Fall2016

By:Salah Hamayel Partial
Dr. Ahmad Abdullah
9.3 Vector product (cross product):-

$$
\begin{array}{r}
\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \quad, \vec{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle \\
\vec{u} \times \vec{\omega}=\left|\begin{array}{ccc}
i & j & k \\
u_{1} & u_{2} & u_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=\left|\begin{array}{ll}
u_{2} & u_{3} \\
w_{2} & w_{3}
\end{array}\right| \hat{i}-\left|\begin{array}{cc}
u_{1} & u_{3} \\
w_{1} & w_{3}
\end{array}\right| \hat{j}+\left\lvert\, \begin{array}{cc}
u_{1} & u_{2} \\
w_{1} & w_{2}
\end{array} \hat{k}\right. \\
\left.=\left(u_{1} w_{3}-u_{3} w_{2}\right) \hat{i}-\left(u_{1} w_{3}-u_{3} w_{1}\right) \hat{j}+\left(u_{1} w_{2}-u_{2} w_{1}\right)\right)
\end{array}
$$

Results:-
(1) $\vec{u} \times \vec{w}=-\vec{\omega} \times \vec{u}$
(2) $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

$$
(\vec{b}+\vec{c}) \times \vec{a}=\vec{b} \times \vec{a}+\vec{b} \times \vec{a}
$$

(3) In general

$$
\begin{aligned}
& \vec{a} \times(\vec{b} \times \vec{c}) \neq(\vec{a} \times \vec{b}) \times \vec{c} \quad \text { why?? } \\
& A=|\vec{a} \times \vec{b}| \quad V
\end{aligned} \begin{aligned}
\vec{a} \cdot(\vec{b} \times \vec{c}) \mid
\end{aligned}
$$

9.5 Curves :-

Curve $c: \vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ vector form

$$
\langle-3+2 t,-4 t, 5-t\rangle
$$

$L: x=-3+2 t, y=0-4 t, z=5-t$ parametric form
Ex: $\quad x^{2}+4 y^{2}=4 \rightarrow \frac{x^{2}}{z^{2}}+y^{2}=1$ (Ellipse)

$$
\begin{aligned}
& \sin ^{2} x+\cos ^{2} x=1 \quad, \quad \frac{(2 \sin t)^{2}}{2^{2}}+\cos ^{2}(t)=1 \\
& x=2 \sin t, y=\cos (t)
\end{aligned}
$$

continue to previous example:-

$$
\vec{r}(t)=\langle x(t), y(t)\rangle=\langle 2 \sin (t), \cos (t)\rangle
$$

, $0 \leqslant t \leqslant 2 \pi$

* negative sense (clock wise)
* positive sence (counter clock wise)
$*$ if $x=2 \sin 4 t \quad \rightarrow 0 \leq t \leq \pi / 2$
* if we choose $\frac{x^{2}}{z^{2}}+\frac{y^{2}}{1^{2}}=1$

$$
x=2 \cos t \quad, y=\sin (t) \quad \frac{(2 \cos (t))^{2}}{2^{2}}+\frac{(\sin (t))^{2}}{1^{2}}=1
$$

$$
\left.\begin{array}{rl}
\vec{r}(t) & =\langle x(t), y(t)\rangle \\
& =\langle 2 \cos (t), \sin (t)\rangle \\
0<t<2 \pi
\end{array}\right) \quad \begin{gathered}
\text { counter } \\
\text { clockwise } \\
\text { (positive sense) }
\end{gathered}
$$

sunday	Dr. Ahmad Abdullah
$18 / 9 / 2016$	

EX: $\vec{r}(t)=\langle 2 \sin (t), 3 \cos (t)$,
since we have just one variable, so this is curve, if we have $\vec{r}(t, s)$ then this is surf fur

Sol: $\vec{r}(t)=\langle x(t) \quad, y(t) \quad, z(t)\rangle$
In two dimensions $\quad \frac{x^{2}}{4}+\frac{y^{2}}{9}=1 \Rightarrow \frac{(2 \sin (t))^{2}}{4}+\frac{\left(3(\cos (t))^{2}\right.}{9}=1$
(without the z component)

Hellix \Rightarrow

EX: Line: The equation of the line passing through point $A\left(a_{1}, a_{2}, a_{3}\right)$ and parallel to $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$. is given by

$$
\left\{\begin{array}{l}
\vec{r}(t)=\left\langle a_{1}+t b_{1}, a_{2}+t b_{2},\right. \\
\left.a_{3}+t b_{3}\right\rangle \\
\vec{r}(t)=\langle x(t), y(t), \vec{\jmath}(t)\rangle \\
\vec{r}(t)=\vec{a}+t \vec{b}
\end{array}\right.
$$

EX: Find the equation of the line passing through

$$
A\left(\frac{-1,0,3)}{a_{1}} a_{2} a_{3}\right) \text { and } B\left(2,-\frac{3,4)}{a_{1}}, \frac{4}{a_{3}}\right.
$$

Sol: $\overrightarrow{A B}=\left\langle\begin{array}{cc}3, & -3, \\ b_{1} & b_{2}\end{array}\right\rangle \quad b_{3}, ~ \|$ line that we want

Line: $\vec{r}(t)=\langle-1+3 t \quad, 0-3 t, 3+t\rangle$

$$
\begin{aligned}
& \vec{r}(0)=\langle-1,0,3\rangle \quad \operatorname{point}(A) \\
& \vec{r}(1)=\langle 2,-3,4\rangle \quad \text { point }(B)
\end{aligned}
$$

* If we want just line segment between $A \& B \rightarrow 0<t<1$
But if we choose B in our equation, then the limits would be $t<t<0$
* Tangent vector

The tangent vector to $\vec{r}(t)$ is given by $\vec{r}^{\prime}(t)$

* The tangent line to carve $c \cdot \vec{r}(t)$ at point (p) is given by:
$\vec{r}(t)=\vec{a}+t \vec{b}$ represents the position vector to the point.

$$
q(w)=\vec{r}\left(t_{0}\right)+w \vec{r}\left(t_{0}\right)
$$

fixed time \rightarrow the line which is parallel to the line

EX: Find the tangent to the Ellipse:-

$$
\frac{1}{4} x^{2}+y^{2}=1 \quad @ p\left(\sqrt{2}, \frac{1}{\sqrt{2}}\right)
$$

Sol: $\quad \vec{r}(t)=\langle 2 \cos (t), \sin (t)\rangle, 0 \leqslant t \leqslant 2 \pi$

$$
\begin{aligned}
& \vec{r}(\pi / 4)=\left\langle\frac{2}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle=\left\langle\sqrt{2}, \frac{1}{\sqrt{2}}\right\rangle \text { (0,1) } \\
& \vec{r}^{\prime}(t)=\langle-2 \sin t, \cos (t)\rangle \quad \text { this haploid } \text { at } t=\frac{\pi}{4} \\
& \vec{r}(\pi / 4)=\left\langle-\sqrt{2}, \frac{1}{\sqrt{2}}\right\rangle
\end{aligned}
$$

The tangent line

$$
\begin{aligned}
& q(\omega)=\vec{r}(\pi / 4)+(t) \vec{r}(\pi / 4) \\
& q(\omega)=\left\langle\sqrt{2}, \frac{1}{\sqrt{2}}\right\rangle+\omega\left\langle-\sqrt{2}, \frac{1}{\sqrt{2}}\right\rangle
\end{aligned}
$$

Thursday | Dr. Ahmad Abolllah 22/91206

EX: what curves are represented by the following

$$
\vec{r}(t)=\langle 3 \cosh t, 5 \sinh t, 2\rangle
$$

Sol:

$$
\begin{aligned}
& \langle x(t), y(t), z(t)\rangle \\
& \frac{x^{2}}{9}-\frac{y^{2}}{25}=1, z=2 \\
& \frac{(3 \cosh t)^{2}}{9}-\frac{(5 \sinh t)^{2}}{25}=1, \cosh ^{2} t-\sinh ^{2} t=1
\end{aligned}
$$

$$
E X: \vec{r}(t)=\left\langle t, 2, \frac{1}{t}\right\rangle
$$

Sol: $\quad\langle x(t), y(t), z(t)\rangle$

$$
\begin{gathered}
x(t)=t, y=2, z(t)=\frac{1}{t} \\
z(t)=\frac{1}{x(t)}, y=2
\end{gathered}
$$

$$
\begin{gathered}
f(x, y, z)=k \rightarrow x^{2}+y^{2}+z^{2}=9 \quad \text { (sphere) (surface) } \\
z=f(x, y, z)=x^{2}+y^{2} \quad(\text { surface) } \\
\text { No. }
\end{gathered}
$$

9.7 Gradiant of a scaler function

Given a scaler function $f(x, y, z)$ which is defined and differentiable in a domain in 3-space with Cartesian Coordinates x, y, and z.

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle
$$

(1) The directional derivative of f at a point p in the direction of a unit vector \vec{a} is given by

$$
D_{\vec{a}} f(p)=\nabla f \cdot \vec{a}
$$

(2) Given a surface $f(x, y, z)=K$. then the normal at p is given by $\vec{n}=\nabla f(p)$

$$
\left.\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle\right\} \rightarrow \text { Gradiant operator }
$$

$$
\begin{aligned}
& \frac{15}{402} \quad f=4 x^{2}+4 y^{2}+z^{2}, p:(5,-1,-11) \\
& \nabla f(5,-1,-11)=? \\
& \text { sol: } \nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle=\langle 8 x, 18 y, 2 z\rangle \\
& \nabla f(5,-1,-11)=\langle 8(5), 18(-1), 2(-11)\rangle
\end{aligned}
$$

7-10 prove: $\nabla\left(f^{n}\right)=n f^{n-1} \nabla f$

$$
\text { Sol: } \begin{aligned}
\nabla g & =\left\langle\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right\rangle \\
\nabla\left(f^{n}\right) & =\left\langle\frac{\partial f^{n}}{\partial x}, \frac{\partial f^{n}}{\partial y}, \frac{\partial f^{n}}{\partial z}\right\rangle \\
& \left.=\left\langle n f^{n-1} \frac{\partial f}{\partial x}, n f^{n-1} \frac{\partial f}{\partial y}, n f^{n-1} \frac{\partial f}{\partial z}\right\rangle \Rightarrow \frac{d}{d x}[E(x)]^{n}=n[f(x)]\right]^{n-1} f^{\prime}(x) \\
& =n f^{n-1}\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle \\
\nabla\left(f^{n}\right)= & n f^{n-1} \nabla f
\end{aligned} \begin{aligned}
\frac{8}{402} \nabla(f g)=f \nabla g+g \nabla f \\
\text { Sol: } \begin{aligned}
\nabla(f g) & =\left\langle\frac{\partial(f g)}{\partial x}, \frac{\partial(f g)}{\partial y}, \frac{\partial(f g)}{\partial z}\right\rangle \\
& =\left\langle\frac{\partial f}{\partial x} g+f \frac{\partial g}{\partial x}, \frac{\partial f}{\partial y} g+f \frac{\partial g}{\partial y}, \frac{\partial f}{\partial z} g+\frac{\partial f}{\partial z}\right\rangle \\
& =\left\langle\frac{\left.\partial f g, \frac{\partial f}{\partial x} g, \frac{\partial f}{\partial z} g\right\rangle+\left\langle\frac{\partial g}{\partial x} f, \frac{\partial g}{\partial y} f, \frac{\partial g}{\partial z} f\right\rangle}{}\right. \\
& =g \nabla f \quad+f \nabla g
\end{aligned}
\end{aligned}
$$

t. 8 Divergence of a vector Field.

Let $\vec{v}(x, y, z)=\left\langle v_{1}(x, y, z), v_{2}(x, y, z), v_{3}(x, y, z)\right\rangle$ be a differentiable vector function then:-

$$
\begin{aligned}
& \operatorname{div} \vec{v}=\nabla \cdot \vec{v}=\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}+\frac{\partial v_{3}}{\partial z} \\
& \Rightarrow \operatorname{div}(\operatorname{grad} f)=\nabla^{2} f=\Delta f=\frac{\partial^{2} f}{\partial x}+\frac{\partial^{2} f}{\partial y}+\frac{\partial^{2} f}{\partial z}
\end{aligned}
$$

prove: Let f be is a scaler function
$\underset{\Rightarrow}{\text { Grant }} \bar{\nabla} f=\left\langle\frac{\partial f}{\partial x} ; \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle$
$\left.\stackrel{\text { Durance }}{\Rightarrow} \nabla \cdot(\nabla f)=\frac{\partial^{2} f}{\partial x}+\frac{\partial^{2} f}{\partial y}+\frac{\partial^{2} f}{\partial z}=f_{x x}+f_{y y}+f_{z z}\right)$

* we call the divergence of a gradiant as (Laplacian) *
$\frac{5}{405} \quad \vec{v} \cdot x^{2} y^{2} z^{2}\langle x, y, z\rangle$ find the divergence.
Sol: $\vec{v}=\left\langle x^{3} y^{2} z^{2}, x^{2} y^{3} z^{2}, x^{2} y^{2} z^{3}\right\rangle$

$$
\begin{aligned}
\nabla \cdot \vec{v} & =\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}+\frac{\partial v_{3}}{\partial z} \\
& =3 x^{2} y^{2} z^{2}+3 x^{2} y^{2} z^{2}+3 x^{2} y^{2} z^{2} \\
& =4 x^{2} y^{2} z^{2}
\end{aligned}
$$

No. stater vector
$\frac{4}{406}$ prove: (b) $\operatorname{div}(f \vec{v})=f \operatorname{div} \vec{v}+\vec{v} \cdot \nabla f$
Sol: $\left.\quad \vec{v}=\left\langle\vec{v}_{1}, v_{2}, v_{3}\right\rangle \Rightarrow f \vec{v}=f \vec{v}_{1}, f v_{2}, f v_{3}\right\rangle$

$$
\begin{aligned}
\operatorname{div}(f \vec{v})= & \frac{\partial}{\partial x}\left(f v_{1}\right)+\frac{\partial}{\partial y}\left(f v_{2}\right)+\frac{\partial}{\partial z}\left(f v_{3}\right) \\
& =\frac{\partial f}{\partial x} v_{1}+f \frac{\partial v_{1}}{\partial x}+\frac{\partial f}{\partial y} v_{2}+f \frac{\partial v_{2}}{\partial y}+\frac{\partial f}{\partial z} v_{3}+f \frac{\partial v_{3}}{\partial z} \\
& =f\left(\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}+\frac{\partial v_{3}}{\partial z}\right)+\frac{\partial f}{\partial x} v_{1}+\frac{\partial f}{\partial y} v_{2}+\frac{\partial f}{\partial z} v_{3} \\
& =f \nabla \vec{v}+\vec{v} \cdot \nabla f
\end{aligned}
$$

(c) $\operatorname{div}(f \nabla g)=f \nabla^{2} g+\nabla g \cdot \nabla f \rightarrow$ solve it !
$\frac{16}{406} \quad f=e^{x y z}$, find $\nabla^{2} f$
sol: $f_{x}=y z e^{x y z} \rightarrow f_{x x}=(y z)^{2} e^{x y z}$

$$
\begin{aligned}
\nabla^{2} f & =\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \\
& =(y z)^{2} e^{x y z}+(x y)^{2} e^{x y z}+(x z)^{2} e^{x y z}
\end{aligned}
$$

Dr. Ahmad Abdullah
9.9 Carl of a vector Field:

Let $\vec{v}(x, y, z)=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ be a differentiable vector function of the cartesian coordinates x, y and z.

$$
\begin{aligned}
& \text { curL } \vec{v}=\nabla \times \vec{v}=\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
v_{1} & \partial v_{2} & v_{3}
\end{array}\right| \\
& \quad=\left(\frac{\partial v_{3}}{\partial y}-\frac{\partial v_{2}}{\partial z}\right) i-\left(\frac{\partial v_{3}}{\partial x}-\frac{\partial v_{1}}{\partial z}\right) j+\left(\frac{\partial v_{2}}{\partial x}-\frac{\partial v_{1}}{\partial y}\right) k
\end{aligned}
$$

EX: $\vec{v}=\left\langle x^{2} y, e^{3 z}, 2 x+z^{3}\right\rangle$, find $\nabla \times \vec{v}$
Sol: $\nabla \times \vec{v}=-3 e^{3 z} i-2 j-x^{2} k$
$\frac{14}{409}$ Show that
(b) $\operatorname{div}(\operatorname{curl} \vec{\imath})=0$

Sol: $\vec{v}=\left\langle\vec{v}_{1}, v_{2}, v_{3}\right\rangle \Rightarrow \operatorname{curl} \vec{v}=\left(\frac{\partial v_{3}}{\partial y}-\frac{\partial v_{2}}{\partial z}\right) i-\left(\frac{\partial v_{3}}{\partial x} \frac{\partial v_{1}}{\partial z}\right) j$

$$
+\left(\frac{\partial v_{2}}{\partial x}-\frac{\partial v_{1}}{\partial y}\right) k
$$

$$
\begin{aligned}
\operatorname{div}(\operatorname{curl} l \vec{v}) & =\frac{\partial}{\partial x}\left[\frac{\partial v_{3}}{\partial y}-\frac{\partial v_{2}}{\partial z}\right]-\frac{\partial}{\partial y}\left[\frac{\partial v_{3}}{\partial x}-\frac{\partial v_{1}}{\partial z}\right]+\frac{\partial v_{2}}{\partial x}-\frac{\partial v_{1}}{\partial y}\left[\frac{\partial k}{\partial y_{y}}\left[\frac{\partial v_{1}}{\partial x}-\frac{\partial v_{1}}{\partial y}\right]\right. \\
& =\frac{\partial^{2} v_{3}}{\partial x \partial y}-\frac{\partial^{2} v_{2}}{\partial x \partial z}-\frac{\partial^{2} v_{3}}{\partial y \partial x}+\frac{\partial v_{1}}{\partial y z z}+\frac{\partial^{2} v_{2}}{\partial \partial x}-\frac{\partial v_{1}}{\partial z \partial y}
\end{aligned}
$$

$\begin{gathered}\text { Note that } \\ \text { (nd a duads) }\end{gathered} \frac{\partial^{2} v_{3}}{\partial x \partial y}=\frac{\partial^{2} v_{3}}{\partial y \partial x} \& \frac{\partial^{2} v_{2}}{\partial x \partial z}=\frac{\partial^{2} v_{2}}{\partial z \partial x} \& \frac{\partial^{2} v_{1}}{\partial y \partial z}=\frac{\partial^{2} v_{1}}{\partial z \partial y}$ $=$ Zero.
(d) $\operatorname{carl}(\operatorname{grad} f)=\overrightarrow{0}$ do it a home!

Chap 10: Vector Integral calculus
10.1: Line Integral:-

TSmooth curve: $c: \vec{r}(t)=\langle x(t), y(t), z(t)\rangle$
continously differentiable (The first derivative curve is continuous)

2 piecewise smooth path: the curve is constructed of many subcarves \& all of them is sooth.

* In this book every path of integration of a line integral is assumed to be piecewise smoth.

Definition of line integral:
A line integral of a vector function $\vec{F}(\vec{r})$ over a curve $C: \vec{r}(t)=\langle x(t), y(t), z(t)\rangle \quad a r t<b$ is defined by

$$
\begin{aligned}
& \int_{c} \vec{F}(\vec{r}) \cdot d \vec{r}=\int_{a}^{b} \vec{F}\left(\vec{r}_{a}\right) \cdot \vec{r}(t) d t \quad, \text { with } d \vec{r}=\langle d x, d y, d z\rangle \\
& \int_{c}^{\prime} \vec{F}(\vec{r}) \cdot d r=\int_{c}\left(F_{1} d x+F_{2} d y+F_{3} d z\right)=\int_{a}^{b}\left(F_{1} x^{\prime}+F_{2} y^{\prime}+F_{3} z^{\prime}\right) d t
\end{aligned}
$$

$$
\text { Notes:- (1) }\left\{\begin{array}{l}
f^{\prime}(x)=\frac{d f}{d x} \longrightarrow d f=f^{\prime}(x) d x \\
\vec{r}^{\prime}(t)=\frac{d \vec{r}}{d t} \longrightarrow d \vec{r}=\vec{r}^{\prime}(t) d t
\end{array}\right.
$$

(2)

$$
\begin{gathered}
\vec{r}=\langle x, y, z\rangle \rightarrow \frac{d \vec{r}}{d t}=\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle \\
d \vec{r}=\langle d x, d y, d z\rangle
\end{gathered}
$$

(3)

$$
\begin{aligned}
& \vec{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle \rightarrow d \vec{r}=\langle d x, d y, d z\rangle \\
& \vec{F}(\vec{r}) \cdot d \vec{r}=F_{1} d x+F_{2} d y+F_{3} d z
\end{aligned}
$$

(4) $d x=x^{\prime} d t$
$q^{\text {the }}$ edition $\frac{1-13}{425}$ work done by a force, calculate $\int_{c} \vec{F}(\vec{r}) \cdot d \vec{r}$
$\frac{6}{425} \vec{F}=\left\langle e^{x}, e^{y}\right\rangle$, clock wise along the circle with center $(0,0)$ from $(1,0)$ to $(0,-1)$

Sol:

$$
\begin{aligned}
& C: \vec{r}(t)=\langle\cos t,-\sin t\rangle 0 \leq t \leqslant \pi / 2 \\
& \vec{r}(0)=\langle 1,0\rangle \\
& \vec{r}(\pi / 2)=\langle 0,-1\rangle
\end{aligned}
$$

$$
\int_{c} \vec{F}(\vec{r}) \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{1}(t) d t
$$

$$
t=\pi /{ }_{2}^{2}
$$

$$
=\int_{0}^{\pi / 2}\left(-\sin t e^{\cos t}-\cos t e^{-\sin t}\right) d t
$$

$$
\begin{aligned}
& \overrightarrow{r^{\prime}}(t)=\langle-\sin t,-\cos t\rangle \\
& \vec{F}\left(\vec{r}(t)=\left\langle e^{\cot t}, e^{-\sin t}\right\rangle\right.
\end{aligned}
$$

Tuesday \mid Dr. Ahmad Abdullah 27/9/2016
$\frac{8}{425} \vec{F}=\left\langle\cosh x, \sinh y, e^{z}\right\rangle, c: \vec{r}=\left\langle t, t^{2}, t^{3}\right\rangle$ from $(0,0,0)$ to $(1 / 2,1 / 4,1 / 8)$
Sol: $\vec{r}(0)=\left\langle 0,0^{2}, \theta^{3}\right\rangle, \vec{r}(1 / 2)=\left\langle\frac{1}{2},\left(\frac{1}{2}\right)^{2},\left(\frac{1}{2}\right)^{3}\right\rangle$

$$
\begin{aligned}
& \int_{c} \vec{F}(\vec{r}) \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}_{0}^{\prime}(t) d t \\
& \vec{r}(t)=\langle x(t), y(t), z(t)\rangle \\
& \vec{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle \Rightarrow \vec{r}(t)=\left\langle 1,2 t, 3 t^{2}\right\rangle \\
& \vec{F}=\left\langle\cosh x(t), \sinh y, e^{z}\right\rangle \Rightarrow \vec{F}(\vec{r}(t))=\left\langle\operatorname{conh}(t), \sinh \left(t^{2}\right), e^{t^{3}}\right\rangle \\
& \left.\int_{c}^{1 / F} \vec{r}(t)\right) \cdot d \vec{r}=\int_{0}^{1 / 2}\left\langle\cosh (t), \sinh \left(t^{2}\right), e^{t^{3}}\right\rangle \cdot\left\langle 1,2 t, 3 t^{2}\right\rangle d t \\
& =\int_{a}^{1 / 2}\left(\cosh (t)+2 t \sinh \left(t^{2}\right)+3 t^{2} e^{t^{3}}\right) d t \\
& =\left.\left(\sinh (t)+\cosh \left(t^{2}\right)+e^{t^{3}}\right)\right|_{0} ^{1 / 2}= \\
& =\left(\sinh (1 / 2)+\cosh \left(\frac{1}{4}\right)+e^{\frac{1}{8}}\right)-\left(\sinh (0)+\cosh (0)+e^{0}\right) \\
& =\sinh \left(\frac{1}{2}\right)+\cosh (1 / 4)+e^{1 / 3}-0-1-1 \\
& =\sinh (1 / 2)+\cosh \left(\frac{1}{4}\right)+e^{1 / 8}-2
\end{aligned}
$$

,th edition
$\frac{9}{425}$ \vec{F} as in prob 8
C : the straight segment from $\overbrace{(0,0,0)}^{A} \frac{B}{4,42 a_{3}} t_{0}(1 / 2,1 / 4,1 / 8)$
Sol: we have to find first the equation of the line

$$
\begin{aligned}
& \overrightarrow{A B}=\langle 1 / 2,1 / 4,1 / 8\rangle-\langle 0,0,0\rangle=\langle 1 / 2,1 / 4,1 / 8\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r}(0)=\langle 0,0,0\rangle, \vec{r}(1)=\langle 1 / 2,1 / 4,1 / 8\rangle \text {, so our limits } \\
& \int_{c} \vec{F}(\vec{r}(t)\rangle \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t \\
& \vec{r}(t)=\left\langle\frac{1}{2}, \frac{1}{4}, 1 / 8\right\rangle, \vec{F}(\vec{r}(t))=\left\langle\operatorname { c o s h } \left(x(t), \sinh \left(y(t), e^{z(t)}\right\rangle\right.\right. \\
& \vec{F}(\vec{r}(t))=\left\langle\cosh (1 / 2 t), \sinh (1 / 4 t), e^{1 / 8 t}\right\rangle \\
& \int_{0}^{1}\left\langle\cosh (1 / 2 t), \sinh (1 / 4 t), e^{1 / 8 t}\right\rangle \cdot\langle 1 / 2,1 / 4,1 / 8\rangle d t \\
& =\int_{0}^{1}\left(\frac{1}{2} \cosh (1 / 2 t)+\sin (1 / 4 t) \frac{1}{4}+\frac{1}{8} e^{1 / 8 t}\right) d t \\
& =\sinh (1 / 2 t)+\cosh (1 / 4 t)+\left.e^{1 / 8 t}\right|_{0} ^{1} \\
& =\left[\sinh (1 / 2)+\cosh (1 / 4)+e^{1 / 8}\right]-[\sinh (0)+\cosh (0)+y]
\end{aligned}
$$

 from $\underbrace{(1,0,0)}_{t=0}$ to $\underbrace{(1,0,4 \pi)}_{t=4 \pi}$
Sol: $\vec{r}(0)=\langle 1,0,0\rangle \quad, \vec{r}(4 \pi)=\langle 1,0,4 \pi\rangle$

$$
\begin{aligned}
& \int_{c} \vec{F}(\vec{r}(t)) \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t \\
& { }^{a}\left\langle F_{1}, F_{2}, F_{2}\right\rangle \cdot\left\langle x \mid(t), y^{\prime}(t), z^{\prime}(t)\right\rangle \\
& =\int_{a}\left(F_{1} x^{\prime}(t)+F_{2} y^{\prime}(t)+F_{3} z^{\prime}(t)\right) d t \\
& \vec{r}(t)=\left\langle\begin{array}{c}
x(t), y(t) z(t) \\
\cos t, \\
\sin (t), t
\end{array}\right\rangle \\
& \vec{F}=\left\langle(y(t))^{2},(x(t))^{2}, \cos ^{2}(z(t))\right\rangle \\
& \vec{F}=\left\langle\sin ^{2}(t),\left(\cos ^{2}(t), \cos ^{2}(t)\right\rangle\right. \\
& x(t)=\cos (t) \longrightarrow x^{\prime}(t)=-\sin (t) \\
& y(t)=\sin (t) \longrightarrow \frac{d y(t)}{d t}=\cos (t) \\
& z(t)=t \longrightarrow z^{\prime}(t)=1 \\
& =\int_{0}^{4 \pi}\left(-\sin ^{3}(t)+\cos ^{3}(t)+\cos ^{2}(t)\right) d t \\
& * \int_{0}^{4 \pi} \cos ^{3}(t) d t=\int_{0}^{4 \pi} \cos ^{2}(t) \cos (t) d t=\int_{0}^{4 \pi}\left(1-\sin ^{2}(t) \cos t d t\right. \\
& \text { Let } u=\sin t \\
& \times \int_{0}^{4 \pi} \cos ^{2}(t) d t=\int_{0}^{4 \pi} \frac{1}{2}(1+\cos 2 t) d t=\ldots \ldots
\end{aligned}
$$

NOTE: The forms of line Integral: -

$$
\text { II } \int_{c} \vec{F}(\vec{r}) \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t
$$

$2] \int_{c} \vec{F}(\vec{r}) d t=\int_{a}^{b} \vec{F}(\vec{r}(t)) d t$
scaler
$3 \int_{c} f(\vec{r}) d t=\int_{a}^{b} f(\vec{r}(t)) d t$

$$
\frac{18}{426} \left\lvert\, \vec{F}=\left\langle(x y)^{1 / 3},\left(\frac{y}{x}\right)^{1 / 3}, 0\right\rangle\right.
$$

$$
C: \vec{r}=\left\langle\cos ^{3} t, \sin ^{3} t, 0\right\rangle, 0 \leqslant t \leqslant \pi / 4
$$

Find $\int_{c} \vec{F}(\vec{r}) d t$
sol: $\vec{F}(\vec{r}(t))=\left\langle\left(\cos ^{3}(t) \sin ^{3}(t)\right)^{1 / 3},\left(\frac{\sin ^{3}(t)}{\cos (t)}\right)^{1 / 3}, 0\right\rangle$

$$
\begin{aligned}
& =\left\langle\cos (t) \sin (t), \frac{\sin (t)}{\cos (t)}, 0\right\rangle \\
\int_{c} \vec{F}(r) d t & =\int_{0}^{\pi / 4}\left\langle\frac{1}{2} \sin (2 t), \frac{\sin (t)}{\cos (t)}, 0\right\rangle d t \\
& \left.=\left\langle\frac{-1}{4} \cos (2 t),-\ln \right| \cos (t)|, 0\rangle\right]_{0}^{1 / 4}
\end{aligned}
$$

$$
=\left\langle\frac{1}{4},-\ln \right| \frac{1}{\sqrt{2}}|, 0\rangle \rightarrow \text { note that in this }
$$ type of line integny the answer is vector not scaler!

Thursday Dr. Ahmad Abdullah
10.2 path independence of line Integrals

Theorem 1: A line integral $\int_{c} \vec{F}(\vec{r}) \cdot d \vec{r}=\int\left(F d x+F_{2} d y+F_{3} d z\right) \stackrel{(1)}{=}$ in a domain D is path ${ }^{C}$ independent C if and only if
$\vec{F}=\nabla f$ for some function of in D.
Definition: The differential form $\vec{F} \vec{r}) \cdot d \vec{r}=F_{1} d x+F_{2} d y+F_{3} d z(4)$ is exact in D if and only if
$\vec{F}=\nabla f$ in D for some f.
Theorem 3^{*} : The integral (1) is path independent in a domain D if and only if the differential form (4) is exact, and has continous coefficients F_{1}, F_{2}, and F_{3}.
$\frac{1-8}{432}$ Show that the form under integral sign is exact and evaluate the integral.

$$
\begin{aligned}
& \frac{6}{432} \int_{(0,0,0)}^{(1,1 \infty)} e^{x^{2}+y^{2}-2 z}(x d x+y d y-d z) \\
& \text { sol: } \int_{(0,0,0)}^{(1,0)} \int_{\frac{1}{2}}^{F_{1}} x^{x^{2}+y^{2}-2 z} d x+\underbrace{y x^{2}+y^{2}-2 z}_{F_{2}} d y-e_{F_{3}}^{x^{2}+y^{2}-2 z} d z)
\end{aligned}
$$

$F_{1} \& F_{2} \& F_{3}$ are continous on all R^{3} !
\Rightarrow we can conclude that: $\left.f=\frac{1}{2} e^{x^{2}+y^{2}-2 z}\right]$ By
\Rightarrow to check: $f_{x}=x e^{x^{2}+y^{2} x-2 z}=F_{1}$

$$
\begin{aligned}
& f_{y}=y \cdot e^{x^{2}+y^{2}-2 z}=F_{2} \\
& f_{z}=-e^{x^{2}+y^{2}-2 z}=F_{3}
\end{aligned}
$$

* We want to find f such that

$$
\left.\begin{array}{c}
\vec{F}=\nabla f \Rightarrow\left\langle F_{1}, F_{2}, F_{3}\right\rangle=\left\langle f_{x}, f_{y}, f_{z}\right\rangle \\
F_{1}=f_{x} \rightarrow x e^{x^{2}+y^{2}-2 z}=f_{x} \\
F_{2}=f_{y} \rightarrow e_{e}^{x^{2}+y^{2}-2 z}=f_{y} \\
F_{3}=f_{z} \rightarrow-e^{x^{2}+y^{2}-2 z}=f_{z}
\end{array}\right\} \begin{gathered}
\text { we have to save } \\
\text { These equations } \\
\Rightarrow(x) f_{=}=\int x e^{x^{2}+y^{2}-2 z} d x=\frac{1}{2} e^{x^{2}+y^{2}-2 z}+g(y, z) \\
\downarrow \\
f_{y}=y e^{x^{2}+y^{2}-2 z}+\frac{\partial g(y, z)}{\partial y} \quad=i e^{\prime} e^{x^{2}+y^{2}-2 z!}! \\
\frac{\partial g(y, z)}{\partial y}=z e r o \quad \rightarrow g(y, z)=\int o d y=h(z)
\end{gathered}
$$

(*)

$$
\begin{aligned}
& f=\frac{1}{2} e^{x^{2}+y^{2}-2 z}+h(z)(* *) \\
& f_{z}=-e^{x^{2}+y^{2}-2 z}+\frac{d h(z)}{d z}=-e^{x^{2}+y^{2}-2 z} \rightarrow \frac{d h(z)}{d z}=\text { Zero } \\
& \rightarrow h(z)=\int o d z=c
\end{aligned}
$$

$$
\begin{aligned}
& \text { (*x) } f=\frac{1}{2} e^{x^{2}+y^{2}-2 z}+C \quad, \text { Assume } c=\text { zero } \\
& f=\frac{1}{2} e^{x^{2}+y^{2}-2 z} \\
& F_{1}=f_{x} \quad \& F_{2}=f_{y} \quad \& \cdot F_{3}=f_{z} \\
& \vec{F}=\nabla f \Rightarrow \vec{F}(\vec{r}) \cdot d \vec{r} \text { is exact } \\
& (1,1,0) \text { is path indef. } \\
& \Rightarrow \int_{(0,0,0)}^{B} \vec{F}(\vec{r}) \cdot d \vec{r}=\int_{A}^{B} \nabla f \cdot f^{p a t h} \text { indep. } \\
& \int_{A}^{B}=\int_{A}^{B}\left\langle f_{x}, f_{y, f}, f_{z}\right\rangle \cdot\left\langle d x, d y, d_{z}\right\rangle \\
& =\int_{A}^{B}\left(f x d x+f_{y} d y+f_{z} d z\right) \\
& =\int_{A}^{B} d f=\text { total differential } \\
& =f(B)-f(A)
\end{aligned}
$$

$4110 / 2016$ Dr. Ahmad Abdullah
$\frac{8}{432} \int_{(2 x, 1)}^{(4,4,0)}\left[2 x\left(y^{3}-z^{3}\right) d x+3 x^{2} y^{2} d y-3 x^{2} z^{2} d z\right]$
Sol: we want to find f such that $\nabla f=\vec{F}$

$$
\begin{aligned}
& F_{1}=\frac{\partial f}{\partial x} \\
& F_{2}=\frac{\partial f}{\partial y} \\
& F_{3}=\frac{\partial f}{\partial z}
\end{aligned} \Rightarrow \begin{aligned}
& f_{x}=2 x\left(y^{3}-z^{3}\right) \\
& f_{y}=3 x^{2} y^{2} \quad 0 \\
& f_{z}=-3 x^{2} z^{2}(2)
\end{aligned}
$$

(3)

$$
\begin{aligned}
& f=\int 2 x\left(y^{3}-z^{3}\right) d x=x^{2}\left(y^{3}-z^{3}\right)+g(y, z) \\
& f_{y}=3 x^{2} y^{2}=3 x^{2} y^{2}+\frac{\partial g(y, z)}{\partial y} \rightarrow \frac{\partial g(y, z)}{\partial y}=0 \\
& \rightarrow g(y, z)=\int 0 d y=h(z)
\end{aligned}
$$

(*)

$$
\begin{aligned}
& f=x^{2}\left(y^{3}-z^{3}\right)+h(z) \\
& d \\
& f_{z}=-3 x^{2} z^{2}=-3 x^{2} z^{2}+\frac{d h(z)}{d z} \quad \rightarrow \frac{d h(z)}{d z}=0
\end{aligned}
$$

$\rightarrow h(z)=\int 0 d z=c$ (Take the constant equal zero)
(*) $f=x^{2}\left(y^{3}-z^{3}\right) \quad$ so $\vec{F}=\nabla f$ (check I)

* so the integral is independent of path

$$
\int_{(20,1)}^{(4,4 x)}[\cdots-]=f(4,4,0)-f(2,0,1)=4^{2}\left(4^{3}-0^{3}\right)-2^{2}\left(0^{3}-1^{3}\right)
$$

(4) $\vec{F} \cdot d \vec{r}=F_{1} d x+F_{2} d y+F_{3} d z$
(6') $\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}=0, \frac{\partial F_{3}}{\partial x}-\frac{\partial F_{1}}{\partial z}=0, \frac{\partial F_{2}}{\partial x}-\frac{\partial F}{\partial y}=0$
Theorem 2: The integral $\int_{c} \vec{F}(\vec{r}) d \vec{r}=\int_{c}\left(F_{1} d x+F_{2}^{\frac{1}{2}}+F_{3} d z\right)$ (1) is path independent in ${ }^{c}$ a domain D, so its value around every closed curve is zero.

Theorem 3: Let F_{1}, F_{2}, F_{3} in the line integral (1) be continous and have continous first partial derivatives in a domain D in space; Then:
(a) if the differential form (4) is exact in D and thus (1) is path indep. ; then in D

$$
\text { curl } \vec{F}=\overrightarrow{0}
$$

(b) if (6) holds in D and D is simply connected then (4) is exact in D and thus (1) is path indep.

* A domain D is called simply connected if: every closed carve in D can be continously shrunk to any point in D without leaving D.

* sphere inside sphere in 3D would be (simply connected)
$\frac{11-19}{432}$ check for path independence and if indep. integrate from $(0,0,0)$ to (a, b, c)
$\left.\frac{12}{432} \right\rvert\,\left(3 x^{2} e^{2 y}+x\right) d x+2 x^{3} e^{2 y} d y+\underset{F_{2}}{0} d z$
Sol: $\nabla \times \vec{F}=\overrightarrow{\text { Zero }}$ (check!)
* Since the Domain in our case $\left|R^{3}\right|$, so it is simple connected; so
curl $\vec{f}=0 \longrightarrow(1)$ is path indep.

$$
\text { Curl } \vec{F}=0 \Rightarrow \int_{(0,0,0)}^{(a, b x)}\left[\left(3 x^{2} e^{2 y}+x\right) d x+\left(2 x^{2} e^{2 y}\right) d y+0 d z\right]
$$

is path indef.
\Rightarrow Find f such that $\vec{F}=\nabla f \quad \ldots . . \quad$ we find $f=x^{3} e^{2 y}+\frac{x^{2}}{2}$ (check))

$$
\begin{aligned}
\Rightarrow \int_{(3,0)}^{\left(a, b_{x}\right)} \cdots \cdots & =f(a, b, x)-f(0,0,0) \\
& =a^{3} e+\frac{a^{2}}{2}-0+0=a^{32} e^{2 b}+\frac{a^{2}}{2}
\end{aligned}
$$

Thursday Dr. Ahmad Abdultah

$$
\begin{array}{c|c}
\frac{14}{432} & 2 x \sin y d x+x^{2} \cos y d y+y^{2} d z \\
F_{1} & F_{3}
\end{array}
$$

Sol: curl $\vec{F}=\left|\begin{array}{ccc}i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_{1} & F_{2} & F_{3}\end{array}\right|=(2 y-0) i-() j+() k \neq \overrightarrow{0}$
$\nabla \times \vec{F} \neq \overrightarrow{0} \Rightarrow$ so the integral is path dependent.
10.3 Double integrals:-

$$
\left.\frac{3}{438} \right\rvert\, \int_{0}^{1} \int_{x^{2}}^{x}(1-2 x y) d y d x
$$

Sol: $\left.\int_{0}^{1}\left[y-\frac{2 x y^{2}}{2}\right]_{x^{2}}^{x}\right] d x=\int_{0}^{1}\left(x-x^{3}-\left(x^{2}-x^{5}\right)\right) d x$

$$
=\int_{0}^{1}\left(x-x^{3}-x^{2}+x^{5}\right) d x=\cdots \text { Continue }
$$

$\frac{4}{438}$ As prob. 3 order reversed

$$
\int_{0}^{1} \int_{x^{2}}^{x}(1-2 x y) d y d x=\int_{0}^{1} \int_{x=y}^{x=\sqrt{y}}(1-2 x y) d x d y
$$

\Rightarrow then continue as the previn) problem.

Scanned by CalmStannerg
10.4 Green's Theorem in The plane

Theorem 1: Let R be a closed bounded region in the $x-y$ plane whose boundary C consist of finitely many sooth curves.
Let $F_{1}(x, y)$ and $F_{2}(x, y)$ be functions that are continuous and have continous partial derivatives $\frac{\partial F_{1}}{\partial y}$ and $\frac{\partial F_{2}}{\partial x}$ every where in some domain containing R, Then:

$$
\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y=\oint_{c}\left(F_{1} d x+F_{2} d y\right)
$$

Here we integrate along the entire boundry C of R in such a sense that R is on the left as we advance in the direction of integration.

Ex: Verify Green's Theorem for

$$
F_{1}=y^{2}-7 y \quad, \quad F_{2}=2 x y+2 x
$$

C the circle $x^{2}+y^{2}=1$
Sol:
(1)

$$
\begin{aligned}
& \iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y \\
& =\iint_{R}(2 y+2-(2 y-7)) d x d y
\end{aligned}
$$

$$
=\int_{-1}^{R} \int_{-1}^{\sqrt{1-y^{2}}} 9 d x d y \quad(9 \text { multiplyed }
$$

$$
\left.=\int_{-1}^{1}\left(18 \sqrt{1-y^{2}}\right)\right] d y \quad \ldots . \quad \text { sdi it }
$$

$$
=9 \pi \text { units }^{2}
$$

[2] $\oint_{c} F_{1} d x+F_{2} d y=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t$

$$
\begin{aligned}
& C: x^{2}+y^{2}=1 \quad \vec{r}(t)=\langle\cos (t), \sin (t)\rangle, 0 \leqslant t \leqslant 2 \pi \\
& \vec{r}^{\prime}(t)=\langle-\sin (t), \cos (t)\rangle, 0 \leqslant t \leqslant 2 \pi \\
& \vec{F}=\left\langle y^{2}-7 y, 2 x y+2 x\right\rangle=\left\langle\sin ^{2}(t)-2 \sin (t), 2 \cos (t) \sin (t)+2 \operatorname{cov}(x)\right\rangle \\
& =\int_{0}^{2 \pi}\left\langle\sin ^{2}(t)-7 \sin (t) ; 2 \cos (t) \sin (t)+2 \cos (t)\right\rangle \cdot\langle-\sin (t), \cos (t)\rangle d t \\
& =-9 \pi
\end{aligned}
$$

Sunday
$9 / 10 / 2016$

Q Using Greens Theorem, Evaluate $\int \vec{F}(\vec{r}) \cdot d \vec{r}$ counterclockwise around the boundary curve C of the region R

$$
\vec{F}=\left\langle e^{-y},-e^{x}\right\rangle
$$

R is the tringle with vertices $A(0,0), B(2,0), C(2,1)$
sol: Green's Theorem

$$
\begin{aligned}
\oint_{C} \vec{F}(\vec{r}) d r & =\int_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y \\
& =\int_{0}^{2} \int_{0}^{1 / 2 x}\left(\frac{\partial e^{x}}{\partial x}-\frac{\partial e^{-y}}{\partial y}\right) d y d x \\
& =\int_{0}^{2} \int_{0}^{1 / 2 x}\left(e^{x}+e^{-y}\right) d y d x=\left.\int_{0}^{2}\left(y c_{1}^{x}-e^{-y}\right)\right|_{0} ^{1 / 2 x} d x \\
& =\int_{0}^{2}\left[\left(\frac{1}{2} x e^{x}-e^{-1 / 2 x}\right)-(-1)\right] d x=\int_{0}^{2}\left(\frac{1}{2} x e^{x}-e^{-1 / 2 x}+1\right) d x \\
& =\frac{1}{2} \int_{0}^{2} x e^{x} d x+\left.2 e^{-1 / 2 x}\right|^{2}+2 \quad \text { continue }
\end{aligned}
$$

Direct Method :-

$$
\int_{c} \vec{F}(\vec{r}) \cdot d \vec{r}=\int_{c_{1}}+\int_{c_{2}}+\int_{c_{3}}
$$

let stats with $c_{2}: \int_{c_{2}} \vec{F}(\vec{r}) \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}) \cdot \vec{r}(t) d t \quad, c_{2}: x=2$

$$
\begin{aligned}
& C_{2}: \vec{r}(t)=\left\langle\frac{y}{2}, t\right\rangle \text { a }\langle\leqslant t \leqslant 1 \\
& \vec{r}^{\prime}(t)=\langle 0,1\rangle \\
& \vec{F}=\left\langle e^{-y}, e^{x}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \vec{F}(\vec{r}(t)\rangle=\left\langle e^{-t}, e^{2}\right\rangle \\
& \text { The integral }=\int_{0}^{1}\left\langle e^{-t}, e^{2}\right\rangle \cdot\langle 0,1\rangle d t \\
& =\int_{0}^{1} e^{2} d t=e^{2}
\end{aligned}
$$

$$
E X: \vec{F}=\langle y,-x\rangle
$$

Find $\int_{\sigma} \vec{F}(\vec{r}(t)) \cdot d \vec{r}$ for the give cares $q_{i} \cup c_{2} \cup G_{3}$ just.
sol: Direct Methods:-

$$
\int_{c}=\int_{c_{1}}+\int_{c_{2}, c_{3}}+\int_{0}
$$

Green's Theorem:-

$$
\begin{aligned}
\int_{c} \vec{F}(\vec{r}) \cdot d \vec{r} & =\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y-\int_{C_{4}} \vec{F}(\vec{r})-d \vec{r} \\
& =\int_{0}^{1} \int_{y}^{y+2}(-1-1) d x d y \\
C_{4}: y & =0 \\
C_{4} & : \vec{r}(t)=\left\langle t^{x}, 0\right\rangle 0 \leqslant t \leqslant 2 \text { in continue }
\end{aligned}
$$

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& r=\sqrt{x^{2}+y^{2}}
\end{aligned} \xrightarrow[x]{\text { Ip }} \xrightarrow{r \mid y}
$$

$\frac{12}{444}$
$\vec{F}=\left\langle\begin{array}{c}x^{2} y^{2} \\ F_{1}\end{array}, \frac{-x}{y^{2}}\right\rangle$
F_{2}

$$
R: 1 \leqslant x^{2}+y^{2} \leqslant 4, x \geqslant 0, y \geqslant x
$$

sol: $\quad \oint \vec{F}(\vec{r}) \cdot d \vec{r}=\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y$

$$
=\iint_{R}\left(\frac{-1}{y^{2}}-2 x^{2} y\right) d y d x
$$

\Rightarrow Use polar Coordinates to solve this
 Integral!

$$
\begin{aligned}
& \theta=\pi / 2 \quad r=2 \\
& =\int_{\pi / 4} \int_{r=1}^{r-2}\left(\frac{-1}{(r \sin (\theta))^{2}}-2(r \cos (\theta))^{2}(r \sin \theta)\right) \underset{\substack{=\\
\text { don' } n^{\prime}}}{r d r d \theta} \text { forget } \\
& \text { don't forget it! } \\
& =\int_{\pi / 4}^{\pi / 2} \int_{1}^{2}\left(-\frac{1}{r} \csc ^{2}(\theta)-2 r^{4} \cos ^{2}(\theta) \sin (\theta)\right) d r d \theta \\
& =\int_{\pi / 4}^{\pi / 2}\left(\left[-\csc ^{2}(\theta) \ln (r)\right]_{i}^{2}-\left[\frac{2 r^{5}}{5} \cos ^{2}(\theta) \sin (\theta)\right]_{1}^{2}\right) d \theta \\
& \begin{array}{l}
=\int_{\pi / 2}^{\pi / 2}\left(\left[-\csc ^{2}(\theta) \ln (2)\right]-\left[\frac{2^{6}}{5} \cos ^{2}(\theta) \sin (\theta)-\frac{2}{5} \cos ^{2}(\theta)\right.\right. \\
=\int_{\pi / 4}^{\pi / 2}\left(\left[-\csc ^{2}(\theta) \ln (2)+\frac{6^{2}}{5} \cos ^{2}(\theta) \sin (\theta)\right]\right) d \theta \\
\pi / 2
\end{array} \\
& \left.=-\ln (2) \cot (\theta)]_{\pi / 4}^{\pi / 2}+\frac{6 L}{5} \frac{\cos ^{3}(\theta)}{3}\right]_{\pi / 4}^{\pi / 2} \\
& \text { continue }
\end{aligned}
$$

$$
\cot \pi / 2=0
$$

$$
\left.\frac{6}{444} \right\rvert\, \vec{F}=\left\langle x\left(\cosh (y), x^{2} \sinh (y)\right\rangle, R: x^{2}<y<x\right.
$$

Sol: $\int_{c} \vec{F}(\vec{r}) \cdot d \vec{r}$

$$
\left.\begin{aligned}
& =\int_{R_{1}}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y \\
& =\int_{0}^{1} \int_{x^{2}}^{1}(2 x \sinh (y)-x \sinh (y)) d y d x \\
& =\int_{0}^{1}\left(\left.x \cosh (y)\right|_{x^{2}} ^{x}\right) d x=\int_{0}^{1}\left(x \cosh (x)-x \cosh \left(x^{2}\right)\right) d x \\
& =\int_{0}^{1} x \cosh (x) \\
& \text { by portr }
\end{aligned} \frac{1}{2} \sinh \left(x^{2}\right)\right|_{0} ^{1} \ldots \text { cuntinue } \quad \text {.... }
$$

Result from Green's Thearem:-

$$
\iint_{R} \nabla^{2} w d x d y=\oint_{c} \frac{\partial w}{\partial n} d s
$$

Tuesday | Dr. Ahmad Abdullah
10.5 Surfaces of surface integral:-

Cylindrical coordinates:-

spherical coordinates:-

$$
\begin{array}{ll}
(x, y, z) \longleftrightarrow(\rho, \theta, \phi) \\
x=\rho \cos \phi & \cos \theta \\
y=\rho \cos \phi \sin \theta & p=\sqrt{x^{2}+y^{2}+z^{2}} \\
z=\rho \cos \phi & \tan \theta=\frac{y}{x} \\
& \cos \phi=\frac{r}{\rho}=\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& r=\rho \cos \phi \\
& 0 \leqslant \theta \leqslant 2 \pi \\
& -\pi / 2<\phi \leqslant \pi / 2 \\
& \rho \geqslant 0
\end{array}
$$

EX: cylinder $\quad x^{2}+y^{2}=a^{2},-1 \leq z \leq 1$ write it in parametric form
Sol: $\vec{r}(u, v)=\langle\dot{x}(u, v), y(u, v), z(u, v)\rangle$
Since $r=a$ constant in our case!

$$
\begin{aligned}
& =\langle a \cos (u), a \sin (u), v\rangle{ }^{0} \leqslant u \leqslant 2 \pi \\
& -1 \leqslant v \leqslant 1 \\
& E X: \text { sphere } \quad x^{2}+y^{2}+z^{2}=a^{2}
\end{aligned}
$$

Sol: $\quad \vec{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$
\Rightarrow Note that $\rho=a$ is constant ${ }_{\theta}^{\text {E }} \phi$ the order not neccussmg

$$
\begin{aligned}
& \theta \text { o } \\
& \vec{r}(u, v)=\langle\rho \cos \phi \cos \theta, \rho \cos \phi \sin \theta, \rho \sin \phi\rangle \\
& p \rightarrow a \\
& \stackrel{\phi}{\theta} \rightarrow v=u \quad=\langle a \cos v \cos u, a \cos v \sin u, \rho \sin v\rangle \\
& 0 \leqslant u \leqslant 2 \pi \\
& -\pi / 2 \leqslant v \leq \pi / 2
\end{aligned}
$$

* U \&V are dummy variables, you can. whatever you want.

EX: Cone $\quad z=\sqrt{x^{2}+y^{2}} \quad 0 \leqslant z \leqslant 5$
Sol:

$$
\begin{aligned}
& \rightarrow \phi=\text { (constant } f=45^{\circ}=\pi / 4 \\
& \vec{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle \\
& =\langle\rho \cos \phi \cos \theta, \rho \cos \phi \sin \theta, \rho \sin \phi\rangle \\
& =\left\langle u \cos ^{(5)} \frac{1}{\sqrt{2}}, u \sin (v) \frac{1}{\sqrt{2}}, u \frac{1}{\sqrt{2}}\right\rangle \\
& \begin{array}{l}
\text { To } \\
\text { ind } \\
\text { The } \\
\text { limits } \\
\text { l } \Rightarrow 0 \leqslant z \leqslant 5 \quad, \sin \phi=\frac{z}{\rho}=\frac{1}{\sqrt{2}} \Rightarrow z=\frac{p}{\sqrt{2}} \\
\end{array}
\end{aligned}
$$

Another method:-

$$
\begin{aligned}
\vec{r}(u, v) & =\left\langle\begin{array}{cc}
x(u, v), y(u, v), z(u, v)\rangle \\
z \cos \theta, z \sin \theta & z
\end{array}\right. \\
& =\langle u \cos v, u \sin v, u\rangle
\end{aligned}
$$

Thursday (Dr. Ahmad Abdullah
$\frac{18}{449}$ Hyperbolic cylinder

$$
s: 9 x^{2}-4(y+3)^{2}=36
$$

Sol: remember that $\cosh ^{2}(t)-\sinh ^{2}(t)=1$

$$
\begin{gathered}
\frac{x^{2}}{4}-\frac{(y+3)^{2}}{9}=1 \\
\frac{\left(2 \cosh ^{2}(u)\right)^{2}}{4}-\frac{(3 \sinh (u)-3+3)^{2}}{9}=1 \\
S: \vec{r}(u, v)=\langle 2 \cosh (u), 3 \sinh (u)-3, v\rangle \quad-\infty<v<\infty
\end{gathered}
$$

\Rightarrow to find the limits of $\underline{\underline{u}}$

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b}=1 \Rightarrow \\
& a \leqslant x \& x \leqslant-a
\end{aligned}
$$

$$
2 \leqslant 2 \cosh (u) \& 2 \cosh (u) \leqslant-2
$$

then find u
$-\infty<y<\infty$

$$
-\infty<3 \sinh (u)-3<\infty
$$

10.6 Surface Integrals: -

Given a surface s is parametric form $s: \vec{r}(u, v)=\langle x(u, v), y(u, v, z(u, v)$ where (u, v) varies over a region R in tue uv-plane. Assume s to be piecewise sooth so that s has the Normal

$$
\vec{N}=\vec{r}_{u} \times \vec{r}_{v} \quad \& \text { Unite Normal vector: } \vec{n}=\frac{\vec{N}}{|\vec{N}|}
$$

For a given vector function \vec{F} we can define the surface integral over s by

$$
\iint_{s} \vec{F} \cdot \vec{n} d A=\iint_{R} \vec{F}(\vec{r}(u, v)) \cdot \vec{N} d u d v
$$

Here $\vec{N}=|\vec{N}| \vec{n} \quad \& \quad|\vec{N}|=\left|\vec{r}_{u} \times \vec{r}_{v}\right|$
\& $\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ represents the area of the parallelogram with sides \vec{r}_{u} and \vec{r}_{v}

Hence

$$
\vec{n} d A=\vec{n}|\vec{N}| d u d v=\vec{N} d u d v
$$

and we see that
$d A=|\vec{N}| d u d v$ is the element of area of s

Example: compute the flux of water through the parapolic cylinder $5: ~ y=x^{2}, 0 \leqslant x \leqslant 2,0 \leqslant z \leqslant 3$
if the velocity is

$$
\vec{v}=\vec{F}=\left\langle 3 z^{2}, 6,6 x z\right\rangle
$$

Sol: $\iint_{S} \vec{F} \cdot \vec{n} d A=\iint_{R} \vec{F}(\vec{r}(u, v)) \cdot \vec{N} d u d v$

$$
S: y=x^{2}, 0 \leqslant x \leqslant 2,0 \leqslant z \leqslant 3
$$

$$
s: \vec{r}(u, v)=\langle u(u, v), y(u, v), z(u, v)\rangle
$$

we assumed \rightarrow
$u=x \quad \Rightarrow$

$$
\begin{aligned}
& \vec{r}(u, v)=\left\langle u, u^{2}, v\right\rangle \\
& 0 \leqslant u \leqslant 2 \\
& 0 \leqslant v \leqslant 3 \\
& \Rightarrow \vec{r}_{u}=\langle 1,2 u, 0\rangle \& \vec{r}_{v}=\langle 0,0,1\rangle \\
& \begin{aligned}
\vec{N}=\vec{r}_{u} \times \vec{r}_{v}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 u & 0 \\
0 & 0 & 1
\end{array}\right|=2 u \hat{i}-\hat{j} \\
02 u,-1,0\rangle
\end{aligned} \\
& \text { or } y-x^{2}=0 \Rightarrow \nabla f=\langle-2 x, 1,0\rangle \text { Let } x=4 \\
& =\langle-2 u, \mid, 0\rangle=\vec{N} \\
& \Rightarrow \vec{F}=\left\langle 3 z^{2}, 6,6 x z\right\rangle \quad \Rightarrow \vec{F}(\vec{r}(u, v))=\left\langle 3 v^{2}, 6,6 u v\right\rangle \\
& \Rightarrow \int_{0}^{3} \int_{0}^{2}\left\langle 3 v^{2}, 6,6 u v\right\rangle \cdot\langle 2 u,-1,0\rangle d u d v \\
& \Rightarrow \int_{0}^{1} \int_{0}^{2}\left[6 u v^{2} 1-6\right] d u d v
\end{aligned}
$$

$\frac{1-12}{456}$ Evaluate $\int_{5} \dot{\vec{F}} \cdot \vec{n} d A$

$$
\begin{aligned}
& \frac{2}{456} \vec{F}=\left\langle x^{2}, y^{2}, z^{2}\right\rangle, s: x+y+z=4, \\
& x \geqslant 0 \\
& y \geqslant 0 \\
& z \geqslant 0
\end{aligned}
$$

Sol: $s: \vec{r}(u, v)=\langle u, v, 4-u-v\rangle \Rightarrow \begin{aligned} & x=u \\ & y=v\end{aligned}$

$$
\begin{aligned}
z & =4-x-y \\
& =4-u-v
\end{aligned}
$$

$$
\iint_{5} \vec{F} \cdot \vec{n} d A=\iint_{R} \vec{F}(\vec{r}(u, v)) \cdot \vec{N} d u d v
$$

$$
\vec{r}_{u}=\langle 1,0,-1\rangle
$$

$$
\vec{r}_{v}=\langle 0,1,-1\rangle
$$

$\vec{N}=\vec{r}_{u} \times \vec{r}_{v}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & -1 \\ 0 & 1 & -1\end{array}\right|$

$$
=\hat{i}+\hat{j}+\hat{k}=\langle 1,1,1\rangle
$$

or $x+y+z=4 \rightarrow \nabla F=\langle 1,1,1\rangle$

$$
\vec{F}=\left\langle x^{2}, y^{2}, z^{2}\right\rangle \rightarrow \vec{F}(\vec{r}(u, v))=\left\langle u^{2}, v^{2},(4-u-v)^{2}\right\rangle
$$

$$
\begin{aligned}
& \Rightarrow \int_{0}^{4} \int_{0}^{4-u}\left\langle u^{2}, v^{2},(4-u-v)^{2}\right\rangle \cdot\langle 1,1,1\rangle d v d u \\
&=\int_{0}^{4} \int_{0}^{4-u}\left(u^{2}+v^{2}+(4-u)^{2}+v^{2}-2 v(4-u)\right) d v d u \\
&=\int_{0}^{4} \int_{0}^{4-u}\left(2 v^{2}+2 u^{2}+2 v u-8 v-8 u+16\right) d v d u \\
&=\int_{0}^{4}\left(\frac{3}{2}(4-u)^{3}+2 u^{2}+u(4-u)^{2}-4(4-u)^{2}\right. \\
&-8 u(4-u)+16(4-u)) d u
\end{aligned}
$$

i continue.
$=64$ (The Final answer)
$\frac{5}{456}$

$$
\begin{aligned}
\vec{F}=\langle x, g, z\rangle \quad & s: \vec{r}=\left\langle u \cos (v), u \sin (v), u^{2}\right\rangle \\
& 0 \leqslant u \leqslant 4,-\pi \mid \leqslant v \leqslant \pi
\end{aligned}
$$

Sol:

$$
\begin{aligned}
& \vec{r}_{u}=\langle\cos (v), \sin (v), 2 u\rangle \\
& \vec{r}_{v}=\langle-u \sin (v), u \cos (v), 0\rangle \\
& \vec{N}=\vec{r}_{u} \times \vec{r}_{v}=\left\langle-2 u^{2} \cos (v),-2 u^{2} \sin (v), u\right\rangle \\
& \vec{F}(\vec{r}(u, v))=\left\langle u \cos (v), u \sin (v), u^{2}\right\rangle \\
& \iint_{R} \vec{F}(\vec{r}(u, v)) \cdot \vec{N} d u d v=
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{4} \int_{-\pi}^{\pi}\left\langle 4 \cos (v), 4 \sin (v), u^{2}\right\rangle \cdot\left\langle-2 u^{2} \cos (v),-2 u^{2} \sin (v), u\right\rangle d v d u \\
& =\int_{0}^{4} \int_{-\pi}^{\pi}\left(-8 u^{2} \cos ^{2}(v)-u^{2} \sin ^{2}(v)+u^{3}\right) d v d u \\
& =\int_{0}^{4} \int_{-\pi}^{\pi}\left(-8 u^{2}\left(\cos ^{2}(v)+\sin ^{2}(v)\right)+u^{3}\right) d v d u \\
& =\int_{0}^{4} \int_{-\pi}^{\pi}\left(-8 u^{2}+u^{3}\right) d v d u=\int_{0}^{4} 2 \pi\left(u^{3}-8 u^{2}\right) d u \\
& =\left.2 \pi\left(\frac{u^{4}}{4}-\frac{8 u^{3}}{3}\right)\right|_{0} ^{4}=2 \pi\left[\left(\frac{4}{4}-\frac{8\left(4^{3}\right)}{3}\right)-(0)\right] \cdots \cdots
\end{aligned}
$$

$$
\begin{aligned}
\left.\frac{12}{456} \right\rvert\, \vec{F}=\langle\cosh (y), 0, \sinh (x)\rangle \quad & s: \\
& z=x+y^{2} \\
& 0 \leqslant y \leqslant x \\
& 0 \leqslant x \leqslant 1
\end{aligned}
$$

Sol: \quad s: $\vec{r}(u, v)=\left\langle u, v, u+v^{2}\right\rangle \Rightarrow \quad x=u, v=y$ $0 \leqslant u \leqslant 1$
$0 \leqslant v \leqslant u$

$$
\begin{aligned}
& \vec{F}(\vec{r}(u, v))=\langle\cosh (v), 0, \sinh (u)\rangle \\
& \vec{r}_{u}=\langle 1,0,1\rangle, \vec{r}_{v}=\langle 0,1,2 v\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\vec{N}=\hat{r}_{u} \times \hat{r}_{v}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 0 & 1 \\
0 & 1 & 2 v
\end{array}\right|=\hat{i}(-1)-\hat{j} \right\rvert\, 2 v\right)+\hat{k}(1) \\
& \quad \int_{5}^{1} \int_{0}^{u} \vec{F}(\vec{r}(v u, v)) \cdot \vec{N} d u d v=\int_{0}^{u} \int_{0}^{1}\langle\cosh (v), 0, \sinh (u)\rangle \cdot\langle-1,-2 v, 1\rangle \\
& =\int_{0}^{1} \int_{0}^{u}(-\cosh (v)+\sinh (x u)) d v d u \\
& =\int_{0}^{1}\left(-\sinh (v)+\left.v \sinh (u)\right|_{0} ^{u}\right)=\int_{0}^{1}(-\sinh (u)+u \sinh (u)) d y \\
& =-\cosh (u)|+u \cosh (u)|-\int_{0}^{1} \cosh (u) d u \\
& =(\cosh (0)-\cosh (1))+\cosh (1)-\sinh (1) \\
& =\cosh (0)-\sinh (1)=1-\sinh (1)
\end{aligned}
$$

18/16/2015 Dr. Ahmed Abdullah
Tuesday
No.
10.7 Triple Integrals:

Divergence theorem of Gauss:-
Theorem: Let T be closed bounded region in space(solid) whose boundary is precewise sooth oriantable surface. Let $\vec{F}(x, y, z)$ be a vector function that is a continuous and has continuous first partial derivatives in some containing T then:

$$
\iiint_{T} \operatorname{div} \vec{F} d v=\iint_{S} \vec{F} \cdot \vec{n} d A
$$

If $\vec{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ and the outer normal vector in $\vec{n}=\langle\cos (\alpha),-\cos (\beta), \cos (8)\rangle$ of s, The formula becomes:-

$$
\begin{aligned}
& \iint_{T}\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}\right) d x d y d z=\iint_{5}\left(F_{1} \cos (\alpha)+F_{2} \cos (\beta)+F_{3} \cos (y)\right) d A \\
& =\iint_{5}\left(F_{1} d y d z+F_{2} d z d x+F_{3} d x d y\right)
\end{aligned}
$$

EX: Verification of the Divergence Theorem
Evaluate
$\iint_{s}(7 x \hat{i}-z \hat{k}) \cdot \vec{n} d A$ over the surface of the sphere $s: x^{2}+y^{2}+z^{2}=4$

Sol: our volume is $T: x^{2}+y^{2}+z^{2} \leqslant 4$
11

$$
\vec{F}=\left\langle\begin{array}{c}
F_{1}, F_{2} \\
7 x, \\
F_{3}
\end{array}\right\rangle \quad \Rightarrow \nabla \cdot \vec{F}=\operatorname{div} \vec{F}=6
$$

using divergence theorem

$$
\iint_{s} \vec{F} \cdot \vec{r} d A=\iiint_{T} \operatorname{div} \vec{F} d v
$$

$\begin{aligned} &\left.=\iiint_{T} 6 d v \Rightarrow \text { since the integrand is constant } 16\right) \\ & \text { we can just find the volume }\end{aligned}$ of the sphere then multiply it by (6)

* remember: the volume of the sphere $\frac{4}{3} \pi(r)^{2}$

$$
\iint_{T} 6 d v=(6)\left(\frac{4}{3} \pi(2)^{2}\right)=\frac{192}{3} \pi=64 \pi
$$

\Rightarrow or you can find the volume of the sphere either using cartesian coordinates or using spherical coordinates (which is easiar)
(2) without using divergence theorem (Direct method)

$$
\begin{aligned}
& \iint_{S} \vec{F} \cdot \vec{n} d A=\iint_{R} \vec{F}(\vec{r}(u, v)) \cdot \vec{N} d u d v \\
& S: x^{2}+y^{2}+z^{2}=4 \Rightarrow S: \vec{r}(u, v)=\langle 2 \cos (u) \cos (v) \text {, } \\
& \underbrace{2 \cos (v) \sin (u)}_{y}, \underbrace{2 \sin (v)}_{z}) \\
& 0 \leqslant u \leqslant 2 \pi \\
& -\frac{\pi}{2}<v \leqslant \pi / 2 \\
& \vec{N}=\vec{r}_{u} \times \vec{r}_{v} \\
& \vec{r}_{u}=\langle-2 \sin (u) \cos (v), 2 \cos (v) \sin (u), 0\rangle \\
& \vec{r}_{v}=\langle-2 \cos (u) \sin (v),-2 \sin (v) \sin (u), 2 \cos (v)\rangle \\
& \vec{N}=\vec{r}_{u} \times \vec{r}_{v}=\ldots \cdot\left\langle\frac{x}{4 \cos ^{2}(v) \cos (u)}, \frac{y}{4 \cos ^{2}(v) \sin (u)},\right. \\
& \left.\frac{4 \cos (v) \sin (u)}{z}\right\rangle \\
& \vec{F}=\langle 7 x, 0,-z\rangle \Rightarrow \vec{F}(\vec{r}(u, v))=\langle 14 \cos (u) \cos (v), 0,-2 \sin (v)\rangle \\
& \int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \pi}\langle 14 \cos (u) \cos (v), 0,-2 \sin (v)\rangle \cdot\left\langle{ }_{n}\right\rangle d u d v
\end{aligned}
$$

continue.
$\frac{9}{457}$ Evaluate surface integral $\iint_{5} \vec{F}$.hondA by divergence
$\vec{F}=\left\langle x^{2}, 0, z^{2}\right\rangle$, s: the surface of the box

$$
|x| \leqslant 1, \quad|y| \leqslant 3, \quad 0<z \leqslant 2
$$

$$
-1 \leqslant x^{2} \leqslant 1 \quad-3 \leqslant y \leqslant 3
$$

Sol: $\quad \iint_{S} \vec{F} \cdot \vec{n} d A=\iint_{T} \operatorname{div} \vec{F} d v$

$$
\begin{aligned}
& \nabla \cdot \vec{F}=\operatorname{div} \vec{F}=2 x+2 z \\
& =\int_{-1}^{1} \int_{-3}^{3} \int_{0}^{2}(2 x+2 z) d z d y d x=\int_{-1}^{1} \int_{-3}^{3}\left(\left.\left(2 z x+z^{2}\right)\right|_{0} ^{2}\right) d y d x
\end{aligned}
$$

then continue the integral.
If we want to solve this question without using divergence theorem

$$
S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5} \cup S_{6}
$$

(Yell ospáai)
for $\delta_{3}: y=3,-1 \leqslant x \leq 1,0 \leqslant z \leqslant 2$

$$
\begin{aligned}
\Rightarrow & \vec{r}(u, v)=\langle u, 3, v\rangle \\
& -1 \leqslant u \leqslant 1, u v v \leqslant 2 \\
\vec{r}_{u}= & \langle 1,0,0\rangle \quad, \quad \vec{r}_{v}=\langle 0,0,1\rangle \quad, \vec{N}=\langle 0,1,0\rangle \text { continua }
\end{aligned}
$$

\Rightarrow then we have to do similar thing for the all six surfaces.

Thursday
2011012016
$\left.\frac{20}{263} \right\rvert\, \vec{F}=\left\langle 3 x y^{2}, y^{f^{2} x^{2}}-y^{3}, 3 z^{F_{3}} x^{2}\right\rangle$
S is the surface of $x^{2}+y^{2} \leqslant 25, \quad 0 \leqslant z \leqslant 2$
Sol: Using Divergence Theorem:-

$$
\begin{aligned}
& \iint_{S} \vec{F} \cdot \vec{n} d A=\iiint_{T} \operatorname{div} \vec{F} d v \\
& \operatorname{div} \vec{F}=3 y^{2}+x^{2}-3 y^{2}+3 x^{2}=4 x^{2} \\
& \iint_{T} 4 x^{2} d x d y d z \\
& =\int_{-5}^{5} \int_{-\sqrt{25-x^{2}}}^{\sqrt{25-x^{2}}} \int_{0}^{2} 4 x^{2} d z d y d x
\end{aligned}
$$

But we will use cylindrical cordinater to find the integral

$$
\begin{aligned}
& =\int_{0=0}^{0=2 \pi} \int_{r=0}^{r=5} \int_{z=0}^{z=2} 4(r \cos (\theta))^{2} r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{5}(2) 4 r^{3} \cos ^{2}(0) d z d r d \theta=\int_{0}^{2 \pi}\left(\left.2 r^{4} \cos (\theta)\right|_{0} ^{5}\right) d \theta \\
& =\int_{0}^{2 \pi}\left(2(5)^{4} \cos ^{2}(\theta)\right) d \theta \\
& =1250 \int_{0}^{2 \pi} \frac{1}{2}(1+\cos (2 \theta)) d \theta=1250 \pi
\end{aligned}
$$

if the surface: ${ }^{(1)}: x^{2}+y^{2} \equiv z^{2}, \quad u \leq z \leq 2 \leftarrow$ Just the sides without the (Top) of the cone.

$\frac{18}{463} \vec{F}=\left\langle\begin{array}{lll}F_{1} & F_{2}, & F_{3} \\ 4 & 3 z, 5 y\end{array}\right.$, s is the surface ${ }^{2} f$ the cone $x^{2}+y^{2} \leqslant z^{2}, \quad 0 \leqslant z \leqslant 2$
sol:

$$
\begin{aligned}
& \iint_{s} \vec{F} \cdot \hat{n} d A=\iiint_{v} \operatorname{div} \vec{F} d v \\
& d \hat{N} \vec{F}=4+0+0=4 \\
& =\iiint_{\vec{T}} 4 d v \\
& =4 \text { (volume of cone) }=4\left(\frac{1}{3} \pi(2)^{2}(2)\right)
\end{aligned}
$$

or by using spherical coordinates

$$
=\iint_{T} 4 d v=\int_{\pi / 4}^{\pi / 2} \int_{0}^{2 \pi} \int_{0}^{2 / \sin \phi} 4 \rho \cos ^{2} \phi d \rho d \theta d \phi
$$

EX: $\vec{F}=\langle 4 x, 3 z, 5 y\rangle s^{n}$:is the surffure $x^{2}+y^{2}=z^{2}$ $0 \leq z \leqslant 2$
$s d: \iint_{S^{N}} \vec{F} \cdot \hat{n} d A=\iint_{S} \vec{F} \cdot \dot{d} d A-\iint_{S^{*}} \vec{F} \cdot n d A$

$$
\begin{aligned}
& \text { Precont }=\left(4 \frac{1}{3} \pi\left(2^{2}\right)(2)\right)-\ldots \\
& s^{* *}: x^{2}+y^{2} \leqslant 4, z=2 \quad s^{* *}: \vec{r}(u, v)=\left\langle\begin{array}{c}
x \\
u \\
\cos (v), u \sin (v), 2 \\
0
\end{array}\right\rangle \\
& 0 \leqslant u \leqslant 2 \\
& \text { - }<v \leqslant 2 \pi
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r}_{u}=\langle\cos (v), \sin (v), v\rangle \\
& \hat{r}_{v}=\langle-u \sin (v), u \operatorname{co}(v), 0\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \vec{F}(\vec{r}(u, v))=\langle 4 u \cos (v), 3(2), 5 u \sin | v)\rangle
\end{aligned}
$$

23/10/2016 Dr. Ahmad Abdullah sunday
$\frac{24}{463} \vec{F}=\left\langle 4 x^{2}, y^{2},-2 \cos (\pi z)\right\rangle$
S: the surface of the tetrahedron with vertices

$$
(0,0,0),(1,0,0),(0,2,0),(0,0,4)
$$

Find. $\iint_{s} \vec{F} \cdot \vec{n} d A$ using the Divergence theorem
Sol: $\quad \iint_{y=2-2 \pi} \vec{F} \cdot \vec{n} d A=\iiint_{T} \operatorname{div} \vec{F} d v$

$$
=\int_{0}^{1} \int_{0}^{y=2-2 x} \int_{z=0}^{z=-4-4 x-2 y}(8 x+2 y+2 \pi \sin (\pi z)) d z d y d x
$$

\Rightarrow we have to find the equation of. the plane, first we find a vector perpendicular to plane \& a point at the plane

$$
\begin{aligned}
& \overrightarrow{A B}=\langle-1,2,0\rangle \quad \& \overrightarrow{A C}=\langle-1,0,4\rangle \\
& \overrightarrow{A B} \times \overrightarrow{A C}=\vec{n}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-1 & 2 & 0 \\
-1 & 0 & 4
\end{array}\right|=8 \hat{i}+4 \hat{j}+2 \hat{k}
\end{aligned}
$$

chose any point (A or Bor)
plane: $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$

$$
\begin{gathered}
8(x-1)+4(y-0)+2(z-0)=0 \\
z=4-4 x-2 y
\end{gathered}
$$

To find the limits of integration for $y \& x$
\Rightarrow Then find the integral...

10.9 Stokes's Theorem:-

Theorem: Let S be a piecwise smoth oriented surface in space. and let the boundary of S be a piecwise moth simple curve C.
Let $\vec{F}(x, y, z)$ be a continuous vector function that has continous first partial derivatives in a domain in space containing S, Then:-

$$
\iint_{s} \operatorname{carl} \vec{F} \cdot \vec{n} d A=\oint_{e} \vec{F} \cdot \vec{r}^{\prime}(s) d s
$$

Here \vec{n} is a unite normal vector of s and depending on \vec{n}, the integration around C is taken in the sense Shown in figure 251.
$\vec{r}=\frac{d \vec{r}}{d s}$ is the unite tangent vector and s is the arc length of c.

Figure 25).

Summary of the theorems:

Green's Theorem: $-\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d y d x=\oint_{c} \vec{F} \cdot \vec{r} d t$ (two dimientions)
Divergence Theorem : - $\iint_{\dot{s}} \vec{F} \cdot \vec{n} d A=\iiint_{T} \operatorname{div} \vec{F} d v$
Stokes's Theorem:- \iint_{s} carl $\vec{F} \cdot \vec{n} d A=\int_{c} \vec{F} \cdot \vec{r}(s) d s$

* Green's theorem is a special case of Stokes's Theram but in two, $1 \cdots$ dimintions x

Tuesday \mid Dr. Ahmad Abdullah

Ex: Verification of stokes The
$\vec{F}=\langle y, z, x\rangle$, s is the paraboloid

$$
z=1-\left(x^{2}+y^{2}\right), z \geqslant 0
$$

(1)

$$
\begin{aligned}
& \iint_{S} \operatorname{curl} \vec{F} \cdot \vec{n} d A=\iint_{R} \operatorname{curl} \vec{F}(\vec{r}(u ; v)) \cdot \vec{N} d u d v \\
& s: \vec{r}(u, v)=\left\langle u \cos (v), u \sin (v), 1^{z}-u^{2}\right\rangle \quad 0 \leqslant u \leqslant 1 \\
& 0 \leqslant 1 \leqslant 2 \pi \\
& \vec{r}_{u}=\langle\cos (v), \sin (v),-2 u\rangle \\
& \vec{r}_{v}=\langle-u \sin (v), u \cos (v), 0\rangle \\
& \vec{N}=\vec{r}_{u} \times \vec{r}_{v}=\ldots=\left\langle 2 u^{2} \cos (v), 2 u^{2} \sin (v), u\right\rangle \\
& \text { curl } \vec{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{b} \\
y & z & x
\end{array}\right|=-1 \hat{i}-1 \hat{j}-1 \hat{k}=\langle-1,-1,-1\rangle \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\langle-1,-1,-1\rangle \cdot\left\langle 2 u^{2} \cos (v), 2 u^{2} \sin (v), u\right\rangle d u d v \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(-2 u^{2} \cos (v)-2 u^{2} \sin (v)-u\right) d u d v \rightarrow \text { continue... }
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
=-\pi
$$

(2) $\oint_{c} \vec{F} \cdot \vec{r}^{\prime}(s) d s$

$$
c: \vec{r}(t)=\langle\cos (t), \sin (t), 0\rangle
$$

$$
0 \leqslant t \leqslant 2 \pi
$$

$$
\begin{aligned}
& \vec{r}(t)=\langle-\sin (t), \cos (t), 0\rangle \\
& \vec{F}=\langle y, z, x\rangle \rightarrow \vec{F}(\vec{r}(t))=\langle\sin (t), 0, \cos (t)\rangle \\
& \int_{c}^{1} \vec{F} \cdot \vec{r}(t) d t \quad=\int_{0}^{2 \pi}\langle\sin (t), 0, \cos (t)\rangle \cdot\langle-\sin (t), \cos (t), 0\rangle d t \\
& =\int_{0}^{2 \pi}\left(-\sin ^{2}(t)\right) d t=\frac{-1}{2} \int_{0}^{2 \pi}(1-\cos (2 t)) d t \\
& =\frac{-1}{2}\left(t-\frac{\sin (2 t))}{2}\right) \int_{0}^{\pi}=-\pi
\end{aligned}
$$

$\frac{1-8}{473}$ Evaluate $\iint_{s} \operatorname{curl} \vec{F} \cdot \vec{n} d A$ directly
$\frac{6}{673} \quad \vec{F}=\left\langle z^{2}, x^{2}, y^{2}\right\rangle \quad s: z^{2}=x^{2}+y^{2}, y \geqslant 0, \quad$ or $z \leqslant 2$
Sol: $s: \vec{r}(\vec{u}, v)=\langle u \cos (v), u \sin (v), u\rangle \quad 0 \leqslant u \leqslant 2$

$$
\begin{aligned}
& \vec{r}_{u}=\langle\cos (v), \sin (v), 1\rangle \\
& \vec{r}_{v}=\langle-u \sin (v), u \cos (v), 0\rangle \\
& \vec{N}=\vec{r}_{u} \times \vec{r}_{v}=\langle-u \cos (v),-u \sin (v), u\rangle \\
& \vec{N}=-\vec{N}=\langle u \cos (v), u \sin (v),-u\rangle{ }_{0}^{0}
\end{aligned}
$$

$$
\vec{F}=\left\langle z^{2}, \quad x^{2}, z^{2}\right\rangle
$$

$$
\text { curl } \vec{f}=\ldots=\langle 2 y, 2 z, 2 x\rangle
$$

$$
\operatorname{Curl} \vec{F}(\vec{r}(u, v))=\langle 2 u \sin (v), 2 u, 2 u \cos (v)\rangle
$$

$$
\iint_{s} u r l \vec{F} \cdot \vec{N} d A=\int_{0}^{\pi} \int_{0}^{2}\langle 2 u \sin (v), 2 u, 2 \cos (v)\rangle \cdot\langle u \cos (v), u \sin (v), \mu\rangle
$$

$$
=\int_{0}^{\pi} \int_{0}^{2}\left(2 u^{2} \sin (v) \cos (v)+2 u^{2} \sin (v)-2 u \cos (v)\right) d u d v \xrightarrow{c o n} \text { tine }
$$

$\begin{array}{ll}\left.\frac{8}{473} \right\rvert\, & \vec{F}=\left\langle y^{3},-x^{3}, 0\right\rangle \\ \text { sol: } & \iint_{s} \operatorname{curl} \vec{F} \cdot \vec{n} d A=\end{array}$

$$
\operatorname{carl} \vec{F}=-\quad=\left\langle 0,0,-3 x^{2}-3 y^{2}\right\rangle
$$

$\vec{S}: \vec{r}\left(\begin{array}{r}u, v) \\ u\end{array} \stackrel{x}{u \cos (v)}, u \sin (v), 4\right\rangle$

$$
\begin{aligned}
& \vec{r}_{u}=\langle\cos (v), \sin (v), 0\rangle \\
& \vec{r}_{v}=\langle-u \sin (v), u \cos (v), v\rangle \\
& \vec{N}=\vec{r}_{u} \times \vec{r}_{v}=\ldots . .=\langle 0,0, u\rangle \\
& \iint_{s} c \operatorname{cirl} \vec{F} \cdot \vec{n} d A=\int_{0}^{2 \pi} \int_{0}^{3} c u r l \vec{F}(\vec{r}(u, v)) \cdot \vec{N} d u d v \\
& \operatorname{curl} \vec{F}(\vec{r}(u, v))=\left\langle 0,0,-3(u)^{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{0}^{3}\left\langle 0,0,-3 u^{2}\right\rangle \cdot\langle 0,0, u\rangle d u d v \\
& =\int_{0}^{2 \pi} \int_{0}^{3}\left(-3 u^{3}\right) d u d v=(2 \pi)\left(-\left.\frac{3 u^{4}}{u}\right|_{0} ^{3}\right) \\
& =(2 \pi)\left(\frac{-243}{4}\right)
\end{aligned}
$$

$\frac{11-18}{473}$ Calculate $\oint_{c} \vec{F} \cdot \vec{r}(s) d s$ using stokes's theorem
C: clockwise with respect as seen. person standing at the origin.
$\frac{12}{473} \vec{F}=\left\langle\begin{array}{ccc}F_{1} & F_{2} & F_{3} \\ z & -2 x, & 2 x\end{array}\right\rangle \quad c$ is the intersection of $x^{2}+y^{2}=1$ and $z=y+1$

Sol: \quad carl $\vec{F}=\langle 0,2,-\lambda\rangle$

$$
\begin{aligned}
& s: \vec{r}(u, v)=\langle r \cos (\theta), r \sin (\theta), r \sin (\theta)+1\rangle \\
& =\langle u \cos (v), u \sin (v), r \sin (v)+1\rangle \\
& 0 \leqslant u \leqslant 1 \quad \& \quad 0 \leqslant v \leqslant 2 \pi \\
& \vec{r}_{u}=\langle\cos (v), \sin (v), \sin (v)\rangle \\
& \vec{r}_{v}=\langle-u \sin (v), u \cos (v), u \cos (v)\rangle \\
& \vec{N}=\vec{r}_{u} \times \vec{r}_{v}=\langle 0,-u, u\rangle \rightarrow \text { pointing to the side } \\
& \vec{N}=\langle 0, u,-u\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { curl } \vec{F}(\vec{r}(u, v))=\langle 0,2,-2\rangle \\
& \oint_{c} \vec{F} \cdot \vec{r}^{\prime}(s) d s=\iint_{s} c u r l \vec{F} \cdot \vec{n} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\langle 0,2,-2\rangle-\langle 0,+u, u\rangle d u d v \\
& =\int_{0}^{2 \pi} \int_{0}^{1}(2 u+2 u) d u d v=\int_{0}^{2 \pi} \int_{0}^{1}(u u) d u d v \\
& =\left.(2 \pi) \frac{4 u^{2}}{2}\right|_{0} ^{1}=(2 \pi)(2)=4 \pi
\end{aligned}
$$

$\frac{16}{473} \quad \vec{F}=\left\langle x^{2}, y^{2}, z^{2}\right\rangle \quad c$: the intersection of $x^{2}+y^{2}+z^{2}=4$ and $z=y^{2}$

Sol:

$$
\begin{aligned}
& \operatorname{curl} \vec{F}=\cdots=\langle 0,0,0\rangle \\
& \Rightarrow \oint_{c} \vec{F} \cdot \vec{r}(s) d s=\iint_{s} \operatorname{curl} \vec{F} \cdot \vec{n} d A=\text { Zero }
\end{aligned}
$$

Sunday Dr. Ahmad Abdullah
$\frac{17}{473} \quad \vec{F}=\langle\cos (\pi y), \sin (\pi x), 0\rangle$
c : around the rectangle with vertices

$$
K(0,1,0), L(0,0,1), M(1,0,1), N(1,1,0)
$$

find $\oint_{c} \vec{F} \cdot \vec{r}(s) d s$?
sol: $\nabla \times \vec{F}=\langle 0,0, \pi \cos (\pi x)+\pi \sin (y)\rangle$

$$
\begin{aligned}
& \overrightarrow{N M}=\left\langle 0,,^{-1}, 1\right. \\
& \overrightarrow{N K}=\langle-1,0,0\rangle \\
& \vec{N}=\overrightarrow{N M} \times \overrightarrow{N K}=\langle 0,-1,-1\rangle
\end{aligned}
$$

\Rightarrow the equation of the plane with $\vec{N}=\langle 0,-1,-1\rangle$ and the point $\left(\begin{array}{l}0 \\ x_{0}\end{array} y_{0}, \frac{1}{z_{0}}\right)$

$$
\begin{aligned}
& a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 \\
& \Rightarrow \quad y+z=1 \\
& \vec{r}(u, v)=\langle u, v, 1-v\rangle \quad 0 \leqslant u \leqslant 1 \\
& \vec{r}=\langle 1,0,0\rangle, \overrightarrow{r_{v}}=\langle 0,1,-1\rangle, \vec{N}=\langle 0,1,1\rangle
\end{aligned}
$$

but, from figure the normal must be in the opposite direction, so $\vec{N}=-\vec{N}=\langle 0,-1,-1$

$$
\begin{aligned}
\Rightarrow \int_{0}^{1} \int_{0}^{1}\langle 0,0, \pi \cos (\pi(u) & +\pi \sin (\pi v)\rangle \cdot\langle 0,-1,-1\rangle d u d v \\
& \Rightarrow \text { continue. }
\end{aligned}
$$

Note:

$$
\Rightarrow \oint \vec{F} \cdot \vec{r}(s) d s=\iint_{s_{1}}(\nabla \times \vec{F}) \cdot \vec{n} d A=\iint_{=}(\nabla \times \vec{F}) \cdot \vec{n} d A=\iint_{s_{3}}(\nabla \times \vec{F}) \cdot \vec{n} d A
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CHAPTER (11): Fourier Analysis:
11.1 Faster Series
11.2 Arbitrary period Even \&odd Function:-

A function f is called a periodic function if $f(x)$ is defined "for all real x except possibly at sume points and if there is some positive number p, called a period of f such that :

$$
f(x+p)=f(x) \text {, for all } x \text {. }
$$

Example:

$$
\begin{array}{ll}
f(x+p)=f(x+2 \pi)=f(x), & x \in R \\
\sin (x+p)=\sin (x+2 \pi)=\sin (x), & x \in R
\end{array}
$$

In General:

$$
f(x)=C \sin (A x+B)+D \Rightarrow P=\frac{2 \pi}{A}
$$

Tuesday 1 Dr. Ahmad Abdullak

* suppose that f is a periodic function with period $2 l$ and

$$
\begin{equation*}
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right) \tag{1}
\end{equation*}
$$

Then

$$
\begin{align*}
& \left.a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x \ldots 12\right) \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, n=1,2, \ldots \tag{3}\\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, n=1,2, \ldots \tag{4}
\end{align*}
$$

Theorem:- Orthogonality
Let m, n be integers, then:-
$\pi \int_{-L}^{L} \cos \left(\frac{m \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) d x=0$ for $m \neq n$ and $m=n$
$2 \int_{-L}^{L} \cos \left(\frac{m \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right) d x=0$ for $m \neq n$
$31 \int_{-L}^{L} \sin \left(\frac{m \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right)=0$ for $m \neq n$
Prove: (The second ane)

$$
\int_{-L}^{L} \cos \left(\frac{m \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L}\left[\cos \left(\frac{m \pi x}{L}+\frac{n \pi x}{L}\right)+\cos \left(\frac{m \pi x}{L}-\frac{n \pi x}{L}\right)\right] d x
$$

$$
=\frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(m+n) x \pi}{L}\right) d x+\frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(m-n) \pi x}{L}\right) d x
$$

$$
\left.\left.=\frac{1}{2} \frac{\sin \left(\frac{(m+n) \pi x}{L}\right)}{\frac{(m+n) \pi}{L}}\right]_{-L}^{L}+\frac{1}{2} \frac{\sin \left(\frac{(m-n) \pi x}{L}\right)}{\frac{(m-n) \pi}{L}}\right]_{-L}^{L}
$$

$=O$ (continue the previous calculations, you will get zero!.)

* prove for equation (2):-

$$
\begin{aligned}
& \int_{-L}^{L} f(x) d x=\int_{-L}^{L} a_{0} d x+\sum_{n=1}^{\infty}\left[a_{-L}^{L} a_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) d x+b_{n} \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) d x\right] \\
& \int_{-L}^{L} f(x) d x=a_{0}(2 L) \Rightarrow a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x
\end{aligned}
$$

* prove for equation (3):-

Multiply (1) by $\cos \left(\frac{m \pi x}{L}\right)$ then integrate from $-L \rightarrow L$

$$
\begin{aligned}
& \int_{-L}^{L} f(x) \cos \left(\frac{m \pi x}{L}\right)=a_{0} \underbrace{L}_{\text {Zero }} \cos \left(\frac{m \pi x}{L}\right)+\sum_{n=1}^{\infty}\left[a_{-L}^{L} a_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right)\right. \\
& +b_{n} \underbrace{\int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right)}_{\text {zero }}] \\
& \int_{-L}^{L} f(x) \cos \left(\frac{m \pi x}{L}\right)=\sum_{n=1}^{\infty}\left[a_{n} \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x\right] \rightarrow \underset{\substack{\text { for } \\
\text { for } m=n}}{\substack{m \neq n}} \\
& \int_{-L}^{L} f(x) \cos \left(\frac{m \pi x}{L}\right)=a_{m} \int_{-L}^{L} \cos \left(\frac{m \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x
\end{aligned}
$$

for $n ' s \neq m \Rightarrow$ the integral $=0$.
just we deal with case $m=n$! \rightarrow follows Scanned by CamScanner

Theorem: let f be a periodic function with period $2 l$, and piecewise continaus in the interval $-L \leqslant x \leqslant L$. furthermore, Let $f(x)$ have a left-hand derivative and a right-hand derivative at each point of that interval, Then the Fourier series:-

$$
a_{0+} \sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]=\frac{f\left(x^{-}\right)+f\left(x^{+}\right)}{2}
$$

13 (a) Find the Fourier series of:-

$$
\begin{gathered}
f(x)=\left\{\begin{array}{l}
0, \frac{-1}{2}<x \leqslant 0 \\
x, 0<x>\frac{1}{2}
\end{array}\right\} \\
2 L=1 \Rightarrow L=\frac{1}{2}
\end{gathered}
$$

Sol: The Fourier serieas of f :

$$
\begin{aligned}
& a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] \\
& a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos (2 n \pi x)+b_{n} \sin (2 n \pi x)\right] \\
& a_{0}=\frac{1}{2 L} \int_{-l}^{L} f(x) d x=\frac{1}{2\left(\frac{1}{2}\right)} \int_{-1 / 2}^{1 / 2} f(x) d x=\int_{-1 / 2}^{0} 0 d x+\int_{0}^{1 / 2} x d x \\
& =\left.\frac{x^{2}}{2}\right|_{0} ^{1 / 2}=\frac{1}{8}
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-1}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, n=1,2, \ldots \\
& a_{n}=2 \int_{-1 / 2}^{1 / 2} f(x) \cos (2 n \pi x) d x=2\left[\int_{-1 / 2}^{0} 0 \cos (2 n \pi x) d x+\int_{0}^{1 / 2} x \cos (n \pi x) d x\right] \\
&=2 \int_{0}^{1 / 2} x \cos (n \pi x) d x \Leftrightarrow B_{y} \quad u=x, d u=d x \\
& a_{n}=2\left[\left.\frac{x \sin (2 n \pi x)}{2 n \pi}\right|_{0} ^{1 / 2}-\int_{0}^{1 / 2} \frac{\sin (2 n \pi x)}{2 n \pi} d x\right] \\
& d v=\cos (n \pi x) d x \\
& v=\frac{\sin (2 n \pi x)}{2 n \pi}
\end{aligned}
$$

\Rightarrow note $\cos (n \pi)=(-1)^{n}, n=1,2.3 \ldots$

$$
\begin{aligned}
& a_{n}=2\left(\frac{(-1)^{n}-1}{(2 n \pi)^{2}}\right), n=1,2 \ldots \\
& a_{n}=\left\{\begin{array}{ll}
2\left(\frac{-1-1}{(2 n \pi)^{2}}\right) & , n=\text { odd }=1,3,5 \ldots \\
2\left(\frac{1-01}{(2 n \pi)^{2}}\right) & , n=\text { even }=2,4,6 \ldots
\end{array}\right\}
\end{aligned}
$$

$$
a_{n}=\left\{\begin{array}{ll}
\frac{-1}{(n \pi)^{2}} & , n=1,3,5 \ldots \\
0 & , n=2,4.6 \ldots
\end{array}\right\}
$$

$$
\begin{aligned}
& a_{2 n-1}=\frac{-1}{((2 n-1) \pi)^{2}}, n=1,2,3 \ldots . \& a_{2 n}=0, n=1,2 \ldots \\
& a
\end{aligned}, a=0,1,2, \ldots \text { EOllowd } \Rightarrow
$$

or $a_{2 n+1}=\frac{-1}{((2 n+1) \pi)^{2}}$, Sciahned by CamScFinnnor ${ }^{2}$ lowod \Rightarrow

$$
\begin{aligned}
& \Rightarrow b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x \quad \rightarrow L=\frac{1}{2} \\
& b_{n}=2\left[\int_{-1 / 2}^{0} 0 \sin (2 n \pi x) d x+\int_{0}^{1 / 2} x \sin (2 n \pi x) d x\right] \\
&=2 \int_{0}^{1 / 2} x \sin (2 n \pi x) d x \Rightarrow B y \text { parts } \quad u=x \mid d r=\sin (2 n \pi x) d x \\
& d u=\left.d x\right|_{v=-\frac{\cos (2 n \pi x)}{2 n \pi}} ^{l} \\
&=2\left[\left.\frac{-x \cos (2 n \pi x)}{2 n \pi}\right|_{0} ^{1 / 2}+\int_{0}^{1 / 2} \frac{\cos (2 n \pi x)}{2 n \pi} d x\right. \\
&=2\left[\frac{-1 / 2}{1 / 2} \frac{\cos (n \pi)}{2 n \pi}-0+\left.\frac{\sin (2 n \pi x)}{(2 n \pi)^{2}}\right|_{0} ^{1 / 2}\right] \\
& b_{n}=2\left[\frac{-1}{2} \frac{\cos (n \pi)}{2 n \pi}\right]=\frac{-\cos (n \pi)}{2 n \pi}=\frac{-(-1)^{n}}{2 n \pi}=\frac{(-1)^{n+1}}{2 n \pi}, n=1,2 \ldots
\end{aligned}
$$

\Rightarrow The fourier series of f :

$$
\begin{aligned}
& a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos (2 n \pi x)+b_{n} \sin (2 n \pi x)\right] \\
& \frac{1}{8}+\sum_{n=1}^{\infty} a_{n} \cos (2 n \pi x)+\sum_{n=1}^{\infty} b_{n} \sin (2 n \pi x) \\
& \frac{1}{8}+\sum_{n=1}^{\infty} a_{a_{n-1}^{2 n-1}} \cos (2(2 n-1) \pi x)+\sum_{n=1}^{\infty} b_{n} \sin (2 n \pi x) \\
& \frac{1}{8}+\sum_{n=1}^{\infty} \frac{-1}{((2 n-1) \pi)^{2}} \cos (2(2 n-1) \pi x)+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n \pi} \sin (2 n \pi x) \\
&
\end{aligned}
$$

(b) Show that $\sum_{n=1}^{\infty} \frac{1}{[(2 n-1) \pi c]^{2}}=\frac{1}{8}$ Method [I]

Sol: find $f(0)$

$$
\begin{aligned}
& \text { Find } f(0) \\
& \quad \frac{1}{8}+\sum_{n=1}^{\infty} \frac{-1}{((2 n-1) \pi)^{2}} \cos \left(\frac{(2(2 n-1) \pi(0))}{1}+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n \pi} \sin (2 n \pi(0))=\frac{f\left(0^{+}\right)+f(0)}{2}\right. \\
& \frac{1}{8}+\sum_{n=1}^{\infty} \frac{-1}{((2 n-1) \pi)^{2}}=\frac{0+0}{2} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{[(2 n-1) \pi]^{2}}=\frac{1}{8}
\end{aligned}
$$

(c) Show that $\sum_{n=1}^{\infty} \frac{(+1)}{[(2 n-1) \pi]^{2}}=\frac{1}{8} \quad$ Method [2]
sol: take $x=\frac{1}{2}$

$$
\begin{aligned}
& \text { take } x=\frac{1}{2} \\
& \frac{1}{8}+\sum_{n=1}^{\infty} \frac{-1}{[2 n-1) \pi]^{2}} \cos \left(2(2 n-1) \frac{\pi}{2}\right)+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n \pi} \sin \left(2 n \frac{\pi}{2}\right)=\frac{f\left(\frac{1}{2}\right)+f\left(\frac{1}{2}\right)}{2} \\
& \frac{1}{8}+\sum_{n=1}^{\infty} \frac{-(-1)}{[(2 n-1) \pi]^{2}}=\frac{1 / 2+0}{2}=1 / 4 \\
& \sum_{n=1}^{\infty} \frac{(+1)}{[(2 n-1) \pi]^{2}}=\frac{1}{8} \Rightarrow \text { check }
\end{aligned}
$$

sunday Dr. Ahmad Abdullah
$6111 / 2016$

$$
\begin{aligned}
f(x)=f(-x) & \rightarrow \text { 㮩en } \\
-f(x)=f(-x) & \rightarrow \text { odd }
\end{aligned}
$$

* The Fourier series of f (periodic with period al) is given by

$$
a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \quad n=1,2, \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x \quad n=1,2, \ldots
\end{aligned}
$$

* If f is even; The Fourier series of f will be:-

$$
\begin{aligned}
& a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{l}\right)+b_{p} \sin \left(\frac{n \pi x}{l}\right)\right]^{=} \\
& a_{0}=\frac{1}{l} \int_{0}^{l} f(x) d x \\
& a_{n}=\frac{2}{l} \int_{0}^{l} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, n=1,2 \ldots \\
& b_{n}=\text { zero }! \\
& \Rightarrow a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{l}\right)\right]=\frac{f\left(x^{-}\right)+f\left(x^{+}\right)}{2}
\end{aligned}
$$

* If f is odd, then the furrier series of f is given by:-

$$
\begin{aligned}
& \sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right) d x=\frac{f\left(x^{-}\right)+f\left(x^{+}\right)}{2} \\
& a_{0}=a_{n}=\text { zero ! }
\end{aligned}
$$

$\frac{16}{491}$ Find the Fourier series of

$$
f(x)=x|x|,-1<x<1, \text { period }=2=2 L
$$

Sol: $|x|=\left\{\begin{array}{cc}x, & , x>0 \\ -x & , x<0\end{array}\right\} \quad f(x)=x|x|=\left\{\begin{array}{l}x(x), 01>x>0 \\ x(-x), 1<x<0\end{array}\right\}$

$$
f(x)=\left\{\begin{array}{lc}
+x^{2}, & 0<x<1 \\
-x^{2}, & -1<x<0
\end{array}\right\}
$$

or we know that $g(x)=x$ odd
\& $h(x)=|x|$ even
odd x even $=$ odd function.
\Rightarrow The fourier series for odd function given by:-

$$
\begin{aligned}
& \sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right) d x \\
& b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, n=1,2, \ldots \\
& b_{n}=\frac{2}{1} \int_{0}^{1} x^{2} \sin \left(\frac{n \pi x}{1}\right) d x, n=1,2, \ldots
\end{aligned}
$$

\rightarrow Continue by parts To times

Thursday
Dr. Ahmad Abclullah

$$
\begin{aligned}
& b_{n}=2\left[x^{2}\left(\frac{-\cos (n \pi x)}{n \pi}\right)\right]_{0}^{1}+\int_{0}^{1} 2 x\left(\frac{\cos (n \pi x)}{n \pi}\right) d x \\
&-\cos (n \pi) \\
&=(-1)^{n+1}=2\left[\frac{(-1)^{n+1}}{n \pi}+\left.\frac{2 x \sin (n \pi x)}{\frac{(n \pi)^{2}}{1+\pi r}}\right|_{0} ^{1}-\int_{0}^{1} \frac{\sin (n \pi x)}{(n \pi)^{2}} d x\right] \\
& b_{n}=2\left[\frac{(-1)^{n+1}}{n \pi}+\frac{2(-1)^{n}}{(n \pi)^{3}} \frac{2}{(n \pi)^{3}}\right]
\end{aligned}
$$

Half -Range Expansion:-
$\frac{23-29}{491}$ Find (a) the Fourier cosine series
(b) "1" sine 11

(a) even expansion:

$$
f(x)=\left[\begin{array}{ll}
x+\pi, & -\pi \leqslant x \leqslant 0 \\
\pi-x, & 0<x \leqslant \pi
\end{array}\right\}
$$

The Fourier cosine series: $a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)$

$$
L=\pi \Rightarrow a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)
$$

where

$$
\begin{aligned}
a_{0}= & \frac{1}{L} \int_{0}^{L} f(x) d x=\frac{1}{\pi} \int_{0}^{\pi}(\pi+x) d x=\frac{1}{\pi}\left[\pi x-\frac{x^{2}}{2}\right]_{0}^{\pi} \\
= & \text { Scanned by CamScanner }
\end{aligned}
$$

$$
\begin{aligned}
a_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) \cos (n x) d x \\
a_{n} & =\frac{2}{\pi}\left[\left.(\pi-x) \frac{\sin (n x)}{n}\right|_{0} ^{\pi}-\int_{0}^{\pi}(-1) \frac{\sin (n x)}{n} d x\right] \\
& =\frac{2}{\pi}\left[-\left.\frac{\cos (n x)}{n^{2}}\right|_{0} ^{\pi}\right]=\frac{-2}{\pi}\left[\frac{(-1)^{n}}{n^{2}}-\frac{1}{n^{2}}\right]= \\
\therefore & a_{n}=\left\{\begin{array}{ll}
0 & , \text { even } \\
\frac{4}{\pi n^{2}}, & n \text { is odd }
\end{array}\right\}
\end{aligned}
$$

The Fourier cosine series: i $a_{2 n}=0, n=1,2,3$.

$$
\begin{array}{l:l}
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x) & a_{2 n+1}=\frac{4}{\pi(2 n-1)^{2}} \\
\hdashline \frac{\pi}{2}+\sum_{n=1}^{\infty} a_{2 n-1} \cos ((2 n-1) x) \\
\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{4}{\pi(2 n-1)^{2}} \cos ((2 n-1) x)=\frac{f\left(x^{+}\right)+f(x)^{-}}{2}
\end{array}
$$

$$
a_{2 n+1}^{2 n}=\frac{4}{\pi(2 n-1)^{2}}, n=1,2,3, \ldots
$$

(2) Find $\sum_{n=1}^{\infty} \frac{(+1)^{1}}{(2 n-1)^{2}}$

$$
\begin{aligned}
& \text { Take } x=0 \Rightarrow \frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{4}{\pi(2 n-1)^{2}} \cos (0)=\frac{f\left(0^{+}\right)+f\left(0^{0}\right)}{2} \\
& \frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{4}{\pi(2 n-1)^{2}}=\pi \Rightarrow \sum_{n=1}^{\infty} \frac{4}{\pi(2 n-1)^{2}}=\frac{\pi}{2} \\
& \Rightarrow \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi}{2} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi}{2}-\frac{4}{\pi}
\end{aligned}
$$

(b) Find the odd expansion:-

The Fourier sine series:-

$$
\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

where

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Dr. Ahmad Abdullah
13/11/2d6 11.7 Fourier Integral
No.
11.7 Fourier Integral:
f is absolutely integrable on the x-axis if

$$
\begin{equation*}
\int_{-\infty}^{\infty}|f(x)| d x<\infty \tag{1}
\end{equation*}
$$

The Fourier integral of f is given by

$$
\begin{equation*}
\int_{0}^{\infty}[A(\omega) \cos (\omega x)+B(\omega) \sin (\omega x)] d \omega \tag{2}
\end{equation*}
$$

where:

$$
\begin{align*}
& A(\omega)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \cos (\omega v) d v \tag{3}\\
& B(\omega)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \sin (\omega v) d v
\end{align*}
$$

Theorem 1: (Fourier Integral)
If f is piecewise continuous in every finite interval and has a right hand derivative and a left hand derivative at every point and if the integral (1) exists, then $f(x)$ can be represented by a Furrier integral (2) with $A \& B$ given by (3)
More ever:-

$$
\int_{0}^{\infty}[A(\omega) \cos (\omega x)+B(\omega) \sin (\omega x)] d \omega=\frac{f\left(x^{*}\right)+f\left(x^{-}\right)}{2}
$$

Example 2:(a) Find the Fourier integral of

$$
f(x)=\left\{\begin{array}{ll}
1, & |x|<1 \\
0, & |x|>1
\end{array}\right\}
$$

Sol:

The Fourier integral of f is

$$
\int_{0}^{\infty}[A(\omega) \cos (\omega x)+B(\omega) \sin (\omega x)] d \omega
$$

where $\quad A(\omega)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \cos (\omega v) d v$

$$
\begin{aligned}
& A(\omega)=\frac{1}{\pi} \int_{-1}^{1}(1) \cos (\omega v) d v=\left.\frac{1}{\pi \omega} \sin (\omega v)\right|_{-1} ^{1} \\
& A(\omega)=\frac{1}{\pi \omega}[\sin (\omega)-\sin (-\omega)]=\frac{2}{\pi \omega} \sin (\omega) \\
& \& \quad B(\omega)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \sin (\omega v) d v \\
&=\frac{1}{\pi} \int_{-1}^{1}(1) \sin (\omega v)=\left.\frac{-1}{\pi \omega} \cos (\omega v)\right|_{-1} \\
&=\frac{-1}{\pi \omega}[\cos (\omega)-\cos (-\omega)]=\text { Zero! } \\
& \int_{0}^{\infty}\left[\frac{2}{\pi \omega} \sin (\omega) \cos (\omega x)+0 \sin (\omega x)\right] d \omega \\
& \int_{0}^{\infty}\left[\frac{2}{\pi \omega} \sin (\omega) \cos (\omega x)\right] d \omega
\end{aligned}
$$

(b) evaluate $\int_{0}^{\infty} \frac{\sin (\omega)}{\omega} d \omega$

Sol: $\quad \int_{0}^{\infty}\left(\frac{2}{\pi \omega} \sin (\omega) \cos (\omega x)\right) d \omega=\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2}$
Take $x=0$

$$
\begin{aligned}
& \int_{0}^{\infty}\left(\frac{2}{\pi \omega} \sin (\omega) \cos (0)\right) d \omega=\frac{f\left(0^{+}\right)+f\left(0^{-}\right)}{2}=\frac{1+1}{2} \\
& \frac{2}{\pi} \int_{0}^{\infty}\left(\frac{\sin (\omega)}{\omega}\right) d \omega=1 \Rightarrow \int_{0}^{\infty} \frac{\sin (\omega)}{\omega}=\frac{\pi}{2}
\end{aligned}
$$

(c) evaluate $\int_{0}^{\infty} \frac{\sin (2 \omega)}{\omega} d \omega$
sol: Take $x=1, \sin (2 \omega)=2 \cos (\omega) \sin (\omega)$

$$
\begin{aligned}
& \frac{2}{\pi} \int_{0}^{\infty} \frac{\sin (\omega) \cos (\omega)}{\omega} d \omega=\frac{f\left(1^{+}\right)+f\left(I^{-}\right)}{2} \\
& \frac{1}{\pi} \int_{0}^{\infty} \frac{\sin (2 \omega)}{\omega} d \omega=\frac{0+1}{2} \\
& \int_{0}^{\infty} \frac{\sin (2 \omega)}{\omega} d \omega=\frac{\pi}{2}
\end{aligned}
$$

Notes: -If f is even function. The Fourier cosine integral of f is given by $=$

$$
\int_{0}^{\infty} A(\omega) \cos (\omega x) d \omega=\frac{f\left(x^{*}\right)+f(x)}{2} \text { from theorem } 1
$$

where

$$
A(w)=\frac{2}{\pi} \int_{0}^{\infty} f(v) \cos (w v) d v
$$

- If f is odd function. The Fourier sine integral of \neq is given by:-

$$
\int_{0}^{\infty} B(\omega) \sin (\omega x) d \omega=\frac{f\left(x^{+}\right)+f(x)}{2}
$$

where

$$
B(w)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \sin (w v) d v=\frac{2}{\pi} \int_{0}^{\infty} f(v) \sin (w v) d v
$$

Tuesday \mid Dr. Ahmad Abdullah 1511112016
$\frac{18}{517}$ Fourier sine integral representation

$$
f(x)=\left\{\begin{array}{cc}
\cos (x), & 0<x<\pi \\
0, & x>\pi
\end{array}\right\} \longleftrightarrow \underbrace{\pi}_{0}
$$

Sol:- $\int_{0}^{\infty} B(\omega) \sin (\omega x) d \omega$
where: $\quad B(w)=\frac{2}{\pi} \int^{\infty} f(v) \sin (w v) d v$

$$
=\frac{2}{\pi} \int_{0}^{\pi} \cos (v) \sin (w v) d v
$$

continue
$\frac{1-6}{517}$ Show that:

$$
\frac{1}{517} \left\lvert\, \int_{0}^{\infty} \frac{\cos (x \omega)+\omega \sin (x \omega)}{1+\omega^{2}} d \omega=\left\{\begin{array}{cl}
0 & , x<0 \\
\pi / 2 & , x=0 \\
\pi e^{-x} & , x>0
\end{array}\right\}\right.
$$

Sol:

$$
\int_{0}^{\infty}[A(\omega) \cos (\omega x)+B(w) \sin (\omega x)] d w=\frac{f(x)+f\left(x^{+}\right)}{2}
$$

take $f(x)=\left[\begin{array}{cl}0 & x<0 \\ \pi e^{-x} & , x>0\end{array}\right\}$

to check

$$
\frac{f\left(0^{-}\right)+f\left(0^{+}\right)}{2}=\frac{\pi}{2} \quad, \frac{f\left(1^{+}\right)+f(\overline{1})}{2}=f(1)=\pi e^{-1}
$$

The Fourier integral of f :-

$$
\begin{equation*}
\int_{0}^{\infty}[A(\omega) \cos (\omega x)+B(\omega) \sin (\omega x)] d \omega \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& A(\omega)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \cos (\omega v) d v=\frac{1}{\pi} \int_{0}^{\infty} \pi e^{-v} \cos (\omega v) d v \\
&=\cdots \cdots=\frac{1}{1+\omega^{2}} \tag{2}\\
& B(\omega)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \sin (\omega v) \\
&=\frac{1}{\pi} \int_{0}^{\infty} \pi e^{-v} \sin (\omega v) d v \\
&=\cdots \cdots e=\frac{\omega}{1+\omega^{2}} \cdots 13
\end{align*}
$$

putting (2) \& (3) into (1):-

$$
\begin{aligned}
& \int_{0}^{\infty}\left[\frac{1}{1+\omega^{2}} \cos (\omega x)+\frac{\omega}{1+\omega^{2}} \sin (\omega x)\right] d \omega=\int_{0}^{\infty} \frac{\cos (\omega x)+\omega \sin (\omega x)}{1+\omega^{2}} \\
& \int_{0}^{\infty} \frac{\cos (\omega x)+\omega \sin (\omega x)}{1+\omega^{2}}=\frac{f\left(x^{+}\right)+f(\bar{x})}{2}=\left[\begin{array}{ll}
0 & , x<0 \\
\pi / 2 & , x=0 \\
\pi e^{-x}, & x>0
\end{array}\right\}
\end{aligned}
$$

Note: $\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t$

$$
\mathcal{L}\{\cos (\omega v)\}=\int_{0}^{\infty} e^{-s v} \cos (\omega v) d v=\frac{s}{s^{2}+v^{2}}
$$

$\&$ in our case $s=1 \rightarrow \frac{4}{1^{2}+\omega^{2}}=\frac{1}{1+\omega^{2}}$
$\frac{5}{517} \int_{0}^{\infty} \frac{\sin (\omega)-\omega \cos (\omega)}{\omega^{2}} \sin (\omega x) d \omega=\left\{\begin{array}{cc}1 / 2 \pi x, & 0<x<1 \\ 1 / 4 \pi, & x=1 \\ 0, & x>0\end{array}\right\}$
Sol: $f(x)=\left\{\begin{array}{cc}\frac{1}{2} \pi x, & 0<x<1 \\ 0, & x>1\end{array}\right\}$

Fourier sine integral (no presence of $\cos (\omega x)$) of $\frac{f}{7}$:-

$$
\begin{equation*}
\int_{0}^{\infty} B(\omega) \sin (\omega x) d \omega \tag{1}
\end{equation*}
$$

where $B(\omega)=\frac{1}{\pi} \int_{0}^{\infty} f(v) \sin (\omega v) d v$

$$
\begin{aligned}
& =\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2} \pi v \sin (\omega v) d v \\
& =\cdots \text { by parts }=\frac{\sin (\omega)-\omega \cos (\omega)^{-(2)}}{w^{2}}
\end{aligned}
$$

putting (2) into (1)

$$
\int_{0}^{\infty} \frac{\sin (\omega)-\omega \cos (\omega)}{\omega^{2}} \sin (\omega x) d \omega=\frac{f\left(x^{-}\right)+f\left(x^{*}\right)}{2}=\left\{\begin{array}{cc}
\frac{1}{2} \pi x, & 0<x<1 \\
\frac{1}{4} \pi, & x=1 \\
0 & x>0
\end{array}\right.
$$

Thursday | Dr. Ahmad Abdullak
$\frac{18}{517} \quad f(x)=\left\{\begin{array}{cc}\cos (x) & , 0<x<\pi \\ 0, & x>\pi\end{array}\right\}$

Find the Fourier sine integral of f.
Sol: $\int_{0}^{\infty} B(\omega) \sin (\omega x) d \omega$
where $B(w)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \sin (\omega v) d v$

$$
\left.\left.=\frac{2}{\pi} \int_{0}^{\pi} \cos (v) \sin \right\rvert\, w v\right) d v
$$

$$
=\ldots \text { continue }
$$

11.8: Fourier cosine and sine Transform:

The Fourier cosine transform of f is given by

$$
F(f)=\hat{f}_{c}(w)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos (\omega x) d x
$$

and the inverse cosine transform is

$$
F_{c}^{-1}=f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{f}_{c}(\omega) \cos (\omega x)-d \omega
$$

The Fourier sine Transform of f

$$
f_{5}(f)=\hat{f}_{s}(\omega)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin (\omega x) d x
$$

and the inverse sine transform is

$$
{\frac{f_{5}}{5}}_{-1}=f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{f}_{5}(\omega) \sin (\omega x) d \omega
$$

Example 1: $f(x)=\left\{\begin{array}{cc}k, & 0<x<a \\ 0, & x>a\end{array}\right\}$
Find the Fourier cosine and sine transform of f.
Sol: $\hat{f}_{c}^{n}(\omega)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos (\omega x) d x=\sqrt{\frac{2}{\pi}} \int_{a}^{a} k \cos (\omega x) d x$

$$
\begin{aligned}
&=\left.\sqrt{\frac{2}{\pi}} k \frac{\sin (\omega x)}{\omega}\right|_{0} ^{a}=k \sqrt{\frac{2}{\pi}} \frac{\sin (\omega a)}{\omega} \\
& \hat{f}_{5}(\omega)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \\
& \sin (\omega x)
\end{aligned} d x \ldots=\sqrt{\frac{2}{\pi}}(k)\left(\frac{1-\cos (\omega a)}{\omega}\right) .
$$

properties of Fourier cosine and sine transform:-

$$
\begin{aligned}
& f_{c}\{a f+b g\}=a f_{c}\{f\}+b f_{c}[g\} \\
& f_{s}\{a f+b g\}=a f_{s}\{f\}+b f_{s}\{g\}
\end{aligned}
$$

Theorem 1: Let $f(x)$ be continous and absolutely integrable on the x-axis. Let $f^{\prime}(x)$ be piecewise continuous on every finite interval and let $f(x) \rightarrow 0$ as $x \rightarrow \infty$
Then

$$
\begin{aligned}
& J_{c}\left\{f^{\prime}(x)\right\}=\omega f_{s}\{f(x)\}-\sqrt{\frac{2}{\pi}} f(0) \\
& f_{s}\left\{f^{\prime}(x)\right\}=\omega f_{c}\{f(x)\}
\end{aligned}
$$

Example 3: Find $F_{c}\left\{e^{-a x}\right\}$ for $f(x)=e^{-a x}, a>0$
Sol: * method [7]: Direct method $F_{c}\left\{e^{-a x}\right\}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-a x} \cos \left(\omega_{x}\right) d x$ * method [2] (using another property of theorem 1)

$$
\begin{aligned}
& f_{c}\left\{f^{\prime \prime}(x)\right\}=-\omega^{2} F_{c}\{f(x)\}-\sqrt{\frac{2}{\pi}} f^{\prime}(0) \\
& f_{s}\left\{f^{\prime \prime}(x)\right\}=-\omega^{2} f_{s}\{f(x)\}+\sqrt{\frac{2}{\pi}} \omega f(0)
\end{aligned}
$$

\Rightarrow The conditions on f and f^{\prime} and $f^{\prime \prime}$ respectively satisfy. in theorem 1 .

$$
\begin{aligned}
& f(x)=e^{-a x}, f^{\prime}(x)=-a e^{-a x}, f^{\prime \prime}(x)=a^{2} e^{-a x} \\
& f_{c}\left\{f^{\prime \prime}(x)\right\}=-\omega^{2} f_{c}[f(x)\}-\sqrt{\frac{2}{\pi}} f^{\prime}(0) \\
& f_{c}\left\{a^{2} e^{-a x}\right\}=-\omega^{2} f_{c}\left\{e^{-a x}\right\}-\sqrt{\frac{2}{\pi}}\left(-a e^{(-a)(0)}\right) \\
& a^{2} F_{c}\left\{e^{-a x}\right\}=-\omega^{2} F_{c}\left\{e^{-a x}\right\}+a \sqrt{\frac{2}{\pi}} \\
& a^{2} F_{c}\left\{e^{-a x}\right\}+\omega^{2} f_{c}\left\{e^{-a x}\right\}=a \sqrt{\frac{2}{\pi}} \\
& {\left(a^{2}+\omega^{2}\right) f_{c}\left\{e^{-a x}\right\}=a \sqrt{\frac{2}{\pi}}}^{f_{c}\left\{e^{-a x}\right\}=\sqrt{\frac{2}{\pi}} \frac{a}{a^{2}+\omega^{2}}}
\end{aligned}
$$

Dr. Ahmad Abdullah
11.9 Fourier Transform

The complex Fourier integral of f is:-

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(v) e^{i \omega(x-v)} d v d \omega \Rightarrow \begin{aligned}
& \text { you can see } \\
& \text { the derivation on } \\
& \text { the book, but no }
\end{aligned}
$$

The Fourier transform of f is:- included in exam.

$$
\begin{equation*}
f(f)=\hat{f}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x \tag{6}
\end{equation*}
$$

and the inverse Fourier transform of $\hat{f}(\omega)$:-

$$
f(x)=F^{-1}(\hat{f})=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i \omega x} d \omega
$$

Theorem 1: If $f(x)$ is absolutely integrable on the x-axis $(-\infty<x<\infty)$ and piecewise continuous on every finite interval, then the Fourier transform $f(\omega)$ of $f(x)$ is given by (6) exists.

Ex: Find the Fourier transform of

$$
f\left(e^{-a x}\right) \quad f(x)=\left\{\begin{array}{cl}
e^{-a x} & , x>0 \\
0 & , x<0
\end{array}\right\} a>0
$$

Sol: $\quad \hat{f}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-a x} e^{-i \omega x} d x$

$$
\begin{aligned}
&\left.=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-(a+i \omega) x} d x=\frac{1}{\sqrt{2 \pi}} \frac{e^{-(a+i \omega) x}}{-(a+i \omega)}\right]_{0}^{\infty} \\
& \Rightarrow \lim _{x \rightarrow \infty} e^{-(a+i \omega) x}=\lim _{x \rightarrow \infty} e^{-a x} e^{-i \omega x}
\end{aligned}
$$

$$
\left.=\frac{1}{\sqrt{2 \pi}} \frac{e^{-(a+i \omega) x}}{-(a+i \omega)}\right]_{0}^{\infty}=0-\left(\frac{1}{\sqrt{2 \pi}} \frac{1}{-(a+i \omega)}\right)=\frac{1}{\sqrt{2 \pi}} \frac{1}{a+i \omega}
$$

properties:-

$$
\begin{aligned}
& f\left(f^{\prime}(x)\right)=i \omega f(f(x)) \begin{array}{l}
\text { conditions:- } \\
0 f \text { is coxtinour on the cacus } \\
0 \text { f } f(x) \rightarrow 0 \text { as }|x| \rightarrow \infty \\
\text { B } f^{\prime}(x) \text { is absolutely integmble }
\end{array} \\
& f\left(f^{\prime \prime}(x)\right)=-\omega^{2} f(f(x))
\end{aligned}
$$

Ex: Find the Fourier transform of $x e^{-x^{2}}$ from Table III
Sol: take $f(x)=\frac{-1}{2} e^{-x^{2}} \Rightarrow f^{\prime}(x)=\left(\frac{-1}{2} e^{-x^{2}}\right)(-2 x)=x e^{-x^{2}}$

$$
\begin{aligned}
f\left(f^{\prime}(x)\right) & =i \omega f\{f(x)\} \\
f\left(x e^{-x^{2}}\right) & =i \omega f\left(\frac{-1}{2} e^{-x^{2}}\right)=(i \omega)\left(\frac{-1}{2}\right) f\left(e^{-x^{2}}\right) \\
& =\left(\frac{-i \omega}{2}\right)(\underbrace{\text { framer }}_{\underbrace{\sqrt{2}}_{\text {from table }} e^{-\omega^{2} / 4}}
\end{aligned}
$$

Dr. Ahmad Abdullah

Chapter 12 : Partial Differential Equations (ODEs)
12.1 Basic concepts of PDES.

$$
\left[\begin{array}{lr}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} & \text { 1-dimensional Heat Eqn. } \\
\frac{\partial u}{\partial t}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) & \text { Two dimensional Heat Eq. } \\
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} & \text { 1-dimensional wave Eqn. } \\
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 & \text { 2-dimensional Laplace Eqn. }
\end{array}\right.
$$

EX: Solve the PDE $u_{x x}-U_{x}-2 u=0$
Sol:

$$
\begin{aligned}
& P D E \\
& u_{x x}-u_{x}-2 u=0 \\
& r^{2}-r-2=0 \\
& (r+1)(r-2)=0 \\
& r=-1,2 \\
& U(x, y)=f(y) e^{-x}+(y) e^{2 x}
\end{aligned}
$$

- Reminder ordinary ODE

$$
\begin{gathered}
y^{\prime \prime}-y^{\prime}-2 y=0 \\
r^{2}-r-2=0 \\
(r+1)(r-2)=0 \\
r=-1,2
\end{gathered}
$$

$$
y(x)=c_{1} e^{-x}+c_{2} e^{2 x}
$$

where $f(y)$ and $g(y)$ are arbitrary functions of y

Ex: Solve $u_{x y}=-u_{x}$
Sol: Let $u_{x}=w$

$$
O D E
$$

$$
\omega_{y}=-\omega
$$

$$
\overline{w=u_{x}}\left\{\begin{array}{l}
\omega=f(x) e^{-y} \\
u_{x}=f(x) e^{-y}
\end{array}\right.
$$

$$
w=c_{3} e^{-y}, c_{3}= \pm c_{2}
$$

$$
\begin{aligned}
u & =\int f(x) e^{-y} d x+c(y) \\
g(x)=\int f(x) \leftarrow u & =e^{-y} g(x)+c(y)
\end{aligned}
$$

\qquad $U=e^{-y} g(x)+c(y) \rightarrow\left\{\begin{array}{l}\text { where } g(x) \text { is an arbitrary function of e } \\ \prime \prime \quad c(y) \text { is an i function offs }\end{array}\right.$
$\frac{19}{543}$ Solve $u_{y}+y^{2} u=y^{2}$
Sol: PDE

$$
y^{\prime}+p(x) y=r(x)
$$

Linear in x

$$
\begin{aligned}
& \mu(x)=e^{\int p(x) d x} \\
& y(x)=\frac{1}{\mu(x)}\left[\int \mu(x) r(x) d x+c\right]
\end{aligned}
$$

$$
\text { Let } u_{y}=y^{\prime} \& y=x \& u=y
$$

$$
p(x)=x^{2}
$$

$$
r(x)=x^{2}
$$

$$
u(x, y)=\frac{1}{e^{3 / 3}}\left[\int^{y / 3} y^{2} d y+f(x)\right] \longleftarrow y(x)=\frac{1}{e^{2 / 3}}\left[\int e^{x^{3} / 3} x^{2} d x+c\right]
$$

N. 87
$\frac{23}{543}$ solve $x^{2} u_{x x}+2 x u_{x}-2 u=0$
Sol:

$$
\begin{aligned}
& \text { PDF } \\
& a=2, b=-2 \\
& r^{2}+(a-1) r+b=0 \\
& r^{2}+(2-1) r-2=0 \\
& r^{2}+r-2=0 \\
& (r-1)(r+2)=0 \\
& r=-2,1 \\
& u(x, y)=f(y) x^{-2}+g(g) x^{\prime}
\end{aligned}
$$

$$
x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0
$$

$$
r^{2}+(a-1) r+b=0
$$

$$
\frac{21}{543} \quad u_{y y}+6 u_{y}+13 u=4 e^{3 y}
$$

$$
\begin{aligned}
& y^{\prime \prime}+6 y^{\prime}+13 y=4 e^{3 x} \\
& y=y_{n}+y_{p}
\end{aligned}
$$

* This Example nt included in exam!
not included in second exam.
12.3 Solution by separation of variables

USe of Fourier Series
EX: consider the wave Eqn

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<l, t>0
$$

with boundary conditions $U(0, t)=0, u(l, t)=0 \quad t \geqslant 0$
and intial conditions $u(x, 0)=f(x), u_{t}(x, 0)=g(x) \quad Q<x \leqslant L$
sol: separation of variables: $\quad u(x, t)=X(x) T(t)$

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \\
& X T^{\prime \prime}=c^{2} x^{\prime \prime} T
\end{aligned}\left[\begin{array}{l}
u_{x}=x^{\prime} T \Rightarrow u_{x x}=x^{\prime \prime} T \\
u_{t}=x T^{\prime} \Rightarrow u_{t t}=x T^{\prime \prime}
\end{array}\right.
$$

First we solve $x^{\prime \prime}-\lambda x=0$ but $u(0, t)=0=x(0) T(t)$

$$
\begin{aligned}
& U(0, t)=T(t) X(0)=0 \xrightarrow{T \neq 0} X(0)=0 \\
& U(L, t)=T(t) X(L)=0 \xrightarrow{T(t) \neq 0} X(L)=0
\end{aligned}
$$

$$
x^{\prime \prime}-\lambda x=0, \quad x(0)=0, \quad x(0)=0
$$

(1)

$$
\begin{aligned}
& \lambda>0 \rightarrow \lambda=\alpha^{2}>0 \\
& x^{\prime \prime}-\lambda x=0 \rightarrow x^{\prime \prime}-\alpha^{2} x=0 \rightarrow r^{2}-\alpha^{2}=0 \\
& \rightarrow r= \pm \alpha \\
& X(x)=c_{1} e^{-\alpha x}+c_{2} e^{\alpha x} \\
& X(0)=0 \rightarrow 0=c_{1} e^{-\alpha(0)}+c_{2} e^{\alpha(0)} \rightarrow c_{2}=-c_{1} \\
& X(L)=0 \rightarrow 0=c_{1} e^{-\alpha L}+c_{2} e^{\alpha L}=c_{1} e^{-\alpha L}-c_{1} e^{\alpha L}=0 \\
& \rightarrow c_{1}\left(e^{-\alpha L}-e^{\alpha L}\right)=0 \\
& c_{1}=0 \quad O R \quad e^{-\alpha L}-e^{\alpha L}=0 \rightarrow e^{-\alpha L}=e^{\alpha L} \\
& \rightarrow 1=e^{2 \alpha L} \text { since } L \neq 0 \\
& \text { so } \alpha=0 \text { "Impossible" } \\
& \Rightarrow c_{1}=0 \Rightarrow c_{2}=-c_{1}=0
\end{aligned}
$$

\Rightarrow No eigenvalues
[2] $\lambda=0$

$$
\begin{aligned}
& x^{\prime \prime}-\lambda x=0 \Rightarrow x^{\prime \prime}=0 \rightarrow x^{\prime}=c_{1} \rightarrow X(x)=c_{1} x+c_{2} \\
& X(0)=0 \rightarrow 0=c_{1}(0)+c_{2} \rightarrow c_{2}=0 \\
& X(L)=0 \rightarrow 0=c_{1} L+c_{2} \rightarrow 0=c_{1} \xrightarrow{L \neq 0} c_{1}=0
\end{aligned}
$$

\Rightarrow No eigenvalues
(3)

$$
\begin{aligned}
& \lambda<0 \rightarrow \lambda=-\alpha^{2}<0, \alpha>0 \\
& x^{\prime \prime}-\lambda x=0 \rightarrow x^{\prime \prime}+\alpha^{2} x=0 \rightarrow r^{2}+\alpha^{2}=0 \\
& r^{2}=-\alpha^{2} \rightarrow r= \pm \alpha i \\
& \Rightarrow x(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x) \\
& \\
& x(0)=0 \rightarrow 0=c_{1} \cos (\alpha(0))+c_{2}(\sin (\alpha(0))) \\
& \rightarrow 0=c_{1}+0 \rightarrow c_{1}=0 \\
& x(L)=0 \rightarrow 0=c_{2} \sin (\alpha L) \xrightarrow{c_{2} \neq 0} \sin (\alpha l)=0 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& n=n=\frac{n \pi}{L}, n=1,2,3
\end{aligned}
$$

$X(x)=a_{2} \sin (\pi x)$
\Rightarrow Eigen values: $\lambda_{n}=-\alpha_{n}^{2}=-\left(\frac{n \pi}{2}\right)^{2}$
\Rightarrow Eigen functivas: $X_{n}(x)=\sin \left(\alpha_{n} x\right)=\sin \left(\frac{n \pi}{L} x\right), n=1,2,3 \ldots$

$$
\begin{gathered}
y^{\prime \prime}+y=0 \rightarrow \underset{y}{y_{1}=\sin x} \begin{array}{l}
y_{2}=\cos (x)
\end{array} \quad y_{3}=c_{1} \sin x+c_{2} \cos x \\
\lambda_{n}=-x_{n}^{2}=-\left(\frac{n \pi}{L}\right)_{10 .}^{2} \quad \text { al }
\end{gathered}
$$

Next we solve $T_{-}^{\prime \prime} \lambda_{n} c^{2} T=0$

$$
\begin{aligned}
& T^{\prime \prime}+\left(\frac{n \pi}{L}\right)^{2} c^{2} T=0 \rightarrow T^{\prime \prime}+\left(\frac{c n \pi}{L}\right)^{2} T=0 \\
& r^{2}+\left(\frac{c n \pi}{L}\right)^{2}=0 \rightarrow r= \pm \frac{c n \pi}{L} i \\
& \rightarrow T_{n}(t)=A_{n} \cos \left(\frac{c n \pi}{L} t\right)+B_{n} \sin \left(\frac{c n \pi}{L} t\right) \\
& \Rightarrow U_{n}(x, t)=X_{n}(x) T_{n}(t) \\
& U_{n}(x, t)=\sin \left(\frac{n \pi x}{L}\right)\left[A_{n} \cos \left(\frac{n \pi t}{L} t\right)+B_{n} \sin \left(\frac{n \pi}{L} t\right)\right] \\
& n=1,2,3, \ldots . .
\end{aligned}
$$

Superposition: "the summation of all n's sciations is "solution"

$$
\begin{aligned}
U(x, t) & \left.=\sum_{n=1}^{\infty} U_{n} \mid x, t\right) \\
& =\sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L}\right)\left[A_{n} \cos \left(\frac{n \pi t}{L}\right)+B_{n} \sin \left(\frac{n \pi t}{L}\right)\right]
\end{aligned}
$$

But $u(x, 0)=f(x)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L}\right)\left[A_{n}\right]$

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L}\right)[A_{n} \underbrace{\cos \left(\frac{n \pi(0)}{L}\right.}_{1})+\underbrace{B_{n} \sin \left(\frac{n \pi(0)}{L}\right)}_{0}] \\
& f(x)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L}\right) A_{n}
\end{aligned}
$$

Fourier sine series:

$$
A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\ldots
$$

$$
\begin{aligned}
& u_{t}(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L}\right)\left[-A_{n}\left(\frac{c_{n} n \pi}{L}\right) \sin \left(\frac{c n \pi t}{L}\right)\right. \\
& \left.+B_{n}\left(\frac{c n \pi}{L}\right) \cos \left(\frac{c n \pi t}{L}\right)\right] \\
& U_{t}(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L}\right)\left[\frac{-A_{n} c n \pi}{L} \sin \left(\frac{c n \pi t}{L}\right)+\frac{B_{0} c n \pi}{L} \cos \left(\frac{c n \pi t}{L}\right)\right] \\
& U_{t}(x, 0)=g(x)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L}\right)\left[\frac{B_{n} \operatorname{cn\pi }}{L}\right] \\
& g(x)=\sum_{n=1}^{\infty} \frac{B_{n} C n \pi}{2} \sin \left(\frac{n \pi x}{L}\right)
\end{aligned}
$$

Again it is a Farrier sine Series

$$
B_{n} \frac{c n \pi}{L}=\frac{2}{2} \int_{0}^{L} g(x) \sin \left(\frac{n \pi x}{L}\right) d x=\ldots .
$$

for the same example but $u(x, 0)=0$ \& $U_{t}(x, 0)=x$ जi<x il

$$
\begin{aligned}
& X_{n}(x)=\sin \left(\frac{n \pi x}{L}\right), n=1,2, \ldots \\
& T_{n}(t)=A_{n} \cos \left(\frac{c n \pi t}{L}\right)+B_{n} \sin \left(\frac{c n \pi t}{L}\right) \\
& U(x, 0)=0 \rightarrow X(x) T(0)=0 \xrightarrow{X \neq 0} T(0)=0 \\
& 0=A_{n} \cos \left(\frac{c n \pi(0)}{L}\right)+B_{n} \sin \left(\frac{c n \pi(0)}{L}\right) \rightarrow A_{n}=0
\end{aligned}
$$

Thursday

$$
\begin{aligned}
& T_{n}(t)=B_{n} \sin \left(\frac{c n \pi t}{L}\right) \\
& U(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L}\right)\left[B_{n} \sin \left(\frac{c n \pi t}{L}\right)\right] \\
& U_{t}(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L}\right)\left[\frac{\left.B_{n} \frac{c n \pi}{L} \cos \left(\frac{c n \pi t}{L}\right)\right]}{U_{t}(x, 0)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L}\right) \frac{B_{n} C_{n \pi}}{L}=x}\right.
\end{aligned}
$$

it is Furies series

$$
B_{n} \frac{c n \pi}{L}=\frac{2}{L} \int_{0}^{L} x \sin \left(\frac{n \pi x}{L}\right) d x
$$

EX: Salve the $P D E$

$$
\begin{aligned}
& u_{t t}=c^{2} u_{x x}, 0<x<L, t>0 \\
& u_{x}(0, t)=0, u_{x}(L, t)=0, t \geqslant 0 \\
& U(x, 0)=f(x), u_{t}(x, 0), \quad 0 \leqslant x \leqslant l
\end{aligned}
$$

sol: saperation of variables

$$
\begin{aligned}
& U(x, t)=X(x) T(t) \\
& X T^{\prime \prime}=C^{2} X^{\prime \prime} T
\end{aligned}
$$

No. 94

$$
\frac{T^{\prime \prime}}{c^{2} T}=\frac{x^{\prime \prime}}{x}=\lambda \quad\left[\begin{array}{l}
x^{\prime \prime}-\lambda x=0 \\
T^{\prime \prime}-c^{2} \lambda T=0
\end{array}\right.
$$

First we solve : $x^{\prime \prime}-\lambda x=0$

$$
\begin{array}{l|l}
u_{x}(0, t)=0 \\
x^{\prime}(0) T(t)=0 \xrightarrow{T \neq 0} x^{\prime}(0)=0 & u_{x}(L, t)=0 \\
X^{\prime}(L) T(t)=0 \xrightarrow{T * 0} X^{\prime}(L)=0
\end{array}
$$

$\pi \lambda>0 \rightarrow \lambda=\alpha^{2}>0, \alpha>0$

$$
\begin{aligned}
& X^{\prime \prime}-\lambda x=0 \rightarrow x^{\prime \prime}-\alpha^{2} x=0 \rightarrow r^{2}-x^{2}=0 \rightarrow r= \pm \alpha \\
& X(x)=c_{1} e^{-\alpha x}+c_{2} e^{\alpha x} \longrightarrow x^{\prime}(x)=-\alpha c_{1} e^{-\alpha x}+\alpha c_{2} e^{\alpha x}
\end{aligned}
$$

But $X^{\prime}(0)=0=-\alpha c_{1}+\alpha c_{2}=\alpha\left(c_{2}-c_{1}\right)=0 \xrightarrow{\alpha=0} c_{2}-c_{1}=0$

$$
\rightarrow c_{2}=c_{1}
$$

\& $X^{\prime}(L)=0=-\alpha c_{1} e^{-\alpha L}+\alpha c_{2} e^{\alpha L}=0=\alpha c_{1}\left(e^{\alpha L}-e^{\alpha L}\right)=0$
But $(\alpha \& L) \neq 0$ and $e^{L L}=e^{-\alpha L}$ can never equal except $(\alpha$ or $l)=0$ which impossible!
$\Rightarrow C_{1}=0=C_{2} \quad \therefore$ No eigen values
(2) $\lambda=0 \Rightarrow x^{\prime \prime}-\lambda x=0 \rightarrow x^{\prime \prime}=0$

$$
\rightarrow x^{\prime}=c_{1} \rightarrow x=c_{1} x+c_{2}
$$

But $X^{\prime}(0)=0 \longrightarrow 0=C_{1}$

$$
x^{\prime}(l)=0 \rightarrow 0=c_{1}
$$

Eigenvalues: $\lambda=0$, Eigen functions: $X(x)=c_{2}=1$
3) $\lambda<0 \longrightarrow \lambda=-\alpha^{2}<0, \alpha>0$

$$
\begin{aligned}
& X^{\prime \prime}-\lambda X=0 \rightarrow x^{\prime \prime}+\alpha^{2} x=0 \rightarrow r^{2}+\alpha^{2}=0 \rightarrow r= \pm \alpha i \\
& X(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x) \\
& X^{\prime}(x)=-c_{1} \alpha \sin (\alpha x)+c_{2} \alpha \cos (\alpha x)
\end{aligned}
$$

But $x^{\prime}(0)=0 \Rightarrow 0=C_{2} \alpha \xrightarrow{\alpha \neq 0} c_{2}=0$

$$
x^{\prime}(L)=0 \Rightarrow 0=-c_{1} \alpha \sin (\alpha L) \xrightarrow{\left(\alpha \& c_{1}\right) \neq 0} \sin (\alpha l)=0
$$

$\rightarrow \alpha L=n \pi, n=1,2,3, \ldots \rightarrow \alpha_{n}=\frac{n \pi}{L}$
Eigen values:- $\lambda_{n}=-x_{n}^{2}=-\left(\frac{n \pi}{L}\right)^{2}, n=1,2,3, \ldots$
Eigen vectors: $X_{n}(x)=\cos \left(\alpha_{n} x\right)=\cos \left(\frac{n \pi x}{L}\right), n=1,2,3, \ldots$
[2] $\&\left[3 \Rightarrow\right.$ Eigen valuer: $\lambda_{n}=-\left(\frac{n \pi}{L}\right)^{2}, n=0,1,2, \ldots$
Eigen function: : $X_{n}(x)=\cos \left(\frac{n \pi}{L}\right), n=0,1,2, \ldots$
Second we solve: $T^{\prime \prime}-\lambda c^{2} T=0$

$$
\begin{aligned}
& \rightarrow T_{n}^{\prime \prime}+\left(\frac{n \pi}{L}\right)^{2} c^{2} T_{n}=0 \rightarrow r^{2}+\left(\frac{n \pi c}{L}\right)^{2}=0 \\
& \rightarrow r= \pm\left(\frac{n \pi c}{L}\right) i \\
& T_{n}(t)=A_{n} \cos \left(\frac{n \pi c t}{L}\right)+B_{n} \sin \left(\frac{n \pi c t}{L}\right), n=0,1,2, \ldots
\end{aligned}
$$

But $U_{t}(x, 0)=0 \Rightarrow X(x) T^{\prime}(0)=0 \xrightarrow{X \neq 0} T^{\prime}(0)=0$

$$
\begin{aligned}
& \rightarrow T_{n}^{\prime}(t)=-A_{n}\left(\frac{n \pi c}{L}\right) \sin \left(\frac{n \pi c t}{L}\right)+B_{n}\left(\frac{n \pi c}{L}\right) \cos \left(\frac{n \pi c t}{L}\right) \\
& T_{n}^{\prime}(0)=0=\frac{B_{n} n \pi c}{L} \rightarrow B_{n}=0 \\
& \Rightarrow T_{n}(t)=A_{n} \cos \left(\frac{n \pi c t}{L}\right), n=0,1,2, \ldots . \\
& \Rightarrow U_{n}(x, t)=X_{n}(x) T_{n}(x)=A_{n} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi t}{L}\right), n=0,1,2 \ldots
\end{aligned}
$$

superposition: -

$$
U(x, t)=\sum_{n=0}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi t}{L}\right)
$$

But $U(x, 0)=f(x)$

$$
u(x, 0)=\sum_{n=0}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right)=f(x)
$$

Fourier cosine series

$$
\begin{aligned}
& \Rightarrow A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x \ldots . . \text { continue } \\
& \Rightarrow A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \ldots \text { continue. } \\
& u(x, t)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi t}{L}\right)
\end{aligned}
$$

12.6 Heat Equation:-

EX: $\quad \frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, 0<x<l, t>0$
Boundary conditions: $U_{x}(0, t)=0, U(L, 0)=0, t \geqslant 0$
Initial conditions: $u(x, 0)=f(x) \quad$ o $<x \leqslant l$

Sol: Seperation of variables

$$
\begin{aligned}
u(x, t) & =X(x) T(t) \\
X T^{\prime} & =c^{2} X^{\prime \prime} T \rightarrow \frac{T^{\prime}}{c T}=\frac{x^{\prime \prime}}{x}=\lambda \\
X^{\prime \prime}-\lambda x & =0 \quad \& T^{\prime}-\lambda c^{2} T=0
\end{aligned}
$$

Solve first: $x^{\prime \prime}-\lambda x=0$
But $U_{a}(0, t)=0$

$$
u(l, t)=0
$$

$$
X^{\prime}(0) T(x) \xrightarrow{T \neq 0} X^{\prime}(0)=0 \quad \mid X(L) T(x) \xrightarrow{T \neq 0} X(L)=0
$$

$\pi \lambda>0 \rightarrow \lambda=\alpha^{2}>0, \alpha>0$

$$
\begin{aligned}
& X^{\prime \prime}-\lambda X=0 \rightarrow X^{\prime \prime}-\alpha^{2} x \rightarrow r^{2}-\alpha^{2}=0 \rightarrow r= \pm \alpha \\
& X(x)=c_{1} e^{-\alpha x}+c_{2} e^{\alpha x} \quad \& X^{\prime}(x)=-\alpha c_{1} e^{-\alpha x}+\alpha c_{2} e^{\alpha x} \\
& \rightarrow X^{\prime}(0)=0 \rightarrow 0=-\alpha_{1} c_{1}+\alpha c_{2} \rightarrow \alpha\left(c_{2}-c_{1}\right)=0 \\
& \xrightarrow{\alpha \neq 0} c_{2}=c_{1} \\
& \rightarrow X(L)=0 \rightarrow 0=c_{1} e^{-\alpha L}+c_{1} e^{\alpha L} \rightarrow c_{1}\left(e^{\alpha L}+e^{-\alpha L}\right)=0
\end{aligned}
$$

But $e^{x}+e^{-\alpha L} \neq 0 \rightarrow c_{1}=0 \therefore$ No eigenvalues

Dr. Ahmad Abdullah
$2 \lambda \quad \lambda=0$

$$
\ddot{x}_{-}^{\prime \prime} \lambda x=0 \longrightarrow x^{\prime \prime}=0 \rightarrow x^{\prime}=c_{1} \longrightarrow x=c_{1} x+c_{2}
$$

But $x^{\prime}(0)=0 \longrightarrow 0=C_{1}$

$$
X(L)=0 \rightarrow 0=C_{1} L+C_{2} \rightarrow C_{2}=0
$$

$3 \lambda<0 \rightarrow \lambda=-\alpha^{2}<0 \quad, \quad \alpha>0$

$$
\begin{aligned}
& x^{\prime \prime}-\lambda x=0 \rightarrow x^{\prime \prime}+\alpha^{2} x=0 \rightarrow r^{2}+\alpha^{2}=0 \rightarrow r= \pm \alpha i \\
\Rightarrow & X(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x) \\
\Rightarrow & x^{\prime}(x)=-c_{1} \alpha \sin (\alpha x)+c_{2} \alpha \cos (\alpha x)
\end{aligned}
$$

But $x^{\prime}(0)=0 \longrightarrow 0=C_{2} \propto \xrightarrow{\alpha>0} c_{2}=0$

$$
\begin{gathered}
x(L)=0 \rightarrow 0=c_{1} \cos (\alpha l) \xrightarrow{c_{1} \neq 0} \cos (\alpha l)=0 \\
\Rightarrow \quad \alpha L=\frac{(2 n-1) \pi}{2}, n=1,2,3 \ldots \\
\alpha_{n}=\frac{(2 n-1) \pi}{2 L}, n=1,2,3 \ldots
\end{gathered}
$$

Eigenvalues: $\lambda_{n}=-\left(\frac{(2 n-y) \pi}{2 l}\right)^{2}, n=y, 2,3, \ldots$
Eigen functions: $X_{n}(x)=\frac{\cos \left(\alpha_{n} x\right)=\cos \left(\frac{(2 n-1) \pi x}{2 L}\right) \cdot n=1,2 \ldots}{\text { Scanned } \mathbf{b y} \text { Cam Sa canner }}$
second we solve $T_{n}^{1}-c^{2} \lambda_{n} T_{n}=0$

$$
\begin{aligned}
& T_{n}^{\prime}-c^{2}\left(-\left(\frac{(2 n-1) \pi}{2 L}\right)^{2}\right) T_{n}=0 \rightarrow T_{n}^{\prime}+c^{2}\left(\frac{(2 n-1) \pi}{2 L}\right)^{2} T_{n=0} \\
\rightarrow & r+\left(\frac{c(2 n-1) \pi}{2 L}\right)^{2}=0 \rightarrow r=-\left(\frac{c(2 n-1) \pi}{2 L}\right)^{2} \\
& T_{n}(t)=e^{-\left(\frac{c(2 n-1) \pi}{2 L}\right)^{2} t}, n=1,2, \cdots \cdot \\
\Rightarrow & U_{n}(x, t)=X_{n}(x) T_{n}(t)=\left[\cos \left(\frac{(2 n-1) \pi x}{2 L}\right)\right] e^{-\left(\frac{c(2 n-1) \pi}{2 L}\right)^{2} t}
\end{aligned}
$$

Superposition:-

$$
U(x, t)=\sum_{n=1}^{\infty} A_{n}\left[\cos \left(\frac{(2 n-1) \pi x}{2 L}\right)\right]\left[e^{-\left(\frac{c(2 n-1 \pi}{2 L}\right)^{2} t}\right]
$$

we add it to satisfy the linear combination
But $u(x, 0)=f(x)=\sum_{n=1}^{\infty} A_{n} \cos \left[\frac{(2 n-1) \pi x}{22}\right]$
Q: is $g_{n}(x)=\cos \left(\frac{(2 n-1) \pi}{2 L} x\right)$ an orthogonal set of functions for or $x \leqslant 1$??
$\xrightarrow{m \neq n} \int_{0}^{L} \cos \left(\frac{(2 n-1) \pi x}{2 L}\right) \cos \left(\frac{(2 m-1) \pi x}{2 L}\right) d x$
....- Continue the integration you will get zero!
so the set of functions are orthogonal

$$
\begin{array}{ll}
& f(x)=\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{(2 n-1) \pi x}{2 L}\right) \\
\begin{array}{l}
\text { multiply } \\
\text { by } \\
\text { cos }\left(\frac{(2 m-1) \pi x}{2 L}\right)
\end{array} \int_{0}^{L} f(x) \cos \left(\frac{(2 m-1) \pi x}{2 L}\right)=\sum_{n=1}^{\infty} A_{n} \int_{0}^{L} \cos \left(\frac{(2 n-1) \pi x}{2 L}\right) \cos \left(\frac{(2 m-1) \pi x}{2 L}\right) \\
\text { then } \begin{array}{l}
\text { integrate } \\
\end{array} \int_{0}^{L} f(x) \cos \left(\frac{(2 m-1) \pi x}{2 L}\right) d x=A_{m} \int_{0}^{L}\left(\cos \left(\frac{(2 m-1) \pi x}{2 L}\right)\right)^{2} d x \\
& \int_{0}^{L} f(x) \cos \left(\frac{(2 m-1) \pi x}{2 L}\right) d x=A_{m}\left[\frac { 1 } { 2 } \int _ { 0 } ^ { L } \left(1+\frac{\left.\left.\cos \left(\frac{(2 m-1) \pi x}{L}\right)\right) d x\right]}{}=A_{m}\left[\frac{1}{2}\left(L+\frac{\sin \left(\frac{(2 m-1) \pi x}{L}\right)}{\frac{(2 m-1) \pi}{L}}\right]_{d}^{L}\right.\right.\right. \\
& \int_{0}^{1} f(x) \cos \left(\frac{(2 m-1) \pi x}{2 L}\right) d x=A_{m}\left(\frac{L}{2}\right) \\
& A_{m}=\frac{2}{L} \int_{0}^{1} f(x) \cos \left(\frac{(2 m-1) \pi x}{2 L}\right) d x
\end{array}
$$

return to example

$$
\begin{aligned}
& u(x, 0)=f(x)=\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{(2 n-1) \pi x}{2 L}\right) \\
& A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{(2 n-1) \pi x}{2 l}\right) d x \quad, n=1,2, \ldots
\end{aligned}
$$

Ex: Solve the Laplace Equation:-

$$
\begin{aligned}
& \nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 ; 0<x<a, 0<y<b \\
& u(x, 0)=0, u(x, b)=0,0 \leqslant x \leqslant a \\
& u(0, y)=0, u(a, y)=f(y), 0 \leqslant y \leqslant b
\end{aligned}
$$

Sol: By separation of variables:-

$$
\begin{aligned}
& U(x, y)=X(x) Y(y) \\
& \Rightarrow \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \Rightarrow x^{\prime \prime} Y+x y^{\prime \prime}=0 \\
& \Rightarrow X^{\prime \prime} Y=-X Y^{\prime \prime} \Rightarrow \frac{-X^{\prime \prime}}{X}=\frac{Y^{\prime \prime}}{Y}=\lambda, \lambda \equiv \text { constant } \\
& x^{\prime \prime}+\lambda x=0 \quad \& \quad Y^{\prime \prime}-\lambda=0 \\
& \rightarrow \text { start with this equation } \\
& \text { since we have } \\
& u(x, 0) \& u(x, b)=0 \\
& \Rightarrow \quad u(x, 0)=0 \quad\left\{\begin{array} { l }
{ U (x) Y (0) = 0 \xrightarrow { U \neq 0 } Y (0) = 0 }
\end{array} \left\{\begin{array}{l}
X(x) Y(b)=0 \xrightarrow{X \neq 0} Y(b)=0
\end{array}\right.\right.
\end{aligned}
$$

* First we solve:

$$
Y^{\prime \prime}-\lambda Y=0, \quad Y(0)=0, \quad Y(b)=0
$$

(As we did before) \Rightarrow (1) $\lambda>0$, No eigenvalues
(2) $\lambda=0, N_{0}$ eigenvalue
(3) $\lambda<0 \Rightarrow \lambda_{n}=-\left(\frac{n \pi}{b}\right)^{2}, n=1,2, \ldots$ "Eigen values"

$$
Y_{n}(g)=\sin \left(\frac{n \pi y}{b}\right), n=1,2,3 \ldots \text { "Eigen functions" }
$$

* Next we solve:

$$
\begin{aligned}
& X_{n}^{\prime \prime}+\lambda_{n} X_{n}=0 \rightarrow X_{n}^{\prime \prime}-\left(\frac{n \pi}{b}\right)^{2} X=0 \rightarrow r^{2}=\left(\frac{n \pi}{b}\right)^{2} \\
& \rightarrow r= \pm \frac{n \pi}{b} \Rightarrow \text { So } X_{n}(x)=c_{1} e^{\frac{n \pi x}{b}}+c_{2} e^{-\frac{n \pi x}{b}}
\end{aligned}
$$

where $u(0, y)=0$

$$
\begin{gathered}
X(0) Y(y)=0 \xrightarrow{Y \neq 0} X(0)=0 \\
\Rightarrow X(0)=0=C_{1}+C_{2} \Rightarrow C_{1}=-C_{2} \\
X_{n}(X)=C_{1} e^{\frac{n \pi x}{b}}-C_{1} e^{\frac{-n \pi x}{b}}=2 C_{1}\left(\frac{e^{\frac{n \pi x}{b}}-e^{\frac{-n \pi x}{b}}}{2}\right) \\
\Rightarrow X_{n}(x)=\operatorname{Sinh}\left(\frac{n \pi x}{b}\right), n=1,2,3 \ldots
\end{gathered}
$$

$$
U_{n}(x, y)=X_{n}(x) Y_{n}(y)=\sinh \left(\frac{n \pi x}{b}\right) \sin \left(\frac{n \pi y}{b}\right), n=1,2 \ldots
$$

Superposition:-

$$
U(x, y)=\sum_{n=1}^{\infty} B_{n} \sinh \left(\frac{n \pi x}{b}\right) \sin \left(\frac{n \pi y}{b}\right)
$$

* now using $u(a, y)=f(y)$

$$
\Rightarrow U(a, y)=\sum_{n=1}^{\infty} \underbrace{\sin \left(\frac{n \pi y}{b}\right)=f(y) .}_{C_{n} \text { "function of } B_{n} \sinh \left(\frac{n a \pi}{b}\right)}
$$

Remember Fourier series

$$
\begin{aligned}
& f(y)=\sum_{n=1}^{\infty} C_{n} \sin \left(\frac{n \pi y}{L}\right) \\
& C_{n}=\frac{2}{L} \int_{0}^{L} f(y) \sin \left(\frac{n \pi y}{L}\right) d y
\end{aligned}
$$

So $B_{n} \sinh \left(\frac{n \pi a}{b}\right)=\frac{2}{b} \int_{0}^{b} f(y) \sin \left(\frac{n \pi y}{b}\right) d y$

$$
B_{n}=
$$

Notes: (1) This type of problems "the lastone" when all the boundaries of u are defined called:.
"Dirichlet problem"
(2) If the Boundaries were the problem called: -

"Neumann problem"

(3) Any change of one or more of the boundaries conditions will produce a different problem.
(4) If the four conditions weren't homogenuous "not constant" \Rightarrow Here it look like 4 problems togather, so we have to solve them one by one.
such that $u(x, b)=h(x) \&$ make the rest zeros and so on...

Laplace Equation:-

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y}=0
$$

In polar coordinates

$$
\begin{aligned}
& \begin{array}{lll}
x=r \cos (\theta) & r=\sqrt{x^{2}+y^{2}} \\
y=r \sin (\theta) & \tan \frac{y}{x}=0
\end{array} \quad \underset{x}{y} \quad \underset{x}{r-(x, y)} \\
& r=r(x, y), r \geqslant 0, \quad \theta=\theta(x, y) \\
& \Rightarrow u_{x}=u_{r} r_{x}+u_{\theta} \theta_{x} \quad \leadsto r_{x}=\frac{2 x}{2 \sqrt{x^{2}+y^{2}}}=\frac{r \cos (\theta)}{r}=\frac{\cos (\theta)}{1} \\
& u_{y}=u_{r} r_{y}+u_{\theta} \theta_{y} \\
& u_{x x}=\left(u_{x}\right)_{x}=\left(u_{r} r_{x}+u_{\theta} \theta_{x}\right)_{x}=\ldots . \\
& U_{y y}=\cdots \ldots .
\end{aligned}
$$

Ex：Solve the PDE（Dirichlet problem on a circle） $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0$ ，on the circular region $r<a$ ，

$$
u(a, \theta)=f(\theta), \quad 0 \leqslant \theta \leqslant 2 \pi
$$

$\left.\begin{array}{l}u \text { is rencied } \\ \text { w．in periud }\end{array}\right\} u(r,-r)=u(r, \pi), u_{\theta}(r,-\pi)=u_{\theta}(r, \pi), \quad r \leqslant a$ 2π
＂With repact $u(r, \theta)$ is bounded for $r \leqslant a$
$u(r, \theta) \leqslant M$ for some $M>0$
Sol：Separation of variables：－

$$
\begin{aligned}
& U(r, \theta)=R(r) \boxminus(\theta) b i g \theta \\
& u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} U_{\theta \theta}=0 \\
& R^{\prime \prime} \Theta+\frac{1}{r} R^{\prime} 日+\frac{1}{r^{2}} 日^{\prime \prime}=0 \\
& \left(R^{\prime \prime}+\frac{1}{r} R^{\prime}\right) 日=\frac{-1}{r^{2}} R 日^{\prime \prime} \\
& \frac{日^{\prime \prime}}{\boxminus}=-\frac{r^{2} R^{\prime \prime}+r R^{\prime}}{R}=\lambda \\
& 日^{\prime \prime}-\lambda 日=0 \quad \& \quad r^{2} R^{\prime \prime}+r R^{\prime}+\lambda R=0
\end{aligned}
$$

＊First we solve＂$日$＂$-\lambda 日=0$＂
（1）$\lambda>0, \lambda=\alpha^{2}>0, \alpha>0$

$$
日^{\prime \prime}-\lambda 日=0 \rightarrow 日^{\prime \prime}-\alpha^{2} 日=0 \rightarrow r^{2}-\alpha^{2}=0 \rightarrow r= \pm \infty
$$

$$
\rightarrow \boxminus(\theta)=c_{1} e^{-\alpha \theta}+c_{2} e^{\alpha \theta}
$$

$$
\begin{equation*}
\theta(-\pi)=\theta(\pi) \rightarrow c_{1} e^{\alpha \pi}+c_{2} e^{-\alpha \pi}=c_{1} e^{-\alpha \pi}+c_{2} e^{\alpha \pi} . \tag{t}
\end{equation*}
$$

$$
\theta^{\prime}(\theta)=-\alpha c_{1} e^{-\alpha \theta}+\alpha c_{2} e^{\alpha \theta}
$$

$$
\theta^{\prime}(-\pi)=\theta^{\prime}(\pi) \rightarrow-\alpha c_{1} e^{-\alpha \pi}+\alpha c_{2} e^{\alpha \pi}=-\alpha c_{1} e^{\alpha \bar{x}}+\alpha c_{2} e^{-\alpha \pi}
$$

$$
\stackrel{\therefore \alpha}{\longrightarrow}-c_{1} e^{-\alpha \pi}+c_{2} e^{\alpha \pi}=-c_{1} e^{4 \pi}+c_{2} e^{-\alpha \pi}
$$

$$
\rightarrow 2 c_{2} e^{-\alpha \pi}=2 c_{2} e^{\alpha \pi} \rightarrow 2 c_{2}\left(e^{-\alpha \pi}-e^{\alpha \pi}\right)=0
$$

But $e^{-\alpha \pi} \neq e^{\alpha \pi}(\alpha>0) \rightarrow e^{-\alpha \pi}-e^{\alpha \pi} \neq 0 \rightarrow c_{2}=0$
$\xrightarrow{(1)} c_{1} e^{A \pi}=c_{1} e^{-\alpha \pi} \longrightarrow c_{1}=0$

$$
\begin{aligned}
& U(r,-\pi)=U(r, \pi) \quad, R(r) \boxminus(-\pi)=R(r) \boxminus(\pi) \\
& \xrightarrow{R \neq 0} 日(-\pi)=日(\tau) \\
& u_{\theta}(r,-\pi)=u_{\theta}(r, \pi) \\
& \text {, } R(r) 日^{\prime}(-\pi)=R(r) 日^{\prime}(\pi) \xrightarrow{R \neq 0} 日^{\prime}(\pi)=日^{\prime}(-\pi)
\end{aligned}
$$

$$
\Rightarrow C_{1}=C_{2}=0 \quad \text { No Eigen values }
$$

2）$\lambda=0$

$$
\begin{aligned}
& 日^{\prime \prime}-\lambda 日=0 \rightarrow 日^{\prime \prime}=0 \rightarrow \exists^{\prime}(\theta)=c_{1} \rightarrow 日(\theta)=c_{1} \theta+c_{2} \\
& 日(-\pi)=日(\pi) \rightarrow c_{1} \pi+c_{2}=-c_{1} \pi+c_{2} \\
& \rightarrow c_{1} \pi=-c_{1} \pi \rightarrow 2 c_{1} \pi=0 \rightarrow c_{1}=0 \\
& 日(\theta)=c_{2} \quad \text { But } 日^{\prime}(-\pi)=日(\pi) \\
& \rightarrow 日^{\prime}(\theta)=0 \xrightarrow{日^{\prime}(-\pi)=\theta^{\prime}(\pi)} 0=0
\end{aligned}
$$

Eigenvalues：$\lambda_{0}=0$
Eigen functions：$\theta_{0}(\theta)=1$

$$
\begin{aligned}
& r^{2} R^{\prime \prime}+r R^{\prime}+\lambda R=0 \xrightarrow{\lambda=0} r^{2} R^{\prime \prime}+\underset{r=1}{r R^{\prime}}=0 \\
& \rightarrow m^{2}-(1-1) m+0=0 \rightarrow m^{2}=0 \quad m=0,0 \\
& R(r)=C_{1}+c_{2} \ln (r) \quad \text { "repented root " }
\end{aligned}
$$

Since $u(r, \theta)$ is bounded，as $r \rightarrow 0^{+} \Rightarrow \ln (r) \rightarrow-\infty$＂unbaobld so $R_{0}(r)=C_{1}$ ，take $C_{1}=1$

$$
\Rightarrow U_{0}(r, \theta)=R_{0}(r) \exists_{0}(\theta)=(1)(1)=1
$$

3 ．$\lambda<0, \lambda=-\alpha^{2}<0, \alpha>0$

$$
\begin{aligned}
& 日^{\prime \prime}-\lambda \theta=0 \rightarrow \theta^{\prime \prime}+\alpha \theta=0 \rightarrow r^{2}+\alpha^{2}=0 \rightarrow r= \pm \alpha i \\
& \theta(\theta)=c_{1} \cos (\alpha \theta)+c_{2} \sin (\alpha \theta) \\
& 日(-\pi)=日(\pi) \Rightarrow \underbrace{c_{1}(\alpha(-\pi))}_{\cos (-x)=(\cos (x)}+\widetilde{c_{2} \sin (\alpha(-\pi))}=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x) \\
& \Rightarrow c_{1} \cos (\alpha \pi)=c_{2} \sin (\alpha \pi)=c_{1} \cos (\alpha \pi)+c_{2} \sin (\alpha \pi) \\
& \Rightarrow \quad 2 c_{2} \sin (\alpha \pi)=0 \xrightarrow{c_{2} \neq 0} \quad \sin (\alpha \pi)=0
\end{aligned}
$$

But $\theta^{\prime}(\theta)=-\alpha c_{1} \sin (\alpha \theta)+\alpha c_{2} \cos (\alpha \theta)$

$$
\begin{array}{r}
\exists^{\prime}(-\pi)=日(\pi) \rightarrow-\alpha c_{1} \sin (-\pi \alpha)+\alpha c_{2}\left(\cos (-\alpha \pi)=-\alpha c_{1} \sin (\alpha \pi)+\alpha \alpha_{2}(\cos (\alpha \pi)\right. \\
\rightarrow 2 \alpha c_{1} \sin (\alpha \pi)=0 \xrightarrow{c_{1} \neq 0} \sin (\alpha \pi)=0 \\
\alpha_{n}=n, n=1,2, \ldots
\end{array}
$$

Eigenvalues：$\lambda=-\alpha_{n}^{2}=-n^{2}, n=1,2 \ldots$
Eigenfunction s： $\boldsymbol{A}^{*}(\theta)=\sin \left(\alpha_{n} \theta\right)=\sin (n \theta)$

$$
: \theta_{n}^{*}(\theta)=\cos \left(\alpha_{n} \theta\right)=\cos (n \theta) \quad, n=1,2, \ldots
$$

Dr. Ahmed Abdullah
/12/206

$$
\begin{aligned}
& r^{2} R_{n}^{\prime \prime}+r R_{n}^{\prime}-n^{2} R=0 \Rightarrow m(m-1)+m-n^{2}=0 \Rightarrow m= \pm n \\
& R(r)=c_{1} r^{n}+c_{2} r^{-n}, r \rightarrow 0^{+} r^{-n} \rightarrow+\infty \Rightarrow R_{n}(r)=r^{n}, n=1,2 \ldots
\end{aligned}
$$

* r^{-n} unbounded.

$$
\begin{aligned}
U_{n}(r, \theta)=R_{n}(r) E_{n}(\theta) \rightarrow U_{n}^{*}(r, \theta) & =r^{n} \sin (n \theta) \\
U_{n}^{* \alpha}(r, \theta) & =r^{n} \cos (n \theta)
\end{aligned}
$$

\Rightarrow Super position

$$
\begin{aligned}
& U(r, \theta)=A_{0}+\sum_{n=1}^{\infty}\left[A_{n} r^{n} \cos (n \theta)+B_{n} r^{n} \sin (n \theta)\right] \\
& \text { But } u(a, \theta)=f(\theta)=A_{0}+\sum_{n=1}^{\infty}\left[A_{n} a^{n} \cos (n \theta)+B_{n} a^{n} \sin (n \theta)\right]
\end{aligned}
$$

* this is Fourier series with $L=\pi$

$$
\begin{aligned}
A_{0} & =\frac{1}{2 L} \int_{-L}^{L} f(\theta) d \theta \rightarrow \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) d \theta \\
\&\left(a^{n}\right) A_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos (n \theta) d \theta \quad \& B_{n}^{\left(a^{n}\right)}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin (n \theta) d \theta \\
\frac{5}{591} \text { take } U(2, \theta)=f(\theta)=220, & \frac{-\pi}{2}<\theta<\frac{\pi}{2} \\
\text { Sol: } A_{0} & =\frac{1}{2 \pi} \int_{-\pi / 2}^{\pi / 2} 220 d \theta=110
\end{aligned}
$$

$$
\begin{aligned}
& \left(\text { a) } A_{n}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2}(220) \cos (n \theta) d \theta=\left.\frac{220}{\pi n} \sin (n \theta)\right|_{-\pi / 2} ^{\pi / 2}\right. \\
& A_{n} 2^{n}=\frac{220}{\pi n}\left[\sin \left(\frac{n \pi}{2}\right)-\sin \left(\frac{-\pi n}{2}\right)\right]=\frac{220}{\pi n}\left[2 \sin \left(\frac{n \pi}{2}\right)\right] \\
& A_{n} 2^{n}=\frac{2(220)}{\pi n} \sin \left(\frac{n \pi}{2}\right) \Rightarrow A_{n}=\frac{(2)(220)}{\pi n 2^{n}} \sin \left(\frac{n \pi}{2}\right) \\
& A_{n}=\frac{2(220)}{2^{n} \pi n}, \sin \left(\frac{n \pi}{2}\right)=\left\{\begin{array}{ll}
0, & n=24,6, \ldots \\
1, & n=1,5,9 \ldots \\
-1, & n=3,7,11
\end{array}\right\} \\
& A_{(2 n-1)}=\frac{(220)(2)}{\pi n 2^{n}} \sin \left(\frac{(2 n-1) \pi}{2}\right), A(2 n)=0
\end{aligned}
$$

$\overline{6}$ 591 take $u(2, \theta)=400 \cos ^{2}(\theta)=f(\theta)$
sol: $a=2, f(\theta)=400 \cos ^{2}(\theta)=200+200 \cos (2 \theta)$

$$
f(\theta)=A_{0}+\sum_{n=1}^{\infty}\left[A_{n} 2^{n} \cos (n \theta)+B_{n} 2^{n} \sin (n \theta)\right]=200+200 \cos (2 \theta)
$$

\Rightarrow we can compare them to see that @ $n=2$

$$
\begin{aligned}
& A_{0}+A_{1} 2^{1} \cos (\theta)+B_{1} 2^{1} \sin (\theta)+A_{2} 2^{2} \cos (2 \theta)+B_{2} 2^{2} \sin (2 \theta)+\cdots \\
& A_{0}=200 \& A_{1}=0=B_{1} \& B_{2}=0, A_{2}(4)=200 \\
& \rightarrow A_{2}=50 .
\end{aligned}
$$

Thursday | Dr. Ahmad Abdullah
15/12/2015
No. 113
12.7 Heat Equation: Modeling very long Bars

EX: $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}},-\infty<x<\infty, t>0$
$u(x, 0)=f(x) \quad-\infty<x<\infty \quad \& u(x, t)$ is bounded
Sol: separation of variables

$$
\begin{aligned}
& U(x, t)=X(x) T(t) \Rightarrow X T^{\prime}=c^{2} X^{\prime \prime} T \Rightarrow \frac{T^{\prime}}{c^{2} T}=\frac{x^{\prime \prime}}{x}=\lambda \\
& X^{\prime \prime}-\lambda x=0, T^{\prime}-c^{2} \lambda T=0
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \lambda>0 \rightarrow \lambda=\alpha^{2}>0, \quad \alpha>0 \\
& x^{\prime \prime}-\lambda x=0 \rightarrow x^{\prime \prime}-\alpha^{2} x=0 \rightarrow r^{2}-\alpha^{2}=0 \rightarrow r= \pm \alpha \\
& X(x)=c_{1} e^{-\alpha x}+c_{2} e^{\alpha x}
\end{aligned}
$$

But $x \rightarrow-\infty \Rightarrow e^{-\alpha x}++\infty \quad \& x \rightarrow+\infty \Rightarrow e^{\alpha x} \rightarrow \infty$ unbounded "no eigen valuer"
[2] $\lambda=0 \rightarrow x^{\prime \prime}-\lambda x=0 \rightarrow x^{\prime \prime}=0 \rightarrow X(x)=\frac{c_{1} x+c_{2}}{x(\text { un bound rel })}$
$X(x)=c_{2} \quad$, take $c_{2}=1 \rightarrow X(x)=1$

3

$$
\begin{aligned}
& \lambda<0 \rightarrow \lambda=-\alpha^{2}<0, \alpha>0 \\
& X^{\prime \prime}-\lambda x=0 \rightarrow x^{\prime \prime}+\alpha^{2} x=0 \rightarrow r^{2}+\alpha^{2}=0 \rightarrow r= \pm \alpha i \\
& X(x)=C_{\alpha}^{C_{1}} \cos _{A^{\prime}(\alpha)}^{(\alpha x)+C_{2}^{\prime} \underbrace{\sin (\alpha x)}_{\text {all of therm }}} \text { are hounded }
\end{aligned}
$$

$$
\Rightarrow T^{\prime}-c^{2} \lambda T=0
$$

$$
\begin{aligned}
T^{\prime} & =c^{2} \lambda T \rightarrow \int \frac{T^{\prime}}{T} d t=c^{2} \lambda \int d t \rightarrow \ln |T|=c^{2} \lambda t+c_{2} \\
T(t) & \left.= \pm e^{c_{2}} e^{2 d t} \rightarrow T(t)=c_{3} e^{\text {c/ } \lambda t}\right\rangle \lambda=-\alpha^{2} \\
U_{\alpha}(x, t) & =X_{\alpha}(x) c_{\alpha}=1 \\
& =[A(\alpha) \cos (\alpha x)+B(\alpha) \sin (\alpha x)]^{-c^{2} x^{2} t}
\end{aligned}
$$

* Super position:-

$$
\begin{equation*}
u(x, t)=\int_{0}^{\infty}\left[(A(\alpha) \cos (\alpha x)+B(\alpha) \sin (\alpha x)) e^{-c^{2} \alpha^{2} t}\right] d \alpha \tag{1}
\end{equation*}
$$

But $u(x, 0)=f(x)=\int_{0}^{\infty}(A(\alpha) \cos (\alpha x)+B(\alpha) \sin (\alpha x)) d \alpha$
Fourrer integral $\Rightarrow A(\alpha)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos (\alpha x) d x$

$$
\begin{equation*}
B(\alpha)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \sin (\alpha x) d x \tag{2}
\end{equation*}
$$

$$
Q: \text { if } u_{t}^{\text {the condition No. }(x, 0)=f(x) \text { ? } 115}
$$

Sol: from \therefore previous example

$$
\begin{aligned}
& U(x, t)=\int_{0}^{\infty}\left[(A(\alpha) \cos (\alpha x)+B(\alpha) \sin (\alpha x)) e^{-c^{2} \alpha^{2} t}\right] d \alpha \\
& U_{t}(x, t)=\int_{0}^{\infty}[(A \mid \alpha) \cos (\alpha x)+B(\alpha) \sin (\alpha x))-c^{\left.c^{2} \alpha^{2} e^{-c^{2} \alpha^{2} t}\right] d \alpha} \\
& U_{t}(x, t)=\int_{0}^{\infty}\left[\left(-c^{2} \alpha^{2} A(\alpha) \cos (\alpha x)-c^{2} \alpha^{2} B(\alpha) \sin (\alpha x)\right) e^{-c^{2} \alpha^{2} t}\right] d \alpha \\
& U_{t}(x, 0)=\int_{0}^{\infty}\left[-c^{2} \alpha^{2} A(\alpha) \cos (\alpha x)-c^{2} \alpha^{2} B(\alpha) \sin (\alpha x] d \alpha\right.
\end{aligned}
$$

Fourier Integral: $-c^{2} \alpha^{2} A(\alpha)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos (\alpha x) d x$

$$
-c^{2} \alpha^{2} B(\alpha)=\frac{1}{\pi} \int_{-\alpha}^{\infty} f(x) \sin (\alpha x) d x
$$

* we can show that

$$
u(x, t)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v)\left[\int_{0}^{\infty} e^{-c^{2} \alpha^{2} t} \cos (\alpha x-x v) d x\right] d v
$$

prove:- substituting (2) \& (3) into (1)

$$
u(x, t)=\int_{0}^{\infty}\left[\left[\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \cos (\alpha v) d v\right] \cos (\alpha x)+\left[\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \sin (\alpha v) d v\right] \sin ((x))\right]
$$

$$
\begin{aligned}
& u(x, t)=\frac{1}{\pi} \int_{0}^{\infty}\left[\left(\int_{-\infty}^{\infty} f(v)[\cos (\alpha v) \cos (\alpha x)+\sin (\alpha v) \sin (\alpha x)] d v\right) e^{-c^{2} \alpha^{2} t}\right\} d x \\
& =\frac{1}{\pi} \int_{-\infty}^{\infty} f(v)\{\int_{\cos (\alpha v-\alpha x)}^{\infty}[\underbrace{\cos (\alpha v) \cos (\alpha x)+\sin (\alpha v) \sin (\alpha x)]} e^{-c^{2} \alpha^{2}} d \alpha\} d v \\
& \cos (\alpha x-\alpha v) \rightarrow \text { even function } \\
& =\frac{1}{\pi} \int_{-\infty}^{\infty} f(v)\left[\int_{0}^{\infty} e^{-c^{2} \alpha^{2} t} \cos (\alpha x-\alpha v) d \alpha\right\} d v \rightarrow \text { proved! }
\end{aligned}
$$

Another Methed: Fourier Transform
$E X: u_{t}=c^{2} u_{x x} \quad-\infty<x<\infty, t>0$

$$
u(x, 0)=f(x) \quad-\infty<x<\infty
$$

Sol:

$$
\begin{aligned}
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\partial}{\partial t}(u(x, t)) e^{-i \omega x} d x \\
& =\frac{\partial}{\partial t}\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} U(x, t) e^{-i \omega x} d x\right] \\
& =\frac{\partial}{\partial t} f[u(x, t)]=\frac{\partial}{\partial t} U(w, t)
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{F}_{\substack{\text { wilh } \\
\text { ventect }}} \mathcal{F}\left\{u_{t}\right\}=\mathcal{F}\left\{c^{2} u_{x x}\right\} \\
& U_{t}(\omega, t)=c^{2}\left(-\omega^{2} U(\omega, t)\right) \\
& \frac{d U}{d t}=c^{2}\left(-\omega^{2} U(\omega, t)\right) \rightarrow \text { seproble } \\
& \frac{d U}{U}=-c^{2} \omega^{2} d t \rightarrow \ln |U|=-c^{2} \omega^{2} t
\end{aligned}
$$

PDE

$$
U(\omega, t)=H(\omega) e^{-c^{2} \omega^{2} t} \quad \vdots \quad y= \pm e^{c_{1}} e^{-c^{2} \omega^{2} t}=c_{2} e^{-c^{2} \omega^{2} t}
$$

But $U(x, 0)=f(x) \rightarrow F\{U(x, 0)\}=F\{f(x)\}$
$\rightarrow U(\omega, 0)=\hat{f}(\omega)$ where $\hat{f}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x$

$$
U(\omega, 0)=\hat{f}(\omega)=H(\omega) e^{-c^{2}(\omega)(0)}=H(\omega)
$$

$\xrightarrow[s o]{ } \quad U(\omega, t)=\hat{f}(\omega) e^{-c^{2} \omega^{2} t}$
N. 118

$$
\begin{aligned}
& \mathcal{F}^{-1} \\
& u(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \underbrace{f}(\omega) e^{-c^{2} \omega^{2} t} e^{i \omega x} d \omega \\
& u(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x\right)^{-c^{2} \omega^{2} t} e^{i \omega x} d \omega \\
&=\frac{1}{2 \pi}
\end{aligned}
$$

Dr. Ahmad Abdullak

Semi-infinite.
$E x: U_{t}=c^{2} U_{x x} \quad 0<x<\infty \quad, t>0$

$$
\begin{aligned}
& U(x, 0)=f(x) \quad 0<x<\infty \\
& U(0, t)=0
\end{aligned}
$$

Sol: using Fourier sine Transform with respect to x

$$
\begin{aligned}
& f_{s}\left\{\frac{\partial u}{\partial t}\right\}=F_{s}\left\{c^{2} \frac{\partial^{2} u}{\partial x^{2}}\right\} \\
& \frac{\partial}{\partial t} \hat{u}_{s}(\omega, t)=c^{2}[-\omega^{2} \hat{u}_{s}(\omega, t)+\sqrt{\frac{2}{\pi}} \omega \underbrace{u(0, t)}_{\text {Zero }}] \\
& \frac{\partial}{\partial t} \hat{u}_{s}(\omega, t)=-c^{2} \omega^{2} \hat{u}_{s}(\omega, t)
\end{aligned}
$$

$p d E$
ode

$$
\frac{d y}{d t}=-t^{2} \omega^{2} y \longrightarrow \int \frac{d y}{y}=-c^{2} \omega^{2} t
$$

$$
\hat{U}_{5}(\omega, t)=k(\omega) e^{-c^{2} \omega^{2} t}<{ }_{幺} \cdots y(t)=k e^{-c^{2} \omega^{2} t}
$$

But $u(x, 0)=f(x)$

$$
\begin{aligned}
f_{s}\{u(x, 0)\} & =f_{s}\{f(x)\} \\
\hat{u}_{s}(\omega, 0) & =f_{s}(\omega)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin (\omega x) d x \\
\hat{f}_{s}(\omega) & =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(p) \sin (\omega p) d p
\end{aligned}
$$

replace each x by p

$$
\begin{aligned}
\hat{u}_{s}(\omega, 0) & =k(\omega) e^{-2 \omega^{2}(0)}=k(\omega)=\hat{f}_{s}(\omega) \\
\Rightarrow \hat{u}_{s}(\omega, t) & =\hat{f}_{s}(\omega, t) e^{-c^{2} \omega^{2} t}
\end{aligned}
$$

$$
\xrightarrow{F_{s}^{-1}} u(x, t)=f_{s}^{-1}\left[\hat{f}_{s}(w, t) e^{-z w^{2} t}\right\}
$$

$$
u(x, t)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{f}_{s}(\omega) e^{-c^{2} \omega^{2} t} \sin (\omega x) d^{\omega}
$$

$$
u(x, t)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty}\left(\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(p) \sin (\omega p) d p\right) e^{-c^{2} w^{2} t} \sin (\omega x) d w
$$

$$
u(x, t)=\frac{2}{\pi} \int_{0}^{\infty} \int_{0}^{\infty} f(p) \sin (\omega p) e^{-c^{c^{2}} \omega^{2} t} \sin (\omega x) d p d \omega
$$

* Note: We can solve this problem again using separation of variables. Try it!

Ex: $\quad u_{t}=c^{2} u_{x x} \quad 0<x<\infty, t>0$

$$
\begin{aligned}
& U(x, 0)=f(x), \quad 0 \leqslant x<\infty \\
& U_{\otimes(x)}(0, t)=0, \quad t \geqslant 0
\end{aligned}
$$

sol: Here we use Fourier cosine Transform then continue....
...
ebhol pis drain sill all

$$
20 / 12 / 2016
$$

