= 50

 disp(i^2)

 i = i + 1;

end

Matlab command prompt

>> loop2

 1

 4

 9

 16

 25

 36

 49

>>

44

2/20/2015

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Editor/Debugger containing
program to be analyzed

45

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The break statement

• break terminates the execution of a loop, so if you
have a nested loop, break will only quit the
innermost loop, and the program will continue
running.

s=6; % initialize s to 6

while s~=1 % as long as s is not equal to 1 stay in loop

 if s==17 % if s equals 17

 sprintf('Found 17 in the loop!!')

 break;

 end

 if mod(s,2) % the actual "brains" of the iteration

 s=s/2;

 else

 s=3*s+1;

 end

end

46

2/20/2015

24

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The continue statement

The following code uses a continue statement to avoid

computing the logarithm of a negative number.

x = [10,1000,-10,100];

y = NaN*x;

for k = 1:length(x)

if x(k) < 0

continue

end

y(k) = log10(x(k));

end

y

The result is y = [1 3 NaN 2].

47

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

• Write a script file to determine how many terms are required
for the sum of the series 5��	– 	2�, �	 � 	1, 2, 3, … to exceed
10,000. What is the sum for this many terms?

total = 0; k = 0;

while total < 1e4

k = k + 1;

total = total + 5*k^2 - 2*k;

end

disp(’The number of terms is:’)

disp(k)

disp(’The sum is:’)

disp(total)

• The sum is 10,203 after 18 terms.

48

2/20/2015

25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise: Fourier Series

• � � � �� � ∑ �� cos
��� �
�
�

���

• Discover the following periodic function:

•
 � � 0.5 �
�

�
cos � �

�

�
cos 3� �

�

�
cos 5� �

�

�
cos 7� �⋯

• Use a for or while loop. Use n as the loop
parameter to add certain terms then plot the
result versus time �10 � � � 10.

• On one figure, draw the result of 3 terms.

• On one figure, draw the result of 10 terms.

• On one figure, draw the result of 100 terms.

49

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Infinite Loops

• “Infinite loop” = piece of code that will
execute again and again … without ever
ending.

• Possible reasons for infinite loops:

– getting the conditional statement wrong

– forgetting the update step

• If you are in an infinite loop then ctrl-c
stops MATLAB executing your program.

50

2/20/2015

26

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The switch statement

The switch statement provides an alternative to using the

if, elseif, and else commands.

Anything programmed using switch can also be

programmed using if statements.

However, for some applications the switch statement is

more readable than code using the if structure.

51

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Syntax of switch

switch input expression (can be a scalar or string).
case value1

statement group 1

case value2

statement group 2

.

.

.

otherwise

statement group n

end

52

2/20/2015

27

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The following switch block displays the point on the

compass that corresponds to that angle.

switch angle

case 45

disp(’Northeast’)

case 135

disp(’Southeast’)

case 225

disp(’Southwest’)

case 315

disp(’Northwest’)

otherwise

disp(’Direction Unknown’)

end

53

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Boolean Variables

• MATLAB allows boolean variables that
take true/false values

if (atUniversity & stillAStudent)

needMoreMoney = true;

end

54

2/20/2015

28

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Programming Exercise #2

• Write a MATLAB program to solve this:

• One investment opportunity pays 5.5%
annual profit, while a second investment
opportunity pays 4.5% annual profit.

• Determine how much longer it will take to
accumulate at least $50,000 in the second
investment opportunity compared to the
first if you invest $1000 initially and $1000
at the end of each year.

55

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Programming Exercise #3

• Write a MATLAB program that asks you for
a hexadecimal integer number.

• The program should read that number and
convert it to decimal.

• Example: 84CD hexadecimal is 33997
decimal.

• Can you improve on your program so it
accepts binary or hexadecimal or decimal
and converts it to all other formats? You need
to accept numbers written in something like
this: 94CAh or 110110001b.

56

2/20/2015

29

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

• Solve as many problems from Chapter 4
as you can

• Suggested problems:

• 4.2, 4.4, 4.5, 4.11, 4.13, 4.15, 4.16, 4.17, 4.23,
4.24, 4.25, 4.26, 4.33, 4.37, 4.39, 4.47

57

2/20/2015

1

Lecture 6: Plotting
in MATLAB

Dr. Mohammed Hawa
Electrical Engineering Department

University of Jordan

EE201: Computer Applications. See Textbook Chapter 5.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

A picture is worth a thousand words

• MATLAB allows you to plot data sets for better
visualization and interpretation.

• There are different types of plots available in
MATLAB (see next) including 2D and 3D plots.

• You can control all aspects of the plot: lines,
colors, grids, labels, etc.

• Plotting clear and easy-to-read figures is an
important skill, which you gain from experience.

• For pointers, read in your textbook the
Requirements for a Correct Plot (Table 5.1-1, page
221), and Hints for Improving Plots (Table 5.1-3,
page 226).

2

2/20/2015

2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example of a Figure window

5-11
3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Nomenclature for a typical xy two-dimensional plot.

4

2/20/2015

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example: Plot � = 0.4 × 1.8� for 0 ≤ � ≤ 52, where
y represents the height of a rocket after launch, in
miles, and x is the horizontal (downrange) distance
in miles.

>> x = 0:0.1:52;

>> y = 0.4*sqrt(1.8*x);

>> plot(x,y);

>> xlabel(’Distance (miles)’);

>> ylabel(’Height (miles)’);

>> title(’Rocket Height vs. Distance’);

Notice that for each x there is y; so MATLAB plots
one array against another.
Also notice how we added the axes labels and plot title.
The resulting plot is shown on the next slide.

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The autoscaling feature in MATLAB selects tick-mark
spacing.

6

2/20/2015

4

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The plot will appear in the Figure window. You can use the

plot in other applications in several ways:

1. You can print a hard copy of the figure by selecting

File | Print menu item in the Figure window.

2. You can save the plot to a file to be used later. You can

save the plot by selecting File | Save As menu item.

Possible file formats include: *.fig (MATLAB format),

*.bmp, *.eps, *.jpg, *.png, *.tif, *.pdf, …. Another way

to save is File | Export Setup that allows specifying

options for the output file, then selecting Export.

3. You can copy a figure to the clipboard and then paste it

into another application using the Edit | Copy Figure

menu item. For options, use Edit | Copying Options

menu item.

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

When you have finished with the plot, close the figure

window by selecting File | Close menu item in the

figure window.

If you do not close the window, it will not re-appear

when a new plot command is executed. However,

the figure will still be updated.

8

2/20/2015

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

One Data Set: plot

x = 0:2*pi/100:2*pi;

y1 = sin(x);

plot(x,y1);

xlabel('x');

ylabel('y');

title('Example');

plot(y1): Plots values

of y1 versus their indices

if y1 is a vector.
0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

Example

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Multiple Data Sets: plot, hold

x = 0:2*pi/100:2*pi;

y1 = sin(x);

y2 = cos(x);

y3 = sin(x)+cos(x);

plot(x,y1);

hold on;

plot(x,y2);

plot(x,y3);

xlabel('x');

ylabel('y');

title('Example');

hold off;

0 1 2 3 4 5 6 7
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

Example

10

2/20/2015

6

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Or better use one plot command

x = 0:2*pi/100:2*pi;

y1 = sin(x);

y2 = cos(x);

y3 = sin(x)+cos(x);

plot(x,y1,x,y2,x,y3);

xlabel('x');

ylabel('y');

title('Example');

% Notice the auto coloring

% by MATLAB

0 1 2 3 4 5 6 7
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

Example

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Colors, Data Markers & Line Types

• You can also specify your own line styles in the plot
command.

• For full details enter help plot in MATLAB.

12

2/20/2015

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

x = 0:2*pi/100:2*pi;

y1 = sin(x);

y2 = cos(x);

y3 = sin(x)+cos(x);

plot(x,y1,'r-.',x,y2,'g-x',x,y3,'b+');

xlabel('x');

ylabel('y');

0 1 2 3 4 5 6 7
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise: How did we use different data markers below?

14

2/20/2015

8

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Legends
• With multiple lines on the same plot it is a good idea to add a legend.

legend('sin','cos','sin + cos');

legend('sin','cos','sin+cos','Location','North');

• You can also move the legend with the mouse.

0 1 2 3 4 5 6 7
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

sin

cos

sin + cos

0 1 2 3 4 5 6 7
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

sin

cos

sin + cos

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Labeling Curves and Data

The legend command automatically obtains from the

plot the line type used for each data set and displays a

sample of this line type in the legend box next to the

string you selected. The following script file produced

the plot in the next slide.

x = 0:0.01:2;

y = sinh(x);

z = tanh(x);

plot(x,y,x,z,'--');

legend('sinh(x)', 'tanh(x)');

gtext(‘text’): Places a string in the Figure

window at a point specified by the mouse.

text(x,y,’text’): Places a string in the Figure

window at a point specified by coordinates x, y.

16

2/20/2015

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Application of the legend command.

I moved the legend to an empty space using the mouse.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

sinh(x)

tanh(x)

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The grid and axis Commands

MATLAB will automatically determine the maximum and

minimum values for the axes. You can use the axis

command to override the MATLAB selections for the axis

limits. The syntax is axis([xmin xmax ymin ymax]).

This command sets the scaling for the x- and y-axes to the

minimum and maximum values indicated.

The grid command displays gridlines at the tick marks

corresponding to the tick labels. Type grid on to add

gridlines; type grid off to stop plotting gridlines. When

used by itself, grid toggles this feature on or off, but you

might want to use grid on and grid off to be sure.

18

2/20/2015

10

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

axis and grid commands

axis([0 9 -2 2]);

axis([0 6 -2 2]);

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y

sin

cos

sin+cos

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y

sin

cos

sin+cos

grid on;

grid off;

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework #1

Plotting Polynomials with the polyval Function.

To plot the polynomial 3x5 + 2x4 – 100x3 + 2x2 – 7x + 90 over the

range –6 ≤ x ≤ 6 with a spacing of 0.01, you type

>> x = -6:0.01:6;

>> p = [3,2,-100,2,-7,90];

>> plot(x,polyval(p,x));

>> xlabel('x');

>> ylabel('p');

-6 -4 -2 0 2 4 6
-3000

-2000

-1000

0

1000

2000

3000

4000

5000

x

p

20

2/20/2015

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework #2

• The polyfit function is based on the least-
squares method. It fits a polynomial of
degree n to data described by the vectors x
and y, where x is the independent variable.

• Syntax: p = polyfit(x,y,n)
• It returns a row vector p of length n+1 that

contains the polynomial coefficients in order
of descending powers.

• For the following census data, draw the
actual points and the best 5th order
polynomial fit for such data.

21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

year = 1810:10:2010;

population = 1e6*[3.9 5.3 7.2 9.6 12.9 17.1
23.1 31.4 38.6 50.2 62.9 76. 92. 105.7 122.8
131.7 150.7 179. 205. 226.5 248.7];

coeff = polyfit(year, population, 5)

f = polyval(coeff, year);

plot(year, population, 'bo', year, f, 'r--');

1800 1850 1900 1950 2000 2050
0

0.5

1

1.5

2

2.5

3
x 10

8

22

2/20/2015

12

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework #3
Graphical solution of an Electrical System

• Load is governed by:

• �1	 � 	0.16	�	�.����– 	1

• What is the equation
for the practical
source? Assume:

• �1	 � 	30Ω, �� � 15�

• Find the correct value
for �2 between 0 and
20V, and also �� value

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Solution
v2 = [0:0.1:20];

i_load = ...

0.16*(exp(0.12*v2) - 1);

i_source = (15-v2)/30;

plot(v2, i_load, 'r', ...

v2, i_source, 'b');

• The equation for the
power supply is:

�� � �� � ���

�� �
15 � ��

30

• If we draw both
equations we can see
the solution point (the
one that satisfies both
equations).

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Voltage (V)

C
u
rr

e
n
t

(A
)

24

2/20/2015

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

More Than One Figure Window

• What happens if you enter the following?

x = 0:2*pi/100:2*pi;

y1 = sin(x);

y2 = cos(x);

plot(x,y1);

title('Plot #1');

plot(x,y2);

title('Plot #2');

25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

More Than One Figure Window

• … you end up with one figure window and it
contains a plot of �	 � 	cos	��	.

• To open a new figure window enter the command
figure before making the second plot.

plot(x,y1);

title('Plot #1');

figure;

plot(x,y2);

title('Plot #2');

26

2/20/2015

14

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The fplot command is a “smart” plotting function. Example:

f = @(x) (cos(tan(x)) - tan(sin(x)));

fplot(f,[1 2]);

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
-3

-2.5

-2

-1.5

-1

-0.5

27

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The plot command is more common than the fplot command
because it gives more control. Also when you type fplot
you see it actually uses plot.
f = @(x) (cos(tan(x)) - tan(sin(x)));

t=[1:0.01:1.5, 1.51:0.0001:1.7, 1.71:0.01:2];

plot(t, f(t));

5-13
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

-3

-2.5

-2

-1.5

-1

-0.5

28

2/20/2015

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Complex Plot: Real vs. Imaginary

n = [0:0.01:10];

y = (0.1+0.9j).^n;

plot(y);

xlabel('Real');

ylabel('Imaginary');

• Similar to:
plot(real(y),imag(y)); -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real

Im
a
g
in

a
ry

29

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Subplots

You can use the subplot command to obtain several

smaller “subplots” in the same figure. The syntax is

subplot(m,n,p). This command divides the Figure

window into an array of rectangular panes with m rows and

n columns. The variable p tells MATLAB to place the output

of the plot command following the subplot command

into the pth pane.

For example, subplot(3,2,5) creates an array of six

panes, three panes deep and two panes across, and directs

the next plot to appear in the fifth pane (in the bottom-left

corner).

30

2/20/2015

16

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Subplots

• subplot(m,n,p)

31

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example
x = 0:2*pi/100:2*pi;

y1 = sin(x);

y2 = cos(x);

y3 = sin(x)+cos(x);

subplot(2,2,1);

plot(x,y1,'r-.');

title('sin(x)');

subplot(2,2,2);

plot(x,y2,'go');

title('cos(x)');

subplot(2,2,3);

plot(x,y3,'b+');

title('sin(x)+cos(x)');

0 2 4 6 8
-1

-0.5

0

0.5

1
sin(x)

0 2 4 6 8
-1

-0.5

0

0.5

1
cos(x)

0 2 4 6 8
-2

-1

0

1

2
sin(x)+cos(x)

32

2/20/2015

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework:

The following script file shows two plots of the functions

y = e−1.2x sin(10x + 5) for 0 ≤ x ≤ 5

and y = |x3 − 100| for −6 ≤ x ≤ 6.

x = 0:0.01:5;

y = exp(-1.2*x).*sin(10*x+5);

subplot(1,2,1);

plot(x,y);

axis([0 5 -1 1]);

x = -6:0.01:6;

y = abs(x.^3-100);

subplot(1,2,2);

plot(x,y);

axis([-6 6 0 350])
The figure is shown

on the next slide.

33

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Application of the subplot command.

0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-5 0 5
0

50

100

150

200

250

300

350

34

2/20/2015

18

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Log-scale Plots
• Why use log scales? Linear scales cannot properly

display wide variations in data values.
• MATLAB has three commands. The appropriate

command depends on which axis you want to be a log
scale.

• loglog(x,y): both scales logarithmic.
• semilogx(x,y): x-axis is logarithmic and y-axis is

rectilinear.
• semilogy(x,y): y-axis is logarithmic and x-axis is

rectilinear.
• The syntax is similar to the plot command.

35

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

x = [0.1:0.01:100];

y = sqrt((100*(1-0.01*x.^2).^2 ...

+0.02*x.^2) ...

./ ((1-x.^2).^2+0.1*x.^2));

plot(x,y);

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

36

2/20/2015

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

x = [0.1:0.01:100];

y = sqrt((100*(1-0.01*x.^2).^2 ...

+0.02*x.^2) ...

./ ((1-x.^2).^2+0.1*x.^2));

loglog(x,y);

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

10
2

37

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Logarithmic Plots

It is important to remember the following points when

using log scales:

1. You cannot plot negative numbers on a log scale,

because the logarithm of a negative number is not

defined as a real number.

2. You cannot plot the number 0 on a log scale, because

log10 0 = ln 0 = −∞. You must choose an appropriately

small number as the lower limit on the plot.

(continued…)
38

2/20/2015

20

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

3. The tick-mark labels on a log scale are the actual values

being plotted; they are not the logarithms of the

numbers. For example, the range of x values in the plot

in the above Figure is from 10−2 = 0.01 to 102 = 100.

4. Gridlines and tick marks within a decade are unevenly

spaced. If 8 gridlines or tick marks occur within the

decade, they correspond to values equal to 2, 3, 4, . . . ,

8, 9 times the value represented by the first gridline or

tick mark of the decade.

Logarithmic Plots (continued)

(continued…)
39

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

5. Equal distances on a log scale correspond to

multiplication by the same constant (as opposed to

addition of the same constant on a rectilinear scale).

For example, all numbers that differ by a factor of 10 are

separated by the same distance on a log scale. That is,

the distance between 0.3 and 3 is the same as the

distance between 30 and 300. This separation is

referred to as a decade or cycle.

The plot shown in the above Figure covers four decades in

x (from 0.01 to 100) and four decades in y.

Logarithmic Plots (continued)

40

2/20/2015

21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework: reproduce the following plots.
What commands did you use?

41

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

• For the first-order RC
circuit, which acts as a
LPF, the output to
input ratio is:

• � � �
�� �

�� �
�

�

������

• Sketch this frequency
response function using
semilogx. Assume:
�	 � 	1�Ω,
 � 1��

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.2

0.4

0.6

0.8

1

42

2/20/2015

22

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Solution

omega = 0:1:1e6;

h = abs(1./(1+i*omega*1e3*1e-6));

semilogx(omega, h);

axis([0 1e6 0 1.2]);

grid on;

Q. What is the bandwidth of this LPF?

43

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Command

bar(x,y)

plotyy(x1,y1,x2,y2)

polar(theta,r,’type’)

stairs(x,y)

stem(x,y)

Description

Creates a bar chart of y versus x.

Produces a plot with two y-axes, y1 on

the left and y2 on the right.

Produces a polar plot from the polar

coordinates theta and r, using the

line type, data marker, and colors

specified in the string type.

Produces a stairs plot of y versus x.

Produces a stem plot of y versus x.

Specialized plot commands.

44

2/20/2015

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

x = [0:pi/20:pi];

bar(x,sin(x));

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

45

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

theta = [0:pi/90:2*pi];

polar(theta , sin(2*theta));

grid;

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

46

2/20/2015

24

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework: Reproduce the following plot for an orbit with
an eccentricity of 0.5.

� =
2

1 − 0.5 cos �

47

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

x = [0:pi/20:2*pi];

stairs(x,sin(x));

grid;

axis([0 2*pi -1 1]);

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

48

2/20/2015

25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

x = [-2*pi:pi/20:2*pi];

x = x + (~x)*eps;

y = sin(pi*x)./(pi*x);

stem(x,y);

axis([-2*pi 2*pi -.25 1]);

-6 -4 -2 0 2 4 6

-0.2

0

0.2

0.4

0.6

0.8

49

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

x = [-2*pi:pi/20:4*pi];

fill(x,sin(x),'c');

axis([0 4*pi -1 1]);

0 2 4 6 8 10 12
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

50

2/20/2015

26

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

x = linspace(0.1, pi, 20);

approx = 1 - x.^2/2;

error = approx - cos(x);

errorbar(x, cos(x), error);

legend('cos(x)');

0 0.5 1 1.5 2 2.5 3 3.5
-4

-3

-2

-1

0

1

2

cos(x)

51

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Interactive Editing of Plots in MATLAB

This interface can be advantageous in situations where:

• You want to add annotations such as lines, arrows, text,

rectangles, and ellipses.

• You want to change plot characteristics such as tick

spacing, fonts, bolding, colors, line weight, etc.

Select the Arrow (or Tools| Edit Plot from the menu) then

double click on the portion you want to edit.

52

2/20/2015

27

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 53

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The following program uses the plot3 function to generate

the spiral curve shown in the next slide.

t = 0:pi/50:10*pi;

x = exp(-0.05*t).*sin(t);

y = exp(-0.05*t).*cos(t);

z = t;

plot3(x, y, z);

xlabel('x'),ylabel('y'),zlabel('z'),grid;

Three-Dimensional Line Plots

54

2/20/2015

28

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The curve x = = = = e−−−−0.05t sin t, y = = = = e−−−−0.05t cos t, z = = = = t plotted with the
plot3 function.

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
0

5

10

15

20

25

30

35

xy

z

55

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The following session shows how to generate the surface plot of

the function z = xe−[(x−y2)2+y2], for −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2, with a

spacing of 0.1. This plot appears in the next slide.

[X,Y] = meshgrid(-2:0.1:2);

Z = X.*exp(-((X-Y.^2).^2+Y.^2));

mesh(X,Y,Z);

xlabel('x'),ylabel('y'),zlabel('z');

[X,Y] = meshgrid(-2:0.1:2);

Z = X.*exp(-((X-Y.^2).^2+Y.^2));

surf(X,Y,Z);

xlabel('x'),ylabel('y'),zlabel('z'),colorbar

Surface Plots: mesh and surf

56

2/20/2015

29

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

A plot of the surface z = = = = xe−−−−[(x−−−−y2)2++++y2] created with the mesh

function.

-2

-1

0

1

2

-2

-1

0

1

2
-0.5

0

0.5

xy

z

57

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

A plot of the surface z = = = = xe−−−−[(x−−−−y2)2++++y2] created with the surf

function.

-2

-1

0

1

2

-2

-1

0

1

2
-0.5

0

0.5

xy

z

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

58

2/20/2015

30

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The following session generates the contour plot of the

function whose surface plot is shown above;

namely, z = xe−[(x−y2)2+y2], for −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2, with a

spacing of 0.1. This plot appears in the next slide.

[X,Y] = meshgrid(-2:0.1:2);

Z = X.*exp(-((X-Y.^2).^2+Y.^2));

[cs, h] = contour(X,Y,Z);

xlabel('x'),ylabel('y'),zlabel('z');

clabel(cs, h, 'labelspacing', 72);

59

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

A contour plot of the surface z = = = = xe−−−−[(x−−−−y2)2++++y2] created with the
contour function.

-2

-1

0

1

2

-2

-1

0

1

2
-0.5

0

0.5

xy

z

-0.4

-0
.3

-0.3

-0.3

-0.2

-0.2

-0
.2

-0.2

-0.2

-0
.1

-0.1
-0.1

-0
.1

-0.1-0.1

-0.1

0
0

0
0

0

0.1

0.1

0.1

0
.1

0
.1

0.1

0.1
0.1

0.
1

0.1

0.2

0.2

0.2

0
.2

0
.2

0.2

0.2

0.
2

0
.2

0.2

0.3

0.3

0.
3

0
. 3

0.3

0.3
0.3

0.3

0.
3

0.3

0.3

0.4

0.
4

0.4

0.40.4

0.4
0
.4

0.4

0.4

x

y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

60

2/20/2015

31

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Contours are useful for Terrain

61

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Vector fields: quiver

• quiver draws little arrows to indicate a
gradient or other vector field.

• Although it produces a 2-D plot, it is often
used in conjunction with contour. As an
example, consider the scalar function of
two variables: �	 � 	�� � �.

• The gradient of � is defined as the vector

field: �� �
��

��
,
��

��
� 2�, 1

62

2/20/2015

32

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

quiver

• The following statements draw arrows indicating the
direction of the vector �� at points in the x-y plane
(see next slide).

[x y] = meshgrid(-2:0.2:2, -2:0.2:2);

V = x.^2 + y;

dx = 2*x;

dy = ones(size(dx)); % dy same size as dx

quiver(x, y, dx, dy);

hold on;

contour(x, y, V);

hold off;

63

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

quiver alone; and with contour

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

64

2/20/2015

33

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Useful for Electromagnetic Fields

65

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework
% What is the output of this MATLAB code? Use help if you need.

figure;

t = linspace(0, 2*pi, 512);

[u,v] = meshgrid(t) ;

a = -0.2 ; b = .5 ; c = .1 ;

x = (a*(1-v/(2*pi)) .* (1+cos(u)) + c) .* cos(2*v);

y = (a*(1-v/(2*pi)) .* (1+cos(u)) + c) .* sin(2*v);

z = b*v/(2*pi) + a*(1-v/(2*pi)) .* sin(u);

surf(x,y,z,y);

shading interp;

axis off;

axis equal;

colormap(hsv(1024));

material shiny;

lighting gouraud;

lightangle(80, -40);

lightangle(-90, 60);

view([-150 10]);

66

2/20/2015

34

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Animation and Movies!

• A movies is just successive plots seen in quick
succession.

• We can plot data repeatedly on a single figure.

• For example the function � � sin	�� 	
�

x = 0:2*pi/100:2*pi;

for t = 0:0.05:5 % 5 seconds

y = sin(x+t);

plot(x,y,’k’)

pause(0.2); % 200 ms between frames

end

67

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework: Creating Movies

• To create a movie a sequence of frames are “grabbed” from
the figure, stored in an array and written out as .avi file.

nFrame = 1; % frame counter

x = 0:2*pi/100:2*pi;

for t=0:0.05:5

y=sin(x+t);

plot(x,y);

pause(0.2);

movie(nFrame) = getframe; % grab frame & store it

nFrame = nFrame + 1;

end

movie2avi(movie,'animation.avi'); % save movie

68

2/20/2015

35

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

• Solve as many problems from Chapter 5
as you can

• Suggested problems:

• Solve: 5.3, 5.5, 5.9, 5.11, 5.15, 5.20, 5.27,
5.29, 5.35, 5.36, 5.39.

69

3/30/2015

1

Lecture 8: Calculus and
Differential Equations

Dr. Mohammed Hawa
Electrical Engineering Department

University of Jordan

EE201: Computer Applications. See Textbook Chapter 9.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Numerical Methods

• MATLAB provides many functions that
support numerical solutions to common
math problems:
– Integration and Differentiation (Calculus)
– Finding zeros of a function
– Solving ordinary differential equations
– Many others

• Numerical analysis provides answers as
numbers, not closed-form solutions as in
analytical solutions (see next lecture for
symbolic math in MATLAB).

2

3/30/2015

2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The integral of f(x) is the area A under the curve of f (x)

from x ==== a to x ==== b.

� = 	� � � ��
�

�

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Illustration of Numerical Integration: (a) rectangular method
and (b) more accurate trapezoidal method.

4

3/30/2015

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example

>> x = linspace(0,pi,10);

>> y = sin(x);

>> A = trapz(x,y)

A =

1.9797

>> x = linspace(0,pi,100);

>> y = sin(x);

>> A = trapz(x,y)

A =

1.9998

trapz(x,y)

Uses trapezoidal
integration to compute
the integral of y with
respect to x, where the
array y contains the
function values at the
points contained in the
array x.

� � � sin � ��
�

�

� 	cos � �

� � 1 	 	1 � 2

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Simpson’s Rule

• Another approach to
numerical integration is
Simpson’s Rule, which
divides the integration
range [a, b] into an even
number of sections and
uses a different
quadratic function to
represent the integrand
for each panel.

6

3/30/2015

4

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

quad(fun, a, b)

quad(fun, a, b, tol)

quadl(fun,a,b)

dblquad(fun, a, b, c, d)

triplequad(fun,a,b,c,d,e,f)

Uses an adaptive Simpson’s rule to compute

the integral of the function whose handle is

fun, with a the lower limit and b the upper

limit. The function fun must accept a vector

argument. The parameter tol is optional, and

indicates the specified error tolerance.

Uses Lobatto quadrature to compute the

integral of the function fun. The rest of the

syntax is identical to quad.

computes the integral of f(x,y) from x = a to b,

and y = c to d. The function fun must accept a

vector argument x and scalar y, and it must

return a vector result.

computes the integral of f(x,y,z) from x = a to

b, y = c to d, and z = e to f. The function must

accept a vector x, and scalar y and z.

Important numerical integration functions:

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Although the quad and quadl functions are

more accurate than trapz, they are restricted to

computing the integrals of functions and cannot be

used when the integrand is specified by a set of

points. For such cases, use the trapz function.

8

3/30/2015

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

MATLAB function quad implements an adaptive

version of Simpson’s rule, while the quadl function is

based on an adaptive Lobatto integration algorithm.

To compute the integral of sin(x) from 0 to π, type

>> A = quad(@sin,0,pi)

The answer given by MATLAB is 2.0000, which is correct.

We use quadl the same way; namely,

>> A = quadl(@sin,0,pi).

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

To integrate cos(x2) from 0 to 2�, create the function in

an m-file:

function yy = cossq(x)

yy = cos(x.^2);

Note that we must use array exponentiation. Then quad

function is called as follows:

>> quad(@cossq, 0, sqrt(2*pi))

ans =

0.6119

Or you can use an anonymous function:

>> f = @(x)(1./(x.^3 - 2*x - 5));

>> quad(f, 0, 2)

ans =

-0.4605 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5
-1.5

-1

-0.5

0

0.5

1

1.5

10

3/30/2015

6

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

A = dblquad(fun, a, b, c, d) computes the integral of f(x,y)

from x = a to b, and y = c to d. Example: f(x,y) = xy2.

>> fun = @(x,y) x.*y^2;

>> A = dblquad(fun, 1, 3, 0, 1)

A =

1.3333

A = triplequad(fun, a, b, c, d, e, f) computes the

triple integral of f(x,y, z) from x = a to b, y = c to d, and z = e to f.

Example: f(x,y,z) = (xy -y2)/z.

>> fun = @(x,y,z)(x*y - y^2)/z;

>> A = triplequad(fun, 1,3, 0,2, 1,2)

A =

1.8484

Note: The function must accept a vector x, but scalar y and z.

Double and Triple Integrals

��� �, � ����
�

�

�

�

���� �, �, � ������
�

�

�

�

�

�

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Be careful: function singularity

>> f = @(x) (1./(x-1));

>> quad(f, 0, 2)

Warning: Infinite or Not-

a-Number function value

encountered.

> In quad at 113

ans =

NaN

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-100

-80

-60

-40

-20

0

20

40

60

80

100

� 1
1
 � ��

�

�

12

3/30/2015

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Numerical differentiation: Illustration of estimating the

derivative dy////dx.

��
�� � lim

∆�→�

∆�
∆�

��
�� � ��
 ��

��
 ��

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

MATLAB provides the diff function to use for computing

derivative estimates.

d = diff(y), where y is a vector of n elements, the

result is a vector d containing n − 1 elements that are the

differences between adjacent elements in y. That is:

d=[y(2)-y(1), y(3)-y(2),..., y(n)-y(n-1)]

For example:

>> y = [5, 7, 12, -20];

>> diff(y)

ans =

2 5 -32

14

3/30/2015

8

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example

step = 0.001;

x = 0 : step : pi;

y = sin(x.^2);

d = diff(y)/step;

% an approximation

% to derivative

% 2.*x.*cos(x.^2)

plot(x,y,'k',x(2:end),d,'--');

legend('f(x)', 'df/dx');

0 0.5 1 1.5 2 2.5 3 3.5
-8

-6

-4

-2

0

2

4

6

f(x)

df/dx

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Ordinary Differential Equations

• An ordinary differential equation (ODE) is an
equation containing ordinary derivatives of
the dependent variable.

• An equation containing partial derivatives
with respect to two or more independent
variables is a partial differential equation
(PDE).

• We limit ourselves to ODE that must be
solved for a given set of initial conditions.

• Solution methods for PDEs are an advanced
topic, and we do not look at them.

16

3/30/2015

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Several Methods

• Several numerical methods to solve ODEs.
• Examples include:

– Euler and Backward Euler methods
– Predictor-Corrector method
– First-order exponential integrator method
– Runge-Kutta methods
– Adams-Moulton methods
– Gauss-Radau methods
– Adams-Bashforth methods
– Hermite–Obreschkoff methods
– Fehlberg methods
– Parker–Sochacki methods
– Nyström methods
– Quantized State Systems methods

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Multiple Solvers

• MATLAB offers multiple ODE solvers, each uses
different methods.

• Ode23: Solves non-stiff differential equations, low
order method.

• ode45: Solves non-stiff differential equations,
medium order method: uses a combination of fourth- and
fifth-order Runge-Kutta methods.

• ode23s: Solves stiff differential equations, low order
method.

• ode15i: Solves fully implicit differential equations,
variable order method.

• And so on.
• We will limit ourselves to the ode45 solver.

18

3/30/2015

10

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example: Find the response of the first-order RC circuit .

� ���	 + � = 0

� 0 =
�			(�.
.)

� ���	 + � =
�

� 0 =
�			(�.
.)

�() = � 0 ��	/
		(��	����	��������)

� 	 =
� + (� 0 −
�)��	/
		(�	��	��������)

�� 	 =
��
�	

�� 	 =
���
�	�

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Solving First-Order Differential Equations

First write the equation as dy/dt = f(t,y) then solve it using this syntax:

[t,y] = ode45(@f,tspan,y0)

where @f is the handle of the function file whose inputs must be t and

y, and whose output must be a column vector representing dy/dt; that

is, f(t,y). The number of rows in the output column vector must equal

the order of the equation.

The array tspan contains the starting and ending values of the

independent variable t, and optionally any intermediate values.

The array y0 contains the initial values of y. If the equation is first

order, then y0 is a scalar.

20

3/30/2015

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The circuit model for zero input voltage �	 and � = 0.1 is:

0.1 ×
��
�� + � = 0

And the i.c. is �(0) = 2 V.

First re-write the equation in the required format:

�

�
= −10�

Next define the following function file. Note that the order

of the input arguments must be t and y.

f = @(t,y) -10*y;

21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The solver is called as follows, and the solution plotted along

with the analytical solution y_true. The initial condition is

�(0) = 2.

f = @(t,y) -10*y;

[t, y] = ode45(f, [0 0.5], 2);

y_analytical = 2*exp(-10*t);

plot(t,y,'o', t, y_analytical);

legend('ODE solver', 'Actual');

xlabel('Time(s)');

ylabel('Capacitor Voltage');

Note that we need not generate the array t to evaluate

y_analytical, because t is generated by the ode45

function.

The plot is shown on the next slide.

22

3/30/2015

12

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Free (natural) response of an RC circuit

(decaying exponential).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time(s)

C
a
p
a
c
it
o
r

V
o
lt
a
g
e

ODE solver

Actual

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The circuit model for input voltage �	 = 10� and � = 0.1:

0.1 ×
��
�� + � = 10

And the i.c. is �(0) = 2 V.

First re-write the equation in the required format:

��
�� = −10� + 100

Next define the following function file. Note that the order

of the input arguments must be t and y.

f = @(t,y) -10*y+100;

24

3/30/2015

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The solver is called as follows, and the solution plotted along

with the analytical solution y_true. The initial condition is

�(0) = 2.

f = @(t,y) -10*y+100;

[t, y] = ode45(f, [0 0.5], 2);

y_analytical = 10+(2-10)*exp(-10*t);

plot(t,y,'o', t, y_analytical);

legend('ODE solver', 'Actual');

xlabel('Time(s)');

ylabel('Capacitor Voltage');

Note that we need not generate the array t to evaluate

y_analytical, because t is generated by the ode45

function.

The plot is shown on the next slide.

25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Natural plus forced (total) response of an RC circuit
(increasing exponential).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

9

10

11

Time(s)

C
a
p
a
c
it
o
r

V
o
lt
a
g
e

ODE solver

Actual

26

3/30/2015

14

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The circuit model for input voltage �	 = 10�
�/�.� sin ���

�.��

and � = 0.1:

0.1 ×
��
�� + � = 10�
�/�.� sin 2��

0.03

And assume the i.c. is �(0) = 0 V.

First re-write the equation in the required format:

��
�� = −10� + 100�
�/�.� sin 2��

0.03

Next define the following function file. Note that the order

of the input arguments must be t and y.

f = @(t,y) -10*y+100* ...

exp(-1*t/0.3).*sin(2*pi*t/0.03);

27

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Result

0 0.2 0.4 0.6 0.8 1 1.2
-10

-5

0

5

10

Time (s)

A
p
p
lie

d
 V

o
lt
a
g
e

0 0.2 0.4 0.6 0.8 1 1.2
-0.5

0

0.5

1

Time (s)

C
a
p
a
c
it
o
r

V
o
lt
a
g
e

28

3/30/2015

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Extension to Higher-Order Equations

To use the ODE solvers to solve an equation of 2nd order or

higher, you must first write the equation as a set of first-order

equations.

Example:

5
���
��� + 7

��
�� + 4� = � �

By re-arranging to get the highest derivative:

���
��� =

1

5
� � −

4

5
� −

7

5

��
��

29

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example (Continue)

���

���
�

1

5
� � �

4

5
� �

7

5

��

��

We then change variables: �� � ��/��

Hence: ���/�� � ���/���

Also: �� � �. Hence we have two equations:

���

��
� ��

���

��
�

1

5
� � �

4

5
�� �

7

5
��

30

3/30/2015

16

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example (Continue)

���

��
� ��

���

��
�

1

5
� � �

4

5
�� �

7

5
��

This form is sometimes called the Cauchy form or
the state-variable form.

We now define a function that accepts two values of
x and then computes the values of ���/�� and
���/�� and stores them in a column vector.

31

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

���

��
� ��

���

��
�

1

5
sin �

4

5
��

7

5
��

d = @(t,x) [x(2); sin(t)/5-4*x(1)/5-7*x(2)/5];

[t, x] = ode45(d, [0 6], [3 9]);

Here ��0� � 3 and ���0� � 9, and we solve for 0 � 	 � 6. Also � 	 � sin	�	�.
Note x is a matrix with two columns. The first column contains the values of x1
at the various times generated by the solver; the second column contains the
values of x2.

If you type plot(t, x), you will obtain a plot of both x1 and x2 versus t.
Thus, type plot(t, x(:,1)) to see the result for y.

Example (Code)

32

3/30/2015

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Result

0 1 2 3 4 5 6
-1

0

1

2

3

4

5

6

7

33

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

HW: Alternative Solution

Define the function in an m-file:

function xdot = d(t, x)

xdot(1) = x(2);

xdot(2) = (1/5)*(sin(t)-4*x(1)-7*x(2));

xdot = [xdot(1); xdot(2)];

Use the function to solve the ODE:

[t, x] = ode45(@d, [0 6], [3 9]);

% notice the need to use handles

plot(t, x(:,1));

34

3/30/2015

18

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

• Solve as many problems from Chapter 9
as you can

• Suggested problems:

• Solve: 9.1, 9.4, 9.14, 9.16, 9.23, 9.27, 9.31,
9.34.

35

3/30/2015

1

Lecture 9: Symbolic
Processing in MATLAB

Dr. Mohammed Hawa
Electrical Engineering Department

University of Jordan

EE201: Computer Applications. See Textbook Chapter 11.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The sym function can be used to create “symbolic objects” in

MATLAB.

If the input argument to sym is a string, the result is a symbolic

number or variable. If the input argument is a numeric scalar or

matrix, the result is a symbolic representation of the given

numeric values.

For example, typing x = sym('x') creates the symbolic

variable with name x, and typing y = sym('y') creates a

symbolic variable named y.

Typing x = sym('x', 'real') tells MATLAB to assume that

x is real. Typing x = sym('x', 'unreal') tells MATLAB to

assume that x is not real.

2

3/30/2015

2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The syms function enables you to combine more than

one such statement into a single statement.

For example, typing syms x is equivalent to typing

x = sym('x'), and typing syms x y u v creates

the four symbolic variables x, y, u, and v.

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Symbolic vs. Numeric Objects

4

>> a = 5

a =

5

>> class(5)

ans =

double

>> b = 't'

b =

t

>> class(b)

ans =

char

>> x = sym('x')

x =

x

>> class(x)

ans =

sym

>> syms y

>> class(y)

ans =

sym

3/30/2015

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

You can use the sym function to create symbolic

constants by using a numerical value for the argument.

For example, typing

fraction = sym('1/3')

sqroot2 = sym('sqrt(2)')

pi = sym('pi')

will create symbolic constants that avoid the floating-point

approximations inherent in the values of π, 1/3, and √2.

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

You can use symbolic variables in expressions and as

arguments of functions. You use the operators

+ - * / ^ and the built-in functions just as you use

them with numerical calculations. For example, typing

>> syms x y

>> s = x + y;

>> r = sqrt(x^2 + y^2);

creates the symbolic variables s and r. The terms s =

x + y and r = sqrt(x^2 + y^2) are examples

of symbolic expressions.

Symbolic Expressions

6

3/30/2015

4

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The vector and matrix notation used in MATLAB also applies to

symbolic variables. For example, you can create a symbolic matrix

A as follows:

>> n = 3;

>> syms x;

>> A = x.^((0:n)'*(0:n))

A =

[1, 1, 1, 1]

[1, x, x^2, x^3]

[1, x^2, x^4, x^6]

[1, x^3, x^6, x^9]

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The expand and simplify functions.

>> syms x y

>> expand((x+y)^2) % applies algebra rules

ans =

x^2 + 2*x*y + y^2

>> syms x y

>> expand(sin(x+y)) % applies trig identity

ans =

cos(x)*sin(y) + cos(y)*sin(x)

>> syms x

>> simplify(6*((sin(x))^2+(cos(x))^2))

% applies another trig identity

ans =

6

8

3/30/2015

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

>> syms x

>> E1 = x^2+5;

>> E2 = x^3+2*x^2+5*x+10;

>> S = E1/E2;

>> simplify(S)

ans =

1/(x + 2)

The factor function.

>> syms x

>> factor(x^2-1)

ans =

(x - 1)*(x + 1)

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The function subs(E,old,new) substitutes new for

old in the expression E, where old can be a symbolic

variable or expression and new can be a symbolic variable,

expression, or matrix, or a numeric value or matrix. For

example,

>> syms x y

>> E = x^2+6*x+7;

>> F = subs(E,x,y)

F =

y^2 + 6*y + 7

>> G = subs(E,x,y+3)

G =

6*y + (y + 3)^2 + 25

10

3/30/2015

6

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

If you want to tell MATLAB that f is a function of the variable t,

type f = sym('f(t)'). Thereafter, f behaves like a function

of t, and you can manipulate it with the toolbox commands. For

example, to create a new function g(t) = f (t + 2) − f (t), the

session is

>> syms t

>> f = sym('f(t)');

>> g = subs(f,t,t+2)-f

g =

f(t+2)-f(t)

Once a specific function is defined for f(t), the function g(t) will be

available.

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Use the subs and double functions to evaluate an expression

numerically. Use subs(E,old,new) to replace old with a

numeric value new in the expression E. The result is of class

double. For example,

>> syms x

>> E = x^2+6*x+7;

>> G = subs(E,x,2)

G =

23

>> class(G)

ans =

double

12

3/30/2015

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The MATLAB function ezplot(E) generates a plot of a

symbolic expression E, which is a function of one variable.

The default range of the independent variable is the interval

[−2π, 2π] unless this interval contains a singularity.

The optional form ezplot(E,[xmin xmax]) generates

a plot over the range from xmin to xmax.

Example:

>> syms x

>> E = x^2 - 6*x + 7;

>> ezplot(E, [-2 6]);

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Result

-2 -1 0 1 2 3 4 5 6

0

5

10

15

20

x

x
2
 - 6 x + 7

14

3/30/2015

8

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Order of Precedence.

MATLAB does not always arrange expressions in a form that

we normally would use.

For example, MATLAB might provide an answer in the form

-c+b, whereas we would normally write b-c.

The order of precedence used by MATLAB must be

constantly kept in mind to avoid misinterpreting the

MATLAB output (see earlier slides).

MATLAB frequently expresses results in the form 1/a*b,

whereas we would normally write b/a.

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The solve function.

There are three ways to use the solve function. For example,

to solve the equation x + 5 = 0, one way is

>> eq1 = 'x+5=0';

>> solve(eq1)

ans =

-5

The second way is

>> solve('x+5=0')

ans =

-5

16

3/30/2015

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The solve function (continued).

The third way is

>> syms x

>> solve(x+5)

ans =

-5

You can store the result in a named variable as follows:

>>syms x

>>x = solve(x+5)

x =

-5

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

To solve the equation e2x + 3ex = 54, the session is

>> solve('exp(2*x)+3*exp(x) = 54')

ans =

log(6)

log(9) + pi*I

>> syms x

>> solve(exp(2*x)+3*exp(x)-54)

ans =

log(6)

log(9) + pi*i

18

3/30/2015

10

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Other examples:

>> eq2 = 'y^2+3*y+2=0'; % quadratic eq

>> solve(eq2)

ans =

[-2]

[-1]

>> eq3 = 'x^2+9*y^4=0'; % x is squared

>> solve(eq3) % x is assumed the unknown

ans =

[3*i*y^2]

[-3*i*y^2]

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

When more than one variable occurs in the expression,

MATLAB assumes that the variable closest to x in the alphabet

is the variable to be found. You can specify the solution

variable using the syntax

solve(E, 'v'), where v is the solution variable.

>> eq3 = 'x^2+9*y^4=0'; % y is to power 4

>> solve(eq3,'y')

ans =

-((-1)^(1/4)*9^(3/4)*x^(1/2))/9

((-1)^(1/4)*9^(3/4)*x^(1/2))/9

-((-1)^(1/4)*9^(3/4)*x^(1/2)*i)/9

((-1)^(1/4)*9^(3/4)*x^(1/2)*i)/9

20

3/30/2015

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Application of the solve function: Find the two Intersection

points of the following two circles. Keep b unknown.

21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Solution

>> S = solve('(x-3)^2+(y-5)^2=4, (x-5)^2+(y-3)^2=b^2')

S =

x: [2x1 sym]

y: [2x1 sym]

>> S.x

ans =

(- b^4/16 + (3*b^2)/2 - 1)^(1/2)/2 - b^2/8 + 9/2

9/2 - b^2/8 - (- b^4/16 + (3*b^2)/2 - 1)^(1/2)/2

>> S.y

ans =

(- b^4/16 + (3*b^2)/2 - 1)^(1/2)/2 + b^2/8 + 7/2

b^2/8 - (- b^4/16 + (3*b^2)/2 - 1)^(1/2)/2 + 7/2

22

3/30/2015

12

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Differentiation with the diff function.

>> syms n x y

>> diff(x^n)

ans =

x^n*n/x

>> simplify(ans)

ans =

x^(n-1)*n

>> diff(log(x)) % means ln

ans =

1/x

>> diff((sin(x))^2)

ans =

2*sin(x)*cos(x)

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

If the expression contains more than one variable, the diff

function operates on the variable x, or the variable closest to x,

unless told to do otherwise. When there is more than one

variable, the diff function computes the partial derivative.

>> syms x y

>> diff(sin(x*y))

ans =

cos(x*y)*y

The function diff(E,v) returns the derivative of the

expression E with respect to the variable v.

>> syms x y

>> diff(x*sin(x*y),y)

ans =

x^2*cos(x*y)

24

3/30/2015

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The function diff(E,n) returns the nth derivative of the

expression E with respect to the default independent variable.

>> syms x

>> diff(x^3,2)

ans =

6*x

The function diff(E,v,n) returns the nth derivative of the

expression E with respect to the variable v.

>> syms x y

>> diff(x*sin(x*y),y,2)

ans =

-x^3*sin(x*y)

25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Integration with the int function.

>> syms x

>> int(2*x)

ans =

x^2

The function int(E) returns the integral of the expression

E with respect to the default independent variable.

26

3/30/2015

14

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

>> syms n x y

>> int(x^n)

ans =

x^(n+1)/(n+1)

>> int(1/x)

ans =

log(x)

>> int(cos(x))

ans =

sin(x)

27

�����

�1

� �� = ln �

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The form int(E,v) returns the

integral of the expression E with

respect to the variable v.

>>syms n x

>>int(x^n,n)

ans =

1/log(x)*x^n

28

�����

3/30/2015

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The form int(E,a,b) returns the

integral of the expression E with respect to

the default independent variable evaluated

over the interval [a, b], where a and b are

numeric expressions.

>>syms x

>>int(x^2,2,5)

ans =

39

29

�����
�

�

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The form int(E,v,a,b) returns the integral of the

expression E with respect to the variable v evaluated over

the interval [a, b], where a and b are numeric quantities.

>> syms x y

>> int(xy^2,y,0,5)

ans =

125/3*x

30

3/30/2015

16

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The form int(E,m,n) returns the integral of the

expression E with respect to the default independent

variable evaluated over the interval [m, n], where m and

n are symbolic expressions.

>> syms t x

>> int(x,1,t)

ans =

t^2/2 - 1/2

>> syms t x

>> int(sin(x),t,exp(t))

ans =

cos(t) - cos(exp(t))

31

��	��
�

�

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The following session gives an example for which no

integral can be found. The indefinite integral exists,

but the definite integral does not exist if the limits of

integration include the singularity at x = 1.

>> syms x

>> int(1/(x-1))

ans =

log(x - 1)

>> syms x

>> int(1/(x-1),0,2)

ans =

NaN

32

3/30/2015

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Taylor Series.

The taylor(f,n,a) function gives the first n-1 terms in

the Taylor series for the function defined in the expression f,

evaluated at the point x = a. If the parameter a is omitted the

function returns the series evaluated at x = 0.

>> syms x

>> f = exp(x);

>> taylor(f,3,2)

ans =

exp(2)+exp(2)*(x-2)+(exp(2)*(x-2)^2)/2

>> taylor(f,4)

ans =

x^3/6 + x^2/2 + x + 1

33

� � = � � + � − � �� � +
� − � �

2!
��� � +

� − � �

3!
�(�) � +⋯

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Series summation.

The symsum(E,a,b) function returns the sum of the

expression E as the default symbolic variable varies from a

to b.

>> syms k n

>> symsum(k,0,10)

ans =

55

>> symsum(k^2, 1, 4)

ans =

30

>> symsum(k,0,n-1)

ans =

(n*(n - 1))/2

34

��
��

���

���

	

���

3/30/2015

18

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Finding limits.

The basic form limit(E) finds the limit as x → 0.

>> syms a x

>> limit(sin(a*x)/x)

ans =

a

35

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The form limit(E,v,a) finds the limit as υ → a.

>>syms h x

>>limit((x-3)/(x^2-9),3)

ans =

1/6

>>limit((sin(x+h)-sin(x))/h,h,0)

ans =

cos(x)

36

3/30/2015

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The forms limit(E,v,a,'right') and

limit(E,v,a,'left') specify the direction

of the limit.

>> syms x

>> limit(1/x,x,0,'left')

ans =

-inf

>> syms x

>> limit(1/x,x,0,'right')

ans =

inf

37

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Solving differential equations with dsolve

The dsolve syntax for solving a single equation is

dsolve('eqn'). The function returns a

symbolic solution of the ODE specified by the

symbolic expression eqn.

>> dsolve('Dy+2*y=12')

ans =

6+C1*exp(-2*t)

There can be symbolic constants in the equation.

>> dsolve(’Dy=sin(a*t)’)

ans =

(-cos(a*t)+C1*a)/a

38

3/30/2015

20

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Here is a second-order example:

>> dsolve('D2y=c^2*y')

ans =

C1*exp(-c*t) + C2*exp(c*t)

39

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Sets of equations can be solved with dsolve. The appropriate

syntax is dsolve('eqn1','eqn2',...).

>>[x, y]=dsolve('Dx=3*x+4*y','Dy=-4*x+3*y')

x =

C1*exp(3*t)*cos(4*t)+C2*exp(3*t)*sin(4*t)

y = -

C1*exp(3*t)*sin(4*t)+C2*exp(3*t)*cos(4*t)

40

3/30/2015

21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Conditions on the solutions at specified values of the

independent variable can be handled as follows.

The form

dsolve('eqn', 'cond1', 'cond2',...)

returns a symbolic solution of the ODE specified by the

symbolic expression eqn, subject to the conditions

specified in the expressions cond1, cond2, and so on.

If y is the dependent variable, these conditions are

specified as follows: y(a) = b, Dy(a) = c,

D2y(a) = d, and so on.

41

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example:

>> dsolve('D2y=c^2*y','y(0)=1','Dy(0)=0')

ans =

1/2*exp(c*t)+1/2*exp(-c*t)

42

3/30/2015

22

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example:

>> [x,y]=dsolve('Dx=3*x+4*y','Dy=-4*x+3*y',

'x(0)=0','y(0)=1')

x =

sin(4*t)*exp(3*t)

y =

cos(4*t)*exp(3*t)

It is not necessary to specify only initial conditions. The

conditions can be specified at different values of t.

>> dsolve('D2y+9*y=0','y(0)=1','Dy(pi)=2')

ans =

cos(3*t) - (2*sin(3*t))/3

43

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

>> syms b t

>> laplace(t^3)

ans =

6/s^4

>> laplace(exp(-b*t))

ans =

1/(s+b)

>> laplace(sin(b*t))

ans =

b/(s^2+b^2)

>> fourier(exp(-t^2))

ans =

pi^(1/2)/exp(w^2/4)

Laplace and Fourier Transform

44

3/30/2015

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

>>syms b s

>>ilaplace(1/s^4)

ans =

1/6*t^3

>>ilaplace(1/(s+b))

ans =

exp(-b*t)

>>ilaplace(b/(s^2+b^2)

ans =

sin(b*t)

Laplace Inverse Transform

45

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

You can use the inv(A) and det(A) functions to invert and

find the determinant of a matrix symbolically.

>> syms k

>> A = [0 ,1;-k, -2];

>> inv(A)

ans =

[-2/k, -1/k]

[1, 0]

>> A*ans % verify inverse is correct

ans =

[1, 0]

[0, 1]

>> det(A)

ans =

k

46

3/30/2015

24

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

You can use matrix methods in MATLAB to solve linear algebraic

equations symbolically. You can use the matrix inverse method, if

the inverse exists, or the left-division method.

>> syms c

>> A = sym([2, -3; 5, c]);

>> b = sym([3; 19]);

>> x = inv(A)*b % matrix inverse method

x =

(3*c)/(2*c + 15) + 57/(2*c + 15)

23/(2*c + 15)

>> x = A\b % left-division method

x =

(3*c)/(2*c + 15) + 57/(2*c + 15)

23/(2*c + 15)

47

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

• Solve as many problems from Chapter 11
as you can

• Suggested problems:

• Solve: 11.3, 11.4, 11.12, 11.18, 11.22, 11.23,
11.28, 11.31, 11.32, 11.35, 11.37, 11.41,
11.42, 11.50, 11.51.

48

3/30/2015

1

Lecture 10: Simulink

Dr. Mohammed Hawa
Electrical Engineering Department

University of Jordan

EE201: Computer Applications. See Textbook Chapter 10.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

What is Simulink?

• Simulink is a tool for modeling, simulating and
analyzing dynamic systems.

• Its primary interface is a graphical block
diagramming tool and a customizable set of block
libraries.

• It supports linear and nonlinear systems, modeled
in continuous time, discrete time, or a hybrid of
both.

• It easily integrates with the rest of the MATLAB
environment.

• Simulink is widely used in control theory and
digital signal processing for simulation and
model-based design.

2

3/30/2015

2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Starting Simulink

• To build a
Simulink model,
choose File | New
| Model.

• To see the
Simulink library
of blocks click on
the Simulink icon
in MATLAB.

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Library Browser & Model Window

4

3/30/2015

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Drag & Drop

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

• Sources | Sine Wave
• Continuous | Integrator
• Signal Routing| Mux
• Sinks | Scope
• To connect blocks,

move the cursor to the
output port
represented by ">"
sign. Once placed at a
port, the cursor will
turn into a cross "+"
enabling you to make
the connection between
blocks.

• Run the simulation of
the simple system
shown by clicking on
the play icon.

� � � � ��
�

�

� 1
� 	 �

6

3/30/2015

4

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Scope Results

• Double click on the
scope block to see the
results of the
simulation.

• To view/edit the
parameters of a block,
double click on the
block to see the Block
Parameters window.

• Try changing the initial
condition of the
Integrator from 0 to -1.

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Blocks & Model File

• MATLAB uses the default values of the block
parameters, except where you explicitly change
them.

• You can always click on Help within the Block
Parameters window to obtain more information.

• You can edit the label of a block by clicking on the
text and making the changes.

• You can search for Blocks in the Simulink search
window.

• You can save the Simulink model as .mdl file by
selecting File | Save menu item in Simulink.

8

3/30/2015

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise: Modulation
Blocks:

• Sources: Repeating
Sequence

• Sources: Since Wave

• Math Operation: Product

• Math Operation: Gain

• Sinks: Scope

Edit the following properties:

• Repeating Sequence:
– Time Values: [0 1 2 3 4 5 6]

– Output Values: [0 1 1 0 -1 -1 0]

• Sine Wave:
• Frequency: 50 rad/s
• Sample time: 0.01

• Gain: 2
• Simulation Stop Time:

• 12 seconds

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Results

10

3/30/2015

6

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise: Sending data to Workspace.

Notice the “Clock” and “To Workspace” blocks.

Set simulation time to 13 seconds.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Double-click on the To Workspace block. You can specify any

variable name you want as the output; the default is

simout. Change its name to y.

The output variable y will have as many rows as there are

simulation time steps, and as many columns as there are

inputs to the block.

The second column in our simulation will be time, because

of the way we have connected the Clock to the second

input port of the Mux.

Specify the Save format as Array. Use the default values for

the other parameters (these should be inf, 1, and -1 for

Maximum number of rows, Decimation, and Sample time,

respectively). Click on OK.

3/30/2015

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Simulink can be configured to put the time variable tout

into the MATLAB workspace automatically when you are

using the To Workspace block.

This is done with the Data I/O tab under Configuration

Parameters on the Simulation menu.

The alternative is to use the Clock block to put tout into

the workspace.

The Clock block has one parameter, Decimation. Set this

parameter to 1, which means the Clock block will output

the time every time step; if set to 10 for example, the block

will output every 10 time steps, and so on.

In MATLAB, try: plot(y(:,2), y(:,1))

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Result

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

18

20

14

3/30/2015

8

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Simulation diagrams for x = dy/dt ==== 10 f (t)

Simulation diagram for dy/dt ==== f (t) −−−− 10y

= dy/dt

dy/dt

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise: Simulink model to solve the first-order ODE

dy/dt ==== −−−−10y ++++ 2sin(4t) � ≤ � ≤ �

Homework: Use Simulink to solve the second-order ODE

d2x/dt2 = 5cos(2t) -3 dx/dt - 4x � ≤ � ≤ �

3/30/2015

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Result

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

• Solve as many problems from Chapter 10
as you can

• Suggested problems:

• Solve: 10.1, 10.3, 10.4.

18

3/30/2015

1

Lecture 11: MATLAB
Exercises

Dr. Mohammed Hawa
Electrical Engineering Department

University of Jordan

EE201: Computer Applications. See Textbook Chapter 4.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise 1

• Write a MATLAB m-file function (called
fact.m) which takes a single argument
(an integer), computes the factorial and
returns the answer.

• Hint: For better performance, do not use
loops!

2

3/30/2015

2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise 2

• Write a MATLAB m-file function (called
grades.m) which accepts student grades as
argument (hint: number array) and then
determines the lowest, highest and average
of such scores.

• E.g., grades([11 10 99 5 19 3 17])
• Total: 7 scores

• Min value: 3

• Max value: 99

• Average value: 23.43

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise 3

• Write a MATLAB m-file function (dice.m) which
simulates one or more dice with each die giving
values from 1 to 6.

• The program takes a single argument which is the
number of dice.

• The output should contain the values of the dice
and also the probability for this combination of
dice to occur. The probability is expressed as a
decimal value between 0 and 1 with five decimal
points.

• E.g., Rolling 3 dice: 4 1 6 (Probability: 0.00463)

4

3/30/2015

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise 4

>> rev

one

two

three

END

-> three

-> two

-> one

• Write a MATLAB script (called
rev.m) which reads a number
of strings from standard input
and prints them in reverse order
on the command window.

• The input sequence is
terminated with the string END.

• Hint: Use a cell array!

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise 5

• Write a MATLAB script (called count.m)
which reads a string from standard input
and then counts the number of words in
that string.

• E.g., “Everyone loves MATLAB” contains
3 words.

6

3/30/2015

4

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise 6

• The sum of the squares of the first ten integers is:

• 12 + 22 + ... + 102 = 385

• The square of the sum of the first ten integers is:

• (1 + 2 + ... + 10)2 = 552 = 3025

• Hence the difference between the sum of the
squares of the first ten integer numbers and the
square of the sum is 3025 − 385 = 2640.

• Find the difference between the sum of the
squares of the first one hundred integer numbers
and the square of the sum.

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise 7

• A prime number (or a prime) is an integer
number greater than 1 that has no positive
divisors other than 1 and itself.

• The first six prime numbers are: 2, 3, 5, 7,
11, and 13.

• We can see that the 6th prime is 13.

• Write a MATLAB script to print the first
50 prime numbers.

8

3/30/2015

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise 8

• A Pythagorean triplet is a set of three
positive integer numbers, � � � � �, for
which: �� � �

�
� �

�

• For example, 32 + 42 = 9 + 16 = 25 = 52.

• There exists exactly one Pythagorean
triplet for which � � � � � � 1000.

• Write a MATLAB script to find this triplet.

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise 9

• Starting in the top left corner of a 2×2 grid, and
only being able to move to the right and down,
there are exactly 6 routes to the bottom right
corner (see the figure below).

• How many such routes are there through a
10×10 grid?

10

3/30/2015

6

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise 10

• Write a MATLAB script file that asks the
user to type the coordinate of two points:
A and B (in a plane), and then displays the
distance between A and B.

11

 Page 1 of 2

The University of Jordan
School of Engineering
Department of Electrical Engineering
1st Semester – A.Y. 2014/2015

Course: Computer Applications – 0903201 (1 Cr. – Core Course)

Instructor: Dr. Mohammed Hawa
Office: E306, Telephone: 5355000 ext 22857, Email: hawa@ju.edu.jo
Office Hours: will be posted soon

Course Website: http://fetweb.ju.edu.jo/staff/EE/mhawa/201/

Catalog Data: Computer packages for mathematical and symbolic manipulations (MATLAB,
Mathematica). Windows environment. Graphics packages. INTERNET and its
use in literature survey and information acquisition. Library search via computer.
Engineering packages for computation. Data processing and statistical packages.
Standard computer libraries.

Prerequisites by
Course:

EE 1901102 – Computer Skills 2 (C++) (pre-requisite)

Prerequisites
By Topic:

Students are assumed to have a background in the following topics:

• Basic computer and software skills.

• Basic programming language skills, such as C/C++.

• Basic mathematics, calculus and linear algebra.

• Basic scalar, array, vector and matrix operations.

• Solution of ordinary differential equations.

• Basic electric circuit analysis.

Textbook: Introduction to MATLAB for Engineers by William J. Palm III, McGraw-Hill,
3rd Edition, 2011.

References: • Essential MATLAB for Engineers and Scientists by Brian Hahn and Daniel
Valentine, Academic Press, 5th Edition, 2013.

• MATLAB for Engineers by Holly Moore, Prentice Hall, 3rd Edition, 2011.

• Getting Started with MATLAB 7: A Quick Introduction for Scientists and
Engineers by Rudra Pratap, Oxford University Press, 1st Edition, 2005.

• MATLAB Programming with Applications for Engineers by Stephen J.
Chapman, CL-Engineering, 1st Edition, 2012.

• An Engineers Guide to MATLAB by Edward B. Magrab, et. al., Prentice Hall,
3rd Edition, 2010.

• Mastering MATLAB by Duane C. Hanselman and Bruce L. Littlefield, Prentice
Hall, 1st Edition, 2011.

• Modeling and Simulation in SIMULINK for Engineers and Scientists by
Mohammad Nuruzzaman, AuthorHouse; 1st Edition, 2005.

• Mastering Simulink by James B. Dabney and Thomas L. Harman, Prentice
Hall, 1st Edition, 2003.

Schedule &
Duration:

16 Weeks, 45 lectures (50 minutes each) plus exams.

Minimum Student
Material:

Textbook, class handouts, scientific calculator, and an access to a personal
computer.

Minimum College
Facilities:

Classroom with whiteboard and projection display facilities, library, computational
facilities with the MATLAB program.

Course
Objectives:

The overall objective is to introduce the student to solving engineering problems
using computers and scientific programming packages.

 Page 2 of 2

Course Learning Outcomes and Relation to ABET Student Outcomes:
Upon successful completion of this course, a student should:
1. Use MATLAB to solve computational problems and generate publishable graphics [e, k]
2. Use complex arithmetic and complex functions to describe applied problems. Describe

complex numbers and functions in rectangular and exponential forms. Graph the
magnitude and phase of complex functions

[a]

3. Use matrix forms to describe and solve linear systems of equations and systems of
differential equations

[e]

4. Determine the system of linear equations required to find the coefficients that define an
interpolating function that matches a set of data samples.

[a, e]

5. Solve first and second order linear differential equations with constant coefficients both
analytically and numerically. Use the MATLAB routine ODE23 to solve differential
equations numerically.

[a, k]

6. Define the Fourier series for a periodic signal. Define the Fourier transform of an aperiodic
signal.

[a, k]

7. Compute the Fourier series and transform from their definition as integrals. [a, k]
8. Use the properties of linearity, time-shifting and time-scaling to compute the Fourier

series/transform of complex functions from the Fourier series/transforms of simple
functions.

[a, k]

9. Use the Simulink simulation package to simulate some electric and electronic circuits [k]

Course Topics:
 Topic Description Hrs
1 Introduction to MATLAB and its use cases. Using the workspace to explore MATLAB features

regarding ease of use and versatility. Entering commands. Using MATLAB help.
2

2 General number formatting. Variables, Vectors and Matrices. Built-in MATLAB engineering
functions. Matrix-related functions. Operator precedence. Matrix indexing: row and column
versus linear versus logical indexing. Matrix versus element-by-elemtn operations.

3

3 Solving a system of linear equations. The concept of vectorization and its use in speeding
computations.

2

4 Euclidean Vectors and their operations. Complex numbers. Polynomials. Cells arrays.
Structures.

2

5 Script Files. Header comments. User Input/Output commands. The concept of functions in
MATLAB and how to build user defined functions. Local vs. global variables. Subfunctions.
Inline functions and function handles. Importing data: text, Excel, images, audio, etc.

3

6 Writing general-purpose programs in MATLAB. Flowchart versus pseudocode. Relational
operators and conditional statements. Flow control structures and loops. Practical exercises.

4

7 Midterm Exam 1
8 Plotting. The different plot types available. Figure annotations. Three dimensional plots. 3
9 Using MATLAB buil-in functions to obtain numerical solutions for various calculus problems:

differentiation, integration, ordinary differential equations, etc.
2

10 MATLAB symbolic engine. Using symbolic notation to define and plot functions. Using
symbolic capapilities for liner algebra, calcuals and other problems. Introduction to MuPAD.

2

11 Introduction to Simulink and its libraries. Simulating some engineering systems and finding
solutions. Linking Simulink with the MATLAB workspace.

2

Ground Rules: Attendance is required and highly encouraged. To that end, attendance will be
taken every lecture. All exams (including the final exam) should be considered
cumulative. Exams are closed book. No scratch paper is allowed. You will be held
responsible for all reading material assigned, even if it is not explicitly covered in
lecture notes.

Assessments: Exams, Quizzes, Projects, and Assignments.

Grading policy:
Assignments, projects, quizzes 20 %
Midterm Exam 30 %
Final Exam 50 %

Total 100%

Last Updated: January 2015

