EE212 - Electric Circuits II Second Semester 2016-2017

 $V_2(t)$

First Exam Time: 1 Hour Sunday, 19/3/2017 15:00 - 16:00 pm

Name: - sauly 6-D1, -oss -1

ID# 015 63 87 Serial # 1

Questions 1 (5 points)

- a) Find the RMS value for the following voltage waveforms:
 - 1) $v_1(t) = 5\sin(wt) + 8\cos(wt) V$
 - 2) The signal shown in the figure $v_2(t)$.
- b) Find the RMS value of a source V where $V=V_1+V_2$.
- c) Find the real power absorbed by a load Z = $4+j5 \Omega$ that is connected in parallel with a voltage source $V = V_1 + V_2$.

points)

Questions 2 (5 points)

The circuit shown below consists of four loads in a series-parallel connection, with each of the loads defined as indicated. Find:

- a) The overall complex power supplied by the source, S_s .
- b) The overall source power factor, PF_s .
- c) The source phasor current, I_s .
- d) The phase and magnitude of the current that flows in load 2.

$$54 = 61.2 + 151$$

 $PF_2 = 0.8$ leading

B)
$$PS = \frac{P}{|S|} = \frac{615.74}{626.11} = 0.983$$

C) By SHAMP
$$S = \frac{I_s}{I_s} \cos \theta = 0$$

5 = 42.4 362/5

= 54,54

Ss PFs Is I2 615.74 - 113.5 0.993	Ss PFs Is	12
615.74 - 11.35 0, 993	(15 7) 1125 0/ 000	
	615.74 -113.51	

Questions 3 (5 marks)

The circuit shown depicts a load with 0.8 lagging PF that absorbs 100 W, the load voltage V_L is 120 V and the source frequency is 60 Hz. It is required to correct the power factor of the load by adding a capacitor of 10µF, Find:

- a) the PF of the source before connecting the capacitor.
- the new load PF after connecting the capacitor.
 - the new source current after connecting the capacitor.
 - the losses in the line before and after the connecting the capacitor.

$$V_L = Z_L T_S$$

$$120 = Z_L T_S$$

$$V_{S} = I_{S} ? + 120$$
= 122.93

$$Q = I_{x} V_{x} S_{1}' \times 0 = 0.27$$

$$S_{4,2} = I_{(120)} (0.47) = 0.94$$

Questions 4 (5 points)

Zeq = zy *Zx'

 $I_{\alpha} = \frac{110 \ \angle 6}{2.6 + j1.2}$

-2.6 HI.8

= 34.7 / -34

Ib = 34.7 /-154

The circuit drawn shows a balanced 3 phase Y source of 110 V phase to neutral voltage suppling a balanced Y connected load of $Z_Y = 6+j8$ connected in parallel with Delta load with $Z_{\Delta} = 12 + j6$. Find:

- a) the phase current in phase B of the Y load.
- b) the phase current in phase CA in the Delta load.
 - c) the total current in line A supplied by the source.
- d) the total power supplied to the load.
- e) the combined load power factor.

110

I_B = 10.8 \(-172 \)

