

				1 1	-	_		(1)		Ω		ion
	<u>I</u> ext <u>G</u> o							db. Eht	ID db		X 5 K	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n 🖪 🗤						10.00	12 41			
		- 1.0	+ +	1.1	× ×	* **	D.					
	clear;											
	A = [
3	2	-1	0	3	0	-1	2	0	3	1		
4 5	1	0	-1	3	2	1	-1	0	3	-1		
6	3	3	-1	-1	1	3	-1	2	0	1		A Command Window
7	3	-1	-1	0	2	-1	1	3	1	2		
8	1	0	-1	1	2	0	-1	3	-1	2		<u>File Edit Debug Desktop Windc</u>
9	1	1	ō	1	-1		1		1	2		To get started, select MATLAB Hel
10	3	1	-1	3	-1	3	0	ō	0	-1		
11	-1		1	1	3	-1	0	1	-1	-1		
12	-1	2	0	3	-1	3	1	-1	-1	0		>> equations
13];											
14												x =
15 -	b = [
16	1											-0.1607
17	2											-0.9621
18	1											0.4346
19	3											0.2301
20 21	2											0.8881
21	3											1.1170
23	0											0.0475
24	-1											-0.3688
25	2											-0.1944
	1;											1.2742
27												
28 -	/ # = x	b									_	>>

Math	ematica	l Operators
Operator	MATLAB	Algebra
+	+	5 + 4 = 9
-	_	5 - 4 = 1
×	*	5 * 4 = 20
÷	/	5 / 4 = 1.25
a ^b	a^b	$5^{4} = 625$

Precedence	Operation
First	Parentheses (), evaluated starting with the
	innermost pair.
Second	Exponentiation (power) ^, evaluated from
	left to right.
Third	Multiplication * and division / with equal
	precedence, evaluated from left to right.
Fourth	Addition + and subtraction - with equal
	precedence, evaluated from left to right.

Entering Commands

- MATLAB retains your previous keystrokes.
- Use the ↑ key to scroll back through previous commands.
- Press the ↑ key once to see the previous entry, and so on.
- Use the \downarrow key to scroll forward.
- Edit a line using the \leftarrow and \rightarrow arrow keys, the Backspace key, and the Delete key.
- Press the Enter key to execute the command.
- You can copy (highlight & ctrl+c) from Command History window to the Command Window.

Electrical Engineering Department, University of Jordan

19

Copyright © Dr. Mohammed Hawa

Built-in Math Constants >> 2*pi pi π : ratio of circle's ans = circumference to its diameter 6.2832 i $\sqrt{-1}$: Imaginary unit >> Inf+100000 j $\sqrt{-1}$: Imaginary unit ans = Inf ∞: Infinity Inf NaN Not-a-Number >> format long g intmax Largest value of integer type intmin Smallest value of integer type >> 2*pi ans = Temporary variable ans containing the most recent 6.28318530717959 answer >> 1+ans The accuracy of floating eps ans = point precision . . . 7.28318530717959 Copyright © Dr. Mohammed Hawa 20 Electrical Engineering Department, University of Jordan

Possible Formats				
Command	Description and example			
format short	Four decimal digits (the default); 13.6745.			
format long	16 digits; 17.27484029463547.			
format short e	Five digits (four decimals) plus exponent;			
	6.3792e+03.			
format long e	16 digits (15 decimals) plus exponent;			
2	6.379243784781294e-04.			
format bank	Two decimal digits; 126.73.			
format +	Positive, negative, or zero; +.			
format rat	Rational approximation; 43/7.			
format compact	Suppresses some blank lines.			
format loose	Resets to less compact display mode.			
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 2			

Function	MATLAB syntax*
e^x	exp(x)
\sqrt{x}	sqrt (x)
$\ln x$	log(x)
$\log_{10} x$	log10(x)
$\cos x$	cos (x)
$\sin x$	sin(x)
tan x	tan(x)
$\cos^{-1} x$	acos (x)
$\sin^{-1} x$	asin (x)
$\tan^{-1} x$	atan (x)

► TO KI	now More: help	
<pre>matlab/general matlab/ops matlab/lang matlab/elmat matlab/elmat matlab/specfun matlab/specfun matlab/datafun matlab/datafun matlab/datafun matlab/grapfun matlab/spribe matlab/sribe matlab/graph3d matlab/graph3d matlab/graph3d matlab/specgraph matlab/strfun matlab/strfun matlab/strfun matlab/strfun matlab/strfun matlab/strfun matlab/strfun matlab/speckeraph matlab/strfun matlab/strfun matlab/speckeraph matlab/strfun matlab/strfun matlab/strfun matlab/speckeraph matlab/strfun matlab/strfun matlab/strfun matlab/speckeraph matlab/strfun matlab/strfun matlab/speckeraph matlab/strfun matlab/strfun matlab/speckeraph ma</pre>	 Annotation and Plot Editing. Two dimensional graphs. Three dimensional graphs. Specialized graphs. Handle Graphics. Graphical User Interface Tools. Character strings. Image and scientific data Graphical User Interface Tools. Fuzzy Logic Toolbox Image Processing Toolbox 	
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 30	

(Goinside: help	
	io inside: net p	
> help elfun		
Elementary m	ath functions.	
Trigonometri	G.	
sin	- Sine.	
	- Sine of argument in degrees.	
sinh	- Hyperbolic sine.	
asin	- Inverse sine. - Inverse sine, result in degrees. - Inverse hyperbolic sine.	
asind	- Inverse sine, result in degrees.	
asinh	- Inverse hyperbolic sine.	
COS	- Cosine.	
Exponential.		
exp	- Exponential.	
expm1	- Compute exp(x)-1 accurately.	
log	- Natural logarithm.	
log1p	- Compute log(1+x) accurately.	
log10	- Common (base 10) logarithm.	
log2	 Base 2 logarithm and dissect floating point num. 	
pow2	 Base 2 power and scale floating point number. 	
	- Power that will error out on complex result.	
reallog	- Natural logarithm of real number.	
Rounding and	remainder.	721.00
fix	- Round towards zero.	
floor	- Round towards minus infinity.	
	- Round towards plus infinity.	121
round	- Round towards nearest integer.	
mod	 Modulus (signed remainder after division). 	
rem	- Remainder after division.	
sign	- Signum.	

Useful MATLAB commands					
Command	Description				
clc	Clears the Command window.				
clear	Removes all variables from memory.				
clear var1 var2	Removes the variables var1 and var2 from memory.				
exist('name')	Determines if a file or variable exists having the name 'name'.				
quit	Stops MATLAB.				
who	Lists the variables currently in memory.				
whos	Lists the current variables and sizes, and indicates if they have imaginary parts.				
:	Colon; generates an array having regularly spaced elements. Comma; separates elements of an array.				
	Semicolon; suppresses screen printing; also denotes a new row				
,	in an array.				
	Ellipsis; continues a line.				
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 6				

seful Functions
Returns either the number of elements of A if A is a vector or the largest value of <i>m</i> or <i>n</i> if A is an $m \times n$ matrix
Returns a row vector $[m \ n]$ containing the sizes of the $m \times n$ matrix A.
For vectors, returns the largest element in A. For matrices, returns a row vector containing the maximum element from each column. If any of the elements are complex, max (A) returns the elements that have the largest magnitudes.
Similar to max (A) but stores the maximum values in the row vector v and their indices in the row vector k.
Like max but returns minimum values.

More	e Useful Functions
sort(A)	Sorts each column of the array A in ascending order and returns an array the same size as A.
sort(A,DIM,MODE)	Sort with two optional parameters: DIM selects a dimension along which to sort. MODE is sort direction ('ascend' or 'descend').
sum(A)	Sums the elements in each column of the array A and returns a row vector containing the sums.
sum(A,DIM)	Sums along the dimension DIM.
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 14

Solu	tion
>> M = [1 6 4; 3 7 2]	110.0
M =	>> sort(M)
1 6 4	ans =
3 7 2	1 6 2
	3 7 4
>> size(M)	
ans =	>> sort(M, 1, 'descend')
2 3	ans =
	3 7 4
>> length(M)	1 6 2
ans = 3	
5	>> sum(M)
>> max(M)	ans = 4 13 6
ans =	4 15 0
3 7 4	>> sum(M, 2)
CSTRATE TO A CONTRACT OF CONTRACT	ans =
>> [a,b] = max(M)	11
a =	12
3 7 4	
b =	
2 2 1	
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 16

Matrix Determi	nant & Inverse
$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$ $= a(ei - fh) - b(di - fg) + c(dh - eg)$ $= aei + bfg + cdh - ceg - bdi - afh.$	<pre>>> A = [1 2 3; 2 3 1; 3 2 1] A =</pre>
$\begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} \begin{vmatrix} a_{13} & a_{12} \\ a_{33} & a_{32} \end{vmatrix} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$	ans = -12 >> inv(A) % inverse ans = -0.0833 -0.3333 0.5833 -0.0833 0.6667 -0.4167
$\mathbf{A}^{-1} = \frac{1}{ \mathbf{A} } \begin{bmatrix} a_{23} & a_{24} \\ a_{33} & a_{34} \end{bmatrix} \begin{bmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{bmatrix} \begin{bmatrix} a_{13} & a_{11} \\ a_{23} & a_{21} \end{bmatrix} \cdot \begin{bmatrix} a_{21} & a_{22} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} a_{12} & a_{11} \\ a_{21} & a_{21} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} a_{12} & a_{11} \\ a_{21} & a_{21} \\ a_{21} & a_{22} \end{bmatrix}$	0.4167 -0.3333 0.0833 >> A^-1 ans = -0.0833 -0.3333 0.5833 -0.0833 0.6667 -0.4167 0.4167 -0.3333 0.0833
Copyright © Dr. Mohammed Hawa El	ectrical Engineering Department, University of Jordan 26

	ļ	Ξxε	erci	se			
>> v = 1 v = 10	0:10:7 20		40	50	60	70	
>> v(2:5 ans =)						
20	30	40	50				
>> v(2:e	nd)						
ans = 20	30	40	50	60	70		
>> v(:) ans = 10							
20 30 40							4230
50 60 70							

	>> A(end,:) ans = 23 83 13 0 10
Exercise	>> A(:,end) ans = 2 25 11 56 10
$ \begin{array}{l} A &= \\ 4.0000 & 10.0000 & 1.0000 & 6.0000 & 2.0000 \\ 8.0000 & 1.2000 & 9.0000 & 4.0000 & 25.0000 \\ 7.2000 & 5.0000 & 7.0000 & 11.0000 & 11.0000 \\ 0 & 0.5000 & 4.0000 & 5.0000 & 56.0000 \\ 23.0000 & 83.0000 & 13.0000 & 0 & 0.0000 \\ \end{array} $	>> v = A(:) v = 8.0000 7.2000 0
>> A(:,3) ans = 1 9 7 4 13	23.0000 10.0000 1.2000 5.0000 0.5000 83.0000 1.0000
>> A(:,2:5) ans = 10.0000 1.0000 6.0000 2.0000 5.0000 7.0000 4.0000 25.0000 5.0000 7.0000 1.0000 11.0000 0.5000 4.0000 5.0000 56.0000 83.0000 0 10.0000	9.0000 7.0000 4.0000 13.0000 6.0000 4.0000 1.0000 5.0000
>> A(2:3,1:3) ans = 8,0000 1.2000 9.0000 7,2000 5.0000 7.0000	2.0000 2.0000 25.0000 11.0000 56.0000 10.0000

Linear indexing: Advanced
>> A = 5:5:50 A = 5 10 15 20 25 30 35 40 45 50
>> A([1 3 6 10]) ans = 5 15 30 50
>> A([1 3 6 10]') ans = 5 15 30 50
<pre>>> A([1 3 6; 7 9 10]) ans =</pre>
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 34

More dimensions possible				
	>> rand(4,4,	3)		
(1,1,3) (1,2,3) (1,3,3) (1,4,8) (2,1,3) (2,2,3) (2,3,3) (2,4,3) (2,1,3) (2,2,3) (2,4,3)	ans(:,:,1) =			
poge (3,1,3) (3,2,3) (3,3,3) (3,4,3)	0.7431	0.7060	0.0971	0.9502
$\frac{1}{(1,1,2)(1,2,2)(1,3,2)(1,4,e)} 4,2,3) (4,3,3) (4,4,3)$	0.3922	0.0318	0.8235	0.0344
(2,1,2) (2,2,2) (2,3,2) (2,4,2)	0.6555	0.2769	0.6948	0.4387
(3,1,2) (3,2,2) (3,3,2) (3,4,2)	0.1712	0.0462	0.3171	0.3816
(1,1,1) $(1,2,1)$ $(1,3,1)$ $(1,4,1)$ $(1,2,2)$ $(4,3,2)$ $(4,4,2)$				
(2,1,1) (2,2,1) (2,3,1) (2,4,1)				
row (3,1,1) (3,2,1) (3,3,1) (3,4,1)	ans(:,:,2) =			
(4,1,1) (4,2,1) (4,3,1) (4,4,1)	0.0000		0.0760	
	0.7655 0.7952	0.4456	0.2760	0.1190
	0.1869	0.6463	0.6551	0.4984 0.9597
The first is downsformer and annex	0.4898	0.7547	0.1626	0.3404
 The first index references array 	0.4050	0./54/	0.1020	0.3404
dimension 1, the row.				
The second index references	ans(:,:,3) =			
dimension 2, the column.	0.5853	0.5060	0.5472	0.8407
The third index references	0.2238	0.6991	0.1386	0.2543
A CONTRACTOR OF A CONTRACTOR O	0.7513	0.8909	0.1493	0.8143
dimension 3, the page.	0.2551	0.9593	0.2575	0.2435
Copyright © Dr. Mohammed Hawa Ele	ctrical Engineering l	Department, Ui	iversity of Jord	an 39

Symbol	Operation	Symbol	Operation
+	Matrix addition	+	Array addition
_	Matrix subtraction	-	Array subtraction
*	Matrix multiplication	•*	Array multiplication
/	Matrix division	./	Array division
\	Left matrix division	.\	Left array division
^	Matrix power	_^	Array power

-75,116 (2.4.4)	
$= \begin{bmatrix} 64 & 24\\ 75 & 116\\ 1 & 116 \end{bmatrix} $ (2.4-4)	
$\begin{array}{c} >> A = [6, -2; 10, 3; 4, 7]; \\ >> B = [9, 8; -5, 12]; \\ >> A*B \\ ans = \\ 64 & 24 \\ 75 & 116 \\ 1 & 116 \end{array} \qquad 3 \begin{bmatrix} 2 & 9 \\ 5 & -7 \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 15 & -2 \\ >> A = \begin{bmatrix} 2, 9; 5, -7] \\ >> 3*A \end{array}$	•]

Exercise				
>> A = [1 2 3; 4 5 6; 7 8	_			
A =	ans =			
1 2 3	3 2 1			
4 5 6	6 5 4			
7 8 9	9 8 7			
>> diag(A) ans =	<pre>>> flipud(A) ans =</pre>			
1	7 8 9			
5	4 5 6			
9	1 2 3			
>> det(A)	>> rot90(A) ans =			
6.6613e-016	3 6 9			
	2 5 8			
	1 4 7			
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 63			

Exercise					
>> A = [1	2 3; 4	5 6; 7 8 9]	>> [V, D]	= eig(A)	
A =					
1	2	3	V =		
4		6		-0.7858	
7	8	9	-0.5253	-0.0868	-0.8165
			-0.8187	0.6123	0.4082
>> tril(A)					
ans =					
1	0	0	D =		
4	5	0	16.1168	0	0
7	8	9	0	-1.1168	0
			0	0	-0.0000
>> triu(A)					
ans = mm					
1	2	3			
0	5	6			
0	0	9			
Copyright © Dr. Me	ohammed Hawa	I	Electrical Engineering	g Department, Univer	sity of Jordan 64

Solution				
>> A =[0 1 2 3; 1 2 3 4] A =	>> b = [2; 2] b =			
$\begin{array}{c} A = \\ & 0 & 1 & 2 & 3 \\ & 1 & 2 & 3 & 4 \end{array}$	$D = \frac{2}{2}$			
>> A1 = A(:,1:2) A1 =	>> B\b ans =			
0 1 1 2	-1.0000 1.0000			
>> A2 = A(:,3:4) A2 =	>> det(B) ans =			
2 3 3 4	-4			
>> B = A1 + A2	>> inv(B) ans =			
$B = \frac{2}{4}$	-1.5000 1.0000 1.0000 -0.5000			
	>> cond(B) ans = 17.9443			
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 66			

Complex	<pre>>> a = 7 + 4j a = 7.0000 + 4.0000i >> [theta, rho] = cart2pol(real(a), imag(a))</pre>	
Numbers	theta = 0.5191 rho = 8.0623	
	<pre>>> rho = abs(a) % magnitude of complex number rho =</pre>	
	<pre>>> theta = atan2(imag(a), real(a)) theta = 0.5191 % atan2 is four quadrant inverse tangent</pre>	
	>> b = 3 + 4j b = 3.0000 + 4.0000i	
	>> a+b ans = 10.0000 + 8.0000i	
	>> a*b ans = 5.0000 + 40.0000i	
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 10	

Exercise				
• Polynomial Roots: $x^3 - 7x^2 + 40x - 34 = 0$	>> a = [1 -7 40 -34];			
• Roots are $x = 1$, $x = 3 \pm 5i$.	>> roots(a)			
 We can also build polynomial coefficients from its roots. 	ans = 3.0000 + 5.0000i 3.0000 - 5.0000i 1.0000			
• We can also multiply (convolution) and divide (deconvolution) two polynomials.	>> poly([1 3+5i 3-5i]) ans = 1 -7 40 -34			
Copyright © Dr. Mohammed Hawa E.	lectrical Engineering Department, University of Jordan 12			

Useful functions			
C = cell(n)	Creates $n \times n$ cell array C of empty matrices.		
C = cell(n, m)	Creates $n \times m$ cell array C of empty matrices.		
celldisp(C)	Displays the contents of cell array C.		
cellplot(C)	Displays a graphical representation of the cell array C.		
C = num2cell(A)	Converts a numeric array A into a cell array C.		
iscell(C)	Returns a 1 if C is a cell array; otherwise,		
	returns a 0.		
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 15		

Exercise		
>> C = cell(3) C =		
>> D = cell(1, 3) D = [] [] []		
<pre>>> A(1,1) = {'Walden Pond'}; >> A(1,2) = {[1+2i 5+9i]}; >> A(2,1) = {[60,72,65]}; >> A(2,2) = {[55,57,56;54,56,55;52,55,53]};</pre>		
<pre>>> A A = 'Walden Pond' [1x2 double] [1x3 double] [3x3 double]</pre>		
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 16	6	

Investigate Structure	
>> student(2)	
ans =	
name: 'Mary Jones'	
SSN: '431-56-9832'	
email: 'jonesm@myschool.edu' exam_scores: [84 78 93]	
exam_SCOLES. [04 /0 95]	
>> fieldnames(student)	
ans =	
'name'	
'SSN'	
'email'	
'exam_scores'	
<pre>>> max(student(2).exam_scores)</pre>	
ans =	200
93	6288
>> isstruct(student)	
ans =	5.31
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jord	an 20

When you type mycylinder

When multiple commands have the same name in the current scope (scope includes current file, optional private subfolder, current folder, and the MATLAB path), MATLAB uses this precedence order:

- **1. Variables** in current workspace: Hence, if you create a variable with the same name as a function, MATLAB cannot run that function until you clear the variable from memory.
- 2. Nested functions within current function
- **3.** Local functions within current file
- 4. Functions in current folder

5. Functions elsewhere on the path, in order of appearance

Precedence of functions within the same folder depends on file type:

Electrical Engineering Department, University of Jordan

27

- 1. MATLAB **built-in** functions have precedence
- 2. Then Simulink models
- 3. Then program files with .m extension

Copyright © Dr. Mohammed Hawa

Comments in MATLAB • Comment lines start with a % not // Comments are not executed by MATLAB; it is there for people reading the code. Helps people understand what the code is doing ٠ and why! Comments are VERY IMPORTANT. ٠ Comment anything that is not easy to understand. Good commenting is a huge help when ٠ maintaining/fixing/extending code. Header comments show up when typing the help command. Electrical Engineering Department, University of Jordan Copyright © Dr. Mohammed Hawa 28

Header	comments
>> help temperature temperature.m Convert the boi water from degrees Celsius (C Author: Dr. Mohammed Hawa	
>> temperature	
C = 100	
F =212	
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 31

Exe	ercise
<pre>r = input('Enter the radius:'); h = input('Enter the height:');</pre>	
$V = pi * r^2 * h;$ A = 2 * pi * r * (r + h);	
<pre>disp('The volume of the cylinder disp(V); disp('The area of the cylinder is disp(A);</pre>	
<pre>>> mycylinder Enter the radius:5 Enter the height:13 The volume of the cylinder is: 1.0210e+003</pre>	
The area of the cylinder is: 565.4867	
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 34

Exponential	
exp(x)	Exponential; e^x .
sqrt(x)	Square root; \sqrt{x} .
Logarithmic	
log(x)	Natural logarithm; ln x.
log10(x)	Common (base-10) logarithm; $\log x = \log_{10} x$.
Complex	
abs(x)	Absolute value; x.
angle(x)	Angle of a complex number <i>x</i> .
conj(x)	Complex conjugate.
imag(x)	Imaginary part of a complex number x.
real(x)	Real part of a complex number <i>x</i> .
Numeric	
ceil(x)	Round to the nearest integer toward ∞ .
fix(x)	Round to the nearest integer toward zero.
floor(x)	Round to the nearest integer toward $-\infty$.
round(x)	Round toward the nearest integer.
sign(x)	Signum function:

Which expression is correct?

- You want to find $\sin^2(x)$. What do you write?
- (sin(x))^2
- sin^2(x)
- sin^2x
- sin(x^2)
- sin(x)^2
- *Solution*: Only first and last expressions are correct.

Electrical Engineering Department, University of Jordan

Copyright © Dr. Mohammed Hawa

Hyperbolic functions		
Hyperbolic cosh(x) coth(x)	Hyperbolic cosine; $\cosh x = (e^x + e^{-x})/2$. Hyperbolic cotangent; $\cosh x / \sinh x$.	
csch(x) sech(x) sinh(x) tanh(x)	Hyperbolic cosecant; $1/\sinh x$. Hyperbolic secant; $1/\cosh x$. Hyperbolic sine; $\sinh x = (e^x - e^{-x})/2$. Hyperbolic tangent; $\sinh x/\cosh x$.	
Inverse hyperbolic		
$a \cosh(x)$ $a \coth(x)$ a c s c h(x)	Inverse hyperbolic cosine Inverse hyperbolic cotangent Inverse hyperbolic cosecant	
asech(x) asinh(x)	Inverse hyperbolic secant Inverse hyperbolic sine	
atanh(x)	Inverse hyperbolic tangent	
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 11	

Test your newly defined function

```
>> [a, b] = polar_to_cartesian(3, pi)
       a =
           -3
       b =
         3.6739e-016
       >> polar_to_cartesian(3, pi)
       ans =
           -3
       >> [a, b] = polar_to_cartesian(3, pi/4)
       a =
           2.1213
       b =
           2.1213
       >> [a, b] = polar_to_cartesian([3 3 3], [pi pi/4 pi/2])
       a =
          -3.0000
                      2.1213
                               0.0000
       b =
           0.0000
                       2.1213
                                  3.0000
Copyright © Dr. Mohammed Hawa
                                      Electrical Engineering Department, University of Jordan
                                                                          15
```


Exercise		
>> sqrtsum = @(x,y)	sqrt(x.^2 + y.^2);	
>> sqrtsum(3, 4) ans = 5		
>> A = 6; B = 4;		
>> plane = @(x,y) A*	x + B*y;	
>> z = plane(2,8) z = 44		
<pre>>> f = @(x) x.^3; % >> g = @(x) 5*sin(x) >> h = @(x) g(f(x)); >> h(2) ans =</pre>		
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 38	

Examples			
<pre>>> a = 3; >> b = 4; >> a == b ans =</pre>	<pre>>> x = [6 3 9]; >> y = [14 2 9]; >> z = (x < y) z = 1 0 0</pre>		
ans = 1 >> a < b ans = 1	>> $z = x \sim = y$ z = 1 1 0 >> $z = x > 8$ z = 0 0 1		
$ \begin{array}{c} >> b >= -4 \\ ans = \\ 1 \\ \hline Copyright \odot Dr. Mohammed Hawa \end{array} $	Electrical Engineering Department, University of Jordan 14		


```
Just because an array contains only 0s and 1s, however, it
    is not necessarily a logical array. For example, in the
    following session k and w appear the same, but k is a
    logical array and w is a numeric array, and thus an error
    message is issued.
  >>x = -2:2;
  >>k = (abs(x)>1)
  k =
                      0
                              1
      1
           0
                 0
  >> z = x(k)
  z =
      -2
             2
  >>w = [1, 0, 0, 0, 1]; v = x(w)
  ??? Subscript indices must either be real
    positive... integers or logicals.
Copyright © Dr. Mohammed Hawa
                              Electrical Engineering Department, University of Jordan
                                                          18
```

Accessing Arrays Using Logical Arrays

When a logical array is used to address another array, it extracts from that array the elements in the locations where the logical array has 1s.

So typing A(B), where B is a logical array of the same size as A, returns the values of A at the indices where B is 1.

Given A = [5, 6, 7; 8, 9, 10; 11, 12, 13] and B = logical(eye(3)), we can extract the diagonal elements of A by typing C = A(B) to obtain C = [5;9;13].

Electrical Engineering Department, University of Jordan

19

See our earlier discussion of logical indexing.

Copyright © Dr. Mohammed Hawa

Logical Operators		
Operator	Name	Definition
~	NOT	${\sim}\mathbb{A}$ returns an array the same dimension as $\mathbb{A};$ the new array has ones where \mathbb{A} is zero and zeros where \mathbb{A} is nonzero.
à	AND	A & B returns an array the same dimension as A and B; the new array has ones where both A and B have nonzero elements and zeros where either A or B is zero.
I	OR	$A \mid B$ returns an array the same dimension as A and B ; the new array has ones where at least one element in A or B is nonzero and zeros where A and B are both zero.
δ δ.	Short-Circuit AND	Short-circuiting means the second operand (right hand side) is evaluated only when the result is not fully determined by the first operand (left hand side) A & B (A and B are evaluated) A & B (B is only evaluated if A is true)
	Short-Circuit OR	can operate on arrays but only operates on scalars
Copyright © I	Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 20

Logical functions		
Logical function	Definition	
ischar(A)	Returns a 1 if A is a character array and 0 otherwise.	
isempty(A)	Returns a 1 if \mathbb{A} is an empty matrix and 0 otherwise.	
isinf(A)	Returns an array of the same dimension as A , with ones where	
isnan(A)	A has 'inf' and zeros elsewhere. Returns an array of the same dimension as A with ones where A has 'NaN' and zeros elsewhere. ('NaN' stands for "not a number," which means an undefined result.)	
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 23	

	Logical Functions
isnumeric(A)	Returns a 1 if A is a numeric array and 0 otherwise.
isreal(A)	Returns a 1 if A has no elements with imaginary parts and 0 otherwise.
logical(A)	Converts the elements of the array A into logical values.
xor(A,B)	Returns an array the same dimension as A and B; the new array has ones where either A or B is nonzero, but not both, and zeros where A and B are either both nonzero or both zero.
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 24


```
The elseif Statement
The general form of the if statement is
if logical expression 1
       statement group 1
elseif logical expression 2
       statement group 2
else
       statement group 3
end
The else and elseif statements may be omitted if not
required. However, if both are used, the else statement
must come after the {\tt elseif} statement to take care of all
conditions that might be unaccounted for.
Copyright © Dr. Mohammed Hawa
                              Electrical Engineering Department, University of Jordan
                                                          28
```


Example: if we fail to recognize how the test works, the
following statements do not perform the way we might
expect.

x = [4 -9 25];
if x < 0
 disp('Cant find square root of negative.')
else
 y = sqrt(x)
end
When this program is run it gives the result</pre>

Electrical Engineering Department, University of Jordan

31

y = 2 0 + 3.000i 5

```
Copyright © Dr. Mohammed Hawa
```

```
Instead, consider what happens if we test for x positive.

x = [4, -9, 25];

if x >= 0

y = sqrt(x)

else

disp('Cant find square root of negative.')

end

When executed, it produces the following message:

Cant find square root of negative.

The test if x < 0 is false, and the test if x >= 0 also

returns a false value because x >= 0 returns the vector

[1, 0, 1].
```



```
for Loops
A simple example of a for loop is:

m = 0;
x(1) = 10;
for k = 2:3:11;
m = m + 1;
x(m+1) = x(m) + k^2;
end

k takes on the values 2, 5, 8, 11. The variable m
fidicates the index of the array x. When the loop
is finished the array x will have the values
x(1)=14, x(2)=39, x(3)=103, x(4)=224.
```

Note the following rules when using for loops with the loop variable expression k = m:s:n: • The step value s may be negative. **Example:** k = 10:-2:4 produces k = 10, 8, 6, 4. • If s is omitted, the step value defaults to 1. • If s is positive, the loop will not be executed if m is greater than n. • If s is negative, the loop will not be executed if m is less than n. • If m equals n, the loop will be executed only once. • If the step value s is not an integer, round-off errors can cause the loop to execute a different number of passes than intended. Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 35

The following prompt program is a script file that allows the user to answer *Yes* by typing either Y or y or by pressing the **Enter** key. Any other response is treated as a No answer.

```
response = input('Continue? Y/N [Y]: ','s');
if (isempty(response))|(response ==
'Y')|(response = 'Y')
response = 'Y'
else
response = 'N'
end
```



```
<text><text><text><text><text><page-footer>
```


The switch statement				
The switch statement providing the switch statement providing the second statement provided by the second statement provided statement pro	des an alternative to using the nands.			
Anything programmed using switch can also be programmed using if statements.				
However, for some applications the switch statement is more readable than code using the if structure.				
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 51			

Example: Plot $y = 0.4 \times \sqrt{1.8x}$ for $0 \le x \le 52$, where *y* represents the height of a rocket after launch, in miles, and *x* is the horizontal (downrange) distance in miles.

Electrical Engineering Department, University of Jordan

Copyright © Dr. Mohammed Hawa

The plot will appear in the Figure window. You can use the plot in other applications in several ways:

- You can print a hard copy of the figure by selecting File | Print menu item in the Figure window.
- You can save the plot to a file to be used later. You can save the plot by selecting File | Save As menu item.
 Possible file formats include: *.fig (MATLAB format),
 *.bmp, *.eps, *.jpg, *.png, *.tif, *.pdf, Another way to save is File | Export Setup that allows specifying options for the output file, then selecting Export.
- 3. You can copy a figure to the clipboard and then paste it into another application using the Edit | Copy Figure menu item. For options, use Edit | Copying Options menu item.

Electrical Engineering Department, University of Jordan

Copyright © Dr. Mohammed Hawa

Colors, Data Markers & Line Types							
 You can also specify your own line styles in the plot command. For full details enter help plot in MATLAB. 							
	b	blue		point	-	solid	
	a	green	0	circle		dotted	
	r	red	x	x-mark		dashdot	
	c	cyan	+	plus		dashed	
	m	magenta	*	star	(none)	no line	
	y	yellow	3	square			
	k	black	d	diamond			
	w	white	v	triangle (down)			
ALCON			^	triangle (up)			
FFE31223 459(53)(1)			<	triangle (left)			
The stream			>	triangle (right)			
-toppopp			p	pentagram			
			h	hexagram			
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 12							

Labeling Curves and Data The legend command automatically obtains from the plot the line type used for each data set and displays a sample of this line type in the legend box next to the string you selected. The following script file produced the plot in the next slide. x = 0:0.01:2;y = sinh(x);z = tanh(x);plot(x,y,x,z,'--'); legend('sinh(x)', 'tanh(x)'); gtext('text'): Places a string in the Figure window at a point specified by the mouse. text(x,y,'text'):Places a string in the Figure window at a point specified by coordinates x, y. Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 16

The grid and axis CommandsMATLAB will automatically determine the maximum and
minimum values for the axes. You can use the axis
command to override the MATLAB selections for the axis
limits. The syntax is axis ([xmin xmax ymin ymax]).
This command sets the scaling for the x- and y-axes to the
minimum and maximum values indicated.The grid command displays gridlines at the tick marks
corresponding to the tick labels. Type grid on to add
gridlines; type grid off to stop plotting gridlines. When
used by itself, grid toggles this feature on or off, but you
might want to use grid on and grid off to be sure.

Solution

```
omega = 0:1:1e6;
h = abs(1./(1+i*omega*1e3*1e-6));
semilogx(omega, h);
axis([0 1e6 0 1.2]);
grid on;
Q. What is the bandwidth of this LPF?
```

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

43

Specialized plot commands.		
Command	Description	
bar(x,y)	Creates a bar chart of \boldsymbol{y} versus $\mathbf{x}.$	
plotyy(x1,y1,x2,y2)	Produces a plot with two y-axes, $\mathrm{y1}$ on the left and $\mathrm{y2}$ on the right.	
<pre>polar(theta,r,'type')</pre>	Produces a polar plot from the polar coordinates theta and r, using the line type, data marker, and colors specified in the string type.	
stairs(x,y)	Produces a stairs plot of \boldsymbol{y} versus $\boldsymbol{x}.$	
stem(x,y)	Produces a stem plot of \underline{y} versus \underline{x} .	
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 44	

Surface Plots: mesh and surf

The following session shows how to generate the surface plot of the function $z = xe^{-[(x-y^2)^2+y^2]}$, for $-2 \le x \le 2$ and $-2 \le y \le 2$, with a spacing of 0.1. This plot appears in the next slide.

```
[X,Y] = meshgrid(-2:0.1:2);
Z = X.*exp(-((X-Y.^2).^2+Y.^2));
mesh(X,Y,Z);
xlabel('x'),ylabel('y'),zlabel('z');
[X,Y] = meshgrid(-2:0.1:2);
Z = X.*exp(-((X-Y.^2).^2+Y.^2));
surf(X,Y,Z);
xlabel('x'),ylabel('y'),zlabel('z'),colorbar
```


Important numerical integration functions:

quad(fun, a, b) quad(fun, a, b, tol)	Uses an adaptive Simpson's rule to compute the integral of the function whose handle is fun, with a the lower limit and b the upper limit. The function fun must accept a vector argument. The parameter tol is optional, and indicates the specified error tolerance.
quadl(fun,a,b)	Uses Lobatto quadrature to compute the integral of the function fun. The rest of the syntax is identical to quad.
dblquad(fun, a, b, c, d)	computes the integral of $f(x,y)$ from $x = a$ to b, and $y = c$ to d. The function fun must accept a vector argument x and scalar y, and it must return a vector result.
triplequad(fun,a,b,c,d,e,f	b, $y = c$ to d, and $z = e$ to f. The function must accept a vector x, and scalar y and z.
Copyright © Dr. Mohammed Hawa	1 8. Saugel 3


```
MATLAB provides the diff function to use for computing derivative estimates.

d = diff(y), \text{ where } y \text{ is a vector of } n \text{ elements, the result is a vector d containing } n - 1 \text{ elements that are the differences between adjacent elements in } y. That is:

<math display="block">d=[y(2)-y(1), y(3)-y(2), \dots, y(n)-y(n-1)]
For example:

 > y = [5, 7, 12, -20];
 > diff(y)
 ans = 2 5 -32
 \text{Extract Sequence Department of the sequence of
```


The solver is called as follows, and the solution plotted along with the analytical solution y_true. The initial condition is y(0) = 2.f = Q(t, y) - 10*y;[t, y] = ode45(f, [0 0.5], 2); $y_analytical = 2 \exp(-10 \times t);$ plot(t,y,'o', t, y_analytical); legend('ODE solver', 'Actual'); xlabel('Time(s)'); ylabel('Capacitor Voltage'); Note that we need not generate the array t to evaluate y_analytical, because t is generated by the ode45 function. The plot is shown on the next slide. Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 22

The circuit model for input voltage $V_s = 10V$ and $\tau = 0.1$: $0.1 \times \frac{dy}{dt} + y = 10$ And the i.c. is y(0) = 2 V. First re-write the equation in the required format: $\frac{dy}{dt} = -10y + 100$ Next define the following function file. Note that the order of the input arguments must be t and y. $f = 0 (t, y) - 10^* y + 100;$

HW: Alternative Solution

```
Define the function in an m-file:

function xdot = d(t, x)

xdot(1) = x(2);

xdot(2) = (1/5)*(sin(t)-4*x(1)-7*x(2));

xdot = [xdot(1); xdot(2)];

Use the function to solve the ODE:

[t, x] = ode45(@d, [0 6], [3 9]);

% notice the need to use handles

plot(t, x(:,1));

Copyright @Dr. Mohammed Hataa
```



```
The sym function can be used to create "symbolic objects" in MATLAB.
If the input argument to sym is a string, the result is a symbolic number or variable. If the input argument is a numeric scalar or matrix, the result is a symbolic representation of the given numeric values.
For example, typing x = sym('x') creates the symbolic variable with name x, and typing y = sym('y') creates a symbolic variable named y.
Typing x = sym('x', 'real') tells MATLAB to assume that x is real. Typing x = sym('x', 'unreal') tells MATLAB to assume that x is not real.
```


Symbolic vs. Numeric Objects		
>> x = sym('x')	>> a = 5	
x =	a =	
Х	5	
>> class(x)	>> class(5)	
ans =	ans =	
sym	double	
<pre>>> syms y >> class(y) ans = sym</pre>	<pre>>> b = 't' b = t >> class(b) ans = char</pre>	
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 4	Ļ

The vector and matrix notation used in MATLAB also applies to symbolic variables. For example, you can create a symbolic matrix A as follows:

```
>> n = 3;

>> syms x;

>> A = x.^((0:n)'*(0:n))

A =

[ 1, 1, 1, 1]

[ 1, x, x^2, x^3]

[ 1, x^2, x^4, x^6]

[ 1, x^3, x^6, x^9]

Copyright © Dr. Mohammed Hava Electrical Engineering Department, University of Jordan
```

```
The expand and simplify functions.
>> syms x y
>> expand((x+y)^2) % applies algebra rules
ans =
      x^{2} + 2xx^{4}y + y^{2}
>> syms x y
>> expand(sin(x+y)) % applies trig identity
ans =
      \cos(x) \cdot \sin(y) + \cos(y) \cdot \sin(x)
>> syms x
>> simplify(6*((sin(x))^2+(cos(x))^2))
% applies another trig identity
ans =
      6
Copyright © Dr. Mohammed Hawa
                            Electrical Engineering Department, University of Jordan
```



```
The solve function.

There are three ways to use the solve function. For example, to solve the equation x + 5 = 0, one way is

\Rightarrow eq1 = 'x+5=0';

\Rightarrow solve(eq1)

ans =

-5

The second way is

\Rightarrow solve('x+5=0')

ans =

-5

Copyright © Dr. Mohammed Haza
```

```
The solve function (continued).The third way is>> syms x>> solve (x+5)ans =-5You can store the result in a named variable as follows:>>syms x>> solve (x+5)x =-5
```

```
To solve the equation e^{2x} + 3e^{x} = 54, the session is

\Rightarrow solve('exp(2*x)+3*exp(x) = 54')

ans =

log(6)

log(9) + pi*I

\Rightarrow syms x

\Rightarrow solve(exp(2*x)+3*exp(x)-54)

ans =

log(6)

log(9) + pi*i
```

```
Other examples:

>> eq2 = 'y^2+3*y+2=0'; % quadratic eq

>> solve(eq2)

ans =

[-2]

[-1]

>> eq3 = 'x^2+9*y^4=0'; % x is squared

>> solve(eq3) % x is assumed the unknown

ans =

[3*i*y^2]

[-3*i*y^2]
```

```
When more than one variable occurs in the expression,
MATLAB assumes that the variable closest to x in the alphabet
is the variable to be found. You can specify the solution
variable using the syntax
solve (E, 'v'), where v is the solution variable.
\Rightarrow eq3 = 'x^2+9*y^4=0'; & y \text{ is to power } 4\\ \Rightarrow solve(eq3, 'y')\\ans = \\ -((-1)^{(1/4)}*9^{(3/4)}*x^{(1/2)})/9\\ ((-1)^{(1/4)}*9^{(3/4)}*x^{(1/2)}i)/9\\ ((-1)^{(1/4)}*9^{(1/4)}*y^{(1/4)}i)/9\\ ((-1)^{(1/4)}*y^{(1/4)}*y^{(1/4)}i)/9\\ ((-1)^{(1/4)}*y^{(1/4)}i)/9\\ ((-1)^{(1/4)}*y^{(1/4)}i)/9\\ ((-1)^{(1/4)}*y^{(1/4)}i)/9\\ ((-1)^{(1/4)}*y^{(1/4)}i)/9\\ ((-1)^{(1/4)}*y^{(1/4)}i)/9\\ ((-1)^{(1/4)}i)/9\\ ((-1)^{(1/4)}i)/9
```



```
Solution
>> S = solve('(x-3)^2+(y-5)^2=4, (x-5)^2+(y-3)^2=b^2')
S =
    x: [2x1 sym]
    y: [2x1 sym]
>> S.x
ans =
 (-b^{4}/16 + (3*b^{2})/2 - 1)^{(1/2)}/2 - b^{2}/8 + 9/2
 9/2 - b^2/8 - (-b^4/16 + (3*b^2)/2 - 1)^{(1/2)/2}
>> S.y
ans =
 (-b^{4}/16 + (3*b^{2})/2 - 1)^{(1/2)}/2 + b^{2}/8 + 7/2
 b^{2}/8 - (-b^{4}/16 + (3*b^{2})/2 - 1)^{(1/2)}/2 + 7/2
Copyright © Dr. Mohammed Hawa
                                   Electrical Engineering Department, University of Jordan
                                                                    22
```

```
Differentiation with the diff function.
>> syms n x y
>> diff(x^n)
ans =
       x^n*n/x
>> simplify(ans)
ans =
       x^(n−1)*n
>> diff(log(x)) % means ln
ans =
       1/x
>> diff((sin(x))^2)
ans =
       2 \times \sin(x) \times \cos(x)
Copyright © Dr. Mohammed Hawa
                                Electrical Engineering Department, University of Jordan
                                                              23
```

If the expression contains more than one variable, the diff function operates on the variable *x*, or the variable closest to *x*, unless told to do otherwise. When there is more than one variable, the diff function computes the *partial* derivative. >> syms x y >> diff(sin(x*y)) ans = cos(x*y)*y The function diff(E, v) returns the derivative of the expression E with respect to the variable v. >> syms x y >> diff(x*sin(x*y),y) ans = $x^2 \cos(x^*y)$ Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 24


```
The forms limit (E, v, a, 'right') and
limit (E, v, a, 'left') specify the direction
of the limit.
>> syms x
>> limit(1/x, x, 0, 'left')
ans =
    inf

Correct for the direction of the limit (logic for the direction of the limit)
```



```
Example:

 \begin{aligned} & \Rightarrow f(x,y) = dsolve(f(x) = 3x + 4x + y', f(y) = -4x + 3x + y', f(y) = 0', f(y) = 1') \\ & x = f(x,y) = f(x
```

```
Laplace and Fourier Transform
>> syms b t
>> laplace(t^3)
ans =
      6/s^4
>> laplace(exp(-b*t))
ans =
      1/(s+b)
>> laplace(sin(b*t))
ans =
      b/(s^2+b^2)
>> fourier(exp(-t^2))
ans =
      pi^{(1/2)}/exp(w^{2/4})
Copyright © Dr. Mohammed Hawa
                            Electrical Engineering Department, University of Jordan
                                                     44
```



```
You can use the inv(A) and det(A) functions to invert and
find the determinant of a matrix symbolically.
>> syms k
>> A = [0, 1; -k, -2];
>> inv(A)
ans =
       [-2/k, -1/k]
      [ 1, 0 ]
>> A*ans % verify inverse is correct
ans =
      [ 1, 0 ]
       [ 0, 1 ]
>> det(A)
ans =
      k
                              Electrical Engineering Department, University of Jordan
Copyright © Dr. Mohammed Hawa
                                                          46
```

You can use matrix methods in MATLAB to solve linear algebraic equations symbolically. You can use the matrix inverse method, if the inverse exists, or the left-division method.

```
>> syms c
>> A = sym([2, -3; 5, c]);
>> b = sym([3; 19]);
>> x = inv(A)*b % matrix inverse method
x =
(3*c)/(2*c + 15) + 57/(2*c + 15)
23/(2*c + 15)
>> x = A\b % left-division method
x =
(3*c)/(2*c + 15) + 57/(2*c + 15)
23/(2*c + 15)
```


The University of Jordan School of Engineering **Department of Electrical Engineering** 1st Semester – A.Y. 2014/2015

Course:	Computer Applications – 0903201 (1 Cr. – Core Course)		
Instructor:	Dr. Mohammed Hawa <i>Office:</i> E306, <i>Telephone:</i> 5355000 ext 22857, <i>Email</i> : hawa@ju.edu.jo <i>Office Hours:</i> will be posted soon		
Course Website:	http://fetweb.ju.edu.jo/staff/EE/mhawa/201/		
Catalog Data:	Computer packages for mathematical and symbolic manipulations (MATLAB, Mathematica). Windows environment. Graphics packages. INTERNET and its use in literature survey and information acquisition. Library search via computer. Engineering packages for computation. Data processing and statistical packages. Standard computer libraries.		
Prerequisites by Course:	EE 1901102 – Computer Skills 2 (C++) (pre-requisite)		
Prerequisites By Topic:	 Students are assumed to have a background in the following topics: Basic computer and software skills. Basic programming language skills, such as C/C++. Basic mathematics, calculus and linear algebra. Basic scalar, array, vector and matrix operations. Solution of ordinary differential equations. Basic electric circuit analysis. 		
Textbook:	Introduction to MATLAB for Engineers by William J. Palm III, McGraw-Hill, 3rd Edition, 2011.		
References:	 Essential MATLAB for Engineers and Scientists by Brian Hahn and Daniel Valentine, Academic Press, 5th Edition, 2013. MATLAB for Engineers by Holly Moore, Prentice Hall, 3rd Edition, 2011. Getting Started with MATLAB 7: A Quick Introduction for Scientists and Engineers by Rudra Pratap, Oxford University Press, 1st Edition, 2005. MATLAB Programming with Applications for Engineers by Stephen J. Chapman, CL-Engineering, 1st Edition, 2012. An Engineers Guide to MATLAB by Edward B. Magrab, et. al., Prentice Hall, 3rd Edition, 2010. Mastering MATLAB by Duane C. Hanselman and Bruce L. Littlefield, Prentice Hall, 1st Edition, 2011. Modeling and Simulation in SIMULINK for Engineers and Scientists by Mohammad Nuruzzaman, AuthorHouse; 1st Edition, 2005. Mastering Simulink by James B. Dabney and Thomas L. Harman, Prentice 		
Schedule & Duration:	Hall, 1st Edition, 2003. 16 Weeks, 45 lectures (50 minutes each) plus exams.		
Minimum Student Material: Minimum College Facilities:	Textbook, class handouts, scientific calculator, and an access to a personal computer. Classroom with whiteboard and projection display facilities, library, computational facilities with the MATLAB program.		
Course Objectives:	The overall objective is to introduce the student to solving engineering problems using computers and scientific programming packages.		

Course Learning Outcomes and Relation to ABET Student Outcomes:

Upon successful completion of this course, a student should:

- 1. Use MATLAB to solve computational problems and generate publishable graphics [e, k]
- 2. Use complex arithmetic and complex functions to describe applied problems. Describe [a] complex numbers and functions in rectangular and exponential forms. Graph the magnitude and phase of complex functions
- 3. Use matrix forms to describe and solve linear systems of equations and systems of [e] differential equations
- 4. Determine the system of linear equations required to find the coefficients that define an [a, e] interpolating function that matches a set of data samples.
- 5. Solve first and second order linear differential equations with constant coefficients both [a, k] analytically and numerically. Use the MATLAB routine ODE23 to solve differential equations numerically.
- 6. Define the Fourier series for a periodic signal. Define the Fourier transform of an aperiodic [a, k] signal.
- 7. Compute the Fourier series and transform from their definition as integrals.
- 8. Use the properties of linearity, time-shifting and time-scaling to compute the Fourier [a, k] series/transform of complex functions from the Fourier series/transforms of simple functions.
- 9. Use the Simulink simulation package to simulate some electric and electronic circuits [k]

Course Topics:

	Topic Description	Hrs
1	Introduction to MATLAB and its use cases. Using the workspace to explore MATLAB features regarding ease of use and versatility. Entering commands. Using MATLAB help.	2
2	General number formatting. Variables, Vectors and Matrices. Built-in MATLAB engineering functions. Matrix-related functions. Operator precedence. Matrix indexing: row and column versus linear versus logical indexing. Matrix versus element-by-elemtn operations.	3
3	Solving a system of linear equations. The concept of vectorization and its use in speeding computations.	2
4	Euclidean Vectors and their operations. Complex numbers. Polynomials. Cells arrays. Structures.	2
5	Script Files. Header comments. User Input/Output commands. The concept of functions in MATLAB and how to build user defined functions. Local vs. global variables. Subfunctions. Inline functions and function handles. Importing data: text, Excel, images, audio, etc.	3
6	Writing general-purpose programs in MATLAB. Flowchart versus pseudocode. Relational operators and conditional statements. Flow control structures and loops. Practical exercises.	4
7	Midterm Exam	1
8	Plotting. The different plot types available. Figure annotations. Three dimensional plots.	3
9	Using MATLAB buil-in functions to obtain numerical solutions for various calculus problems: differentiation, integration, ordinary differential equations, etc.	2
10	MATLAB symbolic engine. Using symbolic notation to define and plot functions. Using symbolic capapilities for liner algebra, calcuals and other problems. Introduction to MuPAD.	2
11	Introduction to Simulink and its libraries. Simulating some engineering systems and finding solutions. Linking Simulink with the MATLAB workspace.	2

Ground Rules: Attendance is required and highly encouraged. To that end, attendance will be taken every lecture. All exams (including the final exam) should be considered **cumulative**. Exams are closed book. No scratch paper is allowed. You will be held responsible for all reading material assigned, even if it is not explicitly covered in lecture notes.

Assessments:	Exams, Quizzes, Projects, and Assignments.	
Grading policy:		
	Assignments, projects, quizzes	20 %
	Midterm Exam	30 %
	Final Exam	50 %
	Total	100%
Last Updated:	January 2015	

[a, k]