Lecture 1: What is MATLAB?

Dr. Mohammed Hawa
Electrical Engineering Repartment University of Jordan

MATLAB

- MATLAB (MATrix LABoratory) is a numerical computing environment and programming language.
- Developed by MathWorks.
- MATLAB is widely used to solve engineering and science problems in academic and research institutions as well as the industry.
- In MATLAB, problems are expressed in familiar mathematical notation.
- MATLAB is an interactive system whose basic data element is a matrix (remember $\mathrm{C} / \mathrm{C}++$ arrays!).
- Open-source alternative is: GNU Octave.
- Paid alternative: LabVIEW MathScript

MATLAB can be used for:

- Matrix manipulations (math computations).
- Data analysis, exploration, and plotting.
- Implementation of algorithms.
- Creation of user interfaces.
- Data acquisition.
- Interfacing with programs written in other languages, (e.g., C, C++, Java, and Fortran).
- An optional toolbox (with MuPAD symbolic engine) allows accessing symbolic computing.
- An additional package, Simulink®, adds graphical simulation and model-based design.

Like a VERY adyanced calculator

Would you go to an engineering exam without a calculator?

Electrical Ensineering Department, University of Jordan

Solying Simultaneous Equations

- Find the values of x and y that satisfy the following equations simultaneously :

$$
2 x+y=4
$$

- Can be solved by hand to get: $x-y=-1$ $x=1, y=2$
- Remember how?

Simultaneous Equations

- Solving simultaneous equations:
- Can be solved by hand to get:

$$
\begin{aligned}
& x=1.2, y=2.8, \\
& z=0.6
\end{aligned}
$$

- How?

Solying Simultaneous Equations

- Many variables:

$$
\begin{array}{rrrrr}
2 x_{1}-x_{2}+3 x_{4}-x_{6}+2 x_{7} & +3 x_{9}+x_{10}= & 1 \\
x_{1}+x_{3}+3 x_{4}+2 x_{5}+x_{6} & -x_{10}= & 2 \\
3 x_{1}+3 x_{2}-x_{3}-x_{4}+2 x_{5}+3 x_{6}-x_{7}+2 x_{8}+3 x_{9} & +x_{10}= & 1 \\
2 x_{1}+3 x_{2}+3 x_{3}+2 x_{4}+x_{5}+2 x_{6}+x_{7} & =3 \\
3 x_{1}-x_{2}-x_{3}+2 x_{5}-x_{6}+x_{7}+3 x_{8}+x_{9}+2 x_{10}= & 2 \\
x_{1} & -x_{3}+x_{4}+2 x_{5} & -x_{7}+3 x_{8}-x_{9}+2 x_{10}= & 3 \\
x_{1}+x_{2}+x_{4}-x_{5}+x_{6}+x_{7}+2 x_{8}+x_{9}+2 x_{10}= & 1 \\
3 x_{1}+x_{2}-x_{3}+3 x_{4}-x_{5}+3 x_{6} & & -x_{10}= & 0 \\
-x_{1}+2 x_{2}+x_{3}+x_{4}+3 x_{5}-x_{6} & +x_{8}-x_{9}-x_{10}= & -1 \\
-x_{1}+2 x_{2}+3 x_{4}-x_{5}+3 x_{6}+x_{7}-x_{8}-x_{9} & =2
\end{array}
$$

- Humans are note good at this.

MATLAB (a computer software) is!

MATLAB is powerfu!!

- We often need to solve systems with 10,000 or 100,000 simultaneous equations (could be non-linear or differential equations too)
- Can be done very quickly using a computer
- This is common in engineering
- Electrical circuits
- Image recognition
- Communication systems (MIMO, OFDM, etc)
- Operations research
- Mechanics and dynamics, etc

MATLAB xs. Programming languages

- MATLAB is a vector-based numerical analysis language:
- Can be used as an advanced calculator and graphing tool
- Also can be used as a programming language
- This is different than the programming languages you are familiar with ($\mathrm{C}, \mathrm{C}++, \ldots$)
- Can be a little frustrating since it takes time and effort to write code in MATLAB
- But the code is very effective and can be refined gradually

Know about MATLAB

- MATLAB is easy to begin with but needs hard work to master.
- MATLAB is optimized for performing matrix operations.
- MATLAB is interpreted
- for the most part slower than a compiled language such as C++
- but interactive and simplifies fixing errors
- Although primarily procedural, MATLAB does have some object-oriented elements.
- MATLAB is NOT a general purpose programming language
- MATLAB is designed for scientific computation and is not suitable for some things (such as parsing text)
- MATLAB is very useful for data analysis and rapid prototyping, but is not designed for large-scale system development.

Let us run MATLAB .,

MATATAB as a Calculator

- You can enter expressions at the command line and evaluate them right
previous command away.
- The >> symbols indicate where commands are typed.

[^0]
Mathematical Operators

Operator	MATLAB	Algebra
+	+	$5+4=9$
-	-	$5-4=1$
\times	\star	$5 \star 4=20$
\div	$a^{\wedge} \mathrm{b}$	$5^{\wedge} 4=625$
a^{b}	$5 / 4=1.25$	

Order of Precedence (BEDMAS)

- $\mathrm{B}=$ Brackets
- $\mathrm{E}=$ Exponentials
- D = Division
- $\mathrm{M}=$ Multiplication
- $\mathrm{A}=$ Addition
- $\mathrm{S}=$ Subtraction
- Careful using brackets: check that opening and closing brackets are matched up correctly.

$\gg 3 * 4+2$
ans $=$
14
$\gg 3 *(4+2)$
ans $=$
18

Order of Precedence

Precedence	Operation
First	Parentheses (), evaluated starting with the innermost pair.
Second	Exponentiation (power) ${ }^{\wedge}$, evaluated from left to right.
Third	Multiplication * and division / with equal precedence, evaluated from left to right.
Fourth	Addition + and subtraction - with equal precedence, evaluated from left to right.

Entering Commands

- MATLAB retains your previous keystrokes.
- Use the \uparrow key to scroll back through previous commands.
- Press the \uparrow key once to see the previous entry, and so on.
- Use the \downarrow key to scroll forward.
- Edit a line using the \leftarrow and \rightarrow arrow keys, the Backspace key, and the Delete key.
- Press the Enter key to execute the command.
- You can copy (highlight \mathcal{E} ctrl+c) from Command History window to the Command Window.

Built-in Math Constants

pi	$\pi:$ ratio of circle's circumference to its diameter
i	$\sqrt{-1}$: Imaginary unit
j	$\sqrt{-1}$: Imaginary unit
Inf	$\infty:$ Infinity
NaN	Not-a-Number
intmax	Largest value of integer type
intmin	Smallest value of integer type
ans	Temporary variable containing the most recent answer
eps	The accuracy of floating point precision
	\ldots

```
>> 2*pi
ans =
    6.2832
>> Inf+100000
ans =
    Inf
>> format long g
>> 2*pi
ans =
6.28318530717959
>> 1+ans
ans =
7.28318530717959
```

Copyright © Dr. Mohammed Hawa
Electrical Engineering Department, University of Jordan 20

Exercise

Exercise: Answers

```
>> 1/0
ans \(=\)
    Inf
>> \(0 / 0\)
ans =
    NaN
>> 7/2*i
ans \(=\)
    \(0+3.5000 i\)
>> 7/2i
ans =
    0 - \(3.5000 i\)
```


Possibible Formats

Command	Description and example
format short	Four decimal digits (the default); 13.6745.
format long	16 digits; 17.27484029463547.
format short e	Five digits (four decimals) plus exponent;
	$6.3792 \mathrm{e}+03$.
format long e	16 digits $(15$ decimals) plus exponent;
	$6.379243784781294 \mathrm{e}-04$.
format bank	Two decimal digits; 126.73.
format +	Positive, negative, or zero;.+
format rat	Rational approximation; 43/7.
format compact	Suppresses some blank lines.
format loose	Resets to less compact display mode.
Copyright © Dr. Mohammed Hawa	

Built-in Functions

- Like a calculator, MATLAB has many built-in mathematical functions.

```
>> log2(131072)
ans =
    1 7
>> sqrt(4)
ans =
>> abs(-3)
ans =
>> exp(-1)
ans =

\section*{Common Built-in Functions}
\begin{tabular}{ll}
\hline Function & MATLAB syntax* \\
\hline\(e^{x}\) & \(\exp (\mathrm{x})\) \\
\(\sqrt{x}\) & \(\operatorname{sqrt}(\mathrm{x})\) \\
\(\ln x\) & \(\log (\mathrm{x})\) \\
\(\log _{10} x\) & \(\log 10(\mathrm{x})\) \\
\(\cos x\) & \(\cos (\mathrm{x})\) \\
\(\sin x\) & \(\sin (\mathrm{x})\) \\
\(\tan x\) & \(\tan (\mathrm{x})\) \\
\(\cos ^{-1} x\) & \(\operatorname{acos}(\mathrm{x})\) \\
\(\sin ^{-1} x\) & \(\operatorname{asin}(\mathrm{x})\) \\
\(\tan ^{-1} x\) & \(\operatorname{atan}(\mathrm{x})\) \\
\hline
\end{tabular}
*The MATLAB trigonometric functions listed here use radian measure. Trigonometric functions ending in \(d\), such as sind \((x)\) and \(\operatorname{cosd}(x)\), take the argument \(x\) in degrees. Inverse functions such as atand ( x ) return values in degrees.

\section*{Exercise: Discussed Later.,}
```

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

```
- By the way, what is the purpose of the semicolon at the end of the command?

\section*{Exercise: Discussed Later...}
```

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

```


Exercise 2: Riscussed Later...
```

[X,Y] = meshgrid(-10:0.25:10,-10:0.25:10);
f = sinc(sqrt((X/pi).^2+(Y/pi).^2));
surf(X,Y,f);
axis([-10 10 -10 10 -0.3 1])

```

\section*{Exercise 2: Discussed Later...}
```

[X,Y] = meshgrid(-10:0.25:10,-10:0.25:10);
f = sinc(sqrt((X/pi).^2+(Y/pi).^2));
surf(X,Y,f);
axis([-10 10 -10 10 -0.3 1])

```

\section*{To Know More: help}
>> help
HELP topics:
>> help
HELP topics:
matlab\general
matlab\general
matlab\ops
matlab\ops
matlab\lang
matlab\lang
matlab\elmat
matlab\elmat
matlab\randfun
matlab\randfun
matlab\elfun
matlab\elfun
matlab\specfun
matlab\specfun
matlab \(\backslash\) matfun
matlab \(\backslash\) matfun
matlab\datafun
matlab\datafun
matlab\polyfun
matlab\polyfun
matlab\funfun
matlab\funfun
matlab\sparfun
matlab\sparfun
matlab\scribe
matlab\scribe
matlab\graph2d
matlab\graph2d
matlab\graph3d
matlab\graph3d
matlab\specgraph
matlab\specgraph
matlab\graphics
matlab\graphics
matlab\uitools
matlab\uitools
matlab\strfun
matlab\strfun
matlab\imagesci
matlab\imagesci
matlab\plottools
matlab\plottools
fuzzy \(\backslash f u z z y\)
fuzzy \(\backslash f u z z y\)
images \images
images \images
images \images
images \images
wavelet \({ }^{\text {ignavel }}\)
wavelet \({ }^{\text {ignavel }}\)
wavelet \wavelet
wavelet \wavelet
General purpose commands.
General purpose commands.

\section*{Go inside: help}
```

Elementary math functions.
Trigonometric.
sin - Sine.
sind - Sine of argument in degrees.
Man - Hyperbolic sin
asind - Inverse sine, result in degrees.
llorinh - Inverse hyperbolic sine.
Exponential
exp - Exponential.
expm1 - Compute exp(x)-1
log - Natural logarithm.
Compute log(1+x) accurately
Common (base 10) logarithm.
Base 2 logarithm and dissect floating point num.
Base 2 power and scale floating point number
ower that will error out on complex result.
realpow - power that will error out on comp
Rounding and remainder.
fix - Round towards zero
Round towards zero.
Round towards minus infinity.
Round towards nearest integer.
Modulus (signed remainder after division)
Remainder after division
Signum.

```

For a specific function: help exp
```

>> help exp
EXP Exponential.
EXP(X) is the exponential of the elements of X, e to the X.
For complex Z=X+i*Y, EXP(Z)=EXP(X)*(COS(Y)+i*SIN(Y)).
See also expm1, log, log10, expm, expint.
Overloaded methods:
codistributed/exp
fints/exp
Reference page in Help browser
doc exp

```


\section*{Where do you get more help?}
- Read your textbook.
- Practice the end-of-chapter examples.
- References in the syllabus.
- MATLAB Central:
http://www.mathworks.com/matlabcentral/
- Google
- YouTube

\title{
Lecture 2: Variables, Vectors and Matrices in MATLAB
}

\author{
Dr. Mohammed Hawa
} Electrical Engineering Repartment Unixersity of Jordan

\section*{Yariables in MATLAB}
- Just like other programming languages, you can define variables in which to store values.
- All variables can by default hold matrices with scalar or complex numbers in them.
- You can define as many variables as your PC memory can hold.
- Values in variables can be inspected, used and changed
- Variable names are casesensitive, and show up in the Workspace.


\section*{Xariables}
- You can change the value in the variable by over-writing it with a new value
- Remember that variables are case-sensitive (easy to make a mistake)
- Always left-to right
>> variable = expression


\section*{Exercise}
- Develop MATLAB code to find Cylinder volume and surface area.
- Assume radius of 5 m and height of 13 m .

\[
V=\pi r^{2} h
\]
\[
A=2 \pi r^{2}+2 \pi r h=2 \pi r(r+h)
\]

\section*{Solution}
```

>> r = 5
r =
5
>> h = 13
h =
1 3
>> Volume = pi * r^2 * h
Volume =
1.0210e+003
>> Area = 2 * pi * r * (r + h)
Area =
565.4867

```

\section*{Useful MATLAB commands}
\begin{tabular}{|ll|}
\hline Command & Description \\
\hline clc & Clears the Command window. \\
clear & Removes all variables from memory. \\
clear var1 var2 & Removes the variables var1 and var2 from memory. \\
exist('name') & Determines if a file or variable exists having the name 'name'. \\
quit & Stops MATLAB. \\
who & Lists the variables currently in memory. \\
whos & Lists the current variables and sizes, and indicates if they have \\
& imaginary parts. \\
\(:\) & Colon; generates an array having regularly spaced elements. \\
\(\prime\) & Comma; separates elements of an array. \\
\(;\) & Semicolon; suppresses screen printing; also denotes a new row \\
\(\ldots\) & in an array. \\
\(\ldots\) & Ellipsis; continues a line.
\end{tabular}

\section*{Yectors and Matrices (Arrays)}
- So far we used MATLAB variables to store a single value.
- We can also create MATLAB arrays that hold multiple values
-List of values (1D array) called Vector
- Table of values (2D array) called Matrix
- Vectors and matrices are used extensively when solving engineering and science problems.

\section*{Bow Xector}
- Row vectors are special cases of matrices.
- This is a 7 -element row vector ( \(1 \times 7\) matrix).
- Defined by enclosing numbers within square brackets [ ] and separating them by, or a space.


\section*{Column Xector}
- Column vectors are special cases of matrices.
- This is a 7 -element column vector ( \(7 \times 1\) matrix).
- Defined by enclosing numbers within [ ] and separating them by semicolon ;


\section*{Matrix}
- This is a \(3 \times 4\)-element matrix.
- It has 3 rows and 4 columns (dimension \(3 \times 4\) ).
- Spaces or commas separate elements in different columns, whereas semicolons separate elements in different rows.
- A dimension \(n \times n\) matrix is called square matrix.


Copyright © Dr. Mohammed Hawa
Electrical Engineering Department, University of Jordan

\section*{Transpose of a Matrix}
- The transpose operation interchanges the rows and columns of a matrix.
- For an \(m \times n\) matrix \(\mathbf{A}\) the new matrix \(\mathbf{A}^{T}\) (read "A transpose") is an \(n \times m\) matrix.
- In MATLAB, the \(A^{\prime}\) command is used for transpose.
\[
\mathbf{A}=\left[\begin{array}{ll}
-2 & 6 \\
-3 & 5
\end{array}\right] \quad \mathbf{A}^{T}=\left[\begin{array}{rr}
-2 & -3 \\
6 & 5
\end{array}\right]
\]

\section*{Exercise}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\gg B=\left[\begin{array}{llll}5 & 6 & 7 & 8\end{array}\right]\)} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{B}=\)} \\
\hline 5 & 6 & 7 & 8 \\
\hline \multicolumn{4}{|l|}{\(\gg \mathrm{B}^{\prime}\)} \\
\hline \multicolumn{4}{|l|}{ans \(=\)} \\
\hline 5 & & & \\
\hline 6 & & & \\
\hline 7 & & & \\
\hline 8 & & & \\
\hline
\end{tabular}
- What happens to a row vector when transposed?
-What happens to a column vector when transposed?

\section*{Useful Functions}
\begin{tabular}{|l|l|}
\hline length (A) & \begin{tabular}{l} 
Returns either the number of elements of A if A \\
is a vector or the largest value of \(m\) or \(n\) if A is an \\
\(m \times n\) matrix
\end{tabular} \\
\hline size(A) & \begin{tabular}{l} 
Returns a row vector [m n] containing the \\
sizes of the \(m \times n\) matrix A.
\end{tabular} \\
\hline max(A) & \begin{tabular}{l} 
For vectors, returns the largest element in A. \\
For matrices, returns a row vector containing the \\
maximum element from each column. \\
If any of the elements are complex, max (A) \\
returns the elements that have the largest \\
magnitudes.
\end{tabular} \\
\hline\([\mathrm{v}, \mathrm{k}]=\max (\mathrm{A})\) & \begin{tabular}{l} 
Similar to max (A) but stores the maximum \\
values in the row vector v and their indices in \\
the row vector k.
\end{tabular} \\
\hline \begin{tabular}{l}
\(\min (\mathrm{A})\) \\
and \\
{\([\mathrm{v}, \mathrm{k}]=\min\) (A) }
\end{tabular} & \begin{tabular}{l} 
Like max but returns minimum values.
\end{tabular} \\
\hline
\end{tabular}

\section*{More Useful Functions}
\begin{tabular}{|l|l|}
\hline sort (A) & \begin{tabular}{l} 
Sorts each column of the array A in ascending \\
order and returns an array the same size as A.
\end{tabular} \\
\hline sort (A, DIM, MODE) & \begin{tabular}{l} 
Sort with two optional parameters: \\
DIM selects a dimension along which to sort. \\
MODE is sort direction ('ascend' or 'descend').
\end{tabular} \\
\hline \(\operatorname{sum}\) (A) & \begin{tabular}{l} 
Sums the elements in each column of the array A \\
and returns a row vector containing the sums.
\end{tabular} \\
\hline \(\operatorname{sum}(A\), DIM) & Sums along the dimension DIM. \\
\hline
\end{tabular}

\section*{Exercises}


\section*{Solution}



\section*{The Variable Editor [from Workspace of opentar ('A')]}


\section*{Creating Big Matrices}
- What if you want to create a Matrix that contains 1000 element (or more)?
- Writing each element by hand is difficult, time-consuming and error-prone.
- MATLAB allows simple ways to quickly create matrices, such as:
- Using the colon : operator (very popular).
- Using linspace () and logspace () functions (less popular, but useful).

\section*{Using the colon operator}
- MATLAB command \(X=J: D: K\) creates vector \(X=\left[J, J+D, \ldots, J+m^{*} D\right]\) where \(m=f i x((K-J) / D)\).
- In other words, it creates a vector \(X\) of values starting at J, ending with K, and with spacing D.
- Notice that the last element is K if K - J is an integer multiple of D. If not, the last value is less than J.
- MATLAB command \(J: K\) is the same as \(J: 1: K\).
- Note:
\(-\mathrm{J}: \mathrm{K}\) is empty if \(\mathrm{J}>\mathrm{K}\).
\(-J: D: K\) is empty if \(D==0\), if \(D>0\) and \(J>K\), or if \(\mathrm{D}<0\) and \(\mathrm{J}<\mathrm{K}\).

\section*{Example 1}


\section*{Example 2}
```

>> x = 7:-1:2
x =
7 6
>> x = 5:0.1:5.9
x =
Columns 1 through 5
5.0000 5.1000 5.2000 5.3000 5.4000
Columns 6 through 10
5.5000 5.6000 5.7000 5.8000 5.9000
>> y = 5:0.1:5.9; % what happened here?!
>>
>> % now create a 'column' vector from 1 to 10 using :

```

\section*{Alternatixes to colon}
- linspace command creates a linearly spaced row vector, but instead you specify the number of values rather than the increment.
- The syntax is linspace ( \(\mathrm{x} 1, \mathrm{x} 2, \mathrm{n}\) ), where x 1 and \(x 2\) are the lower and upper limits and \(n\) is the number of points.
- If n is omitted, the number of points defaults to 100 .
- logspace command creates an array of logarithmically spaced elements.
- Its syntax is logspace \((a, b, n)\), where \(n\) is the number of points between \(10^{a}\) and \(10^{b}\).
- If n is omitted, the number of points defaults to 50 .

\section*{Exercise}
```

>> x = linspace(5,8,3)
x =
5.0000 6.5000 8.0000
>> x = logspace(-1,1,4)
x =
0.1000
0.4642

Special: ones, zeros, rand

$$
\gg a=\operatorname{ones}(2,4)
$$

$$
a=
$$

1	1	1	1
1	1	1	1

$\gg \mathrm{b}=\operatorname{zeros}(4,3) \%$ null matrix
b $=$

0	0	0
0	0	0
0	0	0
0	0	0

>> $c=r a n d(2,4)$
$c=$

0.8147	0.1270	0.6324	0.2785
0.9058	0.9134	0.0975	0.5469

\% random values drawn from the standard \% uniform distribution on the open
\% interval $(0,1)$

Matrix Reterminant \mathcal{E} Inverse

$$
\begin{aligned}
& \left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{ll}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right| \\
& =a(e i-f h)-b(d i-f g)+c(d h-e g) \\
& =a e i+b f g+c d h-c e g-b d i-a f h \text {. }
\end{aligned}
$$

Accessing Matrix Elements

Notes

- Use () not [] to access matrix elements.
- The row and column indices are NOT zerobased, like in C/C++.
- The first is row number, followed by the column number.
- For matrices and vectors, you can use one of three indexing methods: matrix row and column indexing; linear indexing; and logical indexing.
- You can also use ranges (shown later).

Accessing Matrix Elements

Matrix Linear Indexing

Columns (n)						
$A=$	1	2	3	4	5	
	$4{ }^{1}$	10^{6}	1^{11}	6^{16}	$2{ }^{21}$	- A (2,4)
	82	$1.2{ }^{7}$	912	417	2522	
Rows (m)	7.23	58	713	118	1123	- A (17)
	04	0.59	414	519	5624	Rectangular Matrix: Scalar: 1-by-1 array
	$23{ }^{5}$	83^{10}	13^{15}	0^{20}	10^{25}	
$A=5 \times 5$ matrix.						Vector: m-by-1 array 1-by-n array Matrix: m-by-n array

Indexing; Sub-matrix

- $\mathrm{v}(2: 5)$ represents the second through fifth elements - i.e., $v(2), v(3), v(4), v(5)$.
- $\mathrm{v}(2$: end) represents the second till last element of v .
- $\mathrm{v}(:)$ represents all the row or column elements of vector v .
- $A(:, 3)$ denotes all elements in the third column of matrix A.
- $A(:, 2: 5)$ denotes all elements in the second through fifth columns of A.
- $A(2: 3,1: 3)$ denotes all elements in the second and third rows that are also in the first through third columns.
- A (end, :) all elements of the last row in A.
- A (: , end) all elements of the last column in A.
- $\mathrm{v}=\mathrm{A}(:)$ creates a vector v consisting of all the columns of A stacked from first to last.

Exercise

>> v = 10:10:70						
$\mathrm{v}={ }_{10}$	20	30	40	50	60	70
$\begin{aligned} & \gg v(2: 5) \\ & \text { ans }= \end{aligned}$						
20	30	40	50			
>> v (2:end)						
$\begin{aligned} \text { ans } & = \\ & 20 \end{aligned}$	30	40	50	60	70	
>> v (:)						
ans $=$						
10						
20						
30						
40						
50						
60						
70						

Exercise	

Linear indexing: Adranced

```
\(\gg A=5: 5: 50\)
\(A=\)
    \(\begin{array}{llllllllll}5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50\end{array}\)
>> A([11 3 3 6 10] \()\)
ans \(=\)
    \(\begin{array}{llll}5 & 15 & 30 & 50\end{array}\)
>> A([1 \(\left.\left.\begin{array}{llll}1 & 3 & 6 & 10\end{array}\right]\right)\)
ans \(=\)
\(>A\left(\left[\begin{array}{llllll}1 & 3 & 6 ; & 7 & 9 & 10\end{array}\right]\right)\)
ans =
    \(\begin{array}{rrr}5 & 15 & 30 \\ 35 & 45 & 50\end{array}\)
\% indexing into a vector with a nonvector,
the shape of the indices is honored
```


Linear indexing is useful: find

Advanced: Logical indexing

Logical indexing is also useful!

Subscripting Examples

More dimensions possible

Extending Matrices

- You can add extra elements to a matrix by creating them directly using ()
- Or by concatenating (appending) them using [,] or ;]
- If you don't assign array elements, MATLAB gives them a default value of 0

Functions on Arfays

- Standard MATLAB functions (sin, cos, exp, log, etc) can apply to vectors and matrices as well as scalars.
- They operate on array arguments to produce an array result the same size as the array argument x.
- These functions are said to be vectorized functions.
- In this example y is $[\sin (1), \sin (2), \sin (3)]$
- So, when writing functions (later lectures) remember input might be a vector or matrix.

>> $\mathrm{x}=[1,2,3]$

$$
x=
$$

$$
\begin{array}{lll}
1 & 2 & 3
\end{array}
$$

>> $y=\sin (x)$
$y=$
0.8415
0.9093

Matrix xs. Arfay Arithmetic

- Multiplying and dividing vectors and matrices is different than multiplying and dividing scalars (or arrays of scalars).
- This is why MATLAB has two types of arithmetic operators:
- Array operators: where the arrays operated on have the same size. The operation is done element-by-element (for all elements).
- Matrix operators: dedicated for matrices and vectors. Operations are done using the matrix as a whole.

Matrix ys, Array Operators

Symbol	Operation	Symbol	Operation
+	Matrix addition	+	Array addition
-	Matrix subtraction	-	Array subtraction
\star	Matrix multiplication	..*	Array multiplication
$/$	Matrix division	.$/$	Array division
\backslash	Left matrix division	.\backslash	Left array division
\wedge	Matrix power	..$^{\wedge}$	Array power

* idivide) allows integer division with rounding options

Matrix/Array Addition/Subtraction

- Matrices and arrays are treated the same when adding and subtracting.

$$
\left[\begin{array}{rr}
6 & -2 \\
10 & 3
\end{array}\right]+\left[\begin{array}{rr}
9 & 8 \\
-12 & 14
\end{array}\right]=\left[\begin{array}{rr}
15 & 6 \\
-2 & 17
\end{array}\right]
$$

- The two matrices should have identical size.
- Their sum or difference has the same size, and is obtained by adding or subtracting the corresponding elements.

$$
\left.\begin{array}{rl}
\gg A & =[6,-2 ; 10,3] ; \\
\gg B & =[9,8 ;-12,14] \\
\gg A+B \\
\text { ans } & = \\
& 15
\end{array}\right]
$$

- Addition and subtraction are associative and commutative.
$(\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C})$

$$
\mathbf{A}+\mathbf{B}+\mathbf{C}=\mathbf{B}+\mathbf{C}+\mathbf{A}=\mathbf{A}+\mathbf{C}+\mathbf{B}
$$

More ...

- A scalar value at either side of the operator is expanded to an array of the same size as the other side of the operator.

$$
\begin{aligned}
& {[6,3]+2=[8,5]} \\
& {[8,3]-5=[3,-2]} \\
& {[6,5]+[4,8]=[10,13]} \\
& {[6,5]-[4,8]=[2,-3]}
\end{aligned}
$$

Arfay Multiplication

- Element-by-element multiplication.
- Only for arrays that are the same size.
- Use the . * operator not the * operator.

$$
\mathbf{A}=\left[\begin{array}{rr}
11 & 5 \\
-9 & 4
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{rr}
-7 & 8 \\
6 & 2
\end{array}\right]
$$

- Not the same as matrix multiplication.
- Useful in programming, but students make the mistake of using *
$\mathbf{C}=\left[\begin{array}{rr}11(-7) & 5(8) \\ -9(6) & 4(2)\end{array}\right]=\left[\begin{array}{rr}-77 & 40 \\ -54 & 8\end{array}\right]$

Using Array Multiplication (Plot)

- Plot the following $\gg t=0: 0.003: 0.5$;
$\gg y=\exp (-8 * t) .{ }^{*} \sin (9.7 * t+p i / 2) ;$
\gg plot (t, y) function:
- Notice the use of . * operator
$y(t)=e^{-8 t} \sin \left(9.7 t+\frac{\pi}{2}\right)$

Matrix Multiplication

- If A is an $n \times m$ matrix and B is a $m \times p$ matrix, their matrix product $A B$
$\left[\begin{array}{rr}2 & 7 \\ 6 & -5\end{array}\right]\left[\begin{array}{l}3 \\ 9\end{array}\right]=\left[\begin{array}{l}2(3)+7(9) \\ 6(3)-5(9)\end{array}\right]=\left[\begin{array}{r}69 \\ -27\end{array}\right]$ is an $n \times p$ matrix, in which the m entries across the rows of A are multiplied with the m entries down the columns of B.
- In general, $\mathrm{AB} \neq \mathrm{BA}$ for matrices. Be extra careful.

Matrix Multiplication

$$
\begin{align*}
& {\left[\begin{array}{rr}
6 & -2 \\
10 & 3 \\
4 & 7
\end{array}\right]\left[\begin{array}{rr}
9 & 8 \\
-5 & 12
\end{array}\right]=\left[\begin{array}{rr}
(6)(9)+(-2)(-5) & (6)(8)+(-2)(12) \\
(10)(9)+(3)(-5) & (10)(8)+(3)(12) \\
(4)(9)+(7)(-5) & (4)(8)+(7)(12)
\end{array}\right]} \\
& =\left[\begin{array}{cc}
64 & 24 \\
75 & 116 \\
1 & 116
\end{array}\right] \tag{2.4-4}\\
& 3\left[\begin{array}{rr}
2 & 9 \\
5 & -7
\end{array}\right]=\left[\begin{array}{rr}
6 & 27 \\
15 & -21
\end{array}\right] \\
& \underset{\gg 3 * A}{>A}=[2,9 ; 5,-7] ;
\end{align*}
$$

Arfay Rixisiont

- Element-by-element division.
- Only for arrays that

$$
\mathbf{A}=\left[\begin{array}{rr}
24 & 20 \\
-9 & 4
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{rr}
-4 & 5 \\
3 & 2
\end{array}\right]
$$ are the same size.

- Use the . / operator not the / operator.

$$
C=A . / B
$$

- Not the same as matrix division.
- Useful in programming, but students make the $\mathbf{C}=\left[\begin{array}{rr}24 /(-4) & 20 / 5 \\ -9 / 3 & 4 / 2\end{array}\right]=\left[\begin{array}{ll}-6 & 4 \\ -3 & 2\end{array}\right]$ mistake of using /

Matrix Division

- An $n \times n$ square matrix \boldsymbol{B} is called invertible (also nonsingular) if there exists an $n \times n$ matrix \mathbf{B}^{-1} such that their multiplication is the identity matrix.

$$
\begin{aligned}
& \frac{\mathbf{A}}{\overline{\mathbf{B}}}=\mathbf{A} \mathbf{B}^{-1} \\
& \mathbf{B B}^{-1}=\mathbf{I}
\end{aligned}
$$

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right] \quad B=\left[\begin{array}{lll}
4 & 5 & 6 \\
6 & 5 & 4 \\
4 & 6 & 5
\end{array}\right]
$$

$$
B^{-1}=\left[\begin{array}{ccc}
\frac{1}{30} & \frac{11}{30} & -\frac{1}{3} \\
\frac{-7}{15} & \frac{-2}{15} & \frac{2}{3} \\
\frac{8}{15} & \frac{-2}{15} & -\frac{1}{3}
\end{array}\right]
$$

Matrix Division

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right] \quad B=\left[\begin{array}{lll}
4 & 5 & 6 \\
6 & 5 & 4 \\
4 & 6 & 5
\end{array}\right] \\
& \text { A. } B^{-1} \\
& \begin{array}{l}
=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right] \cdot\left[\begin{array}{ccc}
\frac{1}{30} & \frac{11}{30} & \frac{-1}{3} \\
\frac{-7}{15} & \frac{-2}{15} & \frac{2}{3} \\
\frac{8}{15} & \frac{-2}{15} & \frac{-1}{3}
\end{array}\right] \\
=\left[\begin{array}{ccc}
\frac{7}{10} & -\frac{3}{10} & 0
\end{array}\right]
\end{array} \\
& \left.\begin{array}{llllllll}
\gg A & =\left[\begin{array}{llllllll}
1 & 2 & 3 ; & 3 & 2 & 1 ; & 2 & 1 \\
3
\end{array}\right] \\
\gg B= & 4 & 5 & 6 ; & 6 & 5 & 4 ; & 4 \\
6 & 5
\end{array}\right] \\
& \gg A / B \\
& \text { ans }= \\
& \begin{array}{rrr}
0.7000 & -0.3000 & 0 \\
-0.3000 & 0.7000 & 0.0000 \\
1.2000 & 0.2000 & -1.0000
\end{array} \\
& \gg \text { format rat } \\
& >A / B \\
& \text { ans }= \\
& {\left[\begin{array}{ccc}
\frac{-3}{10} & \frac{7}{10} & 0 \\
\frac{6}{5} & \frac{1}{5} & -1
\end{array}\right]}
\end{aligned}
$$

Matrix Left Dixision

- Use the left division operator (\backslash) (back slash) to solve sets of linear algebraic equations.
- If A is $n \times n$ matrix and B is a column vector with n elements, then $\mathrm{x}=\mathrm{A} \backslash \mathrm{B}$ is the solution to the equation $\mathrm{Ax}=\mathrm{B}$.
- A warning message is displayed if A is badly scaled or nearly singular. The solution is $x=3, y=5$, and $z=-2$.

Homework: Mesh Analysis

KVL @ mesh 2:

$$
1\left(i_{2}-i_{1}\right)+2 i_{2}+3\left(i_{2}-i_{3}\right)=0
$$

KVL @ supermesh $1 / 3$:
$-7+1\left(i_{1}-i_{2}\right)+3\left(i_{3}-i_{2}\right)+1 i_{3}=0$
@ current source:

$$
7=i_{1}-i_{3}
$$

Three equations:
$-i_{1}+6 i_{2}-3 i_{3}=0$
$i_{1}-4 i_{2}+4 i_{3}=7$
$i_{1}-i_{3}=7$
Solution:
$i_{1}=9 \mathrm{~A}, i_{2}=2.5 \mathrm{~A}, i_{3}=2 \mathrm{~A}$

Just between us...

- Matrix division and matrix left division are related in MATLAB by the equation:

$$
B / A=\left(A^{\prime} \backslash B^{\prime}\right)^{\prime} \% \text { reversing }
$$

- To see the details, type: doc mldivide or type: doc mrdivide

Arfay Left Dixisiont

- The array left division
A. \B (back slash)
divides each entry of B by the corresponding entry of A.
- Just like B. /A
- A and B must be arrays of the same size.
- A scalar value for either A or B is expanded to
 an array of the same size as the other.

Array Power

$[3,5] . \wedge[2,4]=\left[3^{\wedge} 2,5^{\wedge} 4\right]$

Mattix Power

- $\mathrm{A}^{\wedge} \mathrm{k}$ computes matrix power (exponent).
- In other words, it multiplies matrix A by itself k times.
- The exponent k requires a positive, real-valued integer value.
- Remember: this is

```
>> A = [1 2; 3 4];
>> A^3
ans=
    37 54
    81 118
>>A*A*A
ans =
    37 54
    81 118
``` repeated matrix multiplication

\section*{Matrix Manipulation Functions}
- diag: Diagonal matrices and diagonal of a matrix.
- det: Matrix determinant
- inv: Matrix inverse
- cond: Matrix condition number (for inverse)
- fliplr: Flip matrices left-right
- flipud: Flip matrices up and down
- repmat: Replicate and tile a matrix

\section*{Matrix Manipulation Functions}
- rot90: rotate matrix \(90^{\circ}\)
- tril: Lower triangular part of a matrix
- triu: Upper triangular part of a matrix
- cross: Vector cross product
- dot: Vector dot product
- eig: Evaluate eigenvalues and eigenvectors
- rank: Rank of matrix

\section*{Exercise}
```

$>A=\left[\begin{array}{lllllll}1 & 2 & 3 ; & 5 & 6 ; 7 & 8 & 9\end{array}>\right.$ fliplr(A)
$\mathrm{A}=\quad$ ans
>> diag(A)
>> flipud(A)
ans =
1
5
9
$\gg \operatorname{det}(A)$
>> $\operatorname{rot} 90(\mathrm{~A})$
ans =
$6.6613 e-016$

```

\section*{Exercise}
```

>>A=[1 2 3; 4 5 6; 7 8 9] >> [V, D] = eig(A)
A =
l
V =
-0.2320 -0.7858 0.4082
-0.5253 -0.0868 -0.8165
-0.8187 0.6123 0.4082
>> tril(A)
ans =
1
D =
16.1168
> triu(A)
ans =
l
Copyright © Dr. Mohammed Hawa

## Exercise

- Define matrix A of dimension 2 by 4 whose ( $\mathrm{i}, \mathrm{j}$ ) entries are $A(i, j)=i+j$
- Extract two 2 by 2 matrices A1 and A2 out of matrix A.
- A1 contains the first two columns of A
- A2 contains the last two columns of A
- Compute matrix B to be the sum of A1 and A2
- Compute the eigenvalues and eigenvectors of $B$
- Solve the linear system $B x=b$, where $b$ has all entries $=2$
- Compute the determinant of $B$, inverse of $B$, and the condition number of $B$
- NOTE: Use only MATLAB native functions for all above.



## Homexork

- Solve as many problems from Chapter 1 as you can
- Suggested problems:
- 1.3, 1.8, 1.15, 1.26, 1.30
- Solve as many problems from Chapter 2 as you can
- Suggested problems:
- $2.3,2.10,2.13,2.25,2.26$


# Lecture 3; Array Applications, <br> Cells, Structures \& Script Files 

Dr. Mohammed Hawa Electrical Engineering Department University of Jordan

## Euclidean Vectors

- An Euclidean vector (or geometric vector, or simply a vector) is a geometric entity that has both magnitude and direction.
- In physics, vectors are used to represent physical quantities that have both magnitude and direction, such as force, acceleration, electric field, etc.
- Vector algebra: adding and subtracting vectors, multiplying vectors, scaling vectors, etc.


## Euclidean Xectors in MATLAB

- We specify a vector using its Cartesian coordinates.
- Hence, the vector $\mathbf{p}$ can be specified by three components: $\mathrm{x}, \mathrm{y}$ and z , and can be written in MATLAB as:

$$
\mathrm{p}=[\mathrm{x}, \mathrm{y}, \mathrm{z}] ;
$$

- MATLAB supports 2-D and 3-D vectors, and even higher dimensional ones.



## Magnitude, Length, Absolute Xalue

- In MATLAB, length () of a vector is not its magnitude. It is the number of elements in the vector.
- The absolute value of a vector a is a vector whose elements are the absolute values of the elements of a.
- The magnitude of a vector is its Euclidean norm or geometric length as shown:

$$
\begin{aligned}
& \mathbf{a}=a_{x} \mathbf{i}+a_{y} \mathbf{j}+a_{z} \mathbf{k} \\
& \|\mathbf{a}\|=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}
\end{aligned}
$$



$$
\|\mathbf{a}\|=\sqrt{2^{2}+(-4)^{2}+5^{2}}=\sqrt{\left[\begin{array}{lll}
2 & -4 & 5
\end{array}\right]\left[\begin{array}{c}
2 \\
-4 \\
5
\end{array}\right]}=6.7082
$$

## Xector Scaling

- For vector:

$$
\mathbf{a}=a_{x} \mathbf{i}+a_{y} \mathbf{j}+a_{z} \mathbf{k}
$$

- Scaling this vector by a factor of 2 gives:
- $\mathbf{v}=2 \mathbf{a}$
$=2 a_{x} \mathbf{i}+2 a_{y} \mathbf{j}+2 a_{z} \mathbf{k}$
- This is just like MATLAB scalar multiplication of a vector:
- $v=2 *[x, y, z]$;



## Adding and Subtracting Xectors

- Vector addition by geometry: The parallelogram law.
- Or, mathematically:


## $v+w$

W

$$
\begin{aligned}
& \mathbf{a}=a_{x} \mathbf{i}+a_{y} \mathbf{j}+a_{z} \mathbf{k} \\
& \mathbf{b}=b_{x} \mathbf{i}+b_{y} \mathbf{j}+b_{z} \mathbf{k} \\
& \mathbf{a}+\mathbf{b}=\left(a_{x}+b_{x}\right) \mathbf{i} \\
&+\left(a_{y}+b_{y}\right) \mathbf{j} \\
&+\left(a_{z}+b_{z}\right) \mathbf{k}
\end{aligned}
$$

- Same as vector addition and subtraction in MATLAB.

$c=\mathbf{a}-\mathbf{b}$


## Exercise



## Dot Product

- The dot product of vectors results in a scalar value.
- $\mathbf{a} \cdot \mathbf{b}$
$=\left(a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}\right)$ $=\|\mathbf{a}\|\|\mathbf{b}\| \cos (\theta)$


$\begin{aligned} & \gg \mathrm{a}=\left[\begin{array}{ll} 2 & -4 \\ \gg b & =[3-1 \\ \gg c & -1 \end{array}\right. \\ & \gg b^{\prime} \end{aligned}$



## Polynomials

- A polynomial can be written in the form:

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

- Or more concisely:

$$
\sum_{i=0}^{n} a_{i} x^{i}
$$

- We can use MATLAB to find all the roots of the polynomial, i.e., the values of $x$ that makes the polynomial equation equal 0 .


## Exercise

- Polynomial Roots: $x^{3}-7 x^{2}+40 x-34=0$
- Roots are $x=1, x=3 \pm 5 i$.
- We can also build polynomial coefficients from its roots.
- We can also multiply (convolution) and divide (deconvolution) two polynomials.


## Just fof fun.... Plot...

$\gg x=-2: 0.01: 5 ;$
$\gg \mathrm{f}=\mathrm{x} . \wedge 3-7 *(\mathrm{x} . \wedge 2)+40{ }^{\wedge} \mathrm{x}-34 ;$
$\gg \operatorname{plot}(x, f)$


## Cell Arfay

- The cell array is an array in which each element is a cell. Each cell can contain an array.
- So, it is an array of different arrays.
- You can store different classes of arrays in each cell, allowing you to group data sets that are related but have different dimensions.
- You access cell arrays using the same indexing operations used with ordinary arrays, but using \{\} not ().


## Useful functions

$C=\operatorname{cell}(n)$	Creates $n \times n$ cell array C of empty matrices.
$C=\operatorname{cell}(n, m)$	Creates $n \times m$ cell array C of empty matrices.
celldisp (C)	Displays the contents of cell array C.
cellplot (C)	Displays a graphical representation of the cell   array C.
$C=\operatorname{num} 2 \mathrm{cell}(A)$	Converts a numeric array A into a cell array C.
iscell (C)	Returns a 1 if C is a cell array; otherwise,   returns a 0.

## Exercise

```
>> C = cell(3)
C =
\begin{tabular}{lll}
{[]} & {[]} & {[]} \\
{[]} & {[]} & {[]}
\end{tabular}
 [] [] []
>> D = cell(1, 3)
D =
 [] [] []
>> A(1,1) = {'Walden Pond'};
> A(1,2) = {[1+2i 5+9i]};
>> A(2,1) = {[60,72,65]};
>> A(2,2) = {[55,57,56;54,56,55;52,55,53]};
>> A
A =
 'Walden Pond' [1x2 double]
 [1\times3 double] [3\times3 double]
```



## Structures (strcut. Memebr)



## Create and Add to Structure

```
>> student.name = 'John Smith';
>> student email = 'smithj@myschool edu'
>> student.exam_scores = [67,75,84];
>> student
student =
 name: 'John Smith'
 SSN: '392-77-1786'
 email: 'smithj@myschool.edu'
 exam_scores: [lllll
>> student(2).name = 'Mary Jones';
>> student(2).SSN = '431-56-9832';
>> student(2).email = 'jonesm@myschool.edu';
>> student(2).exam_scores = [84,78,93];
>> student
student
1x2 struct array with fields:
 name
 SSN
 email
 exam_scores
```


## Investigate Structure

```
>> student(2)
ans =
 name: 'Mary Jones
 SSN: '431-56-9832'
 email: 'jonesm@myschool.edu'
 exam_scores: [84 78 93]
>> fieldnames(student)
ans =
 'name'
 'SSN'
 'email'
 exam_scores
>> max(student(2).exam_scores)
ans =
>> isstruct(student)
ans =
```


## Script files

- You can save a particular sequence of MATLAB commands for reuse later in a script file (.m file)
- Each line is the same as typing a command in the command window.
- From the main menu, select File \| New \| Script, then save the file as mycylinder.m



## Remember Example?

- Develop MATLAB code to find Cylinder volume and surface area.
- Assume radius of 5 m and height of 13 m .


$$
\begin{aligned}
& V=\pi r^{2} h \\
& A=2 \pi r^{2}+2 \pi r h=2 \pi r(r+h)
\end{aligned}
$$

## Solution

```
>> r = 5
\(r=\)
 5
\(\gg h=13\)
\(\mathrm{h}=\)
 13
\(\gg V=p i * r^{\wedge} 2 * h\)
\(\mathrm{V}=\)
 \(1.0210 e+003\)
\(\gg A=2 * p i * r *(r+h)\)
\(\mathrm{A}=\)
 565.4867
```


## Exercise



## Be ware...

- Script File names MUST begin with a letter, and may include digits and the underscore character.
- Script File names should NOT:
- include spaces
- start with a number
- use the same name as a variable or an existing command
- If you do any of the above you will get unusual errors when you try to run your script.
- You can check to see if a command, function or file name already exists by using the exist command.


## Running ,mf files

- Run sequence of commands by typing mycylinder in the command window
- Make sure the current

```
>> mycylinder
r =
h =
V =
 1.0210e+003
A =
 565.4867
```


## When you type mycylinder

When multiple commands have the same name in the current scope (scope includes current file, optional private subfolder, current folder, and the MATLAB path), MATLAB uses this precedence order:

1. Variables in current workspace: Hence, if you create a variable with the same name as a function, MATLAB cannot run that function until you clear the variable from memory.
2. Nested functions within current function
3. Local functions within current file
4. Functions in current folder
5. Functions elsewhere on the path, in order of appearance

Precedence of functions within the same folder depends on file type:

1. MATLAB built-in functions have precedence
2. Then Simulink models
3. Then program files with .m extension

Copyright © Dr. Mohammed Hawa
Electrical Engineering Department, University of Jordan 27

## Comments in MATLAB

- Comment lines start with a \% not / /
- Comments are not executed by MATLAB; it is there for people reading the code.
- Helps people understand what the code is doing and why!
- Comments are VERY IMPORTANT.
- Comment anything that is not easy to understand.
- Good commenting is a huge help when maintaining/fixing/extending code.
- Header comments show up when typing the help command.


## Bad ys. Good Comments/Code <br> \% set $x$ to zero <br> $\mathrm{x}=0$ <br> \% calculate y <br> $\mathrm{y}=\mathrm{x} * 9 / 5+32$

```
% Convert freezing point of
% water from celsius to
% farenheit
C = 0
f = c * 9/5 + 32
```


## Exercise

Editor - D:\EE 201 Computer Applications\Book Chapters\Lecture3 Arrays and Script Files\terr

```
File Edit Text Go Cell Tools Debug Desktop Window Help
```



```
*冒 [冒 | - 1.0 + | < 1.1
1 % temperature.m Convert the boiling point for
 % water from degrees Celsius (C) to Farenheit (F)
 % Author: Dr. Mohammed Hawa
 % Convert freezing point of water
 C = 100
7- F = C* 9/5 + 32
```


## Header comments

```
>> help temperature
 temperature.m Convert the boiling point for
 water from degrees Celsius (C) to Farenheit (F)
 Author: Dr. Mohammed Hawa
>> temperature
C=
F}
 212
```


## Simple User Interaction; I/Q

- Use input command to get input from the user and store it in a variable:
h = input('Enter the height:')
- MATLAB will display the message enclosed in quotes, wait for input and then store the entered value in the variable


## Simple User Interaction; I/Q

- Use disp command to show something to a user
disp('The area of the cylinder is: ') disp(A)
- MATLAB will display any message enclosed in quotes and then the value of the variable.


## Exercise

```
r = input('Enter the radius:');
h = input('Enter the height:');
v = pi * r^2 * h;
A = 2 * pi * r * (r + h);
disp('The volume of the cylinder is: ');
disp(V);
disp('The area of the cylinder is: ');
disp(A);
```

>> mycylinder
Enter the radius:5
Enter the height:13
The volume of the cylinder is:
$1.0210 e+003$
The area of the cylinder is:
565.4867

## Summary

disp (A)
disp('text')
x = input('text')
x = input('text','s')

Displays the contents, but not the name, of the array A.

Displays the text string enclosed within quotes. Displays the text in quotes, waits for user input from the keyboard, and stores the value in x .
Displays the text in quotes, waits for user input from the keyboard, and stores the input as a string in $x$.

## Homework

- The speed $v$ of a falling object dropped with zero initial velocity is given as a function of time $t$ by $v=g t$, where $g$ is the gravitational acceleration.
- Plot $v$ as a function of $t$ for $0 \ll t \ll t_{f}$, where $t_{f}$ is the final time entered by the user.
- Use a script file with proper comments.


## Solution

```
% Plot speed of a falling object
% Author: Dr. Mohammed Hawa
g = 9.81; % Acceleration in SI units
tf = input('Enter final time in seconds:');
t = [0:tf/500:tf]; % array of 501 time instants
v = g*t; % speed
plot(t,v);
xlabel('t (sseconds)');
ylabel('v m/s)');
```


## Homework

- Solve as many problems from Chapter 2 as you can
- Suggested problems:
- $2.33,2.34,2.35,2.36,2.39,2.41,2.45,2.48$


# Lecture 4: Complex Numbers Functions, and Data Input 

Dr. Mohammed Hawa<br>Electrical Engineering Department University of Jordan

## What is a Function?

- A MATLAB Function (e.g. $y=$ func $(x 1, x 2)$ ) is like a script file, but with inputs and outputs provided automatically in the commend window.
- In MATLAB, functions can take zero, one, two or more inputs, and can provide zero, one, two or more outputs.
- There are built-in functions (written by the MATLAB team) and functions that you can define (written by you and stored in .m file).
- Functions can be called from command line, from wihtin a script, or from another function.

Table 3.1-1 Some common mathematical functions

Exponential $\exp (x)$ sqrt (x)	Exponential; $e^{x}$.   Square root; $\sqrt{x}$.
Logarithmic	
$\log (\mathrm{x})$	Natural logarithm; $\ln x$.
$\log 10$ ( x )	Common (base-10) logarithm; $\log x=\log _{10} x$.
Complex	
abs (x)	Absolute value; $x$.
angle(x)	Angle of a complex number $x$.
conj (x)	Complex conjugate.
imag (x)	Imaginary part of a complex number $x$.
real (x)	Real part of a complex number $x$.
Numeric	
ceil (x)	Round to the nearest integer toward $\infty$.
fix(x)	Round to the nearest integer toward zero.
floor (x)	Round to the nearest integer toward $-\infty$.
round ( x )	Round toward the nearest integer.
sign (x)	Signum function:
	+1 if $x>0 ; 0$ if $x=0 ;-1$ if $x<0$.

## Functions are Helpful

- Enable "divide and conquer" strategy
- Programming task broken into smaller tasks
- Code reuse
- Same function useful for many problems
- Easier to debug
- Check right outputs returned for all possible inputs
- Hide implementation
- Only interaction via inputs/outputs, how it is done (implementation) hidden inside the function.


## Finding Useful Functions

- You can use the look for command to find MATLAB functions that are relevant to your application.
- Example: >> lookfor imaginary
- Gets a list of functions that deal with imaginary numbers.
- i - Imaginary unit.
- j - Imaginary unit.
- complex - Construct complex result from real and imaginary parts.
- imag - Complex imaginary part.


## Calling Functions

- Function names are case sensitive (meshgrid, meshGrid and MESHGRID are interpreted as different functions).
- Inputs (called function arguments or function parameters) can be either numbers or variables.
- Inputs are passed into the function inside of parentheses () separated by commas.
- We usually assign the output to variable(s) so we can use it later. Otherwise it is assigned to the built-in variable ans.


## Rules

- To evaluate $\sin 2$ in MATLAB, we type $\sin (2)$, not $\sin [2]$
- For example $\sin [x(2)]$ gives an error even if $x$ is defined as an array.
- Inputs to functions in MATLAB can be sometimes arrays.

```
>> x = -3 + 4i;
>> mag_x = abs(x)
mag_x =
>> mag_y = abs(6 - 8i)
mag_y =
>> angle_x = angle(x)
angle_x =
 2.2143
>> angle(x)
ans =
 2.2143
>> x = [5,7,15]
x= 5 7 15
>> y = sqrt(x)
2.2361 2.6458 3.8730
```


## Function Composition

- Composition: Using a function as an argument of another function
- Allowed in MATLAB.
- Just check the number and placement of parentheses when typing such expressions.
- sin (sqrt (x) +1)
- $\log (x . \wedge 2+\sin (5))$


## Which expression is correct?

- You want to find $\sin ^{2}(x)$. What do you write?
- (sin (x) ) ^2
- $\sin ^{\wedge} 2(x)$
- $\sin { }^{\wedge} 2 x$
- $\sin \left(x^{\wedge} 2\right)$
- $\sin (x)^{\wedge} 2$
- Solution: Only first and last expressions are correct.


## Trigonometric Functions

```
Trigonometric*
cos (x) Cosine; 毛 x
cot (x) Cotangent; cot }x\mathrm{ .
CsC (x) Cosecant; csc }x\mathrm{ .
sec (x) Secant; sec x.
sin(x) Sine; 新}
tan (x) Tangent; tan }x\mathrm{ .
Inverse trigonometric}\mp@subsup{}{}{\dagger
acos (x)
 Inverse cosine; arccos}x=\mp@subsup{\operatorname{cos}}{}{-1}x\mathrm{ .
acot (x) Inverse cotangent; arccot }x=\mp@subsup{\operatorname{cot}}{}{-1}x\mathrm{ .
acsc (x) Inverse cosecant; arccsc}x=\mp@subsup{\operatorname{csc}}{}{-1}x
asec (x) Inverse secant; arcsec }x=\mp@subsup{\operatorname{sec}}{}{-1}x\mathrm{ .
asin}(x)\quad\mathrm{ Inverse sine; arcsin }x=\mp@subsup{\operatorname{sin}}{}{-1}x
atan(x)
 Inverse tangent; arctan }x=\mp@subsup{\operatorname{tan}}{}{-1}x\mathrm{ .
atan2 (y,x)
```

Cosine; $\cos x$.
Cotangent; $\cot x$.
Cosecant; $\csc x$.
Secant; $\sec x$.
Sine; $\sin x$.
Tangent; $\tan x$.

Inverse cosine; $\arccos x=\cos ^{-1} x$.
Inverse cotangent; $\operatorname{arccot} x=\cot ^{-1} x$.
Inverse cosecant; $\operatorname{arccsc} x=\csc ^{-1} x$.
Inverse secant; $\operatorname{arcsec} x=\sec ^{-1} x$.

Inverse tangent; $\arctan x=\tan ^{-1} x$.
Four-quadrant inverse tangent.

[^1]
## Hyperbolic functions

## Hyperbolic

$\cosh (x)$
coth (x)
$\operatorname{csch}(x)$
$\operatorname{sech}(x)$
$\sinh (x)$
$\tanh (\mathrm{x})$
Inverse hyperbolic
acosh (x)
$\operatorname{acoth}(x)$
Inverse hyperbolic cosine Inverse hyperbolic cotangent
$\operatorname{acsch}(x) \quad$ Inverse hyperbolic cosecant
$\operatorname{asech}(x) \quad$ Inverse hyperbolic secant
$\operatorname{asinh}(x) \quad$ Inverse hyperbolic sine
atanh (x)
Hyperbolic cosine; $\cosh x=\left(e^{x}+e^{-x}\right) / 2$.
Hyperbolic cotangent; $\cosh x / \sinh x$.
Hyperbolic cosecant; $1 / \sinh x$.
Hyperbolic secant; $1 / \cosh x$.
Hyperbolic sine; $\sinh x=\left(e^{x}-e^{-x}\right) / 2$.
Hyperbolic tangent; $\sinh x / \cosh x$.

Inverse hyperbolic tangent

## User-Defined Functions

- Functions must be saved to a file with .m extension.
- Filename (without the .m) must match EXACTLY the function name.
- First line in the file must begin with a function definition line that illustrates inputs and outputs.

```
function [output variables] = name(input variables)
```

- This line distinguishes a function M-file from a script M-file.
- Output variables are enclosed in square brackets.
- Input variables must be enclosed with parentheses.


## Functions Names

- Function names may only use alphanumeric characters and the underscore.
- Functions names should NOT:
- include spaces
- start with a number
- use the same name as an existing command
- Consider adding a header comment, just under the function definition (for help).


## Exercise: Your Own pol2cart

- Make sure you set you Current Folder to Desktop (or where you saved the .m file).
Editor - D:\EE 201 Computer Applications\Book Chapters\Lecture4 Scripts and Functions\polar_to_cartesian.m

```
|\mp@code{File Edit Text Go Cell Tools Debug Desktop Window Help}
```


## Test your newly defined function

```
>> [a, b] = polar_to_cartesian(3, pi)
a=
 -3
b =
 3.6739e-016
>> polar_to_cartesian(3, pi)
ans =
 -3
>> [a, b] = polar_to_cartesian(3, pi/4)
a =
 2.1213
b =
 2.1213
>> [a, b] = polar_to_cartesian([3 3 3], [pi pi/4 pi/2])
a =
 -3.0000 2.1213 0.0000
b}
 0.0000 2.1213 3.0000
```


## MATLAB has pol2cart

```
>> help pol2cart
POL2CART Transform polar to Cartesian coordinates.
 [X,Y] = POL2CART(TH,R) transforms corresponding elements of data
 stored in polar coordinates (angle TH, radius R) to Cartesian
 coordinates X,Y. The arrays TH and R must the same size (or
 either can be scalar). TH must be in radians.
 [X,Y,Z] = POL2CART(TH,R,Z) transforms corresponding elements of
 data stored in cylindrical coordinates (angle TH, radius R, height
 Z) to Cartesian coordinates X,Y,Z. The arrays TH, R, and Z must be
 the same size (or any of them can be scalar). TH must be in radians.
 Class support for inputs TH,R,Z:
 float: double, single
 See also cart2sph, cart2pol, sph2cart.
 Reference page in Help browser
 doc pol2cart
```



## Just like your code!

```
>> type pol2cart
function [x,y,z] = pol2cart(th,r,z)
%POL2CART Transform polar to Cartesian coordinates.
 X,Y] = POL2CART(TH,R) transforms corresponding elements of data
 stored in polar coordinates (angle TH, radius R) to Cartesian
 coordinates X,Y. The arrays TH and R must the same size (or
 ither can be scalar). TH must be in radians.
 [X,Y,Z] = POL2CART(TH,R,Z) transforms corresponding elements of
 data stored in cylindrical coordinates (angle TH, radius R, height
 Z) to Cartesian coordinates X,Y,Z. The arrays TH, R, and Z must be
 the same size (or any of them can be scalar). TH must be in radians.
 Class support for inputs TH,R,Z:
 float: double, single
 See also CART2SPH, CART2POL, SPH2CART.
 L. Shure, 4-20-92.
 Copyright 1984-2004 The MathWorks, Inc.
 $Revision: 5.9.4.2 $ $Date: 2004/07/05 17:02:08 $
x = r.*cos(th);
y = r.*sin(th);
```


## Exercise: Spiral

```
>> r = linspace(0, 10, 20);
>> theta = linspace(0, 2*pi, 20);
>> [x, y] = polar_to_cartesian(r, theta);
>> plot(x,y);
```




## Possible Cases

- One input:
function [o1, o2, o3] = myfunc(i1)
- Three inputs:
function $[o 1, ~ o 2, ~ o 3]=$ myfunc(i1, i2, i3)
- No inputs:
function $[01, ~ o 2, ~ 03]=$ myfunc()
function $[01,02, \circ 3]=$ myfunc
- One output:
function [o1] = myfunc(i1, i2, i3)
function o1 = myfunc(i1, i2, i3)
- No output:
function [] = myfunc(i1, i2, i3)
function myfunc(i1, i2, i3)


## Local Xariables

```
function \(z=\) fun(x,y)
u = 3*x;
\(\mathrm{z}=\mathrm{u}+6 * \mathrm{y} .{ }^{\wedge} 2\);
\% return missing is fine at end of file
```

- The variables $x, y, u, z$ are local to the function fun, so their values will not be available in the workspace outside the function.
- See example below.


## Example

```
>> x = 3;
>> b = 7;
>> q = fun(x, b);
>> x
x =
 3
>> y
??? Undefined function or variable 'y'.
>> u
??? Undefined function or variable 'u'.
>> z
??? Undefined function or variable 'z'.
>> q
q =
 303
```


## Exercise

```
function show_date
clear
clc
date
% how many inputs and outputs do we have?
```


## Homework

```
function [dist, vel] = drop(vO, t)
% Compute the distance travelled and the
% velocity of a dropped object, from
% the initial velocity vO, and time t
% Author: Dr. Mohammed Hawa
g = 9.80665; % gravitational acceleration (m/s^2)
vel = g*t + vO;
dist = 0.5*g*t.^^2 + vO*t;
```

```
>> t=0:0.1:5;
>> [distance_dropped, velocity] = drop(10, t);
>> plot(t, velocity)
```


## Local Xs. Global Xariables

- The variables inside a function are local. Their scope is only inside the function that declares them.
- In other words, functions create their own workspaces.
- Function inputs are also created in this workspace when the function starts.
- Functions do not know about any variables in any other workspace.
- Function outputs are copied from the function workspace when the function ends.
- Function workspaces are destroyed after the function ends.
- Any variables created inside the function "disappear" when the function ends.


## Local Xs. Global Xariables

- You can, however, define global variables if you want using the global keyword.
- Syntax: global a x q
- Global variables are available to the basic workspace and to other functions that declare those variables global (allowing assignment to those variables from multiple functions).


## Subfunctions

- An M-file may contain more than one user-defined function.
- The first defined function in the file is called the primary function, whose name is the same as the M-file name.
- All other functions in the file are called subfunctions. They can serve as subroutines to the primary function.
- Subfunctions are normally "visible" only to the primary function and other subfunctions in the same file; that is, they normally cannot be called by programs or functions outside the file.
- However, this limitation can be removed with the use of function handles.
- We normally use the same name for the primary function and its file, but if the function name differs from the file name, you must use the file name to invoke the function.


## Exercise

- The following example shows how the MATLAB M-function mean can be superceded by our own definition of the mean, one which gives the rootmean square value.

```
function y = subfun_demo(a)
y = a - mean(a);
```

function $w=$ mean(x)
$\mathrm{w}=\operatorname{sqrt(sum(x.\wedge 2))/length(x);~}$

## Example

- A sample session follows.

```
>>y = subfn_demo([[4 -4])
y =
 1.1716 -6.8284
```

- If we had used the MATLAB M-function mean, we would have obtained a different answer; that is,

```
>>a = [4 -4];
>>b = a - mean(a)
b =
 4 -4
```


## Function Handles

- You can create a function handle to any function by using the @ sign before the function name.
- You can then use the handle to reference the function.
function $y=f 1(x)$
$y=x+2 * \exp (-x)-3$;
- You can pass the function as an argument to another function using the handle. Example: fzero function finds the zero of a function of a single variable $x$.
- >> x0 = 3; \% initial guess
- >> fzero(@f1, x0)


## Handle xs. Return Value

```
\(\mathrm{t}=-1: 0.1: 5 ;\)
```

```
plot(t, f1(t));
```

- There is a zero near $x=-0.5$ and one near $x=3$.



## Exercise

fzero(@function, x0)

- where @function is the function handle, and $x 0$ is a user-supplied initial guess for the zero.

```
>> fzero(@f1, -0.5)
```

>> fzero(@f1, -0.5)
ans =
ans =
-0.5831
-0.5831
>> fzero(@f1, 3)
>> fzero(@f1, 3)
ans =
ans =
2.8887
2.8887
>> fzero(@sin, 0.1)
>> fzero(@sin, 0.1)
ans =
ans =
6.6014e-017
6.6014e-017
>> fzero(@cos, 2)
>> fzero(@cos, 2)
ans =
ans =
1.5708
1.5708
>> pi/2
>> pi/2
ans =
ans =
1.5708

```
 1.5708
```


## Finding the Minimum

- The fminbnd function finds the minimum of a function of a single variable $x$ in the interval $\mathrm{x} 1 \leq \mathrm{x} \leq \mathrm{x} 2$.
- fminbnd(@function, x1, x2)
- fminbnd (@cos, 0, 4) returns 3.1416
- function $y=f 2(x)$
- $y=1-x . * \exp (-x)$;
- $\mathrm{x}=$ fminbnd (@f2, 0, 5) returns $x=1$
- How would I find the min value of f2? (i.e. 0.6321)


## Exercise

- For the function:
- $y=0.025 x^{5}-0.0625 x^{4}-0.333 x^{3}+x^{2}$
- Find the minimum in the intervals:
- $x \in[-1,4]$
- $x \in[1,4]$
- $x \in[2,4]$
- $x \in[-1,1]$



## Old Xs. Nexy

- New syntax for function handles:
fzero(@f1, -0.5)
- Older syntax for function handles :
fzero('f1', -0.5)
- The new syntax is preferred, though both will work just fine.
- Which one gives the correct answer:
fzero('sin', 3) or fzero(@sin, 3)


## The fminsearch function

- fminsearch finds minimum of a function of more than one variable.
- To find where the minimum of $f=x e^{-\left(x^{2}+y^{2}\right)}$, define it in an M-file, using the vector $x$ whose elements are $x(1)=x$ and $x(2)=y$.

```
function f = f4(x)
f = x(1).* }\operatorname{exp}(-x(1).^2-x(2).^2)
```

- Suppose we guess that the minimum is near $x=0, y=0$.

```
>>fminsearch(@f4,[0,0])
ans =
 -0.7071 0.000
```

- Thus the minimum occurs at $x=-0.7071, y=0$.


## Inline Function

- No need to save the function in an M-file.
- Useful for small size functions defined on the fly.
- You can use a string array to define the function.
- Anonymous functions are similar (see next).

Copyright © Dr. Mohammed Hawa

```
```

>> f4 = inline('x.^2-4')

```
```

>> f4 = inline('x.^2-4')
f4 = Inline function:
f4 = Inline function:
f4(x) = x.^ 2-4
f4(x) = x.^ 2-4
>> [x, value] = fzero(f4, 0)
>> [x, value] = fzero(f4, 0)
x =
x =
value =
value =
>> f5str = 'x.^2-4'; % string array
>> f5str = 'x.^2-4'; % string array
>> f5 = inline(f5str)
>> f5 = inline(f5str)
f5 =
f5 =
Inline function:
Inline function:
f5(x) = x.^2-4
f5(x) = x.^2-4
>> x = fzero(f5, 3)
>> x = fzero(f5, 3)
x = 2
x = 2
>> x = fzero('x.^2-4', 3)
>> x = fzero('x.^2-4', 3)
x =
x =
>> f6 = inline('x.*y')
>> f6 = inline('x.*y')
f6 =
f6 =
Inline function:
Inline function:
Inline function:

```
 Inline function:
```

```
 f4(x) = x. (-4
```

```
 f4(x) = x. (-4
```

Electrical Engineering Department, University of Jordan

## Anonymous functions

- Here is a simple function called sq to calculate the square of a number.

```
>> sq = @(x) x.^2;
>> sq = @(x) (x.^2)
sq = @(x)(x.^2)
>> sq([[5 7])
ans =
 25 49
>> fminbnd(sq, -10, 10)
ans =
```


## Exercise

```
>> sqrtsum = @(x,y) sqrt(x.^2 + y.^2);
>> sqrtsum(3, 4)
ans=
 5
>> A = 6; B = 4;
>> plane = @(x,y) A*x + B*y;
>> z = plane(2,8)
z =
 4 4
>> f = @(x) x.^3; % try by hand!
>> g = @(x) 5*sin(x);
>> h = @(x) g(f(x));
>> h(2)
ans =
 4.9468
```


## Xariables in Anonymous Functions

- When the function is created MATLAB, it captures the values of these variables and retains those values for the lifetime of the function handle. If the values of A or B are changed after the handle is created, their values associated with the handle do not change.
- This feature has both advantages and disadvantages, so you must keep it in mind.


## For Speed Use Handles

- The function handle provides speed improvements.
- Another advantage of using a function handle is that it provides access to subfunctions, which are normally not visible outside of their defining M-file.


## Importing Rata: ASCII

- Make the 'data' folder your Current Folder.
- Delimited ASCII files are common to save data from experiments.
- dlmread/dlmwrite
>> a = dlmread('ascii.txt')
a =

1	2	3	4
5	6	7	8
9	10	11	12

## Importing Datad: Excel

- Make the 'data' folder your Current Folder.
- MATLAB can also read and write to Excel Files.
- xlsread/xlswrite
>> a = xlsread('data.xls')
a =

10	30	50	60
15	20	25	30
30	31	32	33
80	82	84	86


copyright © Dr. Mohammed Hawa

## Importing Data; Images

- Make the 'data' folder your Current Folder.
- Read and write images:
- imread/imwrite


```
>> c = imread('cat.jpg');
>> imshow(c);
>>
>> imshow(255-c); % inverse
```


## Importing Data: Sound Files

```
% use a script file (fourier.m)
[y,Fs,bits] = wavread('bequiet');
N = length(y);
t = (1/Fs)*(1:N);
plot(t, y);
xlabel('Time (s)');
ylabel('Amplitude');
f = Fs*(-N/2:N/2-1)/N;
y_fft = fftshift(abs(fft(y)));
figure;
plot(f, Y_fft);
xlabel('Frequency (Hz)');
ylabel('Amplitude');
```


## bequiet. wax (BWX of human yoice!)




## tuningA4. wax (frequency?)




## Homework

- Solve as many problems from Chapter 3 as you can
- Suggested problems:
- 3.1, 3.3, 3.6, 3.9, 3.14, 3.18, 3.24


# Lecture 5: Programming using MATLAB 

Dr. Mohammed Hawa<br>Electrical Engineering Department Unixersity of Jofdan

## Algorithms and Control Structures

- Algorithm: a sequence of instructions that performs some task in a finite amount of time.
- The algorithm uses a control structure to execute instructions in a certain order.
- Control structure categories:
- Sequential operations: Instructions executed in order.
- Conditional operations: First ask a question to be answered with a true/false answer and then select the next instruction based on the answer.
- Iterative operations (loops): Repeat the execution of a block of instructions.


## Before Programming

- Before writing a program, we need a plan.
- A plan helps us focus on the problem, not the code.
- Common methods to show a plan are:
- Flowchart: A graphical description of the program flow.
- Pseudocode: A verbal description of the program details.


## Flowcharts

- Flowcharts are geometric symbols to describe the program steps.
- They capture the "flow" of the program.
- Flowcharts are useful for developing and documenting programs that contain conditional statements, because they can display the various paths (called "branches") that a program can take, depending on how the conditional statements are executed.



## Pseudocode

- In pseudocode, natural language and mathematical expressions are used to construct statements that look like computer statements but without detailed syntax.
- Each pseudocode instruction may be numbered, but should be unambiguous and computable.
- Similar to a recipe.


## Pseudocode Example

Input: A nonempty string of characters $S_{1} S_{2} \ldots S_{n}$, and a positive integer $n$
giving the number of characters in the string.
Output: See the related problem below.
Procedure:
1 Get $n$
2 Get $S_{1} S_{2} \ldots S_{n}$
3 Set count $=1$
4 Set $c h=S_{1}$
5 Set $i=2$
6 While $i \leq n$
If $S_{i}$ equals $c h$
Set count $=$ count +1
Set $i=i+1$
10 Print ch, ' appeared ', count, ' times.'
11 Stop
Problem 1.1 What is printed if the input string is pepper?
Problem 1.2 What is printed if the input string is CACCTGGTCCAAC?

```
Algorithm Distribute
nput: (G}\mp@subsup{}{}{*},f,edge),\mathrm{ where }\mp@subsup{G}{}{*}=(N,M,s,t,\mp@subsup{E}{}{*},w),f\mathrm{ is a set of flows }
 and edge is the edge that is being distributed.
 Initialize scan (v)=0,\operatorname{label}(v)=0,\operatorname{scan}(e)=0,\operatorname{label}(e)=0\mathrm{ for all v}\inN,e\inM
 vert =0, capvert =0
 label(edge) = 1, pathcap(edge) =w(edge)
 while (w(edge) > \sum f f v
 for all labeled e\inM, with scan(e)=0
 label unlabeled neighbors of e (i.e v\inN)
 scan (e) = 1, pred (v)=e, pathcap (v) = pathcap (e)
 endfor
 for all labeled }v\inN\mathrm{ with }\operatorname{scan}(v)=
 if min}(w(v)-\mp@subsup{\sum}{e}{}\mp@subsup{f}{e}{v},\mathrm{ pathcap }(v))>\mathrm{ capvert then
 vert = v, capvert = min (w- \mp@subsup{\sum}{e}{}\mp@subsup{f}{e}{v},\operatorname{pathcap}(v))
 else
 label all unlabeled }\mp@subsup{e}{}{\prime}\inM\mathrm{ s.t }\mp@subsup{f}{\mp@subsup{e}{}{\prime}}{v}>
 endif
 scan(v)=1
 endfor
 if vert >0 then
 An augmenting path from s to t has been found: backtrack from
 vert using pred() and change the values of f}\mp@subsup{f}{e}{v}\mathrm{ as requirted.
 for all }e\inM,v\in
 label (e)=0,\operatorname{san}(e)=0,\operatorname{label}(v)=0,\operatorname{scan}(v)=0
 endfor
 vert = 0, capvert = 0,label (edge) = 1
 pathcap (edge) =w(edge) - \sumv f fedge
 endif
 endwhile
```


## During and After Programming

- Make sure to provide effective documentation along with the program. This can be accomplished using:
- Proper selection of variable names to reflect the quantities they represent.
- Using comments within the program.
- Debugging a program is the process of finding and removing the "bugs" or errors in a program.


## Bugs

Bugs usually fall into one of two categories:

1. Syntax errors: such as omitting a parenthesis or comma, or spelling a command name incorrectly. MATLAB usually detects the more obvious errors and displays a message describing the error and its location.
2. Errors due to an incorrect mathematical procedure. These are called runtime errors. They do not necessarily occur every time the program is executed; their occurrence often depends on the particular input data. A common example is division by zero.

## Finding Bugş; Rebugging

To locate runtime errors, try the following:

1. Always test your program with a simple version of the problem, whose answers can be checked by hand calculations.
2. Display any intermediate calculations by removing semicolons at the end of statements.

Relational Operators	
Operator	Meaning
$<$	Less than.
$<=$	Less than or equal to.
$>$	Greater than.
$>=$	Greater than or equal to.
$==$	Equal to.
$\sim=$	Not equal to.

## Examples

```
>> a = 3;
>> b = 4;
>> a == b
ans =
>> a ~= b
ans =
>> a < b
ans =
 1
>> b >= -4
ans =
```

Relational operators can be used for array addressing.
For example
>> $x=[6,3,9] ;$
$\gg y=[14,2,9] ;$
$\gg x<y$
ans $=$
100
>> $z=x(x<y)$
z =
6
finds all the elements in $x$ that are less than the corresponding elements in y . The result is $\mathrm{z}=6$.

The arithmetic operators,+- , ${ }^{*}$, /, and $\backslash$ have precedence over the relational operators. Thus the statement
$z=5>2+7$
is equivalent to
$z=5>(2+7)$
and returns the result $\mathrm{z}=0$.
We can use parentheses to change the order of precedence; for example, $z=(5>2)+7$ evaluates to $\mathrm{z}=8$.

## The logical Class

When the relational operators are used, such as
$x=(5>2)$
they create a logical variable, in this case, x .
Logical variables may have only the values 1 (true) and 0 (false).

Just because an array contains only 0s and 1s, however, it is not necessarily a logical array. For example, in the following session k and w appear the same, but k is a logical array and w is a numeric array, and thus an error message is issued.
$\gg x=-2: 2 ;$
$\gg k=(\operatorname{abs}(x)>1)$
$\mathrm{k}=$
$\begin{array}{lllll}1 & 0 & 0 & 0 & 1\end{array}$
$\gg z=x(k)$
z =
-2 2
$\gg \mathrm{w}=[1,0,0,0,1] ; \mathrm{v}=\mathrm{x}(\mathrm{w})$
??? Subscript indices must either be real positive... integers or logicals.

## Accessing Arrays Using Logical Arrays

When a logical array is used to address another array, it extracts from that array the elements in the locations where the logical array has 1s.

So typing A (B), where B is a logical array of the same size as $A$, returns the values of $A$ at the indices where $B$ is 1 .

Given $A=[5,6,7 ; 8,9,10 ; 11,12,13]$ and $B=$ logical (eye (3)), we can extract the diagonal elements of A by typing $\mathrm{C}=\mathrm{A}(\mathrm{B})$ to obtain $\mathrm{C}=$ [5;9;13].

See our earlier discussion of logical indexing.

	TO	cat Operators		
Operator	Name	Definition		
~	NOT	$\sim$ A returns an array the same dimension as A; the new array has ones where A is zero and zeros where A is nonzero.		
\&	AND	$A \& B$ returns an array the same dimension as $A$ and $B$; the new array has ones where both $A$ and $B$ have nonzero elements and zeros where either A or B is zero.		
1	OR	$A \mid B$ returns an array the same dimension as $A$ and $B$; the new array has ones where at least one element in $A$ or $B$ is nonzero and zeros where $A$ and $B$ are both zero.		
\& \&	Short-Circuit AND	Short-circuiting means the second operand (right hand side) is evaluated only when the result is not fully determined by the first operand (left hand side)   $A \& B$ ( $A$ and $B$ are evaluated)   $A \& \& B$ ( $B$ is only evaluated if $A$ is true)		
11	Short-Circuit OR	\| can operate on arrays but		only operates on scalars
Copyright © Dr. Mohammed Hawo		Electrical Engineering Department, University of Jordan 20		

## Examples

```
>> a = 3
>>b = 4;
>> x = ~ (a== b)
x =
 1
>>(a<b) & (b < c)
ans=
 1
>>(a<b) &&& (b<c)
ans=
>> & && 0
ans =
>> [ll 2] && [l3 4]
??? Operands to the || and && operators must
be convertible to logical scalar values.
```


## Qrder of precedence for operators

## Precedence Operator type

First Parentheses; evaluated starting with the innermost pair.

Second Arithmetic operators and logical NOT (~); evaluated from left to right.

Third Relational operators; evaluated from left to right.

Fourth Logical AND.
Fifth Logical OR.

```
Logical functions
 Logical function Definition
 ischar(A) Returns a 1 if A is a character array and 0 otherwise. Returns a 1 if A is an empty matrix and 0 otherwise.
isinf (A) Returns an array of the same dimension as \(A\), with ones where A has 'inf' and zeros elsewhere.
isnan(A) Returns an array of the same dimension as A with ones where A has ' NaN ' and zeros elsewhere. ('NaN' stands for "not a number," which means an undefined result.)
```


## Logical Functions

isnumeric(A)
isreal(A)
logical(A)
$\operatorname{xor}(A, B)$

Returns a 1 if A is a numeric array and 0 otherwise.
Returns a 1 if A has no elements with imaginary parts and 0 otherwise.
Converts the elements of the array A into logical values.
Returns an array the same dimension as A and B ; the new array has ones where either A or B is nonzero, but not both, and zeros where $A$ and $B$ are either both nonzero or both zero.

## Logical Operators and the find Function

Consider the session

```
>> x = [5, -3, 0, 0, 8];
>> y = [2, 4, 0, 5, 7];
>> x&y
ans =
```

```
>> z = find(x&y)
```

>> z = find(x\&y)
Z =
Z =
1 2 5

```
 1 2 5
```

Note that the find function returns the indices, and not the values.

## Conditional Statements: The if Statement

The if statement's basic form is
if logical expression statements
end

Every if statement must have an accompanying end statement. The end statement marks the end of the statements that are to be executed if the logical expression is true.

## The else Statement

The basic structure for the use of the else statement is
if logical expression
statement group 1
else
statement group 2
end
When the test, if logical expression, is performed, where the logical expression may be an array, the test returns a value of true only if all the elements of the logical expression are true!

## The elseif Statement

The general form of the if statement is

```
if logical expression 1
 statement group 1
elseif logical expression 2
 statement group 2
else
 statement group 3
end
```

The else and elseif statements may be omitted if not required. However, if both are used, the else statement must come after the el seif statement to take care of all conditions that might be unaccounted for.

## Exercise

```
File: test.m
a = 5;
b = 4;
if a == b
 disp(a);
 disp(b);
elseif a < b
 disp(a);
else
 disp(b);
end
```


## Example

- Suppose that we want to
compute $y$, which is given by the equation:

$$
y= \begin{cases}15 \sqrt{4 x}+10 & \text { if } x \geq 9 \\ 10 x+10 & \text { if } 0 \leq x<9 \\ 10 & \text { if } x<0\end{cases}
$$

function $y=$ test $(x)$
if $x>=9$
$y=15 * \operatorname{sqrt}(4 * x)+10$
elseif $x>=0 \%$ already less than 9
$y=10 * x+10$
else
$y=10$
end

Copyright © Dr. Mohammed Hawa

Example: if we fail to recognize how the test works, the following statements do not perform the way we might expect.
$x=\left[\begin{array}{lll}4 & -9 & 25\end{array}\right] ;$
if $\mathrm{x}<0$
disp('Cant find square root of negative.') else
y $=\operatorname{sqrt}(x)$
end

When this program is run it gives the result
y =
$20+3.000 i 5$

Instead, consider what happens if we test for x positive.
$\mathrm{x}=[4,-9,25]$;
if $x>=0$
$y=\operatorname{sqrt}(x)$
else
disp('Cant find square root of negative.')
end
When executed, it produces the following message:
Cant find square root of negative.
The test if $\mathrm{x}<0$ is false, and the test if $\mathrm{x}>=0$ also returns a false value because $\mathrm{x}>=0$ returns the vector $[1,0,1]$.

## Loops

- Often in your programs you will want to "loop"
- repeat some commands multiple times
- If you know how many times you want to loop
- use a for loop
- If you want to loop until something happens (a condition is satisfied)
- use a while loop
- If you find yourself typing similar lines more than a couple of times, use a loop


## for Loops

A simple example of a for loop is:
m = 0;
$\mathrm{x}(1)=10$;
for $k=2: 3: 11 ;$
$m=m+1 ;$
$\mathrm{x}(\mathrm{m}+1)=\mathrm{x}(\mathrm{m})+\mathrm{k}^{\wedge} 2$;
end
$k$ takes on the values $2,5,8,11$. The variable $m$ indicates the index of the array $x$. When the loop is finished the array $x$ will have the values
$x(1)=14, x(2)=39, x(3)=103, x(4)=224$.

Note the following rules when using for loops with the loop variable expression $k=m: s: n$ :

- The step value s may be negative.

Example: $\mathrm{k}=10:-2: 4$ produces $\mathrm{k}=10,8,6,4$.

- If $s$ is omitted, the step value defaults to 1 .
- If $s$ is positive, the loop will not be executed if $m$ is greater than n .
- If $s$ is negative, the loop will not be executed if $m$ is less than n .
- If $m$ equals $n$, the loop will be executed only once.
- If the step value s is not an integer, round-off errors can cause the loop to execute a different number of passes than intended.


## Exercise

```
File: loop.m
for i = 1:1:5
 disp(i)
end
```

Matlab command prompt
>> loop

	1
	1
	2
	3
	4
	5

## Strings and Conditional Statements

A string is a variable that contains characters. Strings are useful for creating input prompts and messages and for storing and operating on data such as names and addresses.

To create a string variable, enclose the characters in single quotes. For example, the string variable name is created as follows:

```
>>name = 'Mohammed Ali'
```

name =

Mohammed Ali

The following string, number, is not the same as the variable number created by typing number $=123$.
>>number = '123'
number =
123

The following prompt program is a script file that allows the user to answer Yes by typing either Y or y or by pressing the Enter key. Any other response is treated as a No answer.

```
response = input('Continue? Y/N [Y]: ','s');
if (isempty(response))|(response ==
'Y')|(response == 'Y')
 response = 'Y'
else
 response = 'N'
end
```


## Programming Exercise \# 1

- Write a MATLAB program that does the following:
- The program asks you to enter your name.
- It waits for you to enter your name and hit Enter.
- The program reads your name, counts its characters and any blank spaces in the name, then displays something like this:
- You name is "Mohammed Ali". It has 11 characters and 1 blank space.

Using loops is slower than arrays in MATLAB
We can use the mask technique to compute the square root of only those elements of A that are no less than 0 and add 50 to those elements that are negative. The program is
$\mathrm{A}=[0,-1,4 ; 9,-14,25 ;-34,49,64]$;
$C=(A>=0) ;$
A(C) $=\operatorname{sqrt}(A(C))$
$A(\sim C)=A(\sim C)+50$

## while Loops

The while loop is used when the looping process terminates because a specified condition is satisfied, and thus the number of passes is not known in advance.
A simple example of a while loop is

```
x = 5;
while x < 25
 disp(x)
 x = 2*x - 1;
end
```

The results displayed by the disp statement are 5, 9, 17.

The typical structure of a while loop follows.

```
while logical expression
 statements
end
```

For the while loop to function properly, the following two conditions must occur:

1. The loop variable must have a value before the while statement is executed.
2. The loop variable must be changed somehow by the statements.


## Editor/Rebugger containing program to be analyzed



## The break statement

- break terminates the execution of a loop, so if you have a nested loop, break will only quit the innermost loop, and the program will continue running.

```
s=6; % initialize s to 6
while s~=1 % as long as s is not equal to 1 stay in loop
 if s==17 % if s equals 17
 sprintf('Found 17 in the loop!!')
 break;
 end
 if mod(s,2) % the actual "brains" of the iteration
 s=s/2;
 else
 s=3*s+1;
 end
end
```


## The continue statement

The following code uses a cont inue statement to avoid computing the logarithm of a negative number.

```
x = [10,1000,-10,100];
y = NaN*x;
for k = 1:length(x)
 if x(k) < 0
 continue
 end
 y(k) = log10(x(k));
end
y
```

The result is $\mathrm{y}=\left[\begin{array}{llll}1 & 3 & \mathrm{NaN} & 2\end{array}\right]$.

## Homework

- Write a script file to determine how many terms are required for the sum of the series $5 k^{2}-2 k, k=1,2,3, \ldots$ to exceed 10,000 . What is the sum for this many terms?

```
total = 0; k = 0;
while total < le4
 k = k + 1;
 total = total + 5*k^2 - 2*k;
end
disp('The number of terms is:')
disp(k)
disp('The sum is:')
disp(total)
```

- The sum is 10,203 after 18 terms.


## Exercise; Fourier Series

- $x(t)=c_{0}+\sum_{n=1}^{\infty} c_{n} \cos \left(n \omega_{0} t-\theta_{n}\right)$
- Discover the following periodic function:
- $x(t)=0.5+\frac{2}{\pi}\left[\cos (t)+\frac{1}{3} \cos (3 t)+\frac{1}{5} \cos (5 t)+\frac{1}{7} \cos (7 t)+\cdots\right]$
- Use a for or while loop. Use $n$ as the loop parameter to add certain terms then plot the result versus time $-10 \leq t \leq 10$.
- On one figure, draw the result of 3 terms.
- On one figure, draw the result of 10 terms.
- On one figure, draw the result of 100 terms.


## Infinite Loops

- "Infinite loop" = piece of code that will execute again and again ... without ever ending.
- Possible reasons for infinite loops:
- getting the conditional statement wrong
- forgetting the update step
- If you are in an infinite loop then ctrl-c stops MATLAB executing your program.


## The switch statement

The switch statement provides an alternative to using the if, elseif, and else commands.

Anything programmed using switch can also be programmed using if statements.

However, for some applications the switch statement is more readable than code using the if structure.

```
 Syntax of switch
switch input expression (can be a scalar or string).
 case valuel
 statement group 1
 case value2
 statement group 2
 .
 .
 otherwise
 statement group n
 end
```

The following switch block displays the point on the compass that corresponds to that angle.

```
switch angle
 case 45
 disp('Northeast')
 case 135
 disp('Southeast')
 case 225
 disp('Southwest')
 case 315
 disp('Northwest')
 otherwise
 disp('Direction Unknown')
 end
```



## Booleagn Xariables

- MATLAB allows boolean variables that take true/false values
if (atUniversity \& stillAStudent) needMoreMoney = true;
end


## Programming Exercise \#2

- Write a MATLAB program to solve this:
- One investment opportunity pays $5.5 \%$ annual profit, while a second investment opportunity pays $4.5 \%$ annual profit.
- Determine how much longer it will take to accumulate at least \$50,000 in the second investment opportunity compared to the first if you invest $\$ 1000$ initially and $\$ 1000$ at the end of each year.


## Programming Exercise \#3

- Write a MATLAB program that asks you for a hexadecimal integer number.
- The program should read that number and convert it to decimal.
- Example: 84CD hexadecimal is 33997 decimal.
- Can you improve on your program so it accepts binary or hexadecimal or decimal and converts it to all other formats? You need to accept numbers written in something like this: 94CAh or 110110001b.


## Homework

- Solve as many problems from Chapter 4 as you can
- Suggested problems:
- 4.2, 4.4, 4.5, 4.11, 4.13, 4.15, 4.16, 4.17, 4.23, $4.24,4.25,4.26,4.33,4.37,4.39,4.47$


# Lecture 6; Plotting in MATLAB 

Electrical Engineering Department University of Jordan

## A picture is worth a thousand words

- MATLAB allows you to plot data sets for better visualization and interpretation.
- There are different types of plots available in MATLAB (see next) including 2D and 3D plots.
- You can control all aspects of the plot: lines, colors, grids, labels, etc.
- Plotting clear and easy-to-read figures is an important skill, which you gain from experience.
- For pointers, read in your textbook the Requirements for a Correct Plot (Table 5.1-1, page 221), and Hints for Improving Plots (Table 5.1-3, page 226).


Nomenclature for a typical xy two-dimensional plot.


Example: Plot $y=0.4 \times \sqrt{1.8 x}$ for $0 \leq x \leq 52$, where $y$ represents the height of a rocket after launch, in miles, and $x$ is the horizontal (downrange) distance in miles.

```
>> x = 0:0.1:52;
>> y = 0.4*sqrt(1.8*x);
>> plot(x,y);
>> xlabel('Distance (miles)');
>> ylabel('Height (miles)');
>> title('Rocket Height vs. Distance');
```

Notice that for each $x$ there is $y$; so MATLAB plots one array against another.
Also notice how we added the axes labels and plot title. The resulting plot is shown on the next slide.

## The autoscaling feature in MATLAB selects tick-mark

 spacing.

Copyright © Dr. Mohammed Hawa
Electrical Engineering Department, University of Jordan

The plot will appear in the Figure window. You can use the plot in other applications in several ways:

1. You can print a hard copy of the figure by selecting File | Print menu item in the Figure window.
2. You can save the plot to a file to be used later. You can save the plot by selecting File | Save As menu item. Possible file formats include: *.fig (MATLAB format), *.bmp, *.eps, *.jpg, *.png, *.tif, *.pdf, .... Another way to save is File | Export Setup that allows specifying options for the output file, then selecting Export.
3. You can copy a figure to the clipboard and then paste it into another application using the Edit | Copy Figure menu item. For options, use Edit | Copying Options menu item.

When you have finished with the plot, close the figure window by selecting File \| Close menu item in the figure window.

If you do not close the window, it will not re-appear when a new plot command is executed. However, the figure will still be updated.

## One Rata Set: plot

$x=0: 2 * p i / 100: 2 * p i ;$
$\mathrm{y} 1=\sin (\mathrm{x})$;
plot (x,y1);
xlabel('x');
ylabel('y');
title('Example');
plot (y1): Plots values
of $y 1$ versus their indices
if y 1 is a vector.


## Multiple Rata Sets: plot, holct

```
x = 0:2*pi/100:2*pi;
y1 = sin(x);
y2 = cos(x);
y3 = sin(x)+\operatorname{cos}(x);
plot(x,y1);
hold on;
plot(x,y2);
plot(x,y3);
xlabel('x');
ylabel('y');
title('Example');
hold off;

\section*{Or better use one plot command}

\section*{Colors, Rata Markers \& Line Types}
- You can also specify your own line styles in the plot command.
- For full details enter help plot in MATLAB.
\begin{tabular}{|c|c|c|c|c|c|}
\hline b & blue & - & point & - & solid \\
\hline g & green & \(\bigcirc\) & circle & : & dotted \\
\hline \(r\) & red & x & x -mark & -. & dashdot \\
\hline c & cyan & + & plus & -- & dashed \\
\hline m & magenta & * & star & (none) & no line \\
\hline y & yellow & 3 & square & & \\
\hline k & black & d & diamond & & \\
\hline w & white & v & triangle (down) & & \\
\hline & & \(\wedge\) & triangle (up) & & \\
\hline & & \(<\) & triangle (left) & & \\
\hline & & \(>\) & triangle (right) & & \\
\hline & & p & pentagram & & \\
\hline & & h & hexagram & & \\
\hline
\end{tabular}
```

x = 0:2*pi/100:2*pi;
y1 = sin(x);
y2 = cos(x);
y3 = sin(x)+\operatorname{cos(x);}
plot(x,y1,'r-.', x,y2,'g-x',x,y3,'b+');
xlabel('x');
ylabel('y');


Exercise: How did we use different data markers below?



Electrical Engineering Department, University of Jordan

## Legends

- With multiple lines on the same plot it is a good idea to add a legend.

```
legend('sin','cos','sin + cos');
legend('sin','cos','sin+cos','Location','North');
```

- You can also move the legend with the mouse.



## Labeling Curves and Data

The legend command automatically obtains from the plot the line type used for each data set and displays a sample of this line type in the legend box next to the string you selected. The following script file produced the plot in the next slide.

```
x = 0:0.01:2;
y = sinh(x);
z = tanh(x);
plot(x,y,x,z,'--');
legend('sinh(x)', 'tanh(x)');
```

gtext ('text') : Places a string in the Figure window at a point specified by the mouse. text ( $\mathrm{x}, \mathrm{y}$, 'text') : Places a string in the Figure window at a point specified by coordinates $x, y$.

## Application of the legend command. <br> I moved the legend to an empty space using the mouse.



## The gridand axis Commands

MATLAB will automatically determine the maximum and minimum values for the axes. You can use the axis command to override the MATLAB selections for the axis limits. The syntax is axis([xmin xmax ymin ymax]). This command sets the scaling for the $x$ - and $y$-axes to the minimum and maximum values indicated.

The grid command displays gridlines at the tick marks corresponding to the tick labels. Type grid on to add gridlines; type grid off to stop plotting gridlines. When used by itself, grid toggles this feature on or off, but you might want to use grid on and grid off to be sure.

## axis and grid commands

```
axis([0
axis([0
```



Copyright © Dr. Mohammed Hawa


## Homework \#1

Plotting Polynomials with the polyval Function.

To plot the polynomial $3 x^{5}+2 x^{4}-100 x^{3}+2 x^{2}-7 x+90$ over the range $-6 \leq x \leq 6$ with a spacing of 0.01 , you type
$\gg x=-6: 0.01: 6 ;$
$>p=[3,2,-100,2,-7,90] ;$
>> plot(x,polyval(p,x));
>> xlabel('x');
>> ylabel('p');

Copyright © Dr. Mohammed Hawa

## Homework \#2

- The polyfit function is based on the leastsquares method. It fits a polynomial of degree $n$ to data described by the vectors $x$ and $y$, where $x$ is the independent variable.
- Syntax: p = polyfit(x,y,n)
- It returns a row vector $p$ of length $n+1$ that contains the polynomial coefficients in order of descending powers.
- For the following census data, draw the actual points and the best $5^{\text {th }}$ order polynomial fit for such data.

```
year = 1810:10:2010;
population = 1e6*[3.9 5.3 7.2 9.6 12.9 17.1
23.1 31.4 38.6 50.2 62.9 76. 92. 105.7 122.8
131.7 150.7 179. 205. 226.5 248.7];
coeff = polyfit(year, population, 5)
f = polyval(coeff, year);
plot(year, population, 'bo', year, f, 'r--');
```



## Homework \#3 <br> Graphical solution of an Electrical System

- Load is governed by:
- $i 1=0.16\left(e^{0.12 v_{2}}-1\right)$
- What is the equation for the practical source? Assume:
- $R 1=30 \Omega, v_{1}=15 \mathrm{~V}$

- Find the correct value for $v 2$ between 0 and 20 V , and also $i_{1}$ value


## Solution

- The equation for the power supply is:

$$
\begin{aligned}
v_{2} & =v_{1}-R i_{1} \\
i_{1} & =\frac{15-v_{2}}{30}
\end{aligned}
$$

- If we draw both equations we can see the solution point (the one that satisfies both equations).
i_load = ...
0.16*(exp(0.12*v2) - 1);
i_source = (15-v2)/30;
plot(v2, i_load, 'r', ...
v2, i_source, 'b');



## More Than One Figure Window

-What happens if you enter the following?

```
x = 0:2*pi/100:2*pi;
y1 = sin(x);
y2 = cos(x);
plot(x,y1);
title('Plot #1');
plot(x,y2);
title('Plot #2');
```


## More Than One Figure Xindow

- ... you end up with one figure window and it contains a plot of $y=\cos (x)$.
- To open a new figure window enter the command figure before making the second plot.

```
plot(x,yl);
title('Plot #1');
figure;
plot(x,y2);
title('Plot #2');
```

The fplot command is a "smart" plotting function. Example:
$\mathrm{f}=$ @(x) (cos(tan(x)) - tan(sin(x)));
fplot(f,[1 2]);


The plot command is more common than the fplot command because it gives more control. Also when you type fplot you see it actually uses plot.
f = @(x) (cos(tan(x)) - tan(sin(x)));
$t=[1: 0.01: 1.5,1.51: 0.0001: 1.7,1.71: 0.01: 2]$; plot(t, f(t));


## Complex Plot: Real ys. Imaginary

```
n = [0:0.01:10];
y = (0.1+0.9j).^n;
plot(y);
xlabel('Real');
ylabel('Imaginary');
- Similar to:
plot(real(y),imag(y));
```



## Subplots

You can use the subplot command to obtain several smaller "subplots" in the same figure. The syntax is subplot ( $m, n, p$ ). This command divides the Figure window into an array of rectangular panes with $m$ rows and $n$ columns. The variable $p$ tells MATLAB to place the output of the plot command following the subplot command into the $p$ th pane.

For example, subplot $(3,2,5)$ creates an array of six panes, three panes deep and two panes across, and directs the next plot to appear in the fifth pane (in the bottom-left corner).

## Subplots

- subplot (m, n, p)



## Example

$x=0: 2^{*} p i / 100: 2^{*} p i ;$


$y 1=\sin (x)$;
$y^{2}=\cos (x) ;$
$y 3=\sin (x)+\cos (x)$;
subplot $(2,2,1)$;
plot ( $\mathrm{x}, \mathrm{Y}$ l, 'r-.') ;

plot ( $x, y 3,{ }^{\prime} b+'$ ) ;
title('sin $\left.(x)+\cos (x)^{\prime}\right)$;
Copyright © Dr. Mohammed Hawa

## Homework:

The following script file shows two plots of the functions
$y=e^{-1.2 x} \sin (10 x+5)$ for $0 \leq x \leq 5$
and $y=\left|x^{3}-100\right|$ for $-6 \leq x \leq 6$.
$x=0: 0.01: 5 ;$
$y=\exp \left(-1.2^{*} x\right) \cdot{ }^{*} \sin (10 * x+5) ;$
subplot (1,2,1);
plot(x,y);
axis([0 $50-1$ 1]);
$x=-6: 0.01: 6 ;$
$y=a b s\left(x .{ }^{\wedge} 3-100\right)$;
subplot (1,2,2);
plot $(x, y)$; The figure is shown
axis([-6 6 0 350]) on the next slide.

## Application of the subplot command.



## Log-scale Plots

- Why use log scales? Linear scales cannot properly display wide variations in data values.
- MATLAB has three commands. The appropriate command depends on which axis you want to be a log scale.
- $\log \log (x, y):$ both scales logarithmic.
- semilogx $(x, y): x$-axis is logarithmic and $y$-axis is rectilinear.
- semilogy $(x, y): y$-axis is logarithmic and $x$-axis is rectilinear.
- The syntax is similar to the plot command.

$$
y=\sqrt{\frac{100\left(1-0.01 x^{2}\right)^{2}+0.02 x^{2}}{\left(1-x^{2}\right)^{2}+0.1 x^{2}}} \quad 0.1 \leq x \leq 100
$$

```
\(\mathrm{x}=\) [0.1:0.01:100];
\(y=\operatorname{sqrt}\left(\left(100 *(1-0.01 * x . \wedge 2) .^{\wedge} 2 \ldots\right.\right.\)
\(\left.+0.02 * \mathrm{x} .{ }^{\wedge} 2\right) \ldots\)
 ./ ((1-x.^2).^2+0.1*x.^2));
 plot(x,y);
```


Electrical Engineering Department, University of Jordan 36

```
```

x = [0.1:0.01:100];
y = sqrt((100*(1-0.01*x.^2).^2 ...
+0.02*x.^2) ...
./ ((1-x.^2).^2+0.1*x.^2));

```
 \(\log \log (x, y) ;\)

\section*{Logarithmic Plots}

It is important to remember the following points when using log scales:
1. You cannot plot negative numbers on a log scale, because the logarithm of a negative number is not defined as a real number.
2. You cannot plot the number 0 on a log scale, because \(\log _{10} 0=\ln 0=-\infty\). You must choose an appropriately small number as the lower limit on the plot.
(continued...)

\section*{Logarithmic Plots (continued)}
3. The tick-mark labels on a log scale are the actual values being plotted; they are not the logarithms of the numbers. For example, the range of \(x\) values in the plot in the above Figure is from \(10^{-2}=0.01\) to \(10^{2}=100\).
4. Gridlines and tick marks within a decade are unevenly spaced. If 8 gridlines or tick marks occur within the decade, they correspond to values equal to \(2,3,4, \ldots\), 8,9 times the value represented by the first gridline or tick mark of the decade.
(continued...)

\section*{Logarithmic Plots (continued)}
5. Equal distances on a log scale correspond to multiplication by the same constant (as opposed to addition of the same constant on a rectilinear scale).

For example, all numbers that differ by a factor of 10 are separated by the same distance on a log scale. That is, the distance between 0.3 and 3 is the same as the distance between 30 and 300 . This separation is referred to as a decade or cycle.

The plot shown in the above Figure covers four decades in \(x\) (from 0.01 to 100) and four decades in \(y\).

Homework: reproduce the following plots, What commands did you use?

\section*{Homework}
- For the first-order RC circuit, which acts as a LPF, the output to input ratio is:

- \(|H(\omega)|=\frac{\left|V_{o}(\omega)\right|}{\left|V_{i}(\omega)\right|}=\) \(\left|\frac{1}{1+j \omega R C}\right|\)
- Sketch this frequency response function using semilogx. Assume: \(R=1 k \Omega, C=1 \mu F\)

Electrical Engineering Department, University of Jordan 42

\section*{Solution}
omega \(=0: 1: 1 e 6\);
\(h=\operatorname{abs}(1 . /(1+i * o m e g a * 1 e 3 * 1 e-6))\);
semilogx (omega, h);
axis([0 1e6 0 1.2]);
grid on;
Q. What is the bandwidth of this LPF?

Copyright © Dr. Mohammed Hawa

\section*{Specialized plot commands.}
Command
bar \((x, y)\)
plotyy \((x 1, y 1, x 2, y 2)\)
polar (theta,r,'type')
stairs \((x, y)\)
stem \((x, y)\)

Description

Creates a bar chart of y versus x .
Produces a plot with two \(y\)-axes, y1 on the left and y 2 on the right.

Produces a polar plot from the polar coordinates thet a and \(r\), using the line type, data marker, and colors specified in the string type.

Produces a stairs plot of y versus x .

Produces a stem plot of y versus x .
```

x = [0:pi/20:pi];
bar(x,sin(x));

```

```

theta = [0:pi/90:2*pi];
polar(theta , sin(2*theta));
grid;

```


Electrical Engineering Department, University of Jordan 46

Homework: Reproduce the following plot for an orbit with an eccentricity of 0.5 .

\[
r=\frac{2}{1-0.5 \cos (\theta)}
\]
```

x = [0:pi/20:2*pi];
stairs(x,sin(x));
grid;
axis([0 2*pi -1 1]);

```

```

x = [-2*pi:pi/20:2*pi];
x = x + (~x)*eps;
y = sin(pi*x)./(pi*x);
stem(x,y);

```
axis([-2*pi 2*pi -. 25 1]);

```

x = [-2*pi:pi/20:4*pi];
fill(x,sin(x), 'c');
axis([0 4*pi -1 1]);

```


Copyright © Dr. Mohammed Hawa
```

x = linspace(0.1, pi, 20);
approx = 1 - x.^^2/2;
error = approx - cos(x);
errorbar(x, cos(x), error);
legend('cos(x)');

```


\section*{Interactive Editing of Plots in MATLAB}

This interface can be advantageous in situations where:
- You want to add annotations such as lines, arrows, text, rectangles, and ellipses.
- You want to change plot characteristics such as tick spacing, fonts, bolding, colors, line weight, etc.

Select the Arrow (or Tools| Edit Plot from the menu) then double click on the portion you want to edit.

\section*{Three-Dimensional Line Plots}

The following program uses the plot 3 function to generate the spiral curve shown in the next slide.
t = 0:pi/50:10*pi;
\(x=\exp (-0.05 * t) . * \sin (t) ;\)
\(y=\exp (-0.05 * t) \cdot{ }^{*} \cos (t) ;\)
\(z=t ;\)
plot3(x, y, z);
xlabel('x'),ylabel('y'), zlabel('z'), grid;

\section*{Surface Plots: mesh and suff}

The following session shows how to generate the surface plot of the function \(z=x e^{-\left[\left(x-y^{2}\right)^{2}+y^{2}\right]}\), for \(-2 \leq x \leq 2\) and \(-2 \leq y \leq 2\), with a spacing of 0.1. This plot appears in the next slide.
\([\mathrm{X}, \mathrm{Y}]=\) meshgrid(-2:0.1:2);
\(Z=X . * \exp (-((X-Y . \wedge 2) . \wedge 2+Y . \wedge 2)) ;\)
mesh (X,Y,Z);
xlabel('x'),ylabel('y'), zlabel('z');
\([\mathrm{X}, \mathrm{Y}]=\) meshgrid(-2:0.1:2);
\(Z=X \cdot{ }^{\star} \exp (-((X-Y \cdot \wedge 2) \cdot \wedge 2+Y . \wedge 2)) ;\)
surf(\(\mathrm{X}, \mathrm{Y}, \mathrm{Z})\);
xlabel('x'),ylabel('y'), zlabel('z'), colorbar

The following session generates the contour plot of the function whose surface plot is shown above; namely, \(z=x e^{-\left[\left(x-y^{2}\right)^{2}+y^{2}\right]}\), for \(-2 \leq x \leq 2\) and \(-2 \leq y \leq 2\), with a spacing of 0.1. This plot appears in the next slide.
\([\mathrm{X}, \mathrm{Y}]=\) meshgrid(-2:0.1:2);
\(Z=X . * \exp \left(-\left((X-Y . \wedge 2) . \wedge^{\wedge} 2+Y . \wedge 2\right)\right) ;\)
[cs, h] = contour(X,Y,Z);
xlabel('x'),ylabel('y'),zlabel('z'); clabel(cs, h, 'labelspacing', 72);

\section*{Contours are useful for Terrain}

\section*{Xector fields: quixer}
- quiver draws little arrows to indicate a gradient or other vector field.
- Although it produces a 2-D plot, it is often used in conjunction with contour. As an example, consider the scalar function of two variables: \(V=x^{2}+y\).
- The gradient of \(V\) is defined as the vector field: \(\nabla V=\left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}\right)=(2 x, 1)\)

\section*{guiver}
- The following statements draw arrows indicating the direction of the vector \(\nabla V\) at points in the \(x-y\) plane (see next slide).
[x y] = meshgrid(-2:0.2:2, -2:0.2:2);
\(\mathrm{V}=\mathrm{x} . \wedge 2+\mathrm{y}\);
\(d x=2 * x\);
dy = ones(size(dx)); \% dy same size as dx quiver(x, y, dx, dy);
hold on;
contour(x, y, V);
hold off;

\section*{quixer alone; and with contour}

Copyright © Dr. Mohammed Hawa

\section*{Useful for Electromagnetic Fields}

\section*{Homework}
```

% What is the output of this MATLAB code? Use help if you need.
figure;
t = linspace(0, 2*pi, 512);
[u,v] = meshgrid(t) ;
a = -0.2 ; b = . 5 ; c = . 1 ;
x = (a*(1-v/(2*pi)) .* (1+\operatorname{cos}(u)) + c) .* cos(2*v);
y = (a*(1-v/(2*pi)) .* (1+cos(u)) + c) .* sin(2*v);
z = b*v/(2*pi) + a*(1-v/(2*pi)) .* sin(u);
surf(x,y,z,y);
shading interp;
axis off;
axis equal;
colormap (hsv(1024));
material shiny;
lighting gouraud;
lightangle(80, -40);
lightangle(-90, 60);
view([-150 10]);

```


\section*{Animation and Moxies!}
- A movies is just successive plots seen in quick succession.
- We can plot data repeatedly on a single figure.
- For example the function \(y=\sin (x+t)\)
x = 0:2*pi/100:2*pi;
for \(t=0: 0.05: 5 \% 5\) seconds
\(y=\sin (x+t) ;\)
plot (x,y, 'k')
pause(0.2); \% 200 ms between frames
end

\section*{Homework: Creating Moxies}
- To create a movie a sequence of frames are "grabbed" from the figure, stored in an array and written out as avi file.
```

nFrame = 1; % frame counter
x = 0:2*pi/100:2*pi;
for t=0:0.05:5
y=sin(x+t);
plot(x,y);
pause(0.2);
movie(nFrame) = getframe; % grab frame \& store it
nFrame = nFrame + 1;
end
movie2avi(movie,'animation.avi'); % save movie

```

\section*{Homework}
- Solve as many problems from Chapter 5 as you can
- Suggested problems:
- Solve: 5.3, 5.5, 5.9, 5.11, 5.15, 5.20, 5.27, \(5.29,5.35,5.36,5.39\).

\title{
Lecture 8: Calculus and Differential Equations
}

\author{
Dr. Mohammed Hawa \\ Electrical Engineering Department Unixersity of Jordan
}

\section*{Numerical Methods}
- MATLAB provides many functions that support numerical solutions to common math problems:
- Integration and Differentiation (Calculus)
- Finding zeros of a function
- Solving ordinary differential equations
- Many others
- Numerical analysis provides answers as numbers, not closed-form solutions as in analytical solutions (see next lecture for symbolic math in MATLAB).

The integral of \(f(x)\) is the area \(A\) under the curve of \(f(x)\) from \(x=a\) to \(x=b\).

Illustration of Numerical Integration: (a) rectangular method and (b) more accurate trapezoidal method.

(a)

(b)

Example \(A=\int_{0}^{\pi} \sin (x) d x=[-\cos (x)]_{0}^{\pi}=1-(-1)=2\)
trapz (x,y) >> x = linspace (0, pi,10);
Uses trapezoidal integration to compute >> \(y=\sin (x) ;\)
>> A \(=\operatorname{trapz}(x, y)\)
the integral of \(y\) with 1.9797
respect to \(x\), where the array y contains the function values at the points contained in the array x .

\section*{Simpson's Bule}
- Another approach to numerical integration is Simpson's Rule, which divides the integration range [a, b] into an even number of sections and
 uses a different quadratic function to represent the integrand for each panel.

\section*{Important numerical integration functions:}
```

quad(fun, a, b)
quad(fun, a, b, tol)

```
quadl (fun, a, b)
dblquad (fun, \(a, b, c, d\)) computes the integral of \(f(x, y)\) from \(x=a \operatorname{to} b\),
 and \(\mathrm{y}=\mathrm{c}\) to d . The function fun must accept a
 vector argument \(x\) and scalar \(y\), and it must
 return a vector result.
triplequad (fun, \(a, b, c, d, e, f)\) computes the integral of \(f(x, y, z)\) from \(x=a\) to
 \(b, y=c\) to \(d\), and \(z=e\) to \(f\). The function must
 accept a vector x , and scalar y and z .

Although the quad and quadl functions are more accurate than trapz, they are restricted to computing the integrals of functions and cannot be used when the integrand is specified by a set of points. For such cases, use the trapz function.

MATLAB function quad implements an adaptive version of Simpson's rule, while the quadl function is based on an adaptive Lobatto integration algorithm.

To compute the integral of \(\sin (x)\) from 0 to \(\pi\), type
>> A = quad(@sin,0,pi)
The answer given by MATLAB is 2.0000 , which is correct.
We use quadl the same way; namely,
>>A = quadl(@sin,0,pi).

To integrate \(\cos \left(x^{2}\right)\) from 0 to \(\sqrt{2 \pi}\), create the function in an \(m\)-file:
```

function yy = cossq(x)
yy = cos(x.^2);

```

Note that we must use array exponentiation. Then quad function is called as follows:
```

>> quad(@cossq, 0, sqrt(2*pi))
ans =
0.6119

```


Or you can use an anonymous function:
```

>> f = @(x)(1./(x.^3 - 2*x - 5));
>> quad(f, 0, 2)
ans =
-0.4605

```

\section*{Rouble and Triple Integrals}
\(A=d b l q u a d(f u n, a, b, c, d)\) computes the integral of \(f(x, y)\) from \(x=a\) to \(b\), and \(y=c\) to \(d\). Example: \(f(x, y)=x y^{2}\).
```

>> fun = @(x,Y) x.* Y^2;
>> A = dblquad(fun, 1, 3, 0, 1)
A =
1.3333
$\mathrm{A}=$ triplequad (fun, $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f})$ computes the

``` triple integral of \(f(x, y, z)\) from \(x=a\) to \(b, y=c\) to \(d\), and \(z=e\) to \(f\). Example: \(f(x, y, z)=\left(x y-y^{2}\right) / z\).
```

>> fun = @(x,y,z)(x*y - y^2)/z;
>>A = triplequad(fun, 1,3, 0,2, 1,2) }\mp@subsup{\int}{e}{}\mp@subsup{\int}{c}{}\mp@subsup{\int}{a}{}f(x,y,z)dxdyd
A =
1.8484

```

Note: The function must accept a vector \(x\), but scalar \(y\) and \(z\).

\section*{Be careful; function singularity}
\(\gg f=@(x)(1 . /(x-1)) ;\)
\(\gg\) quad (f, 0, 2)
\(\int_{0}^{2} \frac{1}{1-x} d x\)
Warning: Infinite or Not-
a-Number function value encountered.
> In quad at 113
ans = NaN

MATLAB provides the diff function to use for computing derivative estimates.
\(d=\operatorname{diff}(y)\), where \(y\) is a vector of \(n\) elements, the result is a vector \(d\) containing \(n-1\) elements that are the differences between adjacent elements in \(y\). That is:
\(d=[y(2)-y(1), \quad y(3)-y(2), \ldots, \quad y(n)-y(n-1)]\)

For example:
```

>> y = [5, 7, 12, -20];
>> diff(y)
ans =
5 -32

```
step \(=0.001\);
x = 0 : step : pi;
\(y=\sin (x . \wedge 2)\);
d = diff(y)/step;
\% an approximation
\% to derivative
\% 2.*x.*cos(x.^2)

\section*{Example}
plot(x,y,'k',x(2:end), d,'--');
legend('f(x)', 'df/dx');

\section*{Ordinary Differential Equations}
- An ordinary differential equation (ODE) is an equation containing ordinary derivatives of the dependent variable.
- An equation containing partial derivatives with respect to two or more independent variables is a partial differential equation (PDE).
- We limit ourselves to ODE that must be solved for a given set of initial conditions.
- Solution methods for PDEs are an advanced topic, and we do not look at them.

\section*{Sexeral Methods}
- Several numerical methods to solve ODEs.
- Examples include:
- Euler and Backward Euler methods
- Predictor-Corrector method
- First-order exponential integrator method
- Runge-Kutta methods
- Adams-Moulton methods
- Gauss-Radau methods
- Adams-Bashforth methods
- Hermite-Obreschkoff methods
- Fehlberg methods
- Parker-Sochacki methods
- Nyström methods
- Quantized State Systems methods

\section*{Multiple Solyers}
- MATLAB offers multiple ODE solvers, each uses different methods.
- Ode23: Solves non-stiff differential equations, low order method.
- ode 45: Solves non-stiff differential equations, medium order method: uses a combination of fourth- and fifth-order Runge-Kutta methods.
- ode23s: Solves stiff differential equations, low order method.
- ode15i: Solves fully implicit differential equations, variable order method.
- And so on.
- We will limit ourselves to the ode 45 solver.

\section*{Example: Find the response of the first-order RC circuit .}

\(\tau \frac{d y}{d t}+y=0\)
\[
y(0)=V_{c} \quad(I . C .)
\]
\(y(t)=y(0) e^{-t / \tau}\) (natural response)
\[
\tau \frac{d y}{d t}+y=V_{s}
\]
\[
\dot{y}(t)=\frac{d y}{d t}
\]
\[
y(0)=V_{c} \quad(I . C .)
\]
\[
\ddot{y}(t)=\frac{d^{2} y}{d t^{2}}
\]
\(y(t)=V_{s}+\left(y(0)-V_{s}\right) e^{-t / \tau}(\) total response \()\)

\section*{Solying First-Order Rifferential Equations}

First write the equation as \(d y / d t=f(t, y)\) then solve it using this syntax:
\([t, y]=\operatorname{ode45(@f,tspan,y0)}\)
where \(@ \mathrm{f}\) is the handle of the function file whose inputs must be \(t\) and \(y\), and whose output must be a column vector representing \(d y / d t\); that is, \(f(t, y)\). The number of rows in the output column vector must equal the order of the equation.

The array tspan contains the starting and ending values of the independent variable \(t\), and optionally any intermediate values.

The array y 0 contains the initial values of \(y\). If the equation is first order, then y 0 is a scalar.

The circuit model for zero input voltage \(V_{s}\) and \(\tau=0.1\) is:
\[
0.1 \times \frac{d y}{d t}+y=0
\]

And the i.c. is \(y(0)=2 \mathrm{~V}\).
First re-write the equation in the required format:
\[
\frac{d y}{d t}=-10 y
\]

Next define the following function file. Note that the order of the input arguments must be \(t\) and \(y\).
\(\mathrm{f}=@(\mathrm{t}, \mathrm{y})-10 * \mathrm{y}\);

The solver is called as follows, and the solution plotted along with the analytical solution y _true. The initial condition is \(y(0)=2\).
```

f = @(t,y) -10*y;
[t, y] = ode45(f, [0 0.5], 2);
y_analytical = 2*exp(-10*t);
plot(t,y,'o', t, y_analytical);
legend('ODE solver', 'Actual');
xlabel('Time(s)');
ylabel('Capacitor Voltage');

```

Note that we need not generate the array \(t\) to evaluate
y_analytical, because \(t\) is generated by the ode 45
function.
The plot is shown on the next slide.

\section*{Free (natural) response of an RC circuit (decaying exponential).}

The circuit model for input voltage \(V_{s}=10 \mathrm{~V}\) and \(\tau=0.1\) :
\[
0.1 \times \frac{d y}{d t}+y=10
\]

And the i.c. is \(y(0)=2 \mathrm{~V}\).

First re-write the equation in the required format:
\[
\frac{d y}{d t}=-10 y+100
\]

Next define the following function file. Note that the order of the input arguments must be \(t\) and \(y\).
\(\mathrm{f}=@(\mathrm{t}, \mathrm{y})-10 * \mathrm{y}+100\);

The solver is called as follows, and the solution plotted along with the analytical solution y_true. The initial condition is \(y(0)=2\).
```

f = @(t,y) -10*y+100;
[t, y] = ode45(f, [0 0.5], 2);
y_analytical = 10+(2-10)*exp(-10*t);
plot(t,y,'o', t, y_analytical);
legend('ODE solver', 'Actual');
xlabel('Time(s)');
ylabel('Capacitor Voltage');

```

Note that we need not generate the array \(t\) to evaluate y_analytical, because \(t\) is generated by the ode 45 function.
The plot is shown on the next slide.

The circuit model for input voltage \(V_{s}=10 e^{-t / 0.3} \sin \left(\frac{2 \pi t}{0.03}\right)\) and \(\tau=0.1\) :
\[
0.1 \times \frac{d y}{d t}+y=10 e^{-t / 0.3} \sin \left(\frac{2 \pi t}{0.03}\right)
\]

And assume the i.c. is \(y(0)=0 \mathrm{~V}\).
First re-write the equation in the required format:
\[
\frac{d y}{d t}=-10 y+100 e^{-t / 0.3} \sin \left(\frac{2 \pi t}{0.03}\right)
\]

Next define the following function file. Note that the order of the input arguments must be \(t\) and \(y\).
\(f=@(t, y)-10 * y+100 * \ldots\)
exp (-1*t/0.3).*sin (2*pi*t/0.03);

\section*{Extension to Higher-Order Equations}

To use the ODE solvers to solve an equation of \(2^{\text {nd }}\) order or higher, you must first write the equation as a set of first-order equations.

Example:
\[
5 \frac{d^{2} y}{d t^{2}}+7 \frac{d y}{d t}+4 y=f(t)
\]

By re-arranging to get the highest derivative:
\[
\frac{d^{2} y}{d t^{2}}=\frac{1}{5} f(t)-\frac{4}{5} y-\frac{7}{5} \frac{d y}{d t}
\]

\section*{Example (Continue) \\ \[
\frac{d^{2} y}{d t^{2}}=\frac{1}{5} f(t)-\frac{4}{5} y-\frac{7}{5} \frac{d y}{d t}
\]}

We then change variables: \(x_{2}=d y / d t\)
Hence: \(d x_{2} / d t=d^{2} y / d t^{2}\)
Also: \(x_{1}=y\). Hence we have two equations:
\[
\begin{gathered}
\frac{d x_{1}}{d t}=x_{2} \\
\frac{d x_{2}}{d t}=\frac{1}{5} f(t)-\frac{4}{5} x_{1}-\frac{7}{5} x_{2}
\end{gathered}
\]

\section*{Example (Continиие)}
\[
\begin{gathered}
\frac{d x_{1}}{d t}=x_{2} \\
\frac{d x_{2}}{d t}=\frac{1}{5} f(t)-\frac{4}{5} x_{1}-\frac{7}{5} x_{2}
\end{gathered}
\]

This form is sometimes called the Cauchy form or the state-variable form.

We now define a function that accepts two values of x and then computes the values of \(d x_{1} / d t\) and \(d x_{2} / d t\) and stores them in a column vector.

\section*{Example (Code)}
\[
\begin{gathered}
\frac{d x_{1}}{d t}=x_{2} \\
\frac{d x_{2}}{d t}=\frac{1}{5} \sin (t)-\frac{4}{5} x_{1}-\frac{7}{5} x_{2}
\end{gathered}
\]
\(d=@(t, x)[x(2) ; \sin (t) / 5-4 * x(1) / 5-7 * x(2) / 5] ;\)
\([t, x]=o d e 45(d,[06],[39]) ;\)
Here \(x(0)=3\) and \(\dot{x}(0)=9\), and we solve for \(0 \leq t \leq 6\). Also \(f(t)=\sin (t)\).
Note x is a matrix with two columns. The first column contains the values of \(\mathrm{x}_{1}\) at the various times generated by the solver; the second column contains the values of \(x_{2}\).

If you type plot \((t, x)\), you will obtain a plot of both \(x_{1}\) and \(x_{2}\) versus \(t\). Thus, type plot \((t, x(:, 1))\) to see the result for \(y\).

\section*{Result}

\section*{HX: Alternatixe Solution}

Define the function in an m-file:
function xdot \(=d(t, x)\)
xdot(1) \(=x(2)\);
xdot(2) \(=(1 / 5) *\left(\sin (t)-4^{*} x(1)-7 * x(2)\right)\);
xdot \(=\) [xdot(1); xdot(2)];

Use the function to solve the ODE:
[t, x] = ode45 (@d, [0 6], [3 9]);
\% notice the need to use handles plot(t, x(:,1));

\section*{Homexork}
- Solve as many problems from Chapter 9 as you can
- Suggested problems:
- Solve: 9.1, 9.4, 9.14, 9.16, 9.23, 9.27, 9.31, 9.34 .

\title{
Lecture 9: Symbolic Processing in MATLAB
}

\author{
Dr. Mohammed Haya Electrical Engineering Department Unixersity of Jofdan
}

EE201: Computer Applications. See Textbook Chapter 11.

The sym function can be used to create "symbolic objects" in MATLAB.

If the input argument to sym is a string, the result is a symbolic number or variable. If the input argument is a numeric scalar or matrix, the result is a symbolic representation of the given numeric values.

For example, typing \(x=\) sym('x') creates the symbolic variable with name \(x\), and typing \(y=s y m(' y ')\) creates a symbolic variable named y .

Typing \(x=\operatorname{sym}(' x ', ~ ' r e a l ')\) tells MATLAB to assume that \(x\) is real. Typing \(x=\) sym('x', 'unreal') tells MATLAB to assume that x is not real.

The syms function enables you to combine more than one such statement into a single statement.

For example, typing syms x is equivalent to typing \(x=\operatorname{sym}(' x ')\), and typing syms \(x\) y \(u\) v creates the four symbolic variables \(x, y, u\), and \(v\).

\section*{Symbolic Xs. Numeric Objects}
```

>> x = sym('x')
X =
X
>> class(x)
ans=
sym
>> syms Y
> class(y)
ans=
sym
Copyright © Dr. Mohammed Hawa

```
\(\gg a=5\)
 \(a=\)
 5
 >> class (5)
 ans =
 double
\(\gg \mathrm{b}='^{\prime} \mathrm{t}^{\prime}\)
\(\mathrm{b}=\)
t
\(\gg \mathrm{class}(\mathrm{b})\)
ans \(=\)
char

Electrical Engineering Department, University of Jordan 4

You can use the sym function to create symbolic constants by using a numerical value for the argument. For example, typing
fraction = sym('1/3')
sqroot2 = sym('sqrt(2)')
pi = sym('pi')
will create symbolic constants that avoid the floating-point approximations inherent in the values of \(\pi, 1 / 3\), and \(\sqrt{ } 2\).

\section*{Symbolic Expresssions}

You can use symbolic variables in expressions and as arguments of functions. You use the operators
+ - * / ^ and the built-in functions just as you use them with numerical calculations. For example, typing
>> syms x y
>> \(\mathrm{s}=\mathrm{x}+\mathrm{y} ;\)
>> \(r=\operatorname{sqrt}\left(x^{\wedge} 2+y^{\wedge} 2\right) ;\)
creates the symbolic variables \(s\) and \(r\). The terms \(s=\) \(x+y\) and \(r=\operatorname{sqrt}\left(x^{\wedge} 2+y^{\wedge} 2\right)\) are examples of symbolic expressions.

The vector and matrix notation used in MATLAB also applies to symbolic variables. For example, you can create a symbolic matrix A as follows:
```

>> n = 3;
>> syms x;
>> A = x.^((0:n)'*(0:n))
A =
[ 1, 1, 1, 1]
[ 1, x, x^2, x^3]
[ 1, x^2, x^4, x^6]
[ 1, x^3, x^6, x^9]

```

The expand and simplify functions.
```

>> syms x y
>> expand((x+y)^2) % applies algebra rules
ans =
x^2 + 2*x*y + y^2
>> syms x y
>> expand(sin(x+y)) % applies trig identity
ans =
cos(x)*sin(y) + cos(y)*sin(x)
>> syms x
>> simplify(6*((sin(x))^2+(cos(x))^2))
% applies another trig identity
ans =
6

```
```

>> syms x
>> E1 = x^2+5;
>>E2 = x^3 3+2* x^2+5*x+10;
>> S = E1/E2;
>> simplify(S)
ans =
1/(x+2)

```

The factor function.
```

>> syms x

```
\(\gg\) factor \(\left(x^{\wedge} 2-1\right)\)
ans =
 \((x-1) *(x+1)\)

The function subs (E, old, new) substitutes new for old in the expression \(E\), where old can be a symbolic variable or expression and new can be a symbolic variable, expression, or matrix, or a numeric value or matrix. For example,
\(\gg\) syms \(x\) y
\(>\mathrm{E}=\mathrm{x}^{\wedge} 2+6^{\star} \mathrm{x}+7\);
\(\gg F=\operatorname{subs}(E, x, y)\)
\(\mathrm{F}=\)
\(y^{\wedge} 2+6 \star y+7\)
\(\gg G=\operatorname{subs}(E, x, y+3)\)
\(G=\)
\(6 * y+(y+3)^{\wedge} 2+25\)

Copyright © Dr. Mohammed Hazva
Electrical Engineering Department, University of Jordan

If you want to tell MATLAB that \(f\) is a function of the variable \(t\), type \(f=\operatorname{sym}(' f(t)\) '). Thereafter, \(f\) behaves like a function of \(t\), and you can manipulate it with the toolbox commands. For example, to create a new function \(g(t)=f(t+2)-f(t)\), the session is
```

>> syms t
>> f = sym('f(t)');
>> g = subs(f,t,t+2)-f
g =
f(t+2)-f(t)

```

Once a specific function is defined for \(f(t)\), the function \(g(t)\) will be available.

Use the subs and double functions to evaluate an expression numerically. Use subs (\(\mathrm{E}, \mathrm{Old}\), new) to replace old with a numeric value new in the expression E . The result is of class double. For example,
```

>> syms x
>> E = x^2+6*x+7;
>> G = subs(E,x,2)
G =
23
>> class(G)
ans =
double

```

The MATLAB function ezplot (E) generates a plot of a symbolic expression E , which is a function of one variable. The default range of the independent variable is the interval \([-2 \pi, 2 \pi]\) unless this interval contains a singularity.

The optional form ezplot (E, [xmin xmax]) generates a plot over the range from xmin to xmax.

Example:
>> syms x
>> \(E=x^{\wedge} 2\) - 6*x + 7;
>> ezplot(E, [-2 6]);

\section*{Order of Precedence.}

MATLAB does not always arrange expressions in a form that we normally would use.

For example, MATLAB might provide an answer in the form \(-c+b\), whereas we would normally write \(b-c\).

The order of precedence used by MATLAB must be constantly kept in mind to avoid misinterpreting the MATLAB output (see earlier slides).

MATLAB frequently expresses results in the form \(1 / \mathrm{a} * \mathrm{~b}\), whereas we would normally write \(\mathrm{b} / \mathrm{a}\).

The solve function.
There are three ways to use the solve function. For example, to solve the equation \(x+5=0\), one way is
```

>> eq1 = 'x+5=0';
>> solve(eq1)
ans =
-5

```

The second way is
```

>> solve('x+5=0')
ans =
-5

```

The solve function (continued).
The third way is
\(\gg\) syms \(x\)
\(\gg \operatorname{solve}(x+5)\)
ans =
\(-5\)
You can store the result in a named variable as follows:
>ssyms \(x\)
\(\gg x=\) solve \((x+5)\)
\(\mathrm{x}=\)
\(-5\)

To solve the equation \(e^{2 x}+3 e^{x}=54\), the session is
```

>> solve('exp(2*x)+3*exp(x) = 54')
ans =
log(6)
log(9) + pi*I
>> syms x
>> solve(exp(2*x)+3*exp(x)-54)
ans =
log(6)
log(9) + pi*i

```

\section*{Other examples:}
```

>> eq2 = 'y^2+3*y+2=0'; % quadratic eq
>> solve(eq2)
ans =
[-2]
[-1]
>> eq3 = 'x^2+9*y^4=0'; % x is squared
>> solve(eq3) % x is assumed the unknown
ans =
[ 3*i*y^2]
[-3*i*y^2]

```

When more than one variable occurs in the expression, MATLAB assumes that the variable closest to \(x\) in the alphabet is the variable to be found. You can specify the solution variable using the syntax
solve (\(\mathrm{E}, \mathrm{I}\) ' V '), where v is the solution variable.
>> eq3 = 'x^2+9*y^4=0'; \% y is to power 4
>> solve(eq3,'y')
ans =
\(-\left((-1)^{\wedge}(1 / 4) * 9^{\wedge}(3 / 4) * x^{\wedge}(1 / 2)\right) / 9\)
\(\left((-1) \wedge(1 / 4) * 9 \wedge(3 / 4) * x^{\wedge}(1 / 2)\right) / 9\)
\(-\left((-1) \wedge(1 / 4) * 9 \wedge(3 / 4) * x^{\wedge}(1 / 2) * i\right) / 9\)
(\(\left.(-1)^{\wedge}(1 / 4) * 9 \wedge(3 / 4) * x^{\wedge}(1 / 2) * i\right) / 9\)

\section*{Solution}
```

>> S = solve('(x-3)^2+(y-5)^2=4, (x-5)^2+(y-3)^2=b^2')
S =
x: [2x1 sym]
y: [2x1 sym]
>> S.x
ans =
(- b^4/16 + (3* b^2)/2 - 1)^(1/2)/2 - b^^2/8 + 9/2
9/2 - b^2/8 - (- b^4/16 + (3*b^2)/2 - 1)^(1/2)/2
>> S.Y
ans =
(- b^4/16 + (3*b^2)/2 - 1)^(1/2)/2 + b^2/8 + 7/2
b^2/8-(- b^4/16 + (3* b^2)/2 - 1)^^(1/2)/2 + 7/2

```

\section*{Differentiation with the diff function.}
```

>> syms n x y
>> diff(x^n)
ans =
x^n*n/x
>> simplify(ans)
ans =
x^(n-1)*n
>> diff(log(x)) % means ln
ans =
1/x
>> diff((sin(x))^2)
ans =
2*sin(x)*}\operatorname{cos}(x

```

If the expression contains more than one variable, the diff function operates on the variable \(x\), or the variable closest to \(x\), unless told to do otherwise. When there is more than one variable, the diff function computes the partial derivative.
```

>> syms X Y
>> diff(sin(x*y))
ans =
cos(x*y)*y

```

The function \(\operatorname{diff}(\mathrm{E}, \mathrm{v})\) returns the derivative of the expression E with respect to the variable v .
```

>> syms x y
>> diff(x*sin(x*y),y)
ans =
x^2*}\operatorname{cos}(\mp@subsup{x}{}{*}y

```

The function \(\operatorname{diff}(E, n)\) returns the \(n\)th derivative of the expression E with respect to the default independent variable.
```

>> syms x
>> diff(x^3,2)
ans =
6*x

```

The function \(\operatorname{diff}(\mathrm{E}, \mathrm{v}, \mathrm{n})\) returns the \(n\)th derivative of the expression \(E\) with respect to the variable \(v\).
```

>> syms x y
>> diff(x*sin(x*y),y,2)
ans =
-x^3*}\operatorname{sin}(\mp@subsup{x}{}{*}y

```

\section*{Integration with the int function.}
>> syms \(x\)
>> int (2 *x)
ans \(=\)
\(x^{\wedge} 2\)
The function int (E) returns the integral of the expression \(E\) with respect to the default independent variable.
```

>> syms n x y
>> int(x^n)
ans =
\intx
x^(n+1)/(n+1)
>> int(1/x)
ans =
log(x)
\int\frac{1}{x}dx=\operatorname{ln}(x)
>> int(cos(x))
ans =
sin(x)

```

The form int (\(\mathrm{E}, \mathrm{V}\)) returns the
integral of the expression \(E\) with
respect to the variable \(v\).
```

>ssyms $n x$
>>int ( $\left.x^{\wedge} n, n\right)$
$\int x^{n} d n$
ans $=$
$1 / \log (x){ }^{*} \mathrm{X}^{\wedge} \mathrm{n}$

```

The form int (\(\mathrm{E}, \mathrm{a}, \mathrm{b}\)) returns the integral of the expression \(E\) with respect to the default independent variable evaluated over the interval \([a, b]\), where \(a\) and \(b\) are numeric expressions.
```

>>syms x
>>int(x^2,2,5)
ans =
\int
3 9

```

The form int (\(\mathrm{E}, \mathrm{v}, \mathrm{a}, \mathrm{b}\)) returns the integral of the expression \(E\) with respect to the variable \(v\) evaluated over the interval \([a, b]\), where \(a\) and \(b\) are numeric quantities.
```

>> syms x y
>> int(xy^2,y,0,5)
ans =
125/3*x

```

The form int (\(E, m, n\)) returns the integral of the expression E with respect to the default independent variable evaluated over the interval [\(m, n\)], where \(m\) and n are symbolic expressions.
```

>> syms t x
>> int(x,1,t)
ans =
t^2/2 - 1/2
\int
>> syms t x
>> int(sin(x),t,exp(t))
ans =
cos(t) - cos(exp(t))

```

The following session gives an example for which no integral can be found. The indefinite integral exists, but the definite integral does not exist if the limits of integration include the singularity at \(x=1\).
>> syms x
>> int(1/(x-1))
ans \(=\)
\(\log (x-1)\)
>> syms x
>> int(1/(x-1), 0,2)
ans =
NaN

Taylor Series. \(\quad f(x)=f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(t)+\frac{(x-a)^{3}}{3!} f^{(3)}(t)+\cdots\)
The taylor (\(f, n, a\)) function gives the first \(n-1\) terms in the Taylor series for the function defined in the expression \(f\), evaluated at the point \(x=a\). If the parameter \(a\) is omitted the function returns the series evaluated at \(x=0\).
```

>> syms x
>> f = exp(x);
>> taylor(f,3,2)
ans =
exp (2)+exp (2)* (x-2)+(exp (2)* (x-2)^2)/2
>> taylor(f,4)
ans =
x^3/6 + x^2/2 + x + 1

```

\section*{Series summation.}

The symsum (\(E, a, b\)) function returns the sum of the expression \(E\) as the default symbolic variable varies from \(a\) to b.
>> syms k n
\(\gg \operatorname{symsum}(k, 0,10)\)
ans =
55

\(\gg \operatorname{symsum}\left(k^{\wedge} 2,1,4\right)\)
ans =
30

>> symsum (k, 0, n-1)
ans =
\[
(n *(n-1)) / 2
\]

Finding limits.
The basic form limit (E) finds the limit as \(x \rightarrow 0\).
>> syms a x
>> limit(sin(a*x)/x)
ans =
a

The form limit \((E, v, a)\) finds the limit as \(v \rightarrow a\).
>ssyms h x
>>limit((x-3)/(x^2-9),3)
ans \(=\)
\(1 / 6\)
>>limit((sin(x+h)-sin(x))/h,h,0)
ans =
\(\cos (x)\)
```

    The forms limit(E,v,a,'right') and
    limit(E,v,a,'left') specify the direction
of the limit.
>> syms x
>> limit(1/x,x,0,'left')
ans =
-inf
>> syms x
>> limit(1/x,x,0,'right')
ans =
inf

```

\section*{Solving differential equations with dsolve}

The dsolve syntax for solving a single equation is dsolve ('eqn'). The function returns a symbolic solution of the ODE specified by the symbolic expression eqn.
```

>> dsolve('Dy+2*y=12')
ans=
6+C1*exp (-2*t)

```

There can be symbolic constants in the equation.
>> dsolve('Dy=sin(a*t)')
ans =
\((-\cos (a * t)+C 1 * a) / a\)

Here is a second-order example:
```

>> dsolve('D2y=c^2*y')
ans =
c1* exp(-c*t) + c2* exp(c*t)

```

Sets of equations can be solved with dsolve. The appropriate syntax is dsolve ('eqn1', 'eqn2', ...).
\(\gg[x, y]=d s o l v e\left(' D x=3 * x+4^{*} y^{\prime},{ }^{\prime} D y=-4 * x+3 * y^{\prime}\right)\)
\(\mathrm{x}=\)
c1*exp (3*t)*cos (4*t) +C2*exp (3*t)*sin (4*t)
\(y=-\)
\(\mathrm{c} 1 * \exp (3 * t) * \sin (4 * t)+C 2 * \exp (3 * t) * \cos (4 * t)\)

Conditions on the solutions at specified values of the independent variable can be handled as follows.

The form
dsolve('eqn', 'cond1', 'cond2',...)
returns a symbolic solution of the ODE specified by the symbolic expression eqn, subject to the conditions specified in the expressions cond1, cond2, and so on.

If \(y\) is the dependent variable, these conditions are specified as follows: y(a) = b, Dy (a) = c, D2y \((\mathrm{a})=\mathrm{d}\), and so on.

Example:
```

>> dsolve('D2y=c^2*Y','y(0)=1','Dy(0)=0')
ans =
1/2* exp(c*t)+1/2* exp (-c*t)

```

\section*{Example:}
```

>> [x,y]=dsolve('Dx=3*x+4*y','Dy=-4*x+3*y',
'x(0)=0','y(0)=1')
$\mathrm{x}=$
$\sin (4 * t) * \exp (3 * t)$
y =
$\cos (4 * t) * \exp (3 * t)$

```

It is not necessary to specify only initial conditions. The conditions can be specified at different values of \(t\).
```

>> dsolve('D2y+9*y=0','y(0)=1','Dy(pi)=2')

```
ans =
 \(\cos (3 * t)-(2 * \sin (3 * t)) / 3\)

\section*{Laplace and Fourier Transform}
```

>> syms b t
>> laplace(t^3)
ans =
6/s^4
>> laplace(exp(-b*t))
ans =
1/(s+b)
>> laplace(sin(b*t))
ans =
b/(s^2+b^2)
>> fourier(exp(-t^2))
ans =
pi^(1/2)/exp(w^2/4)
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

```

\section*{Laplace Inyerse Transform}
```

>>syms b s
>>ilaplace(1/s^4)
ans =
1/6*t^3
>>ilaplace(1/(s+b))
ans =
exp(-b*t)
>>ilaplace(b/(s^2+b^2)
ans =
sin(b*t)

```

You can use the inv (A) and det (A) functions to invert and find the determinant of a matrix symbolically.
```

>> syms k
>> A = [0 ,1;-k, -2];
>> inv(A)
ans =
[ -2/k, -1/k ]
[ 1, 0 ]
>> A*ans % verify inverse is correct
ans =
[ 1, 0 ]
[ 0, 1 ]
>> det(A)
ans =
k

```
```

You can use matrix methods in MATLAB to solve linear algebraic
equations symbolically. You can use the matrix inverse method, if
the inverse exists, or the left-division method.
>> syms c
>> A = sym([2, -3; 5, c]);
>> b = sym([3; 19]);
>> x = inv(A)*b % matrix inverse method
x =
(3*c)/(2*c+15)+57/(2*c + 15)
23/(2*c + 15)
>> x = A\b % left-division method
x =
(3*c)/(2*C + 15) + 57/(2*c + 15)
23/(2*C + 15)

```

\section*{Homework}
- Solve as many problems from Chapter 11 as you can
- Suggested problems:
- Solve: 11.3, 11.4, 11.12, 11.18, 11.22, 11.23, 11.28, 11.31, 11.32, 11.35, 11.37, 11.41, 11.42, 11.50, 11.51.

\title{
Lecture 10: Simulink
}

\author{
Dr. Mohammed Haya \\ Electrical Engineering Department Unixersity of Jofdan
}

\section*{What is Simulink?}
- Simulink is a tool for modeling, simulating and analyzing dynamic systems.
- Its primary interface is a graphical block diagramming tool and a customizable set of block libraries.
- It supports linear and nonlinear systems, modeled in continuous time, discrete time, or a hybrid of both.
- It easily integrates with the rest of the MATLAB environment.
- Simulink is widely used in control theory and digital signal processing for simulation and model-based design.

\section*{Starting Simulink}
- To build a

Simulink model, choose File I New I Model.
- To see the Simulink library of blocks click on the Simulink icon in MATLAB.

\section*{Library Browser \& Model Xindow}

- Sources I Sine Wave
- Continuous I Integrator
- Signal Routing | Mux
- Sinks I Scope
- To connect blocks, move the cursor to the output port
represented by ">"
sign. Once placed at a port, the cursor will turn into a cross "+" enabling you to make the connection between blocks.
- Run the simulation of the simple system shown by clicking on the play icon. \(\mathcal{L}\left\{\int_{0}^{t} f(v) d v\right\}=\frac{1}{s} F(s)\)

\section*{Scope Results}
- Double click on the scope block to see the results of the simulation.
- To view / edit the parameters of a block, double click on the block to see the Block Parameters window.
- Try changing the initial condition of the
 Integrator from 0 to -1 .

\section*{Blocks \& Model File}
- MATLAB uses the default values of the block parameters, except where you explicitly change them.
- You can always click on Help within the Block Parameters window to obtain more information.
- You can edit the label of a block by clicking on the text and making the changes.
- You can search for Blocks in the Simulink search window.
- You can save the Simulink model as .mdl file by selecting File I Save menu item in Simulink.

\section*{Exercise; Modulation}

Blocks:
- Sources: Repeating Sequence
- Sources: Since Wave
- Math Operation: Produc
- Math Operation: Gain
- Sinks: Scope

Edit the following properties:

- Sine Wave:
- Frequency: \(50 \mathrm{rad} / \mathrm{s}\)
- Repeating Sequence:
- Time Values: [0 12345 6]
- Output Values: [0110-1-1 0]
- Sample time: 0.01
- Gain: 2
- Simulation Stop Time:
- 12 seconds

\section*{Exercise: Sending data to Workspace.}

Notice the "Clock" and "To Workspace" blocks.
Set simulation time to 13 seconds.

Double-click on the To Workspace block. You can specify any variable name you want as the output; the default is simout. Change its name to \(y\).

The output variable \(y\) will have as many rows as there are simulation time steps, and as many columns as there are inputs to the block.

The second column in our simulation will be time, because of the way we have connected the Clock to the second input port of the Mux.

Specify the Save format as Array. Use the default values for the other parameters (these should be inf, 1, and -1 for Maximum number of rows, Decimation, and Sample time, respectively). Click on OK.

Simulink can be configured to put the time variable tout into the MATLAB workspace automatically when you are using the To Workspace block.

This is done with the Data I/O tab under Configuration Parameters on the Simulation menu.

The alternative is to use the Clock block to put tout into the workspace.

The Clock block has one parameter, Decimation. Set this parameter to 1, which means the Clock block will output the time every time step; if set to 10 for example, the block will output every 10 time steps, and so on.

In MATLAB, try: plot(y(:,2), y(:,1))

\section*{Besult}

Simulation diagrams for \(x=d y / d t=10 f(t)\)

Simulation diagram for \(d y / d t=f(t)-10 y\)

Exercise: Simulink model to solve the first-order ODE \(d y / d t=-10 y+2 \sin (4 t) \quad 0 \leq t \leq 3\)

Homework: Use Simulink to solve the second-order ODE
\[
d^{2} x / d t^{2}=5 \cos (2 t)-3 d x / d t-4 x \quad 1 \leq t \leq 3
\]

\section*{Result}

\section*{Homework}
- Solve as many problems from Chapter 10 as you can
- Suggested problems:
- Solve: 10.1, 10.3, 10.4.

\title{
Lecture 11: MATLAB Exercises \\ Dr. Mohammed Haya \\ Electrical Engineering Department Unixersity of Jordan
}

\section*{Exercise 7}
- Write a MATLAB m-file function (called fact.m) which takes a single argument (an integer), computes the factorial and returns the answer.
- Hint: For better performance, do not use loops!

\section*{Exercise 2}
- Write a MATLAB m-file function (called grades.m) which accepts student grades as argument (hint: number array) and then determines the lowest, highest and average of such scores.
- E.g., grades([11 10995193 17])
- Total: 7 scores
- Min value: 3
- Max value: 99
- Average value: 23.43

\section*{Exercise 3}
- Write a MATLAB m-file function (dice .m) which simulates one or more dice with each die giving values from 1 to 6 .
- The program takes a single argument which is the number of dice.
- The output should contain the values of the dice and also the probability for this combination of dice to occur. The probability is expressed as a decimal value between 0 and 1 with five decimal points.
- E.g., Rolling 3 dice: 416 (Probability: 0.00463)

\section*{Exercise 4}
- Write a MATLAB script (called rev.m) which reads a number
```

>> rev

``` of strings from standard input and prints them in reverse order on the command window.
- The input sequence is terminated with the string END.
- Hint: Use a cell array!
one
two
three
END
-> three
-> two
-> one

\section*{Exercise 5}
- Write a MATLAB script (called count . m) which reads a string from standard input and then counts the number of words in that string.
- E.g., "Everyone loves MATLAB" contains 3 words.

\section*{Exercise 6}
- The sum of the squares of the first ten integers is:
- \(1^{2}+2^{2}+\ldots+10^{2}=385\)
- The square of the sum of the first ten integers is:
- \((1+2+\ldots+10)^{2}=55^{2}=3025\)
- Hence the difference between the sum of the squares of the first ten integer numbers and the square of the sum is \(3025-385=2640\).
- Find the difference between the sum of the squares of the first one hundred integer numbers and the square of the sum.

\section*{Exercise 7}
- A prime number (or a prime) is an integer number greater than 1 that has no positive divisors other than 1 and itself.
- The first six prime numbers are: \(2,3,5,7\), 11 , and 13.
- We can see that the 6th prime is 13.
- Write a MATLAB script to print the first 50 prime numbers.

\section*{Exercise 8}
- A Pythagorean triplet is a set of three positive integer numbers, \(a<b<c\), for which: \(a^{2}+b^{2}=c^{2}\)
- For example, \(3^{2}+4^{2}=9+16=25=5^{2}\).
- There exists exactly one Pythagorean triplet for which \(a+b+c=1000\).
- Write a MATLAB script to find this triplet.

\section*{Exercise 9}
- Starting in the top left corner of a \(2 \times 2\) grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner (see the figure below).
- How many such routes are there through a \(10 \times 10\) grid?

\section*{Exercise 10}
- Write a MATLAB script file that asks the user to type the coordinate of two points: \(A\) and \(B\) (in a plane), and then displays the distance between \(A\) and \(B\).

\title{
The University of Jordan \\ School of Engineering Department of Electrical Engineering \\ \(1^{\text {st }}\) Semester - A.Y. 2014/2015
}

\begin{tabular}{ll}
Course: & Computer Applications - \(0903201 \quad\) (1 Cr. - Core Course) \\
Instructor: & \begin{tabular}{l}
Dr. Mohammed Hawa \\
Office: E306, Telephone: 5355000 ext 22857, Email: hawa@ju.edu.jo \\
Office Hours: will be posted soon
\end{tabular} \\
Course Website: & http://fetweb.ju.edu.jo/staff/EE/mhawa/201/ \\
Catalog Data: & \begin{tabular}{l}
Computer packages for mathematical and symbolic manipulations (MATLAB, \\
Mathematica). Windows environment. Graphics packages. INTERNET and its \\
use in literature survey and information acquisition. Library search via computer. \\
Engineering packages for computation. Data processing and statistical packages. \\
Standard computer libraries.
\end{tabular}
\end{tabular}

Prerequisites by Course:

Prerequisites By Topic:

\section*{Textbook:}

References:

\section*{Schedule \& \\ Duration:}

Minimum Student
Material:
Minimum College
Facilities:

\section*{Course \\ Objectives:}

\section*{EE 1901102 - Computer Skills 2 (C++) (pre-requisite)}

Students are assumed to have a background in the following topics:
- Basic computer and software skills.
- Basic programming language skills, such as C/C++.
- Basic mathematics, calculus and linear algebra.
- Basic scalar, array, vector and matrix operations.
- Solution of ordinary differential equations.
- Basic electric circuit analysis.

Introduction to MATLAB for Engineers by William J. Palm III, McGraw-Hill, 3rd Edition, 2011.
- Essential MATLAB for Engineers and Scientists by Brian Hahn and Daniel Valentine, Academic Press, 5th Edition, 2013.
- MATLAB for Engineers by Holly Moore, Prentice Hall, 3rd Edition, 2011.
- Getting Started with MATLAB 7: A Quick Introduction for Scientists and Engineers by Rudra Pratap, Oxford University Press, 1st Edition, 2005.
- MATLAB Programming with Applications for Engineers by Stephen J. Chapman, CL-Engineering, 1st Edition, 2012.
- An Engineers Guide to MATLAB by Edward B. Magrab, et. al., Prentice Hall, 3rd Edition, 2010.
- Mastering MATLAB by Duane C. Hanselman and Bruce L. Littlefield, Prentice Hall, 1st Edition, 2011.
- Modeling and Simulation in SIMULINK for Engineers and Scientists by Mohammad Nuruzzaman, AuthorHouse; 1st Edition, 2005.
- Mastering Simulink by James B. Dabney and Thomas L. Harman, Prentice Hall, 1st Edition, 2003.

16 Weeks, 45 lectures (50 minutes each) plus exams.
Textbook, class handouts, scientific calculator, and an access to a personal computer.
Classroom with whiteboard and projection display facilities, library, computational facilities with the MATLAB program.

The overall objective is to introduce the student to solving engineering problems using computers and scientific programming packages.

\section*{Course Learning Outcomes and Relation to ABET Student Outcomes:}

Upon successful completion of this course, a student should:
1. Use MATLAB to solve computational problems and generate publishable graphics
[e, k]
[a] complex numbers and functions in rectangular and exponential forms. Graph the magnitude and phase of complex functions
3. Use matrix forms to describe and solve linear systems of equations and systems of differential equations
4. Determine the system of linear equations required to find the coefficients that define an interpolating function that matches a set of data samples.
5. Solve first and second order linear differential equations with constant coefficients both analytically and numerically. Use the MATLAB routine ODE23 to solve differential equations numerically.
6. Define the Fourier series for a periodic signal. Define the Fourier transform of an aperiodic [a, k] signal.
7. Compute the Fourier series and transform from their definition as integrals.
8. Use the properties of linearity, time-shifting and time-scaling to compute the Fourier series/transform of complex functions from the Fourier series/transforms of simple functions.
9. Use the Simulink simulation package to simulate some electric and electronic circuits
[e]
[a, e]
[a, k]
[a, k]
[a, k]

\section*{Course Topics:}

\section*{Topic Description}

Hrs
2 Introduction to MATLAB and its use cases. Using the workspace to explore MATLAB features General number formatting. Variables, Vectors and Matrices. Built-in MATLAB engineering functions. Matrix-related functions. Operator precedence. Matrix indexing: row and column versus linear versus logical indexing. Matrix versus element-by-elemtn operations.
3 Solving a system of linear equations. The concept of vectorization and its use in speeding computations.
4 Euclidean Vectors and their operations. Complex numbers. Polynomials. Cells arrays. Structures.
5 Script Files. Header comments. User Input/Output commands. The concept of functions in MATLAB and how to build user defined functions. Local vs. global variables. Subfunctions. Inline functions and function handles. Importing data: text, Excel, images, audio, etc.
\(6 \quad\) Writing general-purpose programs in MATLAB. Flowchart versus pseudocode. Relational 4 operators and conditional statements. Flow control structures and loops. Practical exercises.
7 Midterm Exam1
8 Plotting. The different plot types available. Figure annotations. Three dimensional plots. 3

9 Using MATLAB buil-in functions to obtain numerical solutions for various calculus problems: 2 differentiation, integration, ordinary differential equations, etc.
10 MATLAB symbolic engine. Using symbolic notation to define and plot functions. Using symbolic capapilities for liner algebra, calcuals and other problems. Introduction to MuPAD.
11 Introduction to Simulink and its libraries. Simulating some engineering systems and finding 2 solutions. Linking Simulink with the MATLAB workspace.

Ground Rules: Attendance is required and highly encouraged. To that end, attendance will be taken every lecture. All exams (including the final exam) should be considered cumulative. Exams are closed book. No scratch paper is allowed. You will be held responsible for all reading material assigned, even if it is not explicitly covered in lecture notes.
Assessments: Exams, Quizzes, Projects, and Assignments.
Grading policy:
\begin{tabular}{ll}
Assignments, projects, quizzes & \(\mathbf{2 0} \%\) \\
Midterm Exam & \(\mathbf{3 0} \%\) \\
Final Exam & \(\mathbf{5 0} \%\) \\
\hline & Total \\
\hline
\end{tabular}

Last Updated: January 2015```

[^0]: Copyright © Dr. Mohammed Hawa

[^1]: *These functions accept x in radians.
 These functions return a value in radians.

