* cross product:

Def: Let $\vec{a}=\left[a_{1}, a_{2}, a_{3}\right]$ and

$$
\vec{b}=\left[b_{1}, b_{2}, b_{3}\right] \text { then }
$$

$$
\begin{aligned}
\vec{a} * \vec{b} & =\left|\begin{array}{lll}
i & j & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \hat{i}-\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \hat{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \hat{k} \\
& =\left[\begin{array}{l}
\left.a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right]
\end{array}\right.
\end{aligned}
$$

* Remarks:

$$
\text { (1) }-\vec{a} * \vec{b}=-(\vec{b} * \vec{a})
$$

(c) $\vec{a} \times \vec{b}$ is orthogonal to both \vec{a} and \vec{b}
(r) - $|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \alpha$ represent the -area of the parallelogram formed by \vec{a} and \vec{b}

NESCAFE. My Cup
(4) If $\vec{a} \times \vec{b}=0$ then $\vec{a} \| \vec{b}$
ex: Let $\vec{a}=[1,1,0]$
$\vec{b}=[3,0,0]$ then

$$
\begin{aligned}
\vec{a} \times \vec{b}=\left|\begin{array}{lll}
i & j & k \\
1 & 1 & 0 \\
3 & 0 & 0
\end{array}\right| & =\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right| i-\left|\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right| j+\left|\begin{array}{ll}
1 & 1 \\
3 & 0
\end{array}\right| \hat{k} \\
& =0 \hat{i}-0 \hat{j} 3 \hat{k} \rightarrow[0,0,3]
\end{aligned}
$$

* 9.4: vector and scalar function and their feild

Def: (1) a vector function gives avector value for appoint p in space

$$
\begin{aligned}
\overrightarrow{v(P)} & =\left[v_{1}(P), v_{2}(P), v_{3}(P)\right] \\
& \text { or } \\
& \vec{v}(x, y, z)=\left[v,(x, y, z), v_{2}(x, y, z), v_{3}(x, y, z)\right]
\end{aligned}
$$

(2) A scalar function gives scalar value for apoint p :

$$
f(p)=\alpha
$$

(3) A vector function defines avector field and a scalar functions defines a scalar field.

$$
\vec{f}(x, y)=\left[\sin x, 3 e^{y}\right]
$$

The distance from a fixed point p_{0} to any point p is ascalar function $f(p)=\sqrt{(x-x .)^{2}+\left(y-y_{1}\right)^{2}+(z-z .)^{2}}$

NESCAFE.
My Cup

* note that vector functions may also depend on time t:

$$
\nabla(t)=\left[v_{1}(t), v_{2}(t), v_{3}(t)\right]
$$

or

$$
\begin{aligned}
& \vec{v}(t)=v_{1}(t) \hat{i}+v_{2}(t) \hat{j}+v_{3}(t) \hat{k} \\
& \vec{v}(t)^{\prime}=\left[v_{1}(t)^{\prime}+v_{2}(t)+v_{3}(t)^{\prime}\right]
\end{aligned}
$$

* Differentiation rules:

1) $(\alpha \bar{v})^{\prime}=\alpha \nabla^{\prime}$
2) $(\vec{u}+\vec{v})=\vec{u}+\vec{v}$
3) $(\vec{u} \cdot \vec{v})^{\prime}=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{u} \cdot \vec{v}^{\prime}$
4) $(\vec{u} \times \vec{v})^{\prime}=\vec{u}^{\prime} \times \vec{v}+\vec{u} \times \vec{v}$
ex: partial derivatives:

$$
\text { 1) } \begin{aligned}
\vec{v}(x, y) & =[3 \cos x, 3 \sin x, y] \\
\frac{\partial v}{D} & =[-3 \sin x, 3 \cos x, 0] \\
& \overrightarrow{d v}=[0,0,1]
\end{aligned}
$$

(2) $\bar{v}(x, y)=\left[e^{x} \cos y, e^{x} \sin y\right]$

(3) $\vec{v}=[\cos x \cosh y,-\sin x \sinh y]$
$-9: 5$ curves. Arc length
(1) A curve G can be represented by avector function with apacamterst

$$
\vec{r}(t)=[x(t), y(t), z(t)]=x(t) i+y(t) j+z(t) \hat{H}
$$

\forall parametric representation of a curve
(-) the direction of the curve is determined by increasing values of t

NESCAFE. My Cup
ex: find aparametric representation of the following curve:

$$
x^{2}-y=0 / z=3 x-1
$$

let $x=t \rightarrow y=t^{2}$ and $z=3 t-1$

$$
\vec{r}(t)=\left[t, t^{2}, 3 t-1\right]
$$

* parametric equation:
(1) Straight line: The parametric equation of astraigh line in the direction of avector $\vec{b}=\left[b_{1}, b_{2}, b_{3}\right]$ and passes throught the point $A\left(a_{1}, a_{2}, a_{3}\right)$ is given by:

$$
\begin{aligned}
\overrightarrow{r(t)} & =\vec{a}+\vec{b} t \\
& =\left[a_{1}++b_{1}, a_{2}+t b_{2}, a_{3}++b_{3}\right]
\end{aligned}
$$

Cv: find the parametric equ of astr raight line that passes thought $p(2,-1,3)$ in the direction of $\vec{V}=2 \hat{i}-\hat{k}$

$$
\begin{aligned}
\vec{a}= & {[2,-1,3], \vec{b}=[2,0,-1] } \\
& \vec{r}(t)=[2+2 t,-1,3-t]
\end{aligned}
$$

* the parametric equ of astraight line is not a unique sep yo
ex: find the parametric equ of a straight line that passes through ht the point $P_{1}(3,4,-1)$ and $P_{2}(7,2,0)$

$$
\begin{aligned}
\vec{a}= & {[3,4,-1], \vec{b}=[7-3,2-4,0-1]=[4,-2,1] } \\
& \vec{r}(t)=[3+4 t, 4-2 t,-1+t]
\end{aligned}
$$

* Cine sylougt $1 \geqslant t \geqslant 0$
[2] circle: the parametric eq of the circle $x^{2}+y^{2}=a^{2}, z=b$ is given by: $\bar{r}(t)=[a$ cos $t, a \sin t, b], 0 \leqslant t \leqslant 2 \pi$
ex: find the parametric equ of:

1)

$$
\begin{aligned}
& x=3, y^{2}+z^{2}=4 \\
& \vec{r}(t)=[3,2 \cos t, 2 \sin t]
\end{aligned}
$$

2)

$$
\begin{gathered}
(x-1)^{2}+y^{2}=9, z=0 \rightarrow x-1=3 \cos t \rightarrow x=1+3 \cos t \\
y=3 \sin t \\
\vec{r}(t)=[1+3 \cos t, 3 \sin t, 0]
\end{gathered}
$$

3) $y^{2}+z^{2}+4 z=5, \quad x=1$

$$
\left(y^{2}+(z+2)^{2}=9\right), x=-1
$$

(3) ellipse: $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, z=c$
$\vec{r}(t)=[a \cos t, b \sin t, c] \quad 0 \leqslant t \leqslant 2 \pi$
ex: find the parametric eq of:

1) $\frac{y^{2}}{3}+\frac{z^{2}}{4} \leq 1, x=2 \rightarrow \vec{r}(t)=[2, \sqrt{3} \cos t, 2 \sin t], 0 \leqslant t \leqslant 2 \pi$

$$
\begin{aligned}
& \text { 2) }(x-2)^{2}+16(y+3)^{2}=64, z=-1 \\
& \frac{(x-2)^{2}}{64}+\frac{(y+3)^{2}}{4}=1 \quad z=-1
\end{aligned}
$$

NESCAFE. My Cup
(4) circular helix:

$$
\vec{r}(t)=[a \cos t, b \sin t, c t] \quad 0 \leqslant t \leqslant 2 \bar{x}
$$

$-c>0$ right hand screw
$-c<0$ left hand screw

- coo ellipse

* curve:
(1) Plane curve: is a curve that lies in a plane ex: $\quad y=x^{2}, z=0$
plane di jsolsugtracs
curve

2) Twisted is not aplane curve
3) Simple curve: is a curve without multiple point (That is without
 abe ex: 中 \$
4) Arc of acuive: is a portion between any two points of the curve. for simplicity we say "curve" for curves as well as for arcs

NESCAFE.
My Cup

* tangent to a curve:
- $r^{\prime \prime}(t)$ is tangent vector
$\xrightarrow[\rightarrow]{-}$ equ tangent Line to the curve $r^{-0}(t)$ at t. is given by:

$$
\vec{q}(\omega)=\overrightarrow{r_{0}}+\omega \vec{r}(t)
$$

ex: Find the tangent to the ellipse $\frac{1}{4} x^{2}+y^{2}=1$ at $p\left(\sqrt{2}, \frac{1}{\sqrt{2}}\right)$

$$
\begin{aligned}
& \vec{r}(r)=[2 \cos t, \sin t, 0] \text { at } p\left(\sqrt{2}, \frac{1}{\sqrt{2}}, 0\right) \\
& 2 \cos t_{0}=\sqrt{2} \rightarrow \frac{1}{\sqrt{2}} \rightarrow t_{0}=\pi / 4 \\
& \text { Now, } \vec{r}^{\prime}(t)=[-2 \sin , \cos t, 0] \rightarrow \text { Thus, } \vec{r}\left(t_{0}\right)=\left[\sqrt{2}, \frac{1}{\sqrt{2}}, 0\right] \\
& \vec{r}(t)=\left[-\sqrt{2}, \frac{1}{\sqrt{2}}, 0\right]
\end{aligned}
$$

$$
\text { the equ of tangent Line } \begin{aligned}
\vec{q}(\omega)=\vec{r}\left(t_{0}\right)+\omega^{-0}\left(t_{0}\right) & =\left[\sqrt{2}, \frac{1}{\sqrt{2}}, 0\right]+\omega\left[-\sqrt{2}, \frac{1}{\sqrt{2}}, 0\right] \\
& =\left[\sqrt{2}(1-w), \frac{1}{\sqrt{2}}(1+w), 0\right]
\end{aligned}
$$

9.7: Gradient of a scalar Lield Directional Derivative.
surface jour vector
Def: The gradient of a scalar function $f(x, y, z)$ is defined as: scabrio doe ns

$$
\operatorname{grad} f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right]=\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j}+\frac{\partial f}{\partial z} \hat{f}
$$

- dell operator is defined as:

$$
\begin{array}{r}
\nabla=\frac{\partial}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{i} \\
\operatorname{grad} f=\nabla f
\end{array}
$$

NESCAFE. My Cup
ex: $f(x, y, z)=\sin x \cdot e^{y z}$
$\operatorname{grad} f=\left[\cos x e^{y z}, z \sin x e^{y z}, y \sin x e^{y z}\right]$

* Directional derivative: directional derivative of f at p in the direction of \hat{b} is given by:

$$
D_{\hat{b}} f(p)=\operatorname{grad} f(p) \cdot \hat{b}
$$

ex: find the directional of $f(x, y, z)=2 x^{2}+3 y^{2}+z^{2}$ at the point $P(2,1,3)$ in the direction of $\vec{a}=\hat{i}-2 \hat{k}$

Sol: $\operatorname{grad} f=[4 x, 6 y, 2 z] \rightarrow \nabla f(p)=[8,6,6]$

$$
\begin{aligned}
& \hat{b}=\frac{\vec{a}}{|\vec{a}|}=\left[\frac{1}{\sqrt{5}}, 0, \frac{-2}{\sqrt{5}}\right] \\
& \rightarrow D_{\hat{b}} f(p)=[8,6,6] \cdot\left[\frac{1}{\sqrt{5}}, 0, \frac{-2}{\sqrt{5}}\right] \rightarrow \frac{8}{\sqrt{5}}+\frac{-12}{\sqrt{5}}=\frac{-4}{\sqrt{5}}
\end{aligned}
$$

* Gradient as surface normal vector:

A surface $S: f(x, y, z)=C$
A curve $G: \vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$
Tangent vector: $\vec{r}^{\prime}(t)=x^{\prime}\left(H_{i} \hat{i}+y^{\prime}(\mu) \hat{j}+z^{\prime}(t) \hat{k}\right.$ of the curve G

原

If G is on S, the surface eq becomes:

$$
f[x(t), y(t), z(t)]=c
$$

Now, diff w.c.t t :

$$
\frac{d f}{d x} x^{\prime}+\frac{d f}{d y} y^{\prime}+\frac{d f}{d z} z^{\prime}=0
$$

turgent vector $\operatorname{grad} \hat{\rho} \cdot \vec{r}=0$
\rightarrow gradient of f at the point p is a normal vector to the surface at the point p
ex: A cone is given by $z^{2}=4\left(x^{2}+y^{2}\right)$, find anomal vector at the paint $P(1,0,2)$

$$
4\left(x^{2}+y^{2}\right)-z^{2}=0 \quad \rightarrow f(x, y, z)=0
$$

grad $f=8 x \hat{i}+8 y \hat{j}-2 z \hat{k}$

$$
\vec{n}=\operatorname{grad} f(\rho)=8 \hat{i}-4 \hat{k}
$$

Del: $\nabla^{2} f=\frac{\partial f^{2}}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$ is called the laplace of f Scalar al scalar io $-\nabla^{2}=\nabla \cdot \nabla$
ex: $f(x, y, z)=3 x^{2} y+e^{z} \rightarrow \nabla^{2} f=6 y+0+e^{z}=6 y+e^{z}$
properties: 1) $\nabla\left(\rho^{n}\right)=n f^{n-1} \cdot \nabla f$
2) $\nabla(f g)=f \nabla g+\nabla f g$
3) $\nabla(p / g)=\frac{g \nabla f-f \nabla g}{g^{2}}$
4) $\nabla^{2}(f g)=9 \nabla^{2} f+2 \nabla f \nabla g+f \nabla^{2} g$

NESCAFE.
My Cup
9.8: Divergence of avector field.

Def: The divergence of the vector function $\vec{v}(x, y, z)=v i(x, y, z)$;
$+v_{2}(x, z) \hat{i}+v_{3}(x, y, z) \hat{k}$ is defend as:

$$
\operatorname{div} \vec{v}=\frac{d v_{1}}{d x}+\frac{d v_{2}}{d y}+\frac{d v_{3}}{d z} \quad \text { (scaler function) }
$$

using del operator: scalar - vector o

$$
\operatorname{div} \vec{v}=\left(\frac{d}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{j}+\frac{d}{\partial z} \hat{k}_{2}\right) \cdot\left(v_{1} \hat{i}+v_{2} \hat{j}+v_{3} \hat{k}\right)=\nabla \cdot \vec{v}
$$

ex:

$$
\begin{aligned}
& : \vec{v}=x e^{y} \hat{i}+\sin y \hat{j}+3 x^{2} \cosh (y+z) \hat{k} \\
& \operatorname{siv} \vec{v}=e^{y}+\cos y+3 x^{2} \sinh (y+z)
\end{aligned}
$$

$-\operatorname{div}(\operatorname{grad} f)=\nabla \cdot \nabla f=\nabla^{2} f \quad$ (Laplacian of $\left.f\right)$
$-\operatorname{div}(f \vec{v})=f \operatorname{div} \vec{v}+\vec{\nabla} \cdot \nabla f$
$-\operatorname{div}(f \nabla g)=f \nabla^{2} g+\nabla f \cdot \nabla g$
9.9: curl of avector field

Def: The curl of avector function $\vec{v}(x, y, z)=v_{1} \hat{i}+v_{2} \hat{j}+v_{3} \hat{k}$ is defined as

$$
\operatorname{curL} \vec{v}=\nabla \times \vec{v}=\left|\begin{array}{ccc}
i & \hat{j} & \hat{t}_{7} \\
\frac{d}{d x} & \frac{d}{d y} & \frac{d}{d z} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
$$

vector $\$ 1$ vector is

$$
\begin{aligned}
& \text { dy } \sim \sim \sim, ~ \sim \sim \\
& d z
\end{aligned}
$$

$e x: \vec{v}(x, y, z)=y z \hat{i}+3 z x \hat{j}+z \hat{k}$

$$
\text { curl } \begin{aligned}
\vec{v} & =\nabla x \vec{v}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{i} \\
d x & d y & d z \\
y z & 3 x x & z
\end{array}\right| \\
& =(0-3 x) \hat{i}-(0-y) \hat{j}+(3 z-z) \hat{k} \\
& =-3 x \hat{i}+y \hat{j}+2 z \hat{k}
\end{aligned}
$$

Therem:

- $\operatorname{curl}(\operatorname{grad} f)=\nabla \times(\nabla f)=0$
$-\operatorname{div}(\operatorname{cort} \vec{v})=\nabla \cdot(\nabla \times \vec{v})=0$
properies:
$-\operatorname{curl}(\vec{u}+\vec{v})=\operatorname{carl} \vec{u}+\operatorname{curl} \vec{v}$
$-\operatorname{curl}(f \vec{v})=\nabla f \times \vec{v}+f \operatorname{curl} \vec{v}$
$-\operatorname{div}(\vec{u} \times \vec{v})=\vec{v} \cdot \operatorname{corl} \vec{u}+\vec{u} \operatorname{cur} \vec{v}$

NESCAFE. My Cup
chop 10: vector Integral calculus 10:1 line integrals

- A definite integral $\int_{a}^{b} f(x) d ; \quad \underset{a}{E} \underset{b}{J} \longrightarrow \mathbb{R}$

Integrate the Integrand $f(x)$ from $x=a$ to $x=b$

- A line integral (or carve integral):
integration along curve G in parametric representation:

"oriented curves"
- the direction from A to B in which t increases is called the positive

Def: A curve $\vec{G}: \vec{r}(H)$ is said to be smooth if $\vec{r}(t)$ is continuous
Def: A piecewise smooth curve has finitely many smooth curves

NESCAFE. My Cup

* Definition and Evalution of line integrals:

A line integral of avector function

$$
f^{\prime}(x, y, z)=f_{1} \hat{i}+f_{2} \hat{j}+f_{3} \hat{k}_{b} \text { over a curve } B: \vec{r}(t)=x(t) i+y(r) ;+z(t) \hat{k}
$$

is given by $\int_{6} f(\vec{r}) \cdot d r=\int_{a}^{b} \overrightarrow{F^{0}}(\vec{r}(t)) \cdot \vec{r}(t) d t$

- since $d \vec{r}=d x \hat{i}+d y \hat{j}+d z \hat{k}$

$$
\begin{aligned}
\rightarrow \int_{c} \vec{f}(\vec{r}) \cdot d \vec{r} & \left.=\int_{c} f_{1} d x+f_{2} d y+f_{3} d z\right) \\
& =\int_{a}\left(f_{1} \frac{d x}{d t}+f_{2} \frac{d y}{d t}+f_{3} \frac{d z}{d t}\right) d t
\end{aligned}
$$

ex: (line integral in the plane)
hind the line integral of $\vec{P}(\vec{r})=-y \hat{i}-x y \hat{j}$ over the circular

$$
\begin{aligned}
& r(t)=\cos t \hat{i}+\sin t \hat{j}, \quad 0 \leq t \leq \pi / 2 \\
& \vec{f}(\vec{r})=-\sin t \hat{i}-\cos t \sin t \hat{j} \\
& \vec{r}^{\prime \prime}(t)=-\sin t \hat{i}+\cos t \hat{j} \\
& \int_{G} \vec{f}^{-\vec{f}}\left(\vec{r}^{-0}\right) \cdot d \vec{r}^{-0}=\int_{0}^{\pi / 2}\left(\sin ^{2} t-\cos ^{2} t \sin t\right) d t \rightarrow \pi / 4-1 / 3
\end{aligned}
$$

ex: (line integral in space) \rightarrow hind the line integral $\vec{f}=z \hat{i}+x \hat{j}+y \hat{k}$ along ahelix 6 : $\vec{r}(t)=\cos t \hat{i}+\sin t \hat{j}+3+\hat{k}, \quad 0 \leqslant t \leqslant 2 \pi$

$$
\begin{aligned}
& \vec{f}(\vec{r})=3 t \hat{i}+\cos t \hat{j}+\sin t \hat{k} \\
& \overrightarrow{r n}(t)
\end{aligned}=-\sin t \hat{i}+\cos t \hat{j}+3 \hat{k}
$$

NESCAFE. My Cup

$$
\begin{aligned}
& -\int_{c} \alpha \vec{f} \cdot d \vec{r}=\alpha \rho_{c} \vec{f} \cdot d \vec{r} \\
& -\int_{c}(\vec{f}+\vec{b}) \cdot \vec{d}=\int_{c} \vec{f} \cdot \vec{r}+\int_{c} \vec{b} \cdot d \vec{r} \\
& -\int_{c} \vec{f} \cdot \vec{d}=\int_{c_{1}} f \cdot d \vec{r}+\rho_{c_{2}} \vec{P} \cdot \overrightarrow{d r} \\
& -\int_{-\sigma} \vec{f} \cdot \vec{r}=-\frac{\rho}{c} \vec{f} \cdot \vec{r}
\end{aligned}
$$

ex: evolute $\int_{C} \vec{f} \cdot d \vec{r}$ where $\vec{f}=x^{2} \hat{i}+x y \hat{j}$ and

$$
\int_{c} \vec{f} \cdot d \vec{r}=\int_{c_{1}} \vec{l} \cdot d \vec{r}+\rho_{c_{2}} \vec{f} \cdot d r^{-0}
$$

* Path dependence:

Thy: The line integral $\int_{c} \vec{f}^{-p} \cdot d_{r}$ generally depends not only on \vec{f} and endpoints of the path, but also on the path itself

10.2: path independence of the integral a col paramerision lbs vo $1 ; 1$

- A line integral $\int_{c} \vec{f}^{-0} \cdot d r$ is path independent if it has the same value for all carves G with the same endpoints, that is, its value depends only on the endpoints of G, not on Gitself

$$
\int_{c_{1}} \vec{f} \cdot d \vec{r}=\int_{c_{2}} \vec{f} \cdot d \vec{r}=\int_{c_{3}} \vec{f} \cdot d \vec{r}
$$

Thereon: A line integral $\rho \vec{f} \cdot \vec{r} \vec{r}$ is path independent in a Domain A if $\vec{f}=\nabla f$ for some scalar function f defined in D

- if $\vec{f}=\nabla f$ then f is called apohiential of \vec{f}, and in this case

$$
\int_{c} \vec{f} \cdot d r=f(B)-f(A)
$$

ex: Show that $\int_{c} \vec{f} \cdot d \vec{r}=\int(2 x d x+2 y d y+4 z d z)$ is path independent and hind its value for endpoints $A(0,0,0)$ and $B(2,2,2)$

$$
\vec{f}=2 x \hat{i}+2 y \hat{j}+4 z \hat{\tau} \quad \vec{f}=\nabla f=x^{2}+y^{2}+2 z^{2}
$$

$\int_{c} \vec{f} \cdot d \vec{r}$ is path independent

$$
\rightarrow \int_{c} \vec{f} \cdot d \vec{r}=f(2,2,2)-f(0,0,0)=16
$$

NESCAFE.
ex: find $\int_{c} f^{-0} \cdot d r^{-1}=\int_{c}\left(3 x^{2} d x+2 y z d y+y^{2} d z\right)$ from $A(0,1,2)$ to $B(1,-1,7)$ by showing \vec{f} has apotenhial

$$
\begin{aligned}
& \vec{f}=\left[3 x^{2}, 2 y z, y^{2}\right] \\
& \vec{f}=\nabla f \rightarrow \frac{d f}{d x}=3 x^{2} \rightarrow f=x^{3}+g(y, z) \\
& \frac{d f}{\partial y}=2 y z \rightarrow f=x^{3}+y^{2} z+h(z) \\
& \frac{d f}{d z}=y^{2} \rightarrow f=x^{3}+y^{2} z+c
\end{aligned}
$$

$\int_{c} \vec{f} \cdot d r^{-r}$ is path independent

$$
\int_{c} \vec{f}^{-0} \cdot d r^{-D}=f(1,-1,7)-f(0,1,2)=6
$$

* integration around closed curves:

Thy: A line integral of \vec{F} is path independent in a domain D if $\int_{c} \vec{f} \cdot d \vec{r}=0$ whenever G is a closed path in D
Proof: $\rho_{c_{1}}^{\rho \vec{f} \cdot d \vec{r}+c_{c_{2}} \rho \vec{f} \cdot d \vec{r}=0} \int_{c_{1}} \vec{f} \cdot d \vec{r}+\int_{c_{3}} \vec{f} \cdot d \vec{r}=0$
in this case \vec{p} is called conservative

NESCAFE.
10.3 Double Integrals

$$
\int_{R} \rho f(x, y) d A=\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) d y d x
$$

$$
\rho \rho f(x, y) d A=\int_{c}^{\delta} \int_{p(y)}^{q(y)} f(x, y) d x d y
$$

$$
\text { ex: } \begin{aligned}
\int_{0}^{2} \int_{x}^{2 x}(x+y)^{2} d y d x & =\left.\int_{0}^{2} \frac{(x+y)^{3}}{3}\right|_{x} ^{2 x} d x=\int_{0}^{2} 9 x^{3}-\frac{8}{3} x^{3} d x \\
& =\left.\frac{19}{3} \cdot \frac{x^{4}}{4}\right|_{0} ^{2}=\frac{76}{3}
\end{aligned}
$$

ex: $\int_{0}^{3} \int_{-y}^{y}\left(x^{2}+y^{2}\right) d x d y \quad=\int_{0}^{3} \frac{x^{3}}{3}+\left.y^{2} x\right|_{-y} ^{y} d y$

$$
=\int_{0}^{3}\left(\frac{y^{3}}{3}+y^{3}\right)-\left(\frac{-y^{3}}{3}-y^{3}\right) d y=54
$$

ex: evaluate $\iint(x+2 y) d A$

$$
\int_{0} \int_{0}^{1}(x+2 y) d A=\int_{0}^{1} \int_{x^{2}}^{x}(x+2 y) d y d x=\ldots
$$

* Double integral in polar coordinates:

$$
\begin{aligned}
& x=r \cos \theta, y=r \sin \theta, x^{2}+y^{2}=r^{2} \\
& \text { If } R_{3}=\{(r, \theta): \alpha \leqslant \theta \leqslant \beta, g(\theta) \leq r \leq h(\theta)\} \\
& \quad \rho \rho f(x, y) d A=\int_{\alpha}^{\beta} \rho_{g(\theta)}^{n(\theta)} f(r \cos \theta, r \sin \theta) \cdot r d r d \theta
\end{aligned}
$$

ex: evaluate $\int \rho X d A$ where R is the region between the two circles $x^{2}+y^{2}=1^{R}$ and $x^{2}+y^{2}=4$ in the first quardiant

$$
\begin{aligned}
\rho \rho x d A & =\int_{0}^{\pi / 2} \rho_{1}^{2} r \cos \theta \cdot r d r d \theta \\
& =\int_{0}^{\pi / 2}(\cos \theta d \theta)\left(\rho_{1}^{2} r^{2} d r\right) \\
& =1 \times(813-1 / 3)=7 / 3
\end{aligned}
$$

10.4: Green Theorem in tho plane

* Greens Theorem:

If R is a closed region in $x y$-plane with boundary G (with positive orientation
If $\vec{f}=\left[f_{1}, f_{2}\right]=f_{1} \hat{i}+f_{2} \hat{j}$ is a vector function, then

$$
\iint_{R}\left(\frac{\partial f_{2}}{d x}-\frac{d f_{1}}{d y}\right) d x d y=\oint_{c} f_{1} d x+f_{2} d y
$$

- Greens Thereon in vector form can be written as:

$$
-0-2
$$

ex (verification of Greens Thu):
let $\vec{f}=\frac{\left(y^{2}-7 y\right)}{f_{1}} \hat{i}+\frac{(2 x y+2 x)}{f_{2}} \hat{j}$ and $G: x^{2}+y^{2}=1$ Then

Recall: $\iint_{R} d x d y=$ Area of R
(ii) $\vec{f}(\vec{r})=\left(\sin t^{2}-7 \sin t\right) \hat{i}+(2 \cos t \sin t+2 \cos t) \hat{j}$

$$
\begin{aligned}
& \vec{r}(t)=-\sin t \hat{i}+\cos t \hat{j} \\
& \oint_{c}^{2} \vec{f} \cdot d \vec{r}=\int_{0}^{2 \pi}\left(-\sin t^{3}+7 \sin ^{2} t+2 \cos ^{2} t \sin t+2 \cos ^{2} t\right) d t=9 \pi
\end{aligned}
$$

* some Applications of Green's Thy:
(i) if $f_{2}=x$ and $\left.f_{1}=0 \rightarrow \iint_{R} \frac{\left(d f_{2}\right.}{\partial x}-\frac{d f_{1}}{d y}\right) d x d y=\int_{R} \rho d x d y=\oint_{c} x d y$
(ii). If $f_{2}=0$ and $f_{1}=-y \rightarrow \int_{R}\left(\frac{d f_{2}}{d x}-\frac{d f_{1}}{d y}\right) d x d y=\iint_{R} d x d y=-\oint_{c} y d x$
\therefore Area of aregion R is: $A=\frac{1}{2} \xi x d y-y d x$

NESCAFE. My Cup
ex: Find the area of the ellipse $\frac{x^{2}}{a}+\frac{y^{2}}{16}=1$

$$
\begin{aligned}
\vec{G}: \vec{r}(t) & =[3 \cos t, 4 \sin t], 0 \leq t \leq 2 \pi \\
A & =\frac{1}{2} \oint_{c} x d y-y d x \\
& =\frac{1}{2} \int_{0}^{2 \pi}[-4 \sin t, 3 \cos t] \cdot[-3 \sin t, 4 \cos t] d t \\
& =\frac{1}{2} \int_{c}^{2 \pi} y \\
& =6 \int_{0}^{0} d t=12 \pi
\end{aligned}
$$

0, 6 óriza
ex: evaluate $\xi_{c} x y d x+x^{2} y^{3} d y$, where c is the triangle with vertices $(0,0),(1,0)^{c}$ and $(1,2)$ with positive oriantation.

$$
\oint_{c} x y d x+x^{2} y^{3} d y=\int_{0}^{1} \int_{0}^{2 x}\left(2 x y^{3}-x\right) d y d x=\frac{2}{3}
$$

ex: evaluate $\oint_{c}\left(e^{x}+4 y\right) d x+(\sin 2 y+5 x) d y$ where 6 is the upper half of the circle $x^{2}+y^{2}=4$

$$
\begin{aligned}
\oint_{c}\left(e^{x}+4 y\right) d x+(\sin 2 y+5 x) d y & =\iint 5-4 d x d y \\
& =\frac{1}{4} \text { Area of } \\
& =\frac{1}{2} \times 4 \pi=2 \pi
\end{aligned}
$$

ex: evaluate $\oint_{c} y^{3} d x-x^{3} d y \quad{ }^{2}$ where

$$
\begin{aligned}
& \oint_{C} y^{3} d x-x^{3} d y=\int_{R} \rho_{R}-3 x^{2}-3 y^{2} d x d y=-3 \int \rho\left(x^{2}+y^{2}\right) d x d y \\
&=-3 \rho \rho_{R}^{2 \times 2} r^{2} \cdot r d r d \theta=-3\left(\int_{0}^{2 \pi} d \theta\right)\left(\rho^{2} r^{3} d r\right) \\
&=-3 \times 2 \pi \times \frac{15}{4}=\frac{-45 \pi}{2}
\end{aligned}
$$

10:5: surfaces for surface integrals
*Representations of surfaces in $x y z$-space:

$$
z=f(x, y) \quad \text { or } \quad g(x, y, z)=0
$$

t parametric representation:

$$
\vec{r}(u, v)=[x(u, v), y(u, v), z(u, v)]=x(u, v) \hat{i}+y(u, v) \hat{j}+z(u, v) \hat{k}
$$

ex: parametric representation of a cylinder

$$
\begin{aligned}
x^{2}+y^{2}=4, & -1 \leqslant z \leqslant 1 \\
& =[2 \cos u, 2 \sin u, v], 0 \leqslant u \leqslant 2 \pi,-1 \leqslant v \leqslant 1
\end{aligned}
$$

ex: ~ ~ ~ sphere

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}=9 \\
\vec{r}(u, v)=3 \cos v \cos u \hat{i}+3 \cos v \sin u \hat{\jmath}+3 \sin v \hat{k}
\end{gathered}
$$

$$
0 \leq u \leq 2 \pi \quad-\pi / 2 \leq v \leq \pi / 2
$$

,

NESCAFE. My Cup
ex:

$$
\begin{aligned}
& \text { ~ } \sim \text { elliptic para } \\
& z=x^{2}+y^{2}, 0 \leqslant z \leqslant 4 \\
& \vec{r}(u, v)=u \cos v \hat{i}+u \sin v \hat{j}+u^{2} \hat{k} \\
& \\
& \quad 0 \leqslant u \leqslant 2,0 \leqslant v \leqslant 2 \pi
\end{aligned}
$$

ex:

$$
\begin{aligned}
& \begin{array}{l}
z=\sqrt{x^{2}+y^{2}} \quad 0 \leq z \leq 5 \\
\vec{r}(u, v)= \\
=u \cos v \hat{i}+u \sin v \hat{j}+u \hat{k} \\
y=\sqrt{x^{2}+z^{2}}
\end{array}
\end{aligned}
$$

* Tangent plane and surface normals

Def: tangent Plane of a surface S at the point p is a plane containing tangent vectors of S at P.
Def: Ubrmal vector of a surface S ot the point p is avechor perpendicular to the tangent plane.

NESCAFE. My Cup

- Anormal vector of the surface S at the point P is:

$$
\begin{aligned}
& \vec{\mu}=\overrightarrow{r_{u}} \times \overrightarrow{r_{v}} \\
& \hat{n}=\frac{\vec{N}}{|\vec{N}|} \text { "unit normal vector" } \\
& e x: x^{2}+y^{2}=4,0 \leq z \leqslant 3 \quad \text { "cylinder" } \\
& \vec{r}(u, v)=[2 \cos u, 2 \sin u, v]=\vec{r} u=[-2 \sin u, 2 \cos u, 0] \\
& \overrightarrow{r_{v}}=[0,0,1] \\
& \vec{N}=\overrightarrow{r_{u}} \times \overrightarrow{r_{v}}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \vec{H} \\
-2 \sin 4 & 2 \cos u & 0 \\
0 & 0 & 1
\end{array}\right|=[2 \cos u, 2 \sin u, 0] \\
& \hat{n}=\cos u \hat{i}+\sin u \hat{j}
\end{aligned}
$$

ex: $\frac{x^{2}}{4}+\frac{z^{2}}{9}=1 \quad 0 \leqslant y \leqslant 4$

$$
\vec{r}(u, v)=[2 \cos u, v, 3 \sin u]
$$

This if S is given by $g(x, y, z)=0$ then the surface normal vector is $\vec{N}=\nabla g$

NESCAFE.
My Cup
ex: unit normal vector of asphere $x^{2}+y^{2}+z^{2}=4$
let $g(x, y, z)=x^{2}+y^{2}+z^{2}-4$

$$
\begin{aligned}
& \vec{N}=\nabla g=2 x+2 y+2 z \text { and }|\vec{N}|=4 \\
& \therefore \hat{n}=\left[\frac{1}{2} x, \frac{1}{2} y, \frac{1}{2} z\right]
\end{aligned}
$$

ex: unit normal of a cone

$$
z=\sqrt{x^{2}+y^{2}}
$$

let $g(x, y, z)=\sqrt{x^{2}+y^{2}}-z$

$$
\begin{aligned}
& \vec{N}=\nabla g=\left[\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}},-1\right]=|\stackrel{N}{N}|=\sqrt{2} \\
& \hat{n}=\frac{1}{\sqrt{2}}[
\end{aligned}
$$

10.6 surface integrals

- A surface S in parametric representation is given by:

$$
\begin{array}{r}r \\ (u, v)=x(u, v)\end{array}
$$

$$
\vec{r}(u, v)=x(u, v)^{i}+y(u, v)_{j}^{\prime}+z(u, v) k
$$

- the surface normal vector is:

$$
\vec{J}=\overrightarrow{r_{u}} \times \overrightarrow{r_{v}}
$$

- Unit normal vector:

$$
\hat{n}=\frac{\vec{N}}{|\vec{N}|}
$$

NESCAFE.

Def: A surface integral of avector function $\vec{f}(\vec{r})$ over the surface S is defined as:

$$
\int_{s} \rho \vec{f} \cdot n^{0} d A=\rho \rho \vec{f}^{\overrightarrow{0}} \cdot \vec{v}^{D} d u d v
$$

where R is the projection of S into the uv-plane
ex: evaluate $\int_{s} \vec{f}_{,} \hat{n} d A$ where $\vec{f}=\left[3 z^{2}, 6,6 x z\right]$ and

$$
S: \quad y=x^{2}, \quad 0 \leqslant x \leqslant 2, \quad 0 \leqslant z \leqslant 3
$$

$s: \vec{r}=\left[x, x^{2}, z\right]$
Let $u=x \quad v=z \rightarrow \vec{r}(u, v)=\left[u, u^{2}, v\right], 0 \leq u \leqslant 2$, o\& $v \leqslant 3$

$$
\begin{aligned}
& \vec{N}=\vec{r} u \times \overrightarrow{r_{v}}=\left|\begin{array}{lll}
\hat{c} & \hat{j} & \vec{k} \\
1 & 2 u & 0 \\
0 & 0 & 1
\end{array}\right|=[2 u,-1,0] \\
& \vec{f}(\vec{r}(u, v))=\left[\begin{array}{ll}
3 v^{2}, & 6, b u v] \\
\vec{f} \cdot \vec{N}=6 u v^{2}-6 \\
\therefore \rho_{5} \vec{f} \cdot \hat{n} d A=\int_{0}^{3} \int_{0}^{2} 6 u v^{2}-b d u d v=\int_{0}^{3} 3 u^{2} v^{2}-\left.6 u\right|_{0} ^{2} d v=72
\end{array}\right.
\end{aligned}
$$

ex: evaluate $\rho \rho \vec{f} \cdot \vec{n} d A$ where $\vec{f}=\left[x^{2}, 0,3 y^{2}\right]$ and s is the portion of tho plane $x+y+z=1$ in the hist octan

Let $x=u, y=v \rightarrow z=1-x-y$

$$
\vec{r}(u, v)=[u, v, 1-u-v] \quad 0 \leqslant u \leq 1-v
$$

NESCAFE.
My Cup

$$
\vec{N}=\vec{r}_{u} \times \vec{r}_{v}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{r} \\
1 & 0 & -1 \\
0 & 1 & -1
\end{array}\right|=[1,1,1]
$$

$$
\vec{f}(\vec{r}(u, v))=\left[u^{2}, 0,3 v^{2}\right]
$$

$$
\begin{aligned}
& \vec{f} \cdot \vec{u}=u^{2}+3 v^{2} \rightarrow \therefore \rho \rho_{s} \vec{f} \cdot \hat{n} d A=\int_{0}^{1} \int_{0}^{1-v}\left(u^{2}+3 v^{2}\right) d u d v \\
& =\int_{0}^{1}\left(\frac{u^{3}}{3}+\left.3 v^{2} u\right|_{0} ^{1-v}\right) d v=\int_{0}^{1} \frac{(1-v)^{3}}{3}+3 v^{2}(1-v) d v \\
& =\frac{-(1-v)^{4}}{12}+v^{3}-\left.\frac{3}{4} v^{4}\right|_{0} ^{1}=\frac{1}{3}
\end{aligned}
$$

10.7 Divergence Thereon of Gouss.
(cloused surface)
Triple integral \leftrightarrow surface integral
The: let t be adosed bounded region in space whose boundary is afiecewise smooth oriented surface S with positive orientation

- Let $\vec{f}(x, y, z)$ be acontineous vector function and has cont first pariah derivable in T. Then: $\frac{\rho \rho \rho}{T} \operatorname{div}(\vec{f}) d v=\int_{S}^{\rho} \vec{f} \cdot A \cdot n d A$

$$
\begin{aligned}
& \int_{T}^{\rho \rho \rho}\left[\frac{d f_{3}}{d x}+\frac{d f_{2}}{d y}+\frac{d f_{3}}{d z}\right] d x d y d z \\
& =\rho \rho f_{1} d y d z+f_{2} d z d x+f_{3} d x d y
\end{aligned}
$$

where $\vec{f}=\left[\hat{f}_{1}^{5}, f_{2}, f_{3}\right]$
ex: evaluhe $\iint_{s} \vec{f} \cdot \hat{n} d^{\prime} A$ where $\vec{f}=\left[x^{3}, y^{3}, z^{3}\right]$ and $s=x^{2}+y^{2}=9$
"top and bottom are inclucts" " $0 \leqslant z \leqslant 2$ "cylinder"

$$
\begin{aligned}
& \quad \rho \rho \rho \cdot \hat{n} d A=\rho \rho \rho \\
&=\int \rho \rho \\
& \operatorname{div}\left(\overrightarrow{f^{0}}\right) d v \\
& x=3 \cos \theta \quad\left.x^{2}+3 y^{2}+3 z^{2}\right] d v \\
& y=r_{i n}^{r} \sin \theta=\int_{000}^{2 \pi} \rho \rho_{0}^{3}\left[3 r^{2}+3 z^{2}\right] r d r d \theta d z=315 \pi \\
& z=z
\end{aligned}
$$

"cylindrical coordinate"

$$
x^{2}+y^{2}=r^{2}
$$

路
ex: $\delta: z=\sqrt{4-x^{2}-y^{2}}$ (upper hemisphere and $x^{2}+y^{2} \leqslant 4$

$$
\rho \rho_{S} \vec{\rho} \cdot \hat{n} d A=\int \rho \rho_{000}^{2 \pi / 2 \pi}(3 \rho)^{2} \rho^{2} \sin \theta d \theta d \varphi d \rho=(192 / 5) \pi
$$

ex: evaluate $\iint_{5} x^{3} d y d z+x^{2} y d z d x+x^{2} z \quad d x d y$ where. So $x^{2}+y^{2}=16,0<z \leqslant 3$ and" sides and bottom ate included"

$$
\rho \rho \vec{\rho} \cdot \hat{n} d A=\rho \rho \rho\left[3 x^{2}+x^{2}+x^{2}\right] d v=\rho \rho \rho 5 x^{2} d v \quad \text { "cylindrical coordinate" }
$$

$$
\begin{aligned}
& \int_{0}^{3} 2 \pi \rho_{0}^{4}\left(5 r^{2} \cos ^{2} \theta\right) r d r d \theta d z \\
= & \left(\int_{0}^{3} d t\right)\left(\rho_{0}^{2 \pi} \cos ^{2} \theta d \theta\right)\left(\int_{0}^{4} 5 r^{3} d r\right)=960 \pi
\end{aligned}
$$

H.w : evaluate $\rho \rho \rho_{s}^{-} \cdot \hat{n} d A$ where $\vec{f}=\left[x y, y^{2}+\sin (x z), 3 e^{x} \cos y\right]$
and $S: z^{s}=1-x^{2},-1 \leqslant x \leqslant 1,0 \leqslant y \leqslant 2$

$$
\begin{aligned}
& \rho \rho \vec{\rho} \cdot \hat{n} \partial A=\rho \rho \rho 3 y d v \\
&=\int_{-1}^{T_{1}} \int_{0}^{1-x^{2}} \rho \\
& \hline
\end{aligned}
$$

9

NESCAFE. My Cup

- Stoke's theorem (closed curve)
the: let 3 be apiesewise smooth oriented surface and lot its boundary be apiceulse smith simple closed curve G.
* Let $\vec{f}(x, y, z)$ be acont vector function with cont partial first derivatives. Then \int_{s}^{ρ} curt $(\hat{f}) \cdot \hat{n} \quad \partial A=\hat{c} \vec{f} \cdot d r^{-r}$ $\nabla \times \vec{f}$
ex: (verifaction of stokes theorem) - Let $\vec{P}=[y, z, x]$ and $S: z=1-\left(x^{2}+y^{2}\right)$ $z \geqslant 0$ "paraboloid"
(i)

$$
\begin{aligned}
& \operatorname{curL} \vec{f}=\left|\begin{array}{lll}
i & j & \vec{i} \\
\frac{\partial}{7} & \frac{\partial}{d y} & \frac{d}{d z} \\
y & z & x
\end{array}\right|=-\hat{i}-\hat{j}-\hat{k}=[-1,-1,-1] \\
& \vec{N}=\nabla\left(z+x^{2}+y^{2}-1\right)=[2 x, 2 y, 1] \\
& \int_{\mathrm{s}}^{\rho \rho_{2 \pi}} \operatorname{curl} \vec{f} \cdot \hat{n} d A=\int \rho_{\mathrm{s}} \operatorname{curL} \vec{f} \cdot \vec{N} d x d y=\int \rho_{\mathrm{S}}-2 x-2 y-1 d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{1}(-2 \cos \theta-2 \sin \theta-1) \operatorname{rdrd\theta }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& z=0 \rightarrow x^{2}+y^{2}=1 \quad G: \vec{r}(t)=[\cos t, \sin t, 0], 0 \leqslant t \leqslant 2 \pi \\
& \vec{f}(\vec{r}(t))=[\sin t, 0, \cos t] \rightarrow \vec{r}^{\vec{\prime}}(t)=[-\sin t, \cos t, 0] \\
& \vec{f} \cdot \vec{r}=-\sin t^{2} \\
& \therefore \oint \vec{f} \cdot d \vec{r}=\int_{0}^{2 \pi} \vec{f}(\vec{r}(t)) \cdot \vec{r}(t) d t=\int_{0}^{2 \pi}-\sin ^{2} t d t=\frac{-1}{2} \int_{0}^{2 \pi}(1-\cos 2 t) \\
& =\frac{-1}{2}\left[t-\left.\frac{\sin 2 t}{t}\right|_{0} ^{2 \pi}=-\pi\right.
\end{aligned}
$$

ex: Use stoke's The to evaluate 9ρ curl $\vec{f} \cdot \hat{n} d A$ where
H.w : use stoke' The to evaluate $\int_{c} \vec{f} \cdot d \vec{r}$ where $\vec{f}=\left[z^{2}, y^{2}, \pi\right]$ and C is the triangle with vertices $(1,0,0),(0,1,0)$ and $(0,0,1)$ with counter-clockwise rotation.

$$
x+y+z=1
$$

$$
[1,1,1]
$$

$$
86 \quad z=1-x-y
$$

$$
\begin{aligned}
& \int_{c} \vec{f} \cdot d r^{-P}=\int_{s} \operatorname{curl} \vec{f} \cdot \hat{n} d A=\int_{0}^{1-x} 1-2 x-2 y d y d x \\
& \left|\begin{array}{lll}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
z^{2} & y^{2} & \frac{\lambda}{x}
\end{array}\right| \rightarrow[0,27,0] \\
& \hat{n}=[1,1,1] \\
& \rightarrow \int_{1} \int_{L x} q z d A \\
& \int_{0}^{1} \int_{0}^{L-x} 2-2 x-2 y d x d y
\end{aligned}
$$

$$
\begin{aligned}
& \vec{f}=\left[z_{1}^{2}-3 x y, x^{3} y^{3}\right] \text { and } s: z=5-x^{2}-y^{2}, z \geqslant 1 \\
& z=1 \rightarrow x^{2}+y^{2}=4 \\
& \vec{G}: \vec{r}(t)=[2 \cos t, 2 \sin t, 1] \quad \vec{f}(\vec{r}(t))=\left[1,-12 \cos t \sin t, 64 \cos ^{3} t \sin t^{3}\right] \\
& \text { 路 } r^{\prime \prime}(t)=[-2 \sin t, 2 \cos t, 0] \\
& \vec{f}\left(\vec{r}(t) \cdot \vec{r}(t)^{\prime}\right)=-2 \sin t-24 \cos ^{2} \sin t \\
& \therefore \iint_{s} \operatorname{curl} \vec{f} \cdot \hat{n} d A=\int_{0}^{2 \pi}-2 \sin t-24 \cos ^{2} t \sin t \quad d t=0
\end{aligned}
$$

NESCAFE.
 My Cup

Chapter 11: fourier Analysis
11.1: fourier series.

Def: function f is said to be periodic with $p>0$ if $f(x)=f(x+p)$
ex: $f(x)=\cos x$

* Remark: If aperiodic function his periodic with period p, then its also periodic with period ip, $3 p, \ldots$
- The smallest period of $f(x)$ is called the fundamental period.
* Recall:

1) If $f(-x)=f(x)$, then f is called even function.
2) If $f(-x)=-f(x)$, then f is called odd function.
3) $\int_{-L}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x$ (f even function)
4) $\int_{-L}^{L} f(x)=0$ (food function)

Defn: Two function $f(x)$ and $g(x)$ are called orthogonal on $[a, b]$ if $\int_{a}^{b} f(x) g(x) d x=0$

- A set of function is said to be mutually orthogonal if each pair of function in the set is orthogonal.
* orthogonality of trigonometric functions:

1) $\int_{-L}^{L} \cos (m \pi x / L) \cos (n \pi x / L) d x= \begin{cases}0 & \text { if } m \neq n \\ L & \text { if } m=n \neq 0 \\ 2 L & \text { if } m=n=0\end{cases}$
2) $\int_{-L}^{L} \cos (m \pi x / L) \sin (n \pi x / L) d x=0$
3) $\int_{-1}^{L} \sin (m \pi x / L) \sin (n \pi x / L)^{d x}=\left[\begin{array}{ll}0 & \text { if } m \neq n \\ L & \text { if } m=n \neq 0\end{array}\right.$

* fourier series: If f has period $2 L$ defined on $[-L, L]$, Then:

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \pi x / L)+b_{n} \sin (n \pi x / l)\right)
$$

where, an $=\frac{1}{L} \int_{-L}^{L} f(x) \cos (n \pi x 11) d x ; n=0,1,2, \ldots$

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin (n \pi x \mid L) d x_{i} n=1,2,3 \ldots
$$

NESCAFE. My Cup

- Remark: If $L=\pi$, then $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos n x\right.$ where, $\left\{\begin{array}{l}a_{n}=\frac{1}{\bar{x}} \int_{-x}^{\hat{x}} f(x) \cos n x d x, n=0, \ldots \\ b_{n}=\frac{1}{x} f_{-x}^{x} f(x) \sin n x d x, n=1, \ldots\end{array}\right\}$ ex: compute the fourier series of $f(x)= \begin{cases}0, & -\pi<x<0 \\ x, & \text { (even) } \\ x, & 0<x<\pi \text { (odd) }\end{cases}$

$$
\begin{aligned}
& f(x)=0 \rightarrow \text { even } \\
& f(x)=x \rightarrow \text { odd }
\end{aligned}
$$

$$
\begin{aligned}
& a_{0}= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi}\left(\int_{-\pi}^{0} \int_{0}^{0} d x+\int_{0}^{\pi} x d x\right) \Rightarrow a_{0}=\frac{\pi}{2} \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=\frac{1}{\pi}\left[\int_{-\pi}^{0} 0 \cos (n x) d x+\int_{0}^{\pi} x \cos (n x) d x\right] \\
& a_{n}=\frac{\cos (n \pi)-1}{\pi n^{2}}=\frac{(-1)^{n}-1}{\pi n^{2}}, n=1,2, \ldots \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x=\frac{1}{\pi}\left[\rho_{-\pi}^{0} 0 x \sin (n x) d x+\int_{0}^{\pi} x \sin (n x) d x\right]
\end{aligned}
$$

(f) $b_{n}=\frac{(-1)^{n+1}}{n}, n=1,2$

$$
\begin{aligned}
f(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n x)+b n \sin (n x)\right] \\
& =\frac{\pi}{4}+\sum_{n=1}^{\infty}\left[\frac{(-1)^{n}-1}{\pi n^{2}} \cos (n x)+\frac{(-1)^{n+1}}{n} \sin (n x]\right.
\end{aligned}
$$

ex: find the fourier series for $f(x)= \begin{cases}-1, & -\pi<x<0 \\ 1, & 0<x<\pi\end{cases}$

$$
\begin{aligned}
& f(-x)=f(x) \text { even } \\
& f(-x)=-f(x) \text { odd }
\end{aligned}
$$

odd function

$$
\begin{aligned}
& \rightarrow a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=0 \quad \text { "odd function" } \\
& a_{n}= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos x=0 \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} \sin (n x) d x=\frac{-2}{\pi} \frac{\left.\cos (n x)\right|_{0} ^{\pi}}{n} \\
& \rightarrow \frac{-2}{\pi} \frac{\cos (n \pi)+1}{n} \Rightarrow \frac{2}{\pi}\left(\frac{\left.1-(-1)^{n}\right)}{n}, n=1,2,3\right.
\end{aligned}
$$

$$
\begin{aligned}
f(x) & \left.=\sum_{n=1}^{\infty} \frac{2}{\pi} \frac{\left(1-(-1)^{n}\right.}{n}\right) \sin (n x) \\
& =\sum_{n=1}^{\infty} \frac{4}{\pi(2 n-1)} \sin ((2 n-1) x)
\end{aligned}
$$

Nescafe. My Cup
fourier convergence theorem
Assume that f is periodic with aperiod 21 and piecewise continous on $[-L, L]$
Then:
the corresponding fourier series:

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{l}\right)
$$

where

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, n=0,1, \ldots \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, n=1,2
\end{aligned}
$$

converges to the average

$$
\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2}
$$

where $f\left(x^{-}\right)=\lim _{\substack{h \rightarrow 0 \\ n \rightarrow 0}} f\left(x_{-}-h\right)$ and $f\left(x_{+}^{+}\right)=\lim _{h \rightarrow 0} f(x+h)$
him from left

11.3 function of any period $(p=2 L)$

Laurier series:

$$
\begin{aligned}
f(x) & =\frac{a_{0}}{L}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] \\
a_{n} & =\frac{1}{L} \int_{-L}^{L} f(x)\left(\frac{n \pi x}{L}\right) d x, n=0,1,2 \\
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, n=0,1, \ldots
\end{aligned}
$$

ex: find the fourier series of $f(x)= \begin{cases}0, & -2 \leqslant x \leqslant-1 \\ k, & -1 \leqslant x \leqslant 1 \\ 0, & 1 \leqslant x \leqslant 2\end{cases}$

$$
\begin{aligned}
a_{0} & =\frac{1}{2} \int_{-2}^{2} f(x) d x=\frac{1}{2} \int_{-1}^{1} k d x=k \\
a_{n} & =\frac{1}{2} \int_{-2}^{2} f(x) \cdot \cos \left(\frac{n \pi x}{2}\right) d x=\frac{1}{2} \int_{-1}^{1} k \cos \left(\frac{n \pi x}{2}\right) d x \\
& =\left.\frac{k}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right|_{-1} ^{1}=\frac{2 k}{2 \pi} \sin \left(\frac{n \pi}{2}\right)
\end{aligned}
$$

* period $(-x, T)=2 \pi$

$$
b_{n}=\frac{1}{2} \int_{-2}^{2} f(x) \sin \left(\frac{n \pi x}{2}\right) d x=\frac{1}{2} \int_{-1}^{1} k \sin \left(\frac{n \pi x}{2}\right) d x=0
$$

odd function

NESCAFE.

$$
\begin{aligned}
f(x) & =\frac{k}{L}+\sum_{n=1}^{\infty} \frac{2 k}{n \pi} \sin \left(\frac{n \pi}{2}\right) \cos \left(\frac{n \pi}{2} x\right) \\
& =\frac{k}{L}+\frac{2 k}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1) \pi} \cos \left(\frac{(2 n-1) \pi}{2} x\right)
\end{aligned}
$$

ex: $f(x)=\left\{\begin{array}{ll}-k, & -2 \leqslant x \leqslant 0 \\ k, & 0 \leqslant x \leqslant 2\end{array} \quad p=4 \rightarrow L=2\right.$

$$
\begin{aligned}
a_{0} & =\frac{1}{2} \int_{-2}^{2} f(x) d x \quad a_{n}=0 \quad \text { for } n=0,1,2, \ldots \\
b_{n} & =\frac{1}{2} \int_{-2}^{2} f(x) \sin \left(\frac{n \pi}{2} x\right) d x \\
& =\frac{1}{2}\left[\int_{-2}^{0} k \sin \left(\frac{n \pi}{2} x\right) d x+\int_{0}^{2} k \sin \left(\frac{n \pi}{2} x\right) d x\right. \\
& =\frac{1}{2}\left[\frac{4 k-4 k \cos (n \pi)}{n \pi}\right]=\frac{2 k-2 k \cos (n \pi)}{n \pi} \\
f(x) & =\sum_{n=1}^{\infty} \frac{2 k-2 k(-1)^{n}}{n \pi} \sin \left(\frac{n \pi}{2} x\right)
\end{aligned}
$$

11.4 even and odd function. Half-tange expansions

* If $f(x)$ is an even periodic function with period 21, then the furier cosine series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right.
$$

where $a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, n=0,1, \ldots \quad \begin{aligned} & 0.0=E \\ & 0 . E=0 \\ & E \cdot E=E\end{aligned}$

* If $f(x)=$ is an odd periodic function with period 2L, then the fourier sine series

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \frac{\sin (n \pi x)}{L}
$$

where $b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=n=1,2, \ldots$

$$
\begin{aligned}
& \text { ex: } f(x)=|x|,-1 \leqslant x \leqslant 1 \\
& f(x)=\int_{-x,-1 \leqslant x \leqslant 0 \quad \text { - even }}^{x, \quad 0 \leqslant x \leqslant 1} \begin{array}{l}
p=2 \rightarrow 1=1 \\
a_{0}=2 \int_{0}^{1} f(x) d x=2 \int_{0}^{1} x d x=1 \\
a_{n}=2 \int_{0}^{1} f(x) \cos (n \pi x) d x=2 \int_{0}^{1} \cos (2 \pi x) \\
= \\
f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{-n}{n^{2} \pi^{2}}=\frac{2(-1)^{n}-1}{n^{2} \pi^{2}} \\
f(2 \pi-1)^{2} \pi^{2} \\
\cos ((2 n-1) \pi)
\end{array}
\end{aligned}
$$

"even function"

NESCAFE.

$$
\begin{aligned}
& \text { ex: } f(x)= \begin{cases}\frac{2 k}{L} x, 0 \leqslant x \leqslant \frac{1}{2} L & \text { even extension } \\
\frac{2 k}{L}(L-x), \frac{1}{2} L \leqslant x \leqslant L & L \\
a_{0}=\frac{2}{L} \int_{0}^{L} f(x) d x=k \\
\left.a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x=\frac{4 \pi}{n^{2} \pi^{2}}\left[2 \cos \frac{(n \pi}{2}\right)-\cos (n \pi)-1\right] \\
f_{e}(x)=\frac{k}{2}-\frac{16}{k \pi^{2}}\left[\frac{1}{(2)^{2}} \cos \left(\frac{n \pi x)}{L}+\frac{1}{(6)^{2}} \cos \left(\frac{6 \pi}{L} x\right)+\cdots\right]\right.\end{cases}
\end{aligned}
$$

odd extension:

$$
\begin{gathered}
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x=\frac{8 k}{n^{2} \pi^{2}} \sin \left(\frac{n \pi}{2}\right) \\
=\left\{\begin{array}{l}
0 \\
\frac{8 k}{n^{2} \pi^{2}}(-1)^{n+1}, \\
f(x)=\frac{8 k}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{2}} \sin \left(\frac{(2 n-1) \pi}{L} x\right)
\end{array}\right.
\end{gathered}
$$

NESCAFE.
11.7 fourier Integrals
let
$f_{L}(x)$ be aperiodic function of period $2 L$, then $f(x)$ can be represent by a furier series.

$$
\left.f_{L}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(w_{n} x\right)+b_{n} \sin \left(w_{n} x\right)\right] \ldots *\right)
$$

Where $W_{n}=\frac{n \pi}{L}$

$$
\begin{aligned}
& \text { ex: } f(x)=\left[\begin{array}{ll}
0, & -1<x<-1 \\
1 & -1<x<1 \\
0 & 1<x<L
\end{array}\right. \\
& f(x)=\lim _{l \rightarrow \infty} f_{L}(x)= \begin{cases}1, & -1 \leq x<1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

NESCAFE.
$\mathrm{My}_{4} \mathrm{Cup}$

If we insert a_{n} and b_{n} in (*) then

$$
\begin{aligned}
f_{L}(x) & =\frac{1}{2 L} \int_{-L}^{L} f_{L}(x) d x+\frac{1}{L} \sum_{n=1}^{\infty}\left[\cos \left(w_{n} x\right) \int_{-L}^{1} f_{L}(x) \cos \left(w_{n} x\right) d x\right. \\
& \left.+\sin \left(w_{n} x\right) \int_{-L}^{L} f_{L}(x) \sin \left(w_{n} x\right) d x\right]
\end{aligned}
$$

Now:- $\left.\Delta w=W_{n+1}\right)-W_{n}=\frac{(n+1) \sum}{L}-\frac{n \pi}{L} \leq \frac{\Gamma}{L}$
Thus: $f_{L}(x)=\frac{1}{2 L} \int_{-2}^{2} f_{L}(x) d x+\frac{1}{x} \sum_{n=1}^{\infty}\left[\cos \left(w_{n} x\right] \Delta w \rho_{-L}^{L} f_{L}(x) d x\right.$
Let $\left.L \rightarrow \infty \quad \substack{w_{1} \rightarrow w^{(\Delta w \rightarrow 0)} \\(\Delta w \rightarrow 0}+\sin \left(w_{n} x\right) \Delta w \int_{-L}^{L} f_{c}(x) \sin \left(w_{n} x\right) d x\right]$

$$
\begin{aligned}
& \quad \sum_{f \rightarrow \rho(x)=} \lim _{L \rightarrow \infty} f(x)=\frac{1}{\pi} \int_{0}^{\infty}\left[\cos \left(w_{x}\right) \int_{-\infty}^{\infty} f(x) \cos \left(w_{x}\right) d x\right. \\
& \left.\quad+\sin \left(w_{x}\right) \int_{-\infty}^{\infty} f(x) \sin \left(w_{x}\right) d x\right] d w \\
& f(x)=\int_{0}^{\infty}\left[A(w) \cos (w x)+B(w) \sin \left(w_{x}\right)\right] d w
\end{aligned}
$$

where $A(w)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos (\omega x) d x$

$$
B(w)=\frac{1}{x} \int_{-\infty}^{\infty} f(x) \sin (w x) d x
$$

fourier integral representation of $f(x)$

Theorem: If f and f^{\prime} are piecewise contineous, then the fourier integral converges to

$$
\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2} \text { at points discontinuous }
$$

$$
\text { ex: } f(x)=\left\{\begin{array}{lc}
0, & x \leqslant 0 \\
x, & 0<x<1 \\
0, & x>1
\end{array}\right.
$$

- find the fourier integral representation of fo

$$
\begin{aligned}
& A(\omega)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos (\omega x) d x=\frac{1}{\sqrt{J}} \int_{0}^{1} x \cos \left(\omega_{x}\right) d x=\frac{1}{\Gamma}\left[\frac{\omega \sin (\omega)+\cos (\omega)-1}{\omega^{2}}\right] \\
& B(\omega)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \sin (\omega x) d x=\frac{1}{\sqrt{F}} \int_{0}^{1} x \sin (\omega x) d x=\frac{1}{\sqrt{F}}\left[\frac{\sin \omega-\omega \cos \omega}{\omega^{2}}\right]
\end{aligned}
$$

fourier integral representation of $f(\omega)$

$$
f(x)=\frac{1}{\pi} \int_{0}^{\infty}\left[\frac{\omega \sin \omega+\cos \omega-1}{\omega^{2}}\right] \cos (\omega x)+\left(\frac{\sin \omega-\omega \cos \omega)}{w^{2}} \sin (\omega x] d \omega\right.
$$

- Determine the convergence of the fourier integral at $x=-1, x=0, x=1$
- at $x=-1$ the fourier int eg val converges to $f(-1) s-1$

$$
\begin{aligned}
& x=0 \sim \sim \sim \sim \sim f(0)=0
\end{aligned}
$$

NESCAFE. My Cup
ex: find the fourier integral representation of

$$
\left.\begin{array}{l}
f(x)=\left[\begin{array}{ll}
0, & x<-1 \\
1, & -1<x<1 \\
0, & x>1
\end{array}=f(x)\left[\begin{array}{l}
1,|x|<1 \\
0, \\
0,
\end{array}|x|>1\right.\right. \\
A(\omega)=\frac{1}{\pi} \int_{-1}^{1} \cos \left(\omega_{x}\right) d x=\frac{2}{\pi} \rho_{0}^{1} \cos \left(\omega_{x}\right) d x=\frac{2 \sin w}{\pi \omega} \\
B(w)=\frac{1}{\pi} \int_{-1}^{1} \sin \left(\omega_{x}\right) d x=0 \\
f(x)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin w}{\pi w} \cos \left(\omega_{x}\right) d w \\
x=-1 \quad f(-1)=\frac{f(-1)^{+}+f(-1)^{-}}{2}=\frac{1}{2} \\
x=1 \quad f(1)=\frac{f(1)^{+}+f(1)}{2}=\frac{1}{2}
\end{array}\right]
$$

the fourier integral converges to

NESCAFE. $\mathrm{My}_{4} \mathrm{Cup}$

* fourier cosine integral

If $f(x)$ is an even function, then:

$$
f(x)=\int_{0}^{\infty} A(w) \cos \left(w_{x}\right) d w
$$

where

$$
A(w)=\frac{2}{\pi} \int_{0}^{\infty} f(x) \cos \left(w_{x}\right) d w
$$

* fourier sine Integral

If $f(x)$ is an odd function, then

$$
f(x)=\int_{0}^{\infty} B(w) \sin \left(\omega_{x}\right) d \omega
$$

where

$$
B(\omega)=\frac{2}{\pi} \int_{0}^{\infty} f(x) \sin (\omega x) d \omega
$$

11.8: fourier cosine and sine transforms:

$$
f_{c}\{f(x)\}=f_{c}^{n}(\omega)=\sqrt{\frac{2}{\tau}} \int_{0}^{\infty} f(x) \cos \left(\omega_{x}\right) d x
$$

is called fourier cosine trans form of $f(x)$ and

$$
f_{c}^{-1}\left\{f_{c}^{n}(w)\right\}=f(x)=\sqrt{\frac{2}{x}} \int_{0}^{\infty} f_{c}^{n}(w) \cos \left(\omega_{x}\right) d w
$$

is catted inverse fourier cosine transform

$$
f_{s}\{f(x)\}=f_{s}^{n}(w)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin \left(\omega_{x}\right) d x
$$

is called fourier sine transform

$$
\left\{s^{-1}\left\{f_{s}^{n}(w)\right\}=f(x)=\sqrt{\frac{2}{x}} \int_{0}^{\infty} f_{s}^{n}(w) \sin \left(w_{x}\right) d w\right.
$$

is called inverse fourier sine transforms
©

NESCAFE.
My Cup
ex: $f(x)=\left\{\begin{array}{lc}k, & \text { o< } x<a \\ 0, & x>a\end{array}\right.$
1)

$$
\begin{aligned}
F_{c}[f(x)\}=f_{c}^{n}(w) & =\sqrt{\frac{2}{x}} \int_{0}^{a} k \cos (w x) d x \\
& =\sqrt{\frac{2}{x}} \frac{k \sin a w}{w}
\end{aligned}
$$

2)

$$
\begin{aligned}
f_{s}\{f(x)\}=f_{s}^{n}(w) & =\sqrt{\frac{2}{x}} \int_{0}^{a} k \sin (w x) d x \\
& =\sqrt{\frac{2}{x}} k\left(\frac{1-\cos (a w)}{w}\right)
\end{aligned}
$$

* $f_{c}\{\alpha f(x)+\beta g(x)\}=\alpha f_{c}\{f(x)\}+\beta f_{c}\{g(x)\}, \alpha, \beta \in$

$$
f_{s}[\alpha f(x)+\beta g(x)\}=\alpha f_{s}[f(x)\}+\beta f_{s}\{g(x)\}
$$

* $f_{c}\left\{f^{\prime}(x)\right\}=w f_{s}\{f(x)\}-\sqrt{\frac{2}{5}} \cdot f(0)$

$$
F_{s}\left[f^{\prime}(x)\right\}=-w f_{c}[f(x)\}
$$

* $F_{c}\left\{f^{\prime \prime}(x)\right\}=-w^{2} F_{c}\{f(x)\}-\sqrt{\frac{2}{x}} f^{\prime}(0)$

$$
F_{s}\left[f^{\prime \prime}(x)\right\}=-w^{2} F_{s}\left[f(x]+\sqrt{\frac{2}{x}} f^{\prime}(0)\right.
$$

11. 10 fourier Transform

* fourier transform is useful in solving pDF * we define the fourier transform for apiecewise continous absolutely integrable
∞
$\int_{-\infty}^{\infty}|f(x)| d x$ converges, function $f(x)$ by

$$
F \sum f(x) \&=f^{n}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x
$$

and the inverse fourier transform by

$$
f(x)=f^{-1}\{f(x)\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f^{n}(\omega) e^{i \omega x} \partial \omega
$$

ex: compute the fourier transform of

$$
\begin{aligned}
& f(x)= \begin{cases}e^{-2 x} & x \geqslant 0 \\
e^{2 x} & x<0\end{cases} \\
& f\{f(x)\} \leq f^{n}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x \\
& \\
& =\frac{1}{\sqrt{2 \pi}}\left[\int_{-\infty}^{0} e^{(2-i \omega) x} d x+\int_{0}^{\infty} e^{-(2+i \omega) x} d x\right] \\
& \\
& =\frac{1}{\sqrt{2 x}}\left[\frac{1}{2-i \omega}+\frac{1}{2+i \omega}\right]=\frac{1}{\sqrt{2 x}}\left(\frac{4}{4+\omega^{2}}\right)
\end{aligned}
$$

NESCAFE.

* fact: $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$
ex: compute the fourier transform of $f(x)=e^{-2 x^{2}}$

$$
\begin{aligned}
f E f(x)] & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-2\left(x^{2}+\frac{i \omega x}{2}\right.} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-2\left[x^{2}+\left(\frac{i \omega x}{2}\right)+\frac{(i \omega)^{2}}{4}-\left(\frac{i \omega}{24}\right)^{2}\right]} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-2\left[\left(x+\frac{i \omega}{4}\right)^{2}+\frac{\omega^{2}}{16}\right]} d x \\
& =\frac{e^{-\omega^{2} / 8}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-2\left(x+\frac{i \omega}{4}\right)^{2}} d x
\end{aligned}
$$

let $z=\sqrt{2}\left(x+\frac{i \omega}{4}\right) \quad d z=\sqrt{2} d x$

$$
f[f(x)\}^{-\omega^{2} / 8} \cdot \frac{e^{-x^{2}}}{\sqrt{2 x}} \cdot \frac{1}{\sqrt{2}} \rho_{-\infty}^{\infty} e^{-z^{2}} d z \rightarrow \frac{e^{-\omega^{2} / 8}}{2}
$$

ex: Find the furier transform of:

$$
f(x)=\left[\begin{array}{ll}
1 & |x|<1 \\
0 & |x|>1
\end{array} \rightarrow-1<x<1\right.
$$

NESCAFE.

$$
\begin{aligned}
f[f(x)\} & =\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} e^{-i \omega x} d x \\
& \left.=\frac{1}{\sqrt{2} \pi} \cdot \frac{e^{-i \omega x}}{i \omega x}\right]_{-1}^{1} \\
f(f(x) & =\frac{2}{\omega \sqrt{2 \pi}}\left(\frac{e^{i \omega}-e^{-i \omega}}{2 i}\right)+(\cos) \\
& =\frac{2}{\omega \sqrt{2 \pi}} \sin (\omega)
\end{aligned}
$$

- Thereon (linearity of fourier transform)

$$
F\{\alpha f(x)+\beta g(x)\}=\alpha F\{f(x)\}+\beta F\{g(x)\} \quad \alpha, \beta \in R
$$

Thereon

1) $F\left\{f^{\prime}(x)\right\}=i w f[f(x)\}$

NESCAFE.
My Cup
fowler transform table
$f(x)$

1) $\left[\begin{array}{lc}1, & -b<x<b \\ 0, & \text { otherwise }\end{array}\right.$

$$
f^{n}(\omega)
$$

$$
\sqrt{\frac{2}{\pi}} \frac{\sin (b \omega)}{\omega}
$$

2) $\begin{cases}1, & b<x<c \\ 0, & \text { otherwise }\end{cases}$

$$
\frac{e^{-i b \omega} e^{i c \omega}}{i \omega \sqrt{2 \pi}}
$$

3) $\left\{\begin{array}{l}e^{-a x}, \quad x>0 \\ 0, \text { otherwise }\end{array} \quad a>0 \quad \frac{1}{\sqrt{2} \pi(a+i \omega)}\right.$
4) $\frac{1}{x^{2}+a^{2}} a>0$

$$
\sqrt{\frac{\pi}{2}} \frac{e^{-a / w i}}{a}
$$

5) $\int_{0}^{e^{a x}}$ other

$$
\frac{e^{(a-i \omega) c}-e^{(a-i \omega) b}}{\sqrt{2 \pi}(a-i \omega)}
$$

6) $\int_{e^{i a \omega}}-b<x<b$

$$
\sqrt{\frac{2}{\pi}} \frac{\sin b(\omega-a)}{\omega-a}
$$

7) $e^{-a x^{2}}$
ax
$\frac{1}{\sqrt{2 a}} e^{-\omega^{2} / 4 a}$
8) $\frac{\sin a x}{x}$ $a>0$

$$
\left\{\begin{array}{ccc}
\sqrt{\frac{\pi}{2}} & \text { if }|\omega|<a \\
0 & |\omega|>a
\end{array}\right.
$$

NESCAFE. My Cup

chapter 12: Partial Differential equation
"PREs"

12.1 : Basic concepts of DOEs

> - Let us agree to tate for the time being two independent variable $x \sim$ space variable t~ time variable

* if u depends on x and t, then:

$$
u_{x}=\frac{d u}{d x}, u_{x t}=\frac{d^{2} u}{d t d x}
$$

* we will assume that all derivatives are continuous on a specific domain under conserfation thus we can interchange the order of otrpfletia differntion

$$
u_{x+x}=u_{t-x x}=u_{x x t}
$$

Def: A partial differential equation is on equation contains finite number of partial Derivatives but at least one

Def: The order of the PDE is the order of the highest derivative Def: If each term contains u or one of its derivative, then the PDE is called homogeneus

some Important second-order PDES

1) $u_{t t}=c^{2} u_{x x} \quad c$: constant 'one dimension wave equation"
2) $u_{f}=c^{2} u_{x x}$ "one dimension heat equation"
3) $u_{x x}+u_{y y}=0$ "two dimension Elaplace equ"
4) U xx $u_{x y y} 5 f(x, y)$ "two ~ poisson equ"
5) $u_{x}=c^{2}\left(u_{x x}+u_{y y}\right) \quad " \sim$ wave ~"
6) $u_{x x}+u_{y y}+u_{z z}$ "three ~ laplace ~"

Remark: the set of solution can be very large and on need's some constrains (boundary conditions of initial conditions) to restric the solution to have physical meaning

$$
\text { ex: } \quad u_{x x}+u_{y} y=0
$$

is satisfed by

$$
\begin{aligned}
& u(x, y)=x^{2}-y^{2} \\
& u(x, y)=e^{x} \cos y \\
& u(x, y)=\sin x \cosh y \\
& u(x, y)=\ln \left(x^{2}+y^{2}\right)
\end{aligned}
$$

Nescafe.
superposition principle:
If u_{1} and u_{2} are solution of the homogeneous PDE, then $u=c_{1} u_{1}+c_{2} u_{2}$ is also solution
ex: find solution depending on x and y of

1) $u_{x x}-u=0$ since y doesn't appear, then we may assume

$$
u^{\prime \prime}-u=0
$$

Change $y^{2}-1=0 \rightarrow y= \pm 1$
$u(x, y)=c_{1}(y) e^{-x}+c_{2}(y) e^{x} \rightarrow$ general solution
2)

$$
\begin{aligned}
u_{y y}+4 u_{y}+4 u=0 & \text { x doesnt appear } \\
u^{\prime \prime}+4 u^{\prime}+4 u=0 & \\
y^{2}+4 y+4=0 & \rightarrow y=-2 \quad x^{2}+4 x+4=0
\end{aligned}
$$

general solution $u(x, y)=c_{1}(x) e^{-2 y}+c_{2}(x) y e^{-2 y}$
3) $u_{x x}+2 u_{x}+25 u=0$ since y doesnt appear, then we may assume

$$
u^{\prime \prime}+2 u^{\prime}+25 u=0
$$

change $\quad y^{2}+2 y+25=0$

$$
\begin{aligned}
b^{2}-4 a c & \rightarrow y=-\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
y & =-1 \pm 24 i \\
u(x, y) & =c_{1}(y) e^{-t} \cos [24 x]+c_{2}(y) e^{-t} \sin [24 x]
\end{aligned}
$$

\boldsymbol{x}_{x},
4)

$$
\begin{aligned}
u_{x y} & =-u_{x} \\
\text { let } & =u_{x} \\
v y & =u_{x y} \quad \rightarrow \quad v_{y}=-v \\
\frac{d v}{d y} & =-v \quad \rho \frac{1}{v} d v=\rho-d_{y} \\
\ln v & =-y+c \\
v & =e^{-y} c(x) \\
u_{x y} & =\int c(x) e^{-y} d x+c_{2}(y) \\
u(x, y) & =c_{1}(x) e^{-y}+c_{2}(y)
\end{aligned}
$$

12.3 vibrating sing wave equation

- consider a string of length L
- the model of the vibrating string consists of one-dimensional wave equation

$$
u_{u}=c^{2} u_{x x}
$$

and boundary conditions

$$
\begin{aligned}
& u(0, t)=0 \\
& u(L, t)=0
\end{aligned}
$$

and initial conditions:

$$
\begin{aligned}
u(x, 0) & =f(x) \\
u_{f}(x, 0) & =g(x)
\end{aligned}
$$

NESCAFE.

The solution has three steps:

1) seprating of variables
2) satisfing the boundary conditions
3) satisting the intial conditions

Remark: we are secking for a solution $u(x, t) \neq 0$
ex: Solve the following initial boundary value problem PDF: $u_{q+}=c^{2} u_{x x} \quad 0<x<L \quad L>0$
boundary BC's: $u(0, t)=u(L, t)=0 \quad L>0$
initial

$$
\text { Ic's:u(x,0)} \left.\begin{array}{rl}
& =f(x) \\
u_{f}(x, 0) & =g(x)
\end{array}\right] \quad 0 \leqslant x<L
$$

Solu: Let us look for asolution of the form

$$
u(x, t)=f(x) \cdot G\left(\frac{t}{x}\right)
$$

put (4) in (1) to get

$$
f(x) g^{\prime \prime}(t)=c^{2} f^{\prime \prime}(x) G(t)
$$

using the boundary conditions:

$$
\begin{align*}
& u(0, t)=f(0) G(t)=0 \rightarrow f(0)=0 \\
& u(L, t)=f(l) G(t)=0 \rightarrow f(l)=0 \\
& G \neq 0 \rightarrow u \neq 0
\end{align*}
$$

$$
\begin{align*}
& \frac{f(x)^{\prime \prime}}{f(x)}=\frac{G^{\prime \prime}(t)}{c^{2} G(t)}=\alpha \\
& f^{\prime \prime}-\alpha f=0 \\
& 6^{\prime \prime}-c^{2} \alpha 6=0
\end{align*}
$$

NESCAFE.
My Cup
The constant y has the following cases

α	$=k^{2}$	101
or	α	$=0$
or	α	$=-k^{2}$
or	$11)$	

or $\alpha=-k^{2} \quad$ 12)
where $k>0$
If equation (k) holds, then from (8)

$$
\begin{equation*}
f(x)=c_{1} e^{-k x}+c_{2} e^{k x} \tag{3}
\end{equation*}
$$

put (5) and (6) in $(13) \rightarrow c_{1}=c_{2}=0 \rightarrow f(x)=0$
if equ (II) holds, then from (8)

$$
\begin{equation*}
f(x)=c_{1}+c_{2} x \tag{4}
\end{equation*}
$$

put (5) and (6) in (14) $\rightarrow c_{1}=c_{2}=0 \rightarrow f(x)=0$
者
If equation (12) holds, then from (8)

$$
\left.f(x)=c_{1} \sin (k x)+c_{2} \cos (k x) \cdots 15\right)
$$

put 5) in (5) $\rightarrow c_{2}=0$

$$
\begin{gather*}
f(x)=c_{1} \sin (k x) \\
\sin (k L)=0 \quad k L=n \pi \quad \rightarrow k=\frac{n \pi}{L} \quad n=0,1, \ldots \\
\left.f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right) \quad 17\right)
\end{gather*}
$$

NESCAFÉ.
now, to find $G(t)$, put (16) in (a)

$$
\begin{align*}
& G_{n}^{\prime \prime}(t)+\left(\frac{c n \pi}{L}\right)^{2} G_{n}=0 \\
& G_{n}(t)=a_{n} \cos \left(\frac{c n \pi}{L} t\right)+b_{n} \sin \left(\frac{C n \pi}{L} t\right)
\end{align*}
$$

put (17) and (18) in (4)

$$
\begin{aligned}
& \quad u_{n}(x, t)=\frac{\sin \left(\frac{n \pi}{l} x\right)\left[a_{n} \cos \left(\frac{c n \pi}{l} t\right)+b_{n} \sin \left(\frac{c n \pi}{l} t\right)\right]}{u(x, t)=\sum_{n=1}^{\infty}}
\end{aligned}
$$

$$
\begin{array}{cll}
c x: u_{L L}=c^{2} u_{x x} & o c x c l \\
B C s & u(0, x)=0 & u(L, t)=0 \\
\mathbb{E C s} \quad u(x, 0)=f(x) & u_{1}(x, 0)=g(x) & \\
u(x, t)=\sum_{n=1}^{\infty} & \sin \left(\frac{n \pi}{L} x\right)\left[a_{n} \cos \left(\frac{c n \pi}{L}+\right)+b_{n} \sin \left(\frac{c n \pi}{L} t\right)\right.
\end{array}
$$

initial io $a_{n}, b_{n}, \underline{\square}$
using the Ec's (3) we have

NESCAFE.

$$
\begin{align*}
& u_{f}(x, 0)=\sum_{n=1}^{\infty} b_{n}\left(\frac{c n x}{L}\right) \sin \left(\frac{n \pi x}{L}\right)=g(x) \\
& \quad\left(\frac{C n s}{L}\right) b_{n}=\frac{2}{L} \int_{0}^{L} g(x) \sin \left(\frac{n \pi x}{L} d x\right. \\
& b_{n}=\frac{2}{\ln x} \int_{0}^{b L} g(x) \sin \left(\frac{n \pi x}{L} d x\right.
\end{align*}
$$

Sabsiting (20) and (21) in (19) gives the solution

Remark: In the previous ex

$$
\begin{aligned}
& \text { emark: Sn the previous ex } \\
& u_{n}(x, t)=\sin \left(\frac{n \pi x}{L}\right)\left[a_{n} \cos \left(\frac{C n \pi t}{2} t\right)+b_{n} \sin \left(\frac{C n \pi}{2}\right)+\right]
\end{aligned}
$$

If $n=1$

"standing ware"

If $n=2$

if $n=3$

My Cup
ex:

> PDE ult $=5 u_{x x} \quad 0<x<7 \quad t>0$ BC's $=u(0, t)=0 \quad u(7, t)=0$ $E C^{\prime} ' s=u(x, 0)=2 \sin \left(\frac{3 \pi x}{7}\right)+\sin \left(\frac{17 \pi}{7} x\right)$, $u_{+}(x, 0)=0$
Sol: $U(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{7}\right)\left[a_{n} \cos \left(\frac{\sqrt{5} n \pi}{7}+\right)+b_{n} \sin \left(\frac{\sqrt{5} n \pi}{7}+\right)\right.$
using the EC's we have

$$
u(x, 0)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{7}\right)=2 \sin \left(\frac{3 \pi x}{7}\right)+\sin \left(\frac{17 \pi x}{7}\right)
$$

$a_{3}=2$ and $a_{17}=1$ and $a_{n}=0$ for $n \neq 3,17$

$$
4_{1}(x, 0)=\sum_{n=1}^{\infty}\left(\frac{\sqrt{5} \pi_{n}}{7}\right) b_{n} \sin \left(\frac{n \pi}{7} x\right)=0
$$

$b_{n}=0$ for $n=1,2 \ldots$
Sole: $u(x, t)=2 \sin \left(\frac{3 \pi}{7} x\right) \cos \left(\frac{3 \sqrt{5} \pi}{7} t\right)+\sin \left(\frac{17 \pi}{7} x\right)$

$$
\cos \left(\frac{17 \sqrt{5} \pi}{7} t\right)
$$

NESCAFE.
$\left.\begin{array}{lllll}\text { ex: } & \text { POE } & u_{f} t=c^{2} u_{x x} \quad 0<x<l & t>0 & \text { D } \\ \text { BC's } & u_{x}(0, t)=0, u_{x}=(L, t)=0 & t>0 & \text { 2) } \\ \text { EC's } & u(x, 0)=f(x), u_{t}(x, 0) g(x) & 0 \leqslant x \leqslant 1 & \text { 3) }\end{array}\right)$

Assume $u_{x t}=f(x) g(t)$
4) in 1) gives

$$
\frac{f^{\prime \prime}}{F}=\frac{6^{\prime \prime}}{c^{2} G}=\alpha
$$

$$
\begin{align*}
& f^{\prime \prime}-\alpha f=0 \\
& G^{\prime \prime}-c^{2} \alpha G=0
\end{align*}
$$

Put (2) in (4) to get

$$
\begin{align*}
& f^{\prime}(0)=0 \\
& f^{\prime}(L)=0
\end{align*}
$$

Now, the constant α has the following cases

$$
\alpha=k^{2}
$$

or $\quad \alpha=0$
or $\quad \alpha=k^{2}$
where $k>0$

NESCAFE.

If (a) hold, then

$$
\begin{array}{r}
f(x)=c_{1} e^{-k x}+c_{2} e^{k x} \\
u \operatorname{sing}(7) \text { and (8) } \rightarrow c_{1}=c_{2}=0 \\
f(x)=0
\end{array}
$$

If (10) holds, then

$$
f(x)=c_{1}+c_{2} x
$$

using (7) and $(8) \rightarrow c_{2}=0$ and c_{1} free

$$
f(x)=1
$$

If (II) holds, then

$$
f(x)=c_{1} \cos (k x)+c_{2} \sin (k x)
$$

using (7)

$$
\begin{array}{r}
c_{2}=0 \rightarrow f(x)=c_{1} \cos \\
f(x)=\cos (k x)
\end{array}
$$

using (8) $\quad \sin (k L)=0$

$$
\begin{align*}
& k=\frac{n \pi}{L} \quad n=1,2 \tag{12}\\
& f_{n}(x)=\cos \left(\frac{n \pi}{2} x\right) \tag{13}
\end{align*}
$$

To hind $G_{n}(t)$
put (10) in (16) to obtain

$$
G_{0}=0 \rightarrow G_{0}(t)=A t+B
$$

NESCAFÉ.
MyCup
put (12) in (6)

$$
\begin{aligned}
& G_{n}^{\prime \prime}+\left(\frac{\left(C_{n} \pi\right.}{L}\right)^{2} G_{n}=0 \\
& G_{n}(t)=a_{n} \cos \left(\frac{c n \pi}{L} t\right)+b_{n} \sin \left(\frac{c n \pi}{L} t\right)
\end{aligned}
$$

general solu

$$
\begin{aligned}
u(x, t) & =f_{0}(x) G_{0}(t)+\sum_{n=1}^{\infty} f_{n}(x) G_{n}(t) \\
& =A t+B+\sum_{n=1}^{\infty} \cos \left(\frac{n x}{L} x\right)\left[a_{n} \cos \left(\frac{C_{n} T}{L} t\right)+b_{n} \sin \left(\frac{n G T}{L} t\right)\right.
\end{aligned}
$$

Using the Ec's

$$
\begin{array}{rlr}
A & =\frac{1}{L} \int_{0}^{L} f(x) d x & u(x, 0)=f(x) \\
B & =\frac{1}{L} \int_{0}^{L} g(x) d x & u+(x, 0)=g(x) \\
a_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi}{2} x\right) d x & u(x, 0)=f(x) \\
b_{n} & =\frac{2}{C n \pi} \int_{0}^{L} g(x) \cos \left(\frac{n \pi}{L} x\right) d x & u L(x, 0)=g(x)
\end{array}
$$

