1/31/2015

Lecture 1: What is MATLAB?

Dr. Mohammed Hawa
Electrical Engineering Department
University of Jordan

EE201: Computer Applications. See Textbook Chapter 1

MATLAB

MATLAB (MATrix LABoratory) is a numerical
computing environment and programming language.

 Developed by MathWorks.

MATLAB is widely used to solve engineering and
science problems in academic and research institutions
as well as the industry.

In MATLAB, problems are expressed in familiar
mathematical notation.

MATLAB is an interactive system whose basic data
element is a matrix (remember C/C++ arrays!).

* Open-source alternative is: GNU Octave.
* Paid alternative: LabVIEW MathScript

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 2

1/31/2015

MATLAB can be used for:

* Matrix manipulations (math computations).
* Data analysis, exploration, and plotting.

+ Implementation of algorithms.

* Creation of user interfaces.

 Data acquisition.

* Interfacing with gr%grams written in other
languages, (e.g., C, C++, Java, and Fortran).

 An optional toolbox (with MuPAD symbolic
engine) allows accessing symbolic computing.

+ An additional package, Simulink®, adds graphical
simulation and model-based design.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 3

Like a VERY advanced calculator

Fir| Fir |F3=| Fi=| FE FBr
Tools|AT3cbra|Calc{0ther|Frami0|Clzan U

= HewProb Done

" expahd[(x + g:IE', x]
x6+6-x5-g+ 15-x4-92+2ﬂ'

rdC Oty TG, ®D
MAIN RKAD EXACT FUMC /30

Would you go to an
engineering exam
without a calculator?

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 4

Solying Simultaneous Equations

* Find the values of x
and y that satisfy the
following equations

simultaneously : 2 X 4+ y — 4

+ Can be solved by
hand to get: X — y — —
x=1y=2

» Remember how?

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 5

Simultaneous Equations

* Solving simultaneous
equations:

2x+y+2z= 4
+ Can be solved by Y
hand to get: X =y —z=-1
x=12,y=28, y-2z= 4
z=0.6
* How?

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 6

1/31/2015

Solying Simultaneous Equations

* Many variables:

2% =% +3x, — X 2%y +3x, +x,= 1
X, +x, +3x, +2x; +Xx, +3x, —x,= 2
3x; +3x, =x;, =x, #2x,+3x;, =x, +2x,4+3x; +x,= 1
2% +3x, +3x; +2x, +x+2x;, +x; +X,= 3
3 =¥ —x +2x: —X; +% 430 +x+2xp = 2
x; —%xy +x, k2x, X, +3x; —Xy +2x,= 3
X +x +x, =X +x, +x,+2x +x,+2x,= 1
I X —x +3x; =X+ 3x Xo= 0
oy k23 <Foy By 3% g +x, —Xx, —x,=-1
-x, +2x, +3x, =X, +3x, +x, —x; —X, = 2
« Humans are note good at this.
MATLAB (a computer software) is!
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 7
MATLAB solution
Fle Edt Text Go Cel Took Debug Desktop Window Help E 7?' VX
DEHE ia@ne dAes f 88 AAaNDA Os
2 "BBiB -0 |+ | +[11 x %% |0
1- clear; 0
2- =1
3 2 1 0 3 I z 0 3 1
4 1 o 1 3 2 1 o o 3 -1
s 3 3 -1 -1 2 3 -1 H 3 1
7 3 1 -1 0 z -1 1 3 x| 2 Fle Edt Debug Desktop Windc
8 1 0 -1 1 z 0 -1 3 -1 z
5) i g i L=, i i 3 i 2 @ 70 ost started, select MATLAS Hel
10 3 1 -1 3 -1 3 o 0 0 -1
11 -1 2 1 1 3 -1 o 1 -1 -1
12 b & 2 o 3 =k 3 1 =% =i o PR Smumtione
Il]
14 x
15- b=
16 1 -0.1607
17 2 -0.9621
18 1 0.4346
19 3 0.2301
i 2 0.88851
= 3y 1.1170
j:i ; 0.0475
54 5 -0.3688
25 2 -0.1944
=0 1.2742
27
8- x=A\D >>
- errink In 7 1 e —
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 8

1/31/2015

MATLAB is powerful!

* We often need to solve systems with 10,000
or 100,000 simultaneous equations (could be
non-linear or differential equations too)

+ Can be done very quickly using a computer
* This is common in engineering
— Electrical circuits
— Image recognition
— Communication systems (MIMO, OFDM, etc)
— Operations research
— Mechanics and dynamics, etc

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

MATLAB vys. Programming languages

« MATLAB is a vector-based numerical
analysis language:
— Can be used as an advanced calculator and
graphing tool
— Also can be used as a programming language
+ This is different than the programming
languages you are familiar with (C, C++, ...)

— Can be a little frustrating since it takes time and
effort to write code in MATLAB

— But the code is very effective and can be refined
gradually

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

10

1/31/2015

Know about MATLAB

* MATLAB is easy to begin with but needs hard work to
master.

* MATLAB is optimized for performing matrix operations.

* MATLAB is interpreted
— for the most part slower than a compiled language such as C++
— but interactive and simplifies fixing errors

* Although primarily procedural, MATLAB does have some
object-oriented elements.

*+ MATLAB is NOT a general purpose programming language

* MATLAB is designed for scientific computation and is not
suitable for some things (such as parsing text)

+ MATLAB is very useful for data analysis and rapid
prototyping, but is not designed for large-scale system
development.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 11

Let us run MATLAB ...

Fa €t Debug Desitep Window Hep

V65| % M) 9 O | $00f B | © | Currert Diroctory: |- yATLABFies ok

Shoctcuts 2] Homto Add 2] What's e

Current Directory 0.8 iid Wi BRI Viorkspace »0.2 %
@ & 3 « maana, - @ | > oclear U RO

>> Am2¥5°3 =5

03 Hame Oate Moded t _;u"’ 5"‘0" z:;“
£ sumcn oo s i Bl i oy o
fosn " smism i e Tl
%) CubeEvalm 67109 1:07 511 S e ‘5 oo

£ st sim 157w i e : 5
et (e 3> Brexp (0.005%A) Hy <1451 double> 49, 2099...
#) cthanolm 8709 1:57 P

) Falg_Sp... 3/4104 443 A0

8] frictonL.md 87109 1:57 M e

) hasnem 62605 445 M

et o709 1SaEM 3.4303

#] parfspecsm 10/16/035:46 PM

€ plantcostm 6/Z3/04 7,11 A > CraTaqre (AE°3)

) mesdm 13y 6

) ToraueDet... 1011804 8:07 4 c=

2

" topozoidm 10{3/03 5:15 A1

] ebucher... 7/10/035:34 8 68,4130 Command History. wo e x

>> D=5710g10{1000}
clea

0= he215°3

Beexp(0.0574)

15

D=5710920(1000)
x = 0:0.03:9

> x = 0:0.02:9;
> ¥ = ATBIR(3T)
] v s oprereem

& o | ele
rapezodn Trapezadal vl age grofie clear
ae2rs73
Beexp(0.00574)
Cmdtaars (A+B°3)
D=5710910(1000)

clel

% = 0:0.02:8;
y = Arsan(arx):
< > plot (x,3) |

& Start

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 12

1/31/2015

MATLAB Environment

Menubar
Help Current Working Directory
J’ Toolbar
A\ MATLAB [1.8.0 (R2009:) ==]
File ! Edit| View Debug Parallel Desktop Window Help
DS @9 o | &of 2| @ curentDirectory:| C\Users\ohn\Document:\MATLAE |[] &)
Shortcuts @) How to Add (2] What's New
¢ Direc EaEal | Command Window 0O 2 x| Workspace S i
o % | o« MATLAB = | 42~ | @ Newto MATLAB? Watch this Video, see Demos, o read Getting Started. X [@] [%) g M | - || Base
[) Name~ Date Modified fo o> i e i |
Current Workspace
Directory (Variable List)
Contents
Command Window Command History w02 x
Details " ~—— 3/28/10 5:12 PM —-%
File Details
Select a file to view details Command History
|

\ Function Catalog

Getting Started (Start here)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 13
* You can enter

expressions at the

command line a.nd T

evaluate them right command

away. ans =
¢ The >> symbols t 43

) R nex

indicate where command |>>

commands are

typed.

14

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

1/31/2015

Mathematical Operators

Operator | MATLAB |Algebra
+ + 5+ 4 =9
~ - 5 -4 =1
X * 5 % 4 =20
+ / 5/ 4 =1.25
ab a™b 54 = 625

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 15

Order of Precedence (BEDMAS)

* B = Brackets

+ E = Exponentials

* D = Division

* M = Multiplication
* A = Addition 14
* S = Subtraction

>> 3*%4 + 2

ans =

>> 3% (4+2)
* Careful using brackets:
check that openingand |55 =
closing brackets are
matched up correctly.

18

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 16

1/31/2015

Order of Precedence

Precedence Operation

First Parentheses (), evaluated starting with the
innermost pair.

Second Exponentiation (power) ~ , evaluated from
left to right.

Third Multiplication * and division / with equal
precedence, evaluated from left to right.

Fourth Addition + and subtraction - with equal
precedence, evaluated from left to right.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 17

Exercise: SO

Try it
yourself

Copyright © Dr. Mohammed Hawa

>> 472-12- 8/4*2
ans =
0

>> 472-12- 8/ (4*2)
ans =
3

Electrical Engineering Department, University of Jordan

18

1/31/2015

Entering Commands

* MATLAB retains your previous keystrokes.

« Usethe T key to scroll back through previous

commands.

« Press the T key once to see the previous entry, and
so on.

« Use the | key to scroll forward.

+ Edit a line using the <— and — arrow keys, the

Backspace key, and the Delete key.
* Press the Enter key to execute the command.

* You can copy (highlight & ctrl+c) from Command
History window to the Command Window.

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

19

Built-in Math Constants

pi 7 ratio of circle's
circumference to its diameter

i V-1 Imaginary unit

] V/—1: Imaginary unit

Inf oo: Infinity

NaN Not-a-Number

intmax | Largest value of integer type

intmin | Smallest value of integer type

ans Temporary variable
containing the most recent
answer

eps The accuracy of floating
point precision

Copyright © Dr. Mohammed Hawa

>> 2*pi
ans =
6.2832

>> Inf+100000
ans =
Inf

>> format long g

>> 2*pi
ans =

6.28318530717959

>> l+4+ans
ans =

7.28318530717959

Electrical Engineering Department, University of Jordan

1/31/2015

10

Exercise

>> 1/0

ans =
27

>> 0/0

ans =
Farare

>> 7/2*1

ans =
227

>> 7/21

ans =
222

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 21
L]
E ; Ansy
XErclse, ANSWeErs
>> 1/0
ans =
Inf
>> 0/0
ans =
NaN
>> 7/2*1
ans =
0 + 3.50001
>> 7/21
ans =
0 - 3.50001
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 22

1/31/2015

11

Possible Formats

Command

Description and example

format short
format long
format short e

format long e

format bank
format +
format rat
format compact
format loose

Four decimal digits (the default); 13.6745.
16 digits; 17.27484029463547.

Five digits (four decimals) plus exponent;
6.3792¢+03.

16 digits (15 decimals) plus exponent;
6.379243784781294¢ —04.

Two decimal digits; 126.73.

Positive, negative, or zero; +.

Rational approximation; 43/7.

Suppresses some blank lines.

Resets to less compact display mode.

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan 23

Built-in

* Like a calculator,
MATLAB has many
built-in mathematical
functions.

Copyright © Dr. Mohammed Hawa

Functions

>> 10g2(131072)
ans =
17

>> sqrt (4)
ans =
2

>> abs (-3)
ans =
3

>> exp(-1)
ans =

0.367879441171442

Electrical Engineering Department, University of Jordan 24

1/31/2015

12

Common Built-in Functions

Function MATLAB syntax*
er exp (x)
Vx sgrt (x)
In x log (x)
logiox log10(x)
Cos X cos (x)
sin x sin (x)
tan x tan (x)
cos ' x acos (x)
sin”!x asin (x)
tan~' x atan (x)

*The MATLAB trigonometric functions listed here use radian measure. Trigonometric functions ending
in d, such as sind (x) and cosd (x), take the argument x in degrees. Inverse functions such as

atand (x) return values in degrees.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 25
Exercise: Discussed Later..,
x = 0:p1/100:2*pi;
y = sin(x);
plot(x,Vy)

* By the way, what is
the purpose of the
semicolon at the end
of the command?

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 26

1/31/2015

13

Exercise; Discussed Later,..

x = 0:p1/100:2*pi;
y = sin(x);
plot(x,vy)
1
0.8t
0.6
0.4
0.2F
of
-0.21
0.4
-0.6F
o8l
"o 1 5 6 7
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 27
Exercise 2: Discussed Later...
[X,Y] = meshgrid(-10:0.25:10,-10:0.25:10);
f = sinc(sgrt ((X/pi)."2+(Y/pi)."2));
surf (X,Y, f);
axis([-10 10 -10 10 -0.3 11)
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 28

1/31/2015

14

Exercise 2; Discussed Later..,

surf (X, Y, f);

[X,Y] = meshgrid(-10:0.25:10,-10:0.25:10);
f = sinc(sqrt ((X/pi) . "2+ (Y/pi)."2));

axis([-10 10 -10 10

-0.3 17])

Q%w
"’u‘\“\{‘\a\

Al

e
AR

)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 29
ToK More: hel
O KNNOW ylore, nelp
>> help
HELP topics:
matlab\general — General purpose commands.
matlab\ops - Operators and special characters.
matlab\lang - Programming language constructs.
matlab\elmat - Elementary matrices and matrix manipulation.
matlab\randfun - Random matrices and random streams.
matlab\elfun — Elementary math functions.
matlab\specfun - Specialized math functions.
matlab\matfun - Matrix functions - numerical linear algebra.
matlab\datafun - Data analysis and Fourier transforms.
matlab\polyfun - Interpolation and polynomials.
matlab\funfun - Function functions and ODE solvers.
matlab\sparfun - Sparse matrices.
matlab\scribe - Annotation and Plot Editing.
matlab\graph2d - Two dimensional graphs.
matlab\graph3d - Three dimensional graphs.
matlab\specgraph - Specialized graphs.
matlab\graphics - Handle Graphics.
matlab\uitools - Graphical User Interface Tools.
matlab\strfun - Character strings.
matlab\imagesci - Image and scientific data
matlab\plottools - Graphical User Interface Tools.
fuzzy\fuzzy - Fuzzy Logic Toolbox
images\images - Image Processing Toolbox
signall\signal - Signal Processing Toolbox
wavelet\wavelet - Wavelet Toolbox
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 30

1/31/2015

15

Go inside: help

>> help elfun
Elementary math functions.

Trigonometric.
sin - Sine.
sind - Sine of argument in degrees.
sinh — Hyperbolic sine.
asin - Inverse sine.
asind — Inverse sine, result in degrees.
asinh — Inverse hyperbolic sine.
cos - Cosine.
Exponential.
exp - Exponential.
expml - Compute exp(x)-1 accurately.
log - Natural logarithm.
loglp - Compute log(l+x) accurately.
logl0 - Common (base 10) logarithm.
log2 - Base 2 logarithm and dissect floating point num.
pow2 - Base 2 power and scale floating point number.
realpow - Power that will error out on complex result.
reallog — Natural logarithm of real number.

Rounding and remainder.

fix - Round towards zero.
floor - Round towards minus infinity.
ceil - Round towards plus infinity.
round - Round towards nearest integer.
mod - Modulus (signed remainder after division).
rem - Remainder after division.
sign - Signum.
Copyright Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 31

For a specific function: help exp

>> help exp

EXP Exponential.
EXP(X) 1is the exponential of the elements of X, e to the X.
For complex Z=X+i*Y, EXP(Z) = EXP(X)*(COS(Y)+i*SIN(Y)).

See also expml, log, logl0, expm, expint.
Overloaded methods:

codistributed/exp

fints/exp

Reference page in Help browser
doc exp

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 32

1/31/2015

16

File

Edit View Go Favorites Desktop

To Know Maore: doc abs

Help

Search

Contents | Search Results|

4 wp - fx » MATLAB b Functions » Mathematics » Elementary Math » Complex b abs

() There are other functiens or methods named abs:
* simulink/abs, fixedpoint/abs, signal/abs

&% MATLAB

- B Getting Started
- & User's Guide

Copyright

- fx Functions

- Desktop Tools and Development Environment|
- Data Import and Export

£ Mathematics

-Arrays and Matrices

) Linear Algebra

lementary Math

Trigonometric

Exponential

E-Complex
iy

E-Rounding and Remainder
iscrete Math

Dr. Mohammed Hawa

w

abs

Absolute valu and complex magnituds

Syntax
albs (X)
Description
abs (X) rEUMS an amay ¥ such that each slement of ¥ is the absalute valuz of the comesponding element of X
If X is complex, ans (X) returns the complex modulus (magnitude), which is the same as

sqre (real (X) %3 + imag () ."2)

Examples
abs(-5)

ans =
5

abs (3+41)

ans =
5

See Also
angle, sign, unvrap

Electrical Engineering Department, University of Jordan 33
Where do you get more help?
* Read your textbook.
* Practice the end-of-chapter examples.
 References in the syllabus.
 MATLAB Central:
http: / /www.mathworks.com /matlabcentral /
* Google
* YouTube
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 34

1/31/2015

17

Lecture 2; Variables, Vectors
and Matrices in MATLAB

Dr. Mohammed Hawa
Electrical Engineering Department
University of Jordan

EE201: Computer Applications. See Textbook Chapter 1 and Chapter 2

Variables in MATLAB

Just like other programming
languages, you can define
variables in which to store
values.

All variables can by default
hold matrices with scalar or
complex numbers in them.

You can define as many
variables as your PC memory
can hold.

Values in variables can be
inspected, used and changed
Variable names are case-
sensitive, and show up in the
Workspace.

Copyright © Dr. Mohammed Hawa

>> A =5
A =

5
>> d =7
d =

>> LightSpeed = 3e8

LightSpeed =

300000000
Workspace 8 S T
& {E "'ﬁ 25 @ Select datato pl... v
Name Value

Ha 5

HH LightSpeed 300000000

Hd 7

Electrical Engineering Department, University of Jordan 2

1/31/2015

* You can change the o
value in the variable by '
PR . . >> b =12
over—wrltmg it with a be
new value .
. b=
* Remember that variables 14
are case-sensitive (easy B
to make a mistake) o
> c =a + b
+ Always left-to right ©
>> variable = expression |.. ..., .
° T 0.5000
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 3
[) .
Develop -MATLAB radius
code to find Cylinder -
volume and surface
area. .
_ height
e Assume radius of 5m
and height of 13 m.
— 1
V =nrih

A =2nr?+2nrh = 2nr(r + h)

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan 4

1/31/2015

Solution

13

Area =

> r =5

>> Volume = pi * r*2 * h
Volume =
1.0210e+003

>> Area = 2 * pi * r * (r + h)

565.4867

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan 5

Useful MATLAB commands

Command Description
clc Clears the Command window.
clear Removes all variables from memory.

clear varl var2
exist (‘name’)
quit

who

whos

Removes the variables varl and var2 from memory.
Determines if a file or variable exists having the name ‘name’.
Stops MATLAB.

Lists the variables currently in memory.

Lists the current variables and sizes, and indicates if they have
imaginary parts.

Colon: generates an array having regularly spaced elements.
Comma; separates elements of an array.

Semicolon; suppresses screen printing: also denotes a new row
in an array.

Ellipsis: continues a line.

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan 6

1/31/2015

1/31/2015

Vectors and Matrices (Arrays)

* So far we used MATLAB variables to
store a single value.

* We can also create MATLAB arrays that
hold multiple values
— List of values (1D array) called Vector
—Table of values (2D array) called Matrix

* Vectors and matrices are used

extensively when solving engineering
and science problemes.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 7

Row Vector

» Row vectors are special cases of matrices.
* This is a 7-element row vector (1 X 7 matrix).

* Defined by enclosing numbers within square
brackets [] and separating them by , or a space.

>> C = [10, 11, 13, 12, 19, 16, 17]
Cc =

10 11 13 12 19 16 17
>> C = [10 11 13 12 19 16 17]

Cc =
10 11 13 12 19 16 17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 8

Column Vector

* Column vectors are special cases of matrices.

 This is a 7-element column vector (7 X 1 matrix).

* Defined by enclosing numbers within [] and

separating them by semicolon ;

Copyright © Dr. Mohammed Hawa

R =

>> R = [10; 11; 13; 12; 19; 16; 17]

Electrical Engineering Department, University of Jordan

9

Matrix

This is a 3 x 4-element matrix.
It has 3 rows and 4 columns (dimension 3 x 4).
Spaces or commas separate elements in different columns,

whereas semicolons separate elements in different rows.

Copyright © Dr. Mohammed Hawa

A dimension n X n matrix is called square matrix.

> M= [1, 3, 2, 9; 6, 7, 8, 1; 7, 4, 6, 0]
M =

1 3 2 9

6 7 8 1

7 4 6 0
> M= [1329; 6 781; 746 0]
M =

1 3 2 9

6 7 8 1

7 4 6 0

Electrical Engineering Department, University of Jordan 10

1/31/2015

Transpose of a Matrix

 The transpose operation interchanges the rows and
columns of a matrix.

« For an m x n matrix A the new matrix AT (read
“A transpose”) is an n X m matrix.

* In MATLAB, the 2’ command is used for transpose.

-2 6 -2 =3
A= Al =
—F 3 6 3
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 11
Exercise
> A = [1 2 3; 56 7] >> B = [5 6 7 8]
A = B =
1 2 3 5 6 7 8
5 6 7
>> B'
>> A ans =
ans = 5
1 5 6
2 6 7
3 7 8

* What happens to a row vector when transposed?
« What happens to a column vector when transposed?

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 12

1/31/2015

Useful Functions

length(A) Returns either the number of elements of A if A
is a vector or the largest value of m or n if A is an
m X n matrix

size(A) Returns a row vector [m n] containing the
sizes of the m x n matrix A.

max (A) For vectors, returns the largest element in A.

For matrices, returns a row vector containing the
maximum element from each column.

If any of the elements are complex, max (A)
returns the elements that have the largest
magnitudes.

[v,k] = max(A)

Similar to max (A) but stores the maximum
values in the row vector v and their indices in
the row vector k.

min (A)
and

[v,k] = min(A)

Like max but returns minimum values.

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan 13

More Useful Functions

sort (A)

Sorts each column of the array A in ascending
order and returns an array the same size as A.

sort (A, DIM, MODE)

Sort with two optional parameters:
DIM selects a dimension along which to sort.
MODE is sort direction ('ascend’ or 'descend’).

sum (A)

Sums the elements in each column of the array A
and returns a row vector containing the sums.

sum (A, DIM)

Sums along the dimension DIM.

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan 14

1/31/2015

Exercises

> M= [16 4; 3 7 2]

X = >> size (M)

>> length (M)
>> length (X)

ans = S>>
4

max (M)

, >> [a,b] = max (M)
>> size(X)

ans =

>>
1 4 sort (M)

A} Al
S8 %4 (X) >> sort (M, 1, descend"')

ans =
2 >> sum (M)
>> sum (M, 2)
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 15
Solution
> M = [1 6 4; 3 7 2]
M = >> sort (M)
1 6 4 ans =
3 7 2 1 6 2
3 7 4
>> size (M)
ans = >> sort (M, 1, 'descend')
2 3 ans =
3 7 4
>> length (M) 1 6 2
ans =
3 >> sum (M)
ans =
>> max (M) 4 13 6
ans =
3 7 4 >> sum (M, 2)
ans =
>> [a,b] = max (M) 11
R 12
3 7 4
=
2 2 1
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 16

1/31/2015

The Variable Editor [from
Workspace or openvar ('A'")]

File Edit Wiew Graphics Debug Desktop ‘Window Help
NS %2R ¢ & B | @ |[cmymarasries v|@ ®
Shortcuts (2] How to Add (2] What's New

g4 Variable Editor - A s Workspace “[Oa x
@No walid plots For: A{1,1) = v|a x| & |ﬁ @ =ﬁ E% Stack: plot(.q) -
FH A <2x3 double> | Mame Vfalue Min Max |
[o 2 T s T s E [2,7,9:4,2.5] 2 E
1 7| a ~| B+ 21501 dauble> 0 5
2 4 2| 5 [
- |
4 b
< >
Command Window w02 x
Fx ¥ = 0:0.01:5;
>» A = [2,7,9:4,2,5]:
fr s>
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 17

Creating Big Matrices

« What if you want to create a Matrix that
contains 1000 element (or more)?

» Writing each element by hand is difficult,
time-consuming and error-prone.

 MATLAB allows simple ways to quickly
create matrices, such as:

 Using the colon : operator (very popular).

* Using 1linspace () and logspace ()
functions (less popular, but useful).

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 18

1/31/2015

1/31/2015

Using the colon operator

* MATLAB command X = J:D:K creates vector
X =[], J+D, ..., J+m*D] where m = fix((K-])/D).

» In other words, it creates a vector X of values
starting at], ending with K, and with spacing D.

» Notice that the last element is K if K - J is an
izlteger multiple of D. If not, the last value is less
than].

 MATLAB command J:K isthesameas J:1:K.
* Note:
— J:K isemptyif] > K.

— J:D:K isem%tyifD::O,ifD>Oand]>K,orif
D<0and]<K.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 19

Example 1

Empty matrix: 1-by-0

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 20

10

Example 2

>> x = 7:-1:2

7 6 5 4 3 2

5:0.1:5.9

\
\2
b
Il

Columns 1 through 5
5.0000 5.1000 5.2000 5.3000 5.4000

Columns 6 through 10
5.5000 5.6000 5.7000 5.8000 5.9000

>> vy = 5:0.1:5.9; % what happened here?!
>>

>> % now create a ‘column’ vector from 1 to 10 using :

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 21

Alternativyes to colon

* linspace command creates a linearly spaced row
vector, but instead you specify the number of
values rather than the increment.

* The syntaxis linspace (x1, x2,n), where x1 and
%2 are the lower and upper limits and n is the
number of points.

* If n is omitted, the number of points defaults to 100.

* logspace command creates an array of
logarithmically spaced elements.

* Its syntaxis logspace (a, b, n), where n is the
number of points between 107 and 10°.

* If n is omitted, the number of points defaults to 50.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 22

1/31/2015

11

Exercise

0.

>> x = linspace(5,8,3)

0000 6.5000 8.0000
>> x = logspace(-1,1,4)
1000 0.4642 2.1544

10.0000

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 23
.
Special: ones, zeros, rand
>> a = ones(2,4)
a =
1 1 1 1
1 1 1 1
>> b = zeros(4, 3) % null matrix
b =
0 0 0
0 0 0
0 0 0
0 0 0
>> ¢ = rand (2, 4)
c =
0.8147 0.1270 0.6324 0.2785
0.9058 0.9134 0.0975 0.5469
% random values drawn from the standard
% uniform distribution on the open
% interval(0,1)
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 24

1/31/2015

12

>> eye(4) % identity matrix
ans =
Lo Null and
0 1 0 0 A
A Identit
o o o 1 entity
L]
>> A =[123; 456; 78 9] Matrlx
A =
1 2 3
4 5 6
7 8 9
>> I = eye(3)
L= 0A = A0 =
1 0 0
0 1 0 _
0 0 1 IA = Al = A
>> AXI
ans =
1 2 3
4 5 6
7 8 9
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 25
Matrix Determinant &' 1
a b ¢ > A =[123; 23 1; 3 2 1]
e d d e =
e fl=a f —b f-;-c A
. h 1 g 1 g h 1 2 3
h 2 3 1
= a(ei — fh) — b{di — fg) + c(dh — eg) 321
= aci +bfg + cdh — ceg —bdi — afh. >> det (A) % determinant
ans =
=12
dn 3| [z dig| [z dis) .
>> inv(A) % inverse
ayp dyz| M di| j[dn dn ans =
-0.0833 -0.3333 0.5833
-0.0833 0.6667 -0.4167
gt i 23 ﬂg]‘) dpa| @ g 0.4167 -0.3333 0.0833
A | ez @ 13 dy3| |dy @
[A] | a3 43| |ay ayp| |@pn ay e an1
ans =
-0.0833 -0.3333 0.5833
S B T B L ~0.0833 0.6667 -0.4167
@31 dip| 3y dy)| |l an 0.4167 -0.3333 0.0833
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 26

1/31/2015

13

1/31/2015

Accessing Matrix Elements

>> C = [10, 11, 13, 12, 19, 16, 17]

Cc =
10 11 13 12 19 16 17

>> C(4)
ans =
12

>> C(1,4)
ans =
12

>> C(20)
??? Index exceeds matrix dimensions.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 27

Notes

* Use () not [] to access matrix elements.

* The row and column indices are NOT zero-
based, like in C/C++.

* The first is row number, followed by the
column number.

* For matrices and vectors, you can use one of
three indexing methods: matrix row and
column indexing; linear indexing; and logical
indexing.

* You can also use ranges (shown later).

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 28

14

Accessing Matrix Elements

> M= [1, 3, 2, 9; 6, 7, 8, 1; 7, 4, 6, 0]
M =
1 3 2 9
6 7 8 1
7 4 6 0
>> M(2, 3)
ans =
8
>> M(3, 1)
ans =
7
>> M(0, 1)
??7 Subscript indices must either be real
positive integers or logicals.
>> M(9)
ans =
6
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 29

Matrix Linear Indexing

Columns (n)

A - 1 2 3 4 5
1 4 1 106 111 616 221
27 AR

2 82 127 91| 41| 252

Rows (m)3 | 7:23 58 71 11 115 A (17)

4 04 055 41 51 56

5| 23° 83" 13" 0% 10%°| Rectangular Matrix:
Scalar: 1-by-1 array
Vector: m-by-1 array

_ . 1-by-n array
A =5 x 5 matrix. Matrix: m-by-n array

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 30

1/31/2015

15

Copyright © Dr. Mohammed Hawa

Indexing: Sub-matrix

v (2:5) represents the second through fifth elements
— ie., v(2),v(3), v(4), v(5).
v (2:end) represents the second till last element of v.
v (:) represents all the row or column elements of vector v.

A (:,3) denotes all elements in the third column of matrix A.

A(:,2:5) denotes all elements in the second through fifth
columns of A.

A(2:3,1:3) denotes all elements in the second and third
rows that are also in the first through third columns.

A (end, :) all elements of the last row in A.
A(:,end) all elements of the last column in A.

v = A(:) creates a vector v consisting of all the columns of A
stacked from first to last.

Electrical Engineering Department, University of Jordan 31

Copyright © Dr. Mohammed Hawa

Exercise

>> v = 10:10:70
v =

10 20 30 40 50 60 70

>> v (2:5)
ans =
20 30 40 50

>> v (2:end)
ans =
20 30 40 50 60 70

>> vi(:)
ans =

Electrical Engineering Department, University of Jordan 32

1/31/2015

16

>> A(end, :)
ans =
23 83 13 0 10
L]
Exercise e
ans =
2
25
>> A= (41016 2; 81.29 425 7.2571 11
11; 0 0.5 4 5 56; 23 83 13 0 10] 56
10
A =
4.0000 10.0000 1.0000 6.0000 2.0000 >> v = A(:)
8.0000 1.2000 9.0000 4.0000 25.0000 =
7.2000 5.0000 7.0000 1.0000 11.0000 4.0000
0 0.5000 4.0000 5.0000 56.0000 8.0000
23.0000 83.0000 13.0000 0 0.0000 7.2000
0
>> A(:,3) 23.0000
ans = 10.0000
1 1.2000
9 5.0000
7 0.5000
4 83.0000
13 1.0000
9.0000
>> A(:,2:5) 7.0000
ans = 4.0000
10.0000 1.0000 6.0000 2.0000 13.0000
1.2000 9.0000 4.0000 25.0000 6.0000
5.0000 7.0000 1.0000 11.0000 4'0000
0.5000 4.0000 5.0000 56.0000 1.0000
83.0000 13.0000 0 10.0000 5.0000
0
>> A12:3,l:3) 2.0000
SEiaE 25.0000
8.0000 1.2000 9.0000 éégggg
7.2000 5.0000 7.0000 "
10.0000
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 33
. . .
L d : Advance
inear indexing:
>> A = 5:5:50
A =
5 10 15 20 25 30 35 40 45 50
>> A([1 3 6 101)
ans =
5 15 30 50
>> A([1 3 6 101")
ans =
5 15 30 50
>> A([1 3 6; 7 9 101)
ans =
5 15 30
35 45 50
% indexing into a vector with a nonvector,
the shape of the indices is honored
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 34

1/31/2015

17

Linear indexing is useful: £ind

> A = [1 2 3; 45 6; 78 9]

A =
1 2 3
4 5 6
7 8 9

>> B = find(A > 5) % returns linear index
B =

O 0 O W

>> A(B) % same as A(find(A > 5))

ans =
7
8
6
9
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 35
Advanced: Logical indexing
> A = [1 2 3; 456; 78 9]
A =
1 2 3
4 5 6
7 8 9
>> B = logical ([0 1 0; 1 0 1; 0 0 11)
B =
0 1 0
1 0 1
0 0 1
>> A(B)
ans =
4
2
6
9
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 36

1/31/2015

18

Logical indexing is also useful!

> A = [1 2 3; 45¢6; 78 9]

A =

1 2 3

4 5 6

7 8 9
> B = (A > 5) % true or false
B =

0 0 0

0 0 1

1 1 1

>> A(B) % same as A(A > 5)
ans =

O Oy 0

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 37

Subscripting Examples

A=

1 4 1 106 1 1 6 16 2 21
A(3.1
Azg;) 2 8 2 1.27 9 12 4 17 2522
A(1:5,5)
727 50 7 1115 Aes)
A(21:25)
A(4:5,2:3) 4 0°¢05 44| 5| 56% \
A([9 14;10 15]) —T—u A§1:enc;,end)
5 5 10 15 20 25 A(:,end
23°183" 13°| 071 10 A(21:end)’
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 38

1/31/2015

19

More dimensions possible

>> rand(4,4,3)

Tl (28 11,3,3) (1,487
(2,1,3) (2,2,3) (2,3,3r72,4,3)

e (3,1,3) 18,2,315,3,3) (3,4,9)
£.2,3) (4,3,3) (4,4,3)

sTla1,2) 11,2,2) 11,9,2) 1 48]

2,1,2) 12,2,2) (2,3,2172,4,2)

ot (3,1,2) (3,2,315,5,2) (3,4,2) P
= 2,2) 14,3,2) (4,4,2) N

(1,1,1) 01,2,1) €1,3,1) (1,4,1)
i2,1,1) (2,2,1) (2,3,1) (2,4,1)
i3,1,1) (3,2,1) (3,3,1) (3,4,1) — -
(4,1,1) (4,2,1) 14,3,1) (4,4,1) L

* The first index references array
dimension 1, the row.

¢ The second index references
dimension 2, the column.

¢ The third index references
dimension 3, the page.

Copyright © Dr. Mohammed Hawa

ans(:,:,1)

0.7431 0.7060 0.0971 0.9502
0.3922 0.0318 0.8235 0.0344
0.6555 0.2769 0.6948 0.4387
0.1712 0.0462 0.3171 0.3816
ans(:,:,2)
0.7655 0.4456 0.2760 0.1190
0.7952 0.6463 0.6797 0.4984
0.1869 0.7094 0.6551 0.9597
0.4898 0.7547 0.1626 0.3404
ans(:,:,3)
0.5853 0.5060 0.5472 0.8407
0.2238 0.6991 0.1386 0.2543
0.7513 0.8909 0.1493 0.8143
0.2551 0.9593 0.2575 0.2435
Electrical Engineering Department, University of Jordan 39

Extending Matrices

* You can add extra elements to a matrix by creating them

directly using ()

* Or by concatenating (appending) them using [,] or

[7]

* If you don't assign array elements, MATLAB gives them

a default value of 0

12 11 14 19

12 11 14 19

>> h = [12 11 14 19 18 17]

18 17
18 17
18 17

13

13

0

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

40

1/31/2015

20

Example

>> a = [2 4 20]
a =
2 4 20
> b = [9, -3, 6]
b =
9 -3 6
>> [a Db]
ans =
2 4 20 9 -3 6
>> [a, b]
ans =
2 4 20 9 -3 6
>> [a; b]
ans =
2 4 20
9 -3 6
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 41

Functions on Arrays

» Standard MATLAB functions (sin, cos, exp, log, etc) can
apply to vectors and matrices as well as scalars.

* They operate on array arguments to produce an array
result the same size as the array argument x.

* These functions are said to be vectorized functions.

* In this example y is [sin(1), sin(2), sin(3)]

* So, when writing functions (later lectures) remember
input might be a vector or matrix.

>> x = [1, 2, 3]
X =
1 2 3
>> y = sin(x)
y =
0.8415 0.9093 0.1411
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 42

1/31/2015

21

1/31/2015

]Ei .
>> x = linspace (0, 2*pi, 9) % OR x = linspace(0, 2*pi, 31)
x =
0 0.7854 1.5708 2.3562 3.1416 3.9270 4.7124 5.4978 6.2832
>> y = sin(x)
y =

0 0.7071 1.0000 0.7071 0.0000 -0.7071 -1.0000 -0.7071 -0.0000

>> plot(x,y)

Bl Figure 1 ol) s | B Figure 1 o =)
File Edit View Inset Tools Desktop Window Help ~|(|| File Edit View Insert Tools Desktop Window Help ~
NEde | bRV EL- (S| 0EH | nD NEde [k ARAUBEL- S| 08 a0
o o
02 2
04 04
a6 2
08 2
4
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 43

Matrix vs. Array Arithmetic

« Multiplying and dividing vectors and
matrices is different than multiplying and
dividing scalars (or arrays of scalars).

* This is why MATLAB has two types of
arithmetic operators:
— Array operators: where the arrays operated on

have the same size. The operation is done
element-by-element (for all elements).

— Matrix operators: dedicated for matrices and
vectors. Operations are done using the matrix as
a whole.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 44

22

Matrix ys. Array Operators

Symbol | Operation

Symbol | Operation

+ Matrix addition

+ Array addition

- Matrix subtraction

- Array subtraction

*

Matrix multiplication

Array multiplication

Matrix division

Array division

Left matrix division

Left array division

>l

Matrix power

Sl *

Array power

* 1divide() allows integer division with rounding options

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan 45

Matrix/Array Addition/Subtraction

* Matrices and arrays are
treated the same when
adding and subtracting.

¢ The two matrices should
have identical size.

* Their sum or difference
has the same size, and is
obtained by adding or
subtracting the
corresponding elements.

» Addition and subtraction
are associative and
commutative.

A+B+C=B+C+A=A+C+B

Copyright © Dr. Mohammed Hawa

6 2}+{ 9 x]_[m 6
0 3 —12 14| |2 19

>>A = [6,-2;10,3];
>>B = [9,8;-12,14]
>>A+B
ans =

15 6

-2 17

(A+B)+C=A+((B+ (O

Electrical Engineering Department, University of Jordan 46

|

1/31/2015

23

More ,,.

* A scalar value at either side of the operator is
expanded to an array of the same size as the
other side of the operator.

[6,3]1+2=1[8,5]
[8,3] —5=[3,—2]
[6,5]+[4,8]=1[10,13]
[6,5]1—1[4,8]=[2,—3]

Array Multiplication

* Element-by-element

multiplication. A = l I 51 B — [—7
* Only for arrays that -9 4

are the same size.

* Use the . * operator
not the * operator. C = A.*B

* Not the same as
matrix multiplication.

» Useful in . 11(=7) 5(8) _77
programming, but C =) | =
students make the —9(6) 4(2) —54

mistake of using *

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

o o0
[

40
8

|

1/31/2015

24

y@) = e sin(9.7r - E) "l

Using Array Multiplication (Plot)

Plot the >>t = 0:0.003:0.5; |
folh)vvhqg ii ;lztfi?;;8*t).*51n(9.7*t+p1/2);
function: -
Notice the use !
of . * operator

0.6

-0.2

L L L L L L L L L
0 005 01 015 02 025 03 035 04 045 05

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 49

Matrix Multiplication

If Aisann xm

matrix and Bis a

m x p matrix, their F 7} r} _ [2(3) + 7(9)] _ { 69}
matrix product AB 16 —5][9 6(3) = 5(9) —27
is an 7 x p matrix, in

which the m entries

across the rows of A Wy

are multiplied with [u; o ws] | wa | = wpwy + wowy + usws
the m entries down W3

the columns of B.

In general, AB # BA

for matrices. Be
extra careful.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 50

1/31/2015

25

Matrix Multiplication

6 =21 o o1 [©O©+ =3 6)F) + (-2)(12)
10 {_5 12] = A0OO) + G)(=5 (10)B) + (3)(12)
4 7 [(DO + (D(=3) (4)8) + (7)(12)
[64 24
=75 116 (2.44)
1116
> A = [6,-2;10,3;4,7];
>> B = [9,8;-5,12]; 3 2 9 _ 6 27
e D 5 =7 15 -21
ans.. =
64 24 e
75 116 zzi*z [2,9;5,-7];
1 116
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 51
Array Division

 Element-by-element 4 20 45
division. A= { - } B = { : }

* Only for arrays that -9 4
are the same size.

* Use the ./ operator
not the / operator. C = A./B

* Not the same as
matrix division.

* Usefulin bt 0 [24/(_4) 20/5} {—6 4]
programming, bu = =
students make the -9/3 4/2 —3 2
mistake of using /

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 52

1/31/2015

26

Matrix Division

A 1
* Ann X nsquare g=AB”
matrix B is called
invertible (also BB! =
nonsingular) if
there exists an A= E,’ 7{_? B= 2 ; f;
n X n matrix B 113 % b 5
such that their
. 1. . . - L I =l
multiplication is b-|30 363
the identity matrix. 2 22
5 15 3
B b nl
15 15 3|
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 53
A=z[t13] p=[456
A 654, > A= [123; 321; 2 1 31;
’1—l3 > B = [456; 65 4; 4 6 5];
"!’ 65 >> A/B
—'l ans =
0.7000 -0.3000 0
'A- B -0.3000 0.7000 0.0000
ron 1.2000 0.2000 -1.0000
30 350 3
- I L -5 1 L 2 >> format rat
5321 15 15 3 >> A/B
1 8 —_)__ = ans =
' 2 5 15 '-_r,L 7/10 -3/10 0
= -3/10 7/10 *
e 2 0 6/5 1/5 1
T2 o
10 10
L LA
5 5
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 54

1/31/2015

27

Matrix Left Division

* Use the left division 6x + 12y + 4z = 70
operator (\) (back slash) - _
to solve sets of linear [2y +3z= 3
algebraic equations. 2x + 8y — 9z =64

o If Aisn xn matrix and B

is a column vector withn ~ >>2 = [6.12.4:7,-2,3;2,8,-9];
. >>B = [70;5;64];
elements{ thenx = A\Bis _goiution - a\s
the solution to the Solution =
equation Ax = B. 3
)) 5
* A warning message is 2

displayed if A is badly
scaled or nearly singular. The solutionis x = 3,y = 5,and z = —2.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 55

Homework: Mesh Analysis

KVL @ mesh 2:
1(i, — 1) + 2i, + 3(i, —13) =0

KVL @ supermesh 1/3:

-7 +1(i; —1y) + 3(i3 — i) + 1i3=0
@ current source:

7=1i;—1;3

Three equations:
—i; + 61, — 3i3=0
ip—4i,+4i3=7
Iy —ig=7
Solution:
i;=9A,1,=25A,1;=2A

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 56

1/31/2015

28

Just between us...

* Matrix division and matrix left division
are related in MATLAB by the equation:

B/A = (A'\B')' % reversing

* To see the details, type: doc mldivide
or type: doc mrdivide

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 57
 The array left division
A.\B (back slash)
divides each entry of B |22 2= 70 27 ° 017
by the corresponding
entry Of A. >> A.\B % notice the back slash
. ans =
e JustlikeB./A -6 4
-3 2
* A and B must be arrays
of the same size. >> B./A
. ans =
» A scalar value for either -6 4
A or B is expanded to = 2
an array of the same
size as the other.
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 58

1/31/2015

29

repeated matrix
multiplication

Copyright © Dr. Mohammed Hawa

Array Power

B =A."3
p = [2, 4, 5]

B — [43 (—5)3] _[—125] 3.%p

BEE 3B 27 I P o

3, P
(3).7p

[3,.5] . "8=3%2. "9 3.70[2,4:5]

2.7[3,5]1=1[2"3,2"5]

[3,5]1.7[2,4]1=1[3"2,5%4]

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 59
Matrix Power

A~k computes matrix

power (exponent.). e R T

In other words, it >> A"3

multiplies matrix A by |ars . o

itself k times. 81 118

The exponent k requires

L >> A*A*A

a positive, real-valued ins -

integer value. 37 54

Remember: this is 81 118

Electrical Engineering Department, University of Jordan 60

1/31/2015

30

Matrix Manipulation Functions

+ diag: Diagonal matrices and diagonal of a
matrix.

* det: Matrix determinant

* inv: Matrix inverse

* cond: Matrix condition number (for inverse)
« fliplr: Flip matrices left-right

« flipud: Flip matrices up and down

* repmat: Replicate and tile a matrix

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 61

Matrix Manipulation Functions

* rot90: rotate matrix 90°

* tril: Lower triangular part of a matrix
» triu: Upper triangular part of a matrix
* cross: Vector cross product

+ dot: Vector dot product

* eig: Evaluate eigenvalues and
eigenvectors

* rank: Rank of matrix

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 62

1/31/2015

31

Exercise

> A = [12 3; 45 6; 78 9] >> fliplr (A)
A = ans =
1 2 3 3 2 1
4 5 6 6 5 4
7 8 9 9 8 7
>> diag(A) >> flipud(A)
ans = ans =
1 7 8 9
5 4 5 6
9 1 2 3
>> det (A7) >> rot90(A)
SIS = ans =
6.6613e-016 3 6 9
2 5 8
1 4 7
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 63
Exercise
> A = [1 2 3; 45 6; 78 9] >> [V, D] = eig(A)
A =
1 2 3 vV =
4 5 6 -0.2320 -0.7858 0.4082
7 8 9 -0.5253 -0.0868 -0.8165
-0.8187 0.6123 0.4082
>> tril(A)
ans =
1 0 0 D =
4 5 0 16.1168 0 0
7 8 9 0 -1.1168 0
0 0 -0.0000
>> triu(A)
ans =
1 2 3
0 5 6
0 0 9

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan 64

1/31/2015

32

* Define matrix A of dimension 2 by 4 whose (i,j) entries

are A(ij) = i+

* Extract two 2 by 2 matrices A1 and A2 out of matrix A.

Exercise

— A1 contains the first two columns of A

— A2 contains the last two columns of A

+ Compute matrix B to be the sum of A1l and A2

* Compute the eigenvalues and eigenvectors of B

* Solve the linear system B x = b, where b has all entries = 2
* Compute the determinant of B, inverse of B, and the

condition number of B
* NOTE: Use only MATLAB native functions for all above.

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

65

Solution

1.0000
-0.5000

>> A =[012 3; 1 2 3 4] >> b = [2;
A = b =
0 1 2 3 2
1 2 3 4 2
>> Al = A(:,1:2) >> B\b
Al = ans =
0 1 -1.0000
1 2 1.0000
>> A2 = A(:,3:4) >> det (B)
A2 = ans =
2 3 -4
3 4
>> inv (B)
>> B = Al + A2 ans =
B = -1.5000
2 4 1.0000
4 6
>> cond(B)
ans =
17.9443
Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

66

1/31/2015

33

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 6

Homework

Solve as many problems from Chapter 1
as you can

Suggested problems:

1.3,1.8,1.15,1.26,1.30

Solve as many problems from Chapter 2
as you can

Suggested problems:
2.3,2.10,2.13,2.25,2.26

1/31/2015

34

Lecture 3: Array Applications,
Cells, Structures & Script Files
Dr. Mohammed Hawa

Electrical Engineering Department
University of Jordan

Euclidean Vectors

* An Euclidean vector (or geometric vector, or
simply a vector) is a geometric entity that has
both magnitude and direction.

* In physics, vectors are used to represent
physical quantities that have both magnitude
and direction, such as force, acceleration,
electric field, etc.

* Vector algebra: adding and subtracting
vectors, multiplying vectors, scaling vectors,
etc.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

2/7/2015

Euclidean Vectors in MATLAB

+ We specify a vector using 4
its Cartesian coordinates. T~
~
* Hence, the vector p can be S~

specified by three
components: X, y and z,
and can be written in
MATLAB as:

p =[x, v, zl;
* MATLAB supports 2-D

and 3-D vectors, and even
higher dimensional ones.

Copyright © Dr. Mohammed Hawa Elec

ctrical Engineering Department, University of Jordan 3

Magnitude, Length, Absolute Value

* InMATLAB, length() ofa
vector is not its magnitude.
It is the number of elements
in the vector.

* The absolute value of a
vector a is a vector whose
elements are the absolute
values of the elements of a.

+ The magnitude of a vector is
its Euclidean norm or
geometric length as shown:

a=ayi+tayjtak

>> a = [2, -4, 5]
a:

2 -4 5
>> length(a)
ans =

3

>> abs(a)
ans =

2 4 5
>> sqgrt(a*a') % magnitude
ans =
6.7082
>> sqgrt(sum(a.*a)) S$magnitude
ans =
6.7082

lla|| = ’a,zc +aj + a2

[lall = V22 + (—4)? + 5% = —4 5

Copyright © Dr. Mohammed Hawa Elec

—'67082

ctrical Engineering Department, University of Jordan

2/7/2015

Vector Scaling

* For vector:
a=ayi+a,j+ak
* Scaling this vector by
a factor of 2 gives:
* Vv=12a
= 2a,i + 2ayj + 2a,k
+ This is just like
MATLAB scalar

multiplication of a
vector:

v = 2*[X, y, Z];

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan 5

Adding and Subtracting Vectors

* Vector addition by
geometry: The
parallelogram law.

* Or, mathematically:

a=a,i+ayj+ak
b = b,i+ b,j+ b,k
a+b=_(a,+by)i
+ (ay + by)j
+ (a, + b))k
* Same as vector addition

and subtraction in
MATLAB.

Copyright © Dr. Mohammed Hawa

v V+W

Electrical Engineering Department, University of Jordan 6

2/7/2015

2/7/2015

Exercise

>> a = [2 -4 6]

b =
3 -1 -1
> c =a + b
c =
5 -5 5

4 -8 12

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 7

Dot Product

* The dot product of >> a = (2 4 6];
vectors results in a b b
scalar value. c =

a-b
— (axbx +ayby +azbz) >> ¢ = sum(a .* b)
= llalllb]l cos(6) 4

>> ¢ = dot(a, b)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 8

Cross Product

axb

a x b = ||alll[bl| sin(6) n

>> a = [2 -4 6];
> b = [3 -1 -1];
>> cross(a, b)
ans =

10 20 10

>> syms X Yy z
>> det([x vy z; 2 -4 6; 3 -1 -11)
ans =

10*x + 20*y + 10*z

. >> cross([1 0 0], [0 1 0])
i j k _ ’
ans =
axb=|a% a, a 0 0 1
x|
by by b, A axy
a
g ay Ag|, Ay Az, Ay Qy i
y z X z X y ‘(
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 9
>> a =7 + 43
Complex |-
I? 7.0000 + 4.00001
Numbers >> [theta, rho] = cart2pol(real(a), imag(a))
theta =
0.5191
rho =
8.0623
>> rho = abs(a) % magnitude of complex number
rho =
8.0623
>> theta = atan2(imag(a), real(a))
theta =
0.5191
% atan2 is four quadrant inverse tangent
>> b =3 + 43
b =
3.0000 + 4.00001
>> a+b
ans =
10.0000 + 8.00001
>> a*b
ans =
5.0000 + 40.00001
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 10

2/7/2015

Polynomials

* A polynomial can be written in the form:
Apx™ + a1 x" 1+ o+ a,x? + agx + ag

* Or more concisely:
n

2 a;xt
i=0
* We can use MATLAB to find all the roots

of the polynomial, i.e., the values of x that
makes the polynomial equation equal 0.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 11

Exercise

* Polynomial Roots: >> a = [1 -7 40 -34];
x3-7x2+40x-34=0

e Rootsarex=1,x=3+5i.

>> roots(a)

ans =
 We can also build 3.0000 + 5.00001
polynomial coefficients 3.0000 - 5.00001
. 1.
from its roots. 0000
* We can also multiply >> poly([1 3+5i 3-5i])
(convolution) and divide ans -
(deconvolution) two 1 -7 40 -34
polynomials.
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 12

2/7/2015

2/7/2015

Just for fun... Plot..,

> x = —-2:0.01:5;
> f = x.7"3 - 7*(x.72) + 40*x - 34;
>> plot(x, f)

150

100+

501

-50

-100+

-150
-2

I I I I I I
-1 0 1 2 3 4 5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 13

Cell Array

* The cell array is an array in which each
element is a cell. Each cell can contain an
array.

* So, it is an array of different arrays.

* You can store different classes of arrays in
each cell, allowing you to group data sets
that are related but have different
dimensions.

* You access cell arrays using the same
indexing operations used with ordinary
arrays, but using { } not ().

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 14

Useful functions

C = cell(n) Creates n X n cell array C of empty matrices.
C = cell(n,m) Creates n X m cell atray C of empty matrices.
celldisp(C) Displays the contents of cell array C.
cellplot (C) Displays a graphical representation of the cell

array C.

C = num2cell (A)

Converts a numeric array A into a cell array C.

iscell(C) Returns a 1 if C is a cell array; otherwise,
returns a 0.
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 15
>> C = cell(3)
C =
(] (] []
[] [] []
[] [] []
>> D = cell(l, 3)
D =
(] (] []
>> A(l,1) = {'Walden Pond'};
>> A(1,2) = {[1+21i 5+9il};
>> A(2,1) = {[60,72,65]};
>> A(2,2) {[55,57,56;54,56,55;52,55,53]};
>> A
A =
'Walden Pond' [1x2 double]
[1x3 double] [3x3 double]
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 16

2/7/2015

Exercise (Continue)

>> celldisp(A)
A{1l,1} =
Walden Pond

A{2,1} =
60 72 65

A{l,2} =
1.0000 + 2.00001

A{2,2} =
55 57 56
54 56 55
52 55 53

5.0000 + 9.00001

>> B = {[2,4], [6,-9;3,5]1; [7;2]1, 10}

B =
[1x2 double] [2x2 double]
[2x1 double] 10]

>> B{1l,2}

ans =
6 -9
3 5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 17

Structures (strcut.memebr)

Structure array “student”

Student(1)

L—— Name: John Smith

—— SSN: 392-77-1786

+— Email: smithj@myschool.edu

L Tests: 67, 75, 84

Copyright © Dr. Mohammed Hawa

Student(2)
—— Name: Mary Jones
—— SSN: 431-56-9832
——— Email: jonesm@myschool.edu
L Tests: 84, 78, 93
Electrical Engineering Department, University of Jordan 18

2/7/2015

Create and Add to Structure

>> student.SSN

>> student
student =

>> student (2
>> student (2
>> student (2
>> student (2

>> student

>> student.name =

>> student.email

name:
SSN:

email:
exam_scores:

'John Smith';
'392-77-1786";

= 'smithj@myschool.edu';
>> student.exam_scores = [67,75,84];

'John Smith'
'392-77-1786"
'smithj@myschool.edu’
[67 75 84]

) .name = 'Mary Jones';
) .SSN
) .email = 'jonesm@myschool.edu';
) .exam_scores = [84,78,93];

= '431-56-9832";

student =
1x2 struct array with fields:
name
SSN
email
exam_scores
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 19
Inyestigate Structure
>> student (2)
ans =
name: 'Mary Jones'
SSN: '431-56-9832"
email: 'jonesm@myschool.edu'
exam_scores: [84 78 93]
>> fieldnames (student)
ans =
'name’
'SSN'
'email'
'exam_scores'
>> max (student (2) .exam_scores)
ans =
93
>> isstruct (student)
ans =
1
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 20

2/7/2015

10

2/7/2015

Script files

* You can save a particular sequence of MATLAB
commands for reuse later in a script file (.m file)

* Each line is the same as typing a command in the
command window.

* From the main menu, select File | New | Script,
then save the file asmycylinder.m

File Edit Ted Go Cell Tools Debug Desktop Window
NS | $aR90 |83 - MAadr|b
BB -0 [+ | +[11 | x|o#k|O
1 — r=5
2| = h= 13
3= V=pi* r*2 *h
= A=2 *%pj *r % (r + h)
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 21

Remember Example?
* Develop MATLAB radius
code to find Cylinder -
volume and surface
area. height
» Assume radius of 5 m
and height of 13 m.
— 1
V =nr’h
A =2nr?+2nrh = 2nr(r + h)
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 22

11

Solution

> r =5
r =

5
>> h = 13
h =

13

V =

>> A = 2 *
A =
565.4867

>> V = pi * r*2 * h

1.0210e+003

pi * r * (r + h)

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan 23

Exercise

BB - [0

File Edit Text Go Cell Tools Debug Desktop Win
NER| B LS - AMAan

+ | =11 x | o o5 | O

=5
13

oW W N
Mo D H
nn

Copyright © Dr. Mohammed Hawa

= pi * r*2 * h
2 *pi *xr * (r + h)

Electrical Engineering Department, University of Jordan

24

2/7/2015

12

Be ware...

* Script File names MUST begin with a letter, and
may include digits and the underscore character.
* Script File names should NOT:
— include spaces
— start with a number
— use the same name as a variable or an existing
command
+ If you do any of the above you will get unusual
errors when you try to run your script.
* You can check to see if a command, function or
file name already exists by using the exist
command.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

25

Running .m files

* Run sequence of

commands by typing o> mwevtinder
5
mycylinder h o=
13
in the command v -
. 1.0210e+003
window
A =
» Make sure the current S5 4867
folder is set properly
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 26

2/7/2015

13

When you type mycylinder

When multiple commands have the same name in the current scope
(scope includes current file, optional private subfolder, current folder,
and the MATLAB path), MATLAB uses this precedence order:

1. Variables in current workspace: Hence, if you create a variable with
the same name as a function, MATLAB cannot run that function
until you clear the variable from memory.

Nested functions within current function
Local functions within current file
Functions in current folder

AN N

Functions elsewhere on the path, in order of appearance
Precedence of functions within the same folder depends on file type:
1. MATLAB built-in functions have precedence

2. Then Simulink models

3. Then program files with .m extension

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 27

Comments in MATLAB

e Comment lines start witha $ not //

« Comments are not executed by MATLAB,; it is
there for people reading the code.

* Helps Eeople understand what the code is doing
and why!

* Comments are VERY IMPORTANT.
« Comment anything that is not easy to understand.

* Good commenting is a huge help when
maintaining/fixing /extending code.

* Header comments show up when typing the help
command.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 28

2/7/2015

14

Bad vs. Good Comments/Code

% set x to zero

x =0

% calculate y

y = x * 9/5 + 32
% Convert freezing point of
% water from celsius to
% farenheit
c =0
hid c * 9/5 + 32

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 29

Exercise

" Editor - D:\EE 201 Computer Applications\Book Chapters\Lecture3 Arrays and Script Files\temr

File Edit Text Go Cell Tools Debug Desktop Window Help
DEHE [$RR20 (82 Aenr k-2 80B0I1

BB -0 |+ |+ 12 x | oo | O,

1 % temperature.m Convert the boiling point for
2 % water from degrees Celsius (C) to Farenheit (F)
%) % Author: Dr. Mohammed Hawa
4
5 $ Convert freezing point of water
6= C = 100
= F=C* 9/5 + 32
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 30

2/7/2015

15

Header comments

>> help temperature
temperature.m Convert the boiling point for
water from degrees Celsius (C) to Farenheit (F)
Author: Dr. Mohammed Hawa

>> temperature

Cc =
100

F =
212

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 31

Simple User Interaction: I/0O

* Use input command to get input from
the user and store it in a variable:

h = input ('Enter the height:"'")

 MATLAB will display the message
enclosed in quotes, wait for input and
then store the entered value in the variable

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 32

2/7/2015

16

Simple User Interaction: I/0O

* Use disp command to show something to
a user

disp('The area of the cylinder is: ')
disp (A)

 MATLAB will display any message
enclosed in quotes and then the value of
the variable.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 33

Exercise

= input ('Enter the radius:');
h = input ('Enter the height:');

V =pi * r"2 * h;

A =2 *9pi*r * (r + h);

disp('The volume of the cylinder is: ');
disp(V);

disp('The area of the cylinder is: ');
disp(A)

>> mycylinder

Enter the radius:5

Enter the height:13

The volume of the cylinder is:
1.0210e+003

The area of the cylinder is:
565.4867

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 34

2/7/2015

17

Summary

disp (A) Displays the contents, but
not the name, of the array
A.

disp(’text’) Displays the text string
enclosed within quotes.

X = input (’text’) Displays the text in quotes,

waits for user input from
the keyboard, and stores the
value in x.

]
1

input (' text’,’'s’) Displays the text in quotes,
walits for user input from
the keyboard, and stores the
input as a sfring in x.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 35

Homework

 The speed v of a falling object dropped
with zero initial velocity is given as a
function of time t by v = gt, where g is the
gravitational acceleration.

* Plot v as a function of t for 0 K t < tf,
where t;is the final time entered by the
user.

 Use a script file with proper comments.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 36

2/7/2015

18

Solution

% Plot speed of a falling object

% Author: Dr. Mohammed Hawa

g = 9.81; % Acceleration in SI units

tf = input ('Enter final time in seconds:');

t = [0:t£/500:tf]; % array of 501 time instants
v = g*t; % speed

plot(t,v);
xlabel ('t (sseconds)');
ylabel('v m/s)");

Homework
* Solve as many problems from Chapter 2
as you can
* Suggested problems:
« 2.33,2.34,2.35,2.36,2.39,2.41,2.45, 2.48

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

2/7/2015

19

Lecture 4: Complex Numbers
Functions, and Data Input

Dr. Mohammed Hawa
Electrical Engineering Department
University of Jordan

EE201: Computer Applications. See Textbook Chapter 3

What is a Function?

A MATLAB Function (e.g. y = func(xl, x2))
is like a script file, but with inputs and outputs
provided automatically in the commend window.

In MATLAB, functions can take zero, one, two or
more inputs, and can provide zero, one, two or
more outputs.

There are built-in functions (written by the
MATLAB team) and functions that you can define
(written by you and stored in .m file).

Functions can be called from command line, from
wihtin a script, or from another function.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

2

2/7/2015

Table 3.1-1 Some common mathematical functions

Exponential
exp (x)
sgrt (x)
Logarithmic
log (x)
1logl0 (x)

Complex
abs (x)
angle (
conj (x
imag (x
real (x

x)
)
)
)

Numeric
ceil (x)
Fi% (x)
floor (x)
round (x)
sign (x)

Exponential; e".
Square root; Vx.

Natural logarithm; In x.
Common (base-10) logarithm; log x = log;o Xx.

Absolute value; x.

Angle of a complex number x.
Complex conjugate.

Imaginary part of a complex number x.
Real part of a complex number x.

Round to the nearest integer toward 00,
Round to the nearest integer toward zero.
Round to the nearest integer toward —00.
Round toward the nearest integer.

Signum function:

+1ifx>0;0ifx=0; —1ifx <O.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 3
Functions are Helpful
* Enable “divide and conquer” strategy
— Programming task broken into smaller tasks
* Code reuse
— Same function useful for many problems
* Easier to debug
— Check right outputs returned for all possible
Inputs
« Hide implementation
— Only interaction via inputs/outputs, how it is
done (implementation) hidden inside the
function.
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 4

2/7/2015

2/7/2015

Finding Useful Functions

* You can use the 1ookfor command to find
MATLAB functions that are relevant to your
application.

Example: >> lookfor imaginary

Gets a list of functions that deal with
imaginary numbers.

e i — Imaginary unit.

* — Imaginary unit.

* complex - Construct complex result
from real and imaginary parts.

* imag — Complex imaginary part.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 5

Calling Functions

Function names are case sensitive (meshgrid,
meshGrid and MESHGRID are interpreted as
different functions).

Inputs (called function arguments or function
parameters) can be either numbers or
variables.

Inputs are passed into the function inside of
parentheses () separated by commas.

We usually assign the output to variable(s) so
we can use it later. Otherwise it is assigned to
the built-in variable ans.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 6

Rules

e To evaluate sin 2 in
MATLAB, we type
sin(2),notsin[2]

 For example
sin[x(2)] gives an
error even if x is
defined as an array.

* Inputs to functions in
MATLAB can be
sometimes arrays.

Copyright © Dr. Mohammed Hawa

>> x = =3 + 4i;
>> mag_x = abs(x)
mag_x =

5

>> mag_y = abs(6 - 81i)

mag_y =
10

>> angle_x = angle(x)
angle_x =

2.2143

>> angle (x)

ans =
2.2143

>> x = [5,7,15]

x =

5 7 15

>> y = sqgrt(x)

2.2361 2.6458

3.8730

Electrical Engineering Department, University of Jordan

Function Composition

« Composition: Using a function as an
argument of another function

* Allowed in MATLAB.

* Just check the number and placement of

parentheses when typing such

expressions.
* sin(sgrt (x)+1)

* log(x.”"2 4+ sin(5))

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

2/7/2015

Which expression is correct?

* You want to find sin?(x). What do you write?

* (sin(x))"2
* sin”2(x)

* sin”2x

* sin(x"2)

* sin(x) "2

* Solution: Only first and last expressions are

correct.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 9
Tt1 tric Functi
Trigonometric*
cos (x) Cosine; cos x.
cot (x) Cotangent; cot x.
cso(x) Cosecant; ¢sc X.
sec (x) Secant; sec x.
sin (x) Sine; sin x.
tan (x) Tangent: tan x.
Inverse trigonometric’
acos (x) Inverse cosine; arccos x = cos” ' x.
acot (x) Inverse cotangent; arccot X = cot ' X.
acsc (x) Inverse cosecant; arccsc X = csc™ ! x.
asec (x) Inverse secant; arcsec X = sec | x.
asin(x) Inverse sine; arcsin x = sin™! x.
atan (x) Inverse tangent; arctan x = tan~ ' x.
atan2 (y, x) Four-quadrant inverse tangent.
*These functions accept v in radians.
"These functions return a value in radians.
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 10

2/7/2015

Hyperbolic functions

Hyperbolic

cosh (x) Hyperbolic cosine; cosh x = (e* + ¢7)/2.
coth (x) Hyperbolic cotangent; cosh x/sinh x.
csch (x) Hyperbolic cosecant; 1/sinh x.

sech (x) Hyperbolic secant; 1/cosh x.

sinh (x) Hyperbolic sine; sinhx = (e¢* — ¢7)/2.
tanh (x) Hyperbolic tangent: sinh x/cosh x.

acosh Inverse hyperbolic cosine
acoth Inverse hyperbolic cotangent

Inverse hyperbolic secant
Inverse hyperbolic sine

(x)
(%)
acsch (x) Inverse hyperbolic cosecant
(x)
(x)
(x) Inverse hyperbolic tangent

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

11

User-Defined Functions

* Functions must be saved to a file with .m extension.

 Filename (without the .m) must match EXACTLY
the function name.

+ First line in the file must begin with a function
definition line that illustrates inputs and outputs.

function [output variables] = name (input variables)

* This line distinguishes a function M-file from a
script M-file.

* Output variables are enclosed in square brackets.
* Input variables must be enclosed with parentheses.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

12

2/7/2015

Functions Names

+ Function names may only use
alphanumeric characters and the
underscore.

* Functions names should NOT:

— include spaces
— start with a number
— use the same name as an existing command

* Consider adding a header comment, just
under the function definition (for help).

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 13

Exercise: Your Own pol2cart

« Make sure you set you Current Folder to
Desktop (or where you saved the .m file).

" Editor - D:\EE 201 Computer Applications\Book Chapters\Lecture4 Scripts and Functions\polar_to_cartesian.m

File Edit Tet Go Cell Tools Debug Desktop Window Help
NDEH | $RR90C | S2D- A kl-2KB0E BB | st
BB -0 [+ | +11 | x|H% O

function [x, y] = polar_to_cartesian(r, theta)

- ransiorm polar TO cartesian coordinates

% Author: Dr. Mohammed Hawa

»
YW M ey W N
0

X =r ,* cos(theta); % why did use not
Yy =r .* sin(theta); % why the semicolon
o= return;
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 14

2/7/2015

Test your newly defined function

>> [a, b] = polar_to_cartesian(3, pi)
a =

-3
b =

3.6739%9e-016

>> polar_to_cartesian(3, pi)

ans =
-3
>> [a, b] = polar_to_cartesian (3, pi/4)
a =
2.1213
b =
2.1213

>> [a, b] = polar_to_cartesian([3 3 3], [pi pi/4 pi/2])

a =
-3.0000 2.1213 0.0000
b =
0.0000 2.1213 3.0000
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 15
>> help pol2cart
POL2CART Transform polar to Cartesian coordinates.
[X,Y] = POL2CART(TH,R) transforms corresponding elements of data
stored in polar coordinates (angle TH, radius R) to Cartesian
coordinates X,Y. The arrays TH and R must the same size (or
either can be scalar). TH must be in radians.
[X,Y,Z2] = POL2CART(TH,R,Z) transforms corresponding elements of
data stored in cylindrical coordinates (angle TH, radius R, height
Z) to Cartesian coordinates X,Y,Z. The arrays TH, R, and Z must be
the same size (or any of them can be scalar). TH must be in radians.
“)
Class support for inputs TH,R,Z: ¥
float: double, single
See also cart2sph, cart2pol, sph2cart. r g
, : |y =rcosf)
Reference page in Help browser i
doc pol2cart b % ¢
P A x=rcosf
a
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 16

2/7/2015

2/7/2015

Just like your code!

>> type pol2cart

function [x,y,z] = pol2cart(th,r,z)

$POL2CART Transform polar to Cartesian coordinates.

[X,Y] = POL2CART(TH,R) transforms corresponding elements of data
stored in polar coordinates (angle TH, radius R) to Cartesian

o0

o

% coordinates X,Y. The arrays TH and R must the same size (or

% either can be scalar). TH must be in radians.

%

% [X,Y,Z2] = POL2CART(TH,R,Z) transforms corresponding elements of

o0

data stored in cylindrical coordinates (angle TH, radius R, height
7Z) to Cartesian coordinates X,Y,Z. The arrays TH, R, and Z must be
the same size (or any of them can be scalar). TH must be in radians.

90 oo o

o

Class support for inputs TH,R,Z:
float: double, single

e oo

o

See also CART2SPH, CART2POL, SPH2CART.

o0

L. Shure, 4-20-92.
Copyright 1984-2004 The MathWorks, Inc.
SRevision: 5.9.4.2 $ S$Date: 2004/07/05 17:02:08 $

o0

o0

r.*cos (th);
y = r.*sin(th);

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 17

Exercise; Spiral

>> r = linspace(0, 10, 20);
>> theta = linspace (0, 2*pi, 20);
>> [x, y] = polar_to_cartesian(r, theta);

>> plot(x,v);

B
-6 4 2 o 2 4 g =l 10

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 18

Possible Cases

* One input:

function [0l, 02, 03] = myfunc(il)
* Three inputs:

function [o0l, 02, 03] = myfunc(il, 12, 1i3)
* No inputs:

function [0l, 02, 03] = myfunc/()
function [0l, 02, 03] = myfunc

* One output:

function [0l] = myfunc(il, i2, 1i3)
function ol = myfunc(il, i2, i3)

* No output:

function [] = myfunc(il, i2, i3)

function myfunc(il, i2, 1i3)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 19

Local Variables

function z = fun(x,y)

u = 3*x;
z = u + 6*y."2;

o\

return missing is fine at end of file

» The variables x, y, u, z are local to the function
fun, so their values will not be available in the
workspace outside the function.

* See example below.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 20

2/7/2015

10

Example

>> u

>> z

>> x = 3;
>> b = 7;
>> g = fun(x, b);
>> X
x =
3
>> y
??? Undefined function or variable 'y'.

??? Undefined function or variable 'u'.

??? Undefined function or variable 'z

>> g
q =
303
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 21
Exerci
function show_date
clear
clc
date
% how many inputs and outputs do we have?
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 22

2/7/2015

11

Homework

function [dist, vel] = drop(vO, t)
Compute the distance travelled and the
velocity of a dropped object, from

the initial wvelocity vO, and time t
Author: Dr. Mohammed Hawa

o 0P oo

o\

g = 9.80665; % gravitational acceleration (m/s"2)
vel = g*t + vO;
dist = 0.5*g*t.”"2 + vO*t;

>> t = 0:0.1:5;
>> [distance_dropped, velocity] = drop (10, t);
>> plot (t, velocity)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 23

Local vs. Global Variables

 The variables inside a function are local. Their scope is
only inside the function that declares them.

* In other words, functions create their own workspaces.

 Function inputs are also created in this workspace
when the function starts.

* Functions do not know about any variables in any
other workspace.

+ Function out]%uts are copied from the function
workspace when the function ends.

+ Function workspaces are destroyed after the function
ends.

— Any variables created inside the function “disappear”
when the function ends.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 24

2/7/2015

12

Local vs, Global Variables

* You can, however, define global variables
if you want using the global keyword.

e Syntax: global a x g

* Global variables are available to the basic
workspace and to other functions that
declare those variables global (allowing
assignment to those variables from
multiple functions).

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 25

Subfunctions

* An M-file may contain more than one user-defined function.

* The first defined function in the file is called the primary
function, whose name is the same as the M-file name.

+ All other functions in the file are called subfunctions. They can
serve as subroutines to the primary function.

* Subfunctions are normally “visible” only to the primary
function and other subfunctions in the same file; that is, they
normally cannot be called by programs or functions outside
the file.

* However, this limitation can be removed with the use of
function handles.

* We normally use the same name for the primary function and
its file, but it the function name differs from the file name, you
must use the file name to invoke the function.

)

opyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 26

2/7/2015

13

Exercise

* The following example shows how the MATLAB
M-function mean can be superceded by our own
definition of the mean, one which gives the root-
mean square value.

function y = subfun_demo(a)
y = a — meanf(a);
function w = mean(x)

w = sqgrt(sum(x.”2))/length(x);

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 27

Example

* A sample session follows.

>>y = subfn_demo([4 -4])
y:
1.1716 -6.8284

* If we had used the MATLAB M-function mean, we would
have obtained a different answer; that is,

>>a = [4 -4];
>>b = a - mean(a)
b =

4 -4

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 28

2/7/2015

14

Function Handles

* You can create a function handle to any function by
using the @ sign before the function name.

* You can then use the handle to reference the function.

function y = f1(x)
y = X + 2%exp(-x) - 3;

* You can pass the function as an argument to another
function using the handle. Example: fzero function
finds the zero of a function of a single variable x.

* >> x0 = 3; % initial guess
* >> fzero(@fl, x0)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 29

Handle ys. Return Value

t = -1:0.1:5;
plot(t, £1(t)); =
ol
. 150
* There is a zero
1k
near x = —0.5
0.5F
and one
0
near x = 3.
-0.5F
AL
1.5 :
-1 0 1 2 3 4 5
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 30

2/7/2015

15

Exercise

fzero(@function, x0)

* where @function
is the function
handle, and x0 is
a user-supplied
initial guess for
the zero.

Copyright © Dr. Mohammed Hawa

>> fzero(Q@fl, -0.5)
ans =
-0.5831

>> fzero(Qfl, 3)
ans =
2.8887

>> fzero(@sin, 0.1)
ans =
6.6014e-017

>> fzero(@cos, 2)
ans =

1.5708
>> pi/2
ans =
1.5708
Electrical Engineering Department, University of Jordan 31

Finding the Minimum

* The fminbnd function finds the minimum of a
function of a single variable x in the interval
x1 <x<x2.

* fminbnd(@function, x1, x2)
e fminbnd (Qcos, 0, 4) returns3.1416

* function y = f2(x)
e v = 1-x.%*exp(-x);

* X fminbnd (Rf2, 0, 5) returnsx=1
* How would I find the min value of f2? (i.e. 0.6321)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

32

2/7/2015

16

Exercise

* For the function:
e y = 0.025x> — 0.0625x* — 0.333x3 + x?2

* Find the minimum in

the intervals: T
. x€[-1,4] i
e x €]1,4] 2
. x €[2,4]]
x€[-1

. ,1] |\\\

=1 -0.5 0 05 1 15 2 25 3 35 4
x

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 33

Old vs, New

* New syntax for function handles:
fzero(@fl, -0.5)

* Older syntax for function handles :
fzero('fl', -0.5)

* The new syntax is preferred, though both
will work just fine.

* Which one gives the correct answer:
fzero('sin', 3)or fzero(@sin, 3)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 34

2/7/2015

17

The fminsearch function

¢ fminsearch finds minimum of a function of more than one variable.

* To find where the minimum of f = xe~(¥*+y 2), define it in an M-file,
using the vector x whose elements are x(1) = x and x(2) = y.

function £ = f4(x)

f = x(1).%*exp(-x(1).%2-x(2)

.N2);

* Suppose we guess that the minimum is nearx =0,y = 0.

>>fminsearch (Qf4, [0,0])
ans =

-0.7071 0.000

¢ Thus the minimum occurs at x

Copyright © Dr. Mohammed Hawa

—0.7071,y = 0.

Electrical Engineering Department, University of Jordan

35

Inline Function

* No need to save the
function in an M-file.

» Useful for small size

functions defined on
the fly.

* You can use a string
array to define the
function.

* Anonymous functions
are similar (see next).

Copyright © Dr. Mohammed Hawa

>> f4 = inline('x."2-4"
f4 =
Inline function:
f4(x) = x.72-4

>> [x, value] = fzero(f4, 0)

>> f5 = inline(f5str)
£f5 =
Inline function:
f5(x) = x.72-4

>> x = fzero(f5, 3)
2

>> x = fzero('x."2-4', 3)
2

>> f6 = inline('x.*y")

f6 =

Inline function:
f6(x,y) = x.*y

>> f5str = 'x.72-4'; % string array

Electrical Engineering Department, University of Jordan

36

2/7/2015

18

Anonymous functions

+ Here is a simple function called sq to calculate
the square of a number.

>> sq = @(x) x.72;

>> sq = @(x) (x.72)
sq =
Q(x) (x.72)

>> sq([5 7])
ans =
25 49

>> fminbnd(sqg, -10, 10)
ans =
0

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 37

Exercise

>> sqgrtsum = @(x,y) sqgrt(x.”2 + y."2);

>> sqgrtsum(3, 4)
ans =
5
>> A = 6; B = 4;
>> plane = @(x,y) A*x + B*y;

>> z = plane(2,8)

7 =
44
>> f = @(x) x."3; % try by hand!
>> g = @(x) 5*sin(x);
>> h = @(x) g(f(x));
>> h(2)
ans =
4.9468
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 38

2/7/2015

19

Variables in Anonymous Functions

* When the function is created MATLAB, it
captures the values of these variables and
retains those values for the lifetime of the
function handle. If the values of A or B are
changed after the handle is created, their
values associated with the handle do not
change.

* This feature has both advantages and
disadvantages, so you must keep it in mind.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 39

For Speed Use Handles

* The function handle provides speed
improvements.

» Another advantage of using a function
handle is that it provides access to
subfunctions, which are normally not
visible outside of their defining M-file.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 40

2/7/2015

20

Importing Data: ASCII

] ascii.txt - Notepad

* Make the ‘data’ folder your

Current FOlder | File Edit Format View Help

* Delimited ASCII files are :5L 'g i ; ’ g
common to save data from 9,10,11,12

experiments.
* dlmread/dlmwrite

>> a = dlmread('ascii.txt"')

a =
1 2 3 4
5 6 7 8
9 10 11 12

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 41
Importing Data: Excel
(®E 9 -
+ Make the “data’ folder your o EAERCR R e
Current Folder. B o cator JuJa
Paste - - - A~
* MATLAB can also read and W Aol Rt M
write to Excel Files. “m . E 0
: A B c | b E
* xlsread/xlswrite o
2: 15 20 25 30
3 30 31 32 33
>> a = xlsread('data.xls') |4 o m— (- —
a = 6
7
10 30 50 60
15 20 25 30
30 31 32 33
80 82 84 86
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 42

2/7/2015

21

Importing Data: Images

» Make the ‘data’ folder your
Current Folder.

* Read and write images:

* imread/imwrite

>> ¢ = imread('cat.jpg');
>> imshow(c) ;
>3

(¢

>> imshow (255-c); % inverse

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

43

Importing Data: Sound Files

% use a script file (fourier.m)
[v,Fs,bits] = wavread('bequiet');
N = length(y);

t = (1/Fs)*(1:N);

plot(t, vy);
xlabel ('Time (s)');
ylabel ('Amplitude');

f = Fs*(-N/2:N/2-1)/N;
y_fft = fftshift(abs(fft(y)));

figure;

plot (£, y_£fft);

xlabel ('Frequency (Hz)');
ylabel ('Amplitude');

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

44

2/7/2015

22

bequiet.way (BW of human yoice!)

100 1
9 9
3 3
2 2
= =
£ £
< <

50 1

4 o
0 02 0.4 06 0.8 1 12 14 -6000 -4000 2000 [} 2000 4000 6000
Time (s) Frequency (Hz)
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 45
. 1 y
(
-

] 1800 q

1 1600 1

1400]

1200 1
g 3
3 i 3

£ £ 1000 1
£ 1 g

800 1

1 600 1

i 400 9

1 200 1

4 | m.“l\‘ nah J\L‘LM |
o 05 1t 15 2 25 3 35 4 45 25 =2 45 4 05 0 05 1 15 2 25
Time (s) Frequency (Hz) X 10
Electrical Engineering Department, University of Jordan 46

Copyright © Dr. Mohammed Hawa

2/7/2015

23

tuningA4.way (frequency?)

] 4000]
3500 i
3000 i
E 1 8 2500 1
< - 4 < 2000 4
1500 4
1000 4
1 500 4
Ey
o 1 2 3 4 5 9 15 1 05 o 05 1 15
Time (s) Frequency (Hz) 10!
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 47
M Nate Frequency Perind
i Keyhoard que i
AD 27.500 5636
he B0 S0Ees 29.135 | mpap 432
byl o1 32703 3055
2 23 D1 Gernn 34648 | 3754 2886
35 27 EL 41203 38891 | 2437 2571
29 FL 43550 5251
5 0 @1 sgoo0 45249 | 3pal 2162
a3 2 Al Ssoon 51913 | 151z 1926
a5 Bl F1735 58270 | 1ghn 1716
E c2 65406 1558
38 31 D2 73416 69296 | 13 1429
w ¥ E2 gzant TR | 1 1286
M) P 7307 1145
5 8 <) o7gop 92439 | 1nop 1081
PR A2 liooo 10383 | a3y 9631
a7 B2 1347 11634 | goes 8381
Frequenc e el Gom
= 5w D3 1653 13839 | gg1) 7216
= 1555 | gogs 6428 .
—__ o500 | 30y S405 .
= 510
- 20763 | 4545 4816
23505 | 4050 4290
= 3822
= 27708 | Bans 3608
A0S 31015 | zoap 3214
= 2863
Hz = a9 | f55] 2.703
‘= 10530 | 5373 2408
= 46616 | 7ozs 2.145
._: 1910
. 55457 | 1908 1804
= 52225 | 1413 lé07
= 1332
= 13999 | 1375 1351
= s3061 | 113 1204
93235 | [0l L073
= 09556
i 1087 | ga513 09020
= 12445 | 7554 08034
07159
14800 | ggae 06757
16612 | poges 06020
18647 | papes 05363
04778
22175 | 257 04310
24880 | g37en 04018
! 03580
W 29600 | p3lEe 03578
105 s 35200 33224 [p2ga) 03010
w | B E‘ 511 37293 | nzss) 02681
108 (o) T Wolle THSW] 4136.0 02365
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 48

2/7/2015

24

gultar.way

1600

1400

1200

1000

Amplitude
Amplitude

3
g 8
8 8

5
15
8

N
5]
8

o L L L L ul "
0 0.5 1 1.5 2 25 2.5 2 -1.5 -1 0.5 0 0.5 1 15 2 25
Time (s) Frequency (Hz) x10°

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 49

Homework

* Solve as many problems from Chapter 3
as you can

* Suggested problems:
« 3.1,3.3,3.6,3.9,3.14, 3.18,3.24

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 50

2/7/2015

25

Lecture 5; Programming
using MATLAB

Dr. Mohammed Hawa

Electrical Engineering Department
University of Jordan

EE201: Computer Applications. See Textbook Chapter 4

Algorithms and Control Structures

+ Algorithm: a sequence of instructions that
performs some task in a finite amount of time.

* The algorithm uses a control structure to execute
instructions in a certain order.

* Control structure categories:

— Sequential operations: Instructions executed in order.

— Conditional operations: First ask a question to be
answered with a true/false answer and then select the
next instruction based on the answer.

— Iterative operations (loops): Repeat the execution of a
block of instructions.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

2

2/20/2015

2/20/2015

Before Programming

 Before writing a program, we need a plan.

* A plan helps us focus on the problem, not
the code.

* Common methods to show a plan are:

— Flowchart: A graphical description of the
program flow.

— Pseudocode: A verbal description of the
program details.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Flowcharts

 Flowcharts are geometric symbols to describe
the program steps.

* They capture the “flow” of the program.

 Flowcharts are useful for developing and
documenting programs that contain
conditional statements, because they can
display the various paths (called “branches”)
that a program can take, depending on how
the conditional statements are executed.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 4

[Star

n”’ \\‘\
~Evaluate ™.
. Condition_~~

it

S

true

Execute

Statements

(Stop

™
|H_

Examples

Read n

Error

false

Copyright © Dr. Mohammed Hawa

Yes

fact=1

Wirite fact

Electrical Engineering Department, University of Jordan

5

—>

start/
terminator

documents

process
document predefined
A process/
subroutine
display alternate

multiple

process

connector

Copyright © Dr. Mohammed Hawa

delay
(wait)

Flowchart

Symbols

Annotation

g

off-page
connector

Electrical Engineering Department, University of Jordan

6

2/20/2015

Pseudocode

* In pseudocode, natural language and
mathematical expressions are used to
construct statements that look like

computer statements but without detailed

syntax.

 Each pseudocode instruction may be
numbered, but should be unambiguous
and computable.

 Similar to a recipe.

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

Pseudocode Example

Input: A nonempty string of characters $15;...9,, and a positive integer n
giving the number of characters in the string.

Qutput: See the related problem below.

Procedure:

1

00 =~ O U = W b

9

Get n
Get S]Sz s Sn
Set count =1
Set ch = S
Set i =2
While i <n
If 5; equals ch
Set count = count + 1
Seti=1i+1

10 Print ch, ‘ appeared ’, count, ¢ times.’
11 Stop

Problem 1.1 What is printed if the input string is pepper ?

Problem 1.2 What is printed if the input string is CACCTGGTCCAAC?

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

2/20/2015

Algorithm Distribute
Input: (G*, f,edge), where G* = (N, M, s, t, E*, w), f is a set of flows f!
and edge is the edge that is being distributed.

0. Initialize scan(v) = 0, label(v) = 0, scan(e) = 0,label(e) = 0 for all v € Ne € M
1. wert =0, capvert =0
2. label(edge) = 1, pathcap(edge) = w(edyge)
3. while (w(edge) > 3, f4,,) or not all labeled nodes have been scanned
4. for all labeled e € M, with scan(e) =0
3. label unlabeled neighbors of ¢ (i.e v € N)
6. scan(e) = 1, pred(v) = e, pathcap(v) = pathcap(e)
7. endfor
8. for all labeled v € N with scan(v) =0
9. if min(w(v) — ¥, f¥, pathcap(v)) > capvert then
10. vert = v, capvert = min(w — Y, f!, pathcap(v))
11. else
12. label all unlabeled ¢’ € M s.t f4% >0
13. endif
14. scan(v) =1
15. endfor
16. if vert > 0 then
17. An augmenting path from s to ¢ has been found: backtrack from
vert using pred() and change the values of f as requirted.
18. forallee M,ve N
19.. label(e) = 0, scan(e) = 0, label(v) = 0, scan(v) = 0
20. endfor
21. vert =0, capvert = 0, label(edge) = 1
22. pathcap(edge) = w(edge) — T, fiuge
23. endif
24. endwhile
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 9

During and After Programming

* Make sure to provide effective
documentation along with the program.
This can be accomplished using;:

— Proper selection of variable names to reflect
the quantities they represent.

— Using comments within the program.

* Debugging a program is the process of
finding and removing the “bugs” or errors
in a program.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 10

2/20/2015

Bugs

Bugs usually fall into one of two categories:

1. Syntax errors: such as omitting a parenthesis or
comma, or spelling a command name
incorrectly. MATLAB usually detects the more
obvious errors and displays a message
describing the error and its location.

2. Errors due to an incorrect mathematical
Ilzrocedure. These are called runtime errors.
hey do not necessarily occur every time the
program is executed; their occurrence often
depends on the }l)articular input data. A
common example is division by zero.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 11

Finding Bugs: Debugging

To locate runtime errors, try the following:

1. Always test your program with a simple
version of the problem, whose answers
can be checked by hand calculations.

2. Display any intermediate calculations by
removing semicolons at the end of
statements.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 12

2/20/2015

Relational Operators

Operator

Meaning

Less than.

Less than or equal to.
Greater than.

Greater than or equal to.
Equal to.

Not equal to.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 13
Examples
>> a 3;
>> b = 4; > x = [6 3 971;
>> a == b >> vy = [14 2 9];
ans = >> z = (x < V)
0 z =
1 0 0
>> a ~= Db
ans = >> z = X ~= Y
1 z =
1 1 0
>> a < b
——— >> z = x > 8
1 z =
0 0 1
>>-b >= -4
ans =
1
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 14

2/20/2015

Relational operators can be used for array addressing.
For example

> x = [6,3,9];
>y = [14,2,9];

>> x<y
ans =

1 0 0
>> z = x(x<y)
7 =

6

finds all the elements in x that are less than the
corresponding elementsiny. The resultis z = 6.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 15

The arithmetic operators +, -, *, /, and \ have precedence
over the relational operators. Thus the statement

z =5>2 + 7

is equivalent to

z =5 > (2+7)

and returns the result z = 0.

We can use parentheses to change the order of

precedence; forexample, z = (5 > 2) + 7 evaluates
toz = 8.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 16

2/20/2015

The logical Class

When the relational operators are used, such as
x = (5 > 2)

they create a logical variable, in this case, x.

Logical variables may have only the values 1 (true)
and 0 (false).

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 17

Just because an array contains only Os and 1s, however, it
is not necessarily a logical array. For example, in the
following session k and w appear the same, but k is a
logical array and w is a numeric array, and thus an error
message is issued.

>>X = —-2:2;
>>k = (abs(x)>1)
k =
1 0 0 0 1
>>z = xX (k)
7 =
-2 2

>w = [1,0,0,0,11; v = x(w)
??7? Subscript indices must either be real
positive... integers or logicals.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 18

2/20/2015

Accessing Arrays Using Logical Arrays

When a logical array is used to address another array,
it extracts from that array the elements in the
locations where the logical array has 1s.

So typing A (B), where B is a logical array of the
same size as A, returns the values of A at the indices
where Bis 1.

GivenA =[5,6,7;8,9,10;11,12,13] andB =
logical (eye (3)), we can extract the diagonal
elements of A by typing C = A (B) to obtainc =
[5;9;13].

See our earlier discussion of logical indexing.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 19

Logical Operators

Operator Name Definition

~ NOT ~A returns an array the same dimension as A; the new
array has ones where A is zero and zeros where A is
nonzero.

& AND A & Breturns an array the same dimension as A and B;

&&

the new array has ones where both A and B have
nonzero elements and zeros where either A or B is zero.

OR A | Breturns an array the same dimension as A and B;
the new array has ones where at least one element in A
or B is nonzero and zeros where A and B are both zero.

Short-Circuit AND Short-circuiting means the second operand (right
hand side) is evaluated only when the result is not fully
determined by the first operand (left hand side)
A & B (Aand B are evaluated)
A && B (Bisonly evaluated if Ais true)

Short-Circuit OR | can operate on arrays but | | only operates on scalars

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 20

2/20/2015

10

Examples

ans

>>
2?7

v
4
X Qoo

>> 5 && 0

be convertible to logical scalar values.

U W

(a < b) & (b <)

(a < b) && (b < ¢)

0

[1 2] && [3 4]
Operands to the || and && operators must

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 21

Order of precedence for operators

Precedence Operator type

First Parentheses; evaluated starting with the
innermost pair.

Second Arithmetic operators and logical NOT (~);
evaluated from left to right.

Third Relational operators; evaluated from left to
right.

Fourth Logical AND.

Fifth Logical OR.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 22

2/20/2015

11

Logical functions
Logical function
ischar (A)
isempty (A)

isinf (&)

isnan (A)

Copyright © Dr. Mohammed Hawa

Definition

Returns a 1 if A is a character array
and 0 otherwise.

Returns a 1 if 2 is an empty matrix and
0 otherwise.

Returns an array of the same
dimension as A, with ones where

A has ‘inf’ and zeros elsewhere.
Returns an array of the same
dimension as A with ones where

A has ‘NaN’ and zeros elsewhere.
(‘'NaN’ stands for “not a

number,” which means an undefined
result.)

Electrical Engineering Department, University of Jordan 23

isnumeric (A)

isreal (A)

logical (A)

xor (A, B)

Copyright © Dr. Mohammed Hawa

Logical Functions

Returns a 1 if A is a numeric
array and 0 otherwise.

Returns a 1 if A has no
elements with imaginary parts
and 0 otherwise.

Converts the elements of the
array A into logical values.

Returns an array the same
dimension as A and B; the new
array has ones where either A
or B'is nonzero, but not both,
and zeros where A and B are
either both nonzero or both
Zero.

Electrical Engineering Department, University of Jordan 24

2/20/2015

12

Logical Operators and the £ind Function

Consider the session

> x = [5, -3, 0, 0, 8];
>> 'y = [21 4, OI 5, 11;

>> X&y
ans =
1 1 0 0 1
>> z = find(x&y)
i
1 2 5

Note that the find function returns the indices, and
not the values.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 25
Conditional Statements: The if Statement
The if statement’s basic form is
if logical expression

statements

end
Every if statement must have an accompanying end
statement. The end statement marks the end of the
Statements that are to be executed if the logical
expression is true.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 26

2/20/2015

13

The else Statement

The basic structure for the use of the else statement is

if logical expression
statement group 1

else

Statement group 2

end

When the test, if logical expression, is performed, where
the logical expression may be an array,

the test returns a value of true only if all the elements of
the logical expression are true!

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan 27

The elseif Statement

The general form of the if statement is

if logical expression 1

statement
elseif logical

statement
else

statement
end

group 1
expression 2
group 2

group 3

The else and elseif statements may be omitted if not
required. However, if both are used, the e1se statement
must come after the elseif statement to take care of all
conditions that might be unaccounted for.

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan 28

2/20/2015

14

Exercise

File: test.m
Matlab command prompt
a = 5;
b = 4; >> test
4

if a == Db 22

disp(a);

disp (b);
elseif a < Db

disp(a);
else

disp(b);
end
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 29

Example

* Suppose that we want to
compute y, which is given by
the equation:

Yy =<10x+10
10

function y = test (x)

if x >= 9
y = 15*sqrt(4*x) + 10

elseif x >= 0 % already less than 9
y = 10*x + 10

15\V4x + 10

ifx=>9
if0<x<9
ifx<0

else
y = 10
end
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 30

2/20/2015

15

Example: if we fail to recognize how the test works, the
following statements do not perform the way we might
expect.

x = [4 -9 25];
if x < 0
disp(’Cant find square root of negative.’)
else
y = sgrt(x)
end

When this program is run it gives the result

y:
2 0 + 3.0001 5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 31

Instead, consider what happens if we test for x positive.

x = [4, -9, 25];
if x >=0
y = sqrt(x)
else
disp(’Cant find square root of negative.’)
end

When executed, it produces the following message:
Cant find square root of negative.

The testif x < 0 is false, and the test if x >= 0 also
returns a false value because x >= 0 returns the vector
[1,0,17.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 32

2/20/2015

16

Loops

+ Often in your programs you will want to
“loop”
— repeat some commands multiple times

* If you know how many times you want to
loop
—use a for loop

+ If you want to loop until something happens
(a condition is satisfied)
—useawhile loop

* If you find yourself typing similar lines more
than a couple of times, use a loop

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 33

for Loops

A simple example of a for loop is:

m = 0;
x(1) = 10;
for k = 2:3:11;
m=m + 1;
X(m+l) = x(m) + k*2;
end

k takes on the values 2, 5, 8, 11. The variable m
indicates the index of the array x. When the loop
is finished the array x will have the values
x(1)=14, x(2)=39, x(3)=103, x(4)=224.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 34

2/20/2015

17

Note the following rules when using for loops with the loop
variable expression k = m:s:n:

The step value s may be negative.

Example: k = 10:-2:4 produces k =10, 8, 6, 4.

If s is omitted, the step value defaults to 1.

If s is positive, the loop will not be executed if m is greater
than n.

If s is negative, the loop will not be executed if m is less
than n.

If m equals n, the loop will be executed only once.

If the step value s is not an integer, round-off errors can
cause the loop to execute a different number of
passes than intended.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 35

Exercise

File: loop.m

for 1 = 1:1:5

disp (i)
end Matlab command prompt

>> loop
1
2
3
4
5

>>

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 36

2/20/2015

18

Strings and Conditional Statements

A string is a variable that contains characters. Strings are
useful for creating input prompts and messages and for
storing and operating on data such as names and
addresses.

To create a string variable, enclose the characters in single
quotes. For example, the string variable name is created as
follows:

>>name = ’'Mohammed Ali’
name =
Mohammed Ali

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 37

The following string, number, is not the same as the
variable number created by typing number = 123.

>>number = 1237

number =
123

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 38

2/20/2015

19

The following prompt program is a script file that allows the
user to answer Yes by typing either Y or y or by pressing the

Enter key. Any other response is treated as a No answer.

response = input (’Continue? Y/N [Y]: ’',’s’);
if (isempty(response)) | (response ==
'Y') | (response == 'y')

response = 'Y’
else

response = 'N’
end
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 39

Programming Exercise #1

« Write a MATLAB program that does the
following:

* The program asks you to enter your name.

+ It waits for you to enter your name and hit
Enter.

* The program reads your name, counts its
characters and any blank spaces in the name,
then displays something like this:

* You name is “Mohammed Ali”. It has 11
characters and 1 blank space.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 40

2/20/2015

20

Using loops is slower than arrays in MATLAB

We can use the mask technique to compute the square root
of only those elements of A that are no less than 0 and add

50 to those elements that are negative. The program is

A = [0, -1, 4, 9, -14, 25; -34, 49, 64];

C= (A >=0);

A(C) = sqgrt(A(C))

A(~C) = A(~C) + 50

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 41

while Loops

The while loop is used when the looping process
terminates because a specified condition is satisfied, and
thus the number of passes is not known in advance.

A simple example of a while loop is

x = 5;

while x < 25
disp(x)
X = 2*x — 1;

end

The results displayed by the disp statementare 5, 9, 17.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 42

2/20/2015

21

The typical structure of a while loop follows.

while logical expression
statements
end

For the while loop to function properly, the following two
conditions must occur:

1. The loop variable must have a value before the while
statement is executed.

2. The loop variable must be changed somehow by the

Statements.
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 43
E .
File: loop2.m
i=1;

while 172 <= 50

disp(i~2)
P-4+ 1; Matlab command prompt
>> loop2

end 1
4

9
16
25
36
49
>>

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 44

2/20/2015

22

Editor/Debugger containing
program to be analyzed

F b
[Editor - D:AEE 201 Computer Applications\Book Chapters\Lecture5 Programming\loop2.m l = | 5. |
File Edit Text Go Cell Tools Debug Desktop Window Help R 4
NEH|$MBIC| LT - Menh B BRARE B *0.-
EE| -fo |+ F11 x| |@

T i, ST =
it while i*2 <= 50
e disp(i~2)
1@ i=4+1;
oy end i: 1x1 double =

2

script ln 4 Col 1 |OVF
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 45

The break statement

* break terminates the execution of a loop, so if you
have a nested loop, break will only quit the
innermost loop, and the program will continue

running.
s=6; % initialize s to 6
while s~=1 % as long as s is not equal to 1 stay in loop
if s==17 $ if s equals 17
sprintf ()
break;
end
if mod(s,2) % the actual "brains" of the iteration
s=s/2;
else
s=3*s+1;
end
end
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 46

2/20/2015

23

The continue statement

The following code uses a continue statement to avoid
computing the logarithm of a negative number.

[10,1000,-10,1007;
y = NaN*x;
for k = 1l:1length(x)

if x(k) < 0

X

continue
end
y (k) = loglO(x(k));
end
Yy

Theresultisy= [1 3 NaN 2].

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 47

Homework

* Write a script file to determine how many terms are required
for the sum of the series 5k - 2k, k = 1,2,3, ... to exceed
10,000. What is the sum for this many terms?

total = 0; k = 0;
while total < 1le4

k =k + 1;

total = total + 5*k"2 - 2*k;
end
disp(’The number of terms is:’)
disp (k)
disp(’The sum is:’)
disp(total)
e The sum is 10,203 after 18 terms.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 48

2/20/2015

24

Exercise; Fourier Series

x(t) = o + Xy=1 cn cos(nwot — 6;,)
Discover the following periodic function:
x(t) =05+ % [cos(t) + gcos(?,t) + icos(St) +%cos(7t) +]

Use a for or while loop. Use n as the loop
parameter to add certain terms then plot the
result versus time —10 < t < 10.

On one figure, draw the result of 3 terms.
On one figure, draw the result of 10 terms.
On one figure, draw the result of 100 terms.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 49

Infinite Loops

“Infinite loop” = piece of code that will
execute again and again ... without ever
ending.

Possible reasons for infinite loops:

— getting the conditional statement wrong

— forgetting the update step

If you are in an infinite loop then ctrl-c
stops MATLAB executing your program.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 50

2/20/2015

25

The switch statement

The switch statement provides an alternative to using the
if, elseif, and else commands.

Anything programmed using switch can also be
programmed using i f statements.

However, for some applications the switch statementis
more readable than code using the i f structure.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 51

Syntax of switch

switch input expression (canbe ascalar or string).
case valuel
statement group 1
case valueZ2
statement group 2

otherwise
statement group n
end
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 52

2/20/2015

26

The following switch block displays the point on the
compass that corresponds to that angle.

switch angle
case 45
disp(’'Northeast’)
case 135
disp(’Southeast’)
case 225
disp(’Southwest’)
case 315
disp(’'Northwest’)
otherwise
disp(’'Direction Unknown’)
end

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 53

Boolean Variables

* MATLAB allows boolean variables that
take true/false values

if (atUniversity & stillAStudent)
needMoreMoney = true;

end

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 54

2/20/2015

27

Programming Exercise #2

» Write a MATLAB program to solve this:

* One investment opportunity pays 5.5%
annual profit, while a second investment
opportunity pays 4.5% annual profit.

* Determine how much longer it will take to
accumulate at least $50,000 in the second
investment opportunity compared to the
first if you invest $1000 initially and $1000
at the end of each year.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 55

Programming Exercise #3

* Write a MATLAB program that asks you for
a hexadecimal integer number.

* The program should read that number and
convert it to decimal.

« Example: 84CD hexadecimal is 33997
decimal.

+ Can you improve on your program so it
accepts binary or hexadecimal or decimal
and converts it to all other formats? You need

to accept numbers written in something like
this: 94CAh or 110110001b.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 56

2/20/2015

28

Homework

* Solve as many problems from Chapter 4

as you can

* Suggested problems:

«42,44,45,4.11,4.13,4.15,4.16,4.17,4.23,
4.24,4.25,4.26,4.33,4.37,4.39, 4.47

Copyright © Dr. Mohammed Hawa

2/20/2015

29

Lecture 6; Plotting
in MATLAB

Dr. Mohammed Hawa
Electrical Engineering Department
University of Jordan

EE201: Computer Applications. See Textbook Chapter 5.

A picture is worth a thousand words

MATLAB allows you to plot data sets for better
visualization and interpretation.

There are different types of plots available in
MATLAB (see next) including 2D and 3D plots.
You can control all aspects of the plot: lines,
colors, grids, labels, etc.

Plotting clear and easy-to-read figures is an
important skill, which you gain from experience.
For pointers, read in your textbook the
Reiuirements for a Correct Plot (Table 5.1-1, pa§e
221), and Hints for Improving Plots (Table 5.1-
page 226).

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

2/20/2015

2/20/2015

Example of a Figure window

) Figure 1

File Edit Wiew Insert Tools Desktop Window Help ~
DEEHS | K ANODEL- S 0EH | ad

Capacitor Vaoltage Yersus Time
R

Woltage ()

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 3

Nomenclature for a typical xy two-dimensional plot.
PLOT T\TLE%
Height of a Falling Object Versus Time
16004 1
=__ DATA SYMBOL
o
1400+ NS .
~
-
o
12001 ~ 1
o)
~
_— - ~ 4
§ 1000 ®
& ~
£ LEGEND ~
2 800 ® 1
T <‘ j ~
600 h 1
—— Zero Drag Model ®
© Data N
400} N
TICK MARK
2001 @ 1
0 1 I " " L L 1 1 I
0 1 2 3 4 5 & 7 8 9 10
Time (seconds) D
ﬁ TICK-MARK LABEL
- L AXIS LABEL
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, Untversity of Jordan 4

Example: Plot y = 0.4 X vV1.8x for 0 < x < 52, where
y represents the height of a rocket after launch, in
miles, and x is the horizontal (downrange) distance
in miles.

>> x = 0:0.1:52;

>> vy = 0.4*sqgrt (1.8%*x);

>> plot(x,y);

>> xlabel (’Distance (miles)’);

>> ylabel ("Height (miles)’);

>> title (’'Rocket Height vs. Distance’);

Notice that for each x there is y; so MATLAB plots
one array against another.

Also notice how we added the axes labels and plot title.

The resulting plot is shown on the next slide.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The autoscaling feature in MATLAB selects tick-mark
spacing.

Rocket Height as a Function of Downrange Distance

4 T T T T T

Height (miles)

60

0 " L 1 " L
[} 10 20 30 40 50
Distance (miles)
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 6

2/20/2015

The plot will appear in the Figure window. You can use the
plot in other applications in several ways:

1. You can print a hard copy of the figure by selecting
File | Print menu item in the Figure window.

2. You can save the plot to a file to be used later. You can
save the plot by selecting File | Save As menu item.
Possible file formats include: *.fig (MATLAB format),
*.bmp, *.eps, *.jpg, *.png, *.tif, *.pdf, Another way
to save is File | Export Setup that allows specifying
options for the output file, then selecting Export.

3. You can copy a figure to the clipboard and then paste it
into another application using the Edit | Copy Figure
menu item. For options, use Edit | Copying Options
menu item.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

7

When you have finished with the plot, close the figure
window by selecting File | Close menu item in the
figure window.

If you do not close the window, it will not re-appear

when a new plot command is executed. However,
the figure will still be updated.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

8

2/20/2015

One Data Set: plot

x = 0:2*p1i/100:2*%p1i;

vyl = sin(x);
plot(x,vyl); 1 e,
xlabel('x'"); ZZ
ylabel('y"'); 04l
title('Example'); oz
"ol
plot (y1):Plots values o
of y1 versus their indices_
if y1 is a vector. R
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 9

Multiple Data Sets: plot, hold

x = 0:2*p1/100:2*pi;

vyl = sin(x); s Example.

y2 = cos(Xx);

y3 = sin(x)+cos(x); 1

plot(x,yl); osf

hold onj; Y

plot (x,vy2);

plot (x,v3); o

xlabel('x"); A

ylabel ('y'"); s e
title('Example'); ° ! : ot ° ¢
hold off;

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 10

2/20/2015

Or better use one plot command

% =
vyl
y2
y3

0:2*pi/100:2*pi;

sin(x) ;

cos (x);

sin(x)+cos (x);
plot (x,y1l,%x,¥2,%x,y3);

xlabel ('x");
ylabel('y');

title('Example');
% Notice the auto coloring ™
% by MATLAB

Copyright © Dr. Mohammed Hawa

Example

0.5

-0.5

1.5

Electrical Engineering Department, University of Jordan 11

Colors, Data Markers & Line Types

* You can also specify your own line styles in the plot
command.

* For full details enter help plot in MATLAB.

b blue

g green

e red

c cyan

m magenta

Yy yellow

k black

w white

Copyright © Dr. Mohammed Hawa

4+ % O -

>4 AW

YoV A

point
circle
x-mark
plus
star
square
diamond
triangle
triangle
triangle
triangle
pentagram
hexagram

(down)
(up)
(left)
(right)

- solid
dotted
-. dashdot
- dashed
(none) no line

Electrical Engineering Department, University of Jordan 12

2/20/2015

x = 0:2*pi/100:2*pi;
vl = sin(x);
y2 = cos(x);

y3 = sin(x)+cos(x);
plot(x,vyl, 'r-."',x,vy2,

xlabel ('x"'); 15

'g_X'IX/y3/ 'b+');

T, 1) . ﬁ%ﬁ
ylabel ('y"'); N B L
 TE AR
% s
o A
o5l /% 1 \ P |
, % P
+ N s +
5 foA
> 0r tr \ } z J:r / b
L SooF)
+ / +
o5 N A
N T
% 2 +
o +
Al oy ~ s J
tt%“wﬁ
15 . . . i . .
0 1 2 3 4 5 6 7
X
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 13
Exercise: How did we use different data markers below?
3.5 T 3.5 T
D
3} o] 3
o
o
25¢ o . 25
o
2 © 2
> [e) >
1.5¢ o 1.5
1iF © 1 1
0.5¢ 1 0.5
< . ot L
] 5 10 0 5 10
X X
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 14

2/20/2015

legend('sin', 'cos',

Legends

With multiple lines on the same plot it is a good idea to add a legend.

'sin + cos');

legend('sin', 'cos', 'sin+cos', 'Location', 'North');

You can also move the legend with the mouse.

15 1.5

Eas) P N

of N + sinecos LSNP +sinoos +

N P E ;o
05 trt; ' \ f // B 0.5 trt; ’ \ f /
5 tﬁ h f/ / A Eﬁ : f; /
LR g 3
ik 0 1 2 3 4 5 6 7 7“50 1 2 3 4 5 6 7
Copyright © Dr. Mohammed szxn‘zz Electrical Engineering I)w}ulr‘l:m‘n?, University of Jordan 15
Labeling Curves and Data
The 1egend command automatically obtains from the
plot the line type used for each data set and displays a
sample of this line type in the legend box next to the
string you selected. The following script file produced
the plot in the next slide.
x = 0:0.01:2;
y = sinh(x);
z = tanh(x);
plot(x,y,x,z,"'-=");
legend('sinh(x)"', 'tanh(x)"');
gtext (‘text’):Places a stringin the Figure
window at a point specified by the mouse.
text (x,y, "text’):Places a stringin the Figure
window at a point specified by coordinates x, y.
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 16

2/20/2015

2/20/2015

Application of the 1legend command.
I moved the legend to an empty space using the mouse.
4
3.5F A
3 L .
sinh(x)
55l — tanh(x) i
2 L .
1.5F B
1k S -
0.5} " .
0 L L L L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 17

The gridand axis Commands

MATLAB will automatically determine the maximum and
minimum values for the axes. You can use the axis
command to override the MATLAB selections for the axis
limits. The syntaxis axis ([xmin xmax ymin ymax]).
This command sets the scaling for the x- and y-axes to the
minimum and maximum values indicated.

The gr id command displays gridlines at the tick marks
corresponding to the tick labels. Type grid on to add
gridlines; type grid off to stop plotting gridlines. When
used by itself, grid toggles this feature on or off, but you
might wanttouse grid onandgrid off tobe sure.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 18

axis and grid commands

axis ([0 9 -2 27); grid on;
axis ([0 6 =2 21); grid off;
2 \ [— \ \
— sn ‘ ‘ sin ‘ ‘
L I e
ST o e S T
PDdP"'L ¢ | | | |
1 e 1 R it e
5 kS) ol S | | |
s | 05F —— —he — — B o+ — - — - — 1S F
i e LN & P \tgr\\ I J ;rf
i \ & / | [» ! [
s * . s i e
N & | Lo N i
5 ", . i 08— R T o E
kS # e o -
s A Ry
A *tﬁﬁ {P&f I e ol g
| | | | |
i R el e
| | | | |
. ‘ ‘ 2 i i ! ! |
0 1 2 3 4 5 6 0 1 2 3 4 5 6
x x

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 19

Homework #1
Plotting Polynomials with the polyval Function.

To plot the polynomial 3x®> + 2x* — 100x3 + 2x? — 7x + 90 over the
range —6 < x < 6 with a spacing of 0.01, you type

>> X -6:0.01:6;

>> p = [3,2,-100,2,-7,90];
>> plot(x,polyval(p,x));
>> xlabel('x")
>> ylabel('p')

. 4000
14

3000
14

2000

1000

P

-1000

-2000

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 20

2/20/2015

10

Homework #2

* The polyfit function is based on the least-

squares method. It fits a polynomial of
degree n to data described by the vectors x

and y, where x is the independent variable.

e Syntax:p = polyfit(x,y,n)
e It returns a row vector]13 of length n+1 that
a

contains the polynomi
of descending powers.

* For the following census data, draw the
actual points and the best 5™ order
polynomial fit for such data.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

coefficients in order

21

year = 1810:10:2010;

population = 1le6*[3.9 5.3 7.2 9.6 12.9 17.1
23.1 31.4 38.6 50.2 62.9 76. 92. 105.7 122.8
131.7 150.7 179. 205. 226.5 248.7];

coeff = polyfit(year, population, 5)
f = polyval (coeff, year);
plot (year, population, 'bo', year, £, 'r--');

gxm“

25¢ g/o
| o
1.5} O/Z/
1 O?/é
e
0.5F O,G/@/O
00 “3/6/6/

0 L L L
1800 1850 1900 1950 2000

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

2050

22

2/20/2015

11

Homework #3
Graphical solution of an Electrical System
* Load is governed by:
il = 0.16 (e®"?2- 1) Ny
« Whatis the equation | .| " & |
for the practical P O | et | %
source? Assume: - |
« R1 = 30Q,v, =15V | — o '
e Find the correct value
for v2 between 0 and
20V, and also i; value
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 23
Solution

. v2 = [0:0.1:207;
* The equation for the i 10aa - ...

power supply is: 0.16* (exp(0.12*v2) - 1);
vV, =V — Rl1 i_source = (15-v2)/30;
plot(v2, i_load, 'r',
.]_5 %) v2, 1_source, 'b');
h = 30 y
» If we draw both : ya
equations we can see . - 4
the solution point (the £ pd
one that satisfies both -
equations). "

02
o 2 4 6 8 10 12 14 16 18 20
Voltage (V)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 24

2/20/2015

12

More Than One Figure Window

* What happens if you enter the following?
x = 0:2*pi/100:2%pi;

vl = sin(x);

y2 = CcOSs(X);

plot(x,vy1l);

title('Plot #1'");

plot(x,y2);

title('Plot #2'");

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 25

More Than One Figure Window

* ... youend up with one figure window and it
contains a plot of y = cos(x).

* To open a new figure window enter the command
figure before making the second plot.

plot(x,vyl);
title('Plot #1'");
figure;
plot(x,vy2);
title('Plot #2'");

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 26

2/20/2015

13

The fplot command is a “smart” plotting function. Example:
f = @(x) (cos(tan(x)) - tan(sin(x)));
fplot (£, [1 2]);

-0.5

-2.5

_3 Il I Il I I I Il I Il
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 27

The plot command is more common than the fplot command
because it gives more control. Also when you type fplot
you see it actually uses plot.

f = @(x) (cos(tan(x)) - tan(sin(x)));
t=[1:0.01:1.5, 1.51:0.0001:1.7, 1.71:0.01:27;
plot(t, f£(t));

I I I I I
1 1.1 1.2 1.3 1.4 15 1.6 1.7 1.8 1.9
5 13‘477‘\//'1}*/1[© Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 28

n

2/20/2015

14

Complex Plot: Real ys, Imaginary

n= [0:0.01:1017; |
y = (0.140.97) ."n; o8
plot (y); N

0.41

xlabel ('Real');
ylabel ('Imaginary');

0.2

Imaginary

ol
0.2F

0.4F

e Similar to: i

08 L L L L L L L L L
1 -08 -06 04 02 0 02 04 06 08 1

plot(real(y),imag(y)); Real

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 29

Subplots

You can use the subplot command to obtain several
smaller “subplots” in the same figure. The syntax is
subplot (m, n, p). This command divides the Figure
window into an array of rectangular panes with m rows and
n columns. The variable p tells MATLAB to place the output
of the plot command following the subplot command
into the pth pane.

For example, subplot (3, 2, 5) creates an array of six
panes, three panes deep and two panes across, and directs
the next plot to appear in the fifth pane (in the bottom-left
corner).

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 30

2/20/2015

15

Subplots

* subplot (m,n,p)

-
I
F N

o
1l
LN

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

31

Example

x = 0:2*pi/100:2*pi;

, sin(x) | cos(x)
yl = sin(x);

y2 = cos(x); o8 \\ o

y3 = sin(x)+cos(x); 0 \ / °

subplot (2,2,1); 08 \\ // 08
plot(x,yl,'r-."); 5 4 6 8 " 2 4

title('sin(x)"');
subplot (2,2,2);
plot(x,y2,'go');
title('cos(x)'");
subplot (2,2, 3);
plot(x,y3, 'b+');

title('sin(x)+cos(x)"'");

Copyright © Dr. Mohammed Hawa

sin(x)+cos(x)

Electrical Engineering Department, University of Jordan

32

2/20/2015

16

Homework:

The following script file shows two plots of the functions
y=e1%sin(10x+5) for0< x <5

and y=|x3—100| for—-6 < x < 6.

x = 0:0.01:5;
y = exp(-1.2*x).*sin(10*x+5);
subplot(1,2,1);
plot (x,v);

axis ([0 5 -1 1]);
X = -6:0.01:6;

y = abs(x.73-100);
subplot(1,2,2);
plot (x,vy);

axis([-6 6 0 350]) The figure is shown

on the next slide.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 33
Application of the subplot command.
1 350
0.8+ b
300
0.6
0'4 L 250 B
0.2+
200
oH
150+
-0.2
-0.4 100+
-0.6 4
50
-0.8 4
- I I I I 0
0 1 2 3 4 5 -
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 34

2/20/2015

17

Log-scale Plots

* Why use log scales? Linear scales cannot properly
display wide variations in data values.

* MATLAB has three commands. The appropriate
command depends on which axis you want to be a log
scale.

* loglog (x,y):both scales logarithmic.

* semilogx (x,y):x-axis is logarithmic and y-axis is
rectilinear.

* semilogy (x,y):y-axis is logarithmic and x-axis is
rectilinear.

* The syntax is similar to the plot command.

y= 0.1 =x=100

7/1NK1—(MMX53+ODZF
(1 — 2% + 0,122

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 35

x = [0.1:0.01:1007;

y = sqrt ((100*(1-0.01*x."2) .72
+0.02*x.72)

o ((1=x.72) .72+40.1*x.72)) ;
plot(x,vy); %

30

25

20

0 10 20 30 40 50 60 70 80 920 100

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 36

2/20/2015

18

x = [0.1:0.01:1007;

y = sqrt ((100*(1-0.01*x."2) .72 ...
+0.02*x.72) ...

o ((1=x.72) .72+40.1*x.72)) ;
loglog(x,y); .,

10! y

10°
10'F
10'2 L Il L
10° 10" 10° 10' 10°
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 37

Logarithmic Plots

It is important to remember the following points when
using log scales:

1. You cannot plot negative numbers on a log scale,
because the logarithm of a negative number is not
defined as a real number.

2. You cannot plot the number 0 on a log scale, because
log,, 0 =In 0 =—oc. You must choose an appropriately
small number as the lower limit on the plot.

(continued...)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 38

2/20/2015

19

Logarithmic Plots (continued)

3. The tick-mark labels on a log scale are the actual values
being plotted; they are not the logarithms of the
numbers. For example, the range of x values in the plot
in the above Figure is from 10~2=0.01 to 10? = 100.

4. Gridlines and tick marks within a decade are unevenly
spaced. If 8 gridlines or tick marks occur within the
decade, they correspond to values equalto 2, 3,4, . . .,
8, 9 times the value represented by the first gridline or
tick mark of the decade.

(continued...)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

39

Logarithmic Plots (continued)

5. Equal distances on a log scale correspond to
multiplication by the same constant (as opposed to
addition of the same constant on a rectilinear scale).

For example, all numbers that differ by a factor of 10 are
separated by the same distance on a log scale. That is,
the distance between 0.3 and 3 is the same as the
distance between 30 and 300. This separation is
referred to as a decade or cycle.

The plot shown in the above Figure covers four decades in
x (from 0.01 to 100) and four decades in y.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

40

2/20/2015

20

Homework: reproduce the following plots.
What commands did you use?

10° 107
y = 25e%5% y=15x%%7
- == y=4001.7)*
> 102 > 10’
10' 10°
0 1 2 3 107" 10° 10’
X X
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 41

Homework

For the first-order RC
circuit, which acts as a
LPF, the output to
input ratio is:

_ |Vo(w)| _
[H(w)] =170 =

1
|1+ JwRC |
Sketch this frequency
response function using

semilogx. Assume:
R = 1kQ,C = 1uF

Copyright © Dr. Mohammed Hawa

R
+ NN +

vi(t) c==)

LI 0 1 1 e R Y[A W11
LI 0 1 1 e R Y[A W11
= P e ey
LI T O W11 | LR A) A R R e A AT
LI 0 U Y A R Y (1 A W11
0.8 - 1HTH— b L THE — 1 e b e
LI 0 0 Y e R Y[A W11

TR AT T A AT T N A R R N1 R A AT T I A WA
0.6 L 1L L B L LU e
RN AT T A AT TN R R AT R AT T I WA
[N AT T A AT T R R R AT R AR R A WA
0.4 LILILIN L LI 1L A LI L L e L
[N R AT T A AT T A R R 1T R A AT T R A WA
TR AT T A T T A N R R R AT R A AT
02 LILILN_ L LU L 3 LN L L e L
[N AT T A T T A R A AT T R A AT
[N AT T A AT T AR 1T SRR AT AT
TR ETT T RN TR AR TT T AR RRTTITI

10' 10° 10° 10* 10° 10

10°

Electrical Engineering Department, University of Jordan 42

2/20/2015

21

Solution

omega = 0:1:1e6;

h = abs(1./(l+i*omega*le3*le-6));
semilogx (omega, h);

axis ([0 1le6 0 1.21);

grid on;

Q. What is the bandwidth of this LPF?

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 43

Specialized plot commands.

Command Description
bar (x,vy) Creates a bar chart of y versus x.
plotyy(xl,yl,x2,y2) Produces a plot with two y-axes, y1 on

the left and y2 on the right.

polar (theta,r, 'type’) Produces a polar plot from the polar
coordinates theta and r, using the
line type, data marker, and colors
specified in the string type.

stairs(x,y) Produces a stairs plot of y versus x.
stem(x,vy) Produces a stem plot of y versus x.
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan a4

2/20/2015

22

x = [0:p1/20:pi];

bar (x,sin(x));

0.8r 1 1 b
0.7r 1 M b
0.6 — — b

0.5r 4
0.3 b

| 1

-0.5 0 0.5 1 1.5 2 25 3 3.5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 45

theta = [0:pi/90:2*pi];
polar (theta , sin(2*theta));
grid;

270

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 46

2/20/2015

23

Homework: Reproduce the following plot for an orbit with
an eccentricity of 0.5.

Orbital Eccentricity = 0.5

904
1 —0.5cos(8)
0
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 47

x = [0:p1/20:2*%pi];
stairs (x,sin(x));
grid;

axis ([0 2*pi -1 11);

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 48

2/20/2015

24

x = [-2*pi:pi/20:2*pi];

X = X + (~x)*eps;

y sin(pi*x) ./ (pi*x);
stem(x,vy);

axis([-2*pi 2*pi —-.25 1]);

0.8F
0.6-
0.4r

0.2r

%$ﬁ%wﬁ%ﬂi L@ﬁﬁ%gm%w

=)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 49

X = [-2*pi:pi/20:4*pi];
£fill(x,sin(x),'c');

axis ([0 4*pi -1 11);

0.8r i

0.4r q

0.2 i

-0.21 A

0.4t 1

-0.6 q

-0.81 N

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 50

2/20/2015

25

x = linspace (0.1, pi, 20);
approx = 1 - x.%2/2;

error = approx - cos(x);
errorbar (x, cos(x), error);
legend('cos(x)"');

2
1k — cos(x) 4
ol]
. R
Al]
al]
4 ‘ ‘ ‘ ‘ ‘ !
0 0.5 1 1.5 2 25 3 35
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 51
Interactive Editing of Plots in MATLAB
This interface can be advantageous in situations where:
® You want to add annotations such as lines, arrows, text,
rectangles, and ellipses.
® You want to change plot characteristics such as tick
spacing, fonts, bolding, colors, line weight, etc.
Select the Arrow (or Tools| Edit Plot from the menu) then
double click on the portion you want to edit.
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 52

2/20/2015

26

r = . -
B Fgures - Figure 1 . L = [E=E =
Eile Edit View [Inset Tools Debug Desktop Window Help A A
EEF RS AR BOas0
1 l/r = T T T T
05 4
On; /- 4
05| 4
4 I 1 L e I
o 1 3 4 5 1 7
 Edit 09 X
Display Name: Plot Type: Lina = More Properties...
Line: > (|05 - i'
¥ Data Source: o
Marker: | none > |[60 - .—é.' E
Z Data Source: u

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan 53

Three-Dimensional Line Plots

The following program uses the plot 3 function to generate
the spiral curve shown in the next slide.

X o

Z

0:pi/50:10*p1i;

= exp(-0.05*t) .*sin(t);
= exp(-0.05*t) .*cos(t);

:t;

plot3(x, v,
xlabel('x'"),ylabel('y'),zlabel('z"'),grid;

Copyright © Dr. Mohammed Hawa

z)

Electrical Engineering Department, University of Jordan 54

2/20/2015

27

The curve x=e%0%!sin t, y= e 0% cos t, z= t plotted with the
plot3 function.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 55

Surface Plots: mesh and surf

The following session shows how to generate the surface plot of
the function z = xe 1?2 for -2 < x< 2 and —2 < y <2, with a
spacing of 0.1. This plot appears in the next slide.

[X,Y] = meshgrid(-2:0.1:2);

Z = X.*exp(—((X=-Y."2)."2+Y."2));
mesh (X, Y,7Z);

xlabel ('x"),ylabel('y'),zlabel('z");

[X,Y] = meshgrid(-2:0.1:2);

Z = X.*exp(—((X=-Y."2)."2+Y."2));

surf (X,Y,72);

xlabel ('x"'"),ylabel('y'),zlabel('z'), colorbar

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 56

2/20/2015

28

A plot of the surface z = xe-l*-¥)*¥?] created with the mesh
function.

05~~~ : i : %;%‘v"‘ AN -
I e
N 04 =" ==

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 57

A plot of the surface z = xel*-¥9*»? created with the surf
function.

0.5+~

AR
A
/) i"f“f“f&gg““

“\“ KX

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 58

2/20/2015

29

The following session generates the contour plot of the
function whose surface plot is shown above;

namely, z = xe V™) for—2 < x<2and-2<y<2, witha
spacing of 0.1. This plot appears in the next slide.

[X,Y] = meshgrid(-2:0.1:2);

Z = X.*exp(—((X=Y."2).724Y."2));

[cs, h] = contour(X,Y,72);

xlabel (),ylabel ('y'),zlabel('z");
(

VXV
clabel (cs, h, 'labelspacing', 72);

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

59

A contour plot of the surface z = xe[*-¥»*¥] created with the

contour function.

2 N
1.5 o 0',\ 27
o) g2 03 |
03 0% J
! S u7 >

Moy o
04 0, o "/ o
0.5} 027 I N
N \ /
S 9, S | ¥ & >

[’ N
> 0or o\ ‘?‘p Sg, ‘L ‘P c)
7 e —ox)T o(e\ \0‘0 0

o
tfe 0.3
1.5F o
.1
o
-2 1.5 1 0.5 0 0.5 1 1.5 2
X

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

60

2/20/2015

30

Contours are useful for Terrain

Y -
& 73,
& ~13600 % b,
¥ 5 &
13
0 -
. 2 $ & & g g'
1% « 4
& A 2 i
W ;
»)
5L 7_‘{.,23’
" %, p
4 e ey s
= 5 J%a & ! 4.5;?
% Ko q
& %
5 i &
'}Q‘; h
b REN 43800
) . A . "
5 5 10 15 0 5 Ell

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 61

Vector fields: quiver

 quiver draws little arrows to indicate a
gradient or other vector field.

* Although it produces a 2-D plot, it is often
used in conjunction with contour. As an
example, consider the scalar function of
two variables: V = x? + y.

 The gradient of V is defined as the vector

field: 7V = (‘;—ZZ—Z) = (2x,1)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 62

2/20/2015

31

qulyer

* The followinﬁ statements draw arrows indicating the

direction of t
(see next slide).

[x v]

V = x."2 + vy;
dx = 2*x;

dy

e vector V'V at points in the x-y plane

= meshgrid(-2:0.2:2, -2:0.2:2);

- o)

ones(size(dx)); % dy same size as dx

quiver (x, vy, dx, dy);

hold onj;
contour (x, v,
hold off;

Copyright © Dr. Mohammed Hawa

V) ;

Electrical Engineering Department, University of Jordan

63

quiyver alone; and with contour

25 T T T T T T T T T
ol NNt S s
e T R s e
SN N NN NN A S S e
151 O T T T R R A e |
B T T T i e
e N N R A S el
B T R A e
SN N NN NN A S S e
05—~ ~ <~~~ NN s s
e N A e S
Of =SSN NN s 25 T T T T T T T T T
NN NNN NN A S S e
N NN NN NN S S e P N N B R s o=
osf TTITIIINNN oo B A AN Sy S A A oot v it
B T T T T T A e i N SN R R et e
P N N Y A A e I e N I e S
SN N NN NN A S S S e e e e iy DA A S e Sttt gt
e~~~ NNt P N NN A R I I S
] N AP A I, e T T A e
e~ NNt e N N S B R s
> o~ . X . o 05F — /e <~ AN NN s e
-25 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 25 Iy eahain i ol e N e i ca
Of — NNt s
RS S N AN N S A T T
ey N SN G2
05 <~~~ <[~ ~A Nt s A e
AN AN NV s s X e
1 ——e——— s/ v AT A g g g e
S S S S e
—me AN [A
A5 — e v e
> <l . Ly o
25 2 1.5 1 -0.5 0 0.5 1 1.5 2 25
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 64

2/20/2015

32

Useful for Electromagnetic Fields

-
15} g
1k ;
05F ~\,,/,._~_~.n\;.,.
P t ¢ s =
VLo
. Sy fe e — N Fwws
s ! N
—_—— VoS~
e e
05k P R S .
AF i
A5k
2 L L L L L " L)
-2 -15 -1 0.5 0 05 1 15 2
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 65

Homework

% What is the output of this MATLAB code? Use help if you need.

figure;
t = linspace(0, 2*pi, 512);
[u,v] = meshgrid(t) ;

=-0.2 ; b=.5; c¢c=.1;

= (a*(1l-v/(2*pi)) .* (l+cos(u)) + c) .* cos(2*v);
(a*(1-v/ (2*pi)) .* (l+cos(u)) + c) .* sin(2*v);
z = b*v/(2*pi) + a*(1-v/(2*pi)) .* sin(u);

surf(x,y,2,v);

<OXoo

shading interp;

axis off;

axis equal;

colormap (hsv(1024));
material shiny;
lighting gouraud;
lightangle (80, -40);
lightangle (=90, 60);
view([-150 10]);

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 66

2/20/2015

33

Animation and Moyvies!

* A movies is just successive plots seen in quick
succession.

* We can plot data repeatedly on a single figure.
 For example the function y = sin(x + t)
x = 0:2*pi/100:2*pi;
for t = 0:0.05:5 % 5 seconds
y = sin(x+t);
plot(x,v, k")
pause(0.2); % 200 ms between frames
end

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 67

Homework: Creating Movies

* To create a movie a sequence of frames are “grabbed” from
the figure, stored in an array and written out as .avi file.

nFrame = 1; % frame counter
x = 0:2*pi1/100:2*p1i;
for £t=0:0.05:5

y=sin (x+t);

plot(x,y);
pause (0.2);
movie (nFrame) = getframe; % grab frame & store it
nFrame = nFrame + 1;
end

[

movieZavi (movie, 'animation.avi'); % save movie

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 68

2/20/2015

34

Homework

* Solve as many problems from Chapter 5
as you can

* Suggested problems:

* Solve: 5.3,5.5,5.9,5.11, 5.15, 5.20, 5.27,
5.29, 5.35, 5.36, 5.39.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

2/20/2015

35

Lecture 8: Calculus and
Differential Equations

Dr. Mohammed Hawa
Electrical Engineering Department
University of Jordan

EE201: Computer Applications. See Textbook Chapter 9

Numerical Methods

* MATLAB provides many functions that
support numerical solutions to common
math problems:

— Integration and Differentiation (Calculus)
— Finding zeros of a function

— Solving ordinary differential equations

— Many others

« Numerical analysis provides answers as
numbers, not closed-form solutions as in

analytical solutions (see next lecture for
symbolic math in MATLAB).

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

3/30/2015

The integral of f(x) is the area A under the curve of f(x)
from x=ato x=>b.

b
f(x) A= f f(x)dx

\
A
> X
a b
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 3

lllustration of Numerical Integration: (a) rectangular method
and (b) more accurate trapezoidal method.

Rectangular

VO‘*

Trapezoidal

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 4

3/30/2015

T
0

Example Azf sin(x) dx

trapz (x,y)

Uses trapezoidal
integration to compute
the integral of y with
respect to x, where the
array y contains the
function values at the
points contained in the
array x.

Copyright © Dr. Mohammed Hawa

=[-cosM)]f=1-(-1)=2

>> x = linspace(0,pi, 10);
>> y = sin(x);
>> A = trapz(x,Vy)
A =
1.9797
>> x = linspace(0,pi, 100);
>> y = sin(x);
>> A = trapz(x,V)
A =
1.9998
Electrical Engineering Department, University of Jordan 5

Simpson’s Rule

* Another approach to
numerical integration is
Simpson’s Rule, which
divides the integration
range [a, b] into an even
number of sections and
uses a different
quadratic function to
represent the integrand
for each panel.

Copyright © Dr. Mohammed Hawa

A

El

>ctrica

1
ooB N X ox KX

¥

| Engineering Department, University of Jordan 6

3/30/2015

Important numerical integration functions:

quad (fun, a, b)
quad (fun, a, b, tol)

quadl (fun, a, b)

dblquad(fun, a, b, c, d)

triplequad(fun,a,b,c,d,e, f)

Copyright © Dr. Mohammed Hawa

Uses an adaptive Simpson’s rule to compute
the integral of the function whose handle is
fun, with a the lower limit and b the upper
limit. The function fun must accept a vector
argument. The parameter tol is optional, and
indicates the specified error tolerance.

Uses Lobatto quadrature to compute the
integral of the function fun. The rest of the
syntax is identical to quad.

computes the integral of f(x,y) fromx=atob,
andy = c to d. The function fun must accept a
vector argument x and scalar y, and it must
return a vector result.

computes the integral of f(x,y,z) from x = a to
b,y=ctod, and z=e to f. The function must
accept a vector x, and scalar y and z.

Electrical Engineering Department, University of Jordan 7

Although the quad and quadl functions are
more accurate than trapz, they are restricted to
computing the integrals of functions and cannot be
used when the integrand is specified by a set of
points. For such cases, use the trapz function.

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan 8

3/30/2015

MATLAB function quad implements an adaptive
version of Simpson’s rule, while the quad1 function is
based on an adaptive Lobatto integration algorithm.
To compute the integral of sin(x) from 0 to m, type

>> A = quad(@sin, 0,pi)

The answer given by MATLAB is 2.0000, which is correct.
We use quadl the same way; namely,

>>A = quadl (@sin,0,pi).

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 9

To integrate cos(x?) from 0 to V2, create the function in
an m-file:

function yy = cossq(x)
Yy = CcoS(x.72);

Note that we must use array exponentiation. Then quad
function is called as follows:

0.6119

Or you can use an anonymous function:

> f = @(x)(1./(x."3 = 2*x - 5));
>> quad(f, 0, 2)
ans =

>> quad (Q@Qcossqg, 0, sgrt(2*pi)) .
ans =

-0.4605

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 10

3/30/2015

Double and Triple Integrals

A = dhlguad(fun, a, b, <, d) computes the integral of f(x,y)
fromx=atob,andy=ctod. Example: f{x,y) = xy2.

>> fun = @(x,y) X.*y"2; d b
>> A = dblquad(fun, 1, 3, 0, 1) thfﬁuyﬁ&dy
A = c a

1.3333

A = triplequad(fun, a, b, ¢, d, e, f) computesthe
triple integral of f(x,y, z) from x=ato b, y=ctod,and z=eto f.
Example: f(x,y,z) = (xy -y?)/z. fas
>> fun = @(x,y,z) (x*y - y72)/z; ffff(x,y,z)dxdydz
>> A = triplequad(fun, 1,3, 0,2, 1,2) A
A =
1.8484
Note: The function must accept a vector x, but scalar y and z.

c

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 11

Be careful: function singularity

>> quad(f, 0, 2)

Warning: Infinite or Not-
a-Number function wvalue

>> £ = @(x) (1./(x=-1)); 2 1
|

encountered. ‘
80
> In quad at 113 &
40
ans = 2
0
NaN
20
40
60
80
100 oz 04 06 08 1 12 14 16 18 2
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 12

3/30/2015

Numerical differentiation: lllustration of estimating the
derivative dy/dx.

dy Y Ay
Y dx Ax—0Ax
Oxs 72)
A dy Y2—)
y —
dx X, —x;
Mo
— ; |
j:?(xv) !
x1 X2 X
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 13
MATLAB provides the dif f function to use for computing
derivative estimates.
d = diff (y), where y is avector of n elements, the
result is a vector d containing n — 1 elements that are the
differences between adjacent elements in y. That is:
d=[y(2)-y(1), y(3)-y(2),..., y(n)-y(n-1)]
For example:
>> vy =[5, 7, 12, -201;
>> diff (y)
ans =
2 5 -32
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 14

3/30/2015

Example

4 //\Illﬂl
step = 0.001; 2 - / 1
x =0 : step : pi; o
y = sin(x."2); Qéﬁ;///)i\::\\7L///i;\
d = diff(y)/step; J ~
% an approximation o \/
% to derivative
% 2.*x.*cos(x."2) ’ o 1 " ? * ’ *

plot(x,y,'k',x(2:end),d, '--");
legend('f(x)"', 'df/dx');

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 15

Ordinary Differential Equations

An ordinary differential equation (ODE) is an
equation containing ordinary derivatives of
the dependent variable.

An equation containing partial derivatives
with respect to two or more independent
variables is a partial differential equation
(PDE).

We limit ourselves to ODE that must be
solved for a given set of initial conditions.
Solution methods for PDEs are an advanced
topic, and we do not look at them.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 16

3/30/2015

Several Methods

Several numerical methods to solve ODEs.
Examples include:

— Euler and Backward Euler methods

— Predictor-Corrector method

— First-order exponential integrator method
— Runge-Kutta methods

— Adams-Moulton methods

— Gauss-Radau methods

— Adams-Bashforth methods

— Hermite-Obreschkoff methods

— Fehlberg methods

— Parker-Sochacki methods

— Nystrom methods

Quantized State Systems methods

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 17

Multiple Solyers

MATLAB offers multiple ODE solvers, each uses
different methods.

O0de23: Solves non-stiff differential equations, low
order method.

ode45: Solves non-stiff differential equations,
medium order method: uses a combination of fourth- and
fifth-order Runge-Kutta methods.

ode23s: Solves stiff differential equations, low order
method.

odel5i: Solves fully implicit differential equations,
variable order method.

And so on.
We will limit ourselves to the ode45 solver.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 18

3/30/2015

Example: Find the response of the first-order RC circuit .

‘L'a'l'y: 0
(V> c_—_—_ vy
y©0) =V (.C)

y(t) = y(0)e~t/* (natural response)

O
dy
‘L'E + y= Vg
d
(6O =2 y(0) =V, (.C)
oy _ 4y
@) = iz y() =V, + (y(0) — V;)e /" (total response)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 19

Solying First-Order Differential Equations

First write the equation as dy/dt = f(t,y) then solve it using this syntax:
[t,y] = oded5(W@f, tspan,y0)

where @f is the handle of the function file whose inputs must be t and
¥, and whose output must be a column vector representing dy/dt; that
is, f(t,y). The number of rows in the output column vector must equal
the order of the equation.

The array t span contains the starting and ending values of the
independent variable t, and optionally any intermediate values.

The array y0 contains the initial values of y. If the equation is first
order, then y0 is a scalar.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 20

3/30/2015

10

The circuit model for zero input voltage V; and 7 = 0.1 is:

01xZ 4y =0
AP TR

And thei.c.isy(0) =2 V.

First re-write the equation in the required format:

dy__
T 10_’)/

Next define the following function file. Note that the order
of the input arguments must be t and y.

f=8(t,y) -10*%y;

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

21

The solver is called as follows, and the solution plotted along
with the analytical solution y_ true. The initial condition is

y(0) = 2.

f = @Q(t,y) -10*y;

[t, y] = oded5(f, [0 0.5], 2);
y_analytical = 2%*exp(-10*t);
plot(t,y,'o', t, y_analytical);
legend ('ODE solver', 'Actual');
xlabel ('Time(s) ") ;

ylabel ('Capacitor Voltage');

Note that we need not generate the array t to evaluate
y_analytical, because t is generated by the cde45
function.

The plot is shown on the next slide.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

22

3/30/2015

11

Free (natural) response of an RC circuit
(decaying exponential).

2p T T
¥ O ODE solver
1.8 Qép Actual
16f € ,
141 .
Q
1.2+ i
s
>
5 1
% 0.8f .
[&]
0.6 b
0.41 B
0.2 i
o,
0 : \ \ \ \ GS\G%
0 0.05 0.1 015 02 025 03 035 04 045 05
Time(s)
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 23
The circuit model for input voltage V; = 10V and 7 = 0.1:
dy
0.1x—=+y=10
dt
And thei.c.isy(0) =2 V.
First re-write the equation in the required format:
dy
—~ = —10y + 100
dt
Next define the following function file. Note that the order
of the input arguments must be t and y.
f = @(t,y) -10*y+100;
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 24

3/30/2015

12

The solver is called as follows, and the solution plotted along
with the analytical solution y_ true. The initial condition is

y(0) = 2.

f = @(t,y) -10*y+100;

[t, yv] = oded5(f, [0 0.51, 2);
y_analytical = 10+ (2-10)*exp(-10*t);
plot(t,y,'o', t, y_analytical);
legend ('ODE solver', 'Actual');
xlabel ('Time(s) ") ;

ylabel ('Capacitor Voltage');

Note that we need not generate the array t to evaluate
y_analytical, because t is generated by the ode45
function.

The plot is shown on the next slide.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 25
Natural plus forced (total) response of an RC circuit
(increasing exponential).

11
10F
9 .
8 .
o 7r
=)
S
S 6r O ODE solver 1
S Actual
S 5 L |
54
g
O 4 Q? 1
i ’
1 L -
0 Il I Il I Il I Il I Il
0 0.05 0.1 015 02 025 03 035 04 045 05
Time(s)
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 26

3/30/2015

13

The circuit model for input voltage V; = 10e7t/03 sin (%)
and7 = 0.1:

dy ; 2mt
— —t/0.3
0.1 x T +y =10e sin <0_03>

And assume thei.c.isy(0) =0 V.

First re-write the equation in the required format:
dy 2t
— = —10y + 100e~*/*3 sin | —
dt Y ¢ %M 003
Next define the following function file. Note that the order
of the input arguments must be t and y.

f = @(t,y) -10*y+100*
exp(-1*t/0.3).*sin(2*pi*t/0.03);

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 27

0]

o

g

o

>

°

Q9

a

Q

<<

0.2 0.4 0.6 0.8 1 1.2
Time (s)
1

[

o)

S

5 05 bl
>

g

g of

Q

@

(]

-0.5 L 1 L 1 L
0 0.2 0.4 0.6 0.8 1 1.2
Time (s)
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 28

3/30/2015

14

Extension to Higher-Order Equations

To use the ODE solvers to solve an equation of 2" order or

higher, you must first write the equation as a set of first-order
equations.

Example:
d?y dy

By re-arranging to get the highest derivative:

d’y 1) 4 7dy
atz2 5 57 5dt
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 29

Example (Continue)

d?y 4 7dy

1
az -5/ W75V 5y

We then change variables: x, = dy/dt
Hence: dx,/dt = d?y/dt?
Also: x; = y. Hence we have two equations:

dx;
ar
de 1 4 7
a5/ WM 5%
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 30

3/30/2015

15

Example (Continue)

dx,

r
dx; 1 © 4 7
gt 5/ g gx

This form is sometimes called the Cauchy form or
the state-variable form.

We now define a function that accepts two values of
x and then computes the values of dx; /dt and
dx,/dt and stores them in a column vector.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 31

Example (Code)

dxq

— =2,
de 1 . 4 7
W = gSln(t) —gxl —gxz

d = Q(t,x) [x(2); sin(t)/5-4*x(1)/5-7*x(2)/5];
[t, x] = oded5(d, [0 61, [3 9]);

Here x(0) = 3 and x(0) = 9, and we solve for 0 < t < 6. Also f(t) = sin(t).

Note x is a matrix with two columns. The first column contains the values of x;
at the various times generated by the solver; the second column contains the
values of X,.

If you type plot (t, x),you will obtain a plot of both x; and x, versus t.
Thus, type plot (t, x(:,1)) to see the result for y.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 32

3/30/2015

16

Result

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

33

HW: Alternatiyve Solution

Define the function in an m-file:

function xdot = d(t, x)

xdot (1) = x(2);

xdot (2) (1/5)*(sin(t)—-4*x(1)-7*x(2));
xdot = [xdot (1l); xdot(2)];

Use the function to solve the ODE:

[t, x] = oded5(@d, [0 6], [3 91);
% notice the need to use handles
plot(t, x(:,1));

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

34

3/30/2015

17

Homework

* Solve as many problems from Chapter 9
as you can

* Suggested problems:

* Solve: 9.1,94,9.14, 9.16, 9.23,9.27,9.31,
9.34.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 35

3/30/2015

18

Lecture 9; Symbolic
Processing in MATLAB

Dr. Mohammed Hawa

Electrical Engineering Department
University of Jordan

EE201: Computer Applications. See Textbook Chapter 11.

The sym function can be used to create “symbolic objects” in
MATLAB.

If the input argument to sym is a string, the result is a symbolic
number or variable. If the input argument is a numeric scalar or
matrix, the result is a symbolic representation of the given
numeric values.

For example, typingx = sym('x"') creates the symbolic
variable with name x, and typingy = sym('y"') createsa
symbolic variable named y.

Typingx = sym('x', 'real') tells MATLAB to assume that
xisreal. Typingx = sym('x', 'unreal') tells MATLAB to
assume that x is not real.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 2

3/30/2015

The syms function enables you to combine more than
one such statement into a single statement.

For example, typing syms x is equivalent to typing
x = sym('x"'),andtypingsyms x y u v creates
the four symbolic variables x, y, u, and v.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 3
L] L] L]
Symbolic ys, Numeric Objects

>> x = sym('x") >> a = 5
X = a =

b4 5
>> class(x) >> class (5)
ans = ans =

sym double

>> b = 't!

>> syms y b =
>> class (y) t
ans = >> class (b)

sym ans =

char

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 4

3/30/2015

You can use the sym function to create symbolic
constants by using a numerical value for the argument.
For example, typing
fraction = sym('1/3")
sgroot2 = sym('sqgrt(2)")

pi = sym('pi')

will create symbolic constants that avoid the floating-point
approximations inherent in the values of 7, 1/3, and 2.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Symbolic Expressions

You can use symbolic variables in expressions and as
arguments of functions. You use the operators

+ — * / ~ and the built-in functions just as you use
them with numerical calculations. For example, typing

>> syms X y
>> 5 = X + Yy
>> r = sqrt(x"2 + y*2);

creates the symbolic variables s and r. Theterms s =
x + y andr = sqgrt(x”2 + y”2) are examples

of symbolic expressions.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

3/30/2015

The vector and matrix notation used in MATLAB also applies to

symbolic variables. For example, you can create a symbolic matrix
A as follows:

> n = 3;
>> syms X;
> A = x."((0:n)"*(0:n))

A =
t1i, 1, 1, 1]
[1, x, x°2, x"3]
[1, x*2, x"4, x"6]
[1, x°3, x"6, x"9]
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 7

The expand and simplify functions.

>> syms X Yy
>> expand((x+y)"2) % applies algebra rules
ans =

XN2 + 2*x*y + y©2

>> syms X Yy
>> expand(sin(x+y)) % applies trig identity
ans =

cos(x)*sin(y) + cos(y)*sin(x)

>> syms X
>> simplify (6*((sin(x)) "2+ (cos(x))"2))
% applies another trig identity
ans =
6

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 8

3/30/2015

>> syms X
>> E1 X"2+5;
>> E2 X"3+2*x"2+5*x+10;
>> S = E1/E2;
>> simplify(S)
ans =
1/(x + 2)

The factor function.

>> syms X
>> factor (x*2-1)
ans =
(x — 1)*(x + 1)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The function subs (E, o1d, new) substitutes new for
oldin the expression E, where o1d can be a symbolic
variable or expression and new can be a symbolic variable,
expression, or matrix, or a numeric value or matrix. For
example,

>> syms X y
>> E = xX"2+46*x+7;
>> F = subs(E,x,V)
F =

yh2 + 6*y + 7

>> G = subs(E,x,y+3)

6%y + (y + 3)°2 + 25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

10

3/30/2015

If you want to tell MATLAB that f is a function of the variable t,
type £ = sym('f (t)").Thereafter, £ behaves like a function
of t, and you can manipulate it with the toolbox commands. For
example, to create a new function g(t) =f (t + 2) — f (t), the
session is

>> syms t
>> £ = sym('f(t)");
>> g = subs(f,t,t+2)-f
g =
f(t+2)-f(t)

Once a specific function is defined for f(t), the function g(t) will be
available.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 11

Use the subs and double functions to evaluate an expression
numerically. Use subs (E, o1d, new) to replace o1d with a
numeric value new in the expression E. The result is of class
double. For example,

>> syms X
>> B = xX"2+6*x+7;
>> G = subs(E,x,2)
G =

23
>> class (G)
ans =

double

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 12

3/30/2015

The MATLAB function ezplot (E) generates a plot of a
symbolic expression E, which is a function of one variable.
The default range of the independent variable is the interval
[-27 27 unless this interval contains a singularity.

The optional form ezplot (E, [xmin xmax]) generates
a plot over the range from xmin to xmax.

Example:

>> syms X

> E = x"2 - 6*x + 7;
>> ezplot(E, [-2 6]);
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 13

Result

X2-6x+7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 14

3/30/2015

Order of Precedence.

MATLAB does not always arrange expressions in a form that
we normally would use.

For example, MATLAB might provide an answer in the form
—c+b, whereas we would normally write b—c.

The order of precedence used by MATLAB must be
constantly kept in mind to avoid misinterpreting the

MATLAB output (see earlier slides).

MATLAB frequently expresses results in the form 1 /a*b,
whereas we would normally write b/ a.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 15

The solve function.

There are three ways to use the solve function. For example,
to solve the equation x+ 5 =0, one way is

>> eqgl = '"x+5=0";
>> solve(eql)
ans =

-5

The second way is

>> solve('x+5=0")
ans =
-5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 16

3/30/2015

The solve function (continued).
The third way is

>> syms X
>> solve (x+5)
ans =
-5
You can store the result in a named variable as follows:

>>syms X

>>xX = solve(x+5)
X =
-5
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 17
To solve the equation e* + 3eX = 54, the session is
>> solve('exp(2*x)+3*exp(x) = 54")
ans =
log(6)
log(9) + pi*I
>> syms X
>> solve(exp(2*x)+3*exp(x)-54)
ans =
log(6)
log(9) + pi*i
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 18

3/30/2015

Other examples:

>> eqg2 = 'y"2+43*y+2=0"'; % quadratic eq
>> solve (eqg?2)

ans =
[-2]
[_

>> eq3 = 'x"2+9*y"4=0"'; % x 1s squared

>> solve(eg3) % x 1is assumed the unknown
ans =

[3*i*y"2]

[-3%1i*y"2]

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

19

When more than one variable occurs in the expression,
MATLAB assumes that the variable closest to x in the alphabet
is the variable to be found. You can specify the solution
variable using the syntax

solve (E, 'v'),wherevisthe solution variable.

>> eq3 = '"x"2+49*y*4=0'; % y 1s to power 4
>> solve(eqg3,'y")

ans
M(1/4)*97(3/4)*x~(1/2))/9
~(1/4)*97(3/4)*x~(1/2))/9
/4)*97(3/4)*x~(1/2)*1) /9
/4)*97(3/4)*x~(1/2)*1) /9

-((=1
((=1
= ((A
((

A

)
)
(
(

e

-1)
-1)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

20

3/30/2015

10

Application of the solve function: Find the two Intersection
points of the following two circles. Keep b unknown.

y
A

3 -

> X
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 21

Solution

>> S = solve (' (x-3)"2+(y-5)"2=4, (x-5)"2+(y-3)"2=b"2")

g =
x: [2x1 sym]
y: [2x1 sym]

>> S.x

ans =

(- b*4/16 + (3*b"2)/2 - 1)"(1/2)/2 - b"2/8 + 9/2
9/2 - b*2/8 - (- b*4/16 + (3*b"2)/2 - 1)~ (1/2)/2

>> S.y
ans =

(- b*4/16 + (3*b"2)/2 - 1)"(1/2)/2 + b"2/8 + 7/2
br2/8 - (- b*4/16 + (3*b"2)/2 - 1)~ (1/2)/2 + 7/2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 22

3/30/2015

11

Differentiation with the di £ f function.

>> syms n X y
>> diff (x”"n)
ans =

x"n*n/x
>> simplify (ans)
ans =

x"(n-1)*n

>> diff(log(x)) % means 1n

ans =
1/x
>> diff ((sin(x))"2)
ans =
2*sin(x) *cos (x)
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 23

If the expression contains more than one variable, the diff
function operates on the variable x, or the variable closest to x,
unless told to do otherwise. When there is more than one
variable, the diff function computes the partial derivative.

>> syms X Yy
>> diff (sin(x*y))
ans =

cos (x*y) *y

The function diff (E, v) returns the derivative of the
expression E with respect to the variable v.

>> syms X Yy
>> diff (x*sin(x*y),y)
ans =

X"2*Ccos (X*y)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 24

3/30/2015

12

The function diff (E, n) returns the nth derivative of the
expression E with respect to the default independent variable.

>> syms X
>> diff (x"°3,2)
ans =

6*x

The function diff (E, v, n) returns the nth derivative of the
expression E with respect to the variable v.

>> syms X y
>> diff (x*sin(x*y),vy,2)
ans =

-x"3*sin (x*y)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 25

Integration with the int function.

>> syms X
>> 1nt (2*x)
ans =

xX"2

The function int (E) returns the integral of the expression
E with respect to the default independent variable.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 26

3/30/2015

13

>> syms n X y

>> int (x"n) n
ans = .fx dx

x*(n+1)/(n+1)

>> int (1/x)
ans =

1
log (x) f;dx=ln(x)
>> int (cos (X))

ans =
sin(x)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

27

The form int (E, v) returns the
integral of the expression E with
respect to the variable v.

>>syms n x
>>int (x”n,n) .fx"dn
ans =

1/log(x)*x"n

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

28

3/30/2015

14

The form int (E, a, b) returns the
integral of the expression E with respect to
the default independent variable evaluated
over the interval [a, b], where a and b are
numeric expressions.

>>syms X 5
>>int (x72,2,5) szdx
ans = 2
39
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 29
The form int (E, v, a, b) returns the integral of the
expression E with respect to the variable v evaluated over
the interval [a, b], where a and b are numeric quantities.
>> syms X y
>> int (xy"2,vy,0,5)
ans =
125/3*x
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 30

3/30/2015

15

The form int (E, m, n) returns the integral of the
expression E with respect to the default independent
variable evaluated over the interval [m, n], where m and

n are symbolic expressions.

>> syms t x
>> int(x,1,t)
ans =

tr2/2 - 1/2

>> syms t x

t

fxdx

1

>> int (sin(x),t,exp(t))

ans =

cos(t) — cos(exp(t))

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

31

The following session gives an example for which no
integral can be found. The indefinite integral exists,
but the definite integral does not exist if the limits of
integration include the singularity at x = 1.

>> syms X
>> int (1/(x-1))
ans =

log(x - 1)

>> syms X
>> int(1/(x-1),0,2)
ans =

NaN

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

32

3/30/2015

16

2 3
Taylor Series. f(x) = f(a) + (x — a)f'(@) + £+ JAIGESS

x-a) x-a)

2! 3!
The taylor (£, n, a) function gives the first n—1 terms in
the Taylor series for the function defined in the expression £,
evaluated at the point x = a. If the parameter a is omitted the
function returns the series evaluated at x=0.

>> syms X
>> £ = exp(x);
>> taylor(f,3,2)
ans =
exp (2)+exp(2) * (x-2)+(exp(2) * (x-2)"2) /2

>> taylor(f,4)
ans =
xX"3/6 + x"2/2 + x + 1

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 33

Series summation.

The symsum (E, a, b) function returns the sum of the
expression E as the default symbolic variable varies from a
to b.

>> syms k n

10
>> symsum(k, 0, 10)
ans = :§:k
55 k=0

>> symsum(k~2, 1, 4)

4
ans = Z k2
30
k=1

>> symsum(k, 0, n-1)
ans =
(n*(n - 1))/2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 34

3/30/2015

17

Finding limits.

The basic form 1imit (E) finds the limit as x — 0.

>> syms a x
>> limit (sin(a*x)/x)
ans =

a

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 35
The form 1imit (E, v, a) finds the limitas v — a.
>>syms h x
>>1imit ((x-3)/(x"2-9),3)
ans =
1/6
>>1limit ((sin(x+h)-sin(x))/h,h,0)
ans =
cos (X)
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 36

3/30/2015

18

3/30/2015

The forms 1imit (E, v, a, 'right"') and
limit (E,v,a, "left"') specify the direction
of the limit.

>> syms X
>> limit(1l/x,x,0,"'left")
ans =

—-inf

>> syms X
>> limit(1/x,x,0, 'right'")
ans =

inf

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 37

Solving differential equations with dsolve

The dsolve syntax for solving a single equation is
dsolve ('egn').The function returns a
symbolic solution of the ODE specified by the
symbolic expression eqn.

>> dsolve ('Dy+2*y=12")
ans =
6+Cl*exp (-2*t)
There can be symbolic constants in the equation.
>> dsolve (’'Dy=sin(a*t)’)
ans =

(-cos(a*t)+Cl*a)/a

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 38

19

Here is a second-order example:
>> dsolve ('D2y=c”"2*y")

ans =
Cl*exp(—c*t) + C2*exp(c*t)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 39

Sets of equations can be solved with dsolve. The appropriate
syntaxisdsolve ('egnl', 'egn2',...).

>>[x, yl=dsolve('Dx=3*x+4*y"', 'Dy=—4*x+3*y")
X:
Cl*exp(3*t) *cos (4*t)+C2*exp(3*t) *sin(4*t)
y = —
Cl*exp(3*t)*sin(4*t)+C2*exp(3*t) *cos (4*t)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 40

3/30/2015

20

3/30/2015

Conditions on the solutions at specified values of the
independent variable can be handled as follows.

The form

dsolve('egn', 'condl', 'cond2',...)
returns a symbolic solution of the ODE specified by the
symbolic expression eqgn, subject to the conditions
specified in the expressions cond1, cond2, and so on.
If v is the dependent variable, these conditions are

specified as follows: y (a) = b, Dy(a) = c,
D2y (a) = d,andsoon.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 41
Example:
v — AN v v — v |l — v
>> dsolve ('D2y=c”2*y', 'y (0)=1", 'Dy(0)=0")
ans =
1/2*exp(c*t)+1/2*exp(-c*t)
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 42

21

Example:

>> [x,y]=dsolve ('Dx=3*x+4*y', 'Dy=—4*x+3*y"',
'x(0)=0"',"'y(0)=1")

X =
sin(4*t) *exp (3*t)

y:

cos(4*t) *exp(3*t)

It is not necessary to specify only initial conditions. The
conditions can be specified at different values of t.

>> dsolve ('D2y+9*y=0"', 'y (0)=1", 'Dy (pi)=2")
ans =
cos(3*t) — (2*sin(3*t))/3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 43

Laplace and Fourier Transform

>> syms b t
>> laplace(t”3)
ans =

6/s™4

>> laplace(exp(-b*t))
ans =
1/ (s+b)

>> laplace(sin(b*t))
ans =
b/ (s"2+b"2)

>> fourier (exp(-t*2))
ans =
Pit(1/2) /exp(w™2/4)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 44

3/30/2015

22

Laplace Inverse Transform

>>syms b s

>>ilaplace(1/s"4)
ans =
1/6*t"3

>>ilaplace(1/ (s+b))
ans =
exp (-b*t)

>>ilaplace (b/ (s"2+b"2)
ans =
sin(b*t)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 45

You can use the inv (A) and det (2) functions to invert and
find the determinant of a matrix symbolically.

>> syms k
> A = [0 ,1;-k, -271;
>> inv (A)

ans =
[-2/k, -1/k 1
[1, 01
>> A*ans % verify inverse 1is correct
ans =
[1, 01
[0, 11
>> det (A)
ans =
k
Copyright © Dr. Mohammied Hawa Electrical Engineering Department, University of Jordan 46

3/30/2015

23

You can use matrix methods in MATLAB to solve linear algebraic
equations symbolically. You can use the matrix inverse method, if
the inverse exists, or the left-division method.

>> syms C

>> A = sym([2, -3; 5, cl);
>> b = sym([3; 19]1);
>> x = inv (A)*b % matrix inverse method

X =
(3*c)/(2*c + 15) + 57/(2*c + 15)
23/ (2*c + 15)

>> x = A\b % left-division method
x =
(3*c)/(2*c + 15) + 57/(2*c + 15)
23/ (2*c + 15)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 47

Homework

* Solve as many problems from Chapter 11
as you can
* Suggested problems:

* Solve: 11.3,11.4,11.12,11.18, 11.22, 11.23,
11.28,11.31,11.32,11.35,11.37, 11.41,
11.42,11.50, 11.51.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 48

3/30/2015

24

Lecture 10; Simulink

Dr. Mohammed Hawa
Electrical Engineering Department
University of Jordan

EE201: Computer Applications. See Textbook Chapter 10.

What is Simulink?

+ Simulink is a tool for modeling, simulating and
analyzing dynamic systems.

* Its primary interface is a graphical block
diagramming tool and a customizable set of block
libraries.

* It supports linear and nonlinear systems, modeled
in continuous time, discrete time, or a hybrid of
both.

* It easily integrates with the rest of the MATLAB
environment.

+ Simulink is widely used in control theory and
digital signal grocessing for simulation and

model-based design.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

2

3/30/2015

Starting Simulink

e Tobuild a

Copyright ©

Simulink model,

choose File | New
| Model.

To see the
Simulink library
of blocks click on
the Simulink icon
in MATLAB.

Dr. Mohammed Hawa

MATLAB 7.11.0 (R20106

File Edit Debug Parallel ~® g Window Help
al=ir e 1 %
Shortcuts (2] How to Add b

Curent... = O » x| |Commend Window

« M. v £ > |@ Newto MATLAB? Watch this Video, see Der

Fl | @ | Current Folder:;| C:\U:

Name ~
MATLAB desktop keyboard shor

In addition, many keyboard sl
across the desktop.

To customize keyboard shortc
restore previous default set’

Click here if you do not wan'

S>> |

Electrical Engineering Department, University of Jordan 3

Library Browser & Model Window

B Simulink Library Browser =
File Edit View Help
00 @& »| Entersearchterm
Libraries Library; Simuink | Search Resuts: (nane) | Most Freauenty < [
- ETTTR-| e
Commonly Used Blocks e E Continuzus
Continuous
Discontinufies Discontinuities Discrste
Discrete
Logic and Bit Operafions. 5
Lookup Tables ;;ﬂeuh:::‘ |E| Lackop Teies [untitied B
:::‘E‘D\:;';:‘:::n) e e File Ex:\(View Simulation Format Tools Help
HodeHWide Utiities 3 Pt esten beES 100 |Nomal =l
Ports & Subsystems Madel Wide)@ Pots &
- Signal Atirbutes. Utilties Subsystems
~Signal Routing
g ST
~Sources
User-Defined Functions Sinis S—
+I- Additional Hath & Discrete
e | Communications Blockset UserDefined Additional Math
&7+ 19 EDA Simulator Link Functions E & Discrste
++- i Fuzzy Logic Toolbox
& Image Acquisition Toobox
- T Neural Network Toobox
++ 1 Real-Tme Workshop
- 1| Signal Processing Blockset
| - Nl SimEvents =
Showing: Simulink Ready 100% odel5
Copyright Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 4

3/30/2015

W Simulink Library Browser

1) S

File Edit View Help

00 @& » @ Entersearchterm

ML

Drag & Drop

Libraries Library: SimulinkiSources | Search Results: (none) | MostF{ ¢ b

=-] Simutink -
Commonly Used Blocks Counter Free-
Continuous
~ Discontinuties

~Discrele oigtal Ciock

~Logic and Bt Operations

Lookup Tables From File smn
Math Operations
Ground @ Int

Model Verification
Wodel Wide Utiities
Ports & Subsystems
Signal Attributes
~Signal Routin

]

Pulse Generstor

Random /VM Repesf
Number Seque

FEEH [

- | Communications Blockset
) EDA Simulator Link
+-] Fuzzy Logic Toolbox
98] Image Acquisition Toolbox
8] Neural Network Toolbox
W] Real-Time Workshop
-] Signal Processing Blockset

| - W] SimEvents -

signal

Step

inks ting
‘\ - Sources s
Repesting Seq- Repesting

- Addiional Math & Discrete uence Interpol... Sequence Sig

Generator

—
Counter Limited
""""" a
Enumerated
Constant

From Workspace

Showing: Simulink/Sources

Copyright © Dr. Mohammed Hawa

W untitled = | B ||

File Edit View Simulation Format Tools Help

bzEd&E =] > 100 [Momal -

Sne Wave

Ready 100% oded5

Electrical Engineering Department, University of Jordan 5

* Sources | Sine Wave

W oexit = [B [|

» Continuous | Integrator
+ Signal Routing | Mux

File Edit View Simulation Format Toels Help
METE) = (WW Foma]

* Sinks | Scope

* To connect blocks,
move the cursor to the
output port

pa—

represented by ">" }

sign. Once placed at a e

port, the cursor will

turn into a cross "+"

enabling you to make

the connection between |.,,, — —

blocks.

* Run the simulation of
the simple system
shown by clicking on
the play 1con.

Z 1
L<UO f(v)dv} = ;F(s)

Copyright © Dr. Mohammed Hawa

A

\V)
Sine Wave D
1
S

Scope
Imtegrator

Electrical Engineering Department, University of Jordan 6

3/30/2015

Scope Results

* Double click on the
scope block to see the
results of the
simulation.

* To view/edit the
parameters of a block,
double click on the
block to see the Block
Parameters window.

« Try changing the initial
condition of the
Integrator from 0 to -1.

Copyright © Dr. Mohammed Hawa

Viewer: Scopel

5B PLPL ABE R

o [[

/

>

~

Electrical Engineering Department, University of Jordan 7
8 8 !

Blocks & Model File

MATLAB uses the default values of the block

parameters, except where you explicitly change

them.

You can always click on Help within the Block

Parameters window to obtain more information.

You can edit the label of a block by clicking on the
text and making the changes.

* You can search for Blocks in the Simulink search

window.

* You can save the Simulink model as .mdl file by

selecting File | Save menu item in Simulink.

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan 8
8 8 !

3/30/2015

Exercise; Modulation

Blocks:

* Sources: Repeating
Sequence

Repeating
Seguence

* Sources: Since Wave .
. Math Operation: Produc Sine Wave

* Math Operation: Gain « Sine Wave:

* Sinks: Scope * Frequency: 50 rad/s
Edit the following properties: + Sample time: 0.01
* Repeating Sequence: * Ga1n: 2 . ‘
— Time Values: [0123 45 6] * Simulation Stop Time:
— Output Values: [0110-1-10] * 12 seconds
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 9

Results

Viewer Scopel SR
2B 0L ABER B
o e e
|1 1
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 10

3/30/2015

Exercise: Sending data to Workspace.

Notice the “Clock” and “To Workspace” blocks.
Set simulation time to 13 seconds.

Ao

Sine Wave Gain Integrator

y
Clock To Workspace

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Double-click on the To Workspace block. You can specify any
variable name you want as the output; the default is
simout. Changeits nametoy.

The output variable y will have as many rows as there are
simulation time steps, and as many columns as there are
inputs to the block.

The second column in our simulation will be time, because
of the way we have connected the Clock to the second

input port of the Mux.

Specify the Save format as Array. Use the default values for
the other parameters (these should be inf, 1, and -1 for
Maximum number of rows, Decimation, and Sample time,
respectively). Click on OK.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

3/30/2015

Simulink can be configured to put the time variable tout
into the MATLAB workspace automatically when you are
using the To Workspace block.

This is done with the Data I/O tab under Configuration
Parameters on the Simulation menu.

The alternative is to use the Clock block to put tout into
the workspace.

The Clock block has one parameter, Decimation. Set this
parameter to 1, which means the Clock block will output
the time every time step; if set to 10 for example, the block
will output every 10 time steps, and so on.

In MATLAB, try: plot(y(:,2), y(:,1))

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Result

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

14

3/30/2015

Simulation diagrams for x = dy/dt=10 f(t)

= dy/dt
N x [b,
rll() g >

Simulation diagram for dy/dt= f(f) — 10y

dy/dt
S I y
— >
S
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise: Simulink model to solve the first-order ODE

dy/dt=-10y+2sin(4f) 0<t<3

Sine Wave

1]

Y

Integrator Scope

Gain

Homework: Use Simulink to solve the second-order ODE
?x/df2 = 5cos(2t) -3 dx/dt-4x 1<t<3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

3/30/2015

Result

V-Viswan(upel . — E— ==
SEPLL hEEF ,.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 17

Homework

* Solve as many problems from Chapter 10
as you can

* Suggested problems:
* Solve: 10.1,10.3,10.4.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 18

3/30/2015

Lecture 11; MATLAB
Exercises

Dr. Mohammed Hawa
Electrical Engineering Department
University of Jordan

EE201: Computer Applications. See Textbook Chapter 4

Exercise 1

* Write a MATLAB m-file function (called
fact .m) which takes a single argument
(an integer), computes the factorial and
returns the answer.

+ Hint: For better performance, do not use
loops!

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

3/30/2015

3/30/2015

Exercise 2

* Write a MATLAB m-file function (called
grades .m) which accepts student grades as
argument (hint: number array) and then
determines the lowest, highest and average
of such scores.

* Eg,grades([11 10 99 5 19 3 17])
* Total: 7 scores

* Min value: 3

* Max value: 99

* Average value: 23.43

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise 3

* Write a MATLAB m-file function (dice .m) which
simulates one or more dice with each die giving
values from 1 to 6.

* The program takes a single argument which is the
number of dice.

* The output should contain the values of the dice
and also the probability for this combination of
dice to occur. The probability is expressed as a
decimal value between 0 and 1 with five decimal
points.

* E.g., Rolling 3 dice: 4 1 6 (Probability: 0.00463)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 4

Exercise 4

* Write a MATLAB script (called >> rev
rev.m) which reads a number one
of strings from standard input

two
and prints them in reverse order
. three
on the command window.
) . END
* The input sequence is
terminated with the string END. —> three
* Hint: Use a cell array! —> two
—-> one

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

5

Exercise b

» Write a MATLAB script (called count .m)
which reads a string from standard input
and then counts the number of words in
that string.

* E.g., “Everyone loves MATLAB” contains
3 words.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

6

3/30/2015

3/30/2015

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 7

Exercise 6

The sum of the squares of the first ten integers is:
12+22+ ... +102=385

The square of the sum of the first ten integers is:
(1+2+..+10)>=55*=3025

Hence the difference between the sum of the
squares of the first ten integer numbers and the
square of the sum is 3025 — 385 = 2640.

Find the difference between the sum of the
squares of the first one hundred integer numbers
and the square of the sum.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 8

Exercise 7

A prime number (or a prime) is an integer
number greater than 1 that has no positive
divisors other than 1 and itself.

The first six prime numbers are: 2, 3, 5, 7,
11, and 13.

We can see that the 6th prime is 13.

Write a MATLAB script to print the first
50 prime numbers.

Exercise 8

» A Pythagorean triplet is a set of three
positive integer numbers, a < b < ¢, for
which: a? + b? = ¢?

* For example, 32 + 4?2 =9 + 16 = 25 = 52,

* There exists exactly one Pythagorean
triplet for which a + b + ¢ = 1000.

* Write a MATLAB script to find this triplet.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise 9

« Starting in the top left corner of a 2x2 grid, and
only being able to move to the right and down,
there are exactly 6 routes to the bottom right
corner (see the figure below).

* How many such routes are there through a

10x10 grid?]a :R

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 10

3/30/2015

Exercise 10

* Write a MATLAB script file that asks the
user to type the coordinate of two points:
A and B (in a plane), and then displays the
distance between A and B.

34) (2,2
(+ 'e) (+ +) Y (3,4)

x1 yl XZyZ
— oo
d= -/(xg-xlj +{'>"g">"1) %

= .zf2-3}2+(2-4)2
= Jon2e(2) = fi+4 = [5 = 2.24

Copyright © Dr. Mohammed Hawa Electrical Engineering Dey nt, University of Jordan 11

3/30/2015

The University of Jordan

School of Engineering

Department of Electrical Engineering
1% Semester — A.Y. 2014/2015

Course:

Instructor:

Course Website:

Catalog Data:

Prerequisites by
Course:

Prerequisites
By Topic:

Textbook:

References:

Schedule &
Duration:

Minimum Student
Material:
Minimum College
Facilities:

Course
Objectives:

Computer Applications — 0903201 (1 Cr. — Core Course)

Dr. Mohammed Hawa
Office: E306, Telephone: 5355000 ext 22857, Email: hawa@ju.edu.jo
Office Hours: will be posted soon

http://fetweb.ju.edu.jo/staff/ EE/mhawa/201/

Computer packages for mathematical and symbolic manipulations (MATLAB,
Mathematica). Windows environment. Graphics packages. INTERNET and its
use in literature survey and information acquisition. Library search via computer.
Engineering packages for computation. Data processing and statistical packages.
Standard computer libraries.

EE 1901102 — Computer Skills 2 (C++) (pre-requisite)

Students are assumed to have a background in the following topics:
Basic computer and software skills.

Basic programming language skills, such as C/C++.

Basic mathematics, calculus and linear algebra.

Basic scalar, array, vector and matrix operations.

Solution of ordinary differential equations.

Basic electric circuit analysis.

Introduction to MATLAB for Engineers by William J. Palm lll, McGraw-Hill,

3rd Edition, 2011.

e Essential MATLAB for Engineers and Scientists by Brian Hahn and Daniel
Valentine, Academic Press, 5th Edition, 2013.

e MATLAB for Engineers by Holly Moore, Prentice Hall, 3rd Edition, 2011.

e Getting Started with MATLAB 7: A Quick Introduction for Scientists and
Engineers by Rudra Pratap, Oxford University Press, 1st Edition, 2005.

e MATLAB Programming with Applications for Engineers by Stephen J.
Chapman, CL-Engineering, 1st Edition, 2012.

e An Engineers Guide to MATLAB by Edward B. Magrab, et. al., Prentice Hall,
3rd Edition, 2010.

e Mastering MATLAB by Duane C. Hanselman and Bruce L. Littlefield, Prentice
Hall, 1st Edition, 2011.

e Modeling and Simulation in SIMULINK for Engineers and Scientists by
Mohammad Nuruzzaman, AuthorHouse; 1st Edition, 2005.

e Mastering Simulink by James B. Dabney and Thomas L. Harman, Prentice
Hall, 1st Edition, 2003.

16 Weeks, 45 lectures (50 minutes each) plus exams.

Textbook, class handouts, scientific calculator, and an access to a personal
computer.

Classroom with whiteboard and projection display facilities, library, computational
facilities with the MATLAB program.

The overall objective is to introduce the student to solving engineering problems
using computers and scientific programming packages.

Page 1 of 2

Course Learning Outcomes and Relation to ABET Student Outcomes:

Upon successful completion of this course, a student should:

1. Use MATLAB to solve computational problems and generate publishable graphics [e, K]

2. Use complex arithmetic and complex functions to describe applied problems. Describe [a]
complex numbers and functions in rectangular and exponential forms. Graph the
magnitude and phase of complex functions

3. Use matrix forms to describe and solve linear systems of equations and systems of [e]
differential equations

4. Determine the system of linear equations required to find the coefficients that define an [a, €]
interpolating function that matches a set of data samples.

5. Solve first and second order linear differential equations with constant coefficients both [a, K]
analytically and numerically. Use the MATLAB routine ODE23 to solve differential
equations numerically.

6. Define the Fourier series for a periodic signal. Define the Fourier transform of an aperiodic [a, K]
signal.

7. Compute the Fourier series and transform from their definition as integrals. [a, K]
8. Use the properties of linearity, time-shifting and time-scaling to compute the Fourier [a, K]
series/transform of complex functions from the Fourier series/transforms of simple

functions.

9. Use the Simulink simulation package to simulate some electric and electronic circuits [K]

Course Topics:

Topic Description Hrs
1 Introduction to MATLAB and its use cases. Using the workspace to explore MATLAB features 2
regarding ease of use and versatility. Entering commands. Using MATLAB help.
2 General number formatting. Variables, Vectors and Matrices. Built-in MATLAB engineering 3

functions. Matrix-related functions. Operator precedence. Matrix indexing: row and column
versus linear versus logical indexing. Matrix versus element-by-elemtn operations.

3 Solving a system of linear equations. The concept of vectorization and its use in speeding 2
computations.

4 Euclidean Vectors and their operations. Complex numbers. Polynomials. Cells arrays. 2
Structures.

5 Script Files. Header comments. User Input/Output commands. The concept of functions in 3

MATLAB and how to build user defined functions. Local vs. global variables. Subfunctions.
Inline functions and function handles. Importing data: text, Excel, images, audio, etc.

6 Writing general-purpose programs in MATLAB. Flowchart versus pseudocode. Relational 4
operators and conditional statements. Flow control structures and loops. Practical exercises.

7 Midterm Exam 1

8 Plotting. The different plot types available. Figure annotations. Three dimensional plots. 3

9 Using MATLAB buil-in functions to obtain numerical solutions for various calculus problems: 2

differentiation, integration, ordinary differential equations, etc.

10 MATLAB symbolic engine. Using symbolic notation to define and plot functions. Using 2

symbolic capapilities for liner algebra, calcuals and other problems. Introduction to MuPAD.

11 Introduction to Simulink and its libraries. Simulating some engineering systems and finding 2

solutions. Linking Simulink with the MATLAB workspace.

Ground Rules: Attendance is required and highly encouraged. To that end, attendance will be
taken every lecture. All exams (including the final exam) should be considered
cumulative. Exams are closed book. No scratch paper is allowed. You will be held
responsible for all reading material assigned, even if it is not explicitly covered in
lecture notes.

Assessments: Exams, Quizzes, Projects, and Assignments.

Grading policy:

Assignments, projects, quizzes 20 %
Midterm Exam 30 %
Final Exam 50 %
Total 100%
Last Updated: January 2015

Page 2 of 2

