EE 251: Electromagnetics 1 First Exam (Fall 2016) November 20th, 2016

Note that bold letters are vectors

Problem 1 (6 points)

Consider a surface charge 'ps' placed horizontally at a distance 'h' from a perfect grounded conducting plane of infinite extent. Find the induced charge per area on the conductor surface.

Problem 2 (8 points)

A unit normal vector from region 2 ($\varepsilon = 2\varepsilon_0$) to region 1 ($\varepsilon = \varepsilon_0$) is $a_{n12} = (6a_x + 2a_y - 3a_z)/7$. If $D_1 = 10a_x + a_y + 12a_z$ A/m and $D_2 = D_{2x}a_x - 5a_y + 4a_z$ A/m, determine

- (a) D_{2x}
- (b) The surface charge density ρ_s on the interface
- (c) The angles E₁ and E₂ make with the normal to the interface.

Problem 3: (8 points)

A metal bar of conductivity σ and dielectric constant of ϵ_r is bent to form a flat 90° sector of inner radius "a", outer radius "b", and thickness "t" as shown below. Find:

- (a) the resistance of the bar between the vertical surfaces at $\phi = 0^{\circ}$ and $\phi = 90^{\circ}$
- (b) the capacitance of the bar between the vertical surfaces at $\phi = 0^o$ and $\phi = 90^o$

$$Q = E \int_{0}^{\infty} \int_{0}^{\infty} = E \int_{0}^{\infty} d^{2} - b^{2} d^{2}$$

$$F = \frac{Q}{I + C a^2 - b^2} \stackrel{\text{arg}}{=} 0$$

$$V = -\left(\frac{E \cdot d}{b}\right) = \int \frac{Q}{db} \frac{db}{b^2}$$

$$C = \frac{Q}{V} = \frac{II}{4} C_0 a^2 - b^2$$

$$C = \frac{Q}{V} = \frac{II}{4} C_0 a^2 - b^2$$

$$R = \frac{eC}{6} = \frac{\pi}{4} e^2 a^2 - b^2$$

Problem 4: (8 points)

A parallel-plate capacitor has its plates at x = 0. d and the space between the plates is filled with an inhomogeneous material with permittivity $\varepsilon = \varepsilon_0 (1 + x/d)$. If the plate at x = d is maintained at V_0 while the plate at x = 0 is grounded, find:

00=A

(a) V and E

(E-DY= * (b) P

(c)
$$\rho_{ps}$$
 at $x = 0$, d

POWEROUNIT